
Semantics�based Program Analysis via

Symbolic Composition of Transfer Relations

Christopher Colby

August ��� ����

CMU�CS�������

School of Computer Science
Carnegie Mellon University

Pittsburgh� PA �����

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy�

Thesis Committee�

Peter Lee� Chair
Robert Harper
John Reynolds

Patrick Cousot� �Ecole Normale Sup�erieure

Copyright c� ���� Christopher Colby

This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title �The
Fox Project� Advanced Languages for Systems Software�� ARPA Order No� C���� issued by ESC	ENS under
Contract No� F
�������C������

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the o�cial policies� either expressed or implied� of the Advanced Research Projects Agency or the
U�S� Government�

Keywords� program analysis� abstract interpretation� symbolic execution� program veri�	
cation� compilers� debugging� operational semantics� functional languages� imperative languages

To M and D�

iv

Abstract

The goal of program analysis is to determine automatically properties of the
run	time behavior of a program
 Tools of software development� such as compilers�
program	veri�cation systems� and program	comprehension systems� are in large part
based on program analyses
 Most semantics	based program analyses model the run	
time behavior of a program as a trace of execution states and compute a property
of these states
 Typically� this property is drawn from a predetermined language of
semantic information� such as aliasing descriptions or types of values
 The standard
methodology of program analysis is to construct the property as a �xed point� a
single execution step at a time
 We explain that these ubiquitous methodological
choices�the a priori choice of the describable program properties and the use of a
�xed	point computation�have some fundamental limitations and can result in poor
precision

In this dissertation� we present a di�erent approach to semantics	based program
analysis
 Our methodology is based on transfer relations that precisely describe
the changes between the state of memory one point during execution and the state
of memory at some later point in the execution
 We isolate a language TR of
concise computer	representable presentations of transfer relations
 We also give an
algorithm � that� given two transfer relations from TR� symbolically constructs
a third transfer relation in TR that is semantically equivalent to their relational
composition
 An analysis designer begins by describing the operational semantics
of a source language as a set of TR	terms that precisely describe the atomic steps
of execution
 Then an analysis algorithm repeatedly applies � to build a precise
run	time description of any �nite control path of interest

We show that TR is expressive enough to describe a wide variety of source	
language features� including heap	allocated mutable data structures� arrays� point	
ers� and �rst	class functions
 We then explain how our analysis methodology over	
comes some current limitations of program analysis
 The transfer relations them	
selves are useful program properties and would be dicult or impossible to formulate
with classical approaches to program analysis
 But we also describe some classes of
analysis applications that are based on transfer relations
 For instance� we explain
that the classical limitation of program analysis to build a property a single execu	
tion step at a time can result in dramatic loss of precision� but may be overcome
by using � to compose multiple steps before applying a classical analysis
 Further	
more� we show how to compute precise properties of loops symbolically� avoiding
the inevitable imprecision of a �xed	point computation

vi

Acknowledgments

At long last� it is my extreme pleasure to thank my advisor� Peter Lee
 Peter
has been a great mentor� colleague� and friend during my time at Carnegie Mellon�
and I am quite fortunate to have found in an advisor such uncanny patience and
understanding
 I could not have asked for a better role model than Peter� and I owe
him a lifelong gratitude

I am very happy indeed to thank Robert Harper
 During my time as a graduate
student� Bob�s steadfast devotion to uncompromising standards has been a constant
inspiration of the highest order� and my life is far richer for having known him
 It
is also a great pleasure to thank John Reynolds for his role on my committee
 In
many ways� John and Bob understood my work better than I did� and I am sure
that I will return to their valuable insights many times
 I am deeply honored and
fortunate to have known them both

I owe a most profound debt to Patrick and Radhia Cousot� who hosted me for a
year at the Laboratoire d�Informatique of �Ecole Polytechnique and at �Ecole Normale
Sup�erieure
 In the eleventh hour� they reminded me of much that I had forgotten

I o�er Patrick and Radhia my deepest gratitude for their invaluable gifts� a tireless
sponsorship� a belief in my abilities� a beacon of scienti�c passion and integrity� and
an extraordinary year in Paris
 I also thank Patrick for serving on my committee

Many people helped make me feel welcome during my year on the Quartier
Latin�s Place de la Contrascarpe
 I would like to thank R�egis Cridlig� �Eric Goubault�
Thomas and Sandra Jensen� Ian Mackie� Bruno Monsuez� and Arnaud Venet
 They
all made my stay in Paris very special
 A special thanks goes to Alain Deutsch�
whose work opened my eyes to what program analysis can be
 I later received
similar inspirations from the work of Philippe Granger

It is my great pleasure to thank Andrew Tomkins and Glen Wilk
 Glen and
I have been close friends for the better half of my life
 He has always shown a
keen interest in my career� and he has been a solid foundation of encouragement

Andrew and I entered Carnegie Mellon together and immediately became great
friends
 Andrew is amazingly kind and generous� and he as much as anyone has
helped me make it through graduate school
 Glen and Andrew are both wonderful
people� and they are the best friends anyone could ever hope to have

I would also like to thank Rob Adams� Jill Colby� Scott Colby� Kathleen Downey�
Scott Draves� Ben Fine� Sue Lee� Mark Leone� Bryan Loyall� Chris Okasaki� Jay
Sipelstein� Steve Weeks� Chuck and Penny Wilk� and the countless others who joined
me as traveling companions on my journey

Finally� I would like to thank my parents� Jim and Gloria
 Nothing that I
have achieved would have been remotely possible without their unconditional love�
encouragement� and support� unwavering through both good times and bad

viii

Contents

Abstract v

Acknowledgments vii

I Introduction �

� Some Topics in Program Analysis �

�
� Limitations of Single	step Abstract Interpretation

 �

�
� Overuse of Abstraction and Fixed	point Computation

 ��

�
� An Introduction to Our Methodology

 ��

�
� Overview of the Dissertation

 ��

II Foundations ��

� Stores and Transfer Relations ��

�
� Stores

 ��

�
� Primitive Operations

 ��

�
�
� Deterministic and context	independent primitive operations

 ��

�
�
� Examples of primitive operations

 ��

�
� Expressions and L	expressions

 ��

�
� Simple Transfer Relations

 ��

�
�
� Only some relations are natural

 ��

�
�
� Building natural transfer relations

 ��

�
�
� Examples of transfer relations

 ��

x CONTENTS

�
� The Diculty of Composition

 ��

�
� The Full Language of Transfer Relations

 ��

� Composing Transfer Relations ��

�
� Symbolic Evaluation of Primitive Operations

 ��

�
�
� A �rst cut� symbolic evaluation of simple primitive operations

 ��

�
�
� Generalized symbolic evaluation of primitive operations

 ��

�
�
� Examples

 ��

�
� Symbolic Evaluation of Expressions and L	expressions

 ��

�
�
� The algorithm

 ��

�
�
� Examples

 ��

�
� Symbolic Evaluation of Conditional Relations

 ��

�
� Engineering Flexibility

 ��

�
� Symbolic Evaluation of Assignment Merging

 ��

�
� The Composition Operation

 ��

� Semantics via Transfer Relations ��

�
� Denotational and Operational Semantics

 ��

�
� Modeling a Program as a Transition System

 ��

�
� Modeling a Program as a Table of Transfer Relations

 ��

�
� Composing Single	Step Transfer Relations

 ��

�
�
� Two	step transition sequences

 ��

�
�
� Arbitrary	length transition sequences

 ��

�
� Treatment of Errors

 ��

III Programming Languages ��

	 A Case Study� The Language Mini�C �

�
� Syntax

 ��

�
� Discussion

 ��

�
� Simpli�cation of Syntax

 ��

�
� Control Points

 ��

�
� Values

 ��

CONTENTS xi

�
�
� Constants� �eld names� and pointers

 ��

�
�
� Immutable ordered tuples

 ��

�
�
� The unde�ned value undef

 ��

�
�
� The set of values

 ��

�
� Semantics of Primitive Operations

 ��

�
� Semantics of Expressions and L	expressions

 ��

�
� Transition	system Semantics

 ��

�
�
� The next function

 ��

�
�
� Transition system via meta	rules

 ��

�
�
� Transition system via transfer relations

 ��

�
� Modeling � and Pointer Arithmetic

 ��

� First�Class Functions� The Language Pure
�

�
� Substitution vs
 Closures

 ��

�
� Syntax

 ��

�
� Discussion

 ���

�
� Semantics

 ���

�
�
� Control� data� and execution states

 ���

�
�
� Transitions via meta	rules

 ���

�
�
� Transitions via transfer relations

 ���

�
� Variable Renaming vs
 Closures

 ���

� Extending Pure with Mutable Records and Arrays ���

�
� Syntax

 ���

�
� Discussion

 ���

�
� Syntax Simpli�cation

 ���

�
� Semantics

 ���

�
� Final Words on First	Class Functions

 ���

xii CONTENTS

IV Analysis Applications ���

� Multi�step Program Analysis ��	

�
� A Review of Abstract Interpretation

 ���

�
� Abstract Interpretation of Transition Systems

 ���

�
� Invariant Properties

 ���

�
� An Example

 ���

�
� Performing Multiple Steps Between Abstractions

 ���

�
� Multi	step Abstract Interpretation with Transfer Relations

 ���

�
� Value Analysis

 ���

 Analyzing Expressions ��

�
� Analyzing Finite Control Paths

 ���

�
� Analyzing Adjacent Loop Iterations via Exponentiation

 ���

�
� The Interaction Between E�ects and Exponentiation

 ���

�
� Blowup of Conditional Expressions

 ���

�
� Computing Closed Forms of Loops

 ���

�
�
� An example

 ���

�
�
� Expression constructors

 ���

�
�
� Computing closed forms automatically

 ���

V Conclusion ���

Bibliography ���

Part I

Introduction

Chapter �

Some Topics in Program Analysis

The goal of program analysis is to determine automatically at compile time some properties
about the run	time behavior of a program
 There are several major applications of program
analysis

� Compiler support
 It is reasonably straightforward to implement a correct compila	
tion of a program from a high	level language to machine code� but it is not as easy to
implement a high	quality compilation
 This is because the program may have a special	
ized run	time behavior that the compiler could exploit� but this run	time behavior may
not be easy to detect from a simple examination of the code
 Therefore� the compiler
must invoke a program analysis to uncover this run	time behavior
 For instance� most
compilers use data��ow analysis �e
g
� �KU���� �MJ���� and alias analysis �e
g
� �CWZ����
�Lan���� �Deu���� to enable classic optimizations such as common	subexpression elimina	
tion� copy propagation� and hoisting of loop	invariant computations �ASU���
 Similarly�
some compilers for languages with �rst	class functions use a control��ow analysis �e
g
�
�JM���� �Shi���� to construct a conservative control graph
 Compiler support is far and
away the most common application of program analysis

� Program verication
 One would like to check statically that a program will behave
properly at run time
 For instance� an analysis might verify that a C program never
attempts to dereference a dangling pointer� or if it cannot verify a property that strong�
it might at least isolate a small number of potential trouble spots in the code
 Also�
strongly typed languages such as Standard ML �MTH��� verify at compile time that a
program is well	typed and thus completely eliminate any possibility of a type error at run
time
 Furthermore� static type	checking reveals at compile time a remarkable percentage
of programmer errors

� Program comprehension
 A subject that has been gaining interest in recent years
is the use of program analysis to aid the human understanding of code
 For instance�
the work in static debugging �Bou��a� Bou��b� allows the user to specify various kinds
of pre	 and post	conditions at di�erent points in the program� and then calculates the

� Some Topics in Program Analysis

corresponding information about the ranges of numeric variables
 Also� program slicing

�e
g
� �HRB���� �FRT���� isolates the parts of a program that contribute to or depend on
a particular variable in the program chosen by the user

This dissertation presents some new developments in the theory of program analysis
 By
�theory of program analysis� we mean that we are concerned less with speci�c analysis problems
or speci�c applications of program analysis� and more with generic semantic tools that are
powerful and yet easy to apply to a variety of real programming languages and analysis tasks

To put our goals into perspective� we compare them to the goals of abstract interpretation

Abstract interpretation �CC��� is a general theory of semantics	based program analysis�so
general and wide	ranging that the theory itself intentionally does not provide explicit support for
particular language features� such as data structures and functions� or particular applications�
such as alias or data	shape analysis
 A powerful methodology has been constructed around
this theory �CC��� Cou��� Cou��� CC��a� CC��b� CC��d� CC��c� CC��� CC���� including a
wide range of techniques for designing numeric lattices �Kar��� CH��� Gra��� Gra��a� Gra��b�

But when faced with a speci�c analysis task for a speci�c programming language� the analysis
designer is left largely on his own to cope with the overwhelming generality of the framework

With a deep understanding and skillful use of the methodology� the results can be spectacular�
such as the storeless alias analysis of Deutsch �Deu��� Deu���
 But after �� years� much of the
staggering potential of abstract interpretation still remains largely untapped

In contrast� our methodology is designed around real language features� such as pointers�
heap	allocated data structures� arrays� assignment� and to a lesser extent �rst	class functions

Consequently� although our framework does not have the same level of generality as abstract
interpretation� it is more straightforward to apply our tools to real languages and real analysis
tasks
 We aim to strike a balance between analysis theory and analysis design
 One of our
goals is to bring some of the power of semantics	based analysis techniques closer to the user

To accomplish this� we have taken a step back in order to consider the task of program anal	
ysis from a fresh perspective
 This new perspective has uncovered some fundamental limitations
in the current methodology of program analysis�limitations that are manifest in real analyses

By largely reworking semantics	based program analysis from the beginning� this dissertation
provides some technical answers to these basic limitations

��� Limitations of Single�step Abstract Interpretation 	

��� Limitations of Single�step Abstract Interpretation

We begin with an anecdote
 Imagine that you are asked to report the sum to two decimal
places of the following list of numbers�

������
������ � ����

�����
����� � ����

����� � ���

�����

Consider these two di�erent approaches�

� Algorithm A� Compute the exact sum of all six numbers and then round that sum to two
decimal places

� Algorithm B� Begin with �� and then add the �rst number� round to two decimal places�
add the second number� round to two places� add the third� round again� and so forth

Algorithm A is the procedure that naturally comes to mind for this task� and of course it returns
the correct answer of ������
 In contrast� Algorithm B reports a result of ������� which is close
but not correct
 Why would anyone choose this second approach� One can imagine that the
reduction in computation e�ort is worth the potential for accumulated rounding error

In fact� these two algorithms are just the endpoints of a spectrum of possibilities
 For
instance� one could �rst compute the precise sum of adjacent pairs of numbers in the list�
yielding a list of three exact partial sums�

������ � ������ � ���� � �������
����� � ����� � ���� � ��������
����� � ��� � ����� � ������� � ���

Then apply Algorithm B to this list� yielding a better but still not exact ������
 This suggests
a general approach of rounding only every so often during the accumulation of the sum� where
Algorithm A is the extreme that rounds only at the very end� while Algorithm B is the other
extreme that rounds after every single number in the list

This simple discourse on how to compute rounded sums illustrates by analogy a remarkably
important limitation of program analyses
 As a very simple example� consider the following
program

while n � � do
f
y �� x� ��
x �� y� ��
n �� n� �

g

� Some Topics in Program Analysis

Suppose that at any point during an execution of this program� the variable bindings are
described by an environment

� � Env � Var � Int

Say we wish to determine the variable bindings at the termination of this program� given an
environment �� describing the initial bindings
 Because this program always terminates �as
long as n� x� and y are bound in ���� we can in fact just execute the program and return the
�nal environment as the answer

By analogy� an entire environment � corresponds to a real number� and the execution of a
single step of the program �which may modify the environment� corresponds to the accumulated
addition of one number in the list
� Thus� executing the program corresponds to accumulating
the exact sum of a list of real numbers �starting with ��
 The length of the list is the total
number of execution steps� which in this case is always �nite� but may be quite long

But suppose that all we want to know about each variable at the end of execution is
information about its sign� expressed as one of the following properties of integers ordered by
implication �in other words� sets of integers ordered by inclusion�

int

� �
nonpos nonneg

� � � �
neg zero pos

� 	 �
none

Given an environment �� one can abstract � by a sign environment � such that � � x� is the sign
�either neg� zero� or pos� of �� x� for all variables x

 � � dEnv � Var � Sign

By analogy� � corresponds to the �rounding� of �
 Again� we can just execute the program
and �round� the �nal environment to a sign environment
 This is analogous to Algorithm A�
and it will always return the strongest properties

It is well known� however� that this process is infeasible in general
 For one� the program
may take a long time to execute
 Even worse� we may not know the exact initial environment
��
 Finally� some programs do not terminate� and even if we do know �� beforehand� it is
impossible to determine e�ectively if the execution will eventually halt
 So in general we must
settle for some approximation of the result

The standard approach to program analysis is essentially to perform Algorithm B� abstract	
ing at each step
 For our example program� the �rst three steps would produce the following

�This analogy has the disadvantage that a real number corresponds to both an environment and a single�step
transformation between environments� it is crucial to distinguish these two very di�erent concepts�

��� Limitations of Single�step Abstract Interpretation �

sign environments from the initial sign environment shown below�

�x� y� n
� pos� pos� nonneg�
while n � � do
f �x� y� n
� pos� pos� pos�
y �� x� ��

�x� y� n
� pos� int� pos�
x �� y� ��

�x� y� n
� int� int� pos�
n �� n� �

g

Before the �rst assignment� all that is known about x is that it is positive� but the analysis
must calculate x � � to determine the value of y
 The exact answer is the set of all positive
integers decremented by �� which is the set f������ �� � � �g� but the abstraction �rounds� that
set to the smallest enclosing element in the sign lattice� which is int
 Now� in the next step� all
that is known about y is that it is an integer� and so y�� is the set of all integers incremented
by �� which is again the set of integers
 So the abstract value of x in the next step is int

However� a little bit of thought reveals that x is actually guaranteed to be positive after
the second assignment
 The reason the analysis has already lost this information is because of
the abstraction� or �rounding error�� between the two assignments
 If the set f������ �� � � �g
had not been abstracted to int� then its increment by � in the next step would yield the set
f�� �� � � �g� whose abstraction is pos
 Thus� there are two ways to achieve better results

�
 Do not abstract between the �rst and second assignments

�
 Abstract after every step as usual� but beforehand enrich the lattice of integer proper	
ties with an element corresponding to f������ �� � � �g� so that the abstraction of this
intermediate property loses no information

The �rst approach seems promising� but is not in the current repertoire of program analysis
techniques
 Most of this dissertation develops a a general foundation that one may use for this
approach� we will return to it shortly

The second approach seems absurd from a practical standpoint and troublesome from a theo	
retical standpoint
 It clearly does not generalize
 For instance� elements such as f������ �� � � �g
are clearly ad hoc and dependent on the particular run	time behavior of a program
 Probably
many new elements would be needed for a reasonably sized program� and for anything more
sophisticated than a sign analysis� the space from which these elements may be chosen becomes
much more complex and rich
 Even if one could isolate a small set of useful specialized elements
with which to enrich the property lattice for a given program� it seems dicult to determine
which properties would be the most useful without actually running the program itself
 Never	
theless� there are examples of practical program analyses that essentially use this idea in limited
capacity for the lack of any other solution� we give an example at the end of this section

� Some Topics in Program Analysis

To continue with the analysis of this program� there is the additional complication that the
execution length �corresponding to the length of the list of numbers� may be unbounded� and
so an analysis will typically use some �folding� strategy� usually at every program point� and
compute the solution as an iterative �xed	point calculation
 For example� the next step above
is to calculate pos� � � nonneg for n� and then to join the resulting sign environment with the
old environment at the loop entry� weakening the properties of x and y to int
 The analysis
reaches the following �xed point after a second iteration through the loop�

�x� y� n
� int� int� nonneg� �
while n � � do j
f �x� y� n
� int� int� pos� j
y �� x� �� j

�x� y� n
� int� int� pos� j
x �� y� �� j

�x� y� n
� int� int� pos� j
n �� n� � j

�x� y� n
� int� int� nonneg� �
g

�x� y� n
� int� int� zero�

The last environment is the answer
 But the most precise answer �corresponding to the �correct�
rounded sum� is

�x� y� n
� pos� int� zero��

As we have suggested� the reason that the analysis reported the �nal sign of x as int

instead of pos is because it used the equivalent of Algorithm B� which is the extreme approach
of abstracting at every step
 Algorithm A is at the other extreme� which as we have explained
is uncomputable for program analysis
 But what about the intermediate approach of �rounding
only every so often�� To understand how that applies to program analysis� consider rewriting
the program to use a parallel assignment�

while n � � do
f
x� y� n �� x� �� x� �� n� �

g

Now apply the approach of Algorithm B�

�x� y� n
� pos� int� nonneg� �
while n � � do j
f �x� y� n
� pos� int� pos� j
x� y� n �� x� �� x� �� n� � j

�x� y� n
� pos� int� nonneg� �
g

�x� y� n
� pos� int� zero�

��� Limitations of Single�step Abstract Interpretation

This returns the most precise answer possible
 Note how this approach was able to determine
the precise result for x
 Before the assignment� x is pos
 So� x � � is the set f�� �� � � �g� which
is then abstracted to pos

Technically� we are still abstracting after every step and using the same sign analysis to
do it� but by rewriting the three sequential instructions into a single parallel instruction� we
are in e�ect abstracting only after every third step
 Recall that in our analogy� a real num	
ber corresponds both to an environment �the accumulated result� and a single	step transition
between environments �an element of the list�
 Here� the transitions are done by assignment
statements� so this transformation from multiple sequential statements to a single parallel state	
ment corresponds to adding groups of adjacent numbers in the list before applying Algorithm
B

The above is of course merely a toy example
 But it is not hard to �nd examples in real
program analyses that su�er from this same phenomenon of abstracting after every step
 For
instance� Ghiya and Hendren describe in �GH��� a shape analysis that attempts to determine
whether data structures in a C program are trees� dags� or graphs
 Their paper describes a
diculty with their analysis�

If a data structure temporarily becomes dag	like or cyclic and then becomes tree	
like again� shape analysis cannot detect this� and continues to report its shape as
dag	like or cyclic
 The benchmark reverse that recursively swaps �the children of� a
binary tree represents this case

Although shape analysis for C is quite a bit more complex than a sign analysis for a simple arith	
metic while	loop language� it turns out that the diculty that Ghiya and Hendren described
is precisely the same phenomenon that caused the sign analysis above to fail to detect that x
is always positive
 The fundamental reason that they cannot detect those temporary changes
of shape is that they abstract at every step
 In their case� they abstract a C memory state by
a �direction matrix� and an �interference matrix�� and whereas our problem in the program
above was that our lattice of sign properties could not precisely express the set f������ �� � � �g
that came up after the second step� their problem is that their abstract store cannot express
many of the possible forms of non	tree or non	dag shapes that may arise temporarily during
execution

This is a problem not just with Ghiya and Hendren�s shape analysis
 At the same con	
ference� Sagiv� Reps� and Wilhelm presented a shape analysis that attempts to address these
issues �SRW���
 They point out that�

The third and fourth common list	manipulation operations�splicing a new element
into a list and removing an element from a list�can� in many cases� be handled
accurately by our shape	analysis algorithm� even if shape�nodes temporarily become

shared�

�� Some Topics in Program Analysis

But they� too� abstract after every single step
 In order to achieve good results for some
programs that temporarily alter data shapes� they instead chose to design a rather unusual
abstraction of a memory state that can actually express certain kinds of temporary shape
alterations that might arise in common programs
 In spirit� their solution is item � on page �

As we suggested there� this approach does not generalize very well and is necessarily limited at
the outset� this is indeed the case for their analysis
 Because of their specialized lattice design�
their analysis determines very little information about any program that allocates at least one
pointer that is at some point shared �pointed to by more than one distinct location in memory�
and not itself the binding of any variable
 Clearly� this eliminates a great many programs
from consideration�for instance� any program that creates a doubly	linked list or any kind of
dag	like structure
 In contrast� the Ghiya!Hendren analysis is not nearly so limited

Our claim is that the methodology of abstracting at every step is a ubiquitous and serious
limitation of current program	analysis methodology
 To understand why� we will revisit abstract
interpretation� the root of semantics	based program analysis� in Chapter �
 This dissertation
will provide a solution� which we will outline in Section �
�

��� Overuse of Abstraction and Fixed�point Computation

Our discussion of the sign analysis in the previous section centered around how to deal with a
single loop iteration
 We only touched upon the �folding� process that was necessary to deal
e�ectively with the unbounded execution length of the program
 The issue of how to cope
with in�nite execution sequences is of primary importance in program analysis� and almost all
analyses use a similar technique of computing a �xed point over an abstract semantic domain
�sign environments in the above example�

Our claim that this technique is rather ubiquitous and yet not well suited for many analysis
tasks
 The cause of this state of a�airs is� perhaps surprisingly� strongly related to the cause
of the problem described in the previous section� that analyses cannot take multiple steps of
execution between abstraction
 Fortunately� the solutions to these two problems are closely
related� as well� and in this dissertation we develop the foundations for both

In Chapter � we will see that the foundation of semantics	based program analysis is based
on an observation that a semantics of a language is usually expressed using a �xed point whose
iterative calculation corresponds in some sense to the execution steps of the program
 For
instance� consider the common form of operational semantics as a transition system� in which
program execution is modeled by the single	step transitions from machine state to machine
state
 This kind of semantics is particularly useful for program analysis because it expresses
many intensional details of execution that might be of interest to analyze� one might say that
it is �close to the iron�� in comparison to a more extensional semantics such as a standard
denotational model that only maps program input to program output
 We will say more about
this in Chapter �

For now� we are not so much concerned with the appropriateness of a particular semantic
model for the purpose of program analysis� but rather we wish to illustrate that semantic

��� Overuse of Abstraction and Fixed�point Computation ��

models of programming languages typically use �xed points that re"ect program execution
 For
example� a transition system of a particular program P will have a binary transition relation

�� � State� State

specifying the pairs of states that may be adjacent in an execution of that program
 Then the
semantics M��P �� of program P is de�ned as an unfolding of this relation into a set of unbounded
sequences �where ���� denotes the extension of state sequence �� by state ���

���� � M��P �� �
�� ��

������� � M��P ��

If this rule is solved inductively from a base set of initial states� its iterative solution yields all
�nite execution pre�xes
�

One can rephrase the iterative solution of the above rule as the repeated application of a
function

S��P �� � P�State�� � P�State��

that� given a partial solution of M��P ��� applies the above rule once to enlarge M��P �� by a single
execution step

A program analysis based on this transition	system semantics must analyze these potentially
unbounded sequences
 For instance� suppose that in our sign analysis above� a state comprises
a control point specifying the line of the program to be executed next and an environment
specifying the current variable bindings

State � CtrlPoint� Env

The analysis that we described informally above can now be formalized as an iteration of

�� � S��P �� � �� � dState � dState
until a �xed point is reached� where

� � dState � P�State��

� � P�State�� � dState
and dState � CtrlPoint � dEnv�
Here� a member of dState is a table of abstract environments indexed by control point� just as
we showed next to the program in the examples of Section �
�
 The function �� given such a

�There are similar ways to express the in�nite executions of a program via coinduction� but for the sake of
simplicity we leave the reader to �CC�b� for a discussion� We do note� however� that the use of coinduction for
program analysis is powerful technique� especially for the analysis of errors� that is currently not well appreciated�
For examples� see �Bou��a��

�� Some Topics in Program Analysis

table #� describes the set of all execution sequences whose states satisfy the properties given in
 #
 The function � abstracts a set of execution sequences by a table giving the strongest sign
properties of the states in those sequences

In the analogy of Section �
� in which we compared program execution and analysis to the
accumulation of the rounded sum of a list of numbers� a set of execution sequences corresponds
to an �exact� real number� and a member of dState corresponds to a �rounded� real number

The function � is given a rounded number representing the accumulated sum at some point in
the middle of the list
 Conceptually� � �coerces� this number into an exact number by adding
zeroes onto the end
 Then S��P �� corresponds to adding the next number in the list to this
sum� and � rounds the resulting sum� usually losing information
 The program analysis repeats
this process until it reaches a �xed point �which does not have a clear analog in our list	sum
anecdote�

Almost every kind of program analysis is based on a similar notion of �xed	point calculation
over an abstraction of the properties of interest
 This is not always apparent� because many
analysis frameworks� such as data	"ow analysis �MJ���� type inference �KMP���� and constraint	
based analysis �Hei��� AWL���� are phrased in terms of systems of equations or inference rules

But most of these frameworks reduce to a �xed	point calculation whose iterations correspond
in some sense to abstract execution steps of the program
 Abstract interpretation is a �xed	
point	based theory that uni�es these seemingly disparate approaches

In Section �
� we explained that this methodology of abstracting after every step can cause
severe precision problems with the analysis
 In our small while	loop example� we illustrated
this problem by rewriting the three individual assignments in the loop body as a single parallel
assignment
 In Chapter � we will go further into that topic� but for now we suggest that a
multi�step program analysis might amount to �nding the �xed point of

�� � S��P �� � S��P �� � S��P �� � �� � dState � dState
instead of the above function that takes only a single step between applications of the abstraction
function �
 The problem is that there is no general methodology to develop program analyses
that have this kind of "exibility
 But we have developed such a methodology� which we outline
in Section �
�

Now we may make the following key insight
 Once one has a methodology to perform any
number of steps between abstractions� the need to perform the abstractions and compute the
�xed point often evaporates

For instance� shape analyses are often concerned with detecting computations that are
shape�preserving
 It is common for the success or failure of a shape analysis to be measured by
how well it analyzes routines such as list	insert� list	delete� node swapping� and so forth
 For
instance� one would like to determine that a routine that destructively inserts a node into a
linked list preserves the invariant that the structure upon which it operates has the shape of a
list
 Routines such as these typically take more than one instruction� but still a �nite number
of them
 Why would they need an iterative �xed	point calculation to compute their shape	
preserving properties� The answer is that they do not� but because the present methodology of

��� An Introduction to Our Methodology ��

program analysis does not o�er any way to combine multiple execution steps� a shape analysis
has no choice but to perform a global �xed point as we did for the sign properties in Section �
�

��� An Introduction to Our Methodology

This dissertation develops a foundation for a new methodology of program analysis that ad	
dresses the problems that we have described above
 This foundation is based on a semantic
methodology of programming languages in which it is possible to compute a simple term de	
scribing the net e�ect of any given �nite execution path

In Section �
� we suggested that an operational semantics based on a transition system
between execution states is particularly useful for program analysis
 For the example program
in Section �
�� an execution state was a pair of a control point and an environment
 In general�
environments are not expressive enough because they cannot express pointers and other kinds
of mutable data structures

In order to address a wide variety of languages� we introduce the notion of a store
 A store
is similar to an environment in that it maps variables to values� but it also maps references to
values
 A reference is a pair of two values� the reference �v� v�� is written v�v� and represents
component v� of data structure v
 Actually� it is convenient to think of a store as a graph
whose nodes are values and whose edges are labeled by values
 Then v is the root node of some
data structure �record� pointer� array� and so on�� and its outgoing edges point to its mutable
subcomponents� labeled by their names v� ��eld names� the C ��� token� integer array indices�
and so forth�
 An l�value is an object that may be dereferenced in a store� it is either a variable
x or a reference v�v�
 A store is then a map from l	values to values

	 � Store � Lval � Val

Lval � Var �Val� Val�

The set Val of values is left unspeci�ed because di�erent languages will need di�erent values

We consider this parameterized notion of a store� however� to be common to all languages

More speci�cally� the techniques in this dissertation apply to any language in which the
execution�s� of a program can be expressed as a transition relation

�� � State� State

where
State � CtrlPoint� Store

for some set CtrlPoint of static control points and some set Val of values

Usually�
�� is de�ned by meta	rules that specify how the individual pieces of program
syntax induce transitions
 For instance� one might imagine the following rule for variable
assignments

�x �� e� t� 	�
�� �t� 	�x
� E ��e��	��

�� Some Topics in Program Analysis

Here� e is a basic expression� and E ��e��	 denotes the value to which e evaluates in store 	
 The
core idea of our technique is to replace these meta	rules with computer�representable composable

descriptions

Our �rst observation is the isomorphism

P�State� State� � CtrlPoint� CtrlPoint � P�Store � Store��

This means that a transition relation
�� is equivalent to a table of binary relations on stores�

indexed by pairs of control points
 We write the �C�C �� entry in this table as
C�C�

��� and this
relation de�nes the possible store changes in a single step from C to C �
 Thus�

�C� 	�
�� �C �� 	�� i� 	
C�C�

�� 	��

For example� one can rewrite the above meta	rule as

	
�x��e� t	�t

�� 	�x
� E ��e��	�

or� alternatively� as the de�nition

�x��e� t	�t

�� � f�	� 	�� j 	� � 	�x
� E ��e��	�g�

We call a binary relation on stores a transfer relation
 A transfer relation describes a way in

which a store evolves during execution
 For example�
C�C�

�� is a transfer relation that describes
how the store changes in a single step from C to C �
 A nice property of transfer relations is
that one may compose them to express multiple steps of execution
 For instance�

C�C�

���
C��C��

��

is a transfer relation that expresses how a store changes in an execution that begins at control
point C� progresses in one step to C �� and then progresses in the next step to C ��
 Here� the
symbol ��� is the relation composition operator
 In this manner� one can build the transfer
relation for any �nite control path

Above� we said that our central approach is to replace the meta	rules of the transition system
with computer	representable composable relations� computer	representable because they will
be directly manipulated and examined by a program analysis� and composable because we
want a "exible way of processing multiple execution steps in the analysis before abstracting the
result� as we explained in the example of Section �
� and more generally in Section �
�

Let us examine this more closely
 As we explained in Section �
�� an algorithm for analyzing
program P works by iteratively applying an abstract step function

�� � S��P �� � �� � dState � dState

��� An Introduction to Our Methodology �	

where dState is a set of abstract properties of state sequences �such as the signs of the numeric
values occurring in the states�� and the application of this function to # � dState applies the
transition relation
�� to extend by one step every execution sequence consistent with # �as
given by �� and abstracts the resulting set of execution sequences with �� in general losing
information �i
e
� weakening the property� in the process

However� this function cannot be implemented in these three stages
 It is not possible for a
program	analysis algorithm to manipulate the probably in�nite sets of states or state sequences

Instead� a program analysis performs this three	stage operation in a monolithic fashion� where
� and � are �baked into� the transition relation
�� that forms the core of S��P ��

For example� consider again our example meta	rule for variable	assignment transitions�

�x �� e� t� 	�
�� �t� 	�x
� E ��e��	��

The program analysis designer will hand	design an algorithm that �abstractly� performs these
transitions
 For instance� if dState is the set of tables of sign environments indexed by control
point� as given in Section �
�� then a straightforward algorithm to compute �� � S��P �� � �� will
be hard	wired to propagate the sign property of expression e at control point �x �� e� t� to
variable x at control point t for each variable assignment in P
 This makes intuitive sense�
the algorithm is �abstractly interpreting� the variable assignments
 But of course the analysis
designer should justify these intuitions by proving that the algorithm actually implements this
function

Note that�

�
 To apply an existing analysis to a di�erent language� one must separately hand	design a
new algorithm for the meta	rules of that language
 This is an engineering disadvantage

�
 Because the abstraction is �baked into� the analysis algorithm� there is no way to perform
multiple execution steps abstracting the result
 This is a more serious disadvantage be	
cause� as we have explained� it can have devastating e�ects on the quality of the analysis

We now consider a di�erent methodology to address these issues
 Consider the meta	rule shown
above as the single	step transfer relation

�x��e� t	�t

�� � f�	� 	�� j 	� � 	�x
� E ��e��	�g�

Imagine a universal computer	representable language of these single	step transfer relations� for
instance the above relation might be written as

x
� e �

Then� given some analysis task such as sign analysis or shape analysis� one could implement
a universal �back	end� that analyzes this language of transfer relations
 Thus� to apply the
analysis to a particular programming language� one merely expresses its semantics in terms of
this language of single	step transfer relations instead of the usual meta	rule formulation

�� Some Topics in Program Analysis

Imagine further that this computer	representable language of transfer relations is closed
under composition
 For instance� the two successive variable assignments

�y��x��� x��y
�� t	��x��y
�� t	

�� � y
� x� �

�x��y
�� t	�t

�� � x
� y � �

might be symbolically composed as follows

y
� x� � � x
� y � � � x� y
� x� �� x� �

to yield a computer representation of this two	step execution segment
 Then� because the
analysis back	end is designed to analyze any member of the language of transfer relations� it has
maximum "exibility to perform any number of steps before abstracting
 We demonstrated the
bene�ts of the above example in Section �
�� there� we magically rewrote the source program� but
now we are moving toward a universal language	independent methodology of transfer relations

Of course� the example immediately above is quite simple� as it does not involve important
language features such as arrays� pointers� mutable data structures� or conditionals
 The fol	
lowing question remains
 Is there a computer	representable language of transfer relations closed
under composition that is both

� expressive enough to handle a wide variety of imperative and applicative language features�
and

� simple enough to be the target of a wide variety of important program analyses� such as
alias� shape� and value analyses�

The answer is yes� and this language of transfer relations is largely the subject of Part II
 This
leads to the following general methodology of program analysis

�

��

�

PPPPPPPPPq

��
��
��

����
�

PPPPPPPPPq

��
��

��
����

Language �

Language �

Language �

Analysis �

Analysis �

Analysis �

Transfer Relations

composition
strategy

Given a language and an analysis task� one �rst describes the semantics of the language
in terms of single	step transfer relations
 Then� guided by a strategy to suit the analysis task
and particular program at hand� some of these transfer relations are composed into bigger

��� Overview of the Dissertation ��

steps� similar to our rewriting of the example program in Section �
�
 Finally� the particular
analysis problem uses these multi	step transfer relations in a manner appropriate to the task

In some cases� such as the sign analysis of Section �
� it is appropriate to apply an abstract
interpretation to compute an abstract �xed point of these transfer relations
 In other cases�
such as the analysis of shape	preserving properties of data	structure maintenance routines� it
may be more appropriate to extract the property of interest directly from the multi	step transfer
relations� without designing any abstraction or performing any �xed	point computation

Note that the compositions occur at the language	independent stage of transfer relations�
so although they are sometimes analogous to rewriting source	program instructions� as in Sec	
tion �
�� that is not always the case
 Also note that the analyses are now de�ned in terms
of transfer relations instead of source programs
 This means that large parts of an analysis
do not have to be reimplemented for di�erent languages
 In general� however� reengineering is
necessary because the language transfer relations will be parameterized by a set of primitive
operations� and those may change from source language to source language

��� Overview of the Dissertation

� Part II presents the language of transfer relations and the basic algorithms to compose
them and manipulate them� and explains the general procedure for modeling the dynamic
semantics of a programming language with transfer relations

� Part III shows how to model a variety of imperative and applicative language features
with transfer relations

� Part IV expands on Section �
� and Section �
� by sketching some ideas for how to design
program analyses around transfer relations

� Part V concludes

�� Some Topics in Program Analysis

Part II

Foundations

Chapter �

Stores and Transfer Relations

The foundation of our study is the store
 A store is a model of an instantaneous state of the
memory during program execution
 As a program executes� it will at various points examine
variables� data structures� stack frames� and so on� and it will at other points change the values
of variables� alter the components of data structures� allocate new data structures� create new
stack frames� and so forth
 All of these operations are modeled as examinations or alterations
of the store
 Intuitively� there is one global store that evolves during program execution
 But
semantically� this �global store� is modeled as a trace of stores
 Every time the program takes
another step� another store is added to the sequence
 If that execution step modi�ed the store�
then the modi�cation will be re"ected in the latest store
 Otherwise� the latest store will just
be a copy of the previous one
 In this way� the program leaves a trace of stores

Now consider the task of analyzing a program�s execution
 Ideally� one would actually let
the program run� leaving its trace of stores behind
 Then� when the program is done� one could
go back to that trace and analyze everything that happened during that execution
 The trace
of stores is the entire execution history� and with perfect knowledge of that history all questions
about the program�s run	time behavior could be answered
 This is sometimes called pro�ling

This approach to program analysis has some serious problems

� The execution may not terminate� thus leaving behind an in�nite trace of stores
 So it is
impossible in general to run a program and then perform a post	mortem analysis on its
trace

� If the initial store �initial data� values of free variables� and so on� is unknown� then it
doesn�t make sense to analyze the execution trace of just one execution
 One would have
to analyze one execution from all possible initial stores� and in general there are an in�nite
number of them

� Even if the initial store is �xed and the program terminates� the execution may have a
large number of steps� and it is not feasible to record the entire store at every step

�� Stores and Transfer Relations

Program analysis is largely the study of how to cope with these issues
 The usual approach
begins with the observation that if there were an ecient way to represent in a computer some
interesting but in�nite sets of stores� then some interesting questions about a program�s run	time
behavior could be answered� or at least approximated� automatically
 These representations
of in�nite store sets can be thought of as store properties� and program analysis thus becomes
the computation of properties of the stores that can arise during some execution from a store
satisfying some initial property
 For instance� in Section �
� we gave an example of an analysis
that determines a sign property of integer	valued variables at every syntactic point in the
program

Our approach is to begin not by examining the stores themselves� but how stores change

over the course of the execution trace
 Suppose that a program analyzer were omnipotent and
could examine and answer any questions about the execution traces� even in�nite ones� from
all possible initial stores
 One question of interest might involve examining pairs of stores at
di�erent points along the trace� to see what the di�erences are between the �rst and the second

This would provide information about what happened during the interval of execution between
those points
 Now reconsider the problems listed above�

� The execution may never terminate and thus leave behind an in�nite trace
 But even so�
there may be an in�nite number of �nite intervals during the execution that exhibit the
same pattern of how the store at the beginning of the interval relates to the store at the
end
 In fact� this is the case with a loop in the program� each interval corresponds to a
single iteration
 If this pattern can be isolated� then it is not necessary to examine the
entire in�nite trace
 An example of such a pattern is a loop invariant
 But this general
concept goes beyond loop invariants
 For instance� one may relate the store at any point
during a loop or recursion with the store k iterations later for a given k

� Even if the initial store is unknown� there may be a commonality in the change between
any initial store and the store at some later point in the trace
 This is similar to the
situation with loops� a potentially unbounded number of trace intervals share a common
net e�ect between their initial and �nal stores
 Related to this idea is the use of weakest
preconditions to describe the semantics of loops �Dij��� Wan���

� As a practical matter� even if the initial store is �xed and the program terminates� isolating
the patterns in the trace provides a hope of making the analysis feasible in practice

Such a pattern or commonality in the way one store evolves into another is simply a relation
between the initial and �nal stores
 We call these transfer relations
 It turns out that there is
a simple language of transfer relations that covers all the patterns that arise during program
executions
 Also� there are ways to compute these transfer relations and use them to reason
about the executions
 In this chapter� we introduce the our model of stores and give the
language of transfer relations

��� Stores ��

��� Stores

We make the fundamental assumption that during program execution� any instantaneous state
of the memory can be modeled by a store
 A store is parameterized by the following disjoint
sets

x � Var a set of variables
v � Val a set of values

A store is then a function from l�values to values

	 � Store � Lval � Val stores
w � Lval � Var �Val� Val� l	values

We parameterize a store by Val because we would like to develop a semantic framework that
is suitable for a wide variety of programming languages and analysis tasks
 However� we will
require that Val include the booleans true and false and a special value undef

true� false� undef � Val

The most natural notion of a store is a partial function� mapping exactly the l	values that are
de�ned to their respective values
 But instead� for technical reasons in Chapter �� we require a
store to be a total function� mapping all of the �unde�ned� l	values to the distinguished value
undef
 Throughout this dissertation� undef refers to an unde�ned or error value
 In Chapter ��
we will discuss further the treatment of errors

The �l� in l	value means �location�
 Intuitively� an l	value represents a location in memory
that might be written or mutated as well as read
 There are two kinds of l	values
 The �rst
kind is simply a variable
 The second kind is called a reference� it is a pair of a value v � Val�
representing a data structure� and a value v� � Val� representing an index into a mutable
component of that data structure
 The l	value �v� v�� � Lval is written v�v�

Intuitively� a value represents the contents of a single mutable memory location�or in other
words� the contents of an l	value
 A value might be a simple object such as an integer or a
boolean� or it might be a compound object� such as a tuple or vector
 In the latter case� however�
the compound object must be immutable because it represents the contents of a single mutable
memory location
 So� for instance� one should not model a �mutable� Scheme �ReC��� cons cell
�� � �� with a single value� but rather use three values� one for the cons cell itself� one for ��
and one for �

A store is then a function from l	values to values that describes the contents of the memory

For instance� if v is the cons cell in the previous paragraph� the store would map the references
v�car and v�cdr to � and �� respectively
 Intuitively� a program execution begins in some initial
store 	� describing the initial state of memory� input data� and so forth� and then continually
modi�es the memory while it is executing� producing a sequence of evolving stores 	�� 	�� 	�� � � �
corresponding to the steps of the execution

We stress again the crucial concept that l	values represent the mutable memory locations

Some programming languages include data structures that are not mutable�for instance� the

�� Stores and Transfer Relations

tuples� records� and vectors in Standard ML �MTH���
 One would probably model these objects
simply as compound values rather than breaking them up into their components and indexing
those components by separate l	values in the store

Example � Consider the C programming language� A value v � Val might correspond to any

of the di�erent kinds of C data types�

� An integer	 real number	 or character� In this case	 v would be that value�

� A pointer� In this case	 v would be a token representing the pointer itself� In addition	

there would be a value � � Val	 and the l�value v�� would represent the memory location

to which the pointer refers� A store would then map v�� to the contents of the pointer�

� A struct� In this case	 v would be a token
pointer� representing the root of the struct� In

addition	 there would be a value f � Val for each �eld name f in the structure	 and the

l�value v�f would represent the memory location of �eld f of the struct� A store would

then map v�f to the contents of that �eld of the struct�

� An array� In this case	 v would be a token
pointer� identifying the array� In addition	

every non�negative integer n would be in Val	 and the l�value v�n would represent the

memory location of the nth array element� A store would then map v�n to the contents of
the nth element of the array�

The above example illustrates that for some programming languages� the set Val of values
might include� in addition to the base values of the language� a set of pointers to represent
mutable data structures
 In some operational semantics� these are called �locations� or �heap
values� �MFH��� and are just taken from an arbitrary in�nite set

Again� we stress that a store is a total function
 This is not intuitive� because at any time
during an execution of a program in any reasonable programming language� there will only be
a �nite amount of data actually allocated and accessible by the rest of the execution
 But this
is why we require that Val include the distinguished value undef to represent the unde�ned
value
 The intended use of stores is to model the state of memory during an execution of a
computer program
 If an l	value w � Lval is unde�ned in the memory then the store 	 modeling
that memory state would map w to undef �i
e
� �	 w� � undef�
 Therefore� the fact that we
require stores to be total functions is not a limitation of expressiveness
 However� for minor
technical reasons concerning the symbolic composition of transfer relations in Chapter �� it will
be convenient for stores to be total functions

Stores as graphs

It is sometimes helpful to think of a store 	 as a graph with directed labeled edges
 The set of
nodes is

Val f tg

��� Stores �	

where t is a distinguished root node not in Val
 The set of labeled directed edges is

f �xt v j 	 x � vg f �v
�

v v�� j 	�v�v
�� � v��g�

Note the following properties of any store graph

� Because a store is a function rather than a general relation� no two outgoing edges of the
same node can have the same label

� Node thas no incoming edges� and all its outgoing edges are labeled with variables

At any particular time during program execution� all the l	values that are unde�ned in the store
at that time will point to undef
 Because of this choice of stores as total functions� a store
graph will in general be in�nite
 We ignore this technical detail� as our perspective of stores as
graphs is solely for expository purposes

Example � Again	 consider the C programming language� Assume the set Val includes C

integers and C characters�

� If at some point during an execution	 the variable x � Var is bound to a pointer to a location

containing the integer ��	 then the store 	 at that point of execution would contain the

following path from the root node�
�xt ��v� ��

Here	 v� � Val represents the pointer itself�

� If in addition	 y is bound to a struct with a �eld index	 which is the integer ���	 and with

a �eld data	 which points to a two�element array whose elements are the chars �A� and
�Z�	 then 	 would also contain the following paths from the root node�

�yt ��
��

HHHj

index

data

v�
���

��v� ��
��

HHHj

�

�

v�

�A�

�Z�

Here	 v� � Val represents the struct	 v� � Val represents the char�array pointer	 and

v� � Val represents the char array�

� If in addition	 z is bound to a pointer that dereferences to itself	 then 	 would also contain

the following subgraph�
�zt

v�
� �
���

Here	 v� � Val represents the pointer itself�

�� Stores and Transfer Relations

These three subgraphs of 	 describe precisely the data that is reachable from variables x	 y	 and

z	 respectively	 at this point of execution�

In the next section� we study ways to generate a value from other values in a store
 This is
done with primitive operations

��� Primitive Operations

Our framework is parameterized by a set Primop of primitive operations
 Each operation p �
Primop has an arity� which may be zero or more
 A primitive operation describes a way in
which zero or more values evaluate to a single value
 The phrase

p�v�� � � � � vn�
�� v

means that the n	ary primitive operation p � Primop applied to the values v�� � � � � vn � Val

in store 	 � Store evaluates to value v � Val
 There are several distinct classes of primitive
operations� which we characterize below

All primitive operations must satisfy the following condition

Condition � �Denedness of primitives� For any n�ary primitive operation p � Primop	

for any n values v�� � � � � vn � Val	 and for any store 	 � Store	 there is at least one value v � Val

such that p�v�� � � � � vn�
�� v� In other words	

�p� v�� � � � vn� 	��v� p�v�� � � � � vn�
�� v

This condition states that primitive operations must be de�ned everywhere
 Conceptually� this
requirement is analogous to the requirement that a store is de�ned everywhere �i
e
� for all
l	values�
 The condition is required for minor technical reasons in the development to follow

However� as we explained about stores� this condition does not limit the expressiveness of the
framework because Val includes undef representing the �unde�ned value�

Indeed� the two main parameters of our framework�the set Val of values and the set Primop

of primitive operations with associated evaluation relation�truly go hand	in	hand
 This will
come out in Chapter � when we describe the design of a programming language using our
development

It is the parameterization of the framework by the set of primitive operations that makes
this methodology particularly "exible and useful for a variety of applications
 Yet� it is not the
case that we are factoring all of the important semantics concepts out along with the primitive
operations
 This is because our concept of a primitive operation is a computation without
store modi�cation
 The encapsulation of such operations as the main parameter of the analysis
framework turns out to be quite useful and powerful

��� Primitive Operations ��

����� Deterministic and context	independent primitive operations

It will be convenient to introduce some terms for some di�erent classes of primitive operations

Denition � �Deterministic and nondeterministic primitive operations� A primitive

operation p � Primop is said to be deterministic if

p�v�� � � � � vn�
�� v

and

p�v�� � � � � vn�
�� v
�

implies that v � v�� Otherwise	 p is said to be nondeterministic�

A typical programming language will need only deterministic primitive operations� but certain
applications of the framework will make use of nondeterministic operations� and so we include
them in the general framework

Denition � �Context�independent and �dependent operations� A primitive operation
is said to be context	independent if for any stores 	 and 	� and values v�� � � � � vn� v	

p�v�� � � � � vn�
�� v �� p�v�� � � � � vn�
��� v�

In other words	 the evaluation of p does not depend on the store� In this case	 we may use the

abbreviated form

p�v�� � � � � vn�
� v

for evaluation� Otherwise	 p is said to be context	dependent�

The simplest kinds of primitive operations are deterministic context	independent operations

These will come up so often that it is worth introducing a de�nition just for them

Denition � �Simple primitive operations� If primitive operation p is both deterministic

and context�independent	 then it is said to be simple�

����� Examples of primitive operations

We present some examples of each kind of primitive operations
 Although they are just examples
for the moment� some of them will play a major role in the development to follow
 This section
assumes that

p�v�� � � � � vn�
�� undef

unless otherwise de�ned below
 �Recall that undef � Val is represents the unde�ned value
�
We also assume that Val includes the integers

�� Stores and Transfer Relations

Simple operations

Recall that simple operations are operations that are both deterministic� in that they evaluate
to only a single value� and context	independent� in that their evaluation does not depend on
the store

Example � Each value v � Val speci�es a nullary primitive operation v � Primop that evalu�

ates to v�
v��
� v

Example � Here are some standard arithmetic primitive operations found in programming

languages� In these de�nitions	 n and n� are integer values�

��n� n��
� �n� n��
��n� n��
� �n� n��
��n� n��
� �n� n��
��n� n��
� �n � n��
��n� n��
� �n � n��

Example 	 Below are boolean operations for conjunction	 equality	 and inequality� We will

use the �rst two
� and �� internally in our analysis framework�

��true� v�
� v
��v� true�
� v

��false� v�
� false

��v� false�
� false

��v� v��
� �v � v��
���v� v��
� �v �� v��

Note that there are cases in which these operations are given undef and evaluate to a boolean
value� Intuitively	 these are error cases that are allowed to �run wild	 and so this choice is

reasonable� We will discuss this more in Chapter ��

Example � The operation if implements conditional expressions�

if�true� v� v��
� v
if�false� v� v��
� v�

Example � Example � demonstrated the need for pointer values to correspond to the roots of

mutable data structures� Suppose that for every natural number n there is a pointer hni � Val	

and ptr is a unary primitive operation that casts an integer n to the pointer hni�

ptr�n�
� hni

We will return to ptr in Chapter ��

��� Primitive Operations �

Nondeterministic context�independent operations

These operations may evaluate to more than one value� but do not depend upon the store

These operations are similar to types� and this similarity provides some intuition about why we
include the possibility of nondeterministic operations
 After all� one of the major applications
of program analysis is to infer types of data objects and expressions

Example � The nullary operation pos may evaluate to any positive integer�

pos��
� n if n � f�� �� � � �g

Example
 The nullary operation bool may evaluate to any boolean�

bool��
� true

bool��
� false

Deterministic context�sensitive operations

These operations always evaluate to a single value� but depend on the store in which the
evaluation occurs

Example �� The binary operation deref dereferences edges in a store� Given values v and

v�	 it evaluates in store 	 to the value to which 	 binds the l�value �v�v���

deref�v� v��
�� 	�v�v
��

This last example is important� which we will see in the next section

The next example hints at an application of our framework to the analysis of the shapes of
data structures� and also illustrates the point that our notion of primitive operations does not
need to be limited to operations that might be available in a programming language

Example �� The unary operation tree	 when evaluated in store 	 with value v	 evaluates to
true if the subgraph of 	 rooted at v
possibly representing the root of some data structure� and

not including node undef is a tree
in graph�theoretic terms�� Otherwise	 it evaluates to false�

Although Primop is a parameter of our analysis framework� we demand that it include the
following operations described above�

true� false� �� �� if � Primop

The �rst two simply provide a way of denoting booleans as expressions
 �Recall that the
booleans were the only objects other than undef that we demand to be members of Val
� The
second three are used internally in the transfer	relation composition algorithm in Chapter �

We further remark that any nontrivial application of our methodology will need deref in order
to build expressions that can perform general examinations of the store

�� Stores and Transfer Relations

��� Expressions and L�expressions

Our framework is based upon the study of binary relations between stores� called transfer
relations� that describe how a store at one point of an execution evolves into a store at some
future point of the execution
 We want to write down these transfer relations� represent them
in a computer� and analyze them with algorithms
 In order to do this� it turns out that we
will need two languages of computer	representable terms� one to describe the nodes in a store
and one to describe the edges in a store
 Later� we will use these two languages to develop a
language of transfer relations

Elements of the �rst language are called expressions� given a store 	 � Store� an expression
e � Exp denotes one or more values v � Val
 If e denotes v in 	� then we say that �e evaluates

to v in 	�
 The same expression may evaluate to di�erent values in di�erent stores

Elements of the second language are called l�expressions� given a store 	 � Store� the l	
expression l � Lexp denotes one or more l	values w � Lval
 If l denotes w in 	� then we say that
�l evaluates to w in 	�
 The same l	expression may evaluate to di�erent l	values in di�erent
stores

The syntax of the language of expressions and l	expressions is parameterized by a set Primop

of primitive operations� described in Section �
�� and has the following inductive de�nition

e � Exp ��� x j p�e�� � � � � en� expressions
l � Lexp ��� x j e�e� l	expressions

p � Primop primitive operations �given�
x � Var variables �given�

There are two types of expressions�

� A variable x � Var
 This expression evaluates in store 	 � Store to the �unique� value
v � Val such that �xt v is an edge in 	
 In other words� x evaluates in 	 to �	 x�

� An application of an n	ary primitive operation p � Primop to n expressions e�� � � � � en �
Exp
 This expression evaluates in store 	 � Store to value v � Val if expression ei evaluates
in store 	 to value vi� for i � f�� � � � � ng� and p applied to �v�� � � � � vn� evaluates in store 	
to v

The phrase
p

denotes the nullary primitive application p��
 The phrase

e p e�

denotes the binary primitive application p�e� e��

There are two types of l	expressions�

��� Expressions and L�expressions ��

� A variable x � Var
 This l	expression evaluates to itself in any store� and can be thought
of informally as the dangling edge �xt

� A reference expression e�e�
 This l	expression evaluates in store 	 � Store to the l	value
v�v� � Lval if e evaluates in 	 to value v � Val and e� evaluates in store 	 to value v� � Val

This l	value can be thought of informally as the dangling edge �v

�

v

Formally� the interpretations of expressions and l	expressions are given by the following rela	
tions

� The phrase e �� v means that the expression e evaluates in store 	 to value v

� The phrase l �� w means that the l	expression l evaluates in store 	 to l	value w

Because a variable is both an expression and an l	expression� this notation may seem ambiguous

But in the former case� the right	hand side will be a value� and in the latter case it will be an
l	value

The following rules inductively de�ne these relations

x �� �	 x�
ei �� vi p�v�� � � � � vn�
�� v

p�e�� � � � � en� �� v
expression evaluation

x �� x
e �� v e� �� v

�

�e�e�� �� �v�v��
l	expression evaluation

The following lemma states that every expression �l	expression� evaluates to at least one
value �l	value�

Lemma � �Denedness of expressions and l�expressions� For any expression e � Exp	

for any store 	 � Store	 there is at least one value v � Val such that e �� v� For any l�expression
l � Lexp	 for any store 	 � Store	 there is at least one l�value w � Lval such that l �� w� In

other words�

� �e � Exp� 	 � Store��v � Val� e �� v

� �l � Lexp� 	 � Store��w � Lval� l �� w

Proof� From Condition � on primitive operations and by straightforward induction on ex	
pression and l	expression evaluation
 �

It is important to distinguish expressions and l	expressions that do not contain any appli	
cations of nondeterministic primitive operations

�� Stores and Transfer Relations

Denition � �Deterministic expressions and l�expressions� For expression e � Exp
re�

spectively	 l�expression l � Lexp�	 if neither e nor any subexpression of e
respectively	 if no

subexpression of l� is an application of a nondeterministic primitive operation	 then we say that
e
respectively	 l� is deterministic� The phrase determ�e�
respectively	 determ�l�� denotes this
fact�

The following lemma states that deterministic expressions and l	expressions always evaluate to
exactly one value and l	value� respectively

Lemma � �Deterministic expressions and l�expressions� For any deterministic expres�

sion e � Exp	 for any store 	 � Store	 there is exactly one value v � Val such that e �� v� For

any deterministic l�expression l � Lexp	 for any store 	 � Store	 there is exactly one l�value

w � Lval such that l �� w� In other words	

� determ�e� � �	 � Store��$v � Val� e �� v

� determ�l� � �	 � Store��$w � Lval� l �� w

Proof� From Lemma �� from De�nition �� and from straightforward induction on expression
and l	expression evaluation
 �

If all primitive operations in Primop are deterministic� then all expressions are deterministic

But even if there are nondeterministic primitive operations in Primop� it will be important to
distinguish deterministic expressions for the symbolic evaluation of certain primitive operations
in Chapter �

At �rst it may seem as if our language of expressions is too restrictive� why not allow arbi	
trary l	expressions instead of just variables
 The reason is that one may treat the l	expression
e�e� as an expression by using the deref primitive operation that we introduced in the previous
section
 Consider the C expression �x
 On the left	hand side of an assignment statement� �x
refers to a memory location� or an l	value in our terms
 But on the right	hand side� it refers to
the contents of that memory location� or a value in our terms
 But C has a uniform syntax to
handle both cases� they are both expressions
 In contrast� in our framework the term on the left	
hand side would be an l	expression�namely� x�� �where � � Val as in Example ���whereas
the term on the right	hand side would be an expression�namely� the primitive application
deref�x� ��

Therefore� deref is a rather distinguished primitive operation in that it provides the ability
to examine the store beyond the level of variables
 It is likely that one will almost certainly need
it in any analysis application for any language
 Therefore� inspired by the above discussion� we
introduce a special syntax for it
 The term

e�e�

will� depending on the context in which it appears� refer to either the l	expression e�e� or the
primitive	application expression deref�e� e��

��� Simple Transfer Relations ��

��� Simple Transfer Relations

Our central philosophy is that it is advantageous to analyze relations between two stores
 These
relations are called transfer relations
 The idea of studying transfer relations is a paradigm shift
from most analysis frameworks� as the focus is usually on reasoning about properties of� or sets
of� individual stores
 Yet a program fragment relates initial stores to �nal stores� and so it
seems intuitive to study these relations

��
�� Only some relations are natural

At �rst blush� it seems as if the set of transfer relations is the set

P�Store � Store�

of binary relations between stores
 But such an unrestricted notion of transfer relation has two
related disadvantages

� For analysis purposes� we will want to design computer representations of transfer relations
�ideally� concise representations�� and it is impossible to do so for general binary relations
between stores

� Earlier� we gave the intuition that for the purpose of static program analysis� a transfer
relation corresponds to a fragment of the execution of some program in some programming
language
 But there are many binary relations between stores that would never come from
any such execution fragment
 Indeed� there are many such relations that are not even
computable
 These relations are unnatural in that they do not arise during program
execution� and they are thus of no use for reasoning about programs

The key is to identify the kinds of transfer relations that might actually come about as part of a
computer program�s execution
 Fortunately� there is a class of such relations that is suciently
expressive and yet conducive to automatic reasoning and analysis
 We will demonstrate this in
later chapters� where we model real programming languages with transfer relations and then
use those relations to analyze source programs

Abstractly� apart from any particular language or program� one basic kind of transfer re	
lation is a relation that updates a store graph by assigning or changing the node to which an
edge in the graph points
 These relations can describe dynamic actions in a programming lan	
guage that modify memory in some way
 We already have both the language of expressions to
denote nodes and the language of l	expressions to denote edges
 An assignment relation is then
described by an l	expression� denoting an edge to be assigned or reassigned� and an expression�
denoting a node to which the edge must point

Another basic kind of transfer relation is a relation that simply �lters through stores that
satisfy a certain property and rejects the stores that do not
 This is the most basic kind
of conditional operation� and as such will be necessary to express the dynamic behavior of

�� Stores and Transfer Relations

most programming languages
 Again� we can use the language of expressions to specify these
properties� and so a �lter relation is described by an expression

One can then build bigger relations from these basic relations

��
�� Building natural transfer relations

We wish to describe a set
TrRel � P�Store � Store�

of natural transfer relations
 By natural� we mean informally that it is reasonable to imagine
that the transfer relation in question might correspond to a fragment of an execution of some
program in some programming language
 In other words� suppose that at a certain point in the
middle of an execution of some program in some language� store 	� describes the state of the
memory at that point
 As the execution continues from that point� it will produce a sequence
of evolving stores 	�� 	�� � � � corresponding to the steps of the execution
 Then for each n � ��
there there should be some transfer relation % � TrRel that relates store 	� to store 	n� in other
words�

	� %	n�

The idea is to keep the set TrRel as small as possible� but still large enough that one could
model the operational semantics of realistic programming languages using only these relations

Fortunately� this is quite easy to do in a rather satisfactory and intuitive manner

We will de�ne the set TrRel inductively

� There are four types of basic relations in TrRel�

� The empty relation �

� The identity relation �� which relates only between identical stores
 Formally�

	 � 	

� The assignment relation l
� e where l � Lexp and e � Exp
 If l	expression l

evaluates to l	value w in 	 and expression e evaluates to value v in 	� then l
� e
updates store 	 by assigning w to v
 Formally�

l �� w e �� v

	 l
� e �	�w
� v��

Here� 	�w
� v� is the store that maps w to v and is otherwise identical to 	
 Formally�
it is de�ned as follows�

�	�w
� v��w� �

�
v if w � w�

	 w� otherwise

Note that if �determ�l� �i
e
� if a nondeterministic primitive operation appears in l�

then l may evaluate to more than one l	value �and similarly for e�� and so l
� e
can relate a store on the left to several di�erent stores on the right

��� Simple Transfer Relations �	

� The �lter relation e� where e � Exp� which relates a store 	 to itself only if expres	
sion e evaluates to the value true in 	
 Formally�

e �� true

	 e� 	

� If %�%� � TrRel� then their relational composition %�%� �alternatively� %� �%� is in TrRel

We use the standard de�nition of relational composition�

	%	� 	�%� 	��

	 �%�%��	�

Note that the identity relation � can be de�ned as the �lter relation true� � where� as
described in Section �
�
�� true denotes the nullary application of the primitive operation
de�ned by true � Val
 Similarly� the empty relation � can be de�ned as the �lter relation
false�
 But it is more convenient to have distinguished representations for each of these two
special cases

��
�� Examples of transfer relations

As described at the beginning of this chapter� our goal for the sake of generality is to develop
a framework for expressing data and operations on data in a language	independent manner

Nevertheless� it is illuminating at this point to look at some examples of transfer relations and
consider how they might arise during the execution of a computer program

Example �� The transfer relation

x
� � � x
� x � �

is equal to
in other words	 precisely the same relation as� the transfer relation

x
� �

that assigns variable x to be �� In other words	 it changes any store by redirecting the edge

�xt v

to
�xt �

Here	 � � Primop	 and the integers are included in Val and as nullary operations in Primop�

Example �� The transfer relation

�x � ��� � x
� � � x

relates any store in which x is bound to a negative number to a store in which x to be the
absolute value of that number and is otherwise equivalent� Furthermore	 it relates every store

in which x is not bound to a negative number to no store at all�

�� Stores and Transfer Relations

Example �� Imagine a use of stores and transfer relations to model a language with heap�

allocated data structures� One way to model data allocation is to maintain a convention that

the semantic variable H holds the index of the next available pointer� Then one can use ptr

from Example � to generate that pointer� By convention	 we write

ptr�e�

as

hei

Then the transfer relation

x
� hHi � x�car
� y � x�cdr
� z � H
� H � �

allocates a new record that has two �elds�car	 which is assigned to y�s value
which may be

undef�	 and cdr	 which is assigned to z�s value
which may be undef��and assigns x to be this

record�

Example �	 The transfer relation

x
� x�tl � x
� x�tl � x
� x�tl

is equal to the transfer relation

x
� x�tl�tl�tl

which in a store that includes the subgraph

�xt �tlv� �tlv� �tlv� v�

assigns x to be v�	 producing a store that includes the subgraph

HHHj

��
��

x

tl

v�

t

�tl�tlv� v� v�

Although we have written the paths as linear pictures	 it is not necessarily the case that v�	
v�	 v�	 and v� are distinct� Therefore	 the paths shown above may actually include cycles� For
instance	 if v� � v� then the original subgraph would actually look like

�xt ��
tl

tl
v� v�

and the transfer relation would modify this to

�x��
tl

tl
v� v� t

Example �� The transfer relation

x��
� x

��	 The Di�culty of Composition ��

assigns �eld � of the value bound to x to point to that value itself	 thus creating a circular data

structure in the store�
�xt

v
� �
���

The C statement

�x � x	

performs a performs a similar operation� Before the statement	 x is bound to a memory address

v� After the statement	 x is still bound to the memory address v	 but now that memory address

holds v itself� Our graphical representation above directly re�ects this memory state�

Example �� The transfer relation

x�y
� z

transforms a store 	 as follows� Suppose x is bound to value v	 y is bound to value v�	 and z is

bound to value v�� in 	� Then the outgoing edge of v labeled with v� is redirected to point to v���
If v� is an integer then this is equivalent to the C statement

x
y� � z	

but if v� is not an integer then this transfer relation has no correspondence in C

Example �� The transfer relation

x�car
� y � z�car
� w

acts as follows� For those stores in which x and z are bound to di�erent values	 it assigns �eld

car of x�s value to be y�s value and �eld car of z�s value to be w�s value� For those stores in

which x and z are bound to the same value	 it assigns �eld car of that value to be w�s value�

��� The Di�culty of Composition

Above� we de�ned a basic relation to be either the empty relation �� the identity relation �� an
assignment relation l
� e � or a �lter relation e�
 We de�ned any transfer relation that is not
a basic relation to be a �nite composition of basic relations
 Note that in Examples �� and ���
the composition of more than one basic relation is equal to another basic transfer relation� but
in those cases the single basic transfer relation such as

x
� �

exposes information that is not so clear in the composition itself

Sometimes� though� the composition of more than one basic relation is not a basic relation�
as Examples ��� ��� and �� demonstrate

�� Stores and Transfer Relations

It would be convenient if there were a reasonably compact and clear representation scheme
for all transfer relations
 The explicit composition of ��� basic relations is not only cumbersome
by any reasonable measure� but also quite likely shed little insight on what exactly the transfer
relation does
 For instance� the description of the transfer relation

x�car
� y � z�car
� w

in Example �� is not at all obvious from that representation itself
 The exercise of decoding
the net e�ect of the transfer relation

x�tl�tl
� y�tl � y�tl
� x�tl � x�tl
� y

is much more dicult yet
 It may seem as if this last example is designed to destructively
insert the �rst element of a linked	list y into the second position of a linked	list x
 However�
that behavior only occurs under certain initial aliasing conditions
 It is not an easy exercise to
determine the possible behaviors of this example under di�erent initial aliasing conditions

Fortunately� there is a reasonably simple representation scheme that covers all transfer
relations in TrRel
 This scheme actually computes the e�ect of any composition� rather than
leaving the composition operation explicit as written directly above� and hence reveals quite
clearly the e�ect of any transfer relation
 But the four kinds of basic relations in TrRel are not
quite sucient to express these compositions syntactically
 Therefore� we have to extend the
language

��	 The Full Language of Transfer Relations

The language TR of transfer relations is de�ned inductively as follows

% � TR ��� � j � j e� % %�

� � ATR ��� l�� � � � � ln
� e�� � � � � en

We have already de�ned � �the empty relation�
 Assignment relations are generalized to parallel
assignments ATR � TR� de�ned as follows

li �� wi ei �� vi i �� j � wi �� wj

	 l�� � � � � ln
� e�� � � � � en �	�w�
� v�� � � � �wn
� vn��

A crucial fact about assignment relations is that the assignment only takes place if all the
l	values to be assigned are actually distinct
 One can therefore look at an assignment relation
with n assignments and know that whenever it relates an initial store to a �nal store� it performs
exactly n distinct assignments

Filter relations are generalized to conditional relations� de�ned as follows

e �� true 	%	�

	 e� % %� 	�
e �� false 	%� 	�

	 e� % %� 	�

��� The Full Language of Transfer Relations �

We adopt the following syntactic abbreviations

� The empty parallel assignment �i
e
� where n � �� is simply the identity relation � and
may be written as such

� The conditional relation e� % � may be abbreviated as e� %

� The conditional relation e� � % may be abbreviated as e& %

In order to avoid confusion� we introduce di�erent notations for syntactic and semantic
equivalence of transfer relations
 If % and %� are both the same syntactic term� or in other
words the same element of the language TR� then we write % � % and say that they are
syntactically equivalent
 If % and %� denote the same relation� then we write % � %� and
say that they are semantically equivalent
 Note that syntactic equivalence obviously implies
semantic equivalence� but semantic equivalence does not necessarily imply syntactic equivalence
because in this language there may be more than one way to write the same relation
 For
instance�

true� % %� � %�

but
true� % %� �� %�

In this sense� the language TR is not fully abstract �HP��� Mul���
 If it were fully abstract�
then we would have a decidable way of testing semantic equality of transfer relations� but this
will not be so important for the applications of our analysis framework

A major property of transfer relations is that if all the primitive operations are deterministic�
then all transfer relations are actually partial functions
 Formally� we have the following lemma

Lemma � �Deterministic transfer relations� If Primop is deterministic	 then for every

transfer relation % � TR and store 	 � Store	 there is at most one store 	� � Store such
that 	%	��

Proof� Given 	� we proceed by structural induction on %

� �� By de�nition� there is no 	� such that 	 �	�

� e� % %� � Because Primop is deterministic� we know from Lemma � that there exists
exactly one v such that e �� v
 There are three cases

� v � true� Then by the de�nition of conditional relations� 	 e� % %� 	� only if

	%	�� and by induction there is at most one 	�

� v � false� Analogous� with %�

� Otherwise� Then by the de�nition of conditional relations� there is no 	� such that

	 e� % %� 	�

�� Stores and Transfer Relations

� l�� � � � � ln
� e�� � � � � en � Because Primop is deterministic� we know from Lemma � that

for i � f�� � � � � ng� there exists exactly one wi such that li �� wi and exactly one vi such

that ei �� vi
 Then by the de�nition of assignment relations� 	 l�� � � � � ln
� e�� � � � � en 	�

only if w�� � � � � wn are all distinct and 	� � 	�w�
� v�� � � � �wn
� vn�
 There is at most
one such 	�

� This theorem has the following corollary� which is not useful on its own� but which we will

use in some of the proofs in Chapter �

Corollary � If Primop is deterministic	 then for any two transfer relations %�%� � TR	 the

following two statements are equivalent�

� % � %�

� �	%	� � 	%� 	�� � �	%� 	� � �	��� 	%	���

The main result about this language of transfer functions is that under certain conditions it
is closed under composition
 In other words� there exists a total syntactic composition function

� � TR� TR � TR

that� given two transfer relations in the language TR� builds a third transfer relation in TR that
is semantically equivalent to their composition
 In other words�

�% � %�� � �%�%��

for any two transfer relations %�%� � TR
 Under weaker circumstances� % � %� is not guaran	
teed to be semantically equivalent to %�%�� but is guaranteed to be a superset of %�%�
 But we
will see that the conditions for semantic equivalence will be met by any application of transfer
relations to model the dynamic semantics of programming language

In fact� the � function is e�ectively computable� and so we will call it the composition

algorithm
 If there were a combinator in the language of transfer relations that represented
composition� then the composition algorithm would be trivial
 In other words� if we extend the
language by

% ��� � � � j % � %�

and de�ne % � %� to be the relation %�%�� then the composition algorithm could be simply
the � combinator
 But� as we explained above� our goal for the practical purpose of program
analysis is to avoid a syntactic representation of composition
 We present the algorithm in the
next chapter

Chapter �

Composing Transfer Relations

The composition algorithm for transfer relations is based on a kind of symbolic evaluation
 We
will present the the algorithm in several stages

� Symbolic evaluation of primitive operations
 This part of course depends on the particular
choice of the set Primop of primitive operations and their evaluation semantics
 The choice
of Primop and design of the symbolic evaluation algorithms for those operations forms the
core of any program analysis designed with our framework

� Symbolic evaluation of expressions and l	expressions
 These algorithms are de�ned rela	
tive to Primop and its associated symbolic evaluation algorithms

� Symbolic evaluation of conditional relations
 This part is also a parameter to the compo	
sition algorithm

� Symbolic evaluation of assignment

� Symbolic evaluation of transfer	relation composition

��� Symbolic Evaluation of Primitive Operations

The �rst step of any application of our analysis methodology is the choice of the set Val of
values and the set Primop of primitive operations� which will largely depend on the language to
be analyzed
� The second step is the design of an algorithm to symbolically evaluate primitive
application expressions
 The heart of our methodology is in this symbolic evaluation� and the
power of our approach comes from the "exible notion of a primitive operation as potentially
any computation that does not modify the store� including both non	deterministic primitive
operations and context	sensitive primitive operations
 Yet� the fact that primitive operations

�Recall that we require Val to include the boolean constants and undef� and we require Primop to include the
boolean constants and the boolean operations �� �� and if�

�� Composing Transfer Relations

are constrained not to modify the store ensures that their symbolic evaluation is never too
complicated

The framework constructed in this section is for us what the notion of the Galois connection
and associated �xed	point theorem is for abstract interpretation �CC���
 In abstract interpre	
tation� one �rst designs a �xed	point	based semantics for the language to be analyzed and then
designs an abstraction of the semantic domain
 Then� for the most part� the framework of
abstract interpretation provides the rest�in particular� a functional for the abstract domain
induced by the semantics whose �xed point is guaranteed to satisfy a certain relation with the
semantics of the language

In our approach� one �rst chooses a set of primitive operations and then designs symbolic
evaluation algorithms for them
 The various algorithms in this chapter provide much of the
remaining work

In Chapter �� we gave many examples of useful primitive operations
 Some of them were
common and familiar� such as the constants and basic operations over booleans and integers

Others were rather distinguished� such as deref and pos
 We will return to many of these in
this section

����� A �rst cut� symbolic evaluation of simple primitive operations

A term like �symbolic evaluation� would tend to imply that we need an algorithm

P � Primop � Exp� � Exp

that satis�es the property that

�P p �e�� � � � � en�� �� v �� p�e�� � � � � en� �� v�

In other words� P� given an n	ary primitive operation p and n expressions e�� � � � � en� returns
an expression that is semantically equivalent to the expression p�e�� � � � � en�
 The degenerate
function

P p �e�� � � � � en� � p�e�� � � � � en�

obviously works� but might not produce optimal results
 For instance� that function returns

P � ���� ��� � �� � ���

but it is obvious that in this case P could have actually performed the addition� thus producing
the smaller expression

P � ���� ��� � ��

where� again� �� is technically an application of the nullary primitive operation ��
 This is called
�constant folding� in the compiler literature �ASU���
 Even beyond this� one could imagine
that P might try to use a calculus of arithmetic transformations� perhaps yielding results such
as

P � ���� x � ��� � x � ���

��� Symbolic Evaluation of Primitive Operations ��

In fact� however� this notion of symbolic evaluation makes sense only for primitive operations
that are simple� as de�ned in De�nition �
 In the next section� we subsume the notion of
symbolic evaluation in this section with a more general notion that covers all kinds of primitive
operations

����� Generalized symbolic evaluation of primitive operations

In this section we present the general notion of symbolic evaluation of primitive operations that
works for all kinds of operations� including non�deterministic operations� de�ned in De�nition ��
and context�sensitive operations� de�ned in De�nition �

The symbolic evaluation of a set Primop of primitive operations is computed by a function

P � Primop � Exp� � ATR � Exp

that� loosely speaking� given

� an n	ary primitive operation p � Primop�

� n expressions e�� � � � � en � Exp� and

� an assignment relation � � ATR �recall the de�nition of ATR from page ����

produces an expression e � �P p �e�� � � � � en� �� that satis�es the following property
 If �e�� � � � � en�
evaluate to values �v�� � � � � vn� in some store 	� and if p applied to these values evaluates to a
value v in a store after the assignment � is applied to 	� then e must evaluate to v in 	

The following de�nition formalizes this correctness condition

Denition 	 �Symbolic evaluation of primitive operations� If whenever 	 � 	�	�
n�
i��

ei �� vi

�
� �p�v�� � � � � vn�
��� v � �P p �e�� � � � � en� �� �� v��

then primitive operation p � Primop is said to be symbolically evaluated by P� If every p �
Primop is symbolically evaluated by P then P is said to be a symbolic evaluation�

It is worth noting that the second implication in the above proposition is not an i�
 This means
that if there are nondeterministic primitive operations in Primop then P is allowed to produce
a nondeterministic expression �which� recall� is an expression using nondeterministic primitive
operations� that may evaluate to �extra� values
 The reason we allow this is that the only
time that we will need the reverse implication is when there are no nondeterministic primitive
operations in the �rst place� and in that case the reverse implication comes for free
 This is
expressed by the following lemma

�� Composing Transfer Relations

Lemma � �Symbolic evaluation of deterministic operations� If all primitive operations

p � Primop are deterministic	 then the second implication relationship above is strengthened to

an i� relationship�

Proof� Because all primitive operations are deterministic� we know that for any p� v�� � � � � vn�
e�� � � � � en� �� 	� and 	��

� There is exactly one v such that p�v�� � � � � vn�
��� v

� From Lemma �� there is exactly one v such that �P p �e�� � � � � en� �� �� v

Therefore� an implication relationship between them is equivalent to an i� relationship
 �

Special case� context�independent primitive operations

Because context	independent operations do not use the store� P can safely ignore its assignment	
relation argument � for any such operations
 This is described by the following lemma

Lemma 	 �Symbolic evaluation of context�independent operations� If p � Primop is

context�independent and

p�e�� � � � � en� �� v � �P p �e�� � � � � en� �� �� v

then p is symbolically evaluated by P�

Proof� Straightforward
 �

This is similar to the statement of correctness that we suggested above for the simpler notion
of symbolic evaluation
 The above lemma suggests the requirement� without any loss of gener	
ality� that for any context	independent primitive operation p� the expression �P p �e�� � � � � en� ��
must not depend on the particular value of �
 Because many primitive operations are context	
independent� this suggests a simpler notation for their symbolic evaluation in which � does not
appear

Denition � �Notation for context�independent operations� Given P	 if p is context�

independent then ep�e�� � � � � en�
denotes the unique expression P p �e�� � � � � en� ��

For binary primitive operations� we sometimes abbreviate ep�e� e�� with e ep e�

����� Examples

In this section� we give examples of some of the primitive operations given in Section �
�
�

��� Symbolic Evaluation of Primitive Operations �	

Context�independent primitive operations

There is no reason for any context	independent nullary primitive operation to symbolically
evaluate to anything other than itself
 So� for instance� we have�

ev�� � v for v � Valgpos�� � posgbool�� � bool �see Example ��

An application of a unary operation such as ptr from Example � also typically symbolically
evaluates to itself
 Recall that we write hei for ptr�e�
 Then�

gptr�e� � hei

These are clearly correct symbolic evaluations
 In fact� for all context	independent primitive
operations� the de�nition

ep�e�� � � � � en� � p�e�� � � � � en�

is trivially a symbolic evaluation by Lemma � because

ep�e�� � � � � en� �� v �� p�e�� � � � � en� �� v

simply by de�nition

But there may be some room for simpli�cation
 For instance� for binary integer opera	
tions �including comparison operations�� we could de�ne their symbolic evaluation to perform
constant	folding when possible� and otherwise default to the above equation
 Here� n and n�

denote integers �nullary primitive applications�

n e� n� � n � n�

n e� n� � n � n�

n e� n� � n � n�

n e� n� � n � n�

n e� n� � n � n�

e ep e� � e p e otherwise �where p � f�� �� �� �� �g�

Now� we have to prove that those constant	folding clauses are symbolic evaluations
 We prove
the case for ��

�n � n�� �� v
� v � n� n� de�nition of �� value primitives� and �

� �n� n�� �� v de�nition of value primitives
� �n e� n�� �� v de�nition of e�

The constant	folding rules for the other operations are analogous

�� Composing Transfer Relations

Just like the standard arithmetic operations above� the symbolic evaluation of � performs
the constant	folding taken straight from its de�nition

true e� e � e

e e� true � e
false e� e � false

e e� false � false

e e� e� � e � e� otherwise

Again� the last line is trivially a symbolic evaluation� and so we need to prove the other four
lines
 The proofs are similar to the example shown above for �

� true e� e �e e� true analogous��

�true � e� �� v
� e �� v de�nition of �� true� and �

� �true e� e� �� v de�nition of e�
� false e� e �e e� false analogous��

�false � e� �� v
� v � false de�nition of �� false� and �

� �false e� e� �� v de�nition of e�
One can go even further for the symbolic evaluation of �
 Here is a somewhat subtle

de�nition that depends on whether the argument expressions are deterministic� as de�ned in
De�nition ��

e e� e � true if determ�e�
e e� e � bool if �determ�e� �see Example ��
v e� v� � false if v �� v�

e e� e� � e � e� otherwise

If all primitive operations p � Primop are deterministic then all expressions are deterministic�
and so the de�nition simpli�es to�

e e� e � true

v e� v� � false if v �� v�

e e� e� � e � e� otherwise

But we prove the more general formulation
 Again� we need to show that the �rst three lines
yield a symbolic evaluation

� If determ�e��

�e � e� �� v
� �v�� v��� �e �� v

� � e �� v
�� � ��v�� v���
� v� de�nition of �

� �v�� �e �� v
� � ��v�� v��
� v� because determ�e�

� v � true de�nition of �
� true �� v de�nition of true
� �e e� e� �� v de�nition of e�

��� Symbolic Evaluation of Primitive Operations ��

� If �determ�e��

�e � e� �� v
� v � true � v � false de�nition of � and �

� bool �� v de�nition of bool
� �e e� e� �� v de�nition of e�

� If v �� v��

�v � v�� �� v
� ��v� v��
� v de�nition of value primitives and �
� v � false de�nition of �
� false �� v de�nition of false
� �v e� v�� �� v de�nition of e�

For now� we present a very simple symbolic evaluation of if�

fif�true� e� e�� � efif�false� e� e�� � e�fif�e� e�� e��� � if�e� e�� e��� otherwise

The proof is straightforward and similar to the proof shown above for �
 However� it is often
important to do a better job of simplifying conditional expressions� and we will give a more
sophisticated algorithm in Chapter �

Context�dependent primitive operations

The symbolic evaluation of context	dependent primitive operations is much more complicated
than the symbolic evaluation of context	independent operations� such as the ones shown above

As we explained above� for a context	independent operation p one can always fall back on

ep�e�� � � � � en� � p�e�� � � � � en�

which is trivially a symbolic evaluation
 But the symbolic evaluation of context	dependent op	
erations needs to compute the e�ect of an arbitrary parallel assignment on the operation
 So far�
the only context	dependent operations we have seen are deref and tree
 We introduced tree

mainly for illustration� but on the other hand deref is a crucial operation for modeling and
analyzing programing languages because� as we explained in Chapter �� it is the only way to con	
struct an expression that examines the components of mutable data structures
 It has a rather

complex symbolic evaluation because of aliasing possibilities
 Let � � l�� � � � � ln
� e��� � � � � � e
��
n

�� Composing Transfer Relations

Then
P deref �e� e�� � � fif��e e� e�� e� �e� e� e����

e��� �fif��e e� e�� e� �e� e� e����
e��� �fif�

fif��e e� ek� e� �e� e� e�k��
e��k�
e�e�� � � ����

where the indices in the set

f�e��e
�
�� e

��
��� � � � � �ek�e

�
k� e

��
k�g � f�li� ei� j i � f�� � � � � ng � li �� Varg�

are ordered arbitrarily
 Now we show that this is a symbolic evaluation
 Suppose that 	 � 	��
e �� v�� and e� �� v�
 By the de�nition of deref� if deref�v�� v��
��� v then v � 	��v��v��

We must show that

�P deref �e� e�� �� �� v�

Recall that we overload the phrase e�e� to mean not only the l	expression e�e� but also the
expression deref�e� e��
 First� we prove two results
 The �rst one shows how to move down the
true arm of the ith branch in the case that there is a possible alias between e�e� and the l	value
ei�e

�
i assigned by �

�ei�e
�
i� �� �v��v��

� ei �� v� � e�i �� v� de�nition of �
� �e � ei� �� true � �e� e� e�i� �� true de�nition of �
� �e e� ei� �� true � �e� e� e�i� �� true e� symbolically evaluates �
� ��e e� ei� � �e� e� e�i�� �� true de�nition of �

� ��e e� ei� e� �e� e� e�i�� �� true e� symbolically evaluates �

� e�� �� v � if��e e� ei� e� �e� e� e�i�� e��� e���� �� v de�nition of if

� e�� �� v � fif��e e� ei� e� �e� e� e�i�� e��� e���� �� v fif symbolically evaluates if

The second result shows how to move down the false arm of the ith branch in the case that
there is possibly no alias between e�e� and the l	value ei�e

�
i assigned by �

�ei�e
�
i� �� �v���v

�
�� � �v� �� v�� � v� �� v���

� ei �� v
�
� � e�i �� v

�
� � �v� �� v�� � v� �� v��� de�nition of �

� �e � ei� �� false � �e� � e�i� �� false de�nition of �
� �e e� ei� �� false � �e� e� e�i� �� false e� symbolically evaluates �
� ��e e� ei� � �e� e� e�i�� �� false de�nition of �
� ��e e� ei� e� �e� e� e�i�� �� false e� symbolically evaluates �

� e��� �� v � if��e e� ei� e� �e� e� e�i�� e��� e���� �� v de�nition of �

� e��� �� v � fif��e e� ei� e� �e� e� e�i�� e��� e���� �� v fif symbolically evaluates if

Now� there are two possibilities

��� Symbolic Evaluation of Expressions and L�expressions �

� No overwrite� 	�v��v�� � v and � did not assign to v��v�
 Then it must be the case that
for i � f�� � � � � kg� �ei�e

�
i� �� �v���v

�
�� where v� �� v�� or v� �� v��
 Therefore� by induction

on the de�nition of �P deref� using the second result above to move down the k false

branches�
e�e� �� v � �P deref �e� e�� �� �� v�

And because in this case 	�v��v�� � v� by the de�nition of deref we indeed have that
e�e� �� v

� Overwrite� � assigned v��v� to be v
 Then it must be the case that for some i � f�� � � � � kg�
�ei�e

�
i� �� �v��v��� and for all j � i� �ej �e

�
j� �� �v���v

�
�� where v� �� v�� or v� �� v�
 Therefore�

by induction on the de�nition of �P deref� using the second result above to move down
i� � false branches and then the �rst result above to move down the next true branch�

e��i �� v � �P deref �e� e�� �� �� v�

And because in this case � assigned v��v� to be v� it must be the case that e��i �� v

��� Symbolic Evaluation of Expressions and L�expressions

This section describes the following algorithms� which are de�ned relative to a set Primop of
primitive operations with associated symbolic evaluation algorithm P

E � Exp � TR � Exp

L � Lexp � TR � Lexp

Loosely speaking� the E algorithm� given an expression e and a transfer relation %� computes
an expression e� such that if e� evaluates to a value v in some store 	 then e evaluates to v in a
store to which % transfers from 	 �i
e
� a store 	� such that 	%	��
 In other words� e� expresses
the combined e�ects of e and %
 The L algorithm is similar� but works on l	expressions rather
than expressions
 Intuitively� given an l	expression l and a transfer relation %� L computes an
expression l� such that if l� evaluates to an l	value w before % then l evaluates to w in a store
to which % transfers from 	
 We distinguish two levels of correctness of E and L� given by the
following de�nition

Denition � �Symbolic evaluation of expressions and l�expressions� We introduce the

following terms to describe correctness properties of E and L�

� If whenever 	%	�	

e ��� v � �E e%� �� v respectively	 �l ��� w � �L l%� �� w��

then E
respectively	 L� is said to be an upper approximation�

� If whenever 	%	�	

e ��� v �� �E e%� �� v respectively	 �l ��� w �� �L l%� �� w��

then E
respectively	 L� is said to be a translation�

	� Composing Transfer Relations

����� The algorithm

The de�nition of E is inductive on the structure of its arguments� and L is de�ned in terms of
E

E e � � any e� � Exp

E e e�� % � E e%

E e e�& % � E e%

E e e�� % %� � fif�e�� �E e%�� �E e%���

Ex l�� � � � � ln
� e�� � � � � en �

�
ei if lj � x �� j � i
x otherwise

E �p�e�� � � � � en�� � � P p �E e� �� � � � �E en �� �

Lx% � x

L �e�e��% � �E e%���E e�%�

Notice that the �rst line allows the choice of any expression
 This is because the transfer
relation � never outputs a store� and so any expression is trivially correct

Because E is de�ned by structural induction and L is de�ned in terms of E� and because
the only external algorithm they need is the P algorithm to symbolically evaluate primitive
operations� we have that if P always terminates then E and L always terminate

These algorithms are not only used in the composition algorithm � to come� but they
are also useful in their own right� as stand	alone applications of our analysis methodology

Chapter � gives an application that is centered around the E algorithm

The next two lemmas prove the correctness of these algorithms
 If all primitive operations
p � Primop are deterministic then the algorithms are translations� and otherwise we can only
show that they are upper approximations

Theorem � �E and L as upper approximations� If P is a symbolic evaluation then E and

L are upper approximations�

Proof� By the de�nition of upper approximation in De�nition �� we must prove that whenever
	%	�� the following properties hold�

� e ��� v � �E e%� �� v

� l ��� w � �L l%� �� w

We prove this by mutual structural induction on the arguments to E and L� following their
inductive de�nitions above
 There are six cases for E

��� Symbolic Evaluation of Expressions and L�expressions 	�

� E e �� By de�nition there is no 	 and 	� such that 	 �	�� and so the theorem statement is
trivially satis�ed

� E e e�� % � By the de�nition of conditional relations� we know that if 	 e�� % 	� then
	%	�

e ��� v
� �E e%� �� v induction� with above observation

� �E e e�� %� �� v de�nition of E

� E e e�& % � Analogous to the previous case

� E e e�� % %� � By the de�nition of conditional relations� we know that if 	 e�� % %� st�

then either e� �� true and 	%	�� or e� �� false and 	%� 	�

e ��� v
� �e� �� true � �E e%� �� v�

� �e� �� false � �E e%�� �� v� induction� with above observation
� if�e�� �E e%�� �E e%��� �� v de�nition of if

� fif�e�� �E e%�� �E e%��� �� v P is a symbolic evaluation

� �E e e�� % %� � �� v de�nition of E

� Ex l�� � � � � ln
� e�� � � � � en � Note that if li � lj � x then i � j� because otherwise li and

lj could not evaluate to di�erent l	values and it could not be the case that 	 � 	�

x ��� v
� 	� x � v de�nition of �
� �li � x � ei �� v� � �	 x � v � ��i� li � x� de�nition of assignment relations
� �li � x � ei �� v� � �x �� v � ��i� li � x� de�nition of �

� �Ex l�� � � � � ln
� e�� � � � � en � �� v de�nition of E

� E �p�e�� � � � � en�� ��

�p�e�� � � � � en�� ��� v
� �v�� � � � � vn� ��

Vn
i�� ei ��� vi� � p�v�� � � � � vn�
��� v� de�nition of �

� �v�� � � � � vn� ��
Vn
i�� �E ei �� �� vi� � p�v�� � � � � vn�
��� v� induction

� �P p �E e� �� � � � �E en �� �� �� v P is a symbolic evaluation
� �E �p�e�� � � � � en�� �� �� v de�nition of E

There are two cases for L

� Lx%�
x ��� w

� w � x de�nition of �
� x �� w de�nition of �
� �Lx%� �� w de�nition of L

	� Composing Transfer Relations

� L �e�e��%�

�e�e�� ��� w
� �v� v�� �e ��� v � e� ��� v� � w � v�v�� de�nition of �
� �v� v�� ��E e%� �� v � �E e�%� �� v

� �w � v�v�� induction
� ��E e%���E e� %�� �� w� de�nition of �
� �L �e�e��%� �� w de�nition of L

�

Theorem � �E and L as translations� If all primitive operations p � Primop are determin�

istic and P is a symbolic evaluation then both E and L are translations�

Proof� We prove the statement for E
 Because P is a symbolic evaluation� we have from
Theorem � that E is an upper approximation
 Because all primitive operations are deterministic�
we know from Lemma � that for any e� %� 	� and 	��

� There is exactly one v such that �E e%� �� v

� There is exactly one v such that e ��� v

Therefore� the implication relationship in the de�nition of upper approximation of E is equiv	
alent to an i� relationship� and therefore E is a translation
 The proof for L is analogous

�

����� Examples

The E algorithm not only is required for the composition algorithm � that we will present later
in this chapter� but is also useful on its own for the analysis of how values relate to each other at
di�erent times of program execution
 For instance� dependency analysis �ASU��� is concerned
with such properties
 In Chapter � we will see some example applications of E

Here� we will give some examples of how E works
 The L algorithm is just an application
of E� so we will not demonstrate it separately
 The simplest examples are those in which the
expression given to E as input does not contain any context	dependent primitives
 Here are

��� Symbolic Evaluation of Expressions and L�expressions 	�

some examples� where x �� y are variables

E x y
� � � x

E y y
� � � �

E x � y y
� � � x � �

E y � y y
� � � �

E x � y x� y
� �� � � �

E x �x � ��� x
� � y
� � � if�x � �� �� x�

A more complicated case� however� is when E is given an expression that uses the context	
dependent operation deref to examine the store
 Recall that we overload the phrase e�e�

to mean not only the l	expression e�e� but also the expression deref�e� e��
 In the following
examples� v �� v� are members of Val that are included as constant �nullary� primitive operations

Examples of such values that might occur in a real programming language are record �eld
names� the C � token� and integers representing array indices
 Also� x �� y �� z are variables

In the following examples� some of the equality terms in the symbolic evaluation of deref are
simpli�ed to true or false due to the symbolic evaluation of equality on values �v and v� in
this case�� and thereby simplify the resulting symbolic evaluation of if

E x�v x
� y � y�v

E x�v x�v
� � � �

E x�v y�v
� � � if�x � y� �� x�v�

E x�v y�v�
� � � x�v

E x�v y�v� z�v
� �� � � if�x � y� �� if�x � z� �� x�v��

E x�v x�v�v
� � � if�x � x�v� �� x�v�

E x�v y�v��v
� � � if�x � y�v�� �� x�v�

E x�v x�v� y�v
� �� � � �

E x�v y�v� x�v
� �� � � if�x � y� �� ��

The last two examples may seem strange
 Recall that the symbolic evaluation of deref� given
some assignment relation� chooses an arbitrary order of its assignments and then builds a linear
sequence of nested if expressions
 In the above examples� we choose the left	to	right order
to demonstrate that the order does indeed play a practical role in the quality of the output

	� Composing Transfer Relations

The penultimate example �rst checks x for equality against x� which simpli�es to true and
thus simpli�es the entire result to �
 The justi�cation of this general procedure is given in the
rather intricate proof of the symbolic evaluation of deref
 Intuitively� in this case the output
expression does not have to check for aliasing because the semantics of assignment relations
guarantees that if 	 x�v� y�v
� �� � 	� then x and y are bound to di�erent values in 	
 Because
order of assignment is irrelevant� � would have thus been a correct output for the last example�
as well
 However� E instead outputs if�x � y� �� ��
 The reason that it tests the equality x with
y �rst� which cannot be simpli�ed
 This suggests that the symbolic evaluation of deref should
instead choose an order that places �rst any alias test that simpli�es to true
 In this case� the
last example would indeed output

E x�v y�v� x�v
� �� � � �

If the second argument of a deref expression �i
e
� the expression to the right of the dot� is
not a value� then the symbolic evaluations cannot perform as many simpli�cations
 An example
of such a case that might occur in a programming language is an array access where the index
is a non	constant expression
 Here are some more complicated examples� where e �� e� are non	
value expressions
 We �rst note that nondeterministic primitive operations may produce a more
complex output expression
 For instance� if determ�e� �i
e
� if e contains no nondeterministic
primitive operation� then

E x�e x�e
� � � �

as expected� but if �determ�e� then

E x�e x�e
� � � if�bool� �� x�e�

where bool is a nondeterministic operation that evaluates to both true and false
 The reason
is justi�ed in the proof of the symbolic evaluation of �
 Intuitively� because e contains a
nondeterministic primitive operation� it may evaluate to two values v �� v�� and in that case the
expression e � e evaluates to both true and false

In the remaining examples� we assume determ�e� and determ�e��

E x�e x�e�
� � � if�e � e�� �� x�e�

E x�e y�e
� � � if�x � y� �� x�e�

E x�e y�e�
� � � if��x � y� � �e � e��� �� x�e�

��� Symbolic Evaluation of Conditional Relations

The remainder of the composition algorithm is parameterized by an algorithm that constructs
a conditional transfer relation from a conditional expression and a transfer relation for each of
the two branches

C � Exp � TR � TR � TR

As for E and L� we distinguish two di�erent correctness conditions

��� Engineering Flexibility 		

Denition � �Symbolic evaluation of conditional relations� We introduce the following

terms to describe correctness properties of C�

� If

	 e� % %� 	� � 	 �C e%%�� 	�

then C is said to be an upper approximation�

� If

	 e� % %� 	� �� 	 �C e%%�� 	�

then C is said to be a translation�

The following lemma makes it easier to prove the stronger property about C in the case that
all primitive operations are deterministic

Lemma � If all primitive operations p � Primop are deterministic	 C is an upper approxima�

tion	 and

	 �C e%%�� 	� � �	��� 	 e� % %� 	��

then C is a translation�

Proof� From Corollary �
 �

The most obvious choice for C is simply

C e%%� � e� % %� �

But it is sometimes possible to simplify the resulting transfer relation
 For example�

C true%%� � %�

��� Engineering Flexibility

The P and C algorithms provide an engineering "exibility for the composition algorithm
 There
are many correct choices for the syntactic composition % � %�� but most of the di�erences
involve how far primitive applications are simpli�ed and how far conditionals are simpli�ed

Di�erent algorithms P and C will allow a tradeo� between the cost of computing a composition
and its quality

	� Composing Transfer Relations

��� Symbolic Evaluation of Assignment Merging

The most dicult part of the composition algorithm� which we will present in full in Section �
��
is the composition of two assignment relations � and ��
 Consider the composition

x
� � � y
� x �

The �rst issue is that the l	expression y and the expression x that occur in y
� x are evaluated

in a store after the assignment x
� � takes place
 But to build a transfer relation in TR

that is equivalent to this assignment� we must �rst build a corresponding l	expression and a
corresponding expression that are to be evaluated in a store before the assignment x
� �
 The
L and E algorithms accomplish this task
 First of all� we compute

L y x
� � � y�

This expresses the fact that the l	expression y evaluates to the same l	value �which happens to
be y� both before and after x
� �
 Then� we compute

E x x
� � � ��

This expresses the fact that the expression � evaluates before the assignment x
� � to the
same value to which x evaluates after the assignment

So� we replace y by y and x by �� yielding the assignment relation

y
� � �

Now we must merge the �rst assignment� x
� � � with this new assignment� yielding

x� y
� �� �

for the composition

This �merging� is not the same as composition
 Simply merging

x
� �

with

y
� x

yields

x� y
� �� x

which is not semantically equivalent to their composition

x� y
� �� � �

��	 Symbolic Evaluation of Assignment Merging 	�

The merging operation is simpler than composition� because it does not use E and L generate
the �adjusted� expressions and l	expressions
 This section presents an algorithm to perform
assignment merging� and the composition operation � will use this merging operation as a
subroutine� in the manner we described above

The reason that we need an algorithm to perform assignment merging is that it is not always
as trivial as merely concatenating two lists of l	expressions and expressions� as we did for the
example above
 For example� consider merging

x� y
� �� �

with
x� z
� w� y �

The literal concatenation of these two is

x� y� x� z
� �� �� w� y

which is semantically equivalent to the empty relation � because there are two l	expressions x
that always evaluate to the same l	value x
 The merging that we are looking for is

x� y� z
� w� �� y

that replaces the assignment to x in the �rst relation with the assignment to x in the second
relation

Note once again that this is not semantically equivalent to the composition of the two
relations because the composition will perform the assignment to y before evaluating y in the
second assignment
 In the merging of two assignment relations � and ��� the l	expressions and
expressions in both � and �� are considered to be evaluated in the same initial store

The merging of � with �� is written � � ��
 �This operator � should not be confused with
the composition operator �
� It is not symmetric� because� as in the example above� if � and ��

both assign to the same l	value� the con"ict is resolved in favor of ��
 Recall that the semantics
of an assignment relation

� � l�� � � � � ln
� e�� � � � � en

requires that the n l	values to which l�� � � � � ln evaluate must be distinct in order for the assign	
ment to take place
 Given the above assignment relation and a second assignment relation

�� � l��� � � � � l
�
m
� e��� � � � � e

�
m �

the relation � � �� de�ned by the following rule�

li �� wi ei �� vi i �� j � wi �� wj

l�i �� w
�
i e�i �� v

�
i i �� j � w�

i �� w�
j

	� � 	�w�
� v�� � � � �wn
� vn��w
�
�
� v��� � � � �w

�
m
� v�m�

	 �� � ���	�

	� Composing Transfer Relations

Again� note that � � �� is not necessarily semantically equivalent to the concatenation

l�� � � � � ln� l
�
�� � � � � l

�
m
� e�� � � � � en� e

�
�� � � � � e

�
m

because the above rule allows wi to be equal to w�
j for some i and j
 Intuitively� � � �� cannot

merely union the assignments in � and �� because an assignment in the latter may overwrite an
assignment in the former

In this section� we present an algorithm � to compute �� which is one of the most dicult
parts of the composition algorithm �
 The algorithm � is inductive� and for ease of notation in
its correctness proof we generalize � to take an additional parameter J to re"ect this induction�
a set of indices of the assignments in the right	hand relation
 The following rule de�nes this
generalized �J

li �� wi ei �� vi i �� j � wi �� wj

l�i �� w
�
i e�i �� v

�
i i �� j � w�

i �� w�
j

j � J � w�
j �� fw�� � � � � wng

	� � 	�w�
� v�� � � � �wn
� vn��w
�
�
� v��� � � � �w

�
m
� v�m�

	 �� �J ��� 	�

In the relation � �J ��� J is a set of indices into the list of assignments in ��
 If j � J � then the
jth l	expression in �� must not overwrite any assignment in �
 The relation � �� �� is simply
� � ��
 If the length of �� is m� then the relation � �f������mg �

� is semantically equivalent to the
literal concatenation of � with �� as we described above

Before we present �� we need an auxilliary algorithm

� � Lexp� Lexp � Exp

that� given two l	expressions l and l�� generates an expression that tests if the l and l� can
evaluate to the same l	value or to di�erent l	values
 It is de�ned to be false except for the
following cases�

x � x � true

e��e� � e���e
�
� � �e� e� e��� e� �e� e� e���

Formally� we have the following properties of �

Lemma � If P is a symbolic evaluation	 then�

� If �w� �l �� w � l� �� w� then �l � l�� �� true�

� If �w�w�� �w �� w� � l �� w � l� �� w� then �l � l�� �� false�

Proof� Straightforward
 �

Now we present the algorithm

� � ATR� ATR�Pn�Nat� � TR

��	 Symbolic Evaluation of Assignment Merging 	

to compute � as follows�

��J �
� � ��

l�� � � � � ln
� e�� � � � � en �J �
� � %k

where

� � l�� � � � � ln
� e�� � � � � en

�� � l��� � � � � l
�
m
� e��� � � � � e

�
m

fj�� � � � � jkg � f�� � � � �mg � J ordered arbitrarily

%� � ��J�fm
�g l��� � � � � l
�
m� l�
� e��� � � � � e

�
m� e�

%i � C �l� � l�ji� ���J�fjig �
��%i��

The order of j�� � � � � jk is arbitrary� the correctness proof will make no assumption as to their
order
 There may be engineering advantages to choosing a particular order dynamically� because
a particular choice of C might produce di�erent results with di�erent orderings
 This is similar
to the situation with the symbolic evaluation of deref that we illustrated with the examples in
Section �
�

Intuitively� �� �� examines each assignment of � in turn� to see which ones might be over	
written by �� and thus should be eliminated� and which ones might not be overwritten by �� and
thus should remain
 The assignments in � are so processed from left to right
 The l	expression
of each one is tested in turn� via �� against the l	expressions of �� not already in the set J

Whenever an l	expression in � might be equal to some l	expression l�j in ��� that l	expression
never needs to be tested for equivalence again� and so j is added to J
 It is this handling of J
that is rather subtle� but the correctness proof explains this in detail

Because � is de�ned by structural induction� and because the only external algorithms
it needs are the P algorithm to symbolically evaluate the primitive operations in � and the
C algorithm to symbolically evaluate conditional relations� we have that if P and C always
terminate then � always terminates

Now we may proceed with the proof of �
 First we show that � computes a relation that
includes �

Lemma � If P is a symbolic evaluation	 C is an upper approximation	 and 	 �� �J ��� 	�	 then
	 ���J �

��	��

Proof� By induction on the size of �
 If � � � then the result is immediate
 Otherwise�
without loss of generality� let

� � l�� � � � � ln
� e�� � � � � en �� � l��� � � � � l
�
m
� e��� � � � � e

�
m

�� Composing Transfer Relations

and let fj�� � � � � jkg � f�� � � � �mg� J � where the order of j�� � � � � jk is arbitrary
 Let w�� � � � � wn�
v�� � � � � vn� w

�
�� � � � � w

�
m� and v��� � � � � v

�
m be as given by the de�nition of �J
 By that de�nition�

we know that

� w� �� fw�� � � � � wng� and

� w� �� fw�
j j j � Jg

There are two cases

� Case �� There is some j �� J such that w� � w�
j
 Because P is a symbolic evaluation we

have by Lemma � that
�l� � lj� �� true�

In this case� the update to w� in store 	 is overwritten by the later update to w�
j� and

so in this case it may be removed from the de�nition of 	� in the rule that de�nes �J

Furthermore� because w� � w�

j we have that w�
j �� fw�� � � � � wng� and so j may be added

to J in the rule that de�nes �J
 Therefore�

	 � l�� � � � � ln
� e�� � � � � en �J�fjg ���	��

By induction� we have that

	 � l�� � � � � ln
� e�� � � � � en �J�fjg �
��	��

� Case �� There is no j �� J such that w� � w�
j� and so�

j ��J

�l� � l�j� �� false�

In this case� w� �� fw�� � � � � wn� w
�
�� � � � � w

�
mg
 Hence� the update of w� to v� in store 	 is

not overwritten and thus may be moved to the end of the list of updates in the de�nition
of �J
 Therefore�

	 � l�� � � � � ln
� e�� � � � � en �J�fm
�g l��� � � � � l
�
m� l�
� e��� � � � � e

�
m� e� � 	��

By induction� we have that

	 � l�� � � � � ln
� e�� � � � � en �J�fm
�g l��� � � � � l
�
m� l�
� e��� � � � � e

�
m� e� � 	��

Therefore� because C is an upper approximation� either all of the branches in ��J �
� will evaluate

to false in 	� in which case 	 ���J �
��	� by Case �� or at least one the branches will evaluate

to true in 	� in which case 	 ���J �
�� 	� by Case �
 �

Now we show that if all primitive operations are deterministic� � computes a relation that
is precisely �

��	 Symbolic Evaluation of Assignment Merging ��

Lemma
 If all primitive operations p � Primop are deterministic	 P is a symbolic evaluation	

C is a translation	 and 	 ���J �
��	�	 then 	 �� �J ��� 	��

Proof� By induction on the size of �
 If � � � then the result is immediate
 Otherwise�
without loss of generality� let

� � l�� � � � � ln
� e�� � � � � en �� � l��� � � � � l
�
m
� e��� � � � � e

�
m

and let fj�� � � � � jkg � f�� � � � �mg�J � where the order of j�� � � � � jk is arbitrary
 Because all prim	
itive operations are deterministic� we know from Lemma � that each l	expression �expression�
evaluates to a unique l	value �value�
 Let w�� � � � � wn� v�� � � � � vn� w

�
�� � � � � w

�
m� and v��� � � � � v

�
m�

correspond to � and �� as shown above
 There are two cases

� Case �� There is some j �� J such that

�l� � l�j� �� true

and
	 � l�� � � � � ln
� e�� � � � � en �J�fjg �

��	��

By induction�
	 � l�� � � � � ln
� e�� � � � � en �J�fjg ���	��

Hence� by the de�nition of �J�fjg we have that

� w�� � � � � wn are distinct�

� w�
�� � � � � w

�
m are distinct�

� k � J � w�
k �� fw�� � � � � wng� and

� w�
j �� fw�� � � � � wng

But because P is a symbolic evaluation� we have by Lemma � that w� � w�
j
 Hence�

� w� �� fw�� � � � � wng�

� k � J � w�
k �� w�� and

� an assignment to w�
j overwrites an earlier assignment to w�

Therefore� by the de�nition of �J �

	 �� �J ��� 	��

� Case ��

	 � l�� � � � � ln
� e�� � � � � en �J�fm
�g l��� � � � � l
�
m� l�
� e��� � � � � e

�
m� e� � 	��

By induction�

	 � l�� � � � � ln
� e�� � � � � en �J�fm
�g l��� � � � � l
�
m� l�
� e��� � � � � e

�
m� e� � 	��

Hence� by the de�nition of �J�fm
�g we have that

�� Composing Transfer Relations

� w�� � � � � wn are distinct�

� w�
�� � � � � w

�
m� w� are distinct�

� k � J � w�
k �� fw�� � � � � wng� and

� w� �� fw�� � � � � wng

Therefore� because the assignment to w� does not overwrite any preceding assignment� it
may be moved to the front� and hence by the de�nition of �J �

	 �� �J ��� 	��

�

��	 The Composition Operation

Finally� we are ready to present the syntactic composition operation

� � TR� TR � TR

Denition
 �Syntactic composition of transfer relations� We introduce the following

terms to describe correctness properties of ��

� If

	 �%�%��	� � 	 �% � %�� 	��

then � is said to be an upper approximation�

� If

	 �%�%��	� �� 	 �% � %�� 	��

then � is said to be a translation�

The de�nition of the � algorithm is as follows

� � % � �

% � � � �

e� % %� � %�� � C e �% � %��� �%� � %���

� � e� % %� � C �E e �� �� � %� �� � %��

� � l�� � � � � ln
� e�� � � � � en � ��� L l� �� � � � � L ln �
� E e� �� � � � �E en �

We have shown that if the P and C algorithms terminate then E� L� and � algorithms terminate

So because � is de�ned by structural induction� it thus always terminates

��� The Composition Operation ��

We will give some examples of the composition algorithm later when we use transfer relations
to model the semantics of programming languages
 For the remainder of this chapter we give
the correctness proofs of �

Theorem � �� as an upper approximation� If P is a symbolic evaluation and C is an
upper approximation then � is an upper approximation�

Proof� Because P is a symbolic evaluation� we have from Theorem � that E and L are upper
approximations
 We proceed by structural induction
 There are �ve cases

� ���%� � � � �� � %�

� �%� �� � � � �% � ��

� � e� % %� �%����

	 � e� % %� �%���	��

� �	�� �	 e� % %� 	� � 	�%�� 	��� relation composition

� �	�����e �� true � 	%	��
� �e �� false � 	%� 	��� � 	�%�� 	��� de�nition of conditional relations

� �e �� true � 	 �%�%���	���
� �e �� false � 	 �%��%��� 	��� relation composition

� �e �� true � 	 �% � %���	���
� �e �� false � 	 �%� � %��� 	��� induction

� 	 e� �% � %��� �%� � %��� 	�� de�nition of conditional relations

� 	 �C e �% � %��� �%� � %����	�� assumption about C

� 	 � e� % %� � %���	�� de�nition of �

� ��� e� % %� �� Let e� � �E e ��

	 ��� e� % %� �	��

� �	�� �	 � 	� � 	� e� % %� 	��� relation composition

� �	�� �	 � 	� � ��e ��� true � 	�%	���
� �e ��� false � 	�%� 	����� de�nition of conditional relations

� �	�� �	 � 	� � ��e� �� true � 	�%	���
� �e� �� false � 	�%� 	����� E is an upper approximation

� ��e� �� true � 	 ���%� 	���
� �e� �� false � 	 ���%�� 	���� relation composition

� ��e� �� true � 	 �� � %� 	���
� �e� �� false � 	 �� � %�� 	���� induction

� 	 e�� �� � %� �� � %�� 	�� de�nition of conditional relations

� 	 �C e� �� � %� �� � %���	�� assumption about C

� 	 �� � e� % %� �	�� de�nition of �

�� Composing Transfer Relations

� ��� l�� � � � � ln
� e�� � � � � en �� For i � f�� � � � � ng let l�i � �L li �� and e�i � �E ei ��

	 ��� l�� � � � � ln
� e�� � � � � en �	��

� �	�� �	 � 	� � 	� l�� � � � � ln
� e�� � � � � en 	��� relation composition

� �	�� �	 � 	� � �w�� � � � � wn� v�� � � � � vn� �
�i �� j � wi �� wj�

� �
Vn
i�� li ��� wi � ei ��� vi�

� 	�� � 	��w�
� v�� � � � �wn
� vn��� de�nition of assignment relations
� �	�� �	 � 	� � �w�� � � � � wn� v�� � � � � vn� �

�i �� j � wi �� wj�
� �
Vn
i�� l

�
i �� wi � e�i �� vi�

� 	�� � 	��w�
� v�� � � � �wn
� vn��� E and L are upper approximations

� 	 �� � l��� � � � � l
�
n
� e��� � � � � e

�
n �	�� de�nition of �

� 	 ���� l��� � � � � l
�
n
� e��� � � � � e

�
n �	�� Lemma �

� 	 �� � l�� � � � � ln
� e�� � � � � en �	�� de�nition of �

�

Theorem � �� as a translation� If all primitive operations p � Primop are deterministic	 P

is a symbolic evaluation	 and C is a translation	 then � is a translation�

Proof� We know from Theorem � that � is an upper approximation
 Therefore� from Corol	
lary �� we need only show that

	 �% � %��	� � �	��� 	 �%�%��	��

to establish that � is a translation
 From Theorem � we have that E and L are translations

We proceed by structural induction
 There are �ve cases

� �� � %� � �� and so 	 �� � %�	� must be false

� �% � �� � �� and so 	 �% � �� 	� must be false

��� The Composition Operation �	

� � e� % %� � %����

	 � e� % %� � %���	�

� 	 �C e �% � %��� �%� � %����	� de�nition of �

� 	 e� �% � %��� �%� � %��� 	� C is a translation

� �e �� true � 	 �% � %��� 	��
� �e �� false � 	 �%� � %���	�� defn
 of conditional relations

� �e �� true � �	��� 	 �%�%���	���
� �e �� false � �	��� 	 �%��%���	�� induction

� �e �� true � �	�� 	%	� � �	�� 	�%�� 	���
� �e �� false � �	�� 	%� 	� � �	�� 	�%�� 	��� relation composition

� �	�� 	��� ���e �� true � 	%	��
� �e �� false� 	%� 	��� � 	�%�� 	��� distributivity

� �	�� 	��� �	 e� % %� 	� � 	�%�� 	��� defn
 of conditional relations

� �	��� 	 � e� % %� �%��� 	�� relation composition

� �� � e� % %� �� Let e� � �E e ��

	 �� � e� % %� �	�

� 	 �C e� �� � %� �� � %���	� de�nition of �

� 	 e�� �� � %� �� � %�� 	� C is a translation

� �e� �� true � 	 �� � %�	��
� �e� �� false � 	 �� � %�� 	�� defn
 of conditional relations

� �e� �� true � �	��� 	 ���%� 	���
� �e� �� false � �	��� 	 ���%�� 	��� induction

� �	�� 	��� �	 � 	� � ��e� �� true � 	�%	���
� �e� �� false � 	�%� 	����� relation composition

� �	��	��� �	 � 	� � ��e ��� true � 	�%	���
� �e ��� false � 	�%� 	����� E is a translation

� �	��	��� �	 � 	� � 	� e� % %� 	��� defn
 of conditional relations

� �	��� 	 ��� e� % %� � 	�� relation composition

�� Composing Transfer Relations

� �� � l�� � � � � ln
� e�� � � � � en �� For i � f�� � � � � ng let l�i � �L li �� and e�i � �E ei ��

	 �� � l�� � � � � ln
� e�� � � � � en � 	�

� 	 ���� l��� � � � � l
�
n
� e��� � � � � e

�
n �	� de�nition of �

� 	 �� �� l��� � � � � l
�
n
� e��� � � � � e

�
n �	� Lemma �

� �	�� w�� � � � � wn�
�	 � 	� � �i �� j � wi �� wj� �

Vn
i�� l

�
i �� wi� de�nition of �

� �	�� w�� � � � � wn�
�	 � 	� � �i �� j � wi �� wj� �

Vn
i�� li ��� wi� L is a translation

� �	�� 	��� �	 � 	� � 	� l�� � � � � ln
� e�� � � � � en 	��� de�nition of assignment relations

� �	��� 	 ��� l�� � � � � ln
� e�� � � � � en � 	�� relation composition

�

Chapter �

Semantics via Transfer Relations

In Chapter �� we introduced the store as an object for modeling the state of memory during
a point of program execution
 We also introduced the notion of relating a store at one point
in an execution to some later point in the execution� these relations are called transfer rela	
tions
 For the sake of automatic program analysis� we developed in Chapter � a computer
representation for the kinds of transfer relations that might naturally correspond to such exe	
cution segments� and we gave an algorithm for composing these representations� to build bigger
execution segments out of smaller ones

However� those chapters presented these concepts in an abstract manner� apart from any
particular programming language
 Although we gave examples designed to spark intuition about
actual programming languages� we never described how these transfer relations correspond to
any kind of a semantics of a programming language
 In this chapter� we describe a semantic
methodology of programming languages that is founded upon transfer relations� and as such is
particularly useful as a basis for program analysis

��� Denotational and Operational Semantics

The semantics of programming languages is a topic both broad and deep� and we can only
touch on some of the overarching issues here� in order to put our work in a larger perspective

A denotational semantics �Sto��� uses structural induction to assign each term in the source
language an object in some abstract model
 The spirit of denotational semantics is to model
function terms in the source language with actual functions
 This turns out to be dicult�
Dana Scott solved the underlying problems �Sco��� Sco��� Sco���
 On the other hand� Jean	
Yves Girard in �GLT��� makes the following philosophical observation about the �� � and �
equations of �	calculus �Bar����

In fact� these equations may be read in two di�erent ways� which re	iterate the
dichotomy �in logic� between sense and denotation�

�� Semantics via Transfer Relations

� as the equations which de�ne the equality of terms� in other words the equality
of denotations �the static viewpoint�

� as rewrite rules which allows us to calculate terms by reduction to a normal
form
 That is an operational� dynamic viewpoint� the only truly fruitful view
for this aspect of logic

Of course the second viewpoint is under	developed by comparison with the �rst
one� as was the case in Logic$ For example denotational semantics of programs
�Scott�s semantics� for example� abound� for this kind of semantics� nothing changes
throughout the execution of a program
 On the other hand� there is hardly any
civilised operational semantics of programs �we exclude the ad hoc semantics which
crudely paraphrase the steps toward normalisation�
 The establishment of a truly
operational semantics of algorithms is perhaps the most important problem in com	
puter science

The dichotomy between sense and denotation in logic to which Girard refers is the comparison
between Tarski�s classical view� in which for instance the meaning of A � B is its truth value
and is given by a truth table on the meanings of A and B� and Heyting�s intuitionistic view�
in which the meaning of A � B is a proof and is given by a proof of A coupled with a proof
of B
 This leads to the study of proof theory� of which the most famous result is the Curry	
Howard isomorphism between natural deduction and the simply	typed �	calculus in which types
correspond to sentences� terms correspond to proofs �meanings� in the Heyting view�� and
reduction of terms corresponds to rewriting of proofs
 Girard points out that �the fundamental
idea of denotational semantics is to interpret reduction �a dynamic notion� by equality �a static
notion��

This discussion provides some insight into the role of semantics in program analysis
 Strictly
speaking� a program analysis does not answer questions about a program� it answers questions
about a program�s semantics
 This is a rather specialized and practical application of semantics

As Girard points out� denotational semantics is concerned with the equality of programs�a
notion that is undecidable for most languages
 One of the practical bene�ts of a well	designed
denotational semantics is to shed light upon or otherwise aid in the reasoning about program
equivalence
 It stands to reason� then� that the purpose of a program analysis based on a
denotational semantics must be to provide some automatic support for reasoning about program
equivalence

Almost as soon as abstract interpretation arrived on the scene� to make a connection between
program analyses and the semantics of programming languages� a great amount of e�ort was
spent in adapting it to denotational semantics
 For some examples� see �Myc���� �Nie���� �Nie����
and �AH���
 As one would expect� this body of work o�ers some of the most esthetically
pleasing formulations of program analyses� but it also has found little use beyond a narrow
range of applications such as strictness analysis �BHA���

In general� however� one would like a program analysis to produce some information about
a dynamic interpretation of a program rather than this static denotation
 This is why most

��� Modeling a Program as a Transition System �

program analyses are based on an operational semantics that describes how a program reduces

during execution

This is also perhaps why the �eld of program analysis continues to struggle for acceptance in
programming	language theory
 As Girard says� operational semantics tend to be �uncivilised��
and despite the frameworks of structural operational semantics �Plo��� �generalized to in�nite
behaviors in �CC��b�� and natural semantics �Kah���� operational semantics does not have
nearly the developed and re�ned theory of denotational semantics
 Even worse� despite an
e�ort by Schmidt in �Sch��� to begin to develop a sub	framework of abstract interpretation for
natural semantics� most program analyses use what Girard calls the �ad hoc semantics that
crudely paraphrase the steps toward normalisation�
 The reason is that a program analysis
is usually designed to answer questions about �the run	time behavior� of a program� which
requires this crude notion of operational semantics� ad hoc because it is modeling the execution
of a program on some kind of machine� and paraphrasing normalization steps because they are
precisely the steps of execution on this machine

Therefore� whether they are presented in this manner or not� most useful program analyses
are founded upon semantics based on transition systems
 These semantics mimic the execution
of a program on a particular abstract machine that re"ects the properties of interest
 In our
work� the store is the heart of such an abstract machine
 We designed the store with this
application in mind

��� Modeling a Program as a Transition System

Typically� a dynamic semantics of a programming language must model two components of
execution� data and control
 By data� we mean the state of memory
 In our framework� the
data is modeled by a store
 By control� we mean the state of the code itself
 For instance� the
control might be modeled by a label describing the position in the code that is scheduled to be
executed next

In some operational semantics� the control state and the data state are intertwined
 For
instance� in context semantics �FF���� a state of execution is simply a syntactic term� the control
state is encoded in as the next redex to be reduced� and the data state is modeled with syntactic
constructs �such as substitution or the heap variables in �MFH���� and folded into the term
itself
 But much of program analysis is concerned with analyzing the patterns of data access
during execution� and so we wish to keep control and data explicitly separated

This inspires a semantic methodology in which a program is modeled by a transition system

As described in Chapter �� given a set Var of variables and a set Val of values� one can de�ne
the set Store of stores that model the instantaneous states of data
 We must introduce a new
set CtrlPoint of control points� such as labels� that model the instantaneous syntactic position
of execution
 A transition system is then a tuple

hCtrlPoint�Var�Val�
��i

�� Semantics via Transfer Relations

where

�� � �CtrlPoint� Store�� �CtrlPoint� Store�

is a single	step binary transition relation between adjacent control	store pairs in an execution�
where Store is de�ned from Var and Val as in Chapter ��

Store � Lval � Val

Lval � Var �Val� Val� l	values

In other words�

�C� 	�
�� �C �� 	��

if execution can proceed in one step from a state at control point C � CtrlPoint and store
	 � Store to a state at control point C � and store 	�

As we described in the Chapter �� stores have rich structure for analysis
 A control point
is typically much simpler
 For instance� if the subterms �e
g
� commands� expressions� in a
program are uniquely labeled� then a control point often can be simply the label of the next
subterm to be executed
 Or the control point might be the unlabeled subterm itself
 As another
example� the control point of a machine	language program is the value of the program counter�
while the rest of the registers and memory are modeled by the store

There are many examples of other kinds of transition systems as models of programming
languages
 Most of these systems do not use our precise notions of control and store� but
they all have some notion of a control state and a data state
 These systems are also called
abstract machines
 Our notion of a store is expressive enough to encompass all of these� with
the appropriate choice of the set Val of values

The heart of a transition system is the de�nition of the transition relation
��
 Almost
always�
�� is de�ned by a set of meta�rules that de�ne how each occurrence of a certain kind
of syntactic term in the program induces a family or families of transitions
 We give a concrete
example of this in Section �
�
�� and the rules in that section are indeed quite standard
 But for
the rest of this chapter we instead describe a di�erent approach
 This novel approach replaces
the traditional meta	rules with our computer	representable transfer relations� thus opening the
door to a wide range of program	analysis possibilities

��� Modeling a Program as a Table of Transfer Relations

In the previous section� we suggested modeling the semantics of a program with a transition
system
 We explained that a transition system is a tuple

hCtrlPoint�Var�Val�
��i

where

�� � �CtrlPoint� Store�� �CtrlPoint� Store�

��� Modeling a Program as a Table of Transfer Relations ��

is a single	step binary transition relation between adjacent control	store pairs in an execution�
where Store is de�ned from Var and Val as in Chapter �

Observe� however� the following isomorphism�

P��CtrlPoint � Store�� �CtrlPoint� Store�� � CtrlPoint� CtrlPoint � P�Store � Store�

Therefore� given any transition relation

�� � �CtrlPoint� Store�� �CtrlPoint� Store�

one can view
�� as a table of binary relations on stores� indexed by pairs of program points

If we write the �C�C �� entry of this table as
C�C�

�� then the correspondence is as follows

�C� 	�
�� �C �� 	�� i� 	
C�C�

�� 	��

Now� recall that transfer relations are binary relations on stores�

TR � P�Store � Store�

But not all binary relations on stores are transfer relations
 In Section �
�
�� we argued that
some binary relations on stores are not �natural�� in that they will not occur in any reasonable
programming language
 This notion of naturalness motivated the design of our language TR

of transfer relations� and our claim is that TR is indeed rich enough to model programming
languages

The implications of that claim now become manifest
 We now claim not only that a tran	
sition relation
�� can be replaced by a table in

CtrlPoint� CtrlPoint � P�Store � Store�

of binary relations on stores� but that it can indeed be replaced by a table in

CtrlPoint� CtrlPoint � TR

of terms in our language of transfer relations� again indexed by the control points before and
after the transition
 Ultimately� this is more of a philosophical claim than a provable statement

The claim is that the language TR of transfer relations is expressive enough to model all possible
store changes that may arise as single execution steps of any reasonable programming language

To support this claim� we will demonstrate in future chapters that TR is indeed expressive
enough to model a wide variety of programming	language constructs

Given this claim� one may replace any transition system

hCtrlPoint�Var�Val�
��i

by a tuple
hCtrlPoint�Var�Val�Primop� �%i

�� Semantics via Transfer Relations

where
�% � CtrlPoint� CtrlPoint � TR

and the set TR of transfer relations is de�ned as in Chapter � from the sets Var� Val� and Primop

Now� the heart of a semantic de�nition of a programming language is not a set of meta	rules
de�ning a transition relation
��� but is instead a description of how to map a program in
the language to a table �% of transfer relations� one transfer relation for each pair of control
points in the program� describing the single steps of program execution
 By convention� we
write �%�C�C �� as

%C�C�

and call these transfer relations the single�step transfer relations of the program

There are jCtrlPointj� single	step transfer relations
 As described above� CtrlPoint is typically
a set of pointers into the text of a program P � and so jCtrlPointj will usually be linear with the
size of P
 If that size is n� then this means that there are O�n�� single	step transfer relations
in the semantics of P
 However� the vast majority of these will be the empty relation� because
transitions between most pairs of control points is impossible
 For instance� in straight	line
code� the only possible transitions are between adjacent control points� and so there are only
O�n� non	empty single	step transfer relations� as one would expect

Note that transfer relations thus encode control	"ow information about the program
 If
%C�C� � � then it is not possible for the program in question to take a single step from control

path C to control path C �
 Similarly� if %C�C� � e� % then a single step from C to C � is
possible only from stores at C in which e evaluates to true

It is interesting to note that each non	empty single	step transfer relation replaces an in�nite

family of transitions
 This is demonstrated with the following simple example

Example �
 Suppose the transfer�relation semantics of program P is the tuple

hCtrlPoint�Var�Val�Primop� �%i

and that %C�C� � x
� y � � for some C�C � � CtrlPoint� Then the transition�system semantics

hCtrlPoint�Var�Val�
��i

of P includes the family of transitions

�C� 	�
�� �C �� �	�x
� �	 y� � ����

where 	 � Store is any store�

��� Composing Single�Step Transfer Relations

Given the single	step transfer relations �% for a program� one can use the transfer	relation
composition algorithm � from Chapter � to compute the transfer relation for any �nite control
path in a program

��� Composing Single�Step Transfer Relations ��

�
�� Two	step transition sequences

Suppose the transfer	relation semantics of program P is the tuple

hCtrlPoint�Var�Val�Primop� �%i

and� following our convention of notation� we write �%�C�C �� as %C�C�

The single	step transfer relation %C�C� de�nes all of the transitions from control point C
to control point C �
 The single	step transfer relation %C��C�� de�nes all of the transitions from
control point C � to control point C ��
 Therefore� the relation

%C�C� �%C��C��

de�nes exactly the two	step transition sequences from C through C � to C ��

Suppose that all primitive operations p � Primop are deterministic� as will be the case in
most programming languages� and that we are given the symbolic evaluation

P � Primop � Exp� � ATR � Exp

as de�ned by De�nition � and translation

C � Exp � TR � TR � TR

as de�ned by De�nition �
 Then we know from Theorem � that

�%C�C� � %C��C��� � TR

is equivalent to %C�C� �%C��C�� and thus de�nes exactly the two	step transition sequences from C
through C � to C ��
 But the profound advantage of %C�C� � %C��C�� over %C�C� �%C��C�� is that�
syntactically� the former is a �computer	representable� term in our language TR of transfer
relations� while the latter is not
 The advantage of this is illustrated in the following example�
which also serves to remind why we disallowed explicit syntactic composition of transfer relations
in the language TR

Example �� Suppose

%C�C� � x
� y � �

%C��C�� � x
� x � �

Suppose also that all primitive operations p � Primop are deterministic	 and f�� �g � Primop�

Assuming an arbitrary C
because it will not be used here� and the trivial P that is the identity
function on context�independent operations
such as � and ��	 we have that

x
� y � � � x
� x � � � x
� �y � �� � �

�� Semantics via Transfer Relations

describes exactly the possible net e�ects of the two�step fragment of execution from control point

C through C � to C ��� If P instead performs some better symbolic evaluation	 � may yield a

better result such as
x
� y

Either way	 it is more enlightening as to the behavior of this execution fragment than the term

x
� y � � � x
� x � �

By convention we write %C�C� � %C��C�� as %C�C��C��

Suppose that there are nondeterministic primitive operations in Primop
 Then from Theo	
rem � we have that %C�C� � %C��C�� is a superset of %C�C� �%C��C�� and thus de�nes at least all
of the two	step transition sequences from C through C � to C ��
 It might� however� relate some
initial stores �i
e
� at C� to some �nal stores �i
e
� at C ��� that cannot be achieved by such a
two	step transition sequence

We now generalize the above to arbitrary	length sequences of transitions

�
�� Arbitrary	length transition sequences

Single transitions involve two control points� an initial and a �nal
 Two	step transition se	
quences involve three control points� an initial� a middle� and a �nal
 We generalize this
concept with the following de�nition

Denition �� Given a set CtrlPoint of control points	 a control path is a sequence of one

or more control points� The set of control paths is written CtrlPoint
� If ' � CtrlPoint

and '� � CtrlPoint
 then '�'� � CtrlPoint
 is their concatenation� For any ' � CtrlPoint
	

'� � CtrlPoint
	 and C � CtrlPoint	 �'� C�� �C�'�� � '� C�'��

A transfer	relation semantics provides the single	step transfer relations of a program that
de�ne all of the program�s valid transitions
 Transitions are merely execution sequences through
control paths of length two
 Concatenating adjacent transitions� or equivalently� composing
adjacent transfer relations� produces the execution sequences through control paths of length
three
 Another composition covers the control paths of length four� and so forth

Therefore we de�ne from the �nite collection of single	step transfer relations %C�C� the
in�nite collection of transfer relations %� for all control paths ' of length at least ��

%���� � %� � %��

Note that this de�nition is nondeterministic� because there are n�� ways to split up a length	n
control path '�� into ' and '� such that '�� � '�'� because any control point in the path '��

other than the end points can act as the �pivot point�
 In fact� the choice of pivot point will
in general produce di�erent syntactic transfer relations
 But if � is a translation� which by
Theorem � will be the case if all primitive operations p � Primop are deterministic� then by
associativity of relation composition� all of these transfer relations are semantically equivalent

If on the other hand � is merely an upper approximation� then they may not all be semantically
equivalent� but they are all supersets of the true composition

��	 Treatment of Errors �	

��� Treatment of Errors

There are three ways in which an implementation of a programming language treats an error

�
 The error may be caught at compile time
 For instance� most languages with static typing�
such as ML� will prevent at compile time all attempts to add an integer and a boolean
value

�
 An error not caught at compile time may be caught at run time
 For instance� ML�s static
type system cannot detect out	of	bound array references
 Instead� all array references
perform a test a run time to check if the index is within bounds of the array� and raise
an exception if the test fails

�
 Finally� an error may not be caught at all
 In this case� the semantics of the error is
unspeci�ed� and the execution is allowed to �run wild� after the error
 In ML� no errors
reach this stage� they are all caught either at compile time or at run time
 But in C�
for instance� it is possible to extract a value from an uninitialized local variable� but the
de�nition of C does not specify this value
 Also� one may cast any integer into a pointer
and attempt to write into that address in memory
 Depending on the implementation� this
can produce a wide range of errors that are impossible to catch at run time
 For instance�
the address of a pointer may happen to correspond to a local variable on the stack� and
so any write into a pointer changes the value of the variable
 Similarly� writing past the
boundary of a struct or array may interfere with other data structures
 An even more
dramatic example of bad behavior resulting from uncaught errors is the overwriting of
code by bad pointers or out	of	bound array references
 The semantics of C is unspeci�ed
for such programs� once such an error occurs� the execution may run wild
 Depending
on the implementation� the execution may proceed in an unpredictable manner or may
violate the run	time system� causing a segmentation fault or bus error

We discuss the way in which our methodology addresses these three kinds of errors

�
 Because our methodology is appropriate only for a dynamic semantics of a language �in
other words� the run	time behavior� and not for a static semantics �for instance� the
static type system�� we do not address errors caught at compile time
 We assume that
the static semantics has already caught these errors and provided the dynamic semantics
with a program that is free of these errors
 A dynamic semantics may� incidentally�
provide a model for programs that contain compile	time errors� but it does not matter
what this model is
 For example� in Chapters � and �� we will use our methodology to
model languages with records
 These semantics will not model the type of a record �in
other words� the names and types of its �elds�� and thus allow type	unsafe uses of the
record �for instance� an attempt to read a non	existent �eld�
 These semantics do provide
a model for such type	unsafe operations� but it is expected that a static semantics will
ensure that they will never occur

�� Semantics via Transfer Relations

�
 Because our methodology is for the design of a dynamic semantics� modeling the run	time
behavior of programs� it should be able to provide a treatment of errors caught at run	
time
 Typically� when a run	time error is detected� control proceeds to an error handler

For instance� a run	time error in ML raises an exception which is caught by either a
user	de�ned handler or the run	time system�s top	level handler
 Nothing prevents our
methodology from dealing with run	time errors in a similar fashion
 Suppose that �C� 	�
is a state in which a run	time error occurs
 For instance� in an ML program� control point
C may reference code to take the head of a list object in store 	� and that object is nil

Then there will be a transition

�C� 	�
�� �C �� 	��

where C � is the entry of some error handler� which in the case of ML will be an exception
handler

However� in this dissertation we will not give any examples of such run	time errors
 In
other words� the languages in Chapters �� �� and � do not perform any run	time checks

�
 We assume that if an error is not caught at compile time or run time� then the run	time
behavior of the program after the error occurs is unspeci�ed
 Therefore� our methodology
treats these errors in the same way as it treats compile	time errors� we assign a behavior
to a program that exhibits such an error� but the particular behavior is unimportant
because conceptually the semantics is unspeci�ed in that case

Generally� the value undef may come about as the result of errors that are allowed to
�run wild� and thus have unspeci�ed run	time behavior�in other words� the the �rst and third
categories above
 For instance� in Chapters �� �� and � we will give a semantic model in which an
attempt to lookup the value of an unbound variable or �eld of a data structure results in undef�
and primitive operations are de�ned on undef
 For instance� �� � undef� evaluates to undef�
and �undef � undef� evaluates to true
 The latter may seem odd� but is perfectly reasonable
because� once again� the run	time behavior of errors that produce unde�ned is unspeci�ed

Essentially� we need only model the run	time behavior of programs that do not exhibit any
errors in the �rst and third categories above

It is worth commenting on a phenomenon with transfer relations that should not be confused
with the treatment of errors
 Suppose control path ' begins with control point C
 Given the
transfer relation %� corresponding to control path '� and given a store 	� if there is no 	�

such that 	%� 	
�� then it means that execution from the state �C� 	� cannot progress through

control path '
 For instance� C may be a branching point� with path ' proceeding down the
branch for when x � �� but the value of x in 	 is not greater than �
 This is not intended to
be a way of modeling errors that may have occurred during control path '

Part III

Programming Languages

Chapter �

A Case Study� The Language Mini�C

In this chapter� we present Mini�C� a simple imperative language with while loops� assign	
ment� mutable records� and immutable tuples� but without procedures or arrays
 We also
give a semantics for Mini�C in terms of a transition system
 As suggested in Chapter �� we
will demonstrate two di�erent techniques for de�ning that transition system�the traditional
approach of meta	rules and our new approach using single	step transfer relations

The main purpose of this chapter is to develop a relatively straightforward case study of
our approach to program analysis

��� Syntax

A Mini�C program is a list of zero or more statements
 A statement is either an assignment�
an allocation of a new record with n named �elds� a conditional with a statement list for each
branch� or a while loop with a statement list for a body

S ��� fs�� � � � � sng �ordered� statement list �n � ��

s ��� L ��E assignment statement
j L �� ff� � E�� � � � � fn � Eng mutable	record allocation
j if E then S else S� conditional statement
j while E do S while loop

f � Field mutable	record �eld names

�� A Case Study� The Language Mini�C

We de�ne the source expressions and source l�expressions slightly di�erently from the expres	
sions and l	expressions in Chapter �

E ��� L location lookup
j P �E�� � � � � En� primitive application

L ��� x variable location
j E�f data subcomponent location

x � Var variables

Finally� the source primitive operations are

P ��� c constants �nullary�
j � j � j � integer operations �binary and unary ��
j � j � j � j �� j � boolean operations �binary�
j if conditional expression �ternary�
j tuple immutable	tuple construction �n	ary�
j �i immutable	tuple component selection �unary�

where the set Constant of constants is

c ��� n integers �Int�
j true j false booleans

All of the source primitives are simple �i
e
� deterministic and context	independent�
 We leave
the set Field of �eld names of mutable data structures open for the moment
 Note that constants
are nullary primitive operations� as suggested in Chapter �
 We will sometimes use nil as
another name for false
 �One could just as easily add nil as another constant
�

We adopt the following syntactic conventions

� The statement list fsg may be written as s
 item The expression c�� may be written as c
�our usual convention�

� The expression P �E�E�� may be written in in�x as E P E�

� The expression tuple�E�� � � � � En� may be written as �E�� � � � � En�

��� Discussion

Mini�C does not have procedures� but its data features and imperative features of are similar
to C
 Allocating a Mini�C record with n �elds corresponds to calling the C malloc operation
to allocate a size	n block of memory on the heap and then immediately �lling the block with
n values
 Thus� Mini�C �eld names correspond to structure �eld names in C as well as the �

token for pointers

	�� Simplication of Syntax ��

For simplicity�Mini�C does not have arrays� which add an extra element of complexity in two
ways
 One� they may be of statically unknown size
 Two� the index �which would correspond to
the �eld name of a record� of an array dereference may also be statically unknown
 In Chapter �
we will develop a source language with arrays

One feature of C that is not present in Mini�C is low	level control over data layout
 C�s
� operator is not in Mini�C because there is no distinction in Mini�C between an updatable
data structure and a pointer to that structure
 Intuitively� all updatable data structures in
Mini�C are pointers� in much the same way that all arrays in C are pointers
 In contrast� C
provides a mechanism for distinguishing a struct itself from a pointer to that struct� this is
useful for programmer control of data layout�for instance� the inline allocation of a struct as a
�eld in another struct
 Furthermore� there is no pointer arithmetic in Mini�C� and nor is there
a notion of casting one updatable data structure to another
 All of those features of C exist
to give the programmer low	level control of data layout
 In this dissertation� we will not cover
such issues� and so Mini�C does not include those language features

However� it is in fact possible to model a functionality similar to the C � operator� as
well as pointer arithmetic for an extension of Mini�C with arrays
 We discuss this further in
Section �
�

��� Simpli
cation of Syntax

Above we presented the syntax ofMini�C in a form that is intended to be used by a programmer

But it will be much more convenient to describe the semantics of Mini�C programs if we �rst
recast the syntax in a form that more closely �ts our development of transfer relations in the
previous chapters

Our �rst task is to recast source expressions and source l	expressions respectively into the
expressions and l	expressions of the transfer	relation language
 We recall their de�nitions here

e � Exp ��� x j p�e�� � � � � en�
l � Lexp ��� x j e�e�

p � Primop

x � Var

First of all� we include all of the source primitive operations P in the set Primop
 For the
purpose of modeling the semantics of Mini�C with transfer relations� we will have to add some
operations to Primop that are not available to the user at source level
 First of all� we need to
add the �eld names Field to Primop as nullary primitive operations� then the source l	expression
E�f is a member of Lexp

Secondly� we need to add the context	dependent binary primitive operation deref of Chap	
ter � to Primop in order to consider the source expressionE�f to be the expression deref�E� f� �

�� A Case Study� The Language Mini�C

Exp
 Now all source expressions E are in Exp� and all source l	expressions L are in Lexp� hence	
forth we will thus call them expressions and l	expressions and use the metavariables e and l�
respectively

Our second transformation is to �compile� a statement allocating a record with n �elds into
a statement that allocates new memory followed by n statements that �ll the n �elds with their
values
 For this purpose� we need the following� as suggested in Chapter ��

� for each natural number m� a pointer value hmi � Val

� the unary primitive operation ptr that casts an integer m to the pointer hmi �formally�
ptr�m�
� hmi�� where we write hei for ptr�e�

� a distinguished variable H� initialized to � at the beginning of execution� to hold the integer
of the next free pointer on the heap

We now perform the following transformation of a Mini�C program S
 We assume without loss
of generality that H does not appear in S
 We �rst add the assignment statement

H �� �

to the beginning of statement list S
 Then we rewrite every allocation statement

l �� ff� � e�� � � � � fn � eng

as the sequence
l �� hHi�
hHi�f� �� e��

hHi�fn �� en�
H �� H � �

Our resulting program is now in the simpli�ed language

S ��� fs�� � � � � sng �ordered� statement list �n � ��

s ��� l �� e assignment statement
j if e then S else S� conditional statement
j while e do S while loop

where l � Lexp� e � Exp� and Primop includes the source primitive operations as well as deref�
ptr� and f for all f � Field

We now wish to design a transition system to describe the semantics of Mini�C programs
expressed in this simpli�ed language
 Recall that a transition system is a tuple

hCtrlPoint�Var�Val�
��i�

We already have the set Var of variables� it is one of the syntactic domains of Mini�C
 All we
have mentioned about the other three components is that Val includes the collection of pointers
hni
 We now describe each of these remaining three components in turn

	�� Control Points ��

��� Control Points

In order to de�ne a transition system describing the semantics of Mini�C programs� we must
design a way to refer to the control points in a program
 The control points are merely the
statements in the program� and execution proceeds from control point to control point as it
processes the statements in order

A control point of a program is an �index� into the syntax tree of the program
 Formally�
a control point is a �nite sequence of natural numbers

C � CtrlPoint � Nat�

The empty sequence is written �
 If C � CtrlPoint� then C�i � CtrlPoint and i�C � CtrlPoint

respectively represent the extensions of the sequence C on the right and on the left by i � Nat

Intuitively� the numbers in a control point describe� from left to right� how to descend into
the syntax tree of a program
 Formally� this is given below� where S�C� returns the statement
within statement list S at control point C

fs�� � � � � sng�i� � si
fs�� � � � � sng�i�j�C � � Sj�C� if si � if e then S� else S�

fs�� � � � � sng�i�C � � S�C� if si � while e do S

Example �� The following Mini�C program is annotated with its control points�

f
� if n � � then
����� n �� ��n�

else

����� n �� n � ��
� r �� ��
� while n � � do

f
��� r �� r � n�
��� n �� n � �

g�
� if r � �� then
����� r �� r � ��
� x �� r

g

Recall that a one�armed conditional if e then S is an abbreviation for if e then S else fg�

Note that a traversal into a conditional statement extends the control point by two numbers�an
index identifying one of the two branches and an index into the statement list in that branch�
while a traversal into a while loop extends the control point by only a single number�an index
into the loop body

�� A Case Study� The Language Mini�C

��� Values

As described above� the set Var of variables is already given as one of the syntactic domains of
Mini�C
 So the next stage of the design of the transition system is the set Val of values
 Recall
that the states in the system are pairs

CtrlPoint� Store

where stores are de�ned as in Chapter ��

Store � Lval � Val

Lval � Var �Val� Val� l	values

We thus need to design an appropriate set of values for this store

����� Constants �eld names and pointers

Recall the set Constant of Mini�C constants�

c ��� n integers �Int�
j true j false booleans

All constants are values

In Section �
� we performed a syntactic transformation where �eld names were considered
as nullary primitive operations
 Therefore� we include the set Field in the set of values

In the same section� we suggested the approach of using pointer values to model the roots
of mutable records
 As we described� there is a pointer hmi for every natural number m
 The
set of all pointers is denoted Pointer

����� Immutable ordered tuples

Recall that Mini�C includes the n	ary primitive operation tuple for tuple construction and
the operations �i for tuple	component selection
 Therefore� we would like the set of values to
include all ordered tuples of values
 The ordered tuple of the n values v�� � � � � vn is written
�v�� � � � � vn�

����� The unde�ned value undef

As we described in Chapter �� we demand that the set Val of values include the distinguished
token undef representing the �unde�ned value�
 As we explained� this requirement comes from
the fact that stores are total functions from l	values to values� and thus require such an explicit
representation
 For instance� at any given point in a Mini�C program� it is reasonable for only
a small set of variables to be de�ned� and the store at that point would map all other variables
to undef

	�� Semantics of Primitive Operations �	

����
 The set of values

Above� we described the di�erent kinds of values in Mini�C
 The set Val is their disjoint union
�in order to distinguish pointers from natural	number constants and to distinguish a value from
its unary tuple�
 It is de�ned inductively as the smallest set satisfying the following equation

v � Val � Constant� Field� Pointer � Val� � fundefg

��	 Semantics of Primitive Operations

The semantics of primitive operations follows the methodology described in Chapter �
 To
review� the phrase p�v�� � � � � vn�
�� v means that the n	ary primitive operation p applied to
values �v�� � � � � vn� in store 	 evaluates to value v
 However� the only primitive operation whose
evaluation depends on 	 �in other words� the only context	dependent operation� as de�ned in
De�nition ��� is deref� so we omit the 	 parameter for all other operations

Recall from Condition � that for any n	ary primitive operation p � Primop� for any n values
v�� � � � � vn � Val� and for any store 	 � Store� there is at least one value v � Val such that
p�v�� � � � � vn�
�� v
 In other words� all primitive operations must be de�ned everywhere
 All
primitive operations in Mini�C are also deterministic� as de�ned in De�nition �� this means
that they evaluate to only one value
 Therefore� all Mini�C primitive operations are total
functions

We de�ne the primitive operations in Mini�C below
 We already gave most of these de�ni	
tions in Chapter �
 A primitive operation evaluates to undef unless otherwise de�ned below

First� we have the constants and �eld names

c��
� c
f��
� f

Now the integer operations

��n� n��
� �n� n��
��n� n��
� �n� n��

��n�
� �n
��n� n��
� �n� n��

�� A Case Study� The Language Mini�C

Next� the boolean operations and if

��true� v�
� v
��v� true�
� v
��false� v�
� false

��v� false�
� false

��n� n��
� �n � n��
��n� n��
� �n � n��
��v� v��
� �v � v��
���v� v��
� �v �� v��

if�true� v� v��
� v
if�false� v� v��
� v�

Next� the operations for immutable tuples

tuple�v� � � � � v��
� �v�� � � � � vn�
�i��v�� � � � � vn��
� vi

Finally� we have the operations to support mutable records

ptr�n�
� hni
deref�v� v��
�� 	�v�v�� �context	dependent�

��� Semantics of Expressions and L�expressions

The semantics of expressions and l	expressions are precisely the same as in Chapter �
 We
review that de�nition here
 Formally� the interpretations of expressions and l	expressions are
given by the following relations

� The phrase l �� w means that the l	expression l evaluates in store 	 to l	value w

� The phrase e �� v means that the expression e evaluates in store 	 to value v

We recall the following rules� which inductively de�ne these relations

x �� x
e �� v e� �� v

�

�e�e�� �� �v�v��

x �� �	 x�
ei �� vi p�v�� � � � � vn�
�� v

p�e�� � � � � en� �� v

We recall Lemma �� that all expressions �respectively� l	expressions� evaluate to at least one
value �respectively� l	value�
 In addition� we know from Lemma � that because Primop is
deterministic that this value �respectively� l	value� is unique

	�� Transition�system Semantics ��

��� Transition�system Semantics

In this section we present a transition system that models the executions of Mini�C programs

We consider two ways to de�ne such a system

� The usual approach is to give a meta	rule for each kind of syntactic form in the language

There are one or more meta	rules for each syntactic form in the language �for instance�
conditional� assignment� and so forth�
 These meta	rules describe how any occurrence of
that syntactic form in the source program induces single	step transitions
 The single	step
transitions for the entire program is the collection �union� of all of these transitions

� The second approach is technically equivalent� but uses the framework that we developed
in Chapters �� �� and �� thus opening up all the possibilities of our program	analysis
methodology for the language
 The idea is that each rule introduced by a meta	rule in
the above approach is equivalent to a single transfer relation that describes all of the
possible transitions induced by that rule
 Hence� the approach is to give a rule for each
kind of syntactic form in the language that describes how any occurrence of that form
induces a transfer relation describing all of the possible single	step transitions for that
occurrence

We will illustrate each of these approaches in turn for Mini�C
 But �rst� we need a helper
function to manage control points

����� The next function

In most languages� much of the control "ow is syntactically apparent
 Conceptually� the dy�

namic semantics of a language should not have to be concerned with syntactically apparent
information
 Of course� the program�s "ow of control must be part of the program�s semantics�
or else the semantics would not adequately model the program�s execution
 But for expository
purposes� it is pleasing to factor out information that is a trivial property of the syntax� so
that the rules of the semantics themselves succinctly capture exactly the dynamic properties of
execution

To this end� we will need a helper function next to manage the syntactically apparent control
"ow in a program
 Given the control point C of a statement in program S� if C is in the middle
of a statement list then next merely returns the control point of the next statement in the list

Note that if C points to a conditional or a while loop then the next statement is not necessarily
the next control point in the execution

nextS�C�i� � C��i� �� if S�C��i� ��� de�ned

If C points to a statement that is the last in a statement list� then nextS�C� will not be de�ned
by the above equation
 There are two cases for when this might happen
 The �rst case is that
the statement to which C points is the last statement in the outermost statement list in S

�� A Case Study� The Language Mini�C

�i
e
� the statement list S itself�
 In this case next returns the empty control point � to signal
program completion

nextS�i� � �

The second case is that the statement to which C points is not in the outermost statement
list
 In that case� we want nextS�C� to return the control point of the next statement to be
executed� which in this language is simply in a lexically	enclosed statement list and is always
syntactically apparent
 There are two cases
 If C points to the last statement in an arm of a
conditional statement s� then nextS�C� should be the next statement after s

nextS�C�j�i� � nextS�C� if S�C� � if � � � then � � � else � � �

The second case is that C points to the last statement in a while loop s� in which case nextS�C�
should be s itself� as the loop might need to be executed again

nextS�C�i� � C if S�C� � while � � � do � � �

The following example demonstrates all of the concepts of the next function

Example �� Consider the Mini�C program S in Example ��	 shown below on the right� The

complete de�nition of next is�

nextS��� � �
nextS��� � �
nextS������� � �����
nextS������� � �
nextS������� � �����
nextS������� � �
nextS��� � �
nextS��� � �
nextS����� � ���
nextS����� � ���
nextS����� � �
nextS��� � �
nextS������� � �����
nextS������� � �
nextS������� � �
nextS��� � �

f
� if n � � then
����� n �� ��n�

else

����� n �� n � ��
� r �� ��
� while n � � do

f
��� r �� r � n�
��� n �� n � �

g�
� if r � �� then
����� r �� r � ��
� x �� r

g

Note from this example that for every statement list� there is an element in the domain of next
ending with � and thus not a real control point in the program
 The only reason for this is
because we allow empty statement lists in Mini�C programs
 So� for instance� if control point
C points to a conditional expression� then nextS�C����� always returns the next statement in
an execution that takes the else arm
 So� nextS������� � ������ which is the �rst �and only�
statement in the else arm of the �rst conditional in the example program� but nextS������� � ��
because the else arm of the second conditional is empty� and thus execution immediately
proceeds to the statement after the conditional

	�� Transition�system Semantics �

����� Transition system via meta	rules

Now we can de�ne the meta	rules that de�ne the transition relation
�� for a Mini�C program
S
 There are �ve kinds of transitions
 Each statement in S of the form

if e then S else S�

induces a two families of transitions� the transitions from a successful test of e into S� and the
transitions from a failed test of e into the S�

S�C� � if e then � � � else � � � C � � nextS�C����� e �� true

�C� 	�
�� �C �� 	�

S�C� � if e then � � � else � � � C � � nextS�C����� e �� false

�C� 	�
�� �C �� 	�

Each statement in S of the form

while e do S�

induces two families of transitions� the transitions from a successful test of e into S�� and the
transitions from a failed test of e to the rest of the code after the loop

S�C� � while e do � � � C � � nextS�C��� e �� true

�C� 	�
�� �C �� 	�

S�C� � while e do � � � C � � nextS�C� e �� false

�C� 	�
�� �C �� 	�

Finally� each statement in S of the form

l �� e

induces a family of transitions that perform the assignment in the store

S�C� � �l �� e� C � � nextS�C� l �� w e �� v

�C� 	�
�� �C �� 	�w
� v��

Below is an example that illustrates how this transition system models program execution

Example �� Recall the Mini�C program in Example ��� The transition system de�nes the
following execution from a state at the beginning of the program and with an initial store in

which n is bound to �� and all other l�values are bound to undef�
The only store mappings

� A Case Study� The Language Mini�C

shown are the mappings to non�undef values��

�� �fn
� ��g �

�� �������fn
� ��g �

�� �� �fn
� �g �

�� �� �fn
� �� r
� �g �

�� ���� �fn
� �� r
� �g �

�� ���� �fn
� �� r
� �g �

�� �� �fn
� �� r
� �g �

�� ���� �fn
� �� r
� �g �

�� ���� �fn
� �� r
� ��g �

�� �� �fn
� �� r
� ��g �

�� ���� �fn
� �� r
� ��g �

�� ���� �fn
� �� r
� ��g �

�� �� �fn
� �� r
� ��g �

�� �� �fn
� �� r
� ��g �

�� �� �fn
� �� r
� ��g �

�� �� �fn
� �� r
� ��� x
� ��g�

f
� if n � � then
����� n �� ��n�

else

����� n �� n � ��
� r �� ��
� while n � � do

f
��� r �� r � n�
��� n �� n � �

g�
� if r � �� then
����� r �� r � ��
� x �� r

g

����� Transition system via transfer relations

The key idea of using transfer relations to replace meta	rules is that a single transfer relation
can capture the commonalities inherent in each family of transitions de�ned by the meta	rules

For instance� in the meta	rule approach� every if e then S else S� statement induces an in�nite
family of transitions� one for each store 	 in which e evaluates to true� from that statement
into S
 Each transition in this in�nite family does exactly the same thing� simply test that e
is true in the store on the left	hand side of the transition before proceeding to S

This inspires the idea of de�ning a transfer relation %C�C� for every pair C�C � � CtrlPoint of
control points in a Mini�C program S
 Each one will specify exactly the transitions� as de�ned
by the meta	rules above� from C to C
 In other words�

�C� 	�
�� �C �� 	�� i� 	%C�C� 	��

Of course� the vast majority of these transfer relations will be the empty relation �� because
single	step transitions between most pairs of control points are impossible

The semantics of a Mini�C program S is thus de�ned as a �nite table

�% � f%C�C� j C�C � � CtrlPointg

of transfer relations� one for each pair of control points in S� such that %C�C� describes all of the

	�� Transition�system Semantics
�

transitions between control point C and the control point C �
 This table is de�ned as follows

%C�C� �

����������������������������������	

e� � if S�C� � �if e then � � � else � � �� and C � � nextS�C�����

e& � if S�C� � �if e then � � � else � � �� and C � � nextS�C�����

e� � if S�C� � �while e do � � �� and C � � nextS�C���

e& � if S�C� � �while e do � � �� and C � � nextS�C�

l
� e if S�C� � �l �� e� and C � � nextS�C�

� otherwise

We recall that e� % is short for e� % � and e& % is short for e� � % � where � is the

empty relation and � is the identity relation �i
e
� empty parallel assignment�

Example �� The semantics de�nes �� non�empty transfer relations for the Mini�C program

in Example ���

%��������	 � n � �� � %����	�� � n
� n � �

%������	�� � n
� ��n� %��� � n � �& �

%��������	 � n � �& � %��������	 � r � ��� �

%������	�� � n
� n � � %������	�� � r
� r � �

%��� � r
� � %��� � r � ��& �

%������	 � n � �� � %��� � x
� r

%����	�����	 � r
� r � n

Note that this semantics does not need any of the mechanism developed in Chapter � for
composing and manipulating transfer relations
 Indeed� the transfer relations that it yields
as the model of program execution are quite simple
 But the intent is that the output of the
semantics is merely a �rst step in an application of our program	analysis methodology
 Once the
single	step transfer relations of a Mini�C program are in hand� one can compose these transfer
relations to yield a single compound relation that expresses the behavior of any �nite segment
of execution
 The following example illustrates that composing single	step transfer relations is
analogous to stringing together transitions de�ned by the meta	rules in the previous section

Example �	 The execution shown in Example �� has control path

�� �������� �� �� ������ ������ �� ������ ������ �� ������ ������ �� �� �� �

� A Case Study� The Language Mini�C

and so its compound transfer relation is

%��������	�%������	���%���� � � � �%����%����%���

which relates the input store

fn
� ��g

to the output store

fn
� �� r
� ��� x
� ��g�

Now� one can use the composition algorithm � of Chapter � to perform e�ectively these
compositions� thereby facilitating the analysis of the program
 Recall the convention of Chap	
ter � of writing %� to represent the transfer relation of control path '� which is a list of control
points
 Recall that

%��C��� � %��C � %C��� �

Example �� A transfer relation expressing the above execution is computed as

%��������	 � %������	�� � %��� � � � � � %��� � %��� � %���

which	 if the symbolic evaluation P for primitive operations and C for conditional relations are

both simply the identity function	 is

�n � ��� e�� e�� e�� e�& �e� � ���� n� r� x
� e� e�� e�

where
e� � ��n� � �
e� � ���n� � �� � �
e� � ����n� � �� � �� � �
e� � e � �
e � ����n� � �� � �� � �
e� � ��� � ��n�� � ���n� � ��� � ����n� � �� � ��

Adding some logic to P to simplify arithmetic operations could
in principle� yield a result as

simple as
e� � n � ��
e� � n � ��
e� � n � ��
e� � n � ��
e � ��n� � �
e� � ���n� � ���n� � ��� � ���n� � ��

Note how the conditional relation expresses the control��ow constraints on this particular control

path� Note also that the conjunction of the �rst �ve conditions in the above transfer relation can

	�� Transition�system Semantics
�

only evaluate to true when n is ��� A C algorithm could
in principle� determine this property

automatically	 dispense with e� through e�	 pass this value of n onto a simple constant�folding

symbolic evaluation of e and e�	 and achieve the extremely simple transfer relation

n � ��� n� r� x
� �� ��� �� �

Such sophisticated symbolic reasoning about integer arithmetic and conjoined comparison tests
may be dicult to achieve in general
 For the most part� we leave this topic as an open issue
and o�er no general algorithms
 However� even simple symbolic evaluations can go far whenever
any initial bindings are known
 The following example illustrates how this works

Example �� Suppose that C is the identity function	 performing no simpli�cation of condi�

tional expressions	 and P merely performs constant folding� Then

n
� �� � %��������	 � %������	�� � %��� � � � � � %��� � %��� � %���

is the transfer relation

n� r� x
� �� ��� �� �

So far� we have introduced only a single example Mini�C program
 This example uses only
integer data� and in particular does not allocate or use records
 However� much of the sophisti	
cation of our methodology lies in its treatment of heap	allocated mutable data structures
 The
following example demonstrates record allocation

Example �� Consider the Mini�C program

� while a �� nil do

f
new �� fcar � a�car� cdr � bg�
a �� a�cdr�
b �� new

g

that constructs a reverse of list a� Let ' be the control path that starts at control point �	
progresses through one iteration of the loop	 and ends back at control point �� Then	

%� � �a �� nil��
a� b� new� H�
hHi�car� hHi�cdr

�
a�cdr� hHi� hHi� H � ��
a�car� b�cdr

represents the transfer relation of one iteration and

%��� � �a �� nil�� �a�cdr �� nil�� %

� A Case Study� The Language Mini�C

where

% �
a� b� new� H�
hHi�car� hHi�cdr�
hH � �i�car� hH � �i�cdr

�
a�cdr�cdr� hH � �i� hH � �i� H � ��
a�car� b�cdr�
a�cdr�car� hHi

represents the transfer relation of two adjacent iterations

Note how an assignment relation can represent multiple record allocations in parallel via the
expressions hHi� hH � �i� hH � �i� and so forth
 These expressions evaluate to sequential free
pointers
 The assignment to H re"ects the total number of pointers allocated by the execution
segment that the transfer relation models

Also� note again that the conditional relations encode the conditions under which a partic	
ular control path is taken

The following example demonstrates the subtlety of unknown initial aliasing

Example �
 Consider the Mini�C program

� while �a �� nil� do
f
temp �� a�
a �� a�cdr�
temp�cdr �� b�
b �� temp

g

that destructively appends the reverse of list a onto list b� If ' is the control path that begins at

control point �	 progresses through one iteration of the loop	 and ends back at control point �	
then

%� � �a �� nil�� a� b� temp� a�cdr
� a�cdr� a� a�cdr� b

is the transfer relation of one loop iteration	 and

%��� � �a �� nil�� �a�cdr �� nil�� �a � a�cdr�� % %�

where

% � a� b� temp� a�cdr
� if�a � a�cdr� b� a�cdr�cdr�� a�cdr� a�cdr� a

%� � a� b� temp� a�cdr� a�cdr�cdr
� if�a � a�cdr� b� a�cdr�cdr�� a�cdr� a�cdr� b� a

is the transfer relation of two adjacent loop iterations� If C were de�ned to propagate the �rst

test of a � a�cdr into its two branches	 then the composition algorithm could simplify the if

expressions and achieve

% � a� b� temp� a�cdr
� b� a�cdr� a�cdr� a

%� � a� b� temp� a�cdr� a�cdr�cdr
� a�cdr�cdr� a�cdr� a�cdr� b� a

	�
 Modeling � and Pointer Arithmetic
	

This example is worth some study
 It expresses that the net e�ect of executing two adjacent
iterations of the loop in some context �store� depends on whether a was aliased to a�cdr in
that context �in other words� if a is a circular list of length one�
 If not� then the execution
has the net e�ect of %�� which directly expresses the expected net behavior of two iterations
of a reverse	append routine
 On the other hand� if a is initially aliased to a�cdr� then some
examination of % reveals that the net e�ect of two iterations reduces to swapping a and b

This example thus demonstrates that the e�ect of aliasing on data	structure dereference
and destructive assignment is rather subtle and unpredictable� but the composition operation
� on transfer relations reveals this subtlety
 Furthermore� it suggests that it is well worth the
e�ort to design the C algorithm to look for and simplify syntactically redundant conditional
expressions
 In this dissertation� we do not describe such an advanced C algorithm� and so this
is left for future work

�� Modeling � and Pointer Arithmetic

The only reason that we did not include arrays in Mini�C was for simplicity
 In Chapter �
we will show how to model arrays in a functional language with our methodology� and it is
straightforward to extend Mini�C in the same manner
 In this section� we give a discussion of
how to add some of the features of C�s pointers that are not present in Mini�C
 For generality�
this section will assume that Mini�C includes arrays as described in Chapter �

C includes the following expressions

�x the address of variable x
��s�f� the address of �eld f of struct s
��a�i�� the address of element i of array a

Unlike C� Mini�C has no � operator
 Related to this is our choice to treat pointers as records
with the single �eld �

Alternatively� we could have treated a pointer as a pair value �v� v�� representing the l	
value v�v�
 In this way� we can treat the latter two of the three cases above via the syntactic
translation

��e�e�� � �e� e��

where e�e�� is represented as e�e�� as we describe in Chapter �
 Then� we would treat an
occurrence of �e not as a reference �as an l	expression� or dereference �as an expression� of the
�eld named � of the record e� but rather as an extraction of the l	value represented by the pair
e
 This would be accomplished by the following syntactic transformation

�e � ����e�������e��

Recall that an occurrence of e�e� as an expression �as opposed to an l	expression� is short for
deref�e� e��

� A Case Study� The Language Mini�C

In this manner� we can treat most of the functionality of C�s � and � operators
 What we
cannot do is to take the address of a variable� and there is a good reason why this is the case

Intuitively� � coerces an l	value into a value �so that it may be manipulated as data and so
forth�� and � coerces a value back into an l	value
 Above� we coerce a reference l	value v�v� as
the pair value �v� v��� which may then be coerced back into the l	value v�v� �and dereferenced�
if treated as an expression�
 We could attempt a similar approach with variables�for instance�
coercing the variable x into the token (x�
 In our current formulation� the only l	expression
that evaluates to x is x itself� and so there is no way to translate an arbitrary expression e
into an l	expression that will evaluate to x if e evaluates to (x�
 But this is just due to our
particular language of expressions and l	expressions and our choice to model Mini�C variables
with l	expression variables
 In principle� there is no diculty to extend the notion of � for
variables

With the above model of pointers� it is possible to model C�s pointer arithmetic for array
indices
 A pointer to an array element is �v� v��� where v is the array and v� is the index of the
element �as we explain in Chapter ��
 Suppose the expression

e 	 e�

represents the increment of pointer e by e� �which would be written as e � e� in C�
 We would
translate this into the Mini�C expression

����e�� ���e� � e
���

Chapter �

First�Class Functions� The Language

Pure

In Chapter � we presented the imperative while	loop language Mini�C� the primary purpose of
which was to introduce the methodology of de�ning a transition	system semantics of a program	
ming language with computer	representable transfer relations representing the single steps� and
then using the � algorithm to build multiple steps corresponding to particular control paths
in the program
 But Mini�C is a rather simple language� and so in this chapter we consider
more advanced language features
 Our purpose is to demonstrate that our methodology of
semantics	based program analysis is reasonably general

The only control constructs in Mini�C are conditionals and while loops
 One can get by
without any other control constructs� but it would be quite inconvenient for most programming
tasks
 Real programming languages have some mechanism for de�ning functions
 A function
accepts some input data �parameters� from its caller and returns a result value to the caller

In some languages� such as Haskell �H
���� functions have the same input	output behavior in
any context
 This is sometimes known as referential transparency �SS���
 We call this kind
of function �pure�
 The vast majority of programming languages� however� provide impure
functions
 In this chapter we model a programming language with pure functions� and in the
next chapter we will extend this language with imperative features and impure functions

In some languages� the functions are said to be �rst class
 This means that the functions
are semantic values� and as such can be manipulated by a program like any other value
 For
instance� they may be assigned to variables� placed in data structures� and passed to other
functions
 The functions in most advanced languages� such as Scheme �ReC��� or Standard ML
�SML� �MTH���� are �rst class
 In contrast� the functions in C �KR���� Fortran �Knu���� and
Pascal �Bar��� are not �rst class

In some ways� our methodology must be rather stretched to handle �rst	class functions
 We
will see this below and in Chapter �� and we will give a summary at the end of Chapter �

� First�Class Functions� The Language Pure

	�� Substitution vs� Closures

Consider the syntax of �	calculus terms �Bar����

e ��� x j �x� e j e e�

Now consider the following term�

��x� �y� x� ��z� z�

Via the reduction rules of the �	calculus� this term reduces in a single step to the �unique up
to renaming� normal form�

�y� �z� z

This term represents a function that� given any argument� yields the identity function

Much of programming	language theory and practice is based on the notion that reduc	
tion of �	calculus terms is a kind of computation
 Even further� the Curry	Howard isomor	
phism �How��� introduces the connection between proof theory and computation� and conse	
quently between logical systems and programming languages
 �We refer the curious reader to
�GLT���
� Let us consider how the above �	calculus term might correspond to a SML program
�chosen rather arbitrarily� simply as an example of a �real� language�� and how its reduction
might correspond to the execution of the program
 The SML program

�fn x �� �fn y �� x �fn z �� z

corresponds to the �	calculus term above� indeed� the syntax trees of the two terms are iso	
morphic
 Now� consider the execution of this SML program
 Everyone who has written SML
programs imagines that the execution of this program will proceed something like this�

�
 Evaluate �fn x �� �fn y �� x

�a� Create a closure f in the heap for �fn x �� �fn y �� x

�b� Return f as the result of evaluation

�
 Evaluate �fn z �� z

�a� Create a closure g in the heap for �fn x �� �fn y �� x

�b� Return g as the result of evaluation

�
 Apply f to g

�a� Bind x to g

�b� Create a closure h in the heap for �fn y �� x with this binding of x

�c� Return g as the result of evaluation

�
 Return g as the result of evaluation

��� Syntax

There seems to be much more going on in the execution of the SML program than in the
single step reduction from

�x� �y� x ��z� z�

to

�y� �z� z�

The overarching reason is that� as we have suggested� reduction of �	terms is an abstract notion
of computation� while SML programs execute on real computers
 The salient point that this
example illustrates is that each step of a �	term reduction builds a whole new term� but it
is infeasible to build literally an entire SML program over and over during execution
 More
speci�cally� a reduction of a �	term substitutes the argument of a function for every occurrence
of the parameter of the function in the body of the function
 In the above example� the reduction
substitutes the literal term �z� z for the single occurrence of x in �y� x to build the �nal normal	
form term
 Theoretically� an implementation of a real programming language could be based on
a similar idea
 But in practice� it is usually more ecient to build closures instead of performing
substitution

The di�erence between closures and substitution lies in the treatment of variables
 A pro	
grammer is accustomed to thinking of variables as identi�ers that are bound to values when
the program runs
 This deeply ingrained notion that a variable �has a value� is partially an
artifact of this implementation issue� and is supported by the standard denotational model of
the �	calculus which models a term �x� e as a continuous function �Sto���
 In the reduction
of �	terms� one must consider variables in a di�erent light� they are placeholders that during
reduction �execution� are replaced with terms and disappear entirely

Because the overarching goal of program analysis is to determine information about the
run	time behavior of programs� one must begin by modeling the programming language in a
way that re"ects or abstracts this run	time behavior
 Therefore� because real implementations
typically use closures to model �rst	class functions� we will model functions with closures in
our semantics

	�� Syntax

We now present the purely functional language called Pure
 A program is a member of the
set Term of terms� written in a brand of continuation	passing style �LD���

t ��� let x � e in t local binding
j rec g in t recursive function binding
j e��e� function application
j if e then t else t� conditional
j e simple term �Exp�

g ��� x��y� � t� n	ary function de�nitions

��� First�Class Functions� The Language Pure

A simple term is an expression as de�ned in Chapter �

e ��� x variable lookup
j p�e�� � � � � en� primitive application

x� y� z � Var variables

Usually� we use x for a function name or let binding� y for a function parameter� and z to refer
to a free variable of a term t� the set of which is denoted by FV�t� and de�ned in the usual
fashion
 Expressions that appear in Pure terms may use the following primitive operations�
which are members of Primop

p ��� c constants �nullary�
j � j � j � integer operations �binary�
j � j � j � j �� j � boolean operations �binary�
j tuple ordered	tuple construction �n	ary�
j �i ordered	tuple component selection �unary�

Constants are the integers and booleans� as in Mini�C

	�� Discussion

Notice that

e�e���e���

is not a valid program in Pure
 For instance� consider a program that de�nes and then calls a
curried addition function

rec f�x� � �rec g�y� � x � y in g�
in f��������

This is not a term
 One would have to write this by using a continuation function as an
interface between the application f��� and the application v��� where v is the result of the
former application

rec f�x� k� � �rec g�y� � x � y in k�g��
in �rec k�v� � v���� in f���� k��

We are moving toward a form of continuation	passing style �CPS�
 CPS was studied early
as the subset of �	calculus terms for which call	by	name and call	by	value reduction strategies
are equivalent �Plo���
 The �rst major practical use of CPS was in the Scheme Rabbit com	
piler �Ste���� which translated source programs into a restricted syntax much like ours
 This was
later done in the Orbit Scheme compiler �Kra��� and then in the SML!NJ compiler �App���

All translations are based on a universal calling convention in which all source functions take
a continuation argument and all source applications must thus pass a continuation function

��� Semantics ���

describing the remainder of the computation
 So� for instance� an automatic CPS converter
might produce

rec f�x� k� � �rec g�y� k� � k�x � y� in k�g��
in �rec k�v� � v���� top� in f���� k��

for the program above

These translations are well studied� both in theory and practice �Plo��� �see also other
references cited above�� and so we will not go any further into CPS here
 Suce it to say that
our syntactic restriction does not limit the expressivity of the language

	�� Semantics

In Chapter � we modeled a Mini�C program by a transition system in which a state is a
pair of a control point� representing the current syntactic position of execution� and a store�
representing the state of the memory!data
 We gave alternate de�nitions of the single	step
transitions induced by a program� one in terms of meta	rules �the standard practice� and one
in terms of transfer relations
 It is the latter formulation that provides a basis for program
analysis with our methodology
 In this section� we discuss semantics of Pure in a similar
fashion

��
�� Control data and execution states

Actually� both the notion of control point and the notion of store are simpler in Pure than in
Mini�C

We designed a whole notation for the control points of a Mini�C program� but it turns out
that one can simply use the subterms of a Pure program to function as control points
� This
is intuitively pleasing because the control point itself has meaning� if an execution is at control
point t� it means that the rest of the execution is the evaluation of t
 �This works because of
Pure�s CPS	like syntax
� In contrast� a sequence of integers that functions as a control point
of a Mini�C program has no meaning alone� it is only an index into the text of the program

As for stores� because there are no assignable data structures in Pure� much of the complex	
ity of stores is not needed to model the data
 Recall that a store is a map from l	values� which
are either variables or references v�v�� to values
 In Pure there is no need for the references�
and so all that is needed is a map from variables to values
 This is the familiar notion of an
environment �

� � Env � Var � Val environments

Recall that there were �ve di�erent kinds of values �members of Val� in Mini�C�

� constants �members of Constant�

�Actually� in Section ����� we will need to refer to a function de�nition x��y� � t as a control point� In this
case� that control point is identi�ed with the control point t� We will discuss this later�

��� First�Class Functions� The Language Pure

� �eld names �members of Field�

� pointers to assignable data structures �members of Pointer�

� immutable tuples �members of Val��

� the unde�ned value undef

Again because there are no assignable data structures in Pure� pointers are not needed� and
neither are �eld names
 However� Pure has �rst	class functions� and so there must be values
that model these functions
 As we explained in Section �
�� it is best for many applications of
program analysis to model a function as a closure
 A closure has two parts�

� a function g �a phrase of the form x��y� � t�

� an environment� providing the values for all free variables of g

The set of closures is thus de�ned as follows�

hg� �i � Closure

Finally� the set of values is given by the following equation�

v � Val � Constant� Closure� Val� � fundefg

Note there is a circularity in the equation for Val� and there is another circularity in the equations
for Env� Closure� and Val
 The actual sets are de�ned by mutual induction� as the least solution
to these three equations

As an aside� an infamous diculty in designing analyses of languages with either �rst	
class functions or data structures lies in how to deal with these circularities in an analysis
algorithm that is guaranteed to terminate
 The circularity in the equation for Val arises from
immutable tuples� and indeed most static analyses of even immutable structured values�not
to mention mutable data structures�are quite crude �e
g
� �Wad���� �Hei����
 One of the
few satisfactory analyses of structured values is �Deu���� but it is still somewhat ad hoc and
also quite complicated
 The other circularity arises from �rst	class functions� and again it is
no coincidence that analysis designers have traditionally encountered trouble with �rst	class
functions
 The usual ad hoc approaches are to be found in the work on denotational	based
abstract interpretations� usually applied to strictness analysis �BHA���� the work on �nite
approximations of closures �Shi���� or the work on augmenting higher	order type systems with
�e�ects� �TJ���
 None of this work seems satisfactory
 What lies at the root of these problems
is the ubiquitous analysis methodology that begins with the design of a �hopefully clever�
approximation of an in�nite domain
 In contrast� because our methodology is centered around
the analysis of the changes to a store �or environment in the case of Pure� rather than the store
�or environment� itself� complexities �induction� recursion� in�nite sets� etc
� in the structure
of values themselves do not cause any a priori diculty� rather� the focus is on the complexity
of the transitions between states

��� Semantics ���

As we explained above� a state of execution comprises the state of control� which is a term�
and the state of data� which is an environment

State � Term� Env

What remains is to de�ne the transitions induced by a Pure term
 These model the single
steps of execution of the term

��
�� Transitions via meta	rules

Here we describe how each kind of term induces transitions
 No transition is possible from an
expression term� if an execution reaches the state

�e� ��

then the execution halts� and the result of the execution is the value v such that

e �� v

which is guaranteed to be unique because Pure is deterministic

Each of the four other kinds of terms take transitions

� let x � e in t
 In this case� x is bound to a value to which e evaluates in the current
environment� and execution proceeds to t

e �� v

�let x � e in t� ��
�� �t� ��x
� v��

Note that an environment is just a store in which all reference l	values �v�v�� are bound
to undef� and so for convenience we use the same de�nition of � for the evaluation of an
expression in an environment
 Similarly� the de�nition of ��x
� v� is a special case of
store extension� de�ned on page �
�
�

���x
� v�� y �

�
v if x � y
	 y otherwise

This notion of variable binding may seem strange
 Why isn�t it necessary to rename the
variable x in order to avoid con"icts with other occurrences of x in � that might be needed
later in the computation� It turns out that these other occurrences of x will always be
captured in closures and so will not interfere with the update of env
 We will discuss this
further in Section �
�

� rec g in t where g � �x�� � �� � � � �� In this case� x is bound to a closure whose func	
tion component is g and whose environment component is the current environment� and
execution proceeds to t

g � �x�� � �� � � � ��

�rec g in t� ��
�� �t� ��x
� hg� �i��

��� First�Class Functions� The Language Pure

� e��e�
 For a transition to be possible from this term� e must evaluate to some closure
hx��y� � t� ��i in the current environment
 In that case� the new environment is �� extended
with the following additional bindings� a binding from x to the closure itself and a binding
from the variables �y to the corresponding values to which the expressions �e evaluate in
the current environment
 Then execution proceeds to t

e �� v ��e�i �� ��v�i v � hx��y� � t� ��i

�e��e�� ��
�� �t� ���x
� v���y
� �v��

Note that � is simply �thrown away� in this transition
 This is because Pure terms are
in continuation	passing style� and so an evaluation returns only when the execution of the
entire program is complete
 All parts of � that will be needed in the future computation
must be passed through via the arguments �e� typically in the closure of a continuation
function

It may at �rst seem unnecessary to have closures in the �rst place
 If we appropriately
renamed variables during execution� we could ensure that the bindings of the free variables
of a function g are never overwritten later in the execution
 In this way� there would be
no need to save and restore ��� instead� � may simply be threaded through on function
application
 We discuss this choice further in Section �
�

� if e then t else t�
 For a transition to be possible from this term� e must evaluate to
either true� in which case evaluation proceeds to t� or false� in which case evaluation
proceeds to t�

e �� true

�if e then t else t�� ��
�� �t� ��

e �� false

�if e then t else t�� ��
�� �t�� ��

��
�� Transitions via transfer relations

Instead of using meta	rules to de�ne the transitions� it is possible to represent them directly in
a computer as transfer relations
 The methodology here is exactly the same as for Pure
 The
transfer relation

%t�t�

represents all and only the valid single	step transitions from term t to term t�� it is a binary
relation between the environment at t and the environment at t�

Functions as control points

In Mini�C� the de�nition of the single	step transfer relations precisely corresponded to the
meta	rules that de�ned the transitions
 However� there is a subtle issue concerning �rst	class

��� Semantics ��	

functions
 It turns out that to de�ne the single	step transfer relations of a Pure term� we need
to have a slightly special treatment for the control points of functions

In particular� we need to use a phrase x��y� � t as a control point
 In this case� that control
point is identi�ed with t� but in a rather subtle way
 For instance� consider two functions with
the same body t�� but di�erent names and parameters�

g � x��y� � t�
g� � x���y�� � t�

The transfer relation

%t��g

describes the single steps from term t� into the function g� and the transfer relation

%t��g�

describes the single steps from term t� into the function g�
 Both of these may be composed
with the transfer relation

%t��t�

that describes both the �rst step of function g and the �rst step of function g�

So� in other words� g and g� are both identi�ed with t� for the purpose of relating the
transfer	relation formulation of the semantics with the meta	rule formulation� and thus for
composing a transfer relation that ends with one control point �in this case� g or g�� with a
transfer relation that begins with the same control point �in which case� t��
 However� one may
give separate de�nitions for both %t��g and %t��g�

Primitive operations to support closures

It is necessary to add three new families of primitive operations to Primop in order to build and
examine closures
 All of these operations are simple
�

� There is an n	ary simple primitive operation closureg��z������zn	 for every function g and
variables z�� � � � � zn that creates a closure whose function is g and whose environment
binds the variables z�� � � � � zn
 It is de�ned as follows�

closureg��z������zn	�v�� � � � � vn�
� hg� �i

where�
� zi � vi
� z � undef if �� � i � n� z �� zi

�Note that in general it makes sense only to have simple primitive operations because Pure is a deterministic
pure language�

��� First�Class Functions� The Language Pure

� There is a unary simple primitive operation codeg for every function g that tests whether
the function of a closure is equal to g
 It is de�ned as follows�

codeg�hg� �i�
� true

codeg�v�
� false otherwise

� There is a unary simple primitive operation envz for every variable z that returns the
value of the variable z in the environment of a closure
 It is de�ned as follows�

envz�hg� �i�
� �� z�
envz�v�
� undef if v �� Closure

Free variables and bisimulation

For technical reasons that we will explain below� it is necessary to introduce a kind of equivalence
relation on states

One can also easily show that the only variables whose values might be needed in the
execution of term t are the free variables of t
 The following bisimulation expresses this precisely

Denition �� �Similar values and states� We de�ne the similar relation � on values and

states as follows	 where FV�t� denotes the free variables of t	 and similarly for FV�g��

� Two values v and v� are said to be similar
written v � v�� if either v � v� or v � hg� �i	
v� � hg� ��i	 and

x � FV�g� � �� x� � ��� x��

� Two states �t� �� and �t�� ��� are said to be similar
written �t� �� � �t�� ���� if t � t� and

x � FV�t� � �� x� � ��� x�

Proposition � �Bisimulation� Let
��� be the transitive closure of
��� If �� � ��� and

�� � ��� then

��
��� �� �� ���
��� ����

The single�step transfer relations

Now we can de�ne a single	step transfer relation %t�t� for every two terms t and t�� this relation
speci�es how the environment changes in a transition from t to t�
 We also de�ne %t�g for
the transitions into a functions g� as described above
 In Mini�C� these transfer relations are
indexed by control points instead of terms� because there are only a �nite number of control
points in a Mini�C program� the number of single	step transfer relations for a Mini�C program
is also �nite
 The situation is not quite analogous for Pure
 A Pure term t does indeed have
only a �nite number of subterms
 However� if t is meant to be executed in an environment
that initially contains some �non	undef� values�which would typically be the case for partial

��� Semantics ���

programs� or in other words for terms t that have free variables�then some of those values
might be closures that contain terms not in t

In Mini�C the single	step transfer relations precisely mirrored the semantic meta	rules

This is almost the case here� but there is some di�erence due to functions
 Above� we gave the
meta	rules for each of the four kinds of Pure terms
 Here� we do the same for the single	step
transfer relations� all of which are � unless de�ned otherwise below

� let x � e in t
 This case is just like the meta	rule� there is a single	step transfer relation
from this term to t that describes the new binding to the environment�

%�let x�e in t	�t � x
� e

� rec g in t
 This case is very much like the meta	rule� there is a single	step transfer relation
from this term to t that describes the binding of the new closure
 But there is a subtle
di�erence
 The meta	rule builds a closure that contains the entire current environment�
while the transfer relation builds an environment that keeps the bindings only of the free
variables of the function g
 The bisimulation proposition above justi�es this change
 This
relation uses a primitive operation to create this closure�

%�rec g in t	�t � x
� closureg��z������zn	�z�� � � � � zn�

where fz�� � � � � zng � FV�g� �ordered arbitrarily�

This di�erence between the meta	rule and the transfer relation is not conceptually deep

We could very well have de�ned the meta	rule to restrict the environment of the closure
to the free variables of g� as well� but that choice is unnecessarily cumbersome� not to
mention non	standard
 On the other hand� there are two reasons why we de�ne the
transfer relation as we do

� We have less "exibility in the design of the transfer relation
 Because environments
are not members of Val �in which case we might have imagined a nullary context	
sensitive primitive operation that evaluates in � to � itself�� it is necessary to build
the environment explicitly� as we do with closureg��z������zn	
 Therefore� we must
know the set of variables to be bound� and it is both more convenient and more
"exible to examine locally g to see what variables it might need than to examine
the lexical context of g within the larger program to see what variables are merely
allowed to be free in g

� Transfer relations are actual computer	representable structures� and so for practical
reasons these structures should be as small as possible
 Restricting the environment
to the free variables of g is a simple way to reduce potentially the textual size of the
closure

� e��e�
 This case is quite di�erent from the meta	rule
 Execution from this term will
transition to the function g of the closure to which e evaluates
 Thus� the control part of

��� First�Class Functions� The Language Pure

the state after the transition not only depends on the environment part of the state before
the transition� as is the case with conditionals� but is actually taken from the environment

This relationship is no problem for the meta	rule formulation of a transition system�
because it is just another example of how one state in an execution depends in some
fashion on the previous in the execution
 But such transitions are dicult to express as
a single	step transfer relation because the transfer relation itself is already parameterized
over the two control points� in this case terms
 In other words� when de�ning %t�g�
specifying all transitions from a state at t into the function g �recall that the control
point g is identi�ed with g�s body�� one cannot express how the control point g depends
on the environment at the beginning of the transition� because g is �xed

In all transitions inMini�C and all other transitions in Pure� the only dependency of the
control part of the latter state on the store part of the former state �or environment part�
in the case of Pure� is for conditionals� in which the store �or environment� in the former
state determines which one of two possible control points is in the latter state
 In contrast�
function application is fundamentally more dicult
 The reason is that the control point
�or term� in Pure� to which execution proceeds is part of the store �or environment�
itself
 Thus� given an application term t � e��e�� one cannot extract the function g from e
as in the meta	rule� rather� one must de�ne %t�g to implement the appropriate condition
that e will indeed evaluate to a closure whose function is g

This suggests a de�nition of the form

%�e��e		�g � codeg�e�� %

for some %
 The choice of % brings up the second diculty with functions� and this time
not limited only to �rst	class functions
 Namely� the transition from function application
to function body is the only time in which the environment is changed wholesale
 This�
too� is somewhat at odds with our particular language of transfer relations
 We provided
parallel assignment in the language of transfer relations to express a store modi�cation�
but not to replace an entire store with a new one
 It is not as bad as it seems� however�
because Pure uses environments� which contain only variable bindings
 Furthermore�
one can easily show that the only variables bound �to a non	undef value� when execution
is at a term t are the variables in the lexical scope of t� a well	known concept that we do
not de�ne formally here

Therefore� one solution would be to de�ne a new nullary primitive operation undef that
evaluates to value undef and then de�ne % to bind all variables in the scope of e��e� to
undef and all variables in the scope of g to their appropriate value� with the latter taking
precedence over the former for any variables in both scopes

However� we choose a di�erent solution� largely for practical reasons
 The bisimulation
above tells us that in any transition to g it is sucient to ensure only that all free variables
of g are bound correctly
 The resulting execution may not be identical to the one given by
the meta	rules� but will be equivalent modulo the bisimulation relation �
 It is also easy
to see that this does not a�ect the �nal result of the program
 So we have the following

��� Semantics ��

de�nition

%�e��e		�g � codeg�e�� z�� � � � � zn
� e�� � � � � en

if g � x��y� � t� fz�� � � � � zng � FV�t�� and

ei �

����	
e if zi � x
��e�j if zi � ��y�j
envzi�e� otherwise

Thus� the assignment relation� instead of replacing the environment wholesale� as done
in the meta	rule� simply ensures that all of the free variables of the function are bound
correctly

� if e then t else t�
 This case is just like the meta	rules� there are two single	step transfer
relations� one from this term to t �ltering the true condition� and the other from this
term to t� �ltering the false condition�

%�if e then t else t�	�t � e� �

%�if e then t else t�	�t� � e& �

Recall that e� % is an abbreviation for e� % � � and e& % is an abbreviation for

e� � %

Symbolic evaluation of codeg and envz

Whenever one adds a new primitive operation to Primop� one needs to de�ne its symbolic
evaluation
 Almost all primitives are context	independent� and it is safe to use the identity
function for their symbolic evaluation
 This is the case with closureg��z� codeg� and envz� but in
the case of the latter two it is important to perform some simple but very useful simpli�cations

We de�ne their symbolic evaluations as follows

genvzi�closureg��z������zn	�e�� � � � � en�� � ei

gcodeg�closureg���z�e�� �

�
true if g � g�

false otherwise

This is similar to the symbolic evaluation of �i that selects the ith component of a tuple

e�i��e�� � � � � en�� � ei

We will see why these simpli�cations are important in the following example

��� First�Class Functions� The Language Pure

A small example

Consider the Pure program

rec g in f���

where

g � �f�x� � x � y��

By the meta	rule formulation of the transition	system semantics� the execution of this program
in an environment in which y is bound to n proceeds as follows

�rec g in f����fy
� ng �

�� �f��� �ff
� hg� fy
� ngi� y
� ng �

�� �x � y �ff
� hg� fy
� ngi� x
� �� y
� ng�

There are two transitions in this execution
 The �rst one is described by the transfer relation

%�rec g in f��		��f��		 � f
� closureg��y	�y�

and the second one is described by the transfer relation

%�f��		�g � codeg�f�� x
� � �

The composition of the two transitions is described by the transfer relation

%�rec g in f��		��f��		�g � %�rec g in f��		��f��		 � %�f��		�g

If the symbolic evaluations of codeg and envz performed no simpli�cations� then the � would
return

codeg�closureg��y	�y��� f� x� y
� closureg��y	�y�� �� envy�closureg��y	�y��

as this composition� which is correct but extremely cumbersome
 However� with the symbolic
evaluations we de�ned above� � returns

f� x� y
� closureg��y	�y�� �� y

which exploits the fact that the called function is known in order to both eliminate the dynamic
condition on the control "ow and to propagate statically the value of y through the closure

A subtle point that is unrelated to these symbolic simpli�cations concerns the �nal binding
of f
 Note that�

� In the execution trace of � states shown above� the �nal environment contains a binding
for f

��� Semantics ���

� The transfer relation shown immediately above describes that the net e�ect of this length	
� control path includes an assignment to f

� The value bound to f is the same in both cases

This may seem exactly as expected
 After all� we did describe the meta	rules and the single	step
transfer relations as alternate formulations of the same transition	system semantics
 But as it
turns out� the fact that the net e�ect of both formulations on f are equivalent is an accident in
this case
 The explanation lies in the bisimulation relation we de�ned earlier
 For this case�

� In the meta	rule formulation� the second transition does a whole	scale replacement of the
caller�s environment with the closure of the callee and then extends this environment with
both f and x� representing the passing of those two values to the callee

� In the transfer	relation formulation� the second transition binds the free variables of the
function body� which is the set fx� yg� but does not remove the binding of f that was
present in the caller�s environment

In this case� the two bindings of f happen to be the same� but this will not generally be the
case
 However� the bisimulation relation tells us that in a state at term t we may simply ��lter
out� all bindings of variables not in FV�t�� and then the correspondence between the meta	rule
formulation and the transfer	relation formulation will be exact

In this case� we could thus view the transition trace as

�rec g in f����fy
� ng �

�� �f��� �ff
� hg� fy
� ngig�

�� �x � y �fx
� �� y
� ng �

and the composed transfer relation as

x� y
� �� y �

As a �nal note� we make a note about the �nal state of execution
 In general� the �nal state
of an execution is a state

�e� ��

and the resulting value of the execution is a value v such that

e �� v�

In the transfer	relation formulation� we may use E to obtain an expression that represents the
value of a term in terms of the free variables of the term
 In the example above� this corresponds
to

E �x � y� f� x� y
� closureg��y	�y�� �� y

which returns
� � y�

��� First�Class Functions� The Language Pure

	�� Variable Renaming vs� Closures

The semantics that we have given for Pure does not involve variable renaming
 For instance�
the term

let x � � in x � z

and the term
let y � � in y � z

are distinguished apart in Pure� although they di�er merely by the choice of variable name
 In
fact� these two distinct terms induce two distinct families of transitions
 The �rst term induces
the family of transitions

�let x � � in x � z� ��
�� �x � z� ��x
� ���

ranging over environments �� while the second term induces the family of transitions

�let y � � in y � z� ��
�� �y � z� ��y
� ����

But this may seem strange
 If � already has a binding for the variable in question �x for
the �rst case and y for the second case� then what assurance do we have that that binding is
no longer needed and may be discarded by the environment update� One may expect instead
a meta	rule for let	binding transitions that looks something like

e �� v � x� � undef

�let x � e in t� ��
�� �t�x��x�� ��x�
� v��

where t�x��x� substitutes the variable x� for all free occurrences of the variable x
 Note that the
rule does not have the syntactic non	interference condition x� �� FV�t� because it is covered by
the semantic non	interference condition that � x� � undef
 The notion of variable renaming is
based on ��conversion of the �	calculus �Bar���

We can get away without variable renaming� however
 First we describe how we achieve this
and compare this choice with a semantics based upon variable renaming� and then we explain
why it is desirable for our purposes of program analysis to avoid the need for variable renaming

In this section� we will need a notion of how to examine a transition system to determine
that it is reasonable
 We will start by de�ning a notion of well formed states� and then we
apply the following test to the transition system

Denition �� �Preservation of well�formedness� Given a notion of well�formedness on

states	 a transition system is said to preserve well	formedness if	 for all well formed states �	
�
�� �� implies that �� is well formed�

Our semantics for Pure uses the following notion of well formed states

Denition �� �Well formed states ����� A state �t� �� is well formed i� � contains the

correct bindings for all free variables of t
in other words	 all x � FV�t���

��	 Variable Renaming vs� Closures ���

When we say that a binding is �correct� we mean that it is the binding that one would intuitively
expect from an execution of the program in question

Now� it is easy to see that the semantics that we have given for Pure preserves well	
formedness
 For instance� consider the rule for let	binding transitions

e �� v

�let x � e in t� ��
�� �t� ��x
� v��

Note that x �� FV�let x � e in t� and FV�t� � �FV�let x � e in t� fxg�
 Therefore� if �
contains the correct bindings for each y � FV�let x � e in t�� then ��x
� v� will contain

� the correct bindings for each y � FV�let x � e in t� and

� the correct binding for x�

and thus will contain the correct bindings for each y � FV�t�

The rule for rec g in t is analogous
 It is easy to see that the rule for function application
works

e �� v ��e�i �� ��v�i v � hx��y� � t� ��i

�e��e�� ��
�� �t� ���x
� v���y
� �v��

Note that � is discarded in the transition
 The well	formedness of the state �e��e�� �� thus
merely ensures that function e and the arguments �e evaluate to correct values
 To show that
the state �t� ���x
� v���y
� �v�� is well formed� we must reason that� because �� came from a
previous well formed state �rec x��y� � t in t�� ���� that �� contains the correct bindings for all
z � FV�rec x��y� � t in t�� and thus all z � FV�x��y� � t�
 Therefore� ���x
� v���y
� �v� contains
the correct bindings for FV�t�

This discussion explains the purpose of closures� which save the bindings in �� that must be
restored upon function application

Alternatively� we could dispense with closures altogether� representing a function at run
time as the function term g instead of the closure hg� �i
 This leads to a more complex notion
of well formed states

Denition �� �Well formed states ����� A state �t� �� is well formed i� both

� � contains the correct bindings for all x � FV�t�	 and

� � contains the correct bindings for all x � FV�g� such that � y � g for some variable y�

Intuitively� we �"atten out� all the closure environments into a single global environment that
is threaded through the execution
 To accomplish this� we will need to create fresh variables
on the "y� which means that we will need to rename variables at run time

��� First�Class Functions� The Language Pure

For instance� the old rule for let	binding

e �� v

�let x � e in t� ��
�� �t� ��x
� v��

no longer works
 As� we explained above� x �� FV�let x � e in t� and thus x may be safely
overwritten under the �rst notion of well formed states
 But with this second� more restricted
notion of well formed states� we cannot be sure that x is not a free variable of some function g
in the range of �
 Thus� we must rename x to a fresh variable
 We showed the resulting rule
earlier in this section�

e �� v � x� � undef

�let x � e in t� ��
�� �t�x��x�� ��x�
� v��

It is rather easy to see that this rule preserves well	formedness under the second notion because
it never destroys any values in �

But now we do not need closures� and the rule for function application threads the current
environment � through� again renaming the newly bound variables to avoid clashes with vari	
ables already bound in �
 For simplicity of illustration� we show the case for single	argument
functions�

e �� v e� �� v
� v � �x�y� � t� � x� � undef � y� � undef

�e�e��� ��
�� �t�x��x��y��y�� ��x�
� v��y�
� v���

Once again� it is easy to see that this rule preserves well	formedness� because once again we
rename the bound variables appropriately such that � is extended rather than updated

We have just presented �most of� a di�erent style of transition	system semantics for Pure
in which we have traded closures for dynamic variable renaming
 The resulting semantics is
arguably cleaner and more natural� but we have only considered the meta	rule formulation of
the semantics
 To see the fundamental diculty� consider what the single	step transfer relation

%�let x�e in t	�t

should be
 Without variable renaming it is

x
� e �

but with variable renaming is must be something like

x � undef� x
� e

to perform the dynamic test that x does not need to be renamed

But then the composed two	step transfer relation

%�let x�� in let x�� in t	��let x�� in t	�t

will be the empty relation
�

��	 Variable Renaming vs� Closures ��	

instead of the expected
x
� �

because the variable x was not renamed along the given length	three control path

So� in summary� the semantics based on variable renaming has the following rami�cations
on the transfer	relation form of the semantics�

� Whenever an analysis composes the transfer relation for a control path '� it is the re	
sponsibility of the analysis to rename �statically� the variables in the terms along ' in a
way that is guaranteed to capture all possible behaviors of any dynamic renaming of the
terms in the meta	rule semantics
 For instance� in the above length	three control path�
the second occurrence of x must be renamed to a variable that is not in FV�t�

� A number of tests of the form x � undef will accumulate during composition of a control
path '� complicating the presentation of the transfer relation
 These tests are necessary
for any �xed control path ' because the transfer	relation terms in TR have no facility to be
dynamically renamed� and hence each term in TR is de�ned only on initial environments
for which the given choice of variables is already satisfactory
 But the accumulation of
these tests is a practical disadvantage

It is because of these factors that we choose a semantics that does not have variable renaming
and thus needs closures to store multiple dynamic occurrences of the same static variable

It is possible� however� that there is a di�erent semantic approach� based on a di�erent
treatment of Pure variables in the transfer relations� that would not su�er the above factors

For instance� perhaps the environment could be represented as a list� accessed by de Bruijn
indices �dB��� instead of variables

��� First�Class Functions� The Language Pure

Chapter �

Extending Pure with Mutable

Records and Arrays

Imperative features are crucial components of almost all languages� even �functional� languages
such as Scheme and Standard ML
 In this chapter we extend Pure with both assignable arrays
and records with assignable �elds
 We call the resulting language Impure

��� Syntax

We �rst add some new terms to Pure

t ��� � � �
j let x � ff� � e�� � � � � fn � eng in t record creation
j e�f �� e�� t record �eld assignment
j e�f record dereference
j letarray x in t array creation
j e�e�� �� e��� t array update
j e�e�� array dereference

f � Field �eld names

The array	creation term creates an array whose elements are initially the unde�ned value undef

For simplicity� arrays do not have bounds and are conceptually in�nite

��� Discussion

Records in Impure are not like records in SML� the former are mutable� but the latter are
immutable
 It would be simple to add SML records� because they are just a variant on tuples

��� Extending Pure with Mutable Records and Arrays

Like Pure tuples� there would be a special kind of value to model immutable records� supported
by context	independent primitive operations

In Section �
�� we gave a discussion of various kinds of errors� and the way in which they
would be handled with our semantic methodology
 We now return to some of these points

It may seem strange that arrays are in�nite� and that its elements are initially undef
 In
contrast� the array creation function in SML takes both a size argument and an argument pro	
viding the value to which all elements are initialized
 It is not dicult to add a size component
to our arrays� which could be checked at run time for out	of	bounds errors
 But an initialization
value would require a model for arrays that includes an explicit default value
 This would render
the dereference and assignment operations nonuniform� and thus their syntactic occurrences in
transfer relations would be cumbersome
 Therefore� we require that programmers write their
own initialization routine

This language is rather primitive in that there is no static typechecking on records and
arrays do not have bounds
 For instance� the Impure program

let x � fcar � �� cdr � �g
in x�bad �� �� t

�rst creates a two	�eld record and then adds a third �eld
 Also� the program

let x � fcar � �� cdr � �g
in let y � x�bad in t

actually binds y to the unde�ned value undef and proceeds to execute t
 The behavior of arrays
is similar
 For instance� the Impure program

letarray x
in let y � x���
in x����� �� ��� x�����

binds y to undef �dereferencing an uninitialized array element�� assigns �� to the array element
���� and then successfully dereferences the element� returning �� as the result of the program

Of course no reasonable language would function in this manner
 Augmenting this language
with a static type system similar to SML would reject programs that referenced incorrect �eld
names
 But the situation with arrays is more serious� as proper handling of both uninitial	
ized elements and bounds checking must be relegated to run	time� and thus to the dynamic
semantics
 Our decision to simplify the situation by using in�nite arrays is a compromise aimed
to simplify the transfer relations that we will develop to model the dynamic semantics of the
language
 A full language would have a mechanism for exception handlers� to which control
would "ow in the case of array	bounds errors

��� Syntax Simpli
cation

As with Mini�C� it will be more convenient to de�ne the semantics of these new features if we
rewrite the syntax to conform more closely to our language of transfer relations

��� Syntax Simplication ��

We would like to consider the terms e�f and e�e�� as expressions
 To do this� we need to add
the following primitive operations to Primop

� All �eld names f � Field as constant nullary operations

� The context	dependent binary operation deref

Now we rewrite the term e�f as the expression deref�e� f� and the term e�e�� as the expression
deref�e� e��

Similarly� we consider the e�f on the left	hand side of a record	�eld assignment to be an
l	expression and rewrite the e�e�� on the left	hand side of an array assignment as the l	expression
e�e�

Our next transformation is to �compile� a record	allocation term in exactly the same way
as we did for Mini�C
 To review� we need the following�

� for each natural number m� a pointer value hmi � Val

� the unary primitive operation ptr that casts an integer m to the pointer hmi �formally�
ptr�m�
� hmi�� where we write hei for ptr�e�

� a distinguished value � Val� to be used only in the reference � �written as �� which
is initialized to � at the beginning of execution and always holds the integer of the next
free pointer on the heap

We now perform the following transformation of a Pure program t
 We �rst transform the
program to

let � � � in t

and then rewrite every subterm

let x � ff� � e�� � � � � fn � eng in t

in t as the term
let x � h�i
in x�f� �� e�� x�fn �� en� � �� � � �� t

Next we �compile� arrays in a similar fashion
 We rewrite every subterm

letarray x in t

as the term
let x � h�i in � �� � � �� t�

Note that this treatment of allocation does not equate as many programs as one might
reasonably expect
 For instance�

let x � fcar � �� cdr � �g in y

��� Extending Pure with Mutable Records and Arrays

and

let x � fcar � �� cdr � �g in let y � fcar � �� cdr � �g in y

have di�erent meanings because they use di�erent pointer values to construct the record bound
to y
 This is a simple case of the well studied problem with full abstraction for languages that
combine assignment and procedures �OT��� Sie���

At this point� we have simpli�ed the new imperative constructs into a set of primitive
operations and a generic assignment term
 Here is the �nal extension of Pure syntax for
transformed Impure programs

t ��� � � �
j e�e� �� e��� t assignment

p ��� � � �
j f �eld name �nullary�
j deref dereference �binary�
j ptr allocation �unary�

��� Semantics

The semantics of Pure required only an environment mapping variables to values
 But like
Mini�C� the mutable data structures require the expressiveness of stores
 There are thus two
steps to de�ne the semantics of these new imperative features�

� Recast the semantics of Pure in terms of stores rather than environments� in order to
support the mutable data structures of Impure

� Give the semantics of the assignment term e�e� �� e��� t

It is fairly straightforward to recast the semantics of Pure to use stores instead of envi	
ronments
 As we described in the design of Pure� an environment is just a restricted form of
store
 Indeed� the isomorphism

Store � Env � Heap

where

Heap � Val� Val � Val

makes this recasting convenient
 The �heap� handles the bindings of references
� Below are
the meta	rules of Pure rewritten such that a state pairs a term with a store rather than with
an environment�

State � Term � Store

�Note that in the literature� a heap is often called a store� But we have already used the term �store� for
something else�

��� Semantics ���

In the following meta	rules� we freely switch notation between the isomorphic forms 	 � Store

and ��� �� � Env� Heap
 The only rules that are not essentially identical to the corresponding
rule of Pure are those for function creation and application
 The interesting part about those
rules is that only the environment component of the store is saved in the closure and restored
upon application� the �heap� component is instead threaded through

e �� v

�let x � e in t� 	�
�� �t� 	�x
� v��

	 � ��� ��

�rec x��y� � t in t�� 	�
�� �t� 	�x
� hx��y� � t�� �i��

e �� v ��e�i �� ��v�i v � hx��y� � t� ��i 	 � ��� ��

�e��e�� 	�
�� �t� ����x
� v���y
� �v�� ���

e �� true

�if e then t else t�� 	�
�� �t� 	�

e �� false

�if e then t else t�� 	�
�� �t�� 	�

All that remains is to give the rule for the generic assignment term� which is quite straight	
forward�

e �� v e� �� v
� e�� �� v

��

�e�e� �� e��� t� 	�
�� �t� 	�v�v�
� v����

Again� we would like to give a formulation of this transition system in terms of single	step
transfer relations instead of meta	rules
 Because we designed transfer relations to be relations
on stores and not simply environments� the single	step transfer relations for Pure work without
change for Impure
 But recall that those de�nitions made use of the bisimulation relation �
on both values and stores
 So� two tasks remain�

� Extend the bisimulation relation to states with stores

� De�ne the single	step transfer relations for the generic assignment term

The �rst task is straightforward� two heaps are similar if all corresponding nodes �values� are
similar
 This is given by the following de�nition

Denition �	 �Similar states with general stores� Two states �t� ��� ��� and �t�� ���� ����
are said to be similar
written �t� ��� ��� � �t�� ���� ����� if �t� �� � �t�� ��� and ��v�v�� � ���v�v��
for all values v� v� � Val�

��� Extending Pure with Mutable Records and Arrays

The second task is also straightforward� as it is very similar to the assignment statement in
Mini�C

%�e�e���e��� t	�t � e�e�
� e��

Note that the transfer relations conceptually treat both let binding and assignment as special
cases of assignment of l	expressions

��� Final Words on First�Class Functions

We have seen several ways in which our model of a language with �rst	class functions is not quite
natural
 For one� the transfer relations that save an environment in a closure and restore the
environment upon function application process each free variable separately
 This approach is
an artifact of the natural choice to model language variables with store variables
 Alternatively�
one could model an environment as a record whose �eld names are the language variables� and
maintain only a single store variable E that is always bound to the environment
 This requires
an extra level of indirection� through E� for variable operations
 But for that price� one gains
the ability to save and restore environments in closures easily� because they are simply records

Related to this issue is the l	value � that points to the index of the next free heap location�
used for the creation of new records and arrays
 In Mini�C� we used the variable H for this
purpose� but we cannot use a variable in a language with �rst	class functions because in that
case it could be saved in a closure and restored on function application
 Instead� we need a
global assignable variable
 To avoid the need to treat a distinguished variable di�erently from
all others� we instead chose to use a reference � � �
 Again� this problem would have a nicer
solution if we modeled environments as we suggested in the preceding paragraph
 Then there
would be only two variable bindings in the store� E� bound to the current environment� and H�
bound to the index of the next free heap location

Part IV

Analysis Applications

Chapter 	

Multi�step Program Analysis

In Chapter � we isolated a methodological diculty with program analyses� they apply an
abstraction between every execution step of the analyzed program
 We explained that this
severely cripples the quality of an analysis on source programs for which a desired property is
temporarily weakened during a period of a few program steps
 As an example� we gave a simple
analysis of the signs of integer	valued variables� but we also explained that this is a problem
for other kinds of analyses� such as shape analyses

For instance� consider the following Impure program that destructively reverses a binary
tree

� rec reverse�x� k� �
� if leaf�x�
� then k��
� else rec k��� �
� rec k��� �
� let temp � x�l
� in x�l �� x�r�
� x�r �� temp�
� k��
A in reverse�x�r� k��
B in reverse�x�l� k��
C in reverse�x� k�

One would like a shape analysis to determine that when reverse is called with a data structure
that actually is a binary tree� that the data structure is still a tree on termination of the
procedure
 Most shape analyses cannot determine this information
 To our knowledge� only
�SRW��� can achieve this result� but it is highly specialized for this and similar cases and
requires quite restrictive conditions� as explained in Section �
�

But for now we wish to point out why this program is so dicult to analyze
 Consider the

��� Multi�step Program Analysis

following informal description of what happens every time execution reaches term �

� � x is a tree with subtrees L and R
� � x is a tree with subtrees L and R
� � x is not a tree� its left and right links both point to subtree R
� � x is a tree with subtrees R and L

Program analyses infer� or abstract� a property at every step� and so it is dicult to cope with
the states at term �
 An analysis would need to have the ability to describe the special property
at � with sucient detail to infer that the assignment at � changes x back to a tree
 In fact�
that is what �SRW��� does to solve this particular problem

But there is a much more general solution� and that is to avoid the necessity to infer a
property at every step� and instead allow multiple steps of execution before abstracting
 In
order to explain why this is not already a part of program	analysis methodology� we must take
a step back and examine the foundations of semantics	based program analysis

��� A Review of Abstract Interpretation

Abstract interpretation �CC��� is a general framework for expressing semantics	based program
analyses
 In fact it is more than that� it is a general framework for relating di�erent semantics
of a language� some of which may be e�ectively computable for all programs and therefore in
general approximate� or inadequate� as a semantic de�nition of the language
 Such computable
�semantics� are program analyses� and with abstract interpretation they are always related to
some adequate semantics of the language

A semantics of a language is a function

M � Prog � SemObj

mapping program texts to semantic objects
 The main observation of abstract interpretation
is that M��P �� is usually de�ned as a �xed point� and the potential that its iterative de�nition
may be trans�nite directly re"ects the potential that P may not terminate
 In other words�

M��P �� � �x �S��P ���

where
S � Prog � SemObj � SemObj

and SemObj is equipped with a partial order and �x computes some �xed point of its parameter�
usually the least� but sometimes the greatest� depending on the particular semantics

Abstract interpretation explains how to relate such a semantics to a more abstract semantics

One �rst designs a partial order dSemObj of abstract semantic objects and then de�nes the
function

� � SemObj � dSemObj

��� Abstract Interpretation of Transition Systems ���

called the abstraction function that projects a semantic object onto the abstract semantic
domain
 If � is additive� then one can induce a unique corresponding concretization function

� � dSemObj � SemObj

de�ned as

� y � tSemObjfx � SemObj j ��x� v dSemObj yg
that �coerces� an abstract semantic object into the more concrete semantic domain
 Then from
�CC���� the function

 S � Prog � dSemObj � dSemObj

de�ned as
 S��P �� � � � S��P �� � �

corresponds to S in such a way that the �xed point �x � S��P ��� is an abstraction of the semantics
M��P ��
 In other words� ��M��P ��� implies the property �x � S ��P ���
 We omit the formal details
of this correspondence and refer the reader to �CC���
 Intuitively� an abstract semantic object
is like a semantic object� but with some information missing� and S��P �� �rst applies S��P �� to
the information still present and then abstracts the result
 We give an example below

Sometimes� the information missing from abstract semantic objects is not necessary to
model the language
 For instance� much of the study of pure semantics is concerned with
�nding semantic objects that are as abstract as possible while still adequate as a semantic
de�nition� the ultimate goal here is full abstraction �Mul���
 But for the purpose of program
analysis� it is necessary to abstract away crucial information for the sake of computability
 The
choice of what to abstract away de�nes the program analysis

A central intuition is that the function S��P �� typically corresponds in some sense to a �step�
of an execution of P
 We cannot formalize this correspondence because that would require a
semantic de�nition of �execution step� in the �rst place� resulting in a meaningless circular
de�nition
 Nevertheless� this intuition is an invaluable aid in visualizing a semantic de�nition

In fact� the word �interpretation� in abstract interpretation comes from this intuition� because
one can view the repeated applications of S��P �� in its iterative �xed	point computation as the
steps of an interpreter� or an �abstract interpreter� in the case of S��P ��

��� Abstract Interpretation of Transition Systems

The preceding discussion does does not specify or even impose any serious limitations on the
semantic objects
 Because the seminal work on abstract interpretation ��CC���� uses a rather
simple transition	system semantics for expository purposes� abstract interpretation is often
misunderstood to be limited to "owchart	based semantics of while	loop languages
 However�
appearing soon after that seminal paper� Patrick Cousot�s thesis ��Cou���� showed the full
maturity of the framework

��� Multi�step Program Analysis

But in Chapter � we argued that a transition system is indeed particularly useful as a
basis for program analysis� despite much work elsewhere
 Our methodology is designed around
transition	system semantics� and so we would like to examine abstract interpretations based on
transition systems

As explained in Chapter �� a state of a transition system is a pair of a control point and a
store�

State � CtrlPoint� Store

The transition relation de�nes the single execution steps of a particular program P as pairs of
states�

�� � �State� State�

As introduced in Chapter �� the transition	system semantics of a language is a function

M � Prog � P�State��

that� given a program P � returns a set of �nite execution pre�xes� represented as state sequences�
de�ned inductively by unfolding the transition relation from a base set of initial states �length	
one sequences��

���� � M��P �� �
�� ��

������� � M��P ��

Above� we claimed that M��P �� should be expressible as a �xed point �x �S��P ���
 Here�

S��P �� � P�State�� � P�State��

is the function

S��P �� �# � �# f������� j ���� � �# � �
�� ��g

de�ned by the above rule to perform one inductive application of the rule
 Then the semantics
M��P �� of program P is the least �xed point of S��P �� above a set #� of initial states� and is
precisely the set of �unbounded� �nite pre�xes of executions starting at #�

For the purposes of abstract interpretation� the set SemObj of semantic objects is the set
P�State�� of sets of �nite execution sequences� ordered by inclusion
 An abstract interpretation
must provide a partial order dSemObj of abstract semantic objects and an abstraction function

� � P�State�� � dSemObj�

The rest of the abstract interpretation is mechanical
 Suppose # is the least �xed point of

�� � S��P �� � �� � dSemObj � dSemObj

above an initial abstract semantic object # � dSemObj such that #� � �� #�
 Then as we
explained in the previous section� # abstracts M��P ��
 In other words� ��M��P ��� implies the
property #� or� equivalently� M��P �� � �� #�

��� Invariant Properties ��

��� Invariant Properties

Most program analyses compute invariant properties� or properties of the states that occur
during program execution
 In this case� it is convenient to perform the above abstraction in
two steps
 The �rst step abstracts a set of execution sequences by the set of states appearing
in the sequences
 In other words� the abstract semantic object is P�State�� and the abstraction
function

� � P�State�� � P�State�

is de�ned as

� �# � f� j ��� � �#� � appears in ��g�

The concretization function

� � P�State� � P�State��

is induced from � as described above
 Pushing this through abstract interpretation de�nes a
function

S � Prog � P�State� � P�State�

de�ned as

S��P �� # � f�� j � � # � �
�� ��g

whose least �xed point M��P �� � P�State� above a set #� of initial states is precisely the set of
states reached during an execution from an initial state in #�

An invariant property is thus a superset of M��P ��� which is given by an abstract interpre	
tation

��� An Example

As an example� we consider the example in Chapter � of the analysis of the signs of integer
variables
 In this example� an execution state comprises a control point� specifying the syntactic
point of execution� and an environment

� � State � CtrlPoint� Env

The step function S��P �� of a program P maps a set of states to their successors as given in the
previous section
 The semantics M��P �� is the least �xed point of S��P �� above f�C�� ���g� it is the
set of states reachable during an execution from the initial control point C� and environment
��

Following the example in Section �
�� we de�ne an abstract semantic object as a table of
sign environments indexed by control point

 # � dState � CtrlPoint � Var � Sign

��� Multi�step Program Analysis

Here� Sign is the complete lattice given in Section �
�
 The function � � P�State� � dState
abstracts a set of states by choosing for each control point C and variable x the strongest sign
property satis�ed by all bindings of x in environments at C

�#C x �
�

f n � Sign j �C� �� � # � �� x� � n � n � ng

Here is an example of an abstraction of a set of three states� two of which have the same control
point

�

B�f�C�� �x� y
� �� ����
�C�� �x� y
� ��� ����
�C�� �x� y
� �� ���g

�CA �

C��
C�

�
�x� y
� int� pos��
�x� y
� zero� zero�

�

As we explained above� the concretization function � � dState � P�State� in induced from � as

� # � f� j � f�g v #g

where v is pointwise inclusion �in other words� pointwise property implication�� but for illus	
tration we give the alternate de�nition that intuitively expands the sign properties into the
integers that they represent�

� # � f�C� �� j �� x� � n � n � � #C x�g

Another way of thinking about � is that it speci�es the states that are consistent with the given
sign properties

Next� S��P �� is de�ned mechanically�

 S��P �� � � � S��P �� � �

In other words� S��P ��� given an abstract semantic object #� �rst applies �� yielding all the states
consistent with the sign properties in #� then applies the transition relation
�� to these states�
yielding their successors� and �nally applies � to these successor states� abstracting them by a
semantic object #� describing their sign properties

Given an initial abstract semantic object #� such that �C�� ��� � �� #��� the least �xed
point of S��P �� above #� gives sign properties that hold during the execution of P
 For example�
if P is the while	loop program presented earlier� the result of the analysis is the the table of
�ve sign environments shown in Section �
� next to their respective program points� with the
last one corresponding to the �exit� program point

It is worth considering again the analogy given in Section �
� of computing the rounded sum
of a list of numbers
 In this analogy� a semantic object # � P�State� corresponds to a precise
real number� and its abstraction ��#� � dState corresponds to the rounding of that number

There is no equivalent of � because a rounded real number is still a real number� but in general
we need � to �coerce� a member of dState back into a member of P�State�
 Then applying S��P ���
to take one step of program execution and then abstract� corresponds to processing �adding�
the next number from the list and then immediately rounding the result

��	 Performing Multiple Steps Between Abstractions ���

��� Performing Multiple Steps Between Abstractions

An abstract interpretation computes the �xed point of the abstract step function S��P ��
 One
can write this �xed point as the limit of the sequence�

 #� � S��P �� #�
 #� � S��P �� #� � � S ��P �� � S��P ��� #�
 #� � S��P �� #� � � S ��P �� � S��P �� � S��P ��� #�

This sequence �rst adds in the objects �for instance� states or state sequences� reachable in one
step from #�� abstracts� adds in the objects reachable in the next step� abstracts� and so forth

By the de�nition of S��P ���

 S��P �� � S��P �� � S��P ��

is equivalent to
� � S��P �� � � � � � S��P �� � � � � � S��P �� � ��

This illustrates the abstraction �with �� at every step
 But in Section �
� we explained that
it is more accurate to defer the abstraction for a few steps
 Mathematically� this is easy to
express� simply remove the occurrences of � � � during the desired interval
 Thus�

� � S��P �� � S��P �� � S��P �� � ��

performs three steps before abstracting� and consequently may yield more accurate results than
applying S��P �� three times
 �The formal justi�cation of this is in �CC��d�
� As we explained
above and in Section �
�� this increase in accuracy can be striking
 This technique yielded
better sign properties in our small example of Section �
�� in which the three steps were the
three assignments of the loop body� but much more importantly� any analysis of properties
that might be temporarily lost during execution� such as data shape properties� stands to gain
from this technique
 This class of analyses is quite large

Implementing this technique would seem to be a simple engineering issue� just remove
the selected occurrences of � � �
 This is an illusion� however
 The problem is that the
function S��P �� is speci�ed to be � � S��P �� � �� but is never implemented that way
 Indeed�
it is not possible to manipulate the semantic objects �members of SemObj� perhaps sets of
states or state sequences as described above� themselves because they are usually not computer	
representable
 For instance� consider the sign	analysis example
 It is not possible to compute ��
yielding an �almost certainly� in�nite set of states� apply S��P �� to �nd their successor states� and
abstract the resulting in�nite set of states
 Instead� one always designs a monolithic algorithm
to compute S��P ��� or at least a function above S��P �� in its pointwise ordering� along with a
soundness proof
 Because this algorithm is cannot be separated into the three stages of ��
S��P ��� and �� there is no general engineering solution to omit the computation of � �� between
two iterative applications of the algorithm
 We give an example to illustrate this in the next
section

��� Multi�step Program Analysis

One might attempt to attack the problem from the di�erent angle of beginning with a
semantics that uses a coarser	grained step function� such as

S���P �� � S��P �� � S��P �� � S��P ���

Then the function S���P �� � � � S���P �� � � speci�es an analysis that abstracts only after every
third execution step
 However� this di�erent line of attack again encounters a barrier in practice

Although S���P �� is certainly a reasonable mathematical function� any algorithm for S���P �� must
in general be able to handle all possible combinations of three adjacent steps
 For instance�
consider just the two interesting adjacent steps in the example of Section �
��

y �� x� ��
x �� y� �

An algorithm that combines these two steps would have to recognize the special pattern oc	
curring here that preserves the property that x is positive� and this pattern would have to be
included explicitly in the algorithm
 Again� there does not seem to be a general approach� or
at least an approach that is combinatorially reasonable to even specify

To understand this diculty further� consider a program analysis based on a transition	
system semantics
 As we explained in Chapter � one typically de�nes the single	step transition
relation
�� with meta	rules that specify how the individual pieces of program syntax induce
transitions
 For instance� the semantics of Pure included the following rule for let	binding
transitions

�let x � e in t� ��
�� �t� 	�x
� E ��e�����

In the typical approach to program	analysis design� one would �bake� the abstraction into
such a rule
 The program analysis designer would hand	design an algorithm that �abstractly�
performs this kind of transition
 For instance� if dSemObj is the set of tables of sign environments
indexed by control point� as described above� then a straightforward algorithm to compute S��P ��
for some Pure program P will be hard	wired to propagate the sign property of expression e
at control point �let x � e in t� to variable x at control point t for each let	binding term in
P
 This makes intuitive sense�the algorithm is �abstractly interpreting� the let	binding steps

But of course the analysis designer should justify these intuitions by proving that the algorithm
for S��P �� actually implements the function

� � S��P �� � ��

Hence� the algorithm never directly manipulates states or state sequences� but instead per	
forms the function S��P �� in one go� where � and � are �baked into� the transition relation
��

Note that�

�
 To apply an existing analysis to a di�erent language� one must separately hand	design a
new algorithm for the meta	rules of that language
 This is an engineering disadvantage

��� Multi�step Abstract Interpretation with Transfer Relations ���

�
 Because the abstraction is included in the analysis algorithm and cannot be separated
as a single module� there is no way to perform multiple execution steps abstracting the
result
 This is a more serious disadvantage because� as we explained in Section �
�� it can
have devastating e�ects on the quality of the analysis

The preceding discussion formalizes the intuition behind why both the small program in
Section �
� and the reverse program at the beginning of this chapter are dicult to analyze
accurately
 Our solution in Section �
� was to change the program itself� rewriting the sequence
of instructions in the loop body with a single parallel instruction
 In that way� we achieved an
e�ect similar to the S���P �� idea above
 Although this �compilation� of the three instructions
into a single instruction was at the time for expository purposes� we now have the semantic
methodology of transfer relations as a general solution

��	 Multi�step Abstract Interpretation with Transfer Relations

In previous chapters� we demonstrated that our language of transfer relations is expressive
enough to model advanced language features such as �rst	class functions and mutable data
structures
 We now show that it may be used as a �back end� for a generalized program	
analysis methodology based on abstract interpretation in which multiple program steps may be
assimilated between abstractions

In Section �
� we explained that a common choice of concrete semantic object for program
analysis is a state set �or property�
 As we described in Chapter �� in semantic methodology
of transfer relations� a state is a pair of a control point and a store

State � CtrlPoint� Store

A set of states is thus isomorphic to a function from control point C to the set �or property� of
stores occuring in states at C�

� SemObj � P�State� � CtrlPoint � P�Store�

Let CtrlPoint be the �nite set of control points occuring in a particular program P
 Given a
binary relation R� let �R� � �X�fy j x � X � xRyg
 Then

S��t�� #C � �
�
C

�
%C�C�

�
�#C��

Intuitively� the set of stores at control point C � comes from the stores at all control points C that
might precede C � by one step in an execution� or in other words by one link in a control	"ow
graph of P
 But now we can express multiple steps with relation composition
 For instance

S���t�� #C �� � �S��t�� � S��t���#C �� �
�
C�C�

�
%C�C� �%C��C��

�
�#C� �

�
C�C�

�
%C�C��C��

�
�#C��

��� Multi�step Program Analysis

In general� because the set of control points of a program is �nite� we need only design a join
semilattice dStore of abstract store properties and an abstraction function � � P�Store� � dStore�
with induced concretization function �

 # � dState � CtrlPoint � dStore
If � is additive� then

 S��t�� #C � �
�
C

�
� �

�
%C�C�

�
� �
�
� #C��

But now we may perform any number of steps before abstracting
 For instance�

 S���t�� #C �� �
�
C�C�

�
� �

�
%C�C��C��

�
� �
�
� #C��

Although the size of this join is O�n��� and in general O�nk� for k steps� a sensible analysis
would only do this in cases such as straight	line code� where it is known beforehand that only
one control path yields a non	! transfer relation

Thus� an analysis reduces to implementing � � �%�� � � for any control path ' � CtrlPoint

This is done with an algorithm S that describes how any transfer relation maps a pre abstract
store property to a post abstract store property

S � TR � dStore � dStore
Then S is a function that� given a transfer relation %� describing control path '� describes how
a store property at the control point at the beginning of ' propagates through ' and yields a
store property at the end of '
 Conceptually� because S describes the exact net behavior of '�
the abstraction step only occurs at the end of '� no matter how long ' is

The following picture describes the paradigm of multi	step abstract interpretation

control point store property

C #C store property at C given by #

' execution through control path C�'� C �

C � �S%C���C��� #C� store property at C � after propagation
through C�'� C � and abstraction at C �

Standard abstract interpretation corresponds to the case in which ' is always the empty path�
and so the propagation is through a single step from C to C �

As we have described� once one designs the abstract store dStore� the heart of any program
analysis de�ned with the standard methodology of abstract interpretation is the design of an

�Usually� � is additive� but otherwise the equality is a property implication and still yields a correct analysis�

��� Multi�step Abstract Interpretation with Transfer Relations ��	

algorithm to �abstractly� interpret each meta	rule of the transition relation
�� on dStore
 In
our methodology� the heart is the design of the S function� which abstractly interprets the
transfer relations in our language TR over dStore
 We want S to satisfy

�� � �%� � �� v �S%�

where v is pointwise set inclusion
 Ideally� the v would be �� but an analysis may always
safely weaken the properties
 Because our methodology works on the universal intermediate
representation of transfer relations� we may at least begin to describe how S should be de�ned�
independent of the particular source language or analysis

We assume that dStore is a join semilattice with the false property as its bottom element�
written as !
 We also assume that there is a function in Exp � dStore � dStore that given an
expression e and store property 	 returns a store property �written e� 	� that is satis�ed by all
stores that both satisfy 	 and evaluate e to true
 In other words�

�	 � 	 � e �� true� � 	 � �e� 	��

We also assume that there is a similar function for false�

�	 � 	 � e �� false� � 	 � �e& 	�

Note that the de�nitions
e� 	 � e& 	 � 	

trivially satisfy these properties� but in general it may be possible to do better� and so we
provide the facility

Now we may partially de�ne S� independent of the particular analysis or choice of dStore

S%! � !
S � 	 � !

S e� % %� 	 � �S%�e� 	�� � �S%� �e& 	��

The only remaining case is for assignment relations
 Therefore� we have the following �recipe�
for the design of a general multi	step abstract interpretation with our methodology

�
 Design a join semilattice dStore of store properties

�
 De�ne e� 	 and e& 	 or use the degenerate de�nitions given above

�
 De�ne �S � 	� for any assignment relation � � ATR and store property 	 � dStore such that
��� � ��� � �� 	� � �S � 	�

Then� as we described above� one may perform a classical abstract interpretation by using the
single	step transfer relations de�ned by the semantics of the source language� or one may choose
to compose these transfer relations for better precision over selected control paths
 It is up to

��� Multi�step Program Analysis

the analysis designer to pick which control paths are of interest� but we suggest a strategy of
composing all paths in the control	"ow graph of the source program in which only the �rst
and last nodes have multiple incoming edges �candidates for looping points� and performing
an abstract interpretation to compute the properties �via �xed	point iteration� for just those
nodes
 Such paths roughly correspond to so	called extended basic blocks �ASU���
 Note that
such a strategy would automatically compose the sequence of three assignment statements that
posed a problem in the example at the beginning of this chapter
 All that remains to solve that
example� for instance� is to adapt an existing store analysis such as �GH���

��� Value Analysis

In this section� we isolate a subcase of our our methodology for value analyses
 The sign analysis
of Section �
� and Section �
� is a simple kind of value analysis
 Recall that a store is a function
from l	value to value
 In a value analysis� a store property is de�ned in terms of a set dVal of
value properties �sets� as follows

 	 � dStore � dLval �dVal
 w � dLval � Var �dVal�dVal�

A member of dLval speci�es an l	value property �set� as follows

x � x
v � v v� � v�

�v�v�� � � v� v��

The abstraction function
� � P�Store� � dStore

is de�ned as
�) w �

�
f v �dVal j �	 �) � w � w� � �	 w� � vg

given a lattice dVal of value properties

In our example of sign analysis� dVal � Sign as given in Section �
�� and we assumed that
the only l	values were variables �in other words� dLval � Var�

The main algorithm that the analysis designer must provide for a particular value analysis
is a function

 P � Primop � dStore �dVal� �dVal
that �abstractly evaluates� primitive operations
 It must satisfy the following condition

Condition � �Safety of P� It must be the case that
� �
��i�n

vi � vi

�A � �	 � 	� � �p�v�� � � � � vn�
�� v�

implies that

v � P��p��	 � v�� � � � � vn��

��� Value Analysis ���

Note that the store parameter of P may be ignored for context	insensitive primitive operations�
which will typically make up the vast majority of primitive operations in any application of our
analysis methodology
 For instance� the following is a partial de�nition of P for the �context	
independent� operation � for sign analysis �where we omit the unused store parameter��

 P����� �pos� int� � int
 P����� �pos� nonneg� � pos
 P����� �pos� nonpos� � int
 P����� �pos� pos� � pos
 P����� �pos� zero� � pos
 P����� �pos� neg� � int
 P����� �pos� none� � none

We mechanically extend this notion of abstract evaluation to expressions and l	expressions as
follows

 E � Exp � dStore �dVal
 L � Lexp � dStore �dVal

 E��x�� 	 � 	 x
 E��p�e�� � � � � en��� 	 � P��p�� 	 � E��e��� 	� � � � � E��en�� 	�

 L��x�� 	 � x
 L��e�e��� 	 � � E��e�� 	��� E��e��� 	�

Lemma �� For all e � Exp and v � Val	

�	 � 	 � e �� v� � v � E��e�� 	�

and for all l � Lexp and w � Lval	

�	 � 	 � l �� w� � w � L��l�� 	�

Proof� Straightforward induction based on the safety condition of P
 �

The next step in our �recipe� is to provide the two boolean �lter functions� which are de�ned
as follows

e� 	 �

�
 	 if true � � E��e�� 	�
! otherwise

e& 	 �

�
 	 if false � � E��e�� 	�
! otherwise

The �nal step is to provide the function

S � ATR � dStore � dStore

��� Multi�step Program Analysis

that describes how� given an assignment relation �� one store property evolves into another
from the assignments in �
 To do this� we must assume that we have the following operations
on dVal

$ v test if v �dVal is a singleton set

 v � v� test of nonempty intersection in dVal� v " v� �� �

We extend the last two to dLval mechanically as follows

$x �all variables are singletons�
$� v� v�� if $ v � $ v�

x � x �all variables intersect with themselves�
 v�� v

�
� � v�� v

�
� if � v� � v�� � � v�� � v���

Now we can de�ne the S algorithm

S l�� � � � � ln
� e�� � � � � en 	 w �

����	
 E��ei�� 	 if � w � w��� $ w� $ w�

where w� � L��li�� 	

� 	 w� �
W
f E��ei�� 	 j w � L��li�� 	g otherwise

Some important kinds of analyses are not value analyses
 A good example is the shape
analysis with which we began this chapter
 We leave the adaption of such analyses to TR as
future work

Chapter

Analyzing Expressions

In Chapters � and �� we gave a framework for designing a language of transfer relations pa	
rameterized by a set Primop of primitive operations� and we gave an algorithm to compose one
transfer relation % with another %� to get a third transfer relation %�� � % � %�
 In Chapter �
we further described a semantic methodology in which

� %� is a term representing the net behavior �modeled as a modi�cation to a store� of any
segment of execution through control path ' �a string of control points��

� %�� is a term representing the net behavior of a segment corresponding to control path
'�� and

� if ' ends with the same control point with which '� begins� %���� � %� � %�� represents
the net behavior of the �rst execution segment followed by the second execution segment

�Recall that a control path '�� C ending with control point C may be combined with a
control path C�'� beginning with C with the � operation as �'�� C�� �C�'�� � '�� C�'�
�

For program analysis� composing transfer relations thus forms the core of reasoning about
adjacent pieces of code� or even pieces of code that are not syntactically adjacent� but that
might follow each other in an execution
 An example of the latter is a piece of code that
leads to a function call� followed by a piece of code at the beginning of the function body

We formalized these concepts in Chapter �� which presented a methodology of programming	
language semantics based on transfer relations
 This methodology provides a uniform way to
compute the transfer relation for any �nite control path in a program
 We demonstrate this
methodology in Chapters �� �� and � for imperative and functional programming languages

In this chapter� we show how one can use this methodology to analyze how the values
of an expression change during program execution
 This will turn turn out to be relatively
straightforward for �xed �nite control sequences� but rather subtle for executions that are
in�nite� or at least potentially in�nite

��� Analyzing Expressions

�� Analyzing Finite Control Paths

Given a program in any language that has been de�ned using the semantic methodology of
Chapter ��and given any �nite control path ' � CtrlPoint
� one can compute a transfer
relation %� � TR that gives a description of how a store at the start of ' can change into a
store at the end of '
 If all of the primitive operations in the language are deterministic� as is the
case forMini�C� Pure� and Impure� and as will likely be the case for any reasonable language�
then %� will be an exact description� in that it de�nes the semantics of the control path '

In Chapter �� we called this a translation
 If the language includes nondeterministic primitive
operations� then %� will not necessarily be an exact description� but it will be a superset of the
semantics of the control path '� in other words� all possible executions along control path ' will
be represented in %�
 In Chapter �� we called this an upper approximation
 In this chapter� we
will assume that all primitive operations in the source language are deterministic

Much of the �eld of static program analysis is centered around the common motivation of
analyzing the values of variables or expressions
 Usually this is done with a �xed	point compu	
tation� as in abstract interpretation
 But in this chapter we present an alternate approach

Suppose that one wants information about the value of x � Var when execution reaches the
end of control path '
 In our methodology� one computes

Ex%��

The result is an expression e such that in any possible execution fragment through control path
'� e at the beginning of that execution fragment is semantically equivalent to x at the end of
that execution fragment
 If Primop is nondeterministic� then e is an upper approximation of
x� in that it is guaranteed to evaluate before the execution fragment to any value to which x
evaluates after the execution fragment
 In general� x can be an arbitrary expression� it need
not be a variable
 In other words�

E e�%�

is an expression e such that in any possible execution fragment through control path '� e at the
beginning of that execution fragment is semantically equivalent to e� at the end of that execution
fragment
 These properties are not new� they are simply rephrasings of Theorem �
 But because
this notion of expression analysis is a central part of this application of our methodology� we
introduce a new term

Denition �� �Transfer of expressions� If

e �� v �� e� ��� v

whenever execution from store 	 � Store through control path ' � CtrlPoint
 results in store

	� � Store	 then we say that ' transfers e to e��

The following theorems and corollary are the keystone of this chapter

�� Analyzing Adjacent Loop Iterations via Exponentiation ���

Theorem 	 For any programming language all of whose primitive operations are deterministic	

if %� is the transfer relation for control path ' and �E e�%�� � e	 then ' transfers e to e��

Proof� Rephrasing of Theorem �
 �

Theorem � If ' transfers e to e� and '� transfers e� to e�� then '� '� transfers e to e���

Proof� Straightforward from the de�nition of expression transfer
 �

Corollary � For any programming language all of whose primitive operations are determinis�

tic	 if %� is the transfer relation for control path ' and %�� is the transfer relation for control

path '�	 and if �E �E e�%���%�� � e	 then '� '� translates e to e��

�� Analyzing Adjacent Loop Iterations via Exponentiation

Consider the Mini�C program

while e do s

that repeats the execution of the code s until e becomes true
 Suppose s is simply a piece
of straight	line code� and ' is the control path that tests if e is true and then performs s

As described in Chapter �� one can automatically compute a transfer relation %� for ' that
represents the net behavior of the test of e and execution of s
 So�

� %� represents the net behavior of any single iteration�

� %� � %� represents the net behavior of control path '� '� which is the control path of
any two adjacent iterations�

� %� � %� � %� represents the net behavior of control path '� '� '� which is the control
path of any three adjacent iterations�

� etc

We adopt the notation %n to mean
n timesz �� �

% � � � � � %

and the notation 'n to mean
n timesz �� �
'� � � � � ' �

Then %�n � �%��
n

Suppose that one wants to analyze how the data in a store 	 at the beginning of the loop
body gets used and updated over a period of three iterations of the loop�in other words� during

��� Analyzing Expressions

any segment of execution along the control path '�
 Then one simply computes �%��
�� which

gives a description of the store three iterations later� in terms of 	

It is worth pointing out that this is a fundamentally di�erent�and fundamentally advan	
tageous�approach from those of standard program analyses
 Standard approaches cannot
di�erentiate between an in�nite number of loop iterations� but the above approach can
 For
instance� suppose the loop is

while x �� nil do x �� x�tl

that traverses x down a list to its end
 The semantic methodology in Chapter � would compute

%� � x �� nil� x
� x�tl

to describe one iteration of this loop
 One could then compute� for instance�

�%��
� � x �� nil� x�tl �� nil� x
� x�tl�tl

to describe two adjacent iterations� or

�%��
� � x �� nil� x�tl �� nil� x�tl�tl �� nil� x
� x�tl�tl�tl

to describe three adjacent iterations
� The last transfer relation directly provides the following
information� During any three adjacent iterations of the loop� the third component of the list to
which x is bound before those iterations is bound to x after those iterations
 This is computed
and formalized by the E algorithm� one computes�

E x%� � x�tl

E x �%��
� � x�tl�tl

E x �%��
� � x�tl�tl�tl

Therefore�

� Whenever the loop goes through any one iteration� the value of x�tl �guaranteed by
Lemma � to be unique because all primitive operations are deterministic� at the beginning
of the iteration is equal to the value of x at the end of the iteration
 In other words� '
transfers x�tl to x

� Whenever the loop goes through any two adjacent iterations� the unique value of x�tl�tl
at the beginning of the iteration is equal to the value of x at the end of the iteration
 In
other words� '� �which is '� '� transfers x�tl�tl to x

�In general� one might want to examine all of the transfer relations that accumulated during a left�associative
calculation of ����

��in other words� the transfer relations that correspond to each pre�x of ��� These inter�
mediate transfer relations give descriptions of the store with respect to � at all of the intermediate points of
execution during a sequence of three iterations� as described in Chapter ��

�These computations assume trivial translations C and P that merely reconstruct their terms�

�� The Interaction Between E�ects and Exponentiation ���

� Whenever the loop goes through any three adjacent iterations� the value of x�tl�tl�tl
�again� guaranteed to be unique� at the beginning of the iteration is equal to the value of
x at the end of the iteration
 In other words� '� �which is '� '� '� transfers x�tl�tl�tl to
x

In this sense� our methodology provides a way of distinguishing between a potentially un	
bounded number of occurrences of the same control path
 Even if the length of the list to which
x is bound at the entry of the while loop is unknown� and thus unbounded� the above transfer
relation provides precise information about how the binding of x at iteration k relates to the
binding of x at iteration k��� and this information is valid for any k
 Most approaches to pro	
gram analysis that are based on �xed	point calculation would ultimately have to approximate
the data structure to which x is bound at the entry of the while loop� and therefore inherently
cannot produce precise information for an unbounded number of iterations

�� The Interaction Between E�ects and Exponentiation

Above� we gave some intuition about how to analyze the value of x in the loop

while x �� nil do x �� x�tl�

First� one computes the transfer relation

% � x �� nil� x
� x�tl

describing one iteration of the loop
 Then� one can compute

E x% � x�tl

to automatically determine that one iteration of the loop transfers x�tl to x
 Indeed� one can
go further by computing

%� � % � % � % � x �� nil� x�tl �� nil� x�tl�tl �� nil� x
� x�tl�tl�tl

describing three adjacent loop iterations� and then

E x%� � x�tl�tl�tl�

to yield the expected result that� of course� if x traverses one element down the list in one
iteration� then it must traverse three elements down the list in three iterations
 Or must it� In
this program� it is indeed the case� but in general a result such as

E x% � x�tl

��� Analyzing Expressions

can be deceptive

To see why� consider the following Mini�C program

while x �� nil do

f
y ��x�
x ��x�tl�
y�tl �� x�tl

g

One would think that this program is designed to modify the list bound to x by splitting it
into two lists�a list of the odd elements in order and a list of the even elements in order
 The
following transfer relation describes one iteration of the loop

% � x �� nil� y� x� x�tl
� x� x�tl� x�tl�tl

Now� suppose that one wants to analyze the value of x in this loop
 As for the previous program�
one could compute

E x% � x�tl

to automatically determine that one iteration of the loop transfers x�tl to x� in other words� x
progresses to its next element in one iteration
 So far� this looks just like the previous program

Going further� one could examine the value of x after two iterations�

E x%� � x�tl�tl

This may not seem very surprising
 After all� if x moves down one element of the list in one
iteration� then it seems reasonable that it moves down two elements in two iterations
 However�
the pattern is broken with the next iteration�

E x%� � if�x�tl�tl � x�
x�tl�tl�
x�tl�tl�tl�

In other words� suppose that the list is a two	element circular list with elements v� and v�� and
x is bound to v�
 Then�

� After one iteration� x is bound to v� �i
e
� element f�� �� �� � � �g of the list�

� After two iterations� x is bound to v� �i
e
� element f�� �� �� � � �g of the list�

� After three iterations� x is still bound to v�

Otherwise� no matter what other kind of circularity or aliasing may be present in the list� x
progresses to the fourth element in its linked structure after three iterations

�� Blowup of Conditional Expressions ��	

Note that the those two possible behaviors are truly distinct
 To illustrate� consider how
each of the two cases appear in a store graph
 The �rst case is

�xt ��
tl

tl
v� v�

where v� may or may not be equal to v�
 The second case is

�xt �tlv� �tlv� �tlv� v�

where we impose only that v� and v� are nonequal �and thus v� and v� must be nonequal�

After three iterations� x points to v� in the �rst case and v� in the second case
 But there is no
single non	conditional expression that works for both cases
 The expression

x�tl�tl

works for the �rst case� but not the second� the expression

x�tl�tl�tl

works for the second case� but not the �rst
 If v� is equal to v�� then the expression x would
work for both cases� but v� may not be equal to v�
 The E algorithm automatically distinguishes
the cases that need to be distinguished and builds a conditional expression that covers all cases

�� Blowup of Conditional Expressions

These conditional expressions can become large
 Let

x�tln � x�

n timesz �� �
tl� � � � �tl

After four iterations of the loop in the previous section� we have

E x%� � if�e � x�tl�
e�
if�e � x� x�tl�� e�tl��

where
e � if�x�tl� � x� x�tl�� x�tl���

Unlike the expression �E x%�� for three iterations� this expression is rather complex for human
understanding �although still much easier than hand	generating all initial aliasing conditions
that might be relevant and hand	executing four iterations of the loop under all such cases�

Some study uncovers the following interpretation for the value of x after four iterations�

� If the second element points to the �rst �special case� the �rst element points to itself��
then the value is x

��� Analyzing Expressions

� Otherwise� if the third element points to the second �special case� the second element
points to itself�� then the value is x�tl

� Otherwise� if the third element points to the �rst� then the value is x�tl�

� Otherwise� the value is x�tl�

Again� these are all distinct behaviors� and it is probable that the above itemized list is the
shortest description of the value of x after four iterations
 But clearly the expression computed
as �E x%�� is bigger than this itemized list
 A better symbolic evaluation of if could reduce its
size
 For instance note that as long as all primitive operations are deterministic� the following
two expressions are semantically equivalent�

if�e� � e�� e�� e�� � if�e� � e�� e�� e��

Therefore� fif can substitute one for the other� and for instance choose the small x�tl over the
large e above� yielding instead�

E x%� � if�e � x�tl�
x�tl�
if�e � x� x�tl�� e�tl��

This is better� but not by much
 The key is to distribute the conditional expression e nested
in the condition position of �E x%�� over the two branches of the latter
 For this� we have the
following rule of semantic equivalence of expressions� where eE denotes any expression that can
be derived from e by optionally replacing occurrences of any subexpression e� � E in e by some
other expression e� � E�

e � if�e�� e�� e��
e�� � e�fe� e�� e�g e�� � e�fe� e�g
e��� � e�fe� e�� e�g e��� � e�fe� e�g

if�e � e�� e�� e�� � if�e�� if�e� � e�� e
�
�� e

�
��� if�e� � e�� e

��
� � e

��
���

��
��

As written� this rule is nondeterministic because there are in general many choices for an
expression eE
 But one obvious strategy is simply to pick the smallest expression
 This is easy
to implement
 For instance to compute e��� pick the smallest of fe� e�� e�g and substitute all
occurrences in e� of the two larger expressions by this small expression

Applying this rule to �E x%�� yields�

E x%� � if�x�tl� � x�
if�x�tl� � x�tl� x�tl� x�tl���
if�x�tl� � x�tl�

x�tl�
if�x�tl� � x� x�tl�� x�tl����

�� Blowup of Conditional Expressions ���

This is close to optimal� but it is possible to simplify the �rst arm even further using the
following generalization of the �rst semantic equivalence above�

e�� � e�fe�� e�g

if�e� � e�� e�� e�� � if�e� � e�� e��� e��
��
��

Applying this rule to the above expression yields�

E x%� � if�x�tl� � x�
if�x � x�tl� x�tl� x��
if�x�tl� � x�tl�

x�tl�
if�x�tl� � x� x�tl�� x�tl����

Applying the rule again to the conditional in the �rst arm yields�

E x%� � if�x�tl� � x�
if�x � x�tl� x� x��
if�x�tl� � x�tl�

x�tl�
if�x�tl� � x� x�tl�� x�tl����

Finally� we apply the equivalence that

if�e� � e�� e� e� � e ��
��

to yield�

E x%� � if�x�tl� � x�
x�
if�x�tl� � x�tl�

x�tl�
if�x�tl� � x� x�tl�� x�tl����

This last expression directly corresponds to the bullet list above� and no more simpli�cations
seem possible� the behavior of four iterations of the loop on the binding of x is inherently this
complex

Rule �
� is subtle� it works only because the primitive operation � returns either true or
false on any pair of values� even undef

Rule �
� of semantic equivalence may seem ad hoc� but it is actually more widely applicable
than it may seem at �rst
 Let us look again at the computation of �E x%��� but this time with
the observation that �E x%�� appears in some of its subexpressions

E x%� � if��E x%�� � x�tl�
�E x%���
if��E x%�� � x� x�tl�� �E x%���tl��

��� Analyzing Expressions

Now note that the nested conditional in Rule �
� occurs exactly where �E x%�� appears above

This is not an accident� often� the behavior of a piece of code �e
g
� one iteration of a loop�
on an expression �e
g
� a variable� will function in more than one possible way depending on
properties �e
g
� aliasing� of the result of the preceding piece of code �e
g
� the previous loop
iteration� on that expression
 Hence� it is often the case that �E e%� will appear in the proper
position �i
e
� as e� in an application of Rule �
� to �E e �% � %���
 The rule thus serves to
incrementally keep the expressions as "at as possible

�� Computing Closed Forms of Loops

The previous sections showed how to automatically compute that a single iteration of the loop

while x �� nil do x �� x�tl

and a single iteration of the loop

while x �� nil do

f
y ��x�
x ��x�tl�
y�tl �� x�tl

g

both transfer x�tl to x

It is not dicult to see that for any n� n iterations of the �rst loop transfer x�tln to x� but
we did not give an algorithm to compute this closed	form solution
 However� we demonstrated
that three iterations of the second loop do not transfer x�tl� to x� and therefore it is not the case
that for any n� n iterations of the second loop transfer x�tln to x
 This section addresses the
question of when such exponentiations are valid� and how to automatically compute a closed	
form representation for those exponentiations
 The results that we will achieve are much more
general than the simple traversal of a linear data structure

����� An example

We begin at an intuitive level by examining why the closed	form exponentiation works for the
�rst loop� but not for the second
 Consider two adjacent iterations of the �rst loop
 We know
that iteration � transfers x�tl to x and iteration � transfers x�tl to x
 But to link iteration
� with iteration �� the �output expression� of iteration � should be the same as the �input
expression� of iteration �
 So what we really need is to compute

E �x�tl�% � x�tl�tl

�	 Computing Closed Forms of Loops ��

which reports that any one iteration �where % is the transfer relation for a single iteration�
transfers x�tl�tl to x�tl
 Now we know that iteration � transfers x�tl�tl to x�tl� which is then
transferred by iteration � to x
 This is an application of Corollary �

Thus� we have simply veri�ed that two iterations transfer x�tl�tl to x� a fact that is ex	
pressed more directly by

E x%� � x�tl�tl�

But deriving that result in the two steps of Corollary � instead of computing it directly suggests
an approach for deriving a closed	form solution for n steps
 Note that in the equation

E �x�tl�% � x�tl�tl

the expression on the right is a dereference of x�tl by tl� the expression on the left is a
dereference of x by tl� and we already have that one iteration transfers x�tl to x
 Suppose
an oracle magically provides the statement that for all expressions e and e�� if one iteration
transfers e to e�� then it must be the case that it also transfers e�tl to e��tl
 In other words�

E e�% � e � E e��tl% � e�tl�

Then by induction� we have

E x% � x�tl base case
E x�tl% � x�tl� application of oracle to above
E x�tl�% � x�tl� application of oracle to above
E x�tl�% � x�tl� application of oracle to above

And then by another induction� we have

E x% � x�tl base case
E x%� � x�tl� Corollary � with above line and line � of previous result
E x%� � x�tl� Corollary � with above line and line � of previous result
E x%� � x�tl� Corollary � with above line and line � of previous result

The key to this approach is the oracle that provides the statement that

E e�% � e � E �e��tl�% � e�tl�

Now it becomes clear why the closed	form exponentiation works for the �rst program� but not
for the second
 The intuition of this statement is that �the tl �elds of all data structures
are preserved by a single iteration�
 This is clearly true of the �rst program� which does not
perform any assignments to tl �elds
 But the second program includes the statement

y�tl �� x�tl

�	� Analyzing Expressions

which potentially alters the tl �eld of some value in the store
 And indeed� the oracle�s
statement is false when % is the transfer function of one iteration of the second program
 At
�rst� it seems tricky to �nd an expression e� that makes the statement fail
 Neither x nor y

serves the purpose� but x�tl does�

E �x�tl�% � x�tl�tl

but
E �x�tl�tl�% � if�x�tl�tl � x�

x�tl�tl�
x�tl�tl�tl�

�

Fortunately� however� there is a general technique for testing if the above oracle statement
holds
 The insight is that an expression that cannot possibly be altered by the program can
act as a �probe� into any point in the store
 So one needs merely to choose e to be a variable
x that does not appear in the program
 It will always be the case that �Ex%� � x� and if
the oracle statement fails for any e� then it will fail for x
 Furthermore� if the oracle statement
passes for e � e� � x then it will pass for all expressions e and e�
 For instance� for both of our
programs�

E z% � z�

but while
E �z�tl�% � z�tl

for the �rst program� thus implying that the oracle statement holds and thus the closed	form
exponentiation is valid�

E �z�tl�% � if�z � x�
x�tl�tl�
z�tl�

�

for the second program� thus demonstrating that the oracle statement fails and thus the closed	
form exponentiation is not valid

The above is merely an example of exponentiating a tl dereference
 Now we generalize
these results to a much larger class of exponentiations

����� Expression constructors

We begin with the observation that x�tln is the result of n repeated applications of the function

�e� �e�tl�

to the expression x
 Exponentiating a dereference is thus a special case of exponentiating a
function of type

Exp � Exp�

In this section� we present a foundation for these kinds of functions and how� given a loop� to
automatically �nd such functions that can be exponentiated in the loop

�	 Computing Closed Forms of Loops �	�

Denition �� The set ExpConk of expression constructors of arity k is de�ned as follows�

E � ExpConk ��� x j p�E�� � � � � En� j #� j � � � j #k

ExpConk is isomorphic to Expk � Exp	 and these may be used interchangeably�

Intuitively� a k	ary expression constructor is an expression in which �holes� may appear� each
hole labeled with a number from � to k
 A hole may appear multiple times or not at all
 When
a k	ary expression constructor is applied to k expressions �e�� � � � ek�� then each occurrence of
hole #i is ��lled� with ei
 Note that ExpCon�� the set of nullary expression constructors� is
just the set Exp of expressions
 Also note that ExpConk $ Exp for any k because an expression
constructor need not contain any holes

The de�nition of k	ary expression constructors as Expk � Exp functions is as follows�

x�e � x
p�E�� � � � � En��e � p�E� �e� � � � � En �e�

#i �e�� � � � � ek� � ei

Unary expression constructors are especially important because they are the only ones that
can be exponentiated� as they are the only ones with matching domain and codomain
 Because
they are distinguished� we simply call them expression constructors and use slightly specialized
notation for them�

E � ExpCon ��� x j p�E�� � � � � En� j # unary expression constructors

We also specialize the de�nition above for the case of expression constructors as Exp � Exp

functions�
x e � x

p�E�� � � � � En� e � p�E� e� � � � � En e�
e � e

In the previous section� we considered loops in which one iteration transfers x�tl to x
 We
started by calculating

E x% � x�tl�

and then computing a test to determine if the ��tl� part could be exponentiated
 The discussion
in the previous section generalizes elegantly via the following three theorems

Theorem � �Abstraction of expression transfer� Let %� be the transfer relation for con�

trol path '	 E and E � be k�ary expression constructors	 and x�� � � � � xk be variables that do not

appear in either the syntax of %�	 E	 or E �� If

� ' transfers E�x�� � � � � xk� to E ��x�� � � � � xk�	 and

� ' transfers ei to ei for all i � f�� � � � � kg

�	� Analyzing Expressions

then ' transfers E�e�� � � � � ek� to E ��e�� � � � � ek��

Proof� We need to show that whenever 	%� 	
��

�E�e�� � � � � ek�� �� v �� �E ��e�� � � � � ek�� ��� v�

Choose any values v�� � � � � vk
 Because ' transfers ei to ei for all i � f�� � � � � kg� we have that

k�
i��

ei �� vi ��
k�

i��

ei ��� vi�

Now let
	�� � 	�x�
� v�� � � � �xk
� vk�
	��� � 	��x�
� v�� � � � �xk
� vk�

Because none of x�� � � � � xk appears in the syntax of %�� we have that

	��%� 	
���

and hence� because ' transfers E�x�� � � � � xk� to E ��x�� � � � � xk�� that

�E�x�� � � � � xk�� ���� v �� �E ��x�� � � � � xk�� ����� v�

Combining the above� we have that�
k�

i��

ei �� vi

�
� �E�x�� � � � � xk�� ���� v ��

�
k�

i��

ei ��� vi

�
� �E ��x�� � � � � xk�� ����� v�

But because none of x�� � � � � xk appears in E we have that for any 	�

�v�� � � � � vk�

�
k�

i��

ei �� vi

�
� �E�x�� � � � � xk�� ���x� 	
v������xk 	
vk� v

�
�� �E�e�� � � � � en�� �� v

and similarly for E �
 Therefore�

�E�e�� � � � � en�� �� v �� �E ��e�� � � � � en�� ��� v�

�

The above theorem is used primarily for the next two theorems� which we will use to compute
automatically closed solutions in loops

Theorem � �Left closed�form exponentiation� Given a language in which all primitive

operations are deterministic	 let %� be the transfer relation for control path '	 E be a
unary�

expression constructor	 and x be some variable that does not appear in either the syntax of %�

or E� If
E e%� � E e

and

E �E x�%� � E x

then for all n � � and k � �	 'n transfers �E�n
k	 e� to �Ek e��

�	 Computing Closed Forms of Loops �	�

Proof� Straightforward application of Theorems �� �� and �abs	exptr
 �

Theorem
 �Right closed�form exponentiation� Given a language in which all primitive

operations are deterministic	 let %� be the transfer relation for control path '	 E be a
unary�

expression constructor	 and x be some variable that does not appear in either the syntax of %�

or E� If

E �E e�%� � e

and

E �E x�%� � E x

then for all n � � and k � �	 'n transfers �Ek e� to �E�n
k	 e��

Proof� Straightforward application of Theorems �� �� and �abs	exptr
 �

The following example illustrates the above development

Example �� Let % be the transfer relation for one iteration of the loop�

while x �� nil do x �� x�tl

Note that variable z does not appear in %� Let E � #�tl and compute

E x% � x�tl � E x

and

E �E z�% � E �z�tl�% � z�tl � E z�

By Theorem �	 we conclude that any n iterations of the loop transfers En x � x�tln to x	 and

further that it transfers x�tln
k to x�tlk for any k � ��

����� Computing closed forms automatically

In order to compute these closed forms automatically for expression e and control path '� it is
necessary to determine automatically an expression constructor E such that

E e%� � E e

where %� is the transfer relation for control path '
 In general� there may be many choices for
E that make this equation true
 For instance� for both of our example while	loops above�

E x% � �#�tl� x

and

E x% � �x�tl� x�

�	� Analyzing Expressions

To understand this nondeterminism� consider the task of determining from any two expressions
e and e� an expression constructor Eee� such that Eee� e � e�
 Using the �rst two lines of the above
de�nition of expression constructors as functions� we can derive the following scheme�

Eex � x
Eep�e������en	 � p�Eee� � � � � � E

e
en�

But this merely reduces to the degenerate Eee� � e�� an expression constructor without any holes

Taking into consideration the third line of the de�nition� we can add the following equation�

Eee � #

Now whenever e� matches e� we have a choice between applying this equation to introduce a
hole or use the �rst two to reconstruct e

One obvious deterministic strategy is to introduce holes whenever possible� yielding the
following algorithm�

Eee� �

����	
if e � e�

x if e �� e� � x
p�Eee� � � � � � E

e
en� if e �� e� � p�e�� � � � � en�

Example �� The expression�constructor algorithm computes�

Ex
x�tl� Ex

x �E
x
tl

� #�tl

Example �� The expression�constructor algorithm computes�

Ej

a�j � j�� Ej
a �E

j

j � j
�

� a�Ej
j � Ej

j �

� a�# � #�

This suggests the following algorithm for computing closed forms of expression transfer in
loops

Algorithm � �Closed�forms of expressions in loops� Given the following input�

� A control path ' � CtrlPoint
�

� An expression e � Exp�

Perform the following steps�

�� Compute the transfer relation %� for control path ' as described in Chapter ��

�� Compute the expression �E e%��� Call this e
��

�	 Computing Closed Forms of Loops �		

�� Compute the expression constructor Eee� as described above� Call this EL�

�� Compute the expression constructor Ee
�

e as described above� Call this ER�

�� Choose a variable x not appearing in %��

�� Compute the expression �EL x� as described by the de�nition of expression constructors�

Call this eL�

�� Compute the expression �ER x� as described by the de�nition of expression constructors�

Call this eR�

�� Compute the expression �E eL%�� and test if it is syntactically equal to eL� If so	 output
�left�EL�� Otherwise	 output �left�exponentiation not found�

�� Compute the expression �E eR %�� and test if it is syntactically equal to eR� If so	 output
�right�ER� e

��� Otherwise	 output �right�exponentiation not found�

If this algorithm given ' and e outputs �left�EL�� then for all n � � and k � �� 'n transfers
�E�n
k	 e� to �Ek e�
 In addition� if it outputs �right�ER� e

��� then for all n � � and k �� �� 'n

transfers �Ek e�� to �E�n
k	 e��

Example �� The above algorithm	 given the control path corresponding to one iteration of the

program

while x �� nil do x �� x�tl

and given the expression x	 outputs �left�#�tl� and �right�exponentiation not found�

Example �� The above algorithm	 given the control path corresponding to one iteration of the

program
while x �� nil do

f
y �� x�
x �� x�tl�
y�tl �� x�tl

g

and given the expression x	 outputs �left�exponentiation not found and �right�exponen�

tiation not found�

�	� Analyzing Expressions

Part V

Conclusion

�	

In this dissertation� we have presented a new way of approaching the problem of statically
analyzing a program to determine properties of its run	time behavior

In our methodology� the semantic de�nition of a language is given by a translation from
the source program to an intermediate form in which all single step transitions between two
control points are described by a single transfer relation term in TR
 For instance� we have
shown how to translate assignments and let	bindings into assignment relations� conditionals
into �lter relations� allocation into assignment relations that maintain an explicit heap pointer�
and function calls into �lter relations with assignment for argument passing
 Our language TR
if transfer relations is thus a universal intermediate representation for programming languages�
parameterized by a set Val of values and Primop of primitive operations

The semantics itself merely de�nes the single	step transfer relations� which amounts to a
translation of the source program into TR
 But the fundamental property of TR that sets it
apart from other intermediate representations and makes it useful for program analysis is that
it is closed under composition
 We have given an algorithm � to perform this composition

Given this view� one way to think of our analysis methodology is as a kind of symbolic

execution
 Given the translation of a source program into TR� one uses � to compose the
steps in order to generate a transfer relation �term in TR� of a particular �nite control path

The single	step transfer relations yielded by the semantics correspond to the length	two control
paths and are simply a rewriting of the program text
 But as an analysis composes these steps
with �� it symbolically uncovers more and more dynamic information about the program

Unlike usual approaches to program analysis that begin by de�ning an abstract language of
run	time properties� our methodology never discards information about the program
 In fact�
given a closed program �in other words� no parameters or unknown data�� it is possible actually
to execute the program with �
 To do this� build the transfer relation for the control path that
starts at the beginning of the program
 At each point during this incremental composition�
all information about the run	time state up to that point will be represented precisely in the
transfer relation� and every time a branch point is reached �for instance� conditional or func	
tion call�� only one branch will result in a non	� transfer relation
 Of course� if the program
never terminates then this process will never terminate
 But it demonstrates that our analy	
sis methodology includes all information needed to perform a precise execution of the source
program� which sets it apart from other approaches to program analysis

But the point of program analysis is usually to analyze a program or program fragment
that is not closed
 One may want to analyze a function relative to its parameters� or a segment
of C code apart from its surrounding context
 Or the entire program itself may not be closed
because of unknown input data
 It is these situations for which our methodology is designed

As the analysis symbolically builds the transfer relation for a control path� it may encounter
unknown quantities �variables� heap references� and so forth�
 The analysis represents these
as expressions and l	expressions in the transfer relations� precisely describing quantities that
are relative to the state of execution at the beginning of the control path
 Still� no semantic
information is discarded
 If a transfer relation that describes the de�nition of a variable or
value on the heap is composed with a transfer relation that includes a reference to that variable

���

or heap location� then the � algorithm will inline the data de�ned in the �rst relation into the
references in the second transfer relation and simplify the result

In short� our primary philosophy is that program analysis should focus on the relationship
between an execution state at the beginning of a given control path and the resulting execution
state at the end of the path
 Given this philosophy� our primary technical result is that one
can in fact e�ectively compute a concise symbolic description of this precise relationship for a
�xed control path

So� our methodology truly is a general framework for program analysis in the sense that it
involves no abstraction or approximation� and so there is nothing in the framework itself that
necessarily prohibits the computation of any given computable program property
 Of course�
this is true of the text of the source program itself$ But repeated applications of � reveal more
and more dynamic information about the source program� and in the limit actually represent
the entire program execution

One may view repeated applications of � as an imperative analog of the reduction of terms
in the �	calculus
 The redex rules of the �	calculus are symbolic� just like the composition of
transfer relations� and repeated reductions of a �	term reveal in some sense more and more
dynamic information about the original term
 The reduction may terminate in a unique �up to
�	conversion� normal form� which is a canonical representation of the original term
 One may
think of repeated applications of � in a similar way� gradually moving toward a more canonical
representation of the source program� in principle resulting in a single TR	term in the limit
 In
our case� these normal forms are not unique
 But this is not surprising� given the wide variety
of languages that we can describe in this way�languages with assignment� heap	allocated data
structures� mutable arrays and records� and pointers

A new methodology of program analysis opens up numerous avenues for future work
 In
this dissertation� we have just begun to explore the applications of our methodology to real
analysis problems� but there is much more work to be done
 Some thoughts�

� There is potential for our methodology to help in software development as a debugging
tool
 The transfer relation terms in TR have an intuitive presentation as symbolic condi	
tional parallel assignments
 Imagine� for instance� dragging a mouse through an execution
path in a source program�around loops� down conditionals� into function calls� and so
forth�and watching the transfer relation describing the precise behavior of that path
build up incrementally
 There may arise a few terms in the transfer relation that would
correspond to the internals of the semantics rather than anything appearing explicitly
in the source program�the variable H that we used as a heap pointer in the Mini�C

semantics� for instance�and the user would have to learn these
 But for the most part�
the output would appear quite natural
 Such a debugger would not only be useful to help
understand what the code does� but could catch bugs or potential sources of bugs
 In par	
ticular� because � computes the precise composition� it is guaranteed to cover all aliasing
possibilities� and these are revealed as aliasing tests in the resulting transfer relation

� We have isolated the problem with existing approaches to program analysis that they
construct an abstract property a single step at a time� often resulting in dramatic loss

���

of precision
 If an existing analysis is retooled to work for TR� then this fundamental
limitation is eliminated because the analysis is free to apply � to compose multiple steps
and thus build the abstract property multiple steps at a time
 The great advantage to
this idea is that it is completely general and can potentially improve the accuracy of any
existing program analysis
 For any given existing program analysis� however� there are
the following practical issues

� Retooling the analysis for TR
 The TR language is fairly simple� but still contains
parallel assignment� and most existing analyses would need to be extended to han	
dle parallel assignment
 For some analyses� this is probably not dicult� and we
described a general approach for value analyses
 But for others� such as shape anal	
yses� a general solution may be more dicult

� Designing a strategy of when to apply � to build multiple steps and when to apply
the analysis on those compound steps
 The obvious general approach to this task is to
use � on control paths whose endpoints are control points with potentially more than
one incoming edge in a control graph
 This is a generalization of composing steps
in a basic block� but still guarantees termination
 There may be instances� however�
where further composition would improve precision� and we leave the design of such
strategies as a problem for future work

� Some analysis problems� such as lifetime analysis and dependency analysis� deal directly
with the relation between one point in the execution and some later point in the execution

Therefore� these analyses are actually abstractions of transfer relations
 This implies
that our methodology may be fundamentally better suited to such problems than the
traditional approach of computing a property of the states reached during execution

� Our methodology is probably well suited for the analysis of concurrent programs
 One
may treat a process	creation point as a branch in the control	"ow graph of a program

Then one may build the transfer relations for each branch of the path� to relate precisely
the data in the old process with the data in the new process� at least up to a certain
�nite path of execution in each process
 For instance� this is useful for determining that
a communication channel is used in a restricted fashion between two processes

� We have demonstrated that it is possible to achieve some symbolic closed	form solutions
that track data through loops
 There may be other ways in which information about
a loop can be computed symbolically
 For instance� if we switch the order of the two
arguments of the E function� yielding functionality

E � TR � Exp � Exp�

then any �xed point of �E%� is an expression that evaluates to the same value before
and after transfer relation %
 If % is the transfer relation of a path through one iteration
of a loop� then these �xed points are loop	invariant expressions� and any binary	valued
�xed point is a loop invariant
 The ability to express a single iteration of a loop as a
concise term % gives some hope that there are useful ways to compute e�ectively these
�xed points

���

� Program transformations� such as classical compiler optimizations� are ultimately based
on semantic equivalence of code fragments
 One code fragment may be replaced with
another if and only if they are semantically equivalent� for some appropriate notion of
semantic equivalence
 We have given a way of producing a term describing the semantic
behavior of any �nite control path in the source program
 This term is not canonical�
but it is more abstract than the source program itself and thus is more amenable to
reasoning about semantic equivalence
 Indeed� syntactic equivalence of composed transfer
relations can be quite useful in practice as an approximation to semantic equivalence

There is hope that our methodology could form the basis of a generic calculus of program
transformations for use in optimizing compilers for a wide variety of languages� including
imperative languages

Bibliography

�AH��� S Abramsky and C Hankin� editors
 Abstract Interpretation of Declarative Languages

Ellis	Horwood� ����
 �p ���

�App��� Andrew W
 Appel
 Compiling with Continuations
 Cambridge University Press�
Cambridge� ����
 �p ����

�ASU��� A
 V
 Aho� R
 Sethi� and J
 D
 Ullman
 Compilers principles	 techniques	 and tools

Addison	Wesley� Reading� MA� ����
 �pp 	
 ��
 �
 �	��

�AWL��� Alexander Aiken� Edward L
 Wimmers� and T
 K
 Lakshman
 Soft typing with condi	
tional types
 In Conference Record of the ��st ACM SIGPLAN�SIGACT Symposium

on Principles of Programming Languages� pages ���*���� Portland� Oregon� January
����
 �p ���

�Bar��� D
 W
 Barron
 Pascal � the language and its implementation
 John Wiley + Sons
Ltd� Chichester� England� ����
 �p ���

�Bar��� H
 P
 Barendregt
 The Lambda Calculus
 North Holland� revised edition� ����

�pp ��
 ��
 ����

�BHA��� G L Burn� C L Hankin� and S Abramsky
 Strictness analysis for higher	order func	
tions
 Sci� Comp� Prog�� �����*���� ����
 �pp ��
 ����

�Bou��a� F
 Bourdoncle
 Abstract debugging of higher	order imperative languages
 In Pro�

ceedings of the ACM SIGPLAN ��� Conference on Programming Language Design

and Implementation� Albuquerque	 New Mexico	 June �����	 ����� volume ��	� of
SIGPLAN notices� ISSN� ���������� v� ��	 no� �
June ������ pages ��*��� New
York� NY� USA� June ����
 ACM Press
 �pp 	
 ���

�Bou��b� F
 Bourdoncle
 Assertion	based debugging of imperative programs by abstract inter	
pretation
 Lecture Notes in Computer Science� �������*��� ����
 �p 	�

�CC��� P
 Cousot and R
 Cousot
 Abstract interpretation� A uni�ed lattice model for static
analysis of programs by construction of approximation of �xed points
 In Proceedings
of the �th ACM Symposium on Principles of Programming Languages	 Los Angeles�
pages ���*���� New York� NY� ����
 ACM
 �pp �
 ��
 ���
 ����

��� BIBLIOGRAPHY

�CC��� Patrick Cousot and Radhia Cousot
 Systematic design of program analysis frame	
works
 In Conference Record of the Sixth Annual ACM Symposium on Principles of

Programming Languages� pages ���*���
 ACM� ACM� January ����
 �pp �
 ����

�CC��a� P
 Cousot and R
 Cousot
 Comparing the Galois connection and widening!narrowing
approaches to abstract interpretation
 In M
 Bruynooghe and M
 Wirsing� editors�
Proceedings of the Fourth International Symposium on Programming Language Im�

plementation and Logic Programming� pages ���*���� Leuven� Belgium� ����
 LNCS
���� Springer	Verlag
 �p ��

�CC��b� P
 Cousot and R
 Cousot
 Inductive de�nitions� semantics and abstract interpretation

In Conference record of the Nineteenth Annual ACM SIGPLAN�SIGACT Symposium

on Principles of Programming Languages� papers presented at the symposium	 Albu�

querque	 New Mexico	 January �����	 ����� pages ��*��� New York� NY� USA� ����

ACM Press
 ACM order number �����
 �pp �
 ��
 ���

�CC��c� Patrick Cousot and Radhia Cousot
 Abstract interpretation and application to logic
programs
 Journal of Logic Programming� ����	������*���� July ����
 �p ��

�CC��d� Patrick Cousot and Radhia Cousot
 Abstract interpretation frameworks
 Journal of
Logic and Computation� ��������*���� August ����
 �pp �
 �	��

�CC��� Patrick Cousot and Radhia Cousot
 Higher	order abstract interpretation �and appli	
cation to comportment analysis generalizing strictness� termination� projection and
PER analysis of functional languages�
 In Proceedings of the ���� International Con�

ference on Computer Languages	 ICCL���� pages ��*���� Toulouse� France� May
����
 IEEE Computer Society Press
 �p ��

�CC��� Patrick Cousot and Radhia Cousot
 Formal language� grammar and set	constraint	
based program analysis by abstract interpretation
 In Proceedings of the Seventh

International Conference on Functional Programming Languages and Computer Ar�

chitecture
FPCA����� pages ���*���� La Jolla� California� June ��*��� ����
 ACM
SIGPLAN!SIGARCH and IFIP WG�
�� ACM Press
 �p ��

�CH��� Patrick Cousot and Nicholas Halbwachs
 Automatic discovery of linear restraints
among variables of a program
 In Conference Record of the Fifth annual ACM Sym�

posium on Principles of Programming Languages� pages ��*��
 ACM� ACM� January
����
 �p ��

�Cou��� P
 Cousot
 M�ethodes it�eratives de construction et d�approximation de point �xes

d�op�erateurs monotone sur un treillis analyse s�emantique des programmes
 PhD the	
sis� Grenoble� ����
 �p ����

�Cou��� P
 Cousot
 Semantic foundations of program analysis
 In S
 S
 Muchnick and N
 D

Jones� editors� Program Flow Analysis� Theory and Applications
 Prentice	Hall� ����

�p ��

BIBLIOGRAPHY ��	

�Cou��� Patrick Cousot
 Methods and logics for proving programs
 In J
 van Leewen� editor�
Handbook of Theoretical Computer Science� volume B� Formal Models and Semantics�
chapter ��� pages ���*���
 The MIT Press� New York� N
Y
� ����
 �p ��

�CWZ��� D
R
 Chase� M
 Wegman� and F
K
 Zadeck
 Analysis of pointers and structures
 In
Conference on Programming Language Design and Implementation� pages ���*����
June ����
 �p 	�

�dB��� Nicolas G
 de Bruijn
 Lambda	calculus notation with nameless dummies� a tool
for automatic formula manipulation with application to the Church	Rosser theorem

Indag� Math�� ���������*���� ����
 �p ���

�Deu��� Alain Deutsch
 Mod�eles op�erationnels de langages de programmation et

repr�esentations de relations sur des langages rationnels avec application �a la

d�etermination statique de propri�et�es de partages dynamiques de donn�ees
 Th,ese de
doctorat d�universit�e� Universit�e Pierre et Marie Curie �Paris ��� Paris �France�� April
����
 �pp �
 ����

�Deu��� Alain Deutsch
 Interprocedural May	Alias analysis for pointers� Beyond k	limiting

SIGPLAN Notices� ���������*���� June ����
 Proceedings of the ACM SIGPLAN ���

Conference on Programming Language Design and Implementation
 �pp 	
 ��

�Dij��� E W Dijkstra
 A Discipline of programming
 Prentice	Hall� ����
 �p ���

�FF��� M
 Felleisen and D
P
 Friedman
 Control operators� the secd	machine� and the
lambda	calculus
 In �rd Working Conference on the Formal Description of Program�

ming Concepts� August ����
 �p ���

�FRT��� John Field� G
 Ramalingam� and Frank Tip
 Parametric program slicing
 In Con�

ference Record of the ��nd ACM SIGPLAN�SIGACT Symposium on Principles of
Programming Languages� pages ���*���� San Francisco� California� January ����

�p ��

�GH��� Rakesh Ghiya and Laurie J
 Hendren
 Is it a tree� a DAG� or a cyclic graph�
A shape analysis for heap	directed pointers in C
 In Conference Record of the

��rd ACM SIGPLAN�SIGACT Symposium on Principles of Programming Languages

POPL����� pages �*��� St
 Petersburg� Florida� January ��*��� ����
 ACM Press

�pp �
 �	��

�GLT��� Jean	Yves Girard� Yves Lafont� and Paul Taylor
 Proofs and Types� volume � of
Cambridge Tracts in Theoretical Computer Science
 Cambridge University Press�
Cambridge� ����
 �pp ��
 ���

�Gra��� Philippe Granger
 Static analysis of arithmetical congruences
 International Journal
of Computer Mathematics� pages ���*���� ����
 �p ��

��� BIBLIOGRAPHY

�Gra��a� P
 Granger
 Analyses S�emantiques de Congruence
 PhD thesis� Ecole Polytechnique�
Palaiseau� France� July ����
 �p ��

�Gra��b� P
 Granger
 Static analysis on linear congruence equalities among variables of a
program
 In TAPSOFT���� volume ��� of Lecture Notes in Computer Science� pages
���*���
 Springer Verlag� ����
 �p ��

�H
��� P
 Hudak et al
 Report on the programming language Haskell
 SIGPLAN Notices�
������Section R� ����
 �p ���

�Hei��� Nevin Heintze
 Set Based Program Analysis
 PhD thesis� Carnegie Mellon University�
Pittsburgh� Pennsylvania� ����
 �pp ��
 ����

�How��� W
 Howard
 The formulas	as	types notion of construction
 In To H�B� Curry� Essays

on Combinatory Logic	 Lambda�Calculus and Formalism� pages ���*���
 Academic
Press� ����
 �p ���

�HP��� M
 Hennessy and G
 D
 Plotkin
 Full abstraction for a simple programming language

In J
 Be-cv�a-r� editor� �th Symposium on Mathematical Foundations of Computer Sci�

ence� volume �� of Lecture Notes in Computer Science� pages ���*���
 Springer	
Verlag� ����
 �p 	��

�HRB��� Susan Horwitz� Thomas Reps� and David Binkley
 Interprocedural slicing using
dependence graphs
 ACM Transactions on Programming Languages and Systems�
��������*��� January ����
 �p ��

�JM��� Neil D
 Jones and Steven S
 Muchnick
 Flow analysis and optimization of Lisp	like
structures
 In Conference Record of the �th ACM SIGPLAN�SIGACT Symposium on

Principles of Programming Languages� pages ���*���� January ����
 �p 	�

�Kah��� Gilles Kahn
 Natural semantics
 In Proceedings of the Symposium on Theoretical
Aspects of Computer Science� Passau� Germany� February ����
 Proceedings pub	
lished as Springer	Verlag Lecture Notes in Computer Science ���
 The paper is also
available as INRIA Report ���� February� ����
 �p ���

�Kar��� M
 Karr
 Ane relationships among variables of a program
 Acta Informatica� �����*
���� ����
 �p ��

�KMP��� G
 Kahn� D
 B
 MacQueen� and G
 Plotkin
 Semantics of Data Types
 Springer
Verlag �Heidelberg� FRG and NewYork NY� USA�� Internat
Symp
Proc
� � ACM CR
����	����� ����
 �p ���

�Knu��� D
 E
 Knuth
 An empirical study of FORTRAN programs
 Software � Practice and

Experience� ���������*���� ����
 Motivation for optimization
 �p ���

�KR��� Brian W
 Kernighan and Dennis M
 Ritchie
 The C Progamming Language
 Prentice
Hall� Englewood Cli�s� � edition� ����
 �p ���

BIBLIOGRAPHY ���

�Kra��� David Kranz
 Orbit� An optimizing compiler for scheme
 Computer science technical
report .��� �ph
d
 dissertation�� Yale University� ����
 �p ����

�KU��� J
 B
 Kam and Je�rey D
 Ullman
 Global data "ow analysis and iterative algorithms

Journal of the ACM� ���������*���� ����
 �p 	�

�Lan��� W
 Landi
 Interprocedural aliasing in the presence of pointers
 Phd thesis� Rutgers
University� ����
 �p 	�

�LD��� Julia L
 Lawall and Olivier Danvy
 Separating stages in the continuation	passing
style transformation
 In Conference Record of the ��th ACM SIGPLAN�SIGACT

Symposium on Principles of Programming Languages� pages ���*���� Charleston�
South Carolina� January ����
 �p ���

�MFH��� Greg Morrisett� Matthias Felleisen� and Robert Harper
 Abstract models of memory
management
 In International Conference on Functional Programming and Computer

Architecture� June ����
 �pp ��
 ���

�MJ��� S
 S Muchnick and N
 D
 Jones
 Program �ow analysis� theory and applications

Prentice	Hall� Englewood Cli�s� NJ� ����
 �pp 	
 ���

�MTH��� Robin Milner� Mads Tofte� and Robert Harper
 The De�nition of Standard ML
 The
MIT Press� ����
 �pp 	
 ��
 ���

�Mul��� Ketan Mulmuley
 Full Abstraction and Semantic Equivalence
 MIT Press� Cambridge�
Massachusetts� ����
 Ph
 D
 Dissertation� Carnegie Mellon University� August ����

�pp 	�
 ����

�Myc��� Alan Mycroft
 Abstract Interpretation and Optimising Transformations for Applica	
tive Programs
 Ph
D
 Thesis� Univ
 of Edinburgh� December ����
 �p ���

�Nie��� Flemming Nielson
 Abstract Interpretation using Domain Theory
 Ph
D
 Thesis�
Univ
 of Edinburgh� October ����
 �p ���

�Nie��� F Nielson
 Abstract Interpretation of Denotational De�nitions
 In STACS���� volume
��� of LNCS� pages �*��
 Springer	Verlag� ����
 �p ���

�OT��� P
 W
 O�Hearn and R
 D
 Tennent
 Parametricity and local variables
 Journal of the
ACM� ���������*���� May ����
 �p ����

�Plo��� Gordon Plotkin
 Call	by	name� call	by	value� and the �	calculus
 Theoretical Com�

puter Science� �����*���� ����
 �pp ���
 ����

�Plo��� Gordon D
 Plotkin
 A structural approach to operational semantics
 Technical Report
DAIMI FN	��� Computer Science Department� Aarhus University� Aarhus� Denmark�
����
 �p ���

��� BIBLIOGRAPHY

�ReC��� Jonathan A
 Rees and eds
 Clinger� William C
 Revised� report on the algorithmic
language scheme
 SIGPLAN Notices� ���������*��� December ����
 �pp �	
 ���

�Sch��� D
 A
 Schmidt
 Natural	semantics	based abstract interpretation
 Lecture Notes in

Computer Science� �����*��� ����
 �p ���

�Sco��� Dana Scott
 Outline of a mathematical theory of computation
 In Proceedings	 Fourth

Annual Princeton Conference on Information Sciences and Systems� pages ���*���

Princeton University� ����
 Also� Programming Research Group Technical Mono	
graph PRG*�� Oxford University
 �p ���

�Sco��� Dana S
 Scott
 Data types as lattices
 SIAM Journal on Computing� �����*���� ����

�p ���

�Sco��� Dana S
 Scott
 Domains for denotational semantics
 In Proceedings International

Colloquium on Automata	 Languages	 and Programming ���� ����
 �p ���

�Shi��� Olin Grigsby Shivers
 Control�Flow Analysis of Higher�Order Languages or Taming

Lambda
 PhD thesis� Carnige	Mellon Univeristy� May ����
 Also available as CMU	
CS	��	���
 �pp 	
 ����

�Sie��� Kurt Sieber
 Full abstraction for the second order subset of an algol	like language
 In
Igor Pr�/vara� Branislav Rovan� and Peter Ruzicka� editors� Mathematical Foundations

of Computer Science ���� ��th International Symposium� volume ��� of LNCS� pages
���*���� Kosice� Slovakia� ��*�� August ����
 Springer
 �p ����

�SRW��� Mooly Sagiv� Thomas Reps� and Reinhard Wilhelm
 Solving shape	analysis prob	
lems in languages with destructive updating
 In Conference Record of the ��rd

ACM SIGPLAN�SIGACT Symposium on Principles of Programming Languages

POPL����� pages ��*��� St
 Petersburg� Florida� January ��*��� ����
 ACM Press

�pp �
 ��
 ����

�SS��� Harald S0ndergaard and Peter Sestoft
 Referential transparency� de�niteness and
unfoldability
 Acta Informatica� ������*���� ����
 �p ���

�Ste��� Guy L
 Steele
 Rabbit� A compiler for Scheme
 Technical Report ���� Massachusetts
Institute of Technology� Cambridge� MA� May ����
 �p ����

�Sto��� J
 Stoy
 Denotational Semantics
 The MIT Press� Cambridge� Mass� ����
 �pp ��

���

�TJ��� J
	P
 Talpin and P
 Jouvelot
 The type and e�ects discipline
 In Proc� IEEE Symp�

on Logic in Computer Science� pages ���*���� ����
 �p ����

�Wad��� Phil Wadler
 Strictness analysis on non	"at domains �by abstract interpretation�
 In
S Abramsky and C Hankin� editors� Abstract Interpretation of Declarative Languages�
chapter ��� pages ���*���
 Ellis	Horwood� ����
 �p ����

BIBLIOGRAPHY ��

�Wan��� Mitchell Wand
 A characterization of weakest preconditions
 Journal of Computer

and Systems Science� ������*���� ����
 �p ���

