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Abstract

Compiler optimizations play a crucial role in the performance of modern computer systems.
Debugger technology, however, has lagged behind in its support of optimizations. Debug-
ging the unoptimized translation is often impractical, so handling of optimized code by
the debugger is necessary. But compiler optimizations make it difficult to provide source-
level debugger functionality: When a program is compiled with optimizations, mappings
between breakpoints in the source and object code become complicated, and values of
variables may be either inaccessible in the runtime state or inconsistent with what the user
expects at a breakpoint. Although researchers and implementors have long acknowledged
the need for source-level debugging of optimized code, compiler developers have gener-
ally avoided implementing this support. Designing a source-level debugger for globally
optimized code remains an open problem.

This dissertation presents techniques that enable accurate source-level debugging of fully
optimized code. These techniques are demonstrated in the context of a compiler that
performs a complete set of global scalar optimizations for commonly used source languages
such as C. The techniques presented in this dissertation are non-invasive — that is, they do
not constrain optimizations in any way and do not require instrumentation of the debugged
program. All interactions between the debugger and the user are in terms of the original
source text.

In general, it is impossible to hide the effects of optimizations from the user and to provide the
same interactions as in unoptimized code. The approach presented in this dissertation makes
the effects of optimizations transparent whenever possible. Only when optimizations cannot
be hidden from the user does the debugger inform the user of the effects of optimizations
on the expected execution behavior of the program.

This dissertation analyzes in detail the problems caused by scalar optimizations such as
partial redundancy elimination, register allocation, instruction scheduling, and many others.
This dissertation also presents the low-level algorithms necessary in the compiler and
debugger to track the effects of optimizations, and discusses the limitations of the techniques.
Finally, this dissertation presents measurements of how often a user is likely to be affected
by optimizations during debugging. These measurements are based on an implementation
of these techniques in the cmcc compiler, an optimizing C compiler developed as part of
this dissertation.
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Chapter 1

Introduction

Software development is a complicated and costly process, and the development of soft-

ware tools for easing this process continues to be an important problem in both academia

and industry. One valuable program development tool is the source-level debugger. A

source-level debugger allows the software developer to monitor an executing program (the

debuggee) at the source level. An interactive debugger provides the user with mechanisms

to halt or resume execution and to inspect the state of the debuggee. All interactions between

the user and the debugger are in terms of the debuggee’s high-level language source.

Bugs are a normal part of the software life cycle and the source-level debugger aids

the software developer in locating the source of a programming error after testing or usage

of a program has shown the existence of such an error. Using a source-level debugger,

the user can inspect the state of a crashed program (post-mortem debugging) and discover

which source-level values caused the runtime error. When used interactively, the source-

level debugger allows the developer to monitor the progress of a program, and to see how

source-level values become corrupted, causing a program to produce incorrect results.

The source-level debugger also acts as an important analysis tool and aids the developer

in understanding how a complex piece of software operates. While most software engi-

neering tools allow the user to statically analyze a program, debuggers allow the user to

better understand the dynamic behavior of a program. This is important, for instance, in

helping the developer understand how a change affects a program, or how the behavior of

a program changes when ported to a new hardware or software environment. A debugger

also allows the user to discover discrepancies between the specification documentation and

9
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the actual behavior of a program.

Almost all modern compilers are available with companion source-level debuggers. The

more advanced of these debuggers have graphical user interfaces and contain many features

that make the debugging process easier and more efficient. But current debugger technology

does not allow a software developer to debug an optimized translation of a program at the

source level. Compiler optimizations complicate the correspondence between the source

program and the object code, thus making the task of the source-level debugger difficult.

Compiler optimizations are playing an increasingly larger role in the performance

of modern computer systems and the importance of using optimizations during software

development has increased, as competitive forces require production software to execute

as efficiently as possible. Optimizations, however, make it difficult to provide source-level

debugging functionality. Although researchers and implementors have long acknowledged

the need for source-level debugging of optimized code [102, 49, 86], compiler developers

have generally avoided supporting source-level debugging of optimized code. Designing a

source-level debugger for globally optimized code remains an open problem.

Current trends in processor design are towards an increasing reliance on compiler trans-

formations to achieve high performance. Designers of modern processors take optimizing

compiler technology into account and optimizing compilers play a large role in the perfor-

mance of a processor. One way in which designers have given a large role to the compiler

is by exposing the machine-level resources of a processor to the compiler. Such resources

include instruction-level parallelism, large register files, instruction fetching mechanisms,

and memory hierarchies. The compiler speeds up program execution by performing trans-

formations that exploit the resources exposed by a target processor. For example, instruction

scheduling [43, 51, 67, 14, 101] can increase the efficiency of processors with instruction-

level parallelism by statically scheduling independent operations for concurrent execution.

Global register allocation [25, 32] can effectively exploit architectures that have large regis-

ters files and high memory access latencies by keeping the most frequently accessed values

in registers. Using software branch prediction [98, 11, 42], the compiler can reorganize

object code to increase the instruction fetch efficiency of pipelined or superscalar processors

[54, 82]. Transformations such as blocking [68] and prefetching [22, 77] can improve a

program’s data cache locality, thus reducing stalls due to cache misses [77].
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The importance of optimizations is not limited to low-level machine-specific trans-

formations. The modern RISC approach to designing processors has also increased the

effectiveness and importance of classical (machine-independent) compiler optimizations.

The simple load–store instruction sets of RISC processors not only provide a simple code

selection target for the compiler, but also act as suitable compiler intermediate representa-

tions [57, 10, 80]. By modelling each RISC instruction in its intermediate representation,

the compiler exposes most of the final instructions to classical optimizations — such as

partial redundancy elimination, strength reduction, and so on — thus reducing path lengths

in the object code. Even newer implementations of CISC architectures are providing a

RISC core set of instructions that execute efficiently and are simple to model in a compiler.

For example, Intel’s Pentium [24] and Pentium Pro [47], AMD’s K5 [88] and NexGen’s

Nx686 [48] processors are superscalar implementations of the x86 architecture, which can

concurrently dispatch only RISC-like instructions [56]; complex instructions are dispatched

one at a time. An Intel application note describing instruction selection and scheduling for

the Pentium processor advises against selecting complex instructions and suggests using

a load–store model of instruction selection [55]. The larger register files of RISC proces-

sors allow the use of good heuristic global register allocation techniques, alleviating the

phase-ordering problems between register allocation and classical optimizations that in-

crease register pressure (e.g., code motion, induction variable strength reduction, function

inlining, etc.).

Although compiler optimizations are playing a larger role in the performance of com-

puter systems, debugger technology has lagged behind in its support of optimizations. By

duplicating, eliminating, and reordering operations and values, optimizing transformations

make it impossible to provide the illusion that the source program is executing one source

statement at a time. Current debugger technology disallows optimizations and requires that

a program be compiled in a straightforward, unoptimized manner for it to be debugged

using a source-level debugger; the compiler usually provides an option that produces such

a debuggable translation of a program (e.g., the -g “debug flag” provided in UNIX C

compilers).

The difficulties caused by optimizations have prevented most compiler systems from

supporting the debugging of optimized code, although some systems provide debugger
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mechanics without warranties for the “debugging” of optimized code. To cite from the

description of the options in the C manual of a major Unix vendor:

-g3 Have the compiler produce additional symbol table

information for full symbolic debugging for fully optimized

code. This option makes the debugger inaccurate.

This approach to debugging optimized code does not take the effects of optimizations

into account, and is inadequate because the debugger will sometimes provide misleading

responses to the user. For example, in response to a user query of a variable’s value,

the debugger may erroneously show some other program value, leading the user to draw

incorrect conclusions about the behavior of the debuggee. I will illustrate this problem in the

later example of Figure 1.1. The reason for this inaccuracy is that the simplistic mappings

generated by the compiler — and used by the debugger for debugging unoptimized code

— are not powerful enough to take into account the effects of optimizations.

Rather than provide erroneous and misleading responses to the user, other debuggers

disallow the debugging of optimized code. To give an example from the PC–Macintosh

world:

Enable Debugging turns off all optimizations. When the compiler op-

timizes it sometimes rearranges object code so that it does not correspond

exactly to the source code. This rearrangement may confuse the debugger’s

source code view.

The lack of support for debugging optimized code has forced software developers to

choose between either (1) enabling optimizations and foregoing the use of the debugger,

or (2) compiling without optimizations so that a source-level debugger can be used when

necessary. Because the ability to debug the production version of a software system is

so important, the lack of support for debugging optimized code has discouraged some

developers of large complex software systems from using optimizations. For instance,

developers of the Coda file system [85] at Carnegie Mellon University do not enable

optimizations during compilation, so that the system can be debugged in the field when

necessary [90]. There are many instances, however, where debugging the unoptimized

translation is unacceptable or debugging the optimized translation of a program is desirable:



13

1. In a production environment, it is desirable to use optimizations, and to debug the

optimized production version of a program. The ability to debug optimized code

is crucial to the software developer using optimizations, as he must ensure that the

shipped version of a software system has been fully debugged. It is not sufficient to

debug an unoptimized version of a program before enabling optimizations, because

optimizations can change the behavior of a program. Bugs can surface when opti-

mizations are enabled, even when compiler optimizations are correct. Optimizations

change the data layout of a program and cause the program to execute faster; there-

fore, the debuggable translation of a program may mask a bug due to differences in

storage layout and timing behavior [35]. For example, differences in timing behavior

may cause the appearance of bugs due to race conditions. Or, differences in memory

layout may cause pointer bugs that are unnoticed in the unoptimized version to cause

a runtime error in the optimized version — or vice-versa.

2. Even if optimizations did not significantly change the behavior of a program, there

are situations where it is impossible for the user to re-execute a crashed program

under a source-level debugger, in which case all that is left for the debugger user is a

core file. For instance, the sequence of inputs resulting in the runtime error may be

irreproducible, or the program may have crashed in the field at a customer site and all

that is available is a bug report and core file. In such situations, the program cannot

be recompiled and re-executed under the source-level debugger; the program must

be analyzed post-mortem.

3. Optimizations may be absolutely necessary to execute a program. Differences be-

tween the optimized and debuggable translations of a program can preclude the

debuggable object code from running on a target platform — for example, because

of memory limitations or constraints imposed on an embedded system.

In some situations where optimizations are necessary, developers have resorted to

assembly-level debugging to debug their program. This scenario is common in the su-

percomputer world, where without optimizations applications can run for a prohibitively

long time. Rather than deal with the problem of debugging optimized code, some super-

computer vendors have responded to the problem by providing debugger users with an
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S1: d = f+g; S1: load R1,f I1: load R1,4(sp)
S2: b = c*a; S1: load R2,g I2: load R2,8(sp)
S3: *p = a; S1: fpadd Rd,R1,R2 I3: store 0(R4),R3

S2: fpmul Rb,Rc,Ra I4: fpmul R4,R5,R3
S3: store 0(Rp),Ra I5: fpadd R6,R1,R2

(a) (b) (c)

Figure 1.1: Example: The effects of instruction scheduling and register allocation on
source-level debugging (a) Source code (b) Intermediate code (c) Object code

assembly dump window [91, 92, 110] — that is, a window that shows the instructions

generated for the function being viewed at the source level. Optimizations make it very

difficult for a user to debug a program at the assembly level. It is usually very tricky and

time consuming — even for a compiler optimization expert — to look at optimized object

code and relate individual instructions back to entities in the source code. Not only must the

user take into account the net effect of cascaded optimizations, but he must also bridge the

gap between assembly and source code1. For a software developer not versed in optimizing

compiler technology, it can be impossibly difficult, tedious, and error prone to monitor a

program at the assembly level, especially in the context of a large program.

The example of Figure 1.1 illustrates the difficulties introduced by two common code

generation optimizations: global register allocation and instruction scheduling. Figure

1.1(a) shows a source code fragment and Figure 1.1(b) shows the translation of this code

to an instruction sequence before register assignment and instruction scheduling. The

instruction set in this example is that of a hypothetical load–store architecture; destination

operands are listed first. All variables have been promoted to registers (shown symbolically

as Ra, Rb, etc.) except forf andg, which are on the stack. Figure 1.1(c) shows the resulting

object code after instruction scheduling and register assignment. Instruction scheduling has

re-ordered and interleaved code from different statements, while register allocation has

assigned the same register (R4) to two different variables (p and b). Note that register

assignment has been done after instruction scheduling, since in Figure 1.1(b), p and b are

simultaneously live at statement S3’s store instruction and thus cannot be assigned the same

register.

By reusing registers that are assigned to source-level variables, register allocation com-

1Systems that generated code dynamically (e.g., [70] or [6]) are even more challenging to decipher.
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plicates the debugger’s basic task of retrieving the runtime value of a variable. In an

unoptimized translation of a program, each variable is assigned a unique memory location

(its home location); when the user queries a variable’s value, the debugger can simply

display the value in the variable’s home location. Register allocation tries to minimize the

use of registers by reusing registers as much as possible. This causes a problem for the

debugger: if a variable has been allocated a register, there is no guarantee that the value in

the variable’s register is indeed a value of that variable. In the example of Figure 1.1, the

variables b and p are both assigned register R4. If execution stops at or before instruction

I4, b has no runtime value, because R4 holds a value of p. Similarly, if execution stops

after I4, p has no runtime value, because R4 holds a value of b.

In the code of Figure 1.1(b), the boundaries between statements are clear and the

debugger can map a breakpoint at a statement to the first instruction generated for the

statement. Because of the reordering and interleaving introduced by instruction scheduling,

it is difficult to decide where breakpoints should be set in the code of Figure 1.1(c).

The execution of statement S1 is overlapped with the execution of statements S2 and S3.

If a breakpoint occurs at code for either statement S2 or S3, statement S1 will not yet

have completed execution. To further complicate matters, the three statements complete

execution in reverse order from what is specified in the source. The debugger user will

observe the side effects from the assignments in a completely different order than expected.

In practice, it is impossible for the debugger to provide the illusion that the statements are

executing in the order prescribed by the source, unless the debugger reorders the instructions

back to their original source order.

Instruction scheduling and register allocation are standard optimizations that are em-

ployed in almost all state-of-the-art compilers; the preceding problems can be expected in

any modern optimizing compiler. Other optimizations, such as code motion and dead code

elimination, create additional problems for debugging.

This dissertation shows that accurate source-level debugging of fully optimized code is

viable in practice. I demonstrate this in the context of a compiler that performs a complete

set of global scalar optimizations for a commonly used source language such as C. The

techniques presented in this dissertation do not constrain the optimizations performed by

the compiler and do not instrument the debuggee to enable debugging. All interactions
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between the debugger and the user are in terms of the original source text using source

variable names and expressions.

There are many approaches to the problem of debugging optimized code — in Section

2.4, I describe approaches that have been proposed and implemented in the past. Some

approaches are invasive: the debugger requires modifications to the program or limitations

on the transformations performed by the compiler. Source-level debugging can be made

significantly easier if the compiler or debugger is allowed to insert additional code into the

program before or after optimizations [93, 46], or if compiler optimizations are constrained

so that problems do not occur [111, 52]. But such modifications or limitations no longer

qualify a program as optimized and defeat the goal of debugging optimized code. In this

dissertation, I assume that the debugger is non-invasive [2, 1]: the code generated by the

compiler and debugged by the user is the default code generated with optimizations enabled.

The compiler is not allowed to insert additional instructions into the object code to enable or

simplify source-level debugging; I am interested in debugging the fully optimized version

of a program.

To debug a program non-invasively, the debugger must somehow convey the effects of

optimizations to the user. In general, it is impossible to make the effects of optimizations be

transparent — that is, to hide the effects of optimizations from the user and to provide the

same interactions as in unoptimized code. For example, in Figure 1.1, there are situations

where in response to a user query for the value of variable p or b, the debugger must inform

the user that no runtime value is available. The approach I present in this dissertation makes

the effects of optimizations transparent whenever possible. Only when optimizations cannot

be hidden from the user does the debugger inform the user of the effects of optimizations

on the expected execution behavior of the program. Most of this dissertation is concerned

with detecting the effects of optimizations on source-level debugging, and conveying the

effects of optimizations to the user.

My research is oriented towards the debugging of imperative programming languages;

I consider the C programming language as the source language of the debuggee. In this

dissertation, I do not consider functional languages, although many of the techniques also

apply to functional languages and their compilers. The compiler model used in this research

is based on the traditional compiler organization used in most conventional industry and
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research compilers for imperative languages [7, 30, 71, 10]. The compiler first translates

a source program into a machine-independent intermediate representation (IR). Classic

machine-independent scalar optimizations — for example, code hoisting, dead code elim-

ination, strength reduction, and so on — are performed on the IR. After optimizations,

the code generation phase of the compiler maps the IR of the program into machine in-

structions and assigns machine resources, such as physical registers and functional units,

to the instructions. Optimizations performed by the code generator include global register

allocation and instruction scheduling (both local and global). In this dissertation, I consider

the effects of transformations performed by both the machine-independent optimization

and code generation phases of the compiler. I do not consider loop transformations such

as interchange, skewing, reversal, blocking, splitting, unswitching, and so forth [12]. Such

transformations have traditionally been used for vectorization and parallelization, and have

only more recently been used in compilers for uni-processors. The effects of loop trans-

formations on source-level debugging is left for future work; in Section 7.2, I suggest

an approach for dealing with loop optimizations. This dissertation does not investigate

debugging of parallelized code (debugging of parallelized code is the subject of Cohn’s

dissertation [33]).

In this dissertation, I concentrate on the low-level algorithms necessary to implement the

core functionality of a source-level debugger. This core functionality includes retrieving and

reporting variable values, and setting and reporting of breakpoints. This core functionality is

affected by global optimizations; thus, I present algorithms that implement this functionality

in the presence of optimizations — for example, algorithms for finding the latest runtime

value of a variable, when register allocation has re-used storage locations assigned to

variables. This dissertation does not deal with issues such as the debugger user interface, or

the compiler–debugger interface — although these issues are important in the design of a

debugger, problems relating to the core functionality of a debugger are more fundamental.

I have implemented all the algorithms I present in this dissertation in the context of

the cmcc compiler (this compiler is described in detail in [5]). cmcc is a retargetable

optimizing C compiler that I have implemented in collaboration with others as part of my

research. The compiler is based on the compiler model outlined above and generates code

that is roughly comparable in performance to the code generated by the native MIPS cc
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and gcc compilers on the DECstation 5000/200, and the native SPARC cc compiler on a

SparcStation 20; Section 3.1 evaluates the performance of code generated by cmcc relative

to code generated by these other compilers.

Structure of this dissertation

In Chapter 2, I present background material on source-level debugging and describe in

more detail the problems caused by compiler optimizations. I also describe prior work in

debugging of optimized code and the relationship of this dissertation to prior work.

In Chapter 3, I present the experimental framework used in this dissertation. I describe

the cmcc compiler and the suite of programs used for the measurements presented in later

chapters. I also discuss the quantitative methodology I used to gather the measurements in

this dissertation.

In Chapters 4 and 5 I describe my algorithms for detecting the effects of optimizations

on a debugger’s ability to retrieve and report variable values from a program’s runtime

state. In these chapters, I also present measurements of how often a user may be affected

by optimizations when querying a variable’s value.

In Chapter 6, I describe in detail the problems relating to setting and reporting of

breakpoints in optimized code. I present my approach to dealing with these problems as

well as measurements of how often a user’s ability to set breakpoints may be affected by

optimizations.

Finally, in Chapter 7, I summarize the main contributions of this dissertation and suggest

directions for future work.



Chapter 2

Background

In this chapter, I present background material on source-level debugging of optimized

code. In Section 2.1, I describe a debugger model that is used as a basis in the rest of

this dissertation. I concentrate on core debugger functionality and how optimizations affect

this functionality. In Section 2.2, I illustrate with an example how optimizations affect

debugger functionality. I also introduce terminology used when referring to variable values

in optimized code. In Section 2.3, I discuss the importance of minimizing perturbations

to the debuggee during debugging. In Section 2.4, I discuss prior work on debugging

optimized code and the relationship of this dissertation to past approaches. In Section 2.5,

I describe how source-level values can be managed by a debugger for optimized code.

2.1 Debugger model

The prime task of the debugger is to provide a source-level view of program execution; in

this section I describe how the debugger accomplishes this task and the core functionality

provided by the debugger. Additional functionality can be built based on the core set I

describe here.

The debugger provides the user with the illusion that the source program is executing

one statement at a time — on some abstract machine — in a manner defined by the

operational semantics of the source language. The debugger allows the user to interact

with the debuggee by providing mechanisms for controlling the execution of the debuggee

and mechanisms for inspecting or changing the state of program execution. Examples of

19
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such mechanisms include functions for halting execution and printing the current value of

a variable. All interactions between the debugger and the user are in terms of the high-level

language program that is the source for the debuggee; thus variables are referenced by their

user-given names, and breakpoints are set and reported at source statements or expressions.

There are three major aspects to the functionality of a source-level debugger:

1. The debugger allows the user to manipulate the execution of the debuggee by pro-

viding functions for suspending and resuming debuggee execution. User interrupts

allow the user to suspend the execution of an executing program asynchronously

(e.g., by typing CONTROL-C or hitting a break key). Breakpoints allow the user

to specify conditions upon which debuggee execution is halted. Control breakpoints

specify the breakpoint condition in terms of execution points in the source (e.g., halt

when control reaches a particular statement). Data breakpoints specify the break-

point condition in terms of source data objects (e.g., halt when a variable or memory

location is referenced). Data breakpoints can be implemented in hardware, software,

or a combination. The efficient implementation of data breakpoints is a topic of

active research [61, 96, 97, 60, 37] and beyond the scope of this dissertation. A

more general form of breakpoint, conditional breakpoints, suspends execution when

a user specified predicate on the program’s state becomes true. The clauses of the

predicate can contain values of program variables, as well as references to either

control or data breakpoints. The use of conditional breakpoints, as well as their

efficient implementation, are an open research topic [61] and beyond the scope of

this dissertation.

2. The debugger conveys to the user the control state of the halted debuggee in source-

level terms by conveying which expressions have and have not executed. In unop-

timized code this is easily done by pointing out the statement where execution has

halted.

3. The debugger conveys to the user the data state of the halted debuggee in source-level

terms. This is accomplished by allowing the user to query variable values.

The debugger is invoked as a result of a break that halts the execution of the debuggee.

At a break, the halted program is either suspended or terminated. A suspended program is



2.1. DEBUGGER MODEL 21

one that is halted as a result of a user request to intercept control — that is, a breakpoint or

user interrupt. The user can resume the execution of a suspended program from the point

where the break occurred. A terminated program is one that has been halted due to a runtime

exception condition — for example, a memory access violation. If the debugger allows the

user to modify program values at a break, then the user can try to resume the execution

of a terminated program after first fixing the runtime value that caused the exception —

for example, after changing the value of a nil pointer. In this dissertation, I do not allow

variable modification; therefore, the user is not allowed to resume execution of a terminated

program.

There are two ways in which the user can use the debugger: for interactive debugging

and for post-mortem debugging. During interactive debugging, the user controls program

execution by suspending and resuming the debuggee process. During post-mortem debug-

ging, the debugger is invoked after the program has terminated, and the user cannot resume

execution of the debuggee.

Breaks can be classified according to the runtime event causing the break:

� Control breaks suspend execution if the next instruction to be executed corresponds

to a point in the source at which the user has set a control breakpoint.

� Data breaks suspend execution if the next instruction to be executed references a

memory location at which the user has set a data breakpoint.

� User interrupts allow a user to suspend execution asynchronously. A user interrupt

suspends execution at the instruction that was to be executed at the instant the user

interrupt occured.

� Faults terminate program execution and occur if execution of an instruction causes

a runtime exception (e.g., division by zero, overflow for fixed-sized arithmetic, seg-

mentation fault, etc.). A fault terminates execution at the faulting instruction.

When the debugger is invoked, there exists a well-defined stopping instruction. A

stopping instruction I is the instruction causing the break — that is, I is the instruction at

which a control break occured; I is the instruction that caused a fault or data break; or I is

the instruction to be executed when a user interrupt occured. At a stopping instruction I ,
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all prior instructions have been executed (i.e., their effects are recorded), none of I’s effects

are visible (so I has not been executed), and none of the instructions subsequent to I have

executed. If the target machine architecture exposes the effects of the individual operations

of an instruction, then the definition of the stopping instruction can easily be extended

to consist of an instruction I and the set of operations of I that have not been executed.

Superscalar machines may allow instructions to complete out of order during execution of a

program but usually provide precise interrupts [50] when an exception occurs. Recovering

a precise machine state when the target machine’s exceptions are imprecise is orthogonal to

the topic of this dissertation. The techniques presented in this dissertation can be generalized

to work in the context of imprecise interrupts as long as the interrupt-handling software can

determine which instructions have completed execution (ormay have completed execution).

When a break occurs, the debugger must convey the cause of the break in terms of the

source program. In the source, breaks are distinguished according to whether they cause

execution to halt at a statement boundary (i.e., at a point between two statements in the

source) or within some statement S (i.e., during the execution of an operation within S).

When a control break invokes the debugger, the debugger reports that execution has stopped

at the statement S where the user has set a breakpoint. User interrupts, faults, and data

breaks cause breaks during the execution of an operation within some statement, and are

known as asynchronous breaks. When an asynchronous break occurs, the debugger maps

the stopping instruction I , at which execution is halted, to the operationO in the source, for

which I was generated. O is referred to as the stopping operation, and corresponds to the

source operation where the fault, data break, or interrupt occured. When an asynchronous

break occurs, the debugger reports that execution halted within the statement S containing

O. The debugger may optionally report the source-level expressionO to the user, depending

on the granularity of the correspondences maintained by the compiler and debugger. In the

case of either control or asynchronous breaks, the statement S is referred to as the control

reference statement. Thus, a break is characterized by a pair hS� Ii, where S is the control

reference statement, and I is the stopping instruction.
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2.2 Debugging optimized code

Compiler optimizations complicate the task of the debugger by making it impossible for

the debugger to provide the illusion that source statements are executed one at a time.

To allow debugging, current compilers generate a debuggable translation of a program, in

which boundaries between source code entities (e.g., statements, functions and variables)

are preserved in the object code. More specifically, the ordering among source statements

is preserved in the generated instruction sequences, and variables that are in scope at

some statement S have an assigned storage location at the corresponding object code

instruction(s) generated for S. In this manner, all that is required to implement debugger

functionality is a mapping from each statement to an instruction, and each variable to a

storage location. To implement a breakpoint at a source-level statement S, a breakpoint is

set at the first instruction generated for S. Similarly, to implement source-level variable

query and modification, a value in a runtime storage location is retrieved or modified. The

task of the source-level debugger is simplified to that of mapping each statement to an

instruction, and each variable to a storage location, using tables generated by the compiler.

Because of the straightforward nature of the translation, these (one-to-one) mappings are

easily generated by the compiler.

Transformations performed by optimizing compilers duplicate, eliminate, or reorder

operations and values. As a result, the functionality of a source-level debugger is affected

in the following ways:

� Because of optimizations, source execution points (i.e., source statement boundaries)

are not well defined in the object code: code from a statement may be eliminated,

moved, or merged with code from other statements. Consequently, optimizations

make it difficult for a debugger to convey the exact control state of a halted program

— for example, conveying which source-level expressions have completed execution,

or which expression caused execution to halt. Moreover, providing source-level

control breakpoints becomes difficult as mapping an execution point in the source

program to an instruction in the object code becomes non-trivial. Similarly, mapping

an instruction to the source code, in the case of an exception, becomes difficult. These

problems are called code location problems [109].
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� By reordering the execution of source expressions, and re-using runtime storage

locations, optimizations make retrieval (modification) of source-level values from

(in) the runtime state difficult (if not impossible) because some values may be either

inaccessible in the runtime state [2] or inconsistent with what the user expects with

respect to the source statement where execution has halted [1, 4]. These problems

are called data-value problems [109].

In general, optimizations make it impossible for the debugger to provide the illusion

that the source program is executing one source statement at a time, and that all in scope

variables are available for inspection and modification. The goal of this dissertation is to

extend the functionality of traditional debuggers with new source-level interactions that

allow a user to manipulate or examine the state of an optimized program in a meaningful

(and useful) way.

Support for debugging optimized code also complicates the implementation of the

compiler: the compiler must track the correspondences between the source program and

the intermediate representation, as optimizing transformations are performed. Moreover,

as the mappings are no longer one-to-one, the compiler–debugger interface becomes more

complicated.

2.2.1 Example: Global register allocation and instruction scheduling

To illustrate the difficulties caused by optimizations, let us consider again the source and

object codes of Figure 1.1, shown again in Figure 2.1. The compiler has performed

two common transformations: instruction scheduling and register allocation. To reduce

memory accesses, the compiler has assigned registers R3, R5, and R6 to variables a, c, and

d, respectively. Variables b and p have both been assigned register R4 since these variables

have disjoint live ranges in the object code.1 Variables f and g have not been assigned

registers and they reside in the runtime stack. Upon entry to this block of code, R4 contains

the value of variable p. The value of p becomes dead after instruction I3, and register R4

(the register assigned to p) is assigned a value of b at instruction I4.

1Note that register assignment has been performed after instruction scheduling since the assignment to b
at S2 and the last use of p at S3 have been re-ordered in the object code. As a result of this reordering, these
two variables having disjoint live ranges.
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S1: d = f+g; I1: load R1,4(sp)
S2: b = c*a; I2: load R2,8(sp)
S3: *p = a; I3: store 0(R4),R3

I4: fpmul R4,R5,R3
I5: fpadd R6,R1,R2

Source code Object code
(a) (b)

Figure 2.1: Example

To hide the latency of memory load instructions, the compiler has scheduled the in-

struction sequences from different source statements. Table 2.1 shows the correspondences

between instructions, source expressions, and statements; it is easy to see how the instruc-

tion scheduler has interleaved and reordered the execution of instruction sequences from

different statements. For example, the assignment to d from statement S1 occurs at instruc-

tion I5, while the assignments to b and *p of statements S2 and S3 occur at instructions I4

and I3, respectively.

Object Source Expression Source
Instruction Evaluated Statement

by Instruction

I1 f S1

I2 g S1

I3 *p = a S3

I4 b = c*a S2

I5 d = f+g S1

Table 2.1: Execution order of code in Figure 2.1

Code location problems

To allow the user to halt execution at a source statement, the debugger must map a statement

in the source to an instruction in the object where a breakpoint will be set. One obvious

choice for mapping a breakpoint at a statement S is to map the breakpoint to the first

instruction generated for S. Consider the case where the user sets a breakpoint at statement

S2 in the source of Figure 2.1(a). The debugger will map this breakpoint to instruction I4.

Note, however, that at I4, statement S3 has already completed execution while S1 has not

completed execution. This causes several anomalies during debugging:
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1. The user may have set the breakpoint to halt execution before an exception at statement

S3’s pointer assignment, but since S3 completes execution before I4, S3 will fault

before the breakpoint at S2 is reached. It will appear to the user that the breakpoint

at S2 is missed.

2. After the breakpoint at S2 is reached, the user may want to single step to statement

S3. Since S3’s breakpoint instruction has already been executed, the single step will

not reach the breakpoint at S3. It will appear to the user that S3 is skipped by the

single step.

3. If the user resumes execution from the breakpoint at S2, and instruction I5 subse-

quently causes an exception (e.g., floating-point overflow), the debugger will report

an exception at S1. It will appear to the user that execution proceeded backwards

from S2 to S1.

The user expects that a breakpoint at a statement S suspends execution before any statement

subsequent to S begins execution, and after all statements prior to S have completed

execution. In unoptimized code, mapping a breakpoint to the first instruction of a statement

achieves the desired effect since instruction sequences are neither overlapped, eliminated nor

re-ordered. Moreover, the control state of a halted program can be precisely conveyed in the

source: if a breakpoint or exception occurs during the execution of an instruction generated

for a statementS, the debugger can report that execution has halted at or during the execution

of S; the user is assured that all prior statements have completed execution and none of

the subsequent statements have started execution. In optimized code, as the example above

illustrates, mapping a breakpoint at a statement S to the first instruction generated for S may

cause behavior that seems anomalous to the user. Due to the reordering and interleaving of

instructions from different statements, there is no mapping from source statements to object

instructions that will guarantee in general that breakpoints and exceptions are executed

in order — this is evident in the example of Figure 2.1. Furthermore, the debugger can

no longer accurately convey the control state simply by reporting that execution is at a

particular statement.

The re-ordering and overlap caused by instruction scheduling also complicates keeping

track of the correspondence between machine instructions and source lines. Rather than
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simply using labels that separate statements in the intermediate representation, the compiler

must keep detailed information that maps each instruction back to an operation in the

intermediate representation. Moreover, a single line number entry for each statement is no

longer sufficient for reporting the statement where a fault occurs.

Data-value problems

In response to a query of a variable’s value, a debugger typically retrieves and displays

the value in the variable’s runtime location. In unoptimized code, each variable has a

unique runtime location; thus, runtime values exist for all variables that the user can query.

Furthermore, because variable assignments are performed in the expected source order, a

variable’s runtime value will be identical to the value that the user expects the variable to

have with respect to the statement at which execution has halted. In optimized code, on the

other hand, the value in the runtime location of a variable — at a particular execution point

in the object — may not be the value expected by the user. For example, register allocation

can assign a single register to more than one variable; therefore, the runtime location

of a variable may be holding the value of some other variable or a compiler temporary.

Instruction scheduling can change the order in which assignments are performed; therefore,

the value in the runtime location of a variable may not be an up-to-date value.

These data-value problems are illustrated with the example shown in Figure 2.1. If

execution stops at instruction I4 (e.g., due to a floating point exception), the debugger

should report that execution has halted within statement S2. At this instruction, the register

assigned to b (register R4) is holding the value of p; therefore, no source value of b is

available in the runtime state. The debugger will clearly mislead the user if it naively

displays the value in R4 in response to a query of b’s value. At statement S2, the user

expects d to have the value assigned by statement S1. However, this assignment to d has

not yet executed (it executes at I5), and the value in d’s runtime location (i.e., the value

in R6) is the value from the last executed assignment to d prior to this block. Therefore,

the value in d’s runtime location (although it is some source-level value of d) does not

correspond to the value that the user expects d to have. Again, the debugger may mislead

the user if it displayed this unexpected value of d, without further qualification.
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Sometimes, it is not possible to determine whether the value in the runtime location of

a variable is an up-to-date value. For example, if the program stops at I4, the assignment to

*p of S3 has executed prematurely at instruction I3. Therefore, the memory location M , to

which p points, also contains a value different from the one expected by the user. M may

be the runtime location assigned to a variable, or it may be part of a dynamically allocated

heap object. We can determine exactly which location M is not up to date, since the value

of p that was used by the prematurely executed assignment of S3 is available in R4. But

consider stopping at instruction I5, reported at statement S1. The assignment of S3 has

again executed prematurely, but the value of p used by S3 is unavailable because p itself is

no longer available (R4 now holds the value of b assigned at statement S2). Therefore, we

cannot determine the memory location M that is modified and must conservatively assume

that the value of any variable with a runtime location in memory — that is, f or g — may

not correspond to the value the user expects.

Discussion

The anomalous and unexpected behaviors described above are typical of what can be

observed if a program is compiled with optimizations and subsequently debugged using

current compilers and debuggers. Such behavior is clearly of limited use in debugging a

program because the values and program points reported by the debugger do not accurately

describe the program state to the user. The design goal for a debugger of optimized

code should be to extend the functionality of a traditional debugger so that it can provide

interactions that will guide the user in debugging optimized code.

2.2.2 Values in optimized code

Most research on debugging optimized code concentrates on the data-value problem and

much terminology exists for this aspect of the problem [49, 2, 1, 36, 106]. In this section, I

review this terminology.

At a break, the debugger conveys the state of source variables by allowing the user

to query variable values. The control reference statement acts as a reference point in the

source for reasoning about these values: the value that the debugger displays to the user is
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implicitly qualified as being the source-level value at the control reference statement. The

value that a user expects a variable V to have, relative to a statement S, is V ’s expected

value at S. For example, at statement S3 in Figure 2.1, the expected value of d is the value

assigned by statement S1. Note that in the presence of a bug the expected value of a variable

V may not be the value the user intended V to have. We are concerned only with the value

the variable is supposed to have with respect to the source program, not with the value the

intended for the variable. The debugger can only show the expected value of a variable; the

user must make the determination whether the expected value of a variable is the intended

value.

When a program is translated, each source variable V is assigned a runtime storage

location (e.g., a register, or a slot in the activation record). In response to a query of V ’s

value, the debugger can retrieve and display the value in this location. The value in V ’s

runtime location at a stopping instruction I is V ’s actual value. In the example of Figure

2.1, at instruction I3 the actual value of d — that is, the value in register R6 — is the value

assigned by the last assignment to d before this block of code.

In unoptimized code, the actual value of a variable is always identical to the variable’s

expected value. As illustrated in Section 2.2.1, however, several problems arise in opti-

mized code. First, because of transformations such as global register allocation, there may

sometimes be no runtime location holding a variable V ’s value at a break; consequently, no

actual value of V may exist. For example, if a variable V has been assigned a register R,

and the stopping instruction lies outside of V ’s live range, then R may be holding the value

of some other variable (or temporary) at the break. In the example in Figure 2.1, p has no

actual value at stopping instruction I5, since p’s assigned register R4 is holding the value of

b (assigned at I4) at this break. If, at a break B, the storage location assigned to a variable

V is holding the value of some other variable, then V is nonresident at B [2]. If V is

resident, the storage location where V is accessible is called V ’s residence and the value in

V ’s residence is V ’s actual value [35].2 The fourth column of Table 2.2 lists the nonresident

variables at breaks in the code of Figure 2.1. The first three columns of this table again

show the correspondences between instructions, source expressions, and statements. Note

2There are also situations where a variable may be resident in more than one location (e.g., due to live
range splitting or renaming); or where a variable is eliminated by optimizations, and thus, has no runtime
location anywhere in the program (e.g., due to value propagation and dead code elimination).



30 CHAPTER 2. BACKGROUND

that residency depends only on the stopping instruction and is independent of the control

reference statement.

Object Source Expression Source Nonresident Endangered Variables
Instruction Evaluated Statement Variables Noncurrent Suspect

by Instruction

I1 f S1 b
I2 g S1 b
I3 *p = a S3 b d
I4 b = c*a S2 b d *p
I5 d = f+g S1 p b f,g

Table 2.2: Endangered variables at breakpoints in the code of Figure 2.1

Even if a variableV is resident, the actual value of V may not correspond to the expected

value of V . If the actual value of a variable V at a break B is identical to the expected

value of V relative to the corresponding control reference statement, then V is current at B.

Otherwise, if the actual value is not identical, then the variable is said to be noncurrent [49].

In Figure 2.1, d is noncurrent at break hS2� I4i. If it cannot be determined with certainty

whether a variable is noncurrent, then this variable is called suspect [1]. At break hS1� I5i,

both f and g are suspect: S3 has prematurely executed, but the value of p is nonresident,

so we cannot determine which memory location has been prematurely modified. In the

absence of other information — for example, alias analysis information — we must make

the worst-case assumption that any variable stored in memory can be noncurrent.

In general, noncurrent and suspect variables are referred to as endangered variables;

that is, an endangered variable is a variable whose runtime valuemay not correspond to the

variable’s expected source value. (An endangered variable is either noncurrent or suspect,

but not both.) Endangerment does not pertain to a nonresident variable, since such a variable

does not have an actual value. The last two columns of Table 2.2 list noncurrent and suspect

variables at breaks in the code of Figure 2.1. Note that endangerment depends on both the

stopping instruction (which determines a variable’s actual value) and the control reference

statement (which determines a variable’s expected value).
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2.3 Perturbations caused by the debugger

To implement certain debugger features such as breakpoints, the debugger must sometimes

modify the object code to realize a desired effect (e.g., stopping when machine instruction I

is the next instruction to execute). In addition, a debugger or compiler can effect changes in

the debuggee’s address space to facilitate debugging. In this section, I discuss the importance

of limiting or prohibiting changes in the debuggee’s address space in the implementation

of a debugger for optimized code.

By effecting changes in the debuggee’s address space, the debugger can perturb the

execution of the debuggee. However, the reasons for debugging optimized code require that

the debugger modify the object code as little as possible. Perturbations in the storage layout

and timing behavior can mask a bug, or prevent execution on a target platform (because of

a size increase of either the object code or the data segment). Even if perturbations of the

debuggee’s address space do not prohibit execution on a target platform, program execution

will slow down.

There are two types of modifications that a debugger can effect on a program’s address

space: changes of the data layout and changes of the code segment. Changes to the data

layout should be avoided; references to illegal storage locations or undefined variables are

among the most difficult bugs to find, and if the debugger modifies how the user variables

and compiler temporaries are stored in memory, then the debugged program will differ

significantly from the program run without the debugger.

Modifications to the code segment may be necessary to implement breakpoints. If

the target architecture does not contain a "breakpoint" register (such a register contains an

instruction address, and the runtime system is invoked when this address is to be executed

next) or a break bit in the instruction (execution stops when an instruction with the break bit

set is decoded), then code modification is unavoidable. A common approach is to use code

patching to implement breakpoints [61] — for example, to implement a control breakpoint

at an instruction I , I is replaced by a jump to a code patch that contains a trap instruction

followed by I . In the case of control breakpoints, code patching does not increase the

number of instructions executed, since each code patch transfers control to the debugger

and is thus part of the context switch overhead.
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Address-space perturbation is one aspect of the invasiveness of a debugger. A related

issue is whether modifications to the object code are done at compile time or at debug time.

Code patching can be performed either by the compiler tool chain before the program is

run (e.g., as performed in [97] to implement data breakpoints), or by the debugger when the

program is being debugged (e.g., to implement control breakpoints [61]). If modifications

are done at compile time, the resulting code no longer qualifies as optimized (in the sense

that this is the best code that can be generated for a given program). If the debugger is not

invoked, then the execution has been unnecessarily slowed down. In practice, this situation

tempts users to avoid the extra modifications and it is unlikely that the production version

of a program will contain additional debugging code. Hence, the production version cannot

be debugged (either interactively or post-mortem) and must be re-compiled for debugging.

An extreme case is the use of a special flag to enable debugging, which avoids the issue of

debugging optimized code.

I call a debugger non-invasive if it does not require modification to the data layout, and

requires modifications to the code segment only to implement control breakpoints at debug

time. Otherwise, I call the debugger invasive. Since perturbations caused by an invasive

debugger are undesirable for reasons similar to those motivating the debugging of optimized

code, this dissertation concentrates on non-invasive debuggers. Consequently, the compiler

is not allowed to insert extra code to make debugging easier, or to ease retrieval of values —

for example, the compiler is not allowed to re-order code back to the original source order

or to insert code to save values before they are lost. The code generated by the compiler

must be the same as the code generated otherwise. More specifically:

� I preclude the use of instrumentation code to enable or aid debugging. I will show in

Section 5.5.1, that instrumentation code can help the debugger by providing runtime

information that enables the debugger to eliminate suspect variables caused by code

hoisting and dead code elimination. However, not only does instrumentation code

perturb execution (thus possibly masking a bug), it also makes the code non-optimal

and is thus unlikely to be part of the production version of a program. Requiring

instrumentation code does not completely address the problem since the user is still

faced with the choice between a fully optimized translation of a program and a

debuggable but non-optimal translation.
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� I preclude the insertion of hidden breakpoints [108] by the debugger; hidden break-

points are inserted into the program to collect runtime information at key execution

points in the program. This technique may be helpful in some interactive debugging

sessions where execution speed is not an issue; but in general, the high cost of context

switching between the debugger and the debuggee greatly perturbs timing behavior.

Moreover, hidden breakpoints do not help in the case of post-mortem debugging.

� I preclude techniques that limit or constrain optimizations to allow debugging. For

example, nonresident variables can be avoided if the compiler stores variables to mem-

ory at the end of live ranges. Endangered variables caused by instruction scheduling

can be avoided by limiting the scope of instruction scheduling to instructions within

individual source statements. Tradeoffs between optimizations and debuggability are

left for future work.

2.4 Alternative approaches to debugging optimized code

There are a number of approaches that can be taken in the design of a source-level debugger

for optimized code. In this section, I describe approaches that have been proposed or

implemented in the past and relate these prior approaches to the one presented in this

dissertation. I identify four general approaches to the problem of debugging optimized

code: The first approach ignores the fact that optimizations have been performed, resulting

in the anomalous behaviors described in Section 2.2.1. The second approach tries to hide all

optimizations from the user, and to provide the exact functionality and behavior as expected

from unoptimized code. In general, this approach cannot be applied non-invasively. The

third approach exposes optimizations to the user, leaving the user with the task of sorting out

the source state based on runtime values in the optimized program. The fourth approach —

which is the approach taken in this dissertation — detects when optimizations can be made

transparent and exposes optimizations to the user only when necessary; when optimizations

must be exposed to the user, this approach manages the effects of optimizations by relating

runtime values in the optimized program to source-level values in the original program.
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2.4.1 Ignoring optimizations

There are some debuggers that allow debugging of optimized code but ignore the effects of

optimizations. The compiler produces symbol table information that maps statements and

variables to instructions and runtime locations in the optimized translation. The debugger

interprets the symbol table information in the usual manner. Neither the compiler nor the

debugger consider the effects of optimizations on the expected execution; for example,

the debugger retrieves the value in the runtime location of a variable without regard to

whether the variable is resident. These systems usually warn the user beforehand (in

their documentation) that anomalous behavior will occur, or that some responses may be

inaccurate during debugging of optimized code.

As the example of Section 2.2.1 illustrates, such an approach results in behavior that

seems anomalous to the user. This approach is inadequate because the user can never be

sure whether the displayed value of a variable is the expected value, or whether a breakpoint

will be executed as expected. For an approach to be useful, the debugger (in conjunction

with the compiler) must either (1) somehow hide the effects of optimizations by presenting

the same behavior as when debugging an unoptimized program, or (2) take optimizations

into account by detecting and conveying to the user the effects of optimizations on source-

level debugging. Otherwise, the program points and values reported by the debugger will

mislead the user.

2.4.2 Providing expected behavior

Ideally, we would like the debugger to hide the effects of optimizations by presenting to the

user the expected values of variables and by providing the illusion that source statements are

executed in source order. That is, we would like the debugger to present expected behavior

[108] to the user: the debugger provides the same behavior when debugging the optimized

version of a program as when debugging the unoptimized version.

To provide expected behavior without constraining optimizations or debugger function-

ality, the debugger must detect all nonresident and endangered variables, and recover their

expected values. Moreover, the debugger must ensure that events, such as breakpoints and

exceptions, occur in the order prescribed by the source (and expected by the user). How-
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ever, it is not always possible to recover the values of endangered or nonresident variables,

or to guarantee that events occur in source order, without constraining the optimizations

performed by the debugger or inserting code to make expected behavior possible (e.g., by

inserting code to store a register assigned variable to memory at the end of the variable’s

live range, even though the variable is dead). Therefore, providing expected behavior

non-invasively is generally not feasible when debugging the optimized translation of a

program.

Several approaches have been proposed that provide expected behavior at the expense of

limiting the scope of optimizations [52, 111, 46, 93]. These approaches sacrifice optimiza-

tions for debugging and emphasize interactive debugging over post-mortem debugging.

These approaches use a combination of techniques:

� The program points where the debugger can be invoked are limited and optimizations

are constrained so that debugger functionality can be provided at these points [83, 52,

111, 46]. The compiler optimizes code between invocation points in a manner that

allows the user to query program state when the debugger is invoked; for example,

the compiler guarantees that all variables that are in scope at an invocation point are

current. In the limit, this technique constrains the scope of compiler optimizations to

individual source statements, thus allowing full debugging with limited optimizations.

� Instrumentation code is added before optimizations to collect runtime information for

answering debugging queries. Instrumentation code can be placed at a few program

points specified by the user [46] or at all source statements [93]. Optimizations

do not interfere with debugging because the instrumentation code is inserted before

optimizations.

� In response to a user request, the region of code affected by the request is incrementally

recompiled by the debugger. Either new instrumentation code is inserted to implement

the user request [46] or a function is deoptimized, allowing the user request to be

carried out within that function [83, 52, 111].

In the following paragraphs, I first present each approach, and then discuss the limitations

of the techniques.
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Pollock and Soffa [83] propose an incremental compiler to disable optimizations that

prohibit the debugger from satisfying a user request. The debugger user specifies all requests

before program execution and the debugger incrementally recompiles the program in a

manner that allows the requests to be satisfied. A program representation is described that

keeps track of optimizing transformations and allows the compiler to derive the unoptimized

version of the program after optimizations. No implementation of this proposal exists.

Holzle, Chambers and Ungar [52] describe the approach to debugging optimized code

used in the SELF compiler system [27], an optimizing compiler for the object-oriented

language SELF [94]. This approach restricts the program points at which the debugger can

take control to discrete interrupt points. Optimizations are constrained so that the complete

source-level state can be reconstructed at each interrupt point. Initially, interrupt points

are at function prologues and at the end of each loop body; therefore, the debugger can

be invoked only at a subset of the source statements. When the debugger is invoked at

an interrupt point, the function (i.e., the SELF method) containing the interrupt point is

deoptimized by the debugger (if it is not deoptimized already) so that debugger functionality

such as single stepping and variable query can be provided; this is referred to as dynamic

deoptimization [52]. Once a function is deoptimized the debugger may be invoked at any

source point within that function. The SELF system generates code incrementally for each

function at runtime, thus facilitating the use of dynamic deoptimization.

Zurawski and Johnson [111] describe a similar approach used in the TS compiler [58],

an optimizing compiler for Typed Smalltalk. Like the SELF system, the debugger can be

invoked only at pre-determined points that in the TS system are called inspection points.

Inspection points are source points where the user can set a breakpoint, points where an

exception may occur, or function call sites where the debugger may be invoked before

the function returns. Optimizations are constrained so that the expected source-level state

can be reconstructed at each inspection point. Recovery information is generated by the

compiler and used by the debugger to map runtime state to the source-level state, at each

inspection point. The compiler performs an optimization only if it can produce recovery

information for each inspection point affected by the optimization. To allow modification

of variable values, a function is converted to its unoptimized form at debug time (the TS

compiler also performs incremental re-compilation).
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Gupta [46] proposes a technique for debugging code transformed by trace scheduling

compilers [43, 71]. During debugging, the user specifies commands for monitoring values

and conditions at various points in the program. Code is then added to the program to collect

the monitored values and the parts of the program containing the new monitor commands

are incrementally recompiled. The units of re-compilation are program traces used by the

compiler’s trace scheduler; therefore, the compiler’s trace scheduler must be integrated with

the debugger. No implementation of this proposal exists.

Tolmach and Appel [93] present an approach to source-level debugging used in the

Standard ML of New Jersey (SML-NJ) compiler [9], an optimizing compiler for Standard

ML [75]. SML-NJ instruments the source program so that information is gathered at

runtime in support of debugger queries. The instrumentation code is added to the abstract

syntax tree representation of the source and is transformed along with the rest of the program

by subsequent transformations. Although optimizations do not affect debugging in their

approach, their technique seems motivated mainly by the fact that their compiler transforms

the code through multiple representations, lambda-calculus, continuation passing style [8]

and then assembly code, making the tracking back to the source code very difficult.

The techniques used by the above approaches have the following disadvantages:

� Constraining optimizations or adding instrumentation code do not solve the problem

of debugging the optimized translation of a program; the user debugs a partially

optimized translation of the program. A special switch is still needed in the compiler

to enable debugging and the user is again faced with a choice between enabling full

optimizations and enabling debugging.

� Limiting the set of program points where the debugger can be invoked constrains

interactive debugging and precludes post-mortem debugging if execution terminates

at a point where the debugger cannot be invoked. Similarly, deoptimization precludes

post-mortem debugging if execution terminates in an optimized part of the program.

From a user’s perspective, it is valuable to have the ability to perform both full

interactive and full post-mortem debugging. Post-mortem debugging is especially

important in situations where either the user cannot re-execute the failed program,

or it is inconvenient to repeatedly execute the failing program interactively until the
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cause of the fault is determined via breakpoints.

� Incremental re-compilation re-translates portions of the code at debug time, and is

thus practical only in a programming environment where the compiler and debugger

are closely integrated. Moreover, incremental re-compilation precludes post-mortem

debugging: the user cannot use the debugger if execution aborts in a region of code

that needs to be recompiled for debugging.

2.4.3 Exposing optimizations to the user

Since it is generally not possible to provide expected behavior non-invasively, the debugger

must expose to the user the effects of optimizations on the expected execution. This

exposure should be in terms of the source program (after all, we are interested in source-

level debugging). One approach is to convey the control state of the program by exposing

to the user the order in which source expressions actually execute in the object. Based on

this information, the user can reason about the values of source variables. The debugger

addresses both the code location and data-value problems by exposing them to the user; the

user is left with the task of sorting out how optimizations have affected the state of source

variables at a break.

In his Master’s thesis [73], Lyle proposes to expose optimizations to the user by display-

ing a modified version of the source where operations have been re-ordered and eliminated

to reflect the final ordering of operations after instruction scheduling. This is a difficult

task because many transformations such as register allocation and software pipelining are

difficult to express in source terms. Lyle’s thesis specifically addresses scheduling for a

VLIW machine. No implementation of this proposal exists. For source-to-source transfor-

mations (e.g., loop interchange) this approach may be feasible since such transformations

are usually performed on a high-level (almost source-level) representation of a program,

and can thus be easily reflected in the source.

The CXdb debugger [20] is an example of an alternative way to implement the exposed

approach. CXdb animates execution by highlighting source expressions as the user single

steps at the object level. CXdb only highlights the expression that is about to be executed and

does not provide a control reference statement. No endangerment information is provided
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to the user; this is consistent, since no control reference statement is provided either.

Highlighting alone does not allow the user to determine which variables are nonresident;

therefore, CXdb partially addresses the data-value problem by addressing the residence

problem only. A resident variable is implicitly suspect — it is up to the user to determine

(using information discerned from execution animation) how the runtime value of a variable

relates to the source value. The CXdb approach of only detecting nonresident variables is

the most conservative behavior that can be expected of a debugger for optimized code. It

is important that a source-level debugger provide at least this level of support for dealing

with data-value problems, otherwise the user may be misled by the value displayed by the

debugger3 — that is, the user must be sure that the value displayed by the debugger is at

least some source-level value of the queried variable.

The CXdb approach is applicable to a wide range of optimizations since the compiler

needs only to maintain correspondences between source expressions and instructions at a

very fine granularity. No analysis is required to detect how the actual values of source

variables differ from their expected values since the user is responsible for determining how

actual values relate to source-level values.

The exposed approach, and the CXdb approach in particular, is unsatisfactory for a

number of reasons:

1. The burden of determining how the expected source-level state has been affected by

optimizations is placed on the user. If the user is not versed in compiler optimizations,

then this burden is unacceptable.

2. Visual annotation is useful only if the user interactively single-steps through the code;

for each step, the source expression being executed is illuminated. It is not useful for

post-mortem analysis or if a breakpoint is reached during the execution of a program:

the debugger highlights the expression at which execution halts, but does not provide

execution history, since the program was not single stepped.

3. Animation of some optimizations may not be easily expressed in source terms, in

a manner that is easily understood by the user. For example, consider software

3Some commercial debuggers that claim to provide support for optimized code, naively display the value
in a queried variable’s storage location without detecting whether the variable is resident[35].
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pipelining where the execution of multiple loop iterations are overlapped;highlighting

alone cannot convey the iteration index of an operation that is being executed.

2.4.4 Managing the effects of optimizations

Even though hiding the effects of optimizations is generally not possible, there are still many

situations where optimizations do not affect debugging and where the debugger can provide

expected behavior to the user. When the debugger determines that optimizations need to be

exposed to the user, the debugger can still manage the effects of optimizations by guiding

the user in understanding how optimizations have affected the expected source-level state.

In this manner, the burden of analysis is shifted to the debugger, and less knowledge about

optimizations is required on the part of the user. This approach, however, increases the

complexity of the debugger implementation because it requires the debugger to perform

analysis to determine when and how optimizations affect source-level debugging.

Most of the prior work on detecting the effects of optimizations has focused on data-

value problems; very little work has been done on managing code location problems.

To manage the data-value problem, the debugger can detect the set of variables that are

nonresident or endangered, and either report them as such in response to a user query,

or attempt to recover their values, although recovery may not always be successful. The

recovery strategy has an influence on how often the debugger is able to present the expected

value to a user, but in either case, the debugger is never allowed to present erroneous data to

the user. If a variable is endangered, the debugger displays the actual value of the variable

with a message qualifying the variable as endangered. Zellweger [108] refers to debuggers

that detect endangered variables as exhibiting truthful behavior. The debugger can provide

additional guidance by conveying how optimizations have affected source values. For

example, the debugger can tell the user at which source assignment(s) an endangered

variable’s actual value was (or may have been) assigned [3].

Several researchers have concentrated on the problems of detecting nonresident variables

[2] and endangered variables [49, 1, 36, 106, 4]. In the following paragraphs, I summarize

each of these prior works.

Hennessy [49] introduced the concept of endangered and noncurrent variables, and
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presented the first algorithms to detect endangered variables. It is difficult to extend the

results of his work to modern compilers, however, because of limitations in the source-

language and compiler used in his work: the source language is a subset of Pascal that

does not include pointers, and the optimizations performed by the Pascal compiler are only

at the machine-independent level. Therefore, the algorithms described by Hennessy in

[49] (and corrected by Wall et al. in [99]) deal with noncurrency due to local dead code

elimination, and re-ordering introduced by local common subexpressions that are assigned

to variables; the algorithms do not consider effects of code generation optimizations such

as instruction scheduling and register allocation. Hennessy also presents algorithms to

recover the expected values of endangered variables; but these recovery algorithms recover

values only from memory and do not consider partially computed results that are available

in registers.

DOC [38] is a prototype debugger developed at HP, designed to demonstrate the feasi-

bility of debugging optimized code. The optimizations that DOC handles are instruction

scheduling, register allocation, constant propagation, and induction variable elimination.

DOC can provide expected behavior for control breakpoints (control breakpoints are always

executed in the expected source order), and can detect and warn the user of nonresident and

endangered variables at breaks. DOC does not attempt recovery of endangered variables. To

ease handling the problem of debugging optimized code, DOC makes two simplifications:

First, DOC does not deal with global optimizations such as code hoisting and global dead

code elimination. Second, DOC restricts breaks to only control breaks at pre-determined

statement boundaries. Allowing interactive use only (i.e., allowing source-level control

breakpoints and variable query only) can greatly simplify the implementation of a source-

level debugger for optimized code, since the compiler and debugger know a priori the

points at which execution will be halted in both the source and object codes: the compiler

can pre-compute the set of endangered variables at each control breakpoint and pass this

information on to the debugger. DOC cannot accurately report endangered variables if an

asynchronous break occurs: it does not model what happens inside a statement and cannot

precisely detect which variables are endangered at an asynchronous break. DOC’s compiler

first marks the set of valid break instructions corresponding to statement boundaries before

code scheduling, and then computes the set of endangered variables at each valid break
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instruction, by detecting store instructions that were moved across statement boundaries by

the code scheduler. This information is passed on to the debugger.

Copperman [35, 36] and Wismueller [107, 106] have investigated the data-value problem

of detecting endangered variables caused by global optimizations. Their efforts concentrate

only on detecting if a variable is endangered; they do not consider code location problems

in any depth.

Copperman’s approach to detecting endangered variables [35, 36] is based on a special-

ized data-flow analysis of an intermediate representation of the program. This representation

captures the effects of optimizing transformations but does not consider nonresident vari-

ables. Copperman does not consider language issues such as undefined evaluation order.

Moreover, Copperman’s approach does not deal with asynchronous breaks and does not

consider recovery. Copperman’s techniques have not been implemented; therefore, it is

difficult to evaluate the practicality of his techniques.

Wismueller [107, 106] provides a formal framework for detecting current variables. His

algorithms concentrate only on detecting whether the expected value of a variable can be

displayed to the user; he does not distinguish between nonresident, suspect, and noncurrent

variables. Wismueller’s algorithms depend on a specialized intermediate representation

that is separate from the IR used by the compiler. This specialized IR must be maintained in

parallel by the compiler as transformations are performed. Wismueller has implemented his

algorithms in the context of the SUN C compiler, but his implementation does not include

instruction scheduling.

The algorithms of Copperman and Wismueller are similar to some of the algorithms I

present in this dissertation, to the extent that they also use data-flow analysis. There are,

however, two key differences between my work and their’s that have allowed me to develop

simpler and more practical algorithms. First, of the many transformations that are performed

by an optimizing compiler, only a few cause problems for the source-level debugger, namely

transformations that move or eliminate assignments; my algorithms concentrate only on

these transformations. Second, there are a number of invariants that are preserved when

compilers transform programs — compilers do not perform arbitrary transformations; my

algorithms take advantage of the invariants maintained by transformations that move or

eliminate assignments. For example, if an assignment is hoisted to a different basic block,
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this basic block is post-dominated by the original block; this limits the range of breaks

where a variable is endangered because of the hoisted assignment. Or, if an assignment is

eliminated because of backward redundancy, the value must be available somewhere, and

the debugger can provide this value to the user. Both Copperman [36] and Wismueller [106]

assume arbitrary code movement and elimination, and fail to recognize that movement and

elimination are not unconstrained.

Another major difference between this dissertation, and the earlier work by Copperman

and Wismueller is that they attempt to capture a “summary effect” of all optimizations in

auxiliary intermediate representations. They treat the compiler as a “black box” that takes

a source program as input and produces object code along with the auxiliary intermediate

representations. The auxiliary intermediate representations capture the source program both

before and after optimizations; their algorithms then determine currency by comparing the

optimized code with the original unoptimized source code.

In contrast, the approach I describe in this dissertation models each optimization step

inside the compiler by annotating the single IR used by the compiler. Only the single

representation used by the optimizer is necessary and the compiler propagates information

about the effect of optimization steps through all optimization phases; when the program

representation is lowered the annotations are transferred to the new representation. The

final object code contains annotations that allow the debugger to determine nonresident,

noncurrent, and suspect variables. In Section 5.7, I will discuss this issue in more detail.

2.5 Managing values in optimized code

From the viewpoint of the user, nonresident and endangered variables are similar in that

the debugger cannot display the variables’ expected source value. However, endangered

and nonresident variables are different with regard to the information that the debugger

can provide the user. An endangered variable has a value that may be inconsistent with

what the user expects, whereas a nonresident variable has no value. That is, the value in

an endangered variable’s runtime location is some source-level value of the variable, but it

may not be the value expected by the user. Therefore, since the value has some meaning

in the source, it is helpful to the user if the debugger can convey what source value an
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endangered variable’s value may correspond to. In the case of an endangered variable V ,

the debugger can provide additional information to the user by displaying V ’s actual value,

and attempting to explain what value is being displayed. For example, consider the break

hS1� I5i in Figure 2.1. At this break, the assignment to b of statement S2 has executed early

at I4. In response to a user query of b, the debugger can display the value in register R4

(b’s actual value) and explain to the user that the displayed value is the value of b assigned

at S2 because optimizations have caused statement S2 to execute early.

In the case of a nonresident variable, however, no actual value exists that can be presented

to the user. For example, at the break hS3� I3i, b is nonresident because its assigned register

R4 is holding the value of p. This value has no relation to b, and therefore, will not be

helpful to the user. The debugger informs the user that b is unavailable.

When the user inspects a variable, the variable’s expected value may be immaterial

because the variable has not been initialized during the execution of the program. Thus

the question of whether an uninitialized variable V is resident or current is irrelevant,

since V has no expected value. Detecting and reporting uninitialized variables reduces the

number of variables that are reported as nonresident or endangered, and provides additional

information to the user [2].

In the absence of support provided by the runtime system (e.g., path determiners [108])

or the architecture (e.g., memory tags), detecting uninitialized variables requires that the

debugger perform program flow analysis on the source program. If no definition of a user

variable V reaches a point S in the source, then V is uninitialized whenever the program

breaks at S. In the case that definitions reach on some but not all paths to S, the debugger

conservatively reports that V is initialized.

Referring back to the example of Figure 2.1, if no source assignment of b reaches the

block of code, b can be reported as uninitialized rather than nonresident or endangered at

any break reported at S1. In this example, these are breaks that occur at I1, I2 and I5.

Figure 2.2 illustrates the relationship between nonresident, endangered, and current

variables. Each oval in this diagram represents one of four possible states of a queried

variable: nonresident, suspect, noncurrent, and current. The arrows in this diagram show

the direction in which the response from the debugger becomes more precise (and useful)
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for the user. In the worst case, the debugger cannot show any value in response to a user

query — that is, the queried variable is nonresident. If a queried variable is resident, then

a source-level value exists for the variable and this value can be displayed to the user.

However, we would like the debugger not only to show the actual value of a variable, but

also to provide additional information describing how the actual value relates to values in

the source. The debugger can report conservatively that the variable is suspect and leave it

up to the user to determine how this value relates to the source — that is, the debugger can

display the actual value to the user with a warning that the value may not be the expected

value, independent of the source reference statement; this is the approach taken by CXdb.

Or, the debugger can qualify whether or not the actual value is the expected value with

respect to a source statement — that is, the debugger can display not only the actual value

to the user, but also inform the user whether the variable is current or noncurrent with

respect to the control reference statement; this is the approach taken by DOC. Because of

ambiguities due either to multiple paths reaching a breakpoint [3], or to pointer assignments

that are executed out of order [1], the debugger may not always be able to determine whether

a resident variable V is current or noncurrent; therefore, there are situations where the best

the debugger can do is to report V as suspect.

The debugger can attempt to improve the response given to a user and determine whether

a suspect variable is really current or noncurrent by using runtime values — that is, values

in registers — to detect which path was taken to a break and which memory locations were

updated by assignments that were executed out of order. To provide the expected value of a

noncurrent variable V , the debugger can also use runtime values to construct V ’s expected

value. For example, at break hS2� I4i in Figure 2.1, the expected value of d is the value

assigned by S1, and computed by I5. The values of I5’s source registers (R1 and R2) are

computed at instructions I1 and I2, and are thus available at I4; therefore, the debugger can

provide the expected value of d by interpreting I5. This process is called recovery [49].

When attempting recovery, the debugger must be prepared to handle the case where the

interpreted instructions cause an exception. Also, to allow execution to be resumed, the

debugger must not overwrite runtime values during recovery.

Currency determination qualifies the value of a variable by indicating whether the actual

value of the variable is the same as the expected value with respect to the control reference



Figure 2.2: The data-value problem.

statement. An alternative way to qualify the value of a variable is to convey to the user

which statement(s) may have assigned the actual value of the variable. This is similar to

program slicing and can be accomplished using reaching definitions analysis to determine

the set of assignments that may have affected a variable’s value [103, 104]. The reaching

definitions analysis depends only on the stopping instruction, and in contrast to noncurrency

determination, does not require the existence of a control reference statement. The reaching

assignments can be communicated to the user by some method of marking up the source

(e.g., highlighting). This method of qualifying a variable’s actual value by finding reaching

assignments can be used in conjunction with noncurrency determination: the debugger

can provide further information on an endangered variable V by telling the user which

statements may have assigned V ’s actual value.

Note that the control reference statement has two roles: It conveys the control state of

execution to the user and acts as an anchor in the source allowing the user to reason about

source-level values. In unoptimized code, the control reference statement conveniently (and

correctly) serves both of these purposes. First, since all statements before the control refer-

ence statement have completed execution and no statement following the control reference

statement has begun execution, it accurately conveys the control state of execution. Second,

since all variables are current with respect to the control reference statement, it acts as the
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most convenient anchor for reasoning about variable values. As we have seen, however, a

single control reference statement cannot accurately convey the control state of execution

in optimized code. Moreover, at a stopping instruction I , a variable V ’s actual value can be

the expected value relative to one reference statement S, but not to another statement S’.

Thus, V is current if the debugger uses S as the reference statement and noncurrent if the

debugger uses S’ as the reference statement. Therefore, a choice may exist in deciding on

an anchor for reasoning about variable values. Alternatively, the debugger can qualify the

value of a variable with a statement relative to which the variable is current (if possible).

Hence, when dealing with optimized code, one possible approach is to decouple these two

roles, and select one statement for conveying the control state and another statement as an

anchor for noncurrency determination.

2.6 Summary

In this chapter, I have shown in detail how optimizations affect source-level debugging. I

have introduced terminology related to variable values in optimized code. I have discussed

various approaches that allow debugging in the presence of optimizations. In general, it

is impossible to provide expected debugger behavior without constraining optimizations or

modifying the debuggee (e.g., deoptimizing the debuggee at debug-time). But the same

reasons that motivate debugging of optimized code also motivate non-invasive debugging.

Non-invasive debugging of optimized code requires that the debugger user somehow be

informed of the effects of optimizations. The debugger can go far in helping the user

understand the effects of optimizations in source-level terms — for example, the debugger

can determine when the runtime value of a variable does not correspond to the expected

source-level value of the variable.
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Chapter 3

Experimental Framework

In this chapter, I describe cmcc, the Carnegie Mellon University optimizing C compiler.

I have implemented the algorithms that I describe in this dissertation in the context of

this compiler. I also describe the methodology used to gather the measurements in this

dissertation and the program suite I used in my measurements.

3.1 The cmcc compiler

cmcc accepts ANSI C as the source language and produces assembly language for a

variety of target machine architectures. cmcc uses the lcc ANSI C compiler developed

by Fraser and Hanson [44] as a front end. I have modified lcc to generate cmcc’s internal

representation. To preserve maximum flexibility, the cmcc optimizer and code generator

runs as a separate C++ program, reading in the internal representation emitted by the lcc

front end. Table 3.1 lists the optimizations performed by cmcc. At this time, cmcc has

been targeted to the MIPS [59], SPARC [78], DLX [50], and iWarp [16] architectures. I

obtained the results that I report in this dissertation using the code generator for the MIPS

architecture.

cmcc consists of two major phases: (1) machine-independent global optimization, and

(2) code generation. Each of these phases in part comprises a series of transformations.

The global optimization phase first transforms the loop structure of the program by partially

peeling loops and inserting loop preheader blocks. Some innermost loops are then peeled

and unrolled, and induction variables are expanded inside of unrolled loops. Edges are split

49
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Loop unrolling and peeling Linear function test replacement
Induction variable expansion Induction variable simplification
Constant propagation and folding Induction variable elimination
Assignment propagation Partial dead code elimination
Dead assignment elimination Partial redundancy elimination
Strength reduction Branch optimizations
Global register allocation (using graph coloring) Register coalescing
Instruction scheduling

Table 3.1: Optimizations performed by cmcc

in preparation for code motion transformations. After these controlflow transformations, the

optimizer performs constant propagation and folding using an algorithm based on abstract

interpretation; this phase cleans up tests that were peeled out of loops. Copy propagation

and dead code elimination are performed next. These two algorithms are based on the

algorithms described by Chow [30] and are repeated until they effect no more changes on

the program1. After copy propagation and dead code elimination, the optimizer performs

partial redundancy elimination using the algorithm described by Knoop et al.[64]. Strength

reduction is integrated with partial redundancy elimination using the algorithm described

Knoop et al.[63]. Induction variable simplification is performed during partial redundancy

elimination to reduce the number of address temporaries introduced by strength reduction.

This optimization is also known as base binding [15]. Linear function test replacement and

induction variable elimination are performed after partial redundancy elimination. Finally,

partial dead code elimination (also known as assignment sinking) is performed using the

algorithm described by Knoop et al.[65]. Partial dead code elimination is repeated until no

more changes are detected in the program.

The code generation phase of the compiler performs global register allocation and local

(i.e., intra-basic block) instruction scheduling. The global register allocator (described

in detail in [72]) is a unique algorithm that integrates live range splitting with a Chaitin-

style graph coloring register allocator [25]. The register allocation phase performs register

coalescing and incorporates the improved coloring heuristics described by Briggs et al.[19].

The instruction scheduler is a list scheduler that can schedule in either the forward or

backward directions. This scheduler is further parameterized to perform either cycle or

1This copy propagation algorithm propagates the right hand side of all assignments, not just assignments
that are copies.
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operation scheduling. To allow maximum scheduling freedom, the register allocator is run

after the instruction scheduler.

The two major phases inside cmcc operate on different intermediate representations.

Global optimizations operate on a simple machine-independent representation consisting

of a control-flow graph of basic blocks, and a list of expression trees inside each basic

block. The operators of these trees are based on the generic set of operators found in the

lcc front end. Control-flow information is also encoded in loop-nest tree and dominator

tree structures.

The code generation phase maps expressions to trees of abstract machine instructions,

which are then linearized to schedules of instructions. All phases of the code generator

(including the scheduler) operate on schedules of instructions. To keep the code generator

retargetable, the representation of each machine instruction is kept machine independent

and is encapsulated inside a C++ abstract class; the register allocator and the instruction

scheduler operate on these abstract instructions in a machine-independent manner. Each new

code generator tailors the abstract instruction class to the instructions of the target processor

through inheritance: there are machine-specific instructions for each target machine; these

machine-specific instructions inherit from the abstract instruction class and implement

the interface defined by the abstract class’ virtual functions. This mechanism allows the

compiler to model each target machine instruction, and at the same time to keep the register

allocator and instruction scheduler machine independent.

This strategy has proven successful as cmcc has been retargeted to four different archi-

tectures. These architectures are different in many respects: different calling conventions,

different register file organizations (e.g., register windows versus no register windows, and

separate versus unified floating-point and integer register banks), and different branch ar-

chitectures (e.g., branch on condition code versus compare and branch). Moreover, the

iWarp is a LIW machine with destructive two operand integer instructions, while the MIPS,

SPARC, and DLX are RISC machines whose binary instructions have three operands.

Many of the global optimization phases of cmcc — such as partial redundancy elim-

ination and dead assignment elimination — are based on bit-vector data-flow algorithms.

Global register allocation also requires bit-vector data-flow algorithms to compute live and

reaching sets, which are necessary for determining live ranges. The bit-vector data-flow
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program gcc -O2 cc -O2

li 0.98 1.05
eqntott 1.13 1.09
espresso 1.06 1.05

gcc 1.02 0.89
alvinn 1.06 0.94

compress 0.84 0.95
ear 1.07 0.95
sc 1.09 1.03

Table 3.2: Performance of optimized code generated by cmcc, relative to optimized code
generated by gcc (version 2.3.2) and MIPS cc on a DECstation 5000/200.

algorithms used throughout cmcc are very similar in structure and a large amount of code

reuse is achieved in cmcc through the use of a data-flow analysis framework; details of this

framework can be found in [5].

To allow experimentation with profile-based optimizations, cmcc can generate an in-

strumented version of a program that, when executed, produces basic block and control-flow

edge execution frequencies. The profiles generated by the instrumented program are used

by cmcc to annotate the basic blocks and control-flow edges in the IR with the execution

frequencies. Profile information is currently being used to guide spilling, splitting, and

register assignment decisions in the register allocator [72].

The overall quality of the optimized code generated by cmcc is competitive with the

code generated by the native MIPS cc and gcc compilers on a DECStation 5000/200.

Table 3.2 shows the relative performance of the code generated by cmcc compared to the

code generated by these other compilers. The benchmarks in this table are the C programs

from the SPEC92 suite. These numbers are gathered on a DECStation 5000/200 and this

table presents relative performance; a number of less than one means that cmcc produces

better code. The native MIPS cc compiler is generally regarded as a very high-quality

optimizing compiler. These performance numbers show that the optimized code generated

by cmcc is roughly of the same quality as the optimized code generated by an industrial-

strength optimizing compiler. Thus the experimental results presented in this dissertation

can be reasonably generalized to other optimizing compilers.

There are a few benchmarks wherecmcc performs better than the other compilers. This
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is due mainly to very aggressive partial redundancy elimination, constant propagation, and

dead code elimination performed by cmcc. cmcc has not yet been tuned for compilation

speed; thus, optimizations are performed as aggressively as possible. In an industrial

compiler, optimization speed is an issue — an industrial compiler may not be as aggressive

as cmcc in applying optimizations.

On the other hand, there are benchmarks where cmcc performs worse that the other

compilers and this small performance difference is due to two factors: First, the global

optimization phase works on a machine-independent representation. This representation

does not expose a few machine-specific parameters such as sizes of immediates; thus, it is

possible that not all instructions are subjected to global optimizations — for example, cmcc

may miss an opportunity to hoist the load of an immediate out of a loop. Second, cmcc does

not perform machine-dependent peephole optimizations — for example, aggressive branch

delay filling and basic block placement. These differences should not have a major impact

on debugging and should not limit the generality of the experimental results presented in

this dissertation.

3.2 Quantitative methodology

In my approach to debugging optimized code, the debugger sometimes may not be able to

provide the expected source-level value of a variable to the user; therefore, it is interesting to

know how often a user can expect a query of a variable’s value to result in a response where

the debugger cannot display the variable’s expected value. To answer such questions —

regarding how often optimizations will affect a user’s ability to debug in practice — a long-

term user study that records the actual usage patterns of a debugger is necessary. Such user

studies are, unfortunately, complicated to do because they require a set of developers willing

to use an experimental compiler and debugger to develop their applications. Developers

expect a fully-functional window-based source-level debugger, and an optimizing compiler

with compilation times that are competitive with the native compiler. A user study is beyond

the scope of this dissertation.

An approximation to the preceding question can be obtained with static measurements

that assume all breakpoints are equally likely and all variables are equally likely to be
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queried. The charts in this dissertation show the average number of variables that are

uninitialized, current, endangered, and nonresident at a breakpoint. These numbers are

collected by counting the number of variables that fall into each category, at each possible

breakpoint in the source program, and averaging the results by the number of breakpoints.

In Chapter 5, I also present dynamic measurements wherein the effect of each breakpoint

is weighed by the execution count of the breakpoint, gathered using a sample input data

set. Neither static nor dynamic measurements indicate how often a debugger will be able

to respond with an expected value during an actual debugging session, but as we will see,

the measurements do identify general trends and the optimizations that are likely to cause

the most trouble.

It is important to note that the numbers are not an evaluation of how well the algorithms

work. The main contributions of this dissertation are the techniques that enable source-

level debugging of optimized code inside a compiler and debugger. These algorithms are

necessary so that the user is not misled during debugging. The measurements provide

additional insight into how different optimizations affect debugging.

The empirical evaluation presented in this dissertation is based on the set of eleven C

programs. Eight of these programs are from SPEC92. The SPEC programs are a suite

of benchmarks created for comparative measurements of vendor system performance [95].

These programs are supposed to represent a variety of “typical” system workloads and

have been used widely to report speedups from optimizing various system components,

including the compiler. Although this dissertation is not about performance optimization, I

have chosen the SPEC programs because they are widely available and have been studied

in detail by compiler writers; thus, they provide a common point of reference for other

researchers or developers who may implement my techniques in their compiler.

In addition to the SPEC92 C programs, I have included three (publicly-available) C

programs: (1) lcc, version 1.9 of the retargetable ANSI C compiler developed by Fraser

and Hanson [44]; (2) tcl, version 7.3 of the the Tcl (tool command language) scripting

language system developed by John Ousterhout [81]; and (3)triangle, version 1.1 of the

two-dimensional quality mesh generator and delaunay triangulator developed by Jonathan

Shewchuk at Carnegie Mellon University [87].

It is difficult to say what a “typical” program that is being debugged under a source-
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Lines Total source Breakpoints Variables per
Program of code breakpoints per function breakpoint

li 7741 2594 7.4 5.2
eqntott 3483 1267 21.6 5.1
espresso 14842 7424 21.5 9.4

gcc 102389 28433 20.7 9.3
alvinn 322 140 8.3 6.3

compress 1503 429 26.9 5.8
ear 4466 1108 11.8 6.9
sc 8491 3400 23.1 7.1
lcc 10997 5970 20.1 4.7
tcl 26649 7820 29.2 10.0

triangle 10531 5312 57.7 33.2

Table 3.3: Programs used in this study

level debugger looks like. All programs, however, are candidates for debugging under

a source-level debugger. Moreover, the process of debugging is likely to result only in

minor changes to a program — that is, a debugged program will differ only in minor ways

from its original, un-debugged form. The numbers in this dissertation are more likely

to be affected by application type and programming style than by whether a program is

likely to be further debugged under a source-level debugger. Therefore, even though the

the programs I have selected have already been debugged and will probably not be further

debugged under a source-level debugger, these programs serve well for the purposes of an

empirical evaluation because they represent a range of (UNIX) applications, originate from

different programmers, and represent a range of C programming styles.

Table 3.3 shows the sizes of the programs I have selected for my empirical evalua-

tion. The third and and fourth column of this table show the total number of source-level

breakpoints in each program and the average number of breakpoints per function. The last

column shows the average number of local variables that are in scope at each source-level

breakpoint.
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3.3 Summary

To prove the practicality of an approach to debugging optimized code, it is necessary to have

an optimizing compiler and an implementation of the debugger algorithms. Unfortunately,

sources to a high quality, easily extensible, optimizing compiler are hard to come by: gcc is

notoriously difficult to modify, lcc is not an optimizing compiler, and SUIF [105] was not

available at the beginning of this project. Therefore, I have developed cmcc, a retargetable

optimizing C compiler that generates code that is competitive with code generated by

native optimizing compilers. The algorithms that I present in this dissertation have been

implemented and evaluated in the context of this compiler.

A quantitative analysis of the effects of optimizations on source-level debugging is

difficult, because such an analysis requires a user study. Moreover, it is unclear how to

select a suite of programs for such an empirical evaluation. The measurements I present in

this dissertation are static measurements that assume all breakpoints are equally likely and

all variables are equally likely to be queried. I have chosen the SPEC92 programs for a

program suite, because of the wide availability of these programs, and because of the range

of applications and programming styles that these programs represent.



Chapter 4

Detecting Nonresident Variables

Global register allocation causes data-value problems by reusing registers that are assigned

to variables. Register allocation also complicates the mapping from variables to runtime

storage locations by assigning different storage locations to a variable at different points in

a program. In this chapter, I present a data-flow analysis approach for finding those storage

locations that hold source-level variable values at a break. In the first section, I present an

overview of register allocation techniques and their related optimizations. In Section 4.2, I

describe different approaches to detecting nonresident variables. In Section 4.3, I present

the data-flow analysis approach. In Section 4.4, I describe how the debugger can attempt

to improve the responses given to the user by detecting uninitialized variables. In Section

4.5, I present measurements of how register allocation may affect a debugger’s ability to

present a source-level value of a variable to the user.

4.1 Global register allocation

Register allocation attempts to speed up program execution by keeping frequently accessed

values in high-speed registers. Such values include variables, temporaries, and constants,

but since we are concerned with source-level debugging, I do not mention temporaries or

constants any further.

57
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4.1.1 Graph coloring

The most common approach models register allocation as a graph-coloring problem. The

goal is to assign a register for exclusive use by a variable during the variable’s live range,

which consists of those basic blocks or instructions that lie between definitions and last uses

of the variable [25, 32]. Live ranges that overlap in the program conflict (or interfere) and

are assigned different physical registers. For each compilation unit, the compiler constructs

an interference graph whose vertices represent live ranges, and whose edges connect live

ranges that conflict. Finding a valid assignment of physical registers to live ranges is

modelled as coloring the interference graph with N colors in such a manner that two live

ranges connected by an interference edge do not get the same color, for a target machine

with N physical registers managed by the compiler.

There are two common heuristic graph coloring algorithms used in the context of register

allocation: priority-based coloring [32] and graph simplification [25, 19]. Priority-based

coloring assigns registers (colors) to live ranges (vertices) in an order determined by the

priority of each live range; the priority of a live range L is an estimation of the execution

time saved by keeping L in a register. When no legal color exists for a live range L, the

compiler splitsL by segmenting it into smaller live rangesLi; each Li is then independently

assigned a register, or left in memory if no legal color can be assigned to Li. Shuffle code

[72] is inserted to move L’s data value when control passes from a segment La to another

segment Lb.

Graph simplification is based on the observation that an unconstrained vertex V (i.e., a

vertex with degree� N ) can be trivially colored, since no matter what colors are assigned to

V ’s neighbors, a legal color exists for V . Simplification successively removes unconstrained

vertices from the interference graph; each time a vertex V is removed, the edges that are

incident upon V are also removed, which decrements the degree of V ’s neighbors. Once

all vertices have been removed, colors are assigned to vertices in the reverse order in which

they were removed. If, during vertex removal, all the remaining vertices are constrained,

then a vertex (i.e., live range) is picked to be spilled.

Spilling assigns a memory location (in the activation record) to a live range L and

replaces all references to L with references to the memory location; L is removed from the
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interference graph. The additional memory references (i.e., loads and stores) are referred

to as spill code. To minimize the size of a function’s activation record, the spill locations in

the activation record can be shared by non-overlapping live ranges (i.e., coloring can also

be applied to spilled live ranges). The decision on which live range to spill is based on a

heuristic cost function that takes into account the cost of spilling a live range as well as the

benefit of removing the live range from the interference graph.

In both graph coloring approaches the units of allocation are live ranges. The live range

of a variable V comprises either those instructions where V is live and reaching, or those

basic blocks where V is live and reaching. The basic block representation of a live range

is at a coarser and thus less precise granularity than the instruction-level representation: a

register is prohibited from holding more than one live range’s value within a basic block

[32]. In practice, this is overly conservative when basic blocks are long, so implementations

that use the basic blocks representation usually split large basic blocks into smaller ones

[32, 69].

Priority-based coloring uses the basic block representation of a live range, because this

representation facilitates live range splitting: when a color cannot be assigned to a live

range L, a new live range L� is formed from L by incrementally adding basic blocks from

L until adding one more block renders L� uncolorable.

Although graph simplification can also be implemented using the basic blocks repre-

sentation of live ranges, graph simplification has traditionally been implemented using the

instruction-level representation [17]. Renumbering [26] and web analysis [57] are tech-

niques that isolate disjoint segments of a live range; these techniques further refine the

instruction-level representation of live ranges, and result in interference graphs of poten-

tially lower degree. These two techniques split a variable’s live range, but require no shuffle

code since the segments are disconnected.

There are several variations on the graph simplification approach: The RS/6000 com-

piler [13] optimizes spill code placement and refines the heuristic spill cost function. Some

approaches [17, 66] have implemented live range splitting within the graph simplification

framework by splitting live ranges before graph coloring; register allocation then tries to

minimize the runtime cost of shuffle code by eliminating unnecessary splits via coalescing

(coalescing is discussed in the next section). Other approaches [23, 45, 79, 72] have devel-
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oped spilling and splitting heuristics that are sensitive to program structure and execution

probabilities.

4.1.2 Register coalescing

Coalescing or subsumption [25] is an important register allocation optimization that elimi-

nates copy operations by assigning the same physical register to the source and destination

operands of a move instruction. Coalescing is an effective way to eliminate move in-

structions generated for copying register arguments and function return values, for copies

between variables and temporaries (left over from global optimizations), and for destructive

two-operand instructions (e.g., two-operand add instructions).

An important consequence of coalescing is that, at a stopping instruction, a register (or

spill location) may hold the value of more than one variable. Consider the example shown

in Figure 4.1. Part (a) of this figure shows the source code, while parts (b) and (c) show the

object code before and after register allocation, respectively. In Figure 4.1(b), instructions

I2 and I4 are generated from the assignments of statements S2 and S4, respectively; these

instructions assign source-level values of variables y and x. Assume that the live ranges

of x and y do not interfere. The register allocator coalesces x and y, and assigns the

same register R1 to both variables. Instruction I4 is subsequently eliminated and no object

code exists for statement S4 (Figure 4.1(c)). Although the assignment to x is eliminated,

instruction I2 assigns the same value that is assigned by S4, and at any stopping instruction

after I2, register R1 holds two source-level values: the value of y assigned by statement S2,

and the value of x assigned by statement S4. That is, I2 assigns to y the value assigned by

S2, and assigns to x the value assigned by S4. If the coalesced live range of x and y had

been spilled to some memory location M , then M would have contained the value of both

x and y.

Figure 4.1 illustrates another important consequence of coalescing: the instruction

implementing the source-level assignment to x (i.e., S4) is now executed earlier at I2,

causing x to be noncurrent at I3. In general, coalescing causes endangered variables by

eliminating move instructions that assign a source-level value to a variable. I address the

endangerment problems caused by coalescing in Section 5.4 of the next chapter.
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S1: ... I1: ... I1: ...
S2: y=u+v; I2: add Ry,Ru,Rv I2: add R1,R2,R3
S3: ... I3: ... I3: ...
S4: x=y; I4: mov Rx,Ry
S5: ... I5: ... I5: ...

(a) (b) (c)

Figure 4.1: Example: Register coalescing (a) Source code (b) Instructions before register
allocation (c) Instructions after register allocation and coalescing.

4.1.3 Calling conventions

When assigning physical registers to live ranges, the register allocator must take into account

conventions related to saving and restoring of caller- and callee-saved registers. If a live

range L spans one or more function calls, and is assigned a caller-saved register, then

caller-saved shuffle code is required to save and reload the value of L before and after each

function call that is crossed by L, respectively. If a callee-saved register R is used inside a

function (i.e., assigned to a live range), then callee-saved shuffle code is necessary to save

and reload the value of R at the prologue and epilogue of the function, respectively.

Several optimizations are possible to reduce the cost of caller- and callee-saved shuffle

code. Caller-saved shuffle code for a live range L can be optimized by eliminating unnec-

essary saves (reloads) to (from) a memory location M : a save is unnecessary if M already

contains the value ofL, and a reload is unnecessary if the value ofL is not used before being

saved again. The placement of callee-saved shuffle code can be optimized by saving and

reloading the value of a callee-saved register R only along those paths where R is actually

used [31, 41].

The values that are saved and reloaded by callee-saved shuffle code are values from

calling functions. Callee-saved values have no relationship to values in the context of the

callee function; therefore, callee-saved shuffle code does not play a role when determining

the residence of a local variable. When performing a stack trace, however, the debugger

must use the saved values of callee-saved registers to reconstruct callee-saved register values

in the contexts of calling functions. Therefore, the debugger must be aware of the storage

locations where callee-saved registers have been saved, and of whether any callee-save

shuffle code optimizations have been performed.



62 CHAPTER 4. DETECTING NONRESIDENT VARIABLES

4.1.4 Shuffle code

Shuffle code transfers a value from one runtime location to another, and is generated for two

reasons: First, when splitting partitions a live range L into several live ranges Li, shuffle

code is needed to transfer L’s value at those program points where control passes from one

live range La to another Lb; the shuffle code transfers L’s value from the location assigned

to La to the location assigned to Lb. Second, when a live range L spans one or more

function calls, and L is assigned a caller-saved register, shuffle code is needed around each

function call to save (reload) L’s value to (from) memory. There are three types of shuffle

code instructions:

Saves: A save is a store instruction that transfers a live range’s value from a register to a

memory location.

Reloads: A reload is a load instruction that transfers a live range’s value from a memory

location to a register.

Moves: A move instruction transfers a live range’s value from one register to another.

4.1.5 Global variables and aggregates

Global variables and aggregates (i.e., array and structure elements) can also be register

allocation candidates [100, 21, 84]. When included as register allocation candidates,

globals and aggregates are usually assigned a home location in memory and are promoted

to registers over a limited region of the program (e.g., those regions where they are not

aliased and are frequently accessed [53]). Allocation of globals and aggregates requires

alias and dependence analysis, and many compilers consider only local scalar variables

(besides temporaries and constants) as register allocation candidates.

The type and storage class of the register promoted variable, is orthogonal to residency

detection. We do not mention globals and aggregates in the rest of this chapter; the residency

detection analysis described in Section 4.3 is applicable to any register promoted value.
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4.1.6 Effects on source-level debugging

In summary, the various techniques associated with register allocation have the following

effects on debugging:

� Live ranges can be split and spilled; as a result, a variable may be assigned different

registers at different points in the program, or be assigned a register at one point and

be spilled at another. Therefore, the mapping from variables to runtime locations,

generated by the compiler, can be one to many; at a break, the debugger must be able

to determine which register or stack location, if any, holds the latest runtime value of

a source-level variable.

� Because of coalescing, a register (or spill location) may hold more than one variable

value at a stopping instruction. Therefore, the mapping from variables to runtime

locations can be many to one.

� When variables are spilled, the register allocator can minimize the size of the activation

record by sharing spill locations. Therefore, spilled values can be nonresident, and

the debugger must perform analysis even on spilled variables.

4.2 Approaches to detecting nonresident variables

There are several approaches that a debugger can take to determine if a variable is resident

at a stopping instruction. Since a variable is resident during its live range, one approach

is to consider a variable as resident at a stopping instruction within the variable’s live

range. The advantage of this approach is that live range information is already computed

by the compiler’s register allocation phase. For example, in the DOC debugger [38], the

address ranges of instructions in a variable’s live range are recorded in the range record

data structure at the same time as the interference graph is built by the register allocator.

The range records are passed to the debugger, which uses them to determine whether a

stopping instruction lies within a variable’s live range. The CXdb debugger [20] also uses

live ranges to determine residency.

Using a variable’s live range for determining residency is simplistic and conservative:
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I0: . . .
I1: def R def  x
I2: . . .
I3: use R last use  x
I4: . . .
I5: def R def  y
I6: . . .

(I) (II)
(I)  Residence determined
      by live range

(II) Residence determined
      by flow analysis

(a) (b)

Figure 4.2: Example: Approaches to detecting nonresident variables (a) Object code (b)
Ranges in which x is resident.

the debugger uses a simple rule that is always right but misses opportunities. A storage

location assigned to a variable V may still hold the value of V after the live range of V (i.e.,

after the last use of V ); this is illustrated in Figure 4.2. Figure 4.2(a) shows a sequence of

definitions and uses of a register R in a straight-line piece of object code. Register R is

assigned to source variablesx and y. Instruction I1 writes a value of x intoR and marks the

beginning of x’s live range, whereas the use ofR at I3 is the last use of x and establishes the

end of x’s live range. x is definitely resident at stopping instructions I2 or I3, since these

instructions lie within x’s live range. x remains resident until I5 writes y’s value in R, thus

evicting x from R (I discuss eviction in Section 4.3). But the range of instructions after I3

are not part of x’s live range. Hence, at stopping instruction I4, a debugger that bases x’s

residency on x’s live range will report x as being nonresident, even though R still contains

x’s value.

An approach to detecting nonresident variables that is more aggressive than using live

ranges is to precisely detect all points where V becomes nonresident. This implies detecting

that x is still resident at I4 in Figure 4.2(a) and allows the debugger to display the value of x

outside of x’s live range, as depicted by Figure 4.2(b). In Section 4.3, I describe a method

based on data-flow analysis that realizes such an approach by detecting evicted variables.

When there are a large number of physical registers, it is unlikely that a live range’s

register is re-used immediately after the end of the live range; thus, it is likely that a live

range’s values will persist well beyond the end of the live range. The effectiveness of

using data-flow analysis to extend beyond a live range’s boundaries also depends on how

aggressively the register allocator re-assigns registers.
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4.3 Detecting evicted variables

My method for detecting nonresident variables accurately tracks the values assigned by

individual instructions, along all possible execution paths in the program. Using data-flow

analysis, this algorithm determines which runtime locations hold the latest source-level

values with respect to the stopping instruction. I start the description of the data-flow

analysis by defining some terminology.

4.3.1 Terminology

A control flow graph is a directed graph �B�S�E�whereB is the set of basic blocks; S � B

is the entry block; E is the set of edges between blocks such that if �Bi� Bj� � E then

control may immediately reach Bj from Bi. Each basic block Bi contains a sequence of

instructions generated by the compiler,as well as a special pre-amble instruction that appears

before the other instructions in Bi thus dominating them and a post-amble instruction that

appears after the other instruction in Bi thus post-dominating them. The pre-amble and

post-amble instructions are abstractions used by my algorithms; they are not generated by

the compiler nor do they appear in the object code. The pre-amble instruction of a block Bi

is denoted by Preamble�Bi�, while the post-amble instruction of a block Bi is denoted by

Postamble�Bi�. Given an instruction I , Block�I� is the basic block containing I . I define

the set of predecessor instructions of I , denoted pred�I�, as the set of instructions from

which control can immediately reach I . A point is defined as being either between two

adjacent instructions, before the first instruction in a basic block, or after the last instruction

in a basic block. The point immediately before an instruction I is denoted pre�I�, and the

point immediately after I is denoted post�I�. The entry point of the control flow graph is

the point at the beginning of the source basic block S, and is denoted by start. The entry

point dominates all other points in the control flow graph. A path in the object code is

defined to be a sequence of points hp1� ���� pni such that for each adjacent pair pi� pi�1, either

pi � pre�I� and pi�1 � post�I� for some instruction I , or pi is a point at the end of a block

Bj and pi�1 is a point at the beginning of a block Bk and �Bj� Bk� � E. An instruction

I is part of a path P , denoted I � P , if pre�I� and post�I� both occur in P , and pre�I�

occurs before post�I� along P . A basic block Bi is part of a path P , denoted Bi � P , if
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Preamble�Bi� � P .

An instruction I reaches along a path P in the object code, if I � P and the destination

register of I is not defined by any other instruction in P after the last occurrence of post�I�.

An instruction I reaches a pointO in the object code, if there exists a pathP � hstart� ���� Oi

such that I reaches along P .

Since nonresident variables are caused by global register allocation, only the storage

locations that are assigned by the register allocator and the variables that are candidates for

allocation are germane to our discussion. A storage location L is either a physical register

or a slot in the activation record (stack frame) of the function being compiled. A register

R can be from any register bank of the target machine (e.g., an integer, floating-point, or

condition-code register). Some architectures hold a double-precisionfloating-point quantity

in a pair of consecutive registers; thus, R can represent a register pair.

Slots are assigned from the register spill area of the activation record and can be single-

or double-word sized. A live range L is assigned a stack slot either because L cannot be

assigned a register and is thus spilled by the register allocator, or because L is assigned a

caller-saved register and caller-saved shuffle code is required for L (L spans one or more

function calls and must be saved and restored around these calls). We are not interested

in the static data area or dynamically allocated data (i.e., heap) because these memory

locations are not assigned by the register allocator1. If global variables are promoted to

registers, then static memory locations can be included as relevant storage locations.

A register variable V is a variable that has been promoted to a register by the compiler.

V is a candidate for register allocation and will be assigned one or more storage locations

(i.e., registers and/or activation record slots). Variables that are not promoted to registers

have an assigned home location in memory and are not discussed further; these variables

are always resident since their home locations are not shared with other variables. Register

variables, however, can be nonresident since a storage location can be assigned to more

than one variable.

A residence is a pair hV�Li where V is a register variable and L a storage location

assigned to V . A register variable V can be assigned more than one storage location and

1Some language implementations allocate activation records from the heap rather than from a runtime
stack. What is important here is the activation record slots.
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Residences�V � is the set of residences of V :

Residences�V � � fhV �� Li : V � � V g�

Locations�V � is the set of storage locations assigned to V :

Locations�V � � fL : hV�Li � Residences�V �g�

Note that since storage locations are shared among register allocation candidates, it is not

necessarily the case that Locations�V1� � Locations�V2� � � for any pair of variables V1

and V2. V ariables�L� is the set of variables to which storage location L is assigned:

V ariables�L� � fV : L � Locations�V �g�

At a stopping instruction I , a variable V is resident in a storage locationL � Locations�V �,

denoted Resident�V�L� I�, if, at I , the value in L is a source-level value of V ; that is, V is

resident at I if there exists an L such that Resident�V�L� I�.

An instruction I that defines a storage location L is a definition of L; if L is a register

R then I is an instruction that targets R, otherwise if L is a stack slot S then I is a store

instruction that writes to S. I distinguish instructions that write a source-level value of

V into a storage location L � Locations�V �: A source definition of a variable V is an

instruction I that assigns a source-level value of V to a storage location L � Locations�V �

(I is a definition ofL); I is generated from a source assignment expression that assigns to V

and establishes V ’s residence in L. A definition of a residence hV�Li is a source definition

of V that defines L; I will use the superscript notation I
hV�Li
i as shorthand for an instruction

Ii that defines a residence hV�Li. Note, that because of coalescing, an instruction can be a

source definition of more than one variable and thus can define more than one residence.

Let I be a definition of a storage locationL, whereL � Locations�V � for some variable

V . If I is not a source definition of V , then I is an evicting definition of V and we say that

I evicts V from L. (I writes a value into L that is not a source-level value of V .)

4.3.2 Available residences

At the point immediately following a source definition IhV�Li, V is resident since L holds

a value from a source assignment to V . V remains resident in L until a later evicting
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definition evicts V from L. Therefore, V is resident along those execution paths where a

source definition IhV�Li reaches:

Definition 1 A residence hV�Li reaches along a path P � hstart� ���� Oi in the object iff

a source definition IhV�Li reaches along P .

Lemma 1 If a residence hV�Li reaches along a path P � hstart� ���� Oi and P is the

execution path traversed to a stopping instruction I , then Resident�V�L� I� is true.

Since the debugger does not know which path is executed to reach a break, all paths leading

to a stopping instruction must be considered:

Lemma 2 If hV�Li reaches along all paths leading to a stopping instruction I , then

Resident�V�L� I� is true at break hS� Ii for any S.

I define a predicate AvailRes�hV�Li� O� that is true when a residence hV�Li is available

at a point O in the object:

Definition 2 A residence hV�Li is available at a point O in the object iff hV�Li reaches

along all paths leading to O. The predicate AvailRes�hV�Li� O� is true if a residence

hV�Li is available at a point O.

By Lemma 2, AvailRes�hV�Li� pre�I�� impliesResident�V�L� I�. The data-flow analysis

I present in Section 4.3.4 solves forResident�V�L� I�by computingAvailRes�hV�Li� pre�I��.

4.3.3 Multiple available residences

Because of live-range splitting, a variableV may be assigned more than one storage location;

therefore, it is possible that several residences of V are available at a break. Consider, for

example, the code of Figure 4.3. In this figure, variable x is assigned two registers: R1 and

R2. Instructions I1 and I3 are source definitions of x, generated from the assignments of

statements S1 and S3, respectively. I1 defines residence hx� R�i, while I3 defines residence

hx� R�i. Both residences are available at instruction I4 (assuming no definitions of R1

between I1 and I3).
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S1: x = ... I
hx�R�i
1 : add R1,...

S2: ... I2: ...

S3: x = ... I
hx�R�i
3 : sub R2,...

S4: ... I4: ...
Source Object

Figure 4.3: Example: Multiple available residences.

Since we are interested only in the latest value assigned to a variable V , we sharpen

Definition 1 so that only the residence(s) holding the latest value of V can reach along a

path:

Definition 3 A residence hV�Li reaches along a path P � hstart� ���� Oi iff a source

definition IhV�Li reaches along P and no other source definitions of V occur along P after

IhV�Li.

Based on this new definition, residence hx� R�i does not reach instruction I4 along any path

in Figure 4.3, because of source definition I3. Residence hx� R�i, however, still reaches I4.

4.3.4 Data-flow analysis

Given an instruction I , I define the data-flow sets AvailResIn�I� and AvailResOut�I� as

follows:

AvailResIn�I� � fhV�Li : AvailRes�hV�Li� pre�I��g

AvailResOut�I� � fhV�Li : AvailRes�hV�Li� post�I��g

A residence hV�Li is available at the point immediately before an instruction I only if

hV�Li reaches the points after all of I’s predecessor instructions. Thus the AvailResIn

set of an instruction I is related to the AvailResOut sets of I’s predecessor instructions by

the following data-flow equation:

AvailResIn�I� �
�

J�Pred�I�

AvailResOut�J�

The set of residences that are made available by an instruction I is denoted by

AvailResGen�I�, while the set of residences whose availability is killed by I is denoted by
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AvailResKill�I�. The AvailResIn and AvailResOut sets of an instruction I are related

by the following data-flow equation:

AvailResOut�I� � �AvailResIn�I� nAvailResKill�I���AvailResGen�I�

An instruction I that defines a residence hV�Li causes AvailRes�hV�Li� post�I�� to

be true and thus generates the availability of hV�Li. I , however, kills the availability

of all other residences of V (since by Definition 3 we are interested in the latest source

definition of V ). Similarly, an instruction I that defines a storage location L kills the

availability of all residences associated with L and causes AvailRes�hV�Li� post�I�� to

be false for all hV�Li � Residences�L�. Given an instruction I that defines a residence

hV�Li, AvailResGen and AvailResKill are the smallest sets defined as follows:

� If I defines a residence hV�Li:

– hV�Li � AvailResGen�I�

– �L� � Locations�V � : hV�L�i � AvailResKill�I�

� If I defines a location L:

– �V � V ariables�L� : hV�Li � AvailResKill�I�

Function calls

Function calls kill the contents of caller-saved registers and therefore kill the availability of

all residences hV�Ri where R is a caller-saved register.

Shuffle code

Let I be a shuffle code instruction that transfers the value of a variable V from a storage

location La to another location Lb. The effect of I is to duplicate V ’s value in Lb: after

the execution of I , La and Lb both hold the same value of V . Therefore, I generates the

residence hV�Lbi, but does not kill the residence hV�Lai. Note that because of shuffle code,

a variable V can be resident in more than one storage location — unlike the example of

Section 4.3.3, however, all such locations hold the same value of V .
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I1: def x

I2: use x

B2 B3

B5 B6

B4

B1

Figure 4.4: Example: Live but nonresident variable.

4.3.5 Nonresident but live variables

The impetus for using the available residence data-flow analysis is to extend beyond the

live range of a variable V the points where V is detected as resident. But there are rare

situations where the available residence analysis is more conservative than using live range

information. Consider the example shown in Figure 4.4. In this figure, the live range

of variable x extends from instruction I1 in block B2 to instruction I2 in block B5. The

available residence analysis will detect x as resident after I1 in block B2, but nonresident

inside block B4, even though B4 is part of the live range of x.

This conservatism is a consequence of using static data-flow analysis: the debugger

cannot tell which execution path was taken to reach a stopping instruction and must there-

fore consider all paths as likely. The available residence analysis guarantees that a resident

variable is initialized with a source-level value. Thus, a variable V that is live but unini-

tialized along some execution path(s), is detected as nonresident by this analysis — for

example, in Figure 4.4, x is nonresident at the beginning of block B5, even though a use

of x is anticipated at instruction I2. If there exists at least one path where a variable V is

nonresident, then it is possible that the value in the runtime location of V is not a valid

source-level value ofV ; using the available residence analysis in this situation, the debugger

takes the conservative view that V is nonresident, rather than take the chance of showing
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I1: def x

I2: use x

B1 B2

B4

I3: def y

I4: use y

B5

B3

Figure 4.5: Example: Live but nonresident variables that overlap.

an erroneous value to the user.

In contrast, the live range of a variable can contain points where the variable is potentially

uninitialized at runtime. Therefore, a debugger that uses live range information to detect

resident variables may display an undefined value to the user — for example, in Figure 4.4,

if execution reaches a break at B4, without going through B2, x is resident (using the live

range approach) but its runtime value is undefined. Figure 4.5 shows a more complicated

example. In this figure, variables x and y are nonresident at blocks B3, B4, and B5 even

though they are both live at these blocks. To further complicate matters, x and y can be

assigned the same register, even though their live ranges overlap at block B3.

If a variable is live but not reaching, then clearly an “uninitialized variable” bug exists

and the user should be warned. On the other hand, if a variable is live and reaching along

only some paths, the debugger can regard the variable as resident but with a warning to

the user that the runtime value of the variable may be undefined — the user may be able

to determine (based on other runtime values) whether the variable is indeed resident. The

example of Figure 4.7, discussed later in this section, shows a real example where the user

can determine a variable’s residence better than the debugger can.

To eliminate the ambiguity due to multiple paths reaching a break, the compiler can

specialize code to particular execution paths by performing code duplication. Figure 4.6

shows the example of Figure 4.4 after the compiler has duplicated blocks B4, B5, and B6;

the copies of these blocks are labeledB�
4, B�

5, and B�
6, respectively. At blockB4, x is clearly

resident, whereas at blockB�
4, x is clearly uninitialized. Similarly, at the beginning of block
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I1: def x

I2: use x

B2 B3

B5 B6

B4

B1

I2
’: use x

B5
’ B6

’

B4
’

Figure 4.6: Example: Eliminating ambiguity via code duplication.

B5, x is clearly resident, whereas at the beginning of block B�
5, x is clearly uninitialized —

it is clear at the beginning of block B�
5 that an “uninitialized variable” bug exists.

Code expansion can have a negative effect on the cache behavior of a program; there-

fore, it is probably not worth performing code duplication specifically to eliminate those

ambiguous cases where a variable is resident but potentially uninitialized. Although global

optimizations can benefit from code duplication [29], in the case of eliminating resident

but potentially uninitialized variables, code duplication is performed at a very late stage of

compilation (during or after register allocation). Unless another global optimization phase

is performed after register allocation, the code duplication will not benefit optimization.

The C language code fragment shown in Figure 4.7 illustrates a real situation in which

the available residence analysis will determine that a variable is nonresident at a break,

even though the variable is live and initialized (i.e., even though the break occurs within

the variable’s live range). This code fragment is from the xlisp program of the SPEC’92

suite; it is extracted from the function binary(), at line 106 of the file xlmath.c.

There are three variables that are relevant to our discussion: imode, ival, and fval;

these variables are all assigned registers by the compiler. This code fragment consists of

two parts: (1) lines 118–127, which contain assignments to variables imode, ival, and

fval; and (2) lines 130–134, which contain references to these variables. The tests at lines
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117: /* set the type of the first argument */
118: if (fixp(arg)) {
119: ival = getfixnum(arg);
120: imode = TRUE;
121: }
122: else if (floatp(arg)) {
123: fval = getflonum(arg);
124: imode = FALSE;
125: }
126: else
127: xlerror("bad argument type",arg);
128:
129: /* treat ’-’ with a single argument as a special case */
130: if (fcn == ’-’ && args == NIL)
131: if (imode)
132: ival = -ival;
133: else
134: fval = -fval;
135:

Figure 4.7: Extract from xlisp illustrating live but nonresident variables.
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118 and 122 test whether the variable arg represents an integer or floating-point number,

respectively. If the test at line 118 evaluates to true, then the variable ival is set to the

integer value represented by arg (line 119), and the variable imode is set to true (line

120). Otherwise, if the test at line 122 evaluates to true, then the variable fval is set to the

floating-point value represented by arg (line 123), and the variable imode is set to false

(line 124). If the tests at line 118 and 122 both fail, then an error routine (xlerror())

is called (line 127); this routine handles fatal errors and does not return. The rest of this

function references one of either ival or fval depending on whether the flag imode

is true or false, respectively; for example, lines 130–134, negate the value of either ival

when imode is true, or fval when imode is false.

Consider a break at line 130 in this code fragment. A static analysis by the compiler

shows that any path leading to this break must pass through one of three points: line 119,

line 123, or line 127. Assuming no optimizations other than register allocation have been

performed, this break clearly lies within the live ranges of imode, ival, and fval, since

these variables are both live and initialized at line 130. The available residence analysis,

however, will determine that imode is nonresident because there is a path — the path that

passes through line 127 — along which this variable is nonresident in the object code; the

compiler does not know that the function xlerror() does not return, and thus, cannot

determine that execution will never reach line 130 through line 127.

Even if the compiler could determine that xlerror() never returns, the available

residence analysis will detect that variables ival and fval are nonresident at line 130,

because each of these two variables is defined along only some paths leading to this line:

ival is defined only on paths that pass through line 119, and fval is defined only on

paths that pass through line 123. The second part of this code fragment, however, uses only

one of these two variables, depending on the value of imode; therefore, even though the

uses of these variables at lines 132 and 134 are potential uses of uninitialized values, the

programmer has made sure that there these variables are used only if they are initialized.

In fact, ival and fval could be assigned the same register (assuming that the target

architecture had a unified integer and floating-point register bank like the AMD AM29000

or the iWarp architectures) — this is an example where the situation depicted in Figure 4.5

could potentially happen.
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4.4 Uninitialized variables

The C programming language does not define the initial values of automatic variables;

therefore, the source-level value of an uninitialized variable is undefined. Typically, if the

debugger user queries the value of an uninitialized variable V , the debugger will show

whatever value happens to be in the runtime location of V . In optimized code, a variable

that is uninitialized in the source will most likely be nonresident in the object (unless

an assignment executes prematurely due to code movement optimizations and causes the

variable to be endangered). If the debugger can determine that a nonresident variable is

actually uninitialized at break — in other words, the variable has no valid source-level

value — then the debugger can provide a more precise response to the user, by reporting

the variable as uninitialized rather than nonresident. That is, the debugger can provide a

better response to the user by reporting that a variable has no valid source-level value rather

than reporting that the variable’s runtime value has been eliminated by optimizations.

The debugger can perform reaching analysis to detect which variables are uninitialized

at a break. However, this analysis can only find variables that are uninitialized along all

paths leading to a break, and cannot help in the case that a variable is uninitialized only

on some paths. For example, consider the source code shown in Figure 4.8. There are no

assignments to x other than the one at statement S2. At statement S3, x is uninitialized if

the value of p is false, otherwise the value of x is the value assigned by statement S2.

In languages where the initial value of a variable is defined, the compiler must insert an

explicit initialization assignment into the intermediate representation. In this case, reaching

analysis will not help because a variable is never uninitialized in the source. If the initial

value of a variable V is never used, or used only along some paths, then optimizations may

eliminate or move the initialization code of V , thus causing V to be nonresident at some

breakpoints.

To aid in determining which variables are uninitialized at a break, a language implemen-

tation can initialize a variable’s runtime location to a special out-of-band value representing

the uninitialized state (i.e., uninitialized values are tagged). This helps the debugger detect

variables that are uninitialized along only some paths. But such initialization is generated

strictly for debugging purposes and will probably not be part of an optimized translation of
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S1: if (p)
S2: x = ...
S3: ..x..

Figure 4.8: Example: Uninitialized variables.

a program.

4.5 Empirical results

In this section, I present measurements of how often nonresident variables are likely to

occur and how optimizations influence the number of nonresident variables. I also present

measurements that compare the effectiveness of using the available residence data-flow

analysis against using live range information, to detect nonresident variables. I use three

metrics in these measurements: (1) the percentage of breakpoints that contain nonresident

variables, (2) the average number of nonresident variables at each breakpoint, and (3) the

average number of breakpoints that a variable is resident.

To measure the effects of different optimizations on the number of nonresident variables,

each chart in this section shows the results when a different set of optimizations is enabled

in conjunction with register allocation. I consider four combinations of optimization: (1)

no optimizations (i.e., register allocation only); (2) instruction scheduling; (3) instruction

scheduling and global optimizations; and (4) instruction scheduling, global optimizations,

and partial dead code elimination (sinking).

The charts in Figure 4.9 show the percentage of breakpoints with nonresident variables;

each column in these charts is broken down according to the number of breakpoints with

one, two, three, and four or more nonresident variables, respectively. When only register

allocation is done (Figure 4.9(a)), between 30–60% of all possible breakpoints contain

nonresident variables. A few programs, such as ear, espresso, gcc, sc, tcl, and

triangle, have a significant number of breakpoints with four or more variables that are

nonresident. Figure 4.9(b) shows the results when instruction scheduling is also performed.

Scheduling has a minor effect on the number of nonresident variables: a few of the programs

have additional breakpoints where one variable is nonresident. This slight increase in the

number of nonresident variables is due to the increase in register pressure caused by
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instruction scheduling. cmcc currently performs only local instruction scheduling; by

hoisting instructions across basic blocks, global instruction scheduling is likely to have a

more dramatic effect on register pressure, and thus, is likely to increase the number of

nonresident variables.

Figure 4.9(c) shows the results when global optimizations are also performed. The

number of breakpoints with nonresident variables increases significantly. The number of

variables that are nonresident at these breakpoints also increases significantly. There are

two reasons for this increase in nonresident variables: First, dead assignment elimination

and induction variable elimination — coupled with transformations, such as assignment

propagation, constant propagation, and linear function test replacement, that increase the

effectiveness of these optimizations — eliminate live ranges, thus increasing the number

of breakpoints where a variable is nonresident. Second, partial redundancy elimination

and strength reduction inside loops, both increase register pressure by introducing new live

ranges that span several basic blocks. This increased register pressure forces the register

allocator to reuse registers more aggressively; as a result, the register assigned to a variable

is likely to be reused soon after the end of the variable’s live range.

Figure 4.9(d) shows the results when assignment sinking is performed along with

global optimizations and instruction scheduling. For espresso, gcc, lcc, and tcl,

assignment sinking increases the number of breakpoints with nonresident variables; most of

these additional breakpoints have four or more nonresident variables. For other programs,

there is an increase in the number of breakpoints with two or more variables that are

nonresident. The reason for these increases is that partial dead code elimination shrinks

the size of live ranges, by moving assignments to a variable closer to uses of the variable;

therefore, there are fewer breakpoints comprising a variable’s live range.

The charts in Figure 4.10 show the average number of variables that are nonresident at

each breakpoint for all programs in the suite except triangle. These charts show that, on

average, approximately 20–30% of all local variables are nonresident at a breakpoint when

only instruction scheduling is performed, and approximately 30–60% of all local variables

are nonresident at a breakpoint when optimizations are performed along with scheduling.

triangle has a significantly greater average number of local variables than the other

programs; thus, the results for triangle are shown separately in Figure 4.11. About
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35% of the variables in this program are nonresident when only instruction scheduling is

performed, and 46% of the variables are nonresident when optimizations are performed

along with scheduling.

Figure 4.12 shows a different view of the same data shown in Figures 4.10 and 4.11;

this figure directly compares the average number of resident variables using different

optimizations. The numbers in Figures 4.10, 4.11, and 4.12 support the results of the

earlier paragraphs: scheduling has a minor effect on the average number of nonresident

variables (Figure 4.10(b)); global optimizations almost double the number of nonresident

variables at each breakpoint (Figure 4.10(c)); and assignment sinking further increases the

number of nonresident variables (Figure 4.10(d)).

The charts in Figure 4.10 also show that, on average, between 12–22% of the variables

are detected as uninitialized at a break, using reaching analysis. triangle (Figure 4.11)

has a significantly larger number of uninitialized variables compared to the other programs:

the functions in this program are very large and many of the variables declared at the

beginning of a function are unused for large portion of the function. Without detecting

uninitialized variables, uninitialized variables would be detected as nonresident by the

debugger (note, that these are variables that are uninitialized with respect to where the

break is reported in the source). Thus, detecting uninitialized variables may help provide

more accurate information to the user.

The influence of assignment sinking on the lengths of live ranges can be further quantified

by measuring the length of each variable’s live range. Figure 4.13 shows the average length

of a variable’s live range, in source-level breakpoints. As more global optimizations are

enabled, the lengths of live ranges decrease because of dead code elimination and assignment

sinking. Note, that the increased register pressure, caused by global optimizations, does

not affect length of live ranges.

Figure 4.14 shows the average number of breakpoints that a variable is resident using

available residence analysis. For a few programs (compress, backprop, sc, and

triangle) the decrease caused by global optimizations are more dramatic than those

in Figure 4.13. The reason for this is that the increase in register pressure caused by

optimizations causes registers to be reused sooner, thus reducing the number of breakpoints

where a variable is resident.
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The charts in Figure 4.15 measure the effectiveness of using the available residence data-

flow analysis over using live range information. These charts directly compare the average

number of breakpoints where a variable is resident using the available residence analysis,

against the number of breakpoints that fall within a variable’s live range. Without global

optimizations (Figures 4.15(a) and 4.15(b)), the available residence data-flow analysis is

able to extend by 20–50% the number of breakpoints where a variable is detected as resident.

When global optimizations are enabled (Figures 4.15(c)–(d)), the available residence data-

flow analysis is able to extend by about 20% the number of breakpoints where a variable is

detected as resident. The reason for the reduced effectiveness of available residence is that

the extra register pressure induced by global optimizations causes the register allocator to

re-use physical registers sooner.

4.6 Summary

In response to a user query of a variable’s value, the debugger must first determine whether

there exists a runtime value of the variable. Therefore, residency detection is a fundamental

component of any debugger for optimized code. A simple approach to determining whether

a variable V is resident is to use live range information computed by the compiler. Using

live range information is conservative, however, because the compiler — in an attempt to

reuse registers as aggressively as possible — tries to build live ranges that are as concise

as possible; this is in contrast to the goals of the debugger, which are to provide accurate

information about a variable across the largest region of a program.

In this chapter, I have described analyses that allow the debugger to provide the user

with precise information at those program points that lie outside of a variable’s live range.

I have introduced a data-flow analysis algorithm that allows the debugger to extend beyond

the last uses of a variable’s value, the points where the variable is reported as resident;

the measurements I present in Section 4.5 show that this analysis can increase by 20–

50% the number of breakpoints where a variable is reported as resident. Furthermore, I

have shown that by using reaching analysis to detect uninitialized variables, the debugger

can significantly reduce the number of variables that are reported as nonresident; the

measurements I present in Section 4.5 show that by detecting uninitialized variables, the
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Figure 4.15: Average number of breakpoints a variable is resident.
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debugger can provide a more accurate classification for 12–22% of the local variables that

are in scope at a breakpoint. These analyses significantly reduce the number of breakpoints

at which a variable is reported as nonresident; therefore, these analyses enable the debugger

to perform aggressively its basic task of retrieving source-level values from the runtime

state.

The measurements I present in Section 4.5, also show that optimizations other than

register allocation, such as partial redundancy elimination, dead code elimination, and so

on, influence the number of nonresident variables: by eliminating and shrinking live ranges,

and by increasing register pressure, optimizations make it more difficult for the debugger

to find a runtime value for a variable. In the next chapter, I explore the other data-value

problems that these optimizations cause for the debugger.



Chapter 5

Detecting Endangered Variables

In this chapter, I concentrate on algorithms for detecting variables that are endangered at

a break. I describe how compiler optimizations cause endangered variables and identify

core transformations that cause endangerment. In the first section I provide an overview

of optimizing compiler transformations. In the following sections, I present algorithms for

detecting endangered variables. The description of the algorithms for detecting endangered

variables is split into several sections. In Section 5.2, I describe algorithms for detecting

endangered variables caused by local instruction scheduling. In Section 5.3, I describe

algorithms for detecting endangered variables caused by local optimizations. In Section

5.4, I describe algorithms for detecting endangered variables caused by register coalescing.

In Section 5.5, I describe algorithms for detecting endangered variables caused by dead

code elimination and code hoisting; these two are the core global transformations that

capture the effects of global optimizations that cause endangered variables. In Section

5.6, I describe how my algorithms can be extended to handle optimizations that hoist code

speculatively. In Section 5.7 I describe the extensions necessary in the cmcc compiler to

gather the information for detecting endangered variables. At the end of this chapter, I

present results of an empirical study of how optimizations may affect a debugger’s ability

to present to the user the expected value of a variable.

87



88 CHAPTER 5. DETECTING ENDANGERED VARIABLES

5.1 Compiler transformations

Modern optimizing compilers perform a large number of optimizations, but very few of

these optimizations actually cause endangered variables. Since the debugger interacts with

the user, only values of source program variables are of interest; compiler-internals (tempo-

raries) are never visible to the user. Therefore, only transformations that affect assignments

to source-level variables cause endangerment. Transformations cause endangered variables

by either eliminating or moving assignments, so that variable values are not updated in the

manner specified by the source.

5.1.1 Code elimination

Compiler optimizations may eliminate an assignment A for one of three reasons:

1. If the value computed by A is never used, then A is useless and can be eliminated.

Elimination of assignments whose value is never used is called dead assignment

elimination. Dead assignment elimination causes endangerment when an assignment

that assigns the expected value of a variable at a break has been eliminated.

2. If the value computed by A is already computed on all paths leading to A, then A is

available and can be eliminated (A would not have changed the value of the variable

being assigned). This transformation is usually performed by partial redundancy

elimination (which subsumes common subexpression elimination). Elimination of

an available assignment does not cause endangerment since the value of the assigned

variable would not have been changed by the eliminated assignment.

3. Register move instructions that have the same source and destination register are

ineffectual and can be eliminated by optimizations. To eliminate move instructions,

register allocation attempts to assign the same register to the source and destination

operands of a move. This optimization is known as register coalescing or subsump-

tion. Register coalescing causes endangered variables when an eliminated move is a

source definition.



5.1. COMPILER TRANSFORMATIONS 89

Elimination of useless assignments is generally called dead code elimination, which

also refers to elimination of code that is unreachable. I distinguish elimination of unreach-

able code from elimination of useless assignments by explicitly referring to the former

transformation as unreachable code elimination. In the context of this thesis, the term dead

code elimination is used to refer to the elimination of useless assignments.

Induction variable elimination is another transformation that eliminates useless assign-

ments. This transformation eliminates assignments that are induction variable updates (e.g.,

i++), when the assigned value is used only by the eliminated update. I consider induction

variable elimination to be a special form of dead assignment elimination1.

Programmers generally don’t write code with explicit dead assignments and opportuni-

ties for dead code elimination are usually exposed by other transformations such as copy

propagation. But when a combination of transformations leads dead code elimination to

eliminate an assignment to a variable, a portion of the variable’s live range is in effect elim-

inated, allowing the register allocator to reuse any register assigned to the variable. Thus

rather than creating an endangered variable, dead code elimination may instead indirectly

create a nonresident variable. The empirical results of Section 5.8 support this observation.

5.1.2 Code movement

Compiler transformations that move assignments include instruction scheduling and global

code motion. Instruction scheduling reorders and interleaves instruction sequences from

different source statements, causing variable updates to occur out of the order expected in

the source. I have already illustrated the effects of instruction scheduling in the example of

Figure 2.1 (Section 2.2.1). Instruction scheduling can also reorder the execution of function

calls; this issue is discussed in more detail in Section 5.2.

Code motion algorithms move an expression either upwards against the direction of con-

trol flow (code hoisting) or downwards towards the direction of control flow (code sinking).

Hoisting of assignments causes endangerment by prematurely updating variable values,

while sinking of assignments causes endangerment by delaying variable updates. Exam-

ples of code hoisting optimizations include partial redundancy elimination [76, 30, 39, 64],

1In fact in cmcc and other compilers, induction variable elimination is implemented as a simple variation
on dead assignment elimination [30].
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loop invariant code motion [7], and global instruction scheduling algorithms that perform

non-speculative hoisting of instructions [14]. Examples of code sinking optimizations in-

clude partial dead code elimination [65], unspeculation [41], global instruction scheduling

algorithms that sink code past conditional branches [28], superblock dead code elimination

[29], and forward propagation [18].

Code motion and elimination are related, since some code motion algorithms operate

by computing the set of program points where insertions of expressions render other ex-

pressions either available [76] or dead [65]. For instance, the Morel and Renvoise partial

redundancy algorithm [76] and its variants [30, 39, 62] compute the set of program points

where the insertion of an expression E will make another partially redundant instance of

E fully redundant. The net effect of this transformation is a hoisting of E. Similarly,

the partial dead code elimination algorithm described in [65] computes the set of program

points where the insertion of an assignment A will make other partially dead instances of

A candidates for dead assignment elimination. The net effect of this transformation is a

sinking of A.

Without loss of generality, I consider only partial redundancy elimination in the rest of

this thesis, although I will continue to use the term code hoisting in some places. In other

words, I assume that code hoisting eliminates an available expression from one point in

the program after inserting one or more copies of the expression at other locations. The

other code hoisting transformations explicitly relocate either a particular operation (e.g.,

loop invariant code motion [7]) or a particular instruction (e.g., global scheduling [14]

or superblock optimization [29]). In these cases, I assume that the moved operation is

eliminated from its original location and inserted into its new location. Similarly, I consider

only partial dead code elimination [65] while continuing to use the term code sinking; I

make the same elimination and insertion assumptions about an explicitly sunk operation,

with the difference that the eliminated assignments are considered useless (rather than

available).

Data-value problems caused by global optimizations can be managed by concentrating

on only two key transformations: code hoisting and dead code elimination. We do not need

to deal with code sinking explicitly because dead code elimination captures the effects of

code sinking: the assignments that are eliminated by code sinking are the ones that cause
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variables to be endangered. In the case of code hoisting, on the other hand, assignments

that are inserted cause endangerment by prematurely updating the value of a variable;

the assignments that become redundant and are consequently eliminated do not cause

endangerment.

5.1.3 Code motion invariants

Code motion is constrained by safety considerations; that is, a computation cannot be

introduced into a path where it did not exist before. Therefore, code hoisting optimizations

copy an expression E from a block B to one or more blocks that are post-dominated by

B, while code sinking optimizations move an expression E from a block B to one or more

blocks that are dominated by B. By taking advantage of these code motion invariants, the

algorithms for detecting endangered variables are greatly simplified. In fact, it is these

invariants that have allowed me to produce a solution to the problem that is significantly

simpler than the approaches described by Wismueller [107] and Copperman [36].

Not all compiler optimizations satisfy these safety constraints. Global instruction

scheduling algorithms that schedule instructions for speculative execution [43, 14, 28], can

hoist an instruction I from a blockB to another block that is not post-dominated byB. Since

I is being introduced into a program path where it did not exist before, I should be selected

from the execution path with the highest execution probability. Therefore, speculative code

motion is usually guided by profile information. It is assumed that I will not cause a fault, or

if it does, the fault is suppressed until the control dependencies of I are resolved [34, 89, 74].

As the amount of instruction-level parallelism offered by processors increases, the compiler

must look harder for instructions that can be scheduled for parallel execution. Speculative

instruction scheduling is becoming an increasingly important technique for extracting such

parallelism from a program. I address speculative code motion in Section 5.6.

5.1.4 Optimizations that do not cause endangerment

Many scalar optimizations, such as strength reduction, constant folding, and constant

propagation [7], do not affect assignments to source variables but create new opportunities

for dead assignment elimination and thus indirectly contribute to creating nonresident
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and endangered variables. For example, constant propagation or copy propagation may

eliminate all uses of an assignment’s left hand side, thus making the assignment a candidate

for elimination by dead assignment elimination. Induction variable strength reduction and

linear function test replacement may eliminate all uses of an induction variable inside of a

loop except for the induction variable update, making the update assignment a candidate

for elimination by induction variable elimination.

Some optimizations allow the debugger to infer source values from compiler temporaries

that replace eliminated variables. For example, strength reduction can replace address

expressions that are linear functions of a loop induction variable (e.g., A[i+1]) with a new

address temporary (e.g., tmp = &A[i+1]). If the only remaining use of the induction

variable is the update expression (e.g., i++), then the variable can be eliminated (loop

induction variable elimination). However, the value of the eliminated induction variable

can be derived from the new address temporary (i.e., i=((tmp-A)>>2)-1). Such an

approach is used in the DOC [38] and CXdb [20] debuggers. There are other situations

where the overall effect of a series of transformations is the replacement of a source-level

variable with a compiler temporary, again allowing the debugger to infer values from

compiler temporaries; I address this issue in more detail in Section 5.5.5.

Control-flow transformations, such as loop unrolling and tail duplication, change the

control flow graph by duplicating basic blocks, but do not reorder the execution of source-

level assignments and therefore do not cause data-value problems. Code duplicating control-

flow transformations, are usually performed to expand the scope of other optimizations.

5.2 Endangered variables caused by instruction scheduling

Instruction scheduling changes the sequence in which source-level expressions are com-

puted by reordering or interleaving instruction sequences from different source statements.

Endangerment occurs when an assignment to a variable is executed out of order with respect

to the control reference statement. Such an assignment makes a variable’s actual value dif-

ferent from its expected value by either prematurely overwriting the expected value with a

future value or by delaying the update of the expected value. Therefore, there are two ways

in which a variable V may be noncurrent at a breakpoint B. Either an assignment to V has
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prematurely overwritten V ’s expected value, in which case V is a roll back variable, or the

assignment that updates the expected value of V has been delayed until after the breakpoint,

in which case V is a roll forward variable [49].

To detect noncurrent variables, the debugger must detect which operations have executed

out of order and how these operations affect the source-level state (i.e., variables and memory

locations). Operations that affect source state include assignments to source variables and

function calls; for conciseness, I only mention assignments in the rest of this section.

Detecting which assignments have executed out of order requires precise modeling of the

order in which assignments are expected to execute in the source, as well as the order in

which they actually execute in the object code. Since the effects of instruction scheduling

are localized, I need only model what occurs within basic blocks rather than what arises

globally among basic blocks. My approach is similar to Hennessy’s [49]; but my model also

considers values held in the physical registers of the machine and computed by individual

instructions, whereas Hennessy’s approach operates strictly on the machine-independent

intermediate representation of the program.

5.2.1 Source execution order

I define the canonical execution order of source expressions to be the order in which

expressions in the source program are supposed to execute according to the semantics

of the source language. During source-level debugging, the user expects variables to be

updated according to the canonical execution order of assignments in the source. Thus,

to determine expected source values at breaks, the debugger must accurately model the

canonical execution order of source assignments.

The evaluation order of source assignments may not always be precisely defined by

the source language semantics; thus, the expected value of a variable relative to a source

breakpoint is not always well defined. Usually, the canonical execution order of side

effects from different source statements is well defined — that is, the semantics specify that

statements execute in sequence. However, in a C language statement containing multiple

side effecting expressions, the compiler is free to choose the evaluation order of the side

effecting expressions. For example, in the code fragment of Figure 5.1, the assignment in

statement S1 must execute before the assignments in S2, and all assignments in S2 must
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execute before the assignment in S3, but the compiler is free to choose the evaluation order

of the three assignments within statement S2. Thus, at an asynchronous break occurring

during the execution of expression y++ within S2, the expected value of x is not uniquely

defined since this value can be assigned by either S1 or by the expression x++ of S2; that

is, if the actual value of x corresponds to either of these two values, then x is current.

In practice, most compilers impose an evaluation order during the translation from source

to intermediate form. The debugger should not consider the compiler-defined evaluation

order as the canonical execution order, otherwise the debugger will produce conservative

and possibly misleading responses to the user. Considering again the example of Figure 5.1,

the compiler may impose a left-to-right evaluation order so that x++ is evaluated before

y++ at the intermediate representation level (i.e., before code generation). However, if

the code generator delays the evaluation of x++ until after the evaluation of y++, and the

debugger uses the compiler-defined evaluation order as the canonical execution order, then

the debugger will report x as noncurrent at a break occurring within y++. If the actual

value of x is the value assigned by S1, then this response is not accurate since the actual

value of x is a valid expected value.

S1: x = y + 2;
S2: z = x++ + y++;
S3: y = x + y;

Figure 5.1: Undefined evaluation order in C

To capture the canonical execution order of source assignments, I assign a sequence

number Seq�A� to each assignment A in the intermediate representation, where A corre-

sponds to an assignment in the source. Given two assignments Ai and Aj , both in the

same basic block, Seq�Ai� � Seq�Aj� implies that Ai executes before Aj in the canonical

execution order, while Seq�Ai� � Seq�Aj� implies that the canonical execution order of

Ai and Aj is undefined (their execution order is undefined in the source).

In the example of Figure 5.1, the three assignment expressions of statement S2 all have

the same sequence number. Note that the partial ordering defined by the Seq annotation

captures the canonical execution order of statements within the same basic block, not the

dependences that constrain the correct execution order(s).
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5.2.2 Instruction execution order

To capture the execution order of instructions, I define a partial ordering among the instruc-

tions inside a single basic block: given two instruction Ii and Ij inside the same basic block,

Ii � Ij implies that Ii completes execution before Ij . The machine model I use in this

thesis, assumes that Ii � Ij if and only if Ii is scheduled before Ij (in other words, I assume

precise interrupts); therefore, this partial ordering can be easily calculated by sequentially

numbering all instructions inside of a basic block schedule. (V)LIW or statically scheduled

superscalar machines (e.g., the iWarp [16]) can execute multiple instructions concurrently;

therefore, Ii � Ij implies that Ii and Ij complete execution concurrently.

The order in which source definition instructions complete execution determines the

order in which source-level assignments actually execute. For each source definition I ,

the most important information is the sequence number of the assignment(s) for which I

is generated and the variable(s) that is (are) assigned by I . I encapsulate this information

in an assignment descriptor. An assignment descriptor is a triple hI�N� V i where I is the

source definition,N is the sequence number of the assignment for which I is generated, and

V is the variable that is assigned. Given an assignment descriptor D � hI�N� V i, I define

Inst�D� � I , Seq�D� � N and V ar�D� � V . Indirect assignments (e.g., *p = ...)

may assign to any memory location and the debugger cannot tell with static information

alone which memory location is affected by an indirect source definition. If the source

definition I is generated for an indirect assignment, then V � �, where the special symbol

� represents the set of variables that reside in memory.

Note that the compiler may have alias information describing the set of variables

potentially aliased by an address expression. Such information, for example, can be used

by the scheduler to re-order indirect loads and stores. However, the debugger should not

use such information for refining the set of suspect variables, since a program bug may

invalidate the assumptions made when gathering alias information.

5.2.3 Endangered variables

To determine if there are noncurrent or suspect variables at a break, the debugger has to find

out if any operations with side effects on the user-visible state executed out of sequence
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with respect to the control reference statement. Let A be an assignment to a source variable

V ; there are two ways in which A may have executed out of order at a break B � hS�Oi:

� IfA is supposed to execute beforeS in the canonical execution order but is scheduled

to complete execution after O, then the execution of A has been delayed at B and V

is a roll forward variable at B, denoted ForwardV ar�V�B�.

� If A is supposed to execute after S in the canonical execution order but is scheduled

to complete execution before O, then A has executed prematurely at B and V is a

roll back variable at B, denoted BackV ar�V�B�.

The assignment descriptors inside Block�O� contain sufficient information to determine

whether source assignments have executed out of order and how the source-level state has

been affected. Given a break hS�Oi and an assignment descriptor D in the same basic

block as O:

��Seq�D� � Seq�S��	 �Inst�D� 
 O�� � ForwardV ar�V ar�D�� hS�Oi� (5.1)

��Seq�D� � Seq�S�� 	 �Inst�D� � O�� � BackV ar�V ar�D�� hS�Oi� (5.2)

In the case that V ar�D� � �, the variable that is noncurrent depends on the memory

address value used by Inst�D� (Inst�D� in this case must be a store instruction). The

debugger must be able to recover this address value to determine the runtime location

affected, otherwise Inst�D� causes suspect variables. In the case of function calls, the

debugger cannot determine which memory locations have been accessed. Thus, out-

of-order function calls and out-of-order indirect assignments whose address expressions

cannot be recovered both cause suspect variables.

5.2.4 Recovery

The debugger can use partially computed results available in the physical registers to

perform recovery. Recovery can allow the debugger to provide more precise information

to the user, in several ways:

1. Recovering address expressions of indirect assignments allows the debugger to re-

classify some suspect variables as either noncurrent or current. An out-of-order
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indirect assignment A causes all memory variables to be suspect. The number of

variables in memory can be potentially large (e.g., consider the number of heap

objects). Recovery of A’s address expression will re-classify the affected variable

to noncurrent. An unaffected suspect variable V may be re-classified as current if

A is the only out-of-order operation causing V to be suspect. Recovery of address

expression values is called address recovery.

2. Recovering the values assigned by source definitions allows the debugger to provide

the expected values of some roll forward variables. If a source definition I assigns a

roll forward variable V ’s expected value and the value assigned by I is recoverable,

then the debugger can provide V ’s expected value. Recovery of values assigned by

source definitions is called assignment recovery.

To perform recovery, the debugger can take the following strategy: First, the debugger

attempts address recovery of indirect source assignments that have executed out of order.

Since address recovery may make suspect variables either noncurrent or current, the status

of suspect variables is re-evaluated after this recovery is performed. Then, the debugger

attempts assignment recovery of source definitions whose execution has been delayed (as

determined by Equation 5.1), possibly enabling the debugger to provide the expected values

of some noncurrent variables.

To allow recovery, I record for each source definition I the position (in the basic

block) of the last and next local definitions of its source and destination registers, denoted

LastDefI�R� and NextDefI�R�, where R is a source or destination register of I . If no local

last definition of R exists, then LastDefI�R� is -1. Similarly, if no local next definition of

R exists, then NextDefI�R� is set to a value beyond the last position in I’s basic block.

Note that the last and next definition information can be easily computed with a simple

local analysis of the object code. This analysis can be done by the debugger and thus the

information does not need to be communicated to the debugger by the compiler.

The set of source registers of an instruction I is denoted by SourceRegs�I� and the

destination register of an instruction I is denoted by DestReg�I�2. If I is a load or store

2Some machines have instructions with multiple destination registers. For example, the iWarp and
PowerPC have loads with auto-update addressing modes, requiring multiple destination registers (one for
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instruction, then I’s set of address registers (e.g., base and index registers) is denoted by

AddressRegs�I�.

Address recovery

Let I be an indirect source definition (a store instruction). At a stopping instruction O, the

address of the location stored by I is recoverable if the values in I’s address registers are

available (i.e., have been computed but not subsequently overwritten):

�R � AddressRegs�I� : �LastDefI�R� � O� 	 �NextDefI�R� 
 O�

Assignment recovery

Let I be a source definition. At a stopping instruction O, the value assigned by I can

be reconstructed from the runtime state if the values used by the source registers of I are

available and execution of I does not cause an exception:

�R � SourceRegs�I� : �LastDefI�R� � O� 	 �NextDefI �R� 
 O� and I is safe to

execute

If the values used by the source registers of I are available, then I can be executed

(actually interpreted by the debugger). However, the debugger must be prepared to handle

the case that I may fault. The debugger cannot perform this computation if I is a function

call instruction, or if I is a load instruction and there exists memory locations that are

endangered.

Note, that this recovery scheme can be extended to recover values from more than one

instruction by computing an executable backward slice [103, 104].

the loaded value and one for the updated address). The definition of DestReg can be easily extended to
accommodate a set of registers without major changes to the rest of our discussion. But for the sake of
simplicity, I stick to the assumption of only one destination register.
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S1: d = f+g; I1: load R1,4(sp)
S2: b = c*a; I2: load R2,8(sp)
S3: *p = a; I3: store 0(R4),R3 hI3� 3� �i

I4: fpmul R4,R5,R3 hI4� 2� bi
I5: fpadd R6,R1,R2 hI5� 1� di

(a) (b) (c)

Figure 5.2: Example: Instruction scheduling (a) Source code (b) Object code after schedul-
ing and register allocation (c) Assignment descriptors.

5.2.5 Example

The example of Figure 1.1 is reproduced in Figure 5.2, and is used to illustrate the techniques

introduced in this section. Sequence numbers are assigned to source statements as follows:

Seq�S1� � 1, Seq�S2� � 2 and Seq�S3� � 3. There are three source definitions with

assignment descriptors: hI3� 3� �i, hI4� 2� bi and hI5� 1� di.

Break Roll forward Roll back Recoverable

hS3� I3i hI4� 2� bi, hI5� 1� di I4, I5

hS2� I4i hI5� 1� di hI3� 3� �i I5, AddressRegs�I3�
hS1� I5i hI3� 3� �i, hI4� 2� bi

Table 5.1: Assignment descriptors of out-of-order assignments and recoverable source
definitions at breaks in code of Figure 5.2.

Table 5.1 shows the assignment descriptors that cause endangered variables at various

breaks in Figure 5.2. At break hS3� I3i, the executions of I4 and I5 have been delayed,

causing variables b and d to be noncurrent. However, the source values used by these

instructions are available (the values in registers R1, R2, R3 and R5). Therefore values

computed by both of these instructions are recoverable (although the debugger must take

care because floating-point computations may fault) and the expected values of b and d can

be presented to the user. At break hS2� I4i, I5 is again delayed causing d to be noncurrent;

I3 is now executed prematurely. I3 is an indirect store instruction, but fortunately, the value

used by the base address register of I3 (register R4) is still available; thus, I3 causes a

noncurrent variable (rather than suspect variables). At break hS1� I5i, I3 is again executed

prematurely, but unfortunately, the value in register R4 has been overwritten by instruction

I4 (which is also executed prematurely); thus, I3 causes variables that are in memory to be
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suspect.

5.3 Endangered variables caused by local optimizations

In this section, I focus on local optimizations that cause endangered variables. Compilers

usually perform local optimizations in preparation for global optimizations and to improve

the quality of generated instruction sequences (peephole optimizations). Local optimiza-

tions are inexpensive to perform and are typically the first optimizations enabled when the

user specifies a low level of optimization (e.g., -O1).

Local optimizations cause endangered variables by eliminating source assignments. As

I mentioned in Section 5.1, an assignment may be eliminated because it is either available

or dead. I first look at assignments that are eliminated because they are available locally;

such elimination does not cause data-value problems for the debugger. I then concentrate

on assignments that are eliminated because they are dead locally. Elimination of locally

dead assignments causes endangered variables, but the endangered variables can be detected

easily with a simple extension to the approach presented in Section 5.2.

5.3.1 Locally available assignments

Locally available expressions are typically discovered by a local common subexpression

elimination phase, and by peephole optimizations that eliminate instructions that are redun-

dant because of an exact copy of the eliminated instruction earlier in the basic block. Local

availability optimizations can also be performed on extended basic blocks (i.e., straight-line

code sequences with a single entry and one or more exit points).

Elimination of a locally available assignment A does not cause endangerment since the

value assigned by A has already been assigned earlier in the block and thus execution of A

is ineffectual. That is, the value assigned by A has already been assigned once earlier and

the value of the assigned variable will not be changed by A.

Consider the example source and object codes shown in Figure 5.3. There are no other

assignments to the variable x in the source other than the assignments in statements S2 and

S4. Instruction Ii has been generated for statement S2 and there is only one assignment
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S1: ... I1: ...
S2: x=y+z; ...
S3: ... Ii: add Rx,Ry,Rz hIi� Seq�S2�� xi
S4: x=y+z; /* available */ ...
S5: ... In: ...

Source Object

Figure 5.3: Example: Locally available assignment.

descriptor: hIi� Seq�S2�� xi. The assignment of statement S4 is redundant because an

identical copy of this assignment is executed earlier in the block at statement S2; therefore,

no code has been generated for S4.

Table 5.2 lists the noncurrent variables assuming various breaks hS�Oi in the example

of Figure 5.3. I consider all possible breaks by considering stopping instructionsO occuring

before and after instruction Ii (O � Ii and O � Ii respectively) and considering control

reference statements occuring before, in between, and after statements S2 and S4 (S1, S3

and S5, respectively).

The interesting case to consider is the case where the control reference statement S is

statement S5 (the last row of Table 5.2) because at this statement the expected value of

x is the value assigned by the eliminated statement S4 (at all other breaks, the actual and

expected values of x are not affected by optimizations). At S5 the expected value of x is

the value assigned by statement S4, which is the same as the value assigned by S2. If the

stopping instruction O is before Ii (O � Ii), then the debugger (correctly) detects that x

is a roll forward variable and recovering the value assigned by Ii will correctly recover the

expected value of x (even though the value recovered is the value assigned by S2). If the

stopping instruction O is after Ii (O � Ii), then the actual value of x is the value assigned

by Ii which is the source-level value assigned by statement S2. Statements S2 and S4,

however, assign the same value to x and thus x is current.

As this example illustrates, locally available assignments can be eliminated without

worrying about endangered variables.
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Stopping instruction O
S O � Ii O � Ii

S1 — BackV ar�x� hS�Oi�
S3 ForwardV ar�x� hS�Oi� —
S5 ForwardV ar�x� hS�Oi� —

Table 5.2: Noncurrent variables at various breaks hS�Oi in Figure 5.3.

S1: ... I1: ...
S2: x=w-v; /* dead */ ...
S3: ... Ii: add Rx,Ry,Rz hIi� Seq�S4�� xi
S4: x=y+z; ...
S5: ... In: ...

Source Object

Figure 5.4: Example: Locally dead assignment.

5.3.2 Locally dead assignments

Local dead code elimination eliminates an assignment A that assigns to a variable V , when

there are no uses of V afterA and there is a later assignment A� that also assigns to V in the

same basic block. V is noncurrent at breaks hS�Oi where the control reference statement

S is between A and A� and there are no source definitions that have prematurely assigned

to V at O — in other words, the expected value of V is from A, and no assignment to V

has prematurely executed at O.

Figure 5.4 shows an example of a locally dead assignment. There are no uses of x

between statements S2 and S4 and local dead code elimination has eliminated the assign-

ment of statement S2. Ii is generated for statement S4 and there is only one descriptor:

hIi� Seq�S4�� xi.

Table 5.3 lists the various breaks possible in Figure 5.4. The interesting cases are those

Stopping instruction O
S O � Ii O � Ii

S1 — BackV ar�x� hS�Oi�
S3 Dead�x� hS�Oi� BackV ar�x� hS�Oi�
S5 ForwardV ar�x� hS�Oi� —

Table 5.3: Noncurrent variables at various breaks hS�Oi in Figure 5.4.
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where the expected value of x is assigned by the eliminated assignment of statement S2;

these are breaks where the control reference statement is statement S3 (second row of Table

5.3). If the stopping instruction O is before Ii (O � Ii), the actual value of x is the value

assigned by the last executed assignment to x before this code fragment. x is noncurrent

because the expected value is assigned by S2 which is eliminated. If the stopping instruction

is after Ii (O � Ii) then x is noncurrent because Ii has prematurely updated x with the

value assigned by S4.

When local dead code elimination eliminates an assignment A because of a later as-

signment A�, a dead assignment descriptor is created for A. A dead assignment descriptor

D is a triple D � hI�N� V i where I is the source definition generated for A�, N is the

sequence number of the dead assignment with which D is associated (N � Seq�A�), and

V is the variable assigned by the dead assignment. Given a descriptor D � hI�N� V i, I

define Inst�D� � I , Seq�D� � N and V ar�D� � V .

The dead assignment descriptor can be used to detect variables that are noncurrent

because of local dead code elimination.

Let Dead�V�B� denote a variable V that is noncurrent because of an eliminated assign-

ment, at a break B. (In Figure 5.4, Dead�x� hS3� Oi� for O � Ii.) Given a break hS�Oi

and a dead assignment descriptor D in the same basic block as O:

��Seq�D� � Seq�S�� 	 �Inst�D� 
 O� 	 �ForwardV ar�V ar�D�� hS�Oi��

� Dead�V ar�D�� hS�Oi� (5.3)

The three clauses in formula 5.3 are justified as follows: First, the dead assignment

A represented by D causes endangerment only if A was supposed to execute with respect

to S; thus, the condition Seq�D� � Seq�S�. Second, the actual value of V ar�D� must

not be the value assigned by A�, the assignment that causes A to be dead; thus, the con-

dition �Inst�D� 
 O�. Finally, the expected value of V ar�A� may be assigned by A�,

and therefore, V ar�D� may be noncurrent because A� has not yet executed; the condi-

tion �ForwardV ar�V ar�D�� hS�Oi� makes sure that V ar�D� is not already noncurrent

because of A�.
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Stopping instruction O
S O � I2 O � I2

S1 — BackV ar�fx,yg� hS�Oi�
S3 ForwardV ar�y� hS�Oi� BackV ar�x� hS�Oi�
S5 ForwardV ar�fx,yg� hS�Oi� —

Table 5.4: Noncurrent variables at various breaks hS�Oi in Figure 5.5(a) after register
coalescing.

5.4 Endangered variables caused by coalescing

Coalescing causes endangered variables when it eliminates a register move instruction that

is a source definition. Consider again the source and object codes depicted in Figure 4.1,

redrawn in Figure 5.5. Part (a) of this figure shows the source code, while parts (b) and

(c) show the object code before and after register allocation, respectively. Before register

allocation (Figure 5.5(b)), I2 and I4 are source definitions of variables y and x and there

are two assignment descriptors: hI2� Seq�S2�� yi and hI4� Seq�S4�� xi. Assume that the live

ranges of x and y do not interfere. The register allocator coalesces x and y, assigning the

same register R1 to both variables. The source definition I4 is subsequently eliminated and

no instructions are generated for the assignment of statement S4 (Figure 5.5(c)).

S1: ... I1: ... I1: ...
S2: y=u+v; I2: add Ry,Ru,Rv I2: add R1,R2,R3
S3: ... I3: ... I3: ...
S4: x=y; I4: mov Rx,Ry
S5: ... I5: ... I5: ...

(a) (b) (c)

Figure 5.5: Example: Register coalescing (a) Source code (b) Instructions before register
allocation (c) Instructions after register allocation and coalescing.

To capture the effects of coalescing, we can consider I2 to be a source definition

generated from both S2 and S4. That is, I2 assigns to y the value assigned by S2 and assigns

to x the value assigned by S4; hI4� Seq�S2�� xi is changed to hI2� Seq�S2�� xi to reflect this.

Now, if execution stops somewhere between S2 and S4 in the source, but after I2 in the

object, x and y are both resident in R1. The actual value of y is the value assigned by

S2, while the actual value of x is the value assigned by S4. Hence, y is current and x is
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y = ... y = ...

S: x = y S: x = y

x = ...

D: y = ...

(a) (b)

Figure 5.6: Global register coalescing

noncurrent. If execution stops after S4 in the source, but after I2 in the object, both x and

y are current. Table 5.4 lists the noncurrent variables at various breaks in Figure 5.5.

A less precise way to deal with this situation is to consider S4 as an eliminated (dead)

assignment. Thus, at a break hS�Oi, where Seq�S� � Seq�S4� in the source and O � I2

in the object, x is detected as nonresident since I2 is an evicting definition of x. This is

conservative, however, since R1 contains the value that would have been assigned to x by

S4, which is x’s expected value.

In general, when coalescing eliminates a source definition I , an earlier instruction I �

that defines DestReg�I� is found that reaches pre�I�; I � then replaces I as the source

definition. Figure 5.5 illustrates the simple case where the earlier definition ofDestReg�I�

is within the same basic block as the eliminated copy operation. There are cases, however,

where no earlier definition of DestReg�I� may exist within the same basic block as the

eliminated instruction I . Figure 5.6 illustrates other cases that can occur. In this figure,

coalescing eliminates the copy x = y of statement S. In Figure 5.6(a), S post-dominates

all reaching definitions of the register assigned to both x and y. Thus we can consider all

reaching definitions as source definitions of x. However, this moves the definition of x into

different basic blocks and results in multiple source definitions. This has ramifications on

the endangerment detection algorithms, which now have to address global code movement.

That is, we now have to deal with this situation as a global code motion problem: S has

been hoisted out of its basic block. Moreover, if there exists a reaching definition D that
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is not post-dominated by S, as shown in Figure 5.6(b), D cannot be considered a source

definition of x (we can, however, consider D as a speculative assignment to x).

Rather than perform a reaching definitions data-flow analysis or a graph search for each

move instruction eliminated by coalescing, I avoid these two problems with a simple local

solution: I model the source definition of S in both cases to be the pre-amble instruction

of S’s basic block. In other words, if there does not exist a prior reaching definition in the

basic block, the pre-amble instruction is used as the source definition of S.

5.5 Endangered variables caused by global optimizations

In this section, I present a solution to the data-value problems caused by global transfor-

mations. I focus on the two core global transformations that caused endangerment: code

hoisting and dead code elimination. I present an approach based on data-flow analysis to

analyze and propagate the effects of these transformations. The data-flow analysis required

to support the debugger is similar to the data-flow analysis performed for global optimiza-

tion; incmcc, this analysis uses the same modules. Compiler extensions are necessary only

to generate the information required to analyze the impact of optimizing transformations

on the data-value problems. Moreover, the algorithms work on the final object represen-

tation of a program; this is in contrast to other approaches that keep around a copy of the

original source program representation (e.g., [106]) or work on an auxiliary intermediate

representation (e.g., [36]).

5.5.1 Example

I illustrate with an example the data-value problems caused by global optimizations and

how these problems can be managed by the debugger.

Figure 5.7(a) shows the intermediate representation (IR) flow graph of a program frag-

ment before optimizations and code generation. This program fragment contains exactly

five expressions E1���E5 that assign to a source-level variable x and exactly two uses of x,

one after E4 inside block B7 and one in block B9. There are no assignments to variables

y and z in this fragment. Figure 5.7(b) shows the flow graph of the object code after code
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hoisting and dead code elimination transformations and code generation. The destination

register of an instruction is the first operand of the instruction. I assume that other IR

expressions and object instructions exist in the program. Variable x is assigned a register

represented symbolically by Rx in Figure 5.7(b), and no other definitions of the register Rx

exist other that the ones shown in the figure.

In this example, assignment expressionsE1 andE4 have been translated to instructions I1

and I3 respectively. Variable x is dead after expressions E2 and E3. Dead code elimination

has eliminated these assignment expressions, so that no code has been generated for E2 or

E3 in Figure 5.7(b). Partial redundancy elimination [76] has eliminated expression E5 and

has inserted instruction I2 into block B4. The expression x=y+z is partially available [76]

at B8 since this expression is available along paths that reach B8 from B7, but not along

paths that reach B8 from B6. In Figure 5.7(b), a copy of the expression x=y+z has been

inserted into block B4 (instruction I2). This insertion makes expression x=y+z available

along all paths that reach B8 and thus E5 has been eliminated. In effect, this insertion has

hoisted E5 up from B8 to B4.

Endangered variables caused by code hoisting

Code hoisting causes endangered variables by hoisting an expression that assigns to a

source-level variable V , thus causing V to be updated prematurely. If the debugger can

detect that the value in the runtime location of a variable V is definitely from a source-

level assignment that has executed prematurely at the break, the debugger reports that V is

noncurrent. However, control flow introduces ambiguities and the debugger in general does

not know which execution path is traversed to reach a break. Thus, the debugger sometimes

detects that the actual value of a variable V is possibly from a source-level assignment

that has executed prematurely and V is reported as suspect. In the case that a variable V

is either noncurrent or suspect due to the (possible) premature execution of a source-level

assignment, the debugger conveys the actual value of V in source-level terms.

Consider a stopping instruction I that occurs after I2 in block B4, B5 or B6 (Figure

5.7(b)). The actual value of x at I is the value computed by instruction I2 which corresponds

to the source-level value assigned by E5. The expected value of x at the various breaks
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... Rx ... B9

B1

B2

B3

B5

B6

B4I2: add Rx,Ry,Rz

B8

B7

I3: add Rx,Ry,Rz

... Rx ...

B0I1: sub Rx,Ru,Rv

B2E2: x=w

B5E3: x=w*z

E4: x=y+z

B7
... x ...

E5: x=y+z B8

B1

B3

B4

B6

E1: x=u-v B0

B9... x ...... x ...

(b)(a)

Figure 5.7: Control flow graphs (a) IR after translation from source (b) Object program
after optimizations and code generation
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within these blocks (Figure 5.7(a)) is the value assigned by E1, E2, orE3, depending on the

control reference statement and the execution path leading to the break. Clearly, at all of

the above breaks, x is noncurrent, since the actual value of x is different from the expected

value of x due to instruction I2 prematurely assigning to Rx the source-level value assigned

by E5. If the user queries the value of x at any of these breaks, the debugger can display

the actual value of x and warn the user that this value is the value assigned by expression

E5, which has executed prematurely.

Now consider a break B inside block B8. Since the expression x=y+z is available

at B8, the value in x’s runtime location at any stopping instruction inside B8 is the value

assigned in the source byE5. Assume that the control reference statement S associated with

breakB occurs afterE5 inside B8. At breakB, x is current, since the expected value of x is

the value assigned by E5, which corresponds to the actual value of x. Now assume that S is

before E5. If execution reaches B8 from B7, then x’s expected value is the value assigned

by E4. The values assigned by E4 and E5 are identical and therefore x is current at break

B. However, if execution reaches B8 from B6 then the expected value of x is the value

assigned by any of the expressions E1, E2, or E3 (depending on the path taken) and thus

x is noncurrent at break B. In the absence of knowledge regarding execution history, the

debugger cannot determine whether execution reaches B8 via B7 or B6, and therefore the

debugger cannot determine whether x is current or noncurrent and must report x as being

suspect at breakB. If the user queries the value of x at this break, the debugger can display

the actual value of x and warn the user that this value may be from expression E5, which

may have executed prematurely at block B4.3 The user may be able to determine whether

block B4 has executed (e.g., based on the values that determine the outcome of block B3’s

conditional branch) and thus whether E5 has indeed executed prematurely. Note that the

compiler can instrument the object code or the debugger can install hidden breakpoints

to collect runtime information (e.g., path determiners [109]), allowing the debugger to

determine which path is taken to B8 and thus report x as either noncurrent or current. This

instrumentation is disallowed, however, in our non-invasive debugger model.

3Of course block B4 will be translated to some program point in the source. Also, the actual value may
stem from several hoisted expressions and the debugger may have to report several such program points to
the user. If the user determines that execution reached the break from any of these points, then the user can
infer that the suspect variable is noncurrent.
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Endangered variables caused by dead code elimination

Dead code elimination causes endangered variables by eliminating dead assignment ex-

pressions, thus eliminating updates to variables. In the case of an endangered variable V

caused by dead code elimination, the expected value of V is the value that would have been

assigned by a source-level assignment Ed that was eliminated by dead code elimination,

while the actual value of V is the value assigned by a source-level assignment other than

Ed. When both dead code elimination and code hoisting are performed, it is possible that

the expected value of a variable V stems from a dead assignment, while the actual value

of V stems from an assignment that has been executed prematurely due to code hoisting;

in this case V is endangered due to code hoisting. For example, in Figure 5.7, the dead

expression E3 will never directly cause endangerment because I2 has prematurely updated

x at all breaks where E3 assigns the expected value of x.

Because of control flow ambiguities, dead code elimination can cause both noncurrent

and suspect variables. When a variable is endangered due to dead code elimination, the

debugger can convey in source-level terms what the actual value of an endangered variable

V (possibly) corresponds to, as well as the fact that the assignment(s) that would have

(possibly) assigned the expected value of V has (have) been eliminated.

Consider a break B inside block B2. The actual value of x at break B is the value

assigned by I1, which corresponds to the source-level value assigned by E1. If the control

reference statement S associated with break B is before E2, then the expected value of x

is the value assigned by E1 and x is current. On the other hand, if S is after E2, then the

expected value of x is the value assigned by E2, and thus x is noncurrent at break B; i.e.,

the actual value of x is a stale value since x should have been updated by E2. If the user

queries the value of x at break B, the debugger can display the actual value of x and warn

the user that this value does not correspond to the expected value of x, which is the value

that would have been assigned by the eliminated expression E2.

Now consider a breakB inside block B3. The actual value of x is again the source-level

value assigned by E1. Depending on the path that was taken to this break, the expected

value of x is the value assigned by eitherE1 orE2. If control reaches breakB without going

through B2, then both the expected and actual values of x are the value assigned by E1, and
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thus x is current at break B. However, had the path through B2 been taken, then x would

be noncurrent at breakB. Since the debugger cannot disambiguate which path was actually

traversed to reach breakB, it cannot determine whether x is current or noncurrent and must

report x as suspect at break B. If the user queries the value of x at break B, the debugger

can display the actual value of x and warn the user that this value may not correspond to

the expected value of x, which may be the value that would have been assigned by the

eliminated expression E2. The user may be able to determine whether E2 has executed

(e.g., based on the values that determine the outcome of block B1’s conditional branch).

Variable x is similarly suspect at a break inside B4, with the stopping instruction before

instruction I2.

In the case where a variable V is either noncurrent or suspect due to dead code elimina-

tion, the debugger can perform reaching definitions analysis in the object code, to determine

which source definition(s) reach a break and thus which source expression(s) (could have)

assigned the actual value of V . This information can then be presented to the user. For

example, in Figure 5.7, only the source definition I1 reaches a break at B3, so in addition to

telling the user that x is suspect, the debugger can tell the user that the actual value of x is

the value assigned by E1.

5.5.2 Terminology

The Morel and Renvoise partial redundancy algorithm [76] and its variants [30, 39, 62]

compute the set of program points where the insertion of an expressionE will make another

partially redundant instance of E fully redundant. I refer to all such expressions that are

inserted by code hoisting transformations as hoisted expressions; the expressions that are

made redundant by the insertions and thus eliminated from the program, are referred to as

redundant expressions. If a hoisted expression Eh is inserted to make one other expression

Er redundant, then Er is referred to as the redundant copy RedCopy�Eh� of the hoisted

expression Eh, and Eh is referred to as a hoisted copy of the redundant expression Er.

Referring back to Figure 5.7(b), since I1 and I3 assign a source-level value of x to

register Rx, these instructions are source definitions of x [2]. I2 also assigns a source-level

value of x to Rx and is a source definition of x, but this source definition is one that has

been generated for a hoisted expression, and so I2 is referred to as a hoisted definition of x.
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That is, a hoisted definition of a variable V is a source definition of V that was generated

for a hoisted assignment expression. I extend RedCopy to apply to hoisted definitions: if

D is a hoisted definition generated for a hoisted expression Eh, then RedCopy�D� is the

redundant copy of Eh (i.e., RedCopy�D� � RedCopy�Eh�). Note that a hoisted definition

is an instruction, whereas the redundant copy of a hoisted definition is an expression

in the IR. Note also, that the value computed by a hoisted definition D corresponds to

the source-level value computed by the redundant expression RedCopy�D�. In Figure

5.7(b), E5 � RedCopy�I2� and thus the value assigned to Rx by the hoisted definition I2,

corresponds to the source-level value assigned by the redundant expression E5.

5.5.3 Detecting endangered variables caused by code hoisting

In this section, I concentrate on detecting endangerment caused by code hoisting. To aid

in the description of my algorithm, I use the simple example of Figure 5.8, which shows

the intermediate representation (IR) flow graph of a program fragment. Code hoisting has

inserted expression E3 inside block B2, rendering expression E2 in block B3 redundant.

Thus, E3 is a hoisted expression, E2 is a redundant expression, and E2 � RedCopy�E3�.

Three possible breakpoints are depicted: Bkpt1, Bkpt2, and Bkpt3. At Bkpt1, x is definitely

noncurrent, since the actual value of x is different from the expected value of x because of

E3 prematurely assigning to x the source-level value assigned by E2. At breakpoint Bkpt2,

x is current if execution reaches block B3 from block B1, and noncurrent if execution

reaches from block B2. Since the debugger cannot determine how execution reached B3,

it qualifies x as suspect at breakpoint Bkpt2. Finally, at breakpoint Bkpt3, the expected

value of x is the value assigned by E2 while the actual value of x is the value assigned by

either E1 or E3, depending on the path traversed to this breakpoint. The values assigned by

either E1 or E3 are the same as the value that would have been assigned by E2 (otherwise

E2 would not have been eliminated due to redundancy); thus, x is now current.

The key idea behind my algorithm is to determine if there exists a path to a break

that includes a hoisted expression that is not followed (on the same path) by a redundant

copy. Once execution has progressed to the point that all paths include a redundant copy,

the variable is current, since the actual value of the variable is the expected value. Path

problems are easily solved by an appropriate data flow framework.



5.5. ENDANGERED VARIABLES CAUSED BY GLOBAL OPTIMIZATIONS 113

E1: x=y+z B1
E3: x=y+z

B2

E2: x=y+z

B3

Bkpt1

Bkpt2

Bkpt3

E2 deleted because
available

E3 inserted by
code hoisting

x noncurrent
at Bkpt1

x suspect at Bkpt2

x current at Bkpt3

E0: x=u-v B0

Figure 5.8: Example: Code hoisting.

The intuition behind my approach to detecting endangered variables caused by code

hoisting is as follows. Let Eh be a hoisted definition of a variable V , letEr be the redundant

copy of Eh and let P be an execution path in the object code, that passes once through

both Eh and Block�Er�. Consider a point O along this path where a break B has occurred.

Assume that O occurs after Eh and that along P , there are no other instructions that define

the register assigned to V , so that the actual value of V at B is the source-level value

assigned by Er. We can make the following observations:

1. If, along path P , O is before the beginning of Block�Er� then Er has executed

prematurely and V is noncurrent at break B.

2. If O is after the end of Block�Er� along path P , then the expected value of V at

break B (assuming no other assignments to V exist in the IR) is the value assigned

by Er; thus, V becomes current after Block�Er�. In other words, once execution has

passed through Block�Er�, Er has no longer been executed prematurely by Eh, so

Eh no longer causes V to be noncurrent.

3. If O is inside Block�Er� then depending on whether the control reference statement

is before or after Er, V is either noncurrent or current respectively at break B. When

O is withinBlock�Er�, detecting whether the control reference statement is before or
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after Er requires only a local analysis, similar to the analysis I presented in Section

5.2 for local instruction scheduling.

To illustrate using the example of Figure 5.8, consider the path that extends from E3 to

Bkpt3 and beyond. Bkpt1 corresponds to case 1 above, and a point after Bkpt3 corresponds

to case 2 above. Breaks within block B3 correspond to case 3: at Bkpt2 x is noncurrent

while at Bkpt3 x is current.

My approach to detecting endangered variables uses two analyses:

1. Global analysis. Data-flow analysis is used to detect endangerment caused by Eh at

breaks in blocks other thanBlock�Er� (cases 1 and 2 above). This data-flow analysis

determines whether possible execution paths leading to a break could have executed

Eh without subsequently passing through Block�Er�. Depending on whether this

analysis finds all, only some, or no paths along which this property holds, V is either

noncurrent due to hoisted definitions, suspect due to hoisted definitions, or unaffected

by hoisted definitions.

2. Local analysis. The local analysis of Section 5.2 is used to detect whether V is

endangered at breaks insideBlock�Er�. SinceEr is redundant, it has been eliminated

from the program and no instructions have been generated for it. However, at any

break inside Block�Er�, the runtime location of V contains the source-level value

that would have been assigned by Er, since the value of Er is available upon entry

to Block�Er� (assuming no other assignments to V ’s runtime location). Thus, Er

can be modelled as executing at the pre-amble instruction of Block�Er� — that is,

regardless of where the stopping instruction is inBlock�Er�, Er can be considered as

having executed since the value in the runtime location of V is the value that would

have been assigned by Er. For example, in Figure 5.8, since the expression x=y+z

is available upon entry to block B3,E2 can be modelled as executing at the pre-amble

instruction of block B3, even though no instructions have been generated for E2. By

modelling the execution of E2 in this manner, the algorithm described in Section 5.2

will detect E2 as having executed prematurely only at control reference statements

before E2.

For each assignment expressionEr eliminated by code hoisting, I create an assignment
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descriptor hI�N� V i where I � Preamble�Block�Er��, N � Seq�Er� and V is the

variable assigned by Er. For any stopping instruction O inside Block�Er�, we have

Preamble�Block�Er�� � O; therefore, by Equation 5.2, V is endangered at all

control references statements S where Seq�S� � Seq�Er�.

The data-flow analysis used to detect endangered variables due to code hoisting is

similar to the reaching definitions analysis [7]. In the remainder of this section, I describe

this data-flow analysis solution.

After the execution of a hoisted expression Eh that assigns to a variable V , the actual

value of V corresponds to the source-level value that would have been assigned by the

redundant expression RedCopy�Eh�. For example, in Figure 5.8, the actual value of x

at breakpoint Bkpt1 is the value assigned by the hoisted assignment E3, which is the

source-level value assigned by E2.

Let P � hstart� ���� Oi be the execution path in the object code, that is traversed to

a breakpoint B. If at B the actual value of a variable V is the value assigned by a

hoisted expression Eh, then V is noncurrent at B if the expected value of V does not

correspond to the source-level value that would have been assigned by RedCopy�Eh�. V

is definitively noncurrent if Eh reaches along P and after the last occurrence of Eh, P

does not include RedCopy�Eh�. Or expressed positively, V is current whenever a path P

includes RedCopy�Eh�, and Eh does not occur on P after RedCopy�Eh�. For example,

in Figure 5.8, E3 reaches breakpoints Bkpt1 and Bkpt3. x is noncurrent at Bkpt1 since

any path taken to this breakpoint does not go through E2. x is current at Bkpt3, however,

because all paths to Bkpt3 must go through E2.

Therefore, given paths along which a hoisted expression Eh reaches, those paths that

do not go through RedCopy�Eh� are distinguished:

Definition 4 A redundant expression Er hoist reaches along a path P � hstart� ���� Oi in

the object code, if there exists a hoisted expression Eh such that Er � RedCopy�Eh�, Eh

reaches along P , and Er does not occur after the last occurrence of Eh along P .

Note that hoist reach is a property of redundant expressions only — that is, expressions that

have been eliminated due to partial redundancy elimination. In Figure 5.8, the redundant
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expression E2 hoist reaches Bkpt2 on the path from block B2. E2 does not hoist reach on

paths that reach via block B1.

Lemma 3 Let Er be a redundant assignment expression that assigns to a variable V . If

Er hoist reaches along a path P � hstart� ���� Oi and P is the execution path traversed to

a breakpoint B, then V is noncurrent at B due to the premature execution of Er.

Proof: After execution of P , the actual value of V corresponds to the source-level value

assigned by Er. However, since execution has not yet reached Block�Er�, the expected

value of V cannot correspond to the value that would have been assigned by Er. Hence V

is noncurrent at any break at O due to the premature execution of Er .

Because the debugger does not know which execution path was actually taken to reach

a breakpoint, all possible paths must be considered. The following lemmas describe the

two cases where a redundant assignment expression hoist reaches along all or only some of

the paths that lead to a point O, where a breakpoint has occurred. Let Er be a redundant

assignment expression that assigns to a variable V :

Lemma 4 If Er hoist reaches along all paths leading to a point O, then at any breakpoint

occurring at O, V is noncurrent due to the premature execution of Er.

Proof: Lemma 3 holds for all possible execution paths leading to O. Thus, V is noncurrent

due to the premature execution of Er at any break B occurring at O regardless of the

execution path traversed to reach break B.

Lemma 5 IfEr hoist reaches along at least one but not all paths leading to a pointO, then

at any breakpoint occurring at O, V is suspect due to the possible premature execution of

Er.

Proof: Lemma 3 holds for all least one but not all execution paths leading to O. Therefore,

the debugger cannot determine statically whether V is current or noncurrent at any break

B occurring at O and V is suspect at breaks occurring at O.

In Figure 5.8, x is noncurrent at Bkpt1, because the redundant assignment expression

E2 hoist reaches on all paths to Bkpt1. At Bkpt2, x is suspect because E2 hoist reaches on

only some paths. At Bkpt3, x is current because no expressions that assign to x hoist reach.
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Hoisted indirect assignments

An indirect assignment assigns to a memory location specified by a pointer expression (e.g.,

*p = ...). If an indirect assignment A hoist reaches a pointO, then the variable pointed

to by the pointer expression in the left hand side of A is noncurrent at O. If the value of the

pointer used by A is available at O, then the debugger can tell precisely which variable has

been prematurely updated by A. In the absence of such knowledge, however, the debugger

must conservatively assume that all variables that are potentially aliased by A are suspect.

I can easily extend the above formulation to take into account hoisted indirect assign-

ments:

Lemma 6 Let Er be a redundant expression that is an indirect assignment and let V be a

variable that is possibly aliased by Er. If Er hoist reaches along a path P � hstart� ���� Oi

and P is the execution path traversed to a breakpoint B, then V is suspect at B due to the

premature execution of Er.

Indirect assignments cause variables to be suspect if they hoist reach on any path. Let

Er be a redundant expression that is an indirect assignment (i.e., an assignment through a

pointer) and let V be a variable that is possibly aliased by Er:

Lemma 7 If Er hoist reaches along any path leading to a point O, then at any breakpoint

occurring at O, V is suspect due to the possible premature execution of Er.

Optimizing expressions involving pointer accesses requires expensive alias analysis

and is performed by few optimizing compilers. Rather than perform alias analysis some

compilers optimize pointer accesses but with very pessimistic assumptions, e.g., cmcc

assumes that all local variables whose addresses are taken are aliased along with all global

variables.

When a hoisted indirect assignment causes suspect variables, the debugger can try to

recover the runtime value of the pointer expression, thus detecting which variable has

been prematurely updated. However, our measurements using the cmcc compiler show

that hoisting of indirect assignments occur very rarely (I have not yet seen a case). In

practice, it is highly unlikely that a user will encounter endangerment due to hoisted
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indirect assignments and thus I do not bother with formulating how the runtime value of a

pointer can be recovered.

The hoist reaching formulation described in this section computes the set of assignment

expressions that hoist reach; the sets of noncurrent and suspect variables are derived from

the set of hoist reaching assignments. By computing the set of hoist reaching assignment

expressions, the algorithms can detect whether any of the hoist reaching expressions are

indirect assignments and thus whether any variables are suspect due to indirect assignments.

If we assume that indirect assignments are never hoisted, then the formulation of the problem

can be changed to directly compute the set of variables that are noncurrent and suspect due

to code hoisting. In Section 5.5.4, I illustrate this alternative by formulating the algorithm

for computing endangered variables caused by dead code elimination, assuming indirect

assignments are not eliminated.

Data-flow analysis

Detecting whether a redundant expression hoist reaches along all or only some paths can

easily be done using data-flow analysis. This data-flow analysis is performed on the final

instruction-level intermediate representation of a program, which includes information

describing the effects of optimizations. In Section 5.7 I describe how this representation

is built and maintained by the cmcc compiler. The hoist reach data flow attribute of an

expression E is generated by any code inserted by code hoisting that computesE and killed

by any eliminated redundant code that also computes E. Two data-flow analysis problems,

AllHoistReach and AnyHoistReach, that together represent the conditions of Lemma 4

and Lemma 5 are defined:

Definition 5 The predicate AllHoistReach�Er� O� is true at a point O in the object code

if the redundant assignment expression Er hoist reaches along all paths leading to O.

Definition 6 The predicateAnyHoistReach�Er� O� is true at a pointO in the object code

if the redundant assignment expression Er hoist reaches along any path leading to O.

Note that the data-flow analysis problems involve properties of redundant assignment

expressions in the intermediate representation, yet they are performed on the object code.
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Note also, that the algorithm does not need to determine which instance of an expression

hoist reaches, but rather that some expression hoist reaches; that is, the compiler need not

determine that E2 � RedCopy�E3�, but rather that E3 is a hoisted instance of the syntactic

expression x=y+z, and that E2 is redundant. If a break B occurs at a point O in the object

code where AllHoistReach�Er� O� is true, then the variable assigned by Er is noncurrent

at break B due to the premature execution of Er. Otherwise, if AnyHoistReach�Er� O� is

true, then the variable assigned by Er is suspect at break B due to the possible premature

execution of Er.

Indirect assignments cause variables to be suspect if they hoist reach on any path. Thus

ifEr is an indirect assignment andAnyHoistReach�Er� O� is true, then memory variables

are suspect.

The In and Out sets of the data-flow analysis problem, with respect to an instruction I ,

are as follows:

� AllHoistReachIn�I� is the set fEr : AllHoistReach�Er� pre�I��g

� AllHoistReachOut�I� is the set fEr : AllHoistReach�Er� post�I��g

� AnyHoistReachIn�I� is the set fEr : AnyHoistReach�Er� pre�I��g

� AnyHoistReachOut�I� is the set fEr : AnyHoistReach�Er� post�I��g

The only difference between AllHoistReach and AnyHoistReach is the confluence

operator; the Kill and Gen sets of the two analyses are the same and are represented by

HoistReachKill and HoistReachGen. The confluence operator for AllHoistReach is

set intersection, while that of AnyHoistReach is set union:

AllHoistReachIn�I� �
�

J�pred�I�

AllHoistReachOut�J�

AnyHoistReachIn�I� �
�

J�pred�I�

AnyHoistReachOut�J��

The set HoistReachGen is defined as follows. Let D be a hoisted definition, and let Er

be a redundant assignment expression such that Er � RedCopy�D�. Er hoist reaches the

point post�D� immediately after D, thus D generates AllHoistReach�Er� post�D�� and

AnyHoistReach�Er� post�D��:
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� IfD is a hoisted definition, thenHoistReachGen�D� � fRedCopy�D�g, otherwise

HoistReachGen�D� � fg.

The set HoistReachKill is the smallest set defined as follows. Because a redundant

expression Er is no longer hoist reaching along a path that passes through Block�Er�,

the pre-amble of Block�Er� kills AllHoistReach and AnyHoistReach for a redundant

expression Er:

� If Er is a redundant assignment expression,

then Er � HoistReachKill�Preamble�Block�Er���.

Given a redundant expression Er that is the redundant copy of a hoisted expression Eh, Er

post-dominates Eh and the hoist reach of Er is eventually killed on any path leading from

Eh. Therefore, the region of endangerment caused by code hoisting is limited.

Any instruction that defines a register R kills AllHoistReach and AnyHoistReach

for all Er such that Er is a redundant assignment expression that assigns to a variable V

that has been assigned register R:

� Let I is an instruction that defines a register R. �Er such that

1. Er is a redundant assignment expression that assigns to a variable V and

2. the variable V has been assigned register R

Er � HoistReachKill�I�.

The In and Out sets of the data-flow equations for an instruction I are related by:

AllHoistReachOut�I� � �AllHoistReachIn�I�nHoistReachKill�I���HoistReachGen�I�

AnyHoistReachOut�I� � �AnyHoistReachIn�I�nHoistReachKill�I���HoistReachGen�I��

Providing additional information to the user

As described in Section 5.5.1, if a variable is suspect due to the possible premature exe-

cution of a redundant assignment expression Er, then the debugger can provide additional
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information to the user by displaying in source-level terms the execution points at which

hoisted copies of Er execute. For instance, in Figure 5.8, if the user queries the value of

x at breakpoint Bkpt1, the debugger can display the actual value of x and warn the user

that this value is the value assigned by the source-level assignment E2, which has executed

prematurely. If the user queries the value ofx at breakpoint Bkpt2, the debugger can display

the actual value of x and warn the user that this value may be from expression E2, which

may have executed prematurely at block B2.

This information can be gathered at a point O in the object code using a reaching

definitions data-flow analysis in the object code to compute the set

ReachingHoistAssigns�Er� O� � fD : DreachesO 	 Er � RedCopy�D�g�

If a break occurs atO, the debugger informs the user of source execution points where hoisted

copies of Er execute, after mapping each instruction I � ReachingHoistAssigns�Er� O�

to an execution point in the source.

5.5.4 Detecting endangered variables caused by dead code elimination

This section focuses on detecting endangered variables caused by dead code elimination.

The program fragment of Figure 5.9 is used to demonstrate the effects of dead code

elimination on debugging. In this figure, assignment sinking has insertedE2 and expression

E0 has been deleted because sinking makes E0 dead. At breakpoint Bkpt1, x’s expected

value is the value that would have been assigned by E0, while x’s actual value is the value

assigned by the last assignment that was executed prior to this program fragment. Therefore,

the actual value of x is a stale value, and x is noncurrent. x is similarly noncurrent at Bkpt2

and Bkpt3. At Bkpt4, x is current since expression E2 assigns the expected value of x (i.e.,

the value that would have been assigned by E0). At Bkpt5, x is noncurrent if execution has

reached this breakpoint from block B1 and current if execution has reached from block B2.

Therefore, x is suspect at Bkpt5. Finally at Bkpt6, both the expected and actual values of

x are from E1, and thus, x is current.

The approach to detecting endangered variables caused by dead code elimination uses

a data-flow analysis similar to that described in Section 5.5.3. The data-flow analysis

for detecting endangered variables at a point O in the object code solves for the predicates
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E0: x=y+z
B0

Bkpt1

E0 deleted
because dead

x noncurrent
at Bkpt2

x suspect
at Bkpt5

x noncurrent
at Bkpt1

E1: x=u-v

B3
Bkpt5

Bkpt6
x current
at Bkpt6

x noncurrent
at Bkpt3

E2: x=y+z

B2
Bkpt3

Bkpt4 x current
at Bkpt4

Bkpt2
E2 inserted by
code sinking

B1

Figure 5.9: Example: Code sinking and dead code elimination.

AllDeadReach�V�O� andAnyDeadReach�V�O� for a variableV . AllDeadReach�V�O�

is true if along all paths leading to O the expected value of V is assigned by a dead as-

signment and the actual value of V is stale. AnyDeadReach�V�O� is true if the con-

ditions holds along only some paths. Thus, at a break occurring at O, V is noncurrent

due to dead code elimination if AllDeadReach�V�O� is true; otherwise, V is suspect if

AnyDeadReach�V�O� is true. If neither predicate is true then V is not endangered due to

dead code elimination.

Let Ed be a dead assignment expression that assigns to a variable V . Let D be a source

definition of V and P be an execution path in the object code, such that D and Block�Ed�

occur once in P , D occurs after Block�Ed�, and Block�D� � Block�Ed�. Assume that

between Block�Ed� and D along P there are no other blocks containing dead assignments

to V and no other source definitions of V . Consider a point O along P , where a break B

has occurred. We can make the following observations:

1. If O is inside Block�Ed� then depending on whether the control reference statement

is before or after Ed, V is either current or noncurrent respectively at break B.

2. If, along pathP ,O is afterBlock�Ed� but beforeD then at breakB, the expected value
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of V is the value that would have been assigned by Ed which does not correspond to

the actual value of V . V is noncurrent at break B due to the elimination of the dead

assignment expression Ed.

3. If O is after D along path P , then the actual value of V is the value assigned by

D. At break B, this value may either be the current value of V , or the value from a

prematurely executed assignment to V . In any case, once execution has passed D,

the elimination of Ed no longer causes V to be noncurrent.

My approach to detecting endangered variables caused by dead code elimination again

divides the problem into a global and local component:

1. Global analysis. Data-flow analysis is used to detect endangerment caused by dead

code elimination of Ed at breaks in blocks other than Block�Ed� (cases 2 and 3

above). This data-flow analysis determines whether possible execution paths leading

to a break could have passed throughBlock�Ed� for some dead assignment expression

Ed that assigns to a variable V , without subsequently executing a source definition

D of V . Depending on whether this analysis finds all, only some, or no paths along

which this property holds, V is either noncurrent because dead code elimination,

suspect because of dead code elimination, or unaffected by dead code elimination.

2. Local analysis. The local analysis of Sections 5.2 and 5.3 is used to detect whether

V is endangered at breaks inside Block�Ed� for some dead assignment expression

Ed that assigns to variable V . Because Ed is dead, it has been eliminated from the

program and no instructions have been generated for it. However, at any break inside

Block�Ed�, the runtime location of V will never contain the source-level value that

would have been assigned by Ed. Thus, Ed can be modelled as executing at the post-

amble instruction of Block�Ed�; that is, regardless of where the stopping instruction

is in Block�Ed�, the execution of Ed has been delayed until the end of Block�Ed�.

For example, in Figure 5.7, by modelling the execution of E2 as occurring at the end

of block B2, the algorithm described in Section 5.2 (with the extension described in

Section 5.3) will detect E2 as having not executed when it should have only at control

reference statements within block B2 that occur after E2.
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For each assignment expression Ed eliminated by global dead code elimination, the

compiler creates a dead assignment descriptor hI�N� V iwhere I � Postamble�Block�Ed��,

N � Seq�Ed� and V is the variable assigned by Ed. For any stopping instruction O

inside Block�Ed�, we have Postamble�Block�Ed�� � O; thus, by Equation 5.3, V

is endangered at all control references statements S where Seq�S� � Seq�Ed�.

Unlike the hoist reaching data-flow algorithm where we solved for whether a redundant

IR expression is hoist reaching, the data flow algorithm for detecting endangered variables

caused by dead code elimination solves for whether a variable V is endangered due to

the elimination of some dead assignment to V . After execution passes through a dead

assignment to a variable V , the actual value of V becomes stale until another assignment

to V is executed. For example, in Figure 5.9, x becomes noncurrent after E0, until after

the assignments E1 and E2. Therefore, I distinguish those paths where a variable’s value is

stale due to a dead assignment:

Definition 7 A variable V is dead reaching along a path P � hstart� ���� Oi in the object

code, if there exists a dead assignment expression Ed that assigns to V such thatBlock�Ed�

occurs in P and no assignments to V occur alongP after the last occurrence ofBlock�Ed�.

If a variable V is dead reaching along a path P and P is the execution path traversed to a

breakpoint B, then V is clearly noncurrent at B:

Lemma 8 If a variable V is dead reaching along a path P � hstart� ���� Oi, and P is the

execution path traversed to a breakpoint B, and V is not noncurrent due to the premature

execution of a redundant assignment, then V is noncurrent at B because the actual value

of V is stale.

Proof: After execution of P , the expected value of V is from some dead assignment

expression Ed. The actual value of V is from an assignment that occurs earlier than Ed

in the source. Hence the expected and actual values of V do not correspond and V is

noncurrent at break B.

The development of the data-flow problem is similar to that of Section 5.5.3 (proofs

of lemmas are very similar to those of Lemmas 4 and 5, and are omitted for the sake of

conciseness):
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Lemma 9 If a variable V is dead reaching along all paths leading to a pointO, then V is

noncurrent at any breakpoint occurring at O.

Lemma 10 If a variable V is dead reaching along at least one but not all paths leading to

a point O, then V is suspect at any breakpoint occurring at O.

In Figure 5.9, x is dead reaching along all paths leading to Bkpt1, Bkpt2 and Bkpt3; thus, x

is noncurrent at these breakpoints. At Bkpt5, x is dead reaching only along those paths that

pass through B1; thus, x is suspect. At Bkpt6, x is not dead reaching; thus, x is current.

Data-flow analysis

The data-flow analyses to detect whether a variable is dead reaching on only some or all

paths can be derived in a straight-forward manner from the above definitions and lemmas.

The dead reach of a variable V is generated by a dead assignment to V and killed by any

other kind of assignment to V .

Definition 8 The predicate AllDeadReach�V�O� is true at a pointO in the object code if

the variable V is dead reaching along all paths leading to O.

Definition 9 The predicate AnyDeadReach�V�O� is true at a point O in the object code

if the variable V is dead reaching along any path leading to O.

The definitions of the setsAllDeadReachIn,AllDeadReachOut,AnyDeadReachIn

and AnyDeadReachOut, as well as the confluence operators and flow equations for these

sets are similar to the corresponding sets of the data flow analysis in Section 5.5.3; I omit

the details for conciseness. The set DeadReachGen is the smallest set defined by:

� If Ed is a dead assignment expression that assigns to a variable V , then

V � DeadReachGen�Postamble�Block�Ed���.

The set DeadReachKill is the smallest set defined by:

� If I is a source definition of V , then V � DeadReachKill�I�.



126 CHAPTER 5. DETECTING ENDANGERED VARIABLES

Providing additional information to the user

If a variable V is endangered due to dead code elimination, then it is useful to inform the

user which source statements assign the actual and expected values of V (as discussed in

Section 5.5.1). At a break, the debugger performs a reaching definitions analysis in the

object code to detect the set of reaching instructions that are source definitions. Using

this information, the debugger can inform the user which source-level expression assigns

(or which expressions may assign) the actual value of V . To inform the user of which

expressions assign the expected value of V , the debugger performs reaching definitions

analysis in the source.

5.5.5 Recovery

If dead code elimination eliminates an assignment to a variable V , it may be possible to

recover the expected value of V from the values of compiler temporaries. Consider the

example in Figure 5.10(a). The right hand side of the expression x=y+z at statement

S1 is propagated to the two uses of x at statements S2 and S3. After this assignment

propagation, no uses of x remain, and thus dead code elimination eliminates S1 (Figure

5.10(b)). Common subexpression elimination detects the common subexpression y+z,

replacing the two computations of y+z with fetches from the temporary tmp (Figure

5.10(c)).

S1: x = y+z tmp = y+z
S2: ...x... S2: ...y+z... S2: ...tmp...
S3: ...x... S3: ...y+z... S3: ...tmp...

(a) (b) (c)

Figure 5.10: Recovery example (a) Original source program (b) After copy propagation
and dead code elimination (c) After common subexpression elimination.

In cmcc, this assignment propagation is performed to improve partial redundancy

elimination [30, 18], and the situation described above occurs quite often. The final effect

of this series of transformations is that the source-level variable x is replaced with tmp. If

the user queries the value of x at a breakpoint that occurs after statement S1, the debugger

could display the value of tmp, since these two variables are aliased. This is one form
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of recovery, where the debugger reconstructs the expected value of a variable from other

runtime values.

Recovery is performed by checking each expression E that was inserted by code re-

placement transformations (Section 5.7 describes how the compiler can keep track of such

transformations). If E replaced a fetch from a source-level variable V in the original pro-

gram, then the value computed by E aliases V , and V can be recovered from the storage

location holding the value of E. E may be a constant, a fetch from a temporary, or some

more general computation such as addition. In the case that E is a fetch from a temporary

T , the compiler generates the residence [2] of V in the storage location assigned to T .

If E is a constant, the compiler generates a special constant residence for V , indicating

that the value of V is a constant. If E is neither a constant nor a fetch, then the compiler

generates the residence of V in the storage location assigned to the result register of the

instruction that computes E’s value. In all cases, the dead reach of V is killed by E. A

similar approach is used to recover the value of a source-level induction variable that is

replaced by a compiler-synthesized induction variable.

5.6 Speculative code motion

Speculative code motion hoists an operationO from a blockB1 to another blockB2 that is not

post-dominated by B1; as a result O is introduced into an execution path in which it did not

exist before. To maintain correct semantics, the operation O must not fault or incorrectly

overwrite values that are read on paths where O did not exist before. Speculative code

motion is most commonly performed by global instruction scheduling and loop-invariant

code motion algorithms that hoist operations that are not executed on all possible paths

through a loop. cmcc (like many other compilers) does not perform speculative code

motion. The algorithms described thus far for detecting endangered variables do not work

with speculative code hoisting. But speculative code motion can be easily handled with

simple extensions to the earlier algorithms; I include these extensions here for completeness.

I do not deal with the case where an indirect store is speculatively hoisted; indirect stores

may cause a fault and are usually never executed speculatively unless special hardware

support is provided to buffer and squash the stored value [89]. In general, stores are not
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hoisted by instruction scheduling since they are at the end of a dependence chain; memory

resources are better utilized by hoisting load instructions.

I: add Rx,R1,R2

I: add Rx,R1,R2

B0

B1

B2

B3

B4

B5

Figure 5.11: Example: Speculative code motion.

Figure 5.11 shows an example of speculative code motion; the compiler has speculatively

hoisted instruction I from block B3 to block B0. Instruction I is a source definition of

variable x and there are no other definitions of x. By hoisting I to block B0, the compiler

has introduced I into the path hB0� B4� B5i where I did not exist before.

Because I did not exist in the path hB0� B4� B5i, I cannot really be considered a source

definition of x. At block B4, the value in Rx is not a valid source-level value of x; that is,

the value inRx is not a value of x that is computed on any valid execution path in the source.

Therefore, with respect to block B4 x is nonresident. At blocks B1 and B2, however, the

value in Rx is from an assignment to x that has executed prematurely. At these blocks, the

assignment to x at block B3 is inevitable. At block B0, however, it is unknown whether B3
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will execute and thus the value in Rx is a speculative value of x; since the debugger does

not know whether B3 will execute x is reported as nonresident.

In general, when speculative code hoisting hoists a source definition I of a variable V

from a block Bi to a block Bj , V is nonresident on any path leading from Bj to any block

Bk that is post-dominated by Bi. At Bk, V becomes a noncurrent variable. Thus I is

marked as an evicting definition of V and the first block Bk that is post-dominated by Bj

and is reachable on any path leading from Bi is marked as causing V to become resident.

Moreover, Bk generates the hoist reach of instruction I while block Bi kills the hoist reach.

This ensures that on all paths from Bk to Bi V is correctly detected as endangered.

5.7 Tracking the effects of compiler transformations

To allow the debugger analyses described in Section 5.5, the compiler must perform book-

keeping to record the effects of optimizations in the program representation. In the cmcc

compiler, this bookkeeping is performed by annotating the nodes of cmcc’s IR. These an-

notations record whether an operation was inserted by optimizations (and if so by which).

Bookkeeping also inserts special IR marker nodes to mark points of interest to the debug-

ger. These annotations and markers are ignored by optimizations and optimizations are not

constrained in any way.

This method of tracking the correspondence between the optimized code and the source

code is in contrast to the approach taken by Wismeuller [106] and Copperman [36]. In

those approaches, a representation of the original source program is kept as a copy, and

links are maintained between the intermediate representation used for optimizations and the

original representation (e.g., an abstract syntax tree). Copperman maintains a data struc-

ture called a DS-graph, which is essentially a control flow graph containing assignments

in the source code with links to instructions in the control flow graph of the final object

code. The DS-graph is maintained in parallel to the IR used by the compiler and edited as

optimizations transform the IR. The DS-graph is passed to the debugger for data-flow anal-

ysis. Wismueller’s algorithm for detecting current variables requires two representations,

a control flow graph of the source program and a control flow graph of the object program

with mappings between the two.
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The different ways in which global optimizations may transform a program, and the

manner in which bookkeeping is performed for these transformations in cmcc, are as

follows:

Code insertion Code motion and common subexpression elimination transformations in-

sert new code into the program representation. Expressions that are inserted by either

code hoisting or code sinking are marked as hoisted or sunk expressions. Assignment

expressions that are marked as hoisted will generate the hoist reach of variables.

Code replacement Copy propagation and redundancy elimination replace one expression

with another. Copy propagation replaces a reference to a variable with a propagated

expression, while redundancy elimination replaces an available expression with a

fetch from a common subexpression temporary. When an expression E replaces a

fetch from a variableV , a reference to V is kept inE. This information is needed only

for the recovery algorithm described in Section 5.5.5 and can otherwise be omitted.

Code deletion Dead code elimination and partial redundancy elimination delete assign-

ment expressions that are dead or available. When an assignment to a variable V

is eliminated, it is replaced with a special IR marker node, unless this assignment

has been previously marked as sunk or hoisted. A marker node contains a reference

to the variable V and an indication why the assignment to V was eliminated (i.e.,

whether the assignment was dead or available). Markers are ignored by optimization

phases and are used only for the debugger analysis algorithms. Markers that indicate

an available variable V will kill the hoist reach of V , while markers indicating a dead

variable V will generate the dead reach of V .

Code duplication Control flow optimizations such as loop peeling duplicate code. Code

duplication, however, does not create data-value problems since no movement or

elimination of assignments occur. Therefore, the effects of this transformation need

not be recorded. However, marker nodes inside a block B must also be duplicated

when B is duplicated. Moreover, if an IR node containing debugging annotations is

duplicated, the information must be duplicated along with the node.

Basic block deletion A block of code can be eliminated if the optimizer determines that

this code is unreachable. This transformation may occur after a conditional branch
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expression is folded. Since the code that is eliminated would not have executed in the

original program, this transformation does not cause data-value problems and thus

the effects need not be recorded.

Basic blocks may also be deleted because they become empty after other optimiza-

tions, or because they contain only unconditional branches (and are deleted by branch

chaining). In this case, if the deleted basic block contains any information relevant to

debugging (i.e., markers), then such information must be retained, and is transferred

to the deleted block’s successor.

Basic block insertion Edge splitting and preheader insertion insert new (empty) basic

blocks into the program representation. This transformation does not cause data-

value problems.

Only after the final object code has been produced are all optimizations exposed; thus,

the analyses for detecting endangered variables must be performed on an instruction-level

representation of the program [2, 1]. Like most compilers, however, cmcc has a two

level intermediate representation consisting of a machine-independent IR used for global

optimizations (e.g., partial redundancy elimination), and an instruction-level representation

used for machine dependent optimizations (e.g., instruction scheduling and register alloca-

tion). Most of the bookkeeping is performed on the machine-independent IR (since most

optimizations operate on this IR), and thus the annotations and markers must be passed

along to the instruction-level representation as the program representation is lowered. This

is similar to passing high level information such as aliasing information along to a compiler

back end for use by an instruction scheduler. During code selection, annotations are trans-

ferred from nodes in the machine independent IR, to the selected instructions. IR marker

nodes are lowered to special marker instructions, which convey essentially the same infor-

mation as the IR marker nodes. Instructions are also annotated with information indicating

which instructions correspond to source-level assignments.
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Figure 5.12: Average number of endangered variables at each breakpoint, all optimizations
except register allocation enabled.

5.8 Empirical results

In this section, I present measurements of how often endangered variables are likely to

occur. The metric I use in these measurements is the average number of variables that

are uninitialized, current, endangered, and nonresident at a breakpoint. These numbers

are gathered by considering all possible source-level control breakpoints. Although there

are a large number of global variables that can be queried at each breakpoint, very few

global variables are endangered on the average. Therefore, I show only the results for local

variables. (Including global variables would greatly reduce the percentage of nonresident

and endangered variables.) The average number of local variables in these charts is greater

than in the charts of Section 4.5 because the charts in this section include all local variables;

the charts of Section 4.5 show only locals that are register allocation candidates.

Figure 5.12 shows the results when the programs are compiledwith global optimization

and instruction scheduling, but without global register allocation. Since register allocation

is not performed, nonresident variables cannot occur. On average, only about 10-30% of the

variables are endangered at each breakpoint. The same measurements for triangle are

shown in the first column of Figure 5.14 (the results for this program are shown separately
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Program % Suspect

li 13.6%
eqntott 36.7%
espresso 33.6%

gcc 22.0%
alvinn 9.0%

compress 13.2%
ear 30.4%
sc 30.8%
lcc 13.3%
tcl 19.8%

triangle 25.5%

Table 5.5: Percentage of endangered variables that are suspect in Figure 5.12.

because this program has a significantly higher average number of local variables compared

to the other programs). About 16% of the variables are endangered at each breakpoint in

this program.

Table 5.5 shows the percentage of endangered variables that are suspect. This table

shows that the majority of endangered variables are noncurrent. Thus, the debugger can

successfully classify the majority of resident variables as either current or noncurrent.

Figure 5.13 shows the results when the programs are compiled with global optimizations

and with register allocation. (The second column of chart in Figure 5.14 shows the results

for triangle). Over half the variables are current or uninitialized; these are the “good”

cases, because the debugger can provide accurate and meaningful information to the user.

Almost all the variables that cause problems for the debugger are nonresident. Therefore,

when the user queries the value of a variable V , the debugger will in most cases respond

with either the expected value of V or with no value at all (i.e., V is nonresident) — very

seldom will the debugger report a variable as endangered. This suggests that using analysis

to detect current variables can be a big win: by performing analysis to detect current

variables, the debugger certifies most resident variables as current (rather than suspect)

and can make optimizations transparent in many situations. If the debugger only detected

whether a variable is nonresident, then the best answer that the debugger could give a user

is that a variable is suspect — the user is faced with the task of determining whether the

variable is suspect. If the debugger also performs analysis to determine whether a variable
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Figure 5.13: Average number of endangered variables at each breakpoint, all optimizations
enabled.

is current, then in most cases where a variable is resident, the debugger need not bother the

user in any way and can provide expected behavior.

It is worthwhile to compare Figures 5.12 and 5.13 to see the influence of register

allocation. When global register allocation is enabled, we see two effects: First, the number

of current variables decreases (the number of uninitialized variables should be unaffected

since uninitialized variables depend only on the source reference statement). The reason for

this is that some of the variables that are current in Figure 5.12, are allocated registers and

become nonresident in Figure 5.13. Second, the number of endangered variables decreases

to an almost negligible amount. The reason for this is that a majority of the endangered

variables in Figure 5.12 are dead; thus, the registers allocated to these variables are re-used

by the register allocator. The results of these two figures suggest that if register allocation

is performed with dead code elimination, the effects of dead code elimination are manifest

in the form of nonresident variables, rather than endangered variables.

Figure 5.15 shows the results weighted by dynamic execution count, for a subset of the

SPEC C programs compiled with both global optimizations and register allocation enabled.

Compared to the results of Figure 5.13, substantially fewer variables are uninitialized on

average; this is because almost all variables are initialized at the breakpoints where the
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Figure 5.14: Average number of endangered variables at each breakpoint for triangle.
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Figure 5.15: Average number of endangered variables at each breakpoint weighted by
execution count, all optimizations enabled.
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majority of execution time is spent. In general, however, the results of Figure 5.15 support

the conclusions of the previous paragraphs: the majority of variables are either current or

nonresident — endangered variables are rare.

In Section 2.4.2, I mentioned that one way in which expected behavior can be provided

is by constraining optimizations. To eliminate data-value problems, optimizations can be

constrained such that endangered and nonresident variables do not occur. The user can be

given the option of trading off optimizations and sacrificing performance, in order to gain

debugability. The measurements in this section show that the most critical optimization

that must be addressed first is register allocation, because nonresident variables are the

most serious data-value problem. To trade-off optimizations for debugability, the register

allocator can either disallow variables from being register-residing candidates, or it can

assign a register to a variable for the duration of a function. Alternatively, after register

assignment, store instructions that spill the values of source-level variables to home locations

in memory, can be introduced into the program. These spills can be inserted immediately

after each definition of a variable, at the end of a variable’s live range, or at the point

where a variable becomes nonresident. Code motion techniques can be used to optimize the

placement of spills by eliminating partial redundancies among spills or by scheduling spills

into empty schedule slots (thus, executing spills “for free”). Future work can investigate

the trade-offs in performance using these approaches.

5.9 Summary

In this chapter, I have described an approach to detecting endangered variables caused by

global scalar optimizations and instruction scheduling. My approach uses two analyses.

First, a local analysis is used to detect endangered variables caused by instruction scheduling

and local optimizations. To gather the information required for this analysis, the compiler

annotates the instruction-level representation of the program with information that describes

the order in which assignments are supposed to executed in the source. These annotations

allow the debugger to detect which assignments have been executed out of order at a

breakpoint.

Second, a global data-flow analysis is used to detect endangered variables caused by
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global scalar optimizations. Since data-flow analysis is a well-understood technique, there

are limited obstacles to overcome for an implementation of these techniques in a compiler.

The analyses are very similar to other analyses that are done by the compiler and can

thus take advantage of an infrastructure that is already present. This is in contrast to

other approaches that require specialized data-flow analyses and program representations

[36, 106]. To gather the information required for the data-flow analyses, the program

intermediate representation is annotated during optimizations to mark hoisted and sunk

assignments, and additional markers are inserted to indicate points from which source-level

assignments are eliminated. The data-flow analyses can be performed either by the compiler

after optimizations and code generation, or by the debugger.

I have presented measurements of the effects of optimizations on a source-level de-

bugger’s ability to retrieve variable values. Measurements show that a debugger is more

likely to be affected by register allocation than by other global optimizations. Moreover, by

performing the analyses described in this chapter, the debugger can in many cases provide

expected behavior when responding to a user variable query.
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Chapter 6

Breakpoints in Optimized Code

To accurately set and report breakpoints, the debugger requires two mappings: (1) the

the object-to-source mapping and (2) the source-to-object mapping. The object-to-source

mapping maps an instruction I to the source-level statement for which I is generated. When

an asynchronous break occurs at an instruction I , the debugger uses the object-to-source

mapping to report to the user the statement in which the asynchronous break occured

(asynchronous breaks are defined in Section 2.1). The source-to-object mapping maps a

statement S to one or more instructions. The debugger uses this mapping to determine the

instructions at which breakpoints are actually set when the user sets a breakpoint at S.

The object-to-source and source-to-object mappings are constructed by the compiler

and transmitted to the debugger via the object file. To construct the object-to-source

mapping, the compiler must maintain enough information in both the machine-independent

and instruction-level intermediate representations to trace each instruction I back to the

source statement for which I is generated. The compiler must update this information

as transformations are performed so that the mapping from instructions in the optimized

translation to statements in the source program remains accurate. For example, when

partial redundancy elimination inserts an expression E into the program representation,

the compiler must find the statement from which E is hoisted by searching forward in the

control-flow graph.

To construct the source-to-object mapping, the compiler must keep track of the effects

of optimizations on the mapping of source breakpoints to instructions. The compiler must

update the source-to-object mapping to reflect the effects of optimizing transformations;

139
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transformations may require that a breakpoint be moved, eliminated, or duplicated. For

example, loop peeling duplicates the instruction sequence that is generated for a statement

S that lies within the peeled loop body. When the user sets a breakpoint at S, the debugger

must map this breakpoint to all copies of S’s instruction sequences.

In this chapter, I discuss the effects of optimizations on the object-to-source and source-

to-object mappings. I describe the construction of these mappings in the presence of global

optimizations. In the next section, I describe in detail the representation of the object-to-

source and source-to-object mappings inside the compiler’s intermediate representation.

In the following sections, I describe how the compiler updates this representation as it

performs optimizations. In Section 6.2, I describe how the compiler updates the source-

to-object mapping when it performs code duplicating optimizations such as loop unrolling

and peeling. In Section 6.3, I describe the effects of code eliminating optimizations on

the source-to-object mapping and describe the necessary bookkeeping in the compiler. In

Section 6.4, I describe how transformations that insert code require accurate updating of

both the source-to-object and object-to-source mappings by the compiler. In Section 6.5, I

describe the effects of code motion on the source-to-object mapping and how this may lead

to unexpected behavior. In Section 6.6, I describe the effects of instruction scheduling on

setting and reporting of breakpoints. Finally, in Section 6.7, I present measurements.

6.1 Representing the mapping to the source

To map from an instruction back to the source, the compiler must keep track of the cor-

respondence between source statements and operations in the intermediate representation

(IR), at all phases of compilation. Depending on the form of the IR, an IR operation can

be either a machine-independent operation, or a target machine instruction. A source state-

ment can be represented by a file name, line number, and line offset that together mark the

beginning of the source statement in the source text. The compiler may keep more detailed

information about each statement S — such as a character count that indicates the extent of

S, or an additional line number and offset indicating the end of S — such that the debugger

user interface can highlight S in the source. The exact representation of source line number

information, however, is not the topic of this thesis.
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The compiler can also keep very fine-grained mappings by maintaining the corre-

spondence between each IR operation O and the source-level expression for which O is

generated. Such a fine-grained mapping can be used to accurately pin-point to the user

the expression where an asynchronous break occurs. The CXdb debugger [20] uses such

an expression-level mapping to highlight source expressions that are executed as the user

single steps through the object code. In the rest of this chapter, I assume a statement-level

mapping to the source.

Typically, the mapping from IR operations to source statements is maintained via

statement labels that label sequences of IR operations with the source statement for which

the sequence is generated. If an expression-level mapping is kept by the compiler, then

additional expression labels are necessary in the IR. Alternatively, each IR operation O can

be annotated with the source expression for which O is generated; that is, an additional

field containing the source expression is added to the representation of O. Annotations

are redundant for statement-level mappings because sequences of IR operations have the

same annotations — statement labels factor this information. As we will see in Section 6.6,

however, annotations are necessary to keep track of the correspondence between instructions

and source statements during instruction scheduling.

Each time the compiler lowers the program representation — for example, from an ab-

stract syntax tree to a machine-independent representation, or from a machine-independent

representation to a machine-specific instruction-level representation — the compiler must

lower statement labels to the new representation, and pass annotations along to operations

in the new representation. During final code emission, statement labels and annotations are

passed along to the debugger via the object file’s symbol table.

In the absence of optimizations, the code sequences generated for source statements are

disjoint and there is exactly one label for each source statement. Therefore, statement labels

are sufficient for implementing both the source-to-object and object-to-source mappings:

To set a breakpoint at a statementS, the debugger sets a breakpoint at the instruction labelled

by the statement label for S. To find the statement for which an instruction I is generated,

the debugger searches backward in the object code for the nearest statement label.

In the presence of optimizations, statement labels are no longer sufficient for imple-

menting both the source-to-object and object-to-source mappings. Optimizations such as
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code motion and instruction scheduling can fragment the IR generated from a statement and

interleave its IR with IR fragments from other statements. Consequently, there may exist

several sequences of IR operations for a single statement S. Each of these code sequences

must be separately labelled to identify them with statement S; this is necessary to report

the source location of an asynchronous break accurately at any of these code sequences.

When the user sets a breakpoint at S, however, this breakpoint cannot be mapped to all of

the code fragments belonging to S, because the breakpoint will then be executed multiple

times for a single statement. Moreover, a breakpoint cannot be mapped to only one of the

code sequences, because some optimizations, such as loop unrolling and function inlining,

require that a breakpoint be mapped to more than one instruction. Also, because of code

elimination, an instruction I generated for a statementS may be labelled by statement labels

belonging to statements other than S (the statement label of a statement that is completely

eliminated is moved to be adjacent to the next statement label). If an exception occurs at I ,

then the debugger may incorrectly report the exception to be at a statement other than S.

Thus, in the presence of optimizations, separate labelling mechanisms are needed to

implement the source-to-object and object-to-source mappings. To identify the statement for

which an IR fragment is generated, IR fragments are labelled withmarker labels (i.e., marker

labels implement the object-to-source mapping). Like the statement labels, marker labels

are lowered with the representation and passed on to the debugger (the object file format

must somehow distinguish marker labels from statement labels). When an asynchronous

break occurs at an instruction I , the debugger searches backwards in the object code for

the earliest marker label that identifies the statement to which the instruction belongs. The

source-to-object mapping is still implemented with statement labels: When the user sets a

breakpoint at a statement S, the debugger maps this breakpoint to the instruction labelled by

the statement label of S. As we will see later, a statement can generate multiple statement

labels because of code duplicating optimizations, in which case the debugger maps the

breakpoint to all of these labels. Also, a label L may be moved because no instructions are

generated for the L’s statement; the user must be warned of L’s new location.

Each time the compiler performs a transformation that affects the mapping from IR

operations to source statements (e.g., loop unrolling or code hoisting), the compiler must

update the source-to-object and object-to-source mappings encoded in the IR labels. This
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update is necessary to enable the debugger both to report the location of an asynchronous

break, and to set breakpoints accurately. This update may involve moving or duplicating a

statement/marker label, or introducing a new marker label to identify the source statement

of a new IR fragment. Also, some optimizations may move a statement label such that the

user must be warned of the label’s new location; therefore, the compiler must annotate a

moved statement label L with information indicating that the debugger must warn the user

of L’s location when a breakpoint is set at L.

In the following sections, I look at the transformations that affect the object-to-source

and source-to-object mappings. I describe the updates necessary to these mappings that the

compiler must perform for each of these transformations.

6.2 Code duplication

Code duplicating transformations duplicate basic blocks in the control-flow graph. Ex-

amples of code duplicating transformations include loop unrolling and peeling, function

inlining and cloning, and tail duplication. When basic blocks are duplicated, the source-

to-object mapping becomes one to many: if the user sets a breakpoint at a statement S,

the debugger must map this breakpoint to all duplicated copies of the code generated for

S. When the compiler performs code duplicating transformations, it must correctly update

the source-to-object mapping. If a duplicated basic block B contains statement or marker

labels, then the compiler must also duplicate these labels along with the rest of the code in

B. Similarly, if a duplicated operation O contains an annotation, then the annotation must

also be duplicated and attached to the newly created copy of O.

Figures 6.1 and 6.2 show an example illustrating the effects of code duplication on the

source-to-object mapping. Figure 6.1 shows a C code fragment containing a while loop.

Figure 6.2(a) shows the control-flow graph of this source before any transformations; the

loop is translated into two basic blocks: one containing statements S3 and S4, and another

containing statement S2 (the loop termination test). Each statement in the source maps

to exactly one statement label in the IR. This translation of the loop makes it impossible

for partial redundancy elimination to hoist code from statements S3 and S4, because these

statements are executed on only some paths through the loop; code can only be hoisted
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speculatively out of these statements. Figure 6.2(b) shows the control-flow graph after

control-flow transformations have partially peeled the loop. A duplicate of the block

containing statement S2 has been merged with the block containing statement S1, and

the block containing the original copy of S2 has been merged with the block containing

statements S3 and S4. The loop body now comprises only one basic block, enabling partial

redundancy elimination to hoist loop-invariant code from S3 and S4.

If the user sets a breakpoint at statement S2 (the while loop test), the debugger must

map this breakpoint to two locations in the object code, corresponding to the two copies of

this statement in Figure 6.2(b). The first instance of this breakpoint is executed on initial

entry to the loop (i.e., when i == 0); the second instance is executed on each subsequent

iteration (i.e., when i > 0).

S1: i = 0;
S2: while (i < 10) {

S3: A[i] = 0;
S4: i++;

}
S5: foo(A);

Figure 6.1: Source code for Figure 6.2.

6.3 Code elimination

Optimizations that eliminate code — for example, dead code elimination and partial re-

dundancy elimination — cause a problem for debugging when they eliminate all the code

associated with a statement label. If the user sets a breakpoint at a statement S and all the

code associated with the statement label of S has been eliminated by optimizations, then

there are no instructions unique to S to which the debugger can map the breakpoint.

To deal with the situation where the user sets a breakpoint at a statement S whose code

has been completely eliminated, the debugger can map the breakpoint to the statement label

S � that is within the same block as S and occurs immediately after S. The user can then be

warned that the breakpoint has been mapped to the new statement S�; this warning can be

issued either when the user sets the breakpoint, or when the breakpoint is executed.
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S3:A[i]=0

 S2:if i<10

S5:foo(A)

S1:i=0

S4:i++

 S1:i=0

 S2:if i>=10

 S3:A[i]=0

 S2:if i<10

S5:foo(A)

 S4:i++

(a) (b)

Figure 6.2: Example: Code duplication (a) Control-flow graph before transformation (b)
Control-flow graph after loop peeling.

There are several complications, however, that the debugger must be prepared to deal

with when the user sets a breakpoint at an eliminated statement S. One complication is that

the statement label for S may be at the end of the basic block; thus, there may be no other

statement label occuring after S to which the breakpoint at S can be mapped. In this case,

the debugger can map the breakpoint at S such that the break is taken after the execution

of the last instruction in the basic block of S.

Another complication is that code elimination may eliminate all the code in the basic

block B containing the statement label of S, so that B is eliminated from the control flow

graph; as a result, there are no instructions to map the breakpoint at S. This is illustrated in

the example shown in Figures 6.3 and 6.4. Figure 6.3 shows a C code fragment containing

an if statement. On the else branch of this if statement, there is an assignment statement (S3)

that assigns to a variable x. There is another assignment to x at statement S4, immediately

after the if statement. Figure 6.4(a) shows the control-flow graph of the IR generated for

this source. The assignment to x at statement S3 is dead because x is re-assigned at

statement S4 (i.e., the value assigned by statement S3 is never used). Figure 6.4(b) shows

the control-flow graph after optimizations; dead code elimination eliminates statement S3,

and the block containing S3 subsequently becomes empty and is eliminated.
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S1: if (...)
S2:

else
S3: x = ...

S4: x = ...

Figure 6.3: Source code for Figure 6.4.

S1:

S2: S3:x=...

S4:x=...

S1:

S2:

S4:x=...

(a) (b)

Figure 6.4: Example: Code elimination (a) Control-flow graph before transformation (b)
Control-flow graph after code elimination.

If the user sets a breakpoint at S3, there are no instructions to which the debugger can

map this breakpoint. The debugger has three options in this situation: (1) disallow the user

from setting a breakpoint at S3, (2) map the breakpoint to statement S1 in the previous

basic block, or (3) map the breakpoint to statement S4 in the next basic block. In the last

two cases, the breakpoint will execute more often than expected: the user expects that a

breakpoint at statement S3 is executed only when the if statement’s test expression evaluates

to false. Since the user must be warned of unexpected behavior, the debugger should warn

the user of the new location to which the breakpoint has been moved. Based on the new

location of the breakpoint, the user will observe that the break will occur more often that

it is supposed to. Note, that even if the debugger stops execution at S1 or S4, data-value

problems may prevent the user from being able to query the values of the variables that

determine the outcome of the if statement test.

Since the branch instruction that implements the test expression is not eliminated, the

debugger can determine at runtime the value of the if statement’s test. One way that
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the debugger can accomplish this is by setting a conditional breakpoint at the branch

instruction that implements the if statement’s test. When the breakpoint is executed, the

debugger evaluates the source values of the branch instruction and passes control to the user

only when it determines that the branch will evaluate to false (i.e., only when the branch

evaluates to the direction of statement S3); otherwise, the debugger resumes execution.

Code patching techniques [61] could be used for a faster implementation of this conditional

breakpoint: the branch instruction is replaced with an unconditional branch to an out-of-line

code sequence that evaluates whether the debugger should be invoked. Note, that such a

conditional breakpoint is invasive, because it changes the timing of the debuggee. During

interactive debugging, however, this invasiveness may not be a problem.

The problems caused by code elimination are further complicated by the interaction

that can occur between code duplication and elimination. When performed after code

duplication, code elimination can eliminate a copy of a statement’s label; that is, code

duplication may duplicate a statement S’s statement label and one of these duplicate labels

can be subsequently eliminated. Figure 6.5 illustrates this problem. This figure shows the

effects of code eliminating optimizations on the code of Figure 6.2(b). Constant propagation

has propagated the constant zero value of i from statement S1 to statement S2. Constant

folding has subsequently eliminated the first instance of statement S2’s loop test expression.

After this transformation, there is no code associated with the first instance of statement

S2’s label in the loop preheader, but there is still code associated with the second instance

in the loop body. Assume the user sets a breakpoint at statement S2 (in the source of Figure

6.1). If the debugger sets a breakpoint only at the instance of S2 that occurs within the loop

body, then the breakpoint is executed only after the loop body has been executed at least

once — this is unexpected behavior because the user expects the breakpoint to also execute

before the first time the loop body is executed. To deal with this situation, the debugger can

set another breakpoint after the last instruction in the preheader basic block.

Note another difficulty illustrated by this example: the debugger cannot convey this

optimization by simply telling the user that statement S2 has been eliminated (e.g., by

using a different font for S2).
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 S1:i=0

 S2:

 S3:A[i]=0

 S2:if i<10

S5:foo(A)

 S4:i++

Figure 6.5: Example: Elimination of code associated with a duplicate statement label.

6.4 Code insertion

Some optimizations insert code into the program representation. For example, partial

redundancy elimination inserts code that saves the results of a computation into a compiler

temporary; partial dead code elimination introduces source-level assignments at new points

in the program (rendering other assignments dead); strength reduction inside of loops

introduces new compiler-synthesized induction variables that are initialized at a loop’s

preheader and updated within the loop’s body. Code inserted by optimizations can usually

be logically associated with some source-level statement; for instance, the update of a

compiler-synthesized induction variable can be associated with a source-level update of a

user variable. To report the source location of a runtime exception that occurs at inserted

code, the debugger must accurately determine the source statement associated with the

inserted code.

Figures 6.6 and 6.7 illustrate how partial redundancy elimination can insert code into

a program. Figure 6.6 shows a C code fragment containing an if statement. Figure 6.7(a)

shows the control-flow graph of the IR generated for this C code; Figure 6.7(b) shows this

IR after partial redundancy elimination. In Figure 6.7(a), the expression y+z that occurs

within statement S3 is partially redundant because this expression is computed on only

some paths that lead to this statement (i.e., those paths that go through statement S2). In
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Figure 6.7(b), partial redundancy elimination has introduced a copy of the expression y+z

into a new basic block; now the expression y+z is fully redundant at statement S3 because

this expression is evaluated on all paths leading to S3. The compiler has inserted the

label $h before this new instance of y+z to mark that this expression has been inserted by

partial redundancy elimination (i.e., code hoisting). Both instances of the expression y+z

are stored into a compiler temporary (this temporary is named $1 in the figure), and the

expression y+z that occurs within statement S3 is replaced by a reference to this temporary.

There are several different forms of intermediate representation that lead to slightly

different implementations of partial redundancy elimination. In the cmcc compiler, the

compiler explicitly assigns the value of an expression E whose value is later recomputed,

into a compiler temporary T and replaces the later computation of E with a fetch from T .

Expressions that save values into compiler temporaries (e.g., $1=y+z) are referred to as

saves. Some compilers use a different form of IR wherein all instances of an expression E

target the same temporary (or symbolic register); in this manner, all instances of E are also

implicit saves of E. The discussion I present here, also generalizes to these intermediate

forms.

As Figure 6.7(b) illustrates, partial redundancy elimination can insert a computation

into the IR for one of two reasons: (1) to save the value of an expression occuring within

a source-level statement (e.g., the save inserted at statement S2); and (2) to compute and

save the value of an expression at an earlier point in the program (e.g., the save labeled $h).

Saves that are inserted to save the value of an expression within a source-level statement

S are considered part of S; thus, the optimizer must ensure that the save of an expression

E is inserted after the statement or marker label of the statement containing E. In Figure

6.7(b), the expression $1=y+x is inserted immediately after the statement label S2 so that

the code for this save is correctly associated with statement S2. An asynchronous break

occuring within this save is correctly reported at S2.

Saves that are inserted to compute and save an expression E at an earlier point in the

program are considered part of later statements that are hoisted to earlier points in the

program; if such save expressions cause an exception, the debugger must report that the

exception occured within the statement from which the expression E is hoisted. In Figure

6.7(b), the save $1=y+z labelled $h is computing the expression y+z of statement S3 at
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an earlier point in the program; thus, this save is associated with statement S3.

When partial redundancy elimination hoists an expression E to a new location in the

program, the compiler must perform a forward search in the control-flow graph to find the

original copy of E. The compiler inserts a marker before the inserted copy of E to identify

the source statement from which E is hoisted. For example, in Figure 6.7(b), after the

compiler inserts the save labeled $h, it must perform a forward search to find statement S3,

the statement from which this expression is hoisted. Since partial redundancy elimination

allows many-to-one hoistings, the expression E may be associated with more than one

statement — many-to-one hoistings, however, tend to be very rare. Note that the forward

search is guaranteed to find the original copy of E. If the original copy of E contains

annotations (e.g., an annotation indicating the location of the expression in the source

code), these annotations must be transferred to the inserted instance of E.

Partial dead code elimination causes problems similar to those for partial redundancy

elimination, but in the reverse direction: a backward search is necessary to find the source

statement(s) from which an assignment is sunk.

S1: if (...)
S2: x = y+z;

S3: a = y+z;

Figure 6.6: Source code for Figure 6.7.

 S1:if ...

 S2:x=y+z

 S3:...y+z...

 S1:if ...

 S2:$1=y+z

    x=$1

 S3:...$1...

 $h:$1=y+z

(a) (b)

Figure 6.7: Example: Partial redundancy elimination.
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Strength reduction inside of loops introduces a new compiler-synthesized induction

variable that is a linear function of a source-level induction variable; this synthesized variable

is then initialized at the same points that the source-level induction variable is initialized

and updated at the same points that the source-level induction variable is updated. Figure

6.8 illustrates the bookkeeping needed for induction variable strength reduction. Figure

6.8(a) shows the IR of Figure 6.5 after induction variable strength reduction: the address

expression A[i] at statement S3 has been replaced with a compiler-synthesized temporary

($1); this temporary is initialized to the base address A immediately after the initialization

of i at statement S1 in the loop preheader, and incremented by four each time the induction

variablei is incremented at statementS4 (each element in arrayA is of size 4). The variable

$1 is always linearly related to variable i; if i is eliminated the debugger can recover the

value of i from $1. Since $1 and i are so closely related, it is logical to associate the code

that initializes and updates $1 with the corresponding statements that initialize and update

i. In Figure 6.8(a), this association is made by inserting this code immediately after the

initialization and update code of statements S1 and S4, respectively; the statement labels

for these two statements now also label these inserted assignments as part of statements

S1 and S4. Note that, alternatively, the compiler could have inserted these assignments in

between the statement labels and the source assignments.

There is an additional benefit to associating the assignments to compiler-synthesized

induction variables in this manner. Figure 6.8(b), shows the code of Figure 6.8(a) after

further optimizations. Linear function test replacement has replaced the use of i at the test

expression of statement S2 with the use of $1. After this replacement, the only use of i

is the update expression of statement S4; thus, induction variable elimination eliminates

i altogether by eliminating the initialization of i at statement S1 and the update of i at

statement S4. Note, however, that because of the way the initialization and update of $1

are associated with statement labels, the original source code that initializes and updates i

is in effect replaced with the corresponding code for $1; now, the debugger can accurately

consider $1 as replacing i.
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 S1:i=0

 S2:

 S3:[$1]=0

 S2:if i<10

S5:foo(A)

 S4:i++

    $1=A

    $1+=4

 S1:$1=A

 S3:[$1]=0

 S2:if $1<$2

S5:foo(A)

 S4:$1+=4

 S2:

 $h:$2=A+40

(a) (b)

Figure 6.8: Example: (a) Induction variable strength reduction (b) Linear function test
replacement and induction variable elimination.

6.5 Setting breakpoints in the presence of code motion

In the preceding sections, I have described a policy for maintaining the mappings from

source statements to labels in the IR when the compiler performs classical machine-

independent optimizations. As a result of this policy (and in the absence of instruction

scheduling), if the program resulting after global optimizations is executed by the user,

source breakpoints are mostly executed in the order expected in the source. As we saw in

Section 6.3, however, sometimes breakpoints may execute unexpectedly: because of code

elimination, some breakpoints may be moved next to other source breakpoints; sometimes

such a moved breakpoint executes more often than expected in the unoptimized translation.

Another cause for unexpected behavior, however, is due to partial redundancy elimina-

tion. Because of partial redundancy elimination, an exception may occur at an instruction

that has been hoisted out of a source-level statement S, before a breakpoint at S is reached.

Partial redundancy elimination operates as a series of deletions and insertions of code into

the program representation. In the preceding sections, I have described how the mapping

between source and IR is updated when the compiler performs code insertions and deletions.

As a result of this bookkeeping, when partial redundancy elimination hoists an expression
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E from a statement S, the breakpoint for S remains in the original basic block from which

E was hoisted. For example, in Figure 6.7(b), the statement label for statement S3 is not

moved even though the expression y+z of this statement executes at an earlier point in the

program. This breakpoint mapping will lead to unexpected behavior if the expression E

that is hoisted causes an exception and the user has set a breakpoint at S3; that is, exceptions

may execute out of order with respect to source breakpoints. For example, in Figure 6.7(b),

if the user sets a breakpoint at statement S3, and the expression y+z causes an excep-

tion (e.g., floating-point overflow), then the exception will occur before the breakpoint is

executed; this is unexpected behavior.

This situation is further illustrated in the example of Figure 6.9. In Figure 6.9, statement

S3 contains a load operation (*p) that can potentially trap (e.g., due to an illegal address)

and this load has been hoisted out of the loop by partial redundancy elimination. The user

may set a breakpoint at statement S3 to halt execution before this trap occurs, but the trap

will occur before the breakpoint is executed. If the user knew a priori that statement S3

would trap (e.g., the program had been run once before resulting in the trap) then the user

could have performed a post-mortem analysis of the program with the debugger, in which

case the debugger could have informed the user that a breakpoint at S1 would halt execution

before the trap.

S1: S1:
tmp = *p

do f do f
S2: S2:
S3: ...*p... S3: ...tmp...
S4: S4:
S5: g while(E) S5: g while(E)

Source program After code hoisting

Figure 6.9: Example: Hoisting of potentially trapping operations

Some researchers [109, 35, 106] have suggested that an alternative strategy exists for

setting breakpoints at statements from which code has been hoisted. An alternative strategy

for setting a breakpoint at statement S is to set a breakpoint at the earliest instruction

generated for S (Zellweger [109] calls this a semantic breakpoint mapping). This strategy

guarantees that the breakpoint for S is taken before any exceptions (or other side effects)
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inside S. Applying this strategy to Figure 6.9, a breakpoint at S3 is set before the loop

where the load from p is executed. This strategy results in the following behavior: the

breakpoint for statement S3 occurs out of order with respect to statement S2. Moreover, the

breakpoint is taken only once before the loop, rather than on every trip through the trip as

expected. The debugger could set a breakpoint both before the loop and inside the loop,

but then the breakpoint at S3 executes one additional time before the loop starts.

This issue of where to map the breakpoint for statement S3 arises only if the user

wants to halt execution before a side effect from S3 happens. In our language model

(i.e., C), the only side effects that can happen at the source level are assignments and

exceptions. A compelling reason to map a statement S’s breakpoint to the earliest points

where instructions from S have been hoisted would be to halt execution before a side effect

of S occurs. However, in Section 6.7, I show that while code hoisting occurs often (that

is why it is a useful optimization), only very rarely does it hoist code that either assigns

to a source-level variable or potentially traps. Thus the approach I propose is to retain the

breakpoint at the original statement from which code is hoisted, and to provide guidance to

the user in the rare case that an exception occurs at hoisted code.

6.6 Instruction scheduling

By interleaving instruction sequences generated from different source statements, instruc-

tion scheduling causes several problems. Because the execution of statements is overlapped,

there are no clear execution points in the object code that correspond to boundaries between

the instruction sequences generated from different statements. In general, it becomes im-

possible for the debugger to map the breakpoint at a statement S to an instruction, such

that all instructions generated from statements prior to S have completed execution and

no instructions generated from subsequent statements have started execution. Providing

source-level breakpoints thus becomes difficult.

After scheduling, the compiler must make a decision on where to map the breakpoint

for a statement S (i.e., where to insert the statement label of S). This decision is not a clear

one since any of the instructions generated for S are potential candidates — many different

possibilities exist. One obvious choice for mapping a breakpoint at a statement S is to set
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this breakpoint at the earliest scheduled instruction I that has been generated for S. This

is not necessarily the best choice, however, because the first instruction will not always

guarantee that events such as assignments, exceptions and breakpoints will execute in the

expected source order. Another possibility is to set the breakpoint at the earliest scheduled

side-effecting instruction I generated for S, where I is an assignment, function call or

branch instruction. The rationale behind this strategy is that side-effecting instructions are

more likely to execute close to their original source order. This strategy, however, still does

not guarantee that exceptions and breakpoints are executed in their expected order.

When mapping a breakpoint at a statement S, there is no real reason why the breakpoint

should be mapped to an instruction that has been generated forS. For example, to guarantee

that breakpoints are at least taken in their original order, the compiler can insert source labels

in their original basic block offsets after scheduling. Yet another possibility, is to simply

place labels according to their original source order but evenly spaced apart.

The point is that after instruction scheduling, there is, in general, no mapping of

breakpoints that guarantees that events are executed in their expected source order. Although

many different possibilities exist and the strategy used to map the breakpoint at a statement

S may influence the number of variables that are endangered at S (i.e., there may different

numbers of variables endangered at different stopping instructions), there does not seem

to be one clearly superior strategy. In Section 6.7, I consider two different strategies for

mapping breakpoints and measure the effects of each strategy on the number of endangered

variables.

To maintain the mapping of instructions to source statements, instruction scheduling

also requires careful bookkeeping by the compiler. Since instruction scheduling does not

schedule statement or marker labels, each instruction I must be annotated with information

that identifies the statement from which I is generated, before instruction scheduling is

performed. Because the instruction sequence associated with a statement or marker label

is fragmented by scheduling, marker labels are necessary to identify the source statement

from which an instruction is generated. Therefore, after instruction scheduling, the compiler

must insert marker labels into the scheduled instruction sequence.
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Total breakpoints
Program source object deleted

li 2594 2723 10
eqntott 1267 1334 24
espresso 7424 8047 49

gcc 28433 28951 354
alvinn 140 146 0

compress 429 435 3
ear 1108 1173 0
sc 3400 3528 49
lcc 5970 6171 32
tcl 7820 8188 152

triangle 5312 5419 21

Table 6.1: Breakpoint statistics

6.7 Empirical results

The second column of Table 6.1 shows the number of source breakpoints for each program

in our application suite. These numbers correspond to the number of statement labels

generated by the front end (i.e., the number of statement labels before optimizations).

The lcc front end generates a statement label for each C language sequence point (i.e.,

semicolon and comma) as well as for if and while loop test expressions. The third

column of this table shows the number of statement labels in the object code. In almost

all of the programs, the number of labels in the object code is more than the number of

source breakpoints; therefore, for some source-level breakpoints the debugger will set more

than one breakpoint in the object code. This is caused by code duplication performed by

the loop peeling phase of cmcc. The fourth column of Table 6.1 shows the number of

breakpoints that were deleted by code eliminating optimizations and were moved to an

adjacent basic block. As I described in Section 6.3, these are the breakpoints that will cause

unexpected behavior. This measurement shows that the debugger user will probably very

seldom encounter such problematic breakpoints.

Table 6.2 shows the number of instructions that are inserted by code hoisting and sinking.

The second, third and fourth column of this table show the total number of instructions, the

number of instructions inserted by code hoisting and the number of instructions inserted by

code sinking, respectively. There are a significant number of instructions that are inserted
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Instructions Avg. distance Trapping instructions Avg. distance
Program total hoist sunk hoist sunk total hoist sunk hoist sunk

li 11550 387 1328 1.35 1.36 835 16 71 1.00 0.90
eqntott 5808 669 1666 2.04 1.40 482 13 70 1.10 0.96
espresso 40116 3631 5618 2.09 2.06 6016 202 561 1.40 0.97

gcc 148534 8141 23200 1.69 2.92 18627 669 1865 1.10 2.20
alvinn 561 167 162 2.28 1.79 90 1 40 1.00 1.30

compress 2180 130 999 2.27 2.03 96 3 24 1.00 0.17
ear 6503 537 940 3.20 1.88 951 26 144 2.70 2.20
sc 19658 2593 6839 2.50 3.83 842 18 70 1.60 1.30

lcc 34064 2295 3545 1.53 1.84 4791 250 293 1.10 1.80
tcl 27725 1256 3531 1.66 3.73 3128 99 276 1.50 2.60

triangle 23638 1166 5327 2.69 3.85 3204 32 296 1.60 4.10

Table 6.2: Number of hoisted and sunk trapping instructions

by code motion, implying that the compiler found ample opportunity to perform these

transformations. The fifth and sixth columns in this table show the average number of

source breakpoints across which an instruction was hoist and sunk, respectively. These

numbers show that even though the optimizer found many opportunities for performing

code hoisting and sinking, code was hoisted through an average of only about 1.2 source

statements, while sinking sunk code through an average of about 2.1 source statements.

The next three columns of Table 6.2, show the total number of instructions that can

potentially trap and the number of such instructions that are inserted by code hoisting and

sinking. Very few of the instructions that are been inserted by code hoisting or sinking

can potentially trap. Comparing the number of hoist and sunk trapping instructions with

the total number of potentially trapping instructions, we see that it is very unlikely that the

user will run into a trap at a hoisted instruction. The last two columns of this table show

the average number of source breakpoints that these trapping hoist/sunk instructions were

moved. These measurements shows that (1) the user can halt execution before an exception

at a hoisted instruction by setting a source breakpoint only a few statements away, and (2)

an exception at a sunk instruction I will occur very close to the statement from which I is

sunk.

To measure the influence of the breakpoint mapping after instruction scheduling, I

consider two different strategies for mapping breakpoints:
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1. Insert the statement label before the first scheduled instruction generated for S.

2. Insert the statement label before the first scheduled side-effecting instruction gener-

ated for S (i.e., assignment, branch, or function call instruction).

Figure 6.10 shows the percentage of breakpoints with one and two or more endangered

variables using the two strategies. This figure shows the influence of the breakpoint mapping

using two different combinations of optimizations (in addition to register allocation): (1)

instruction scheduling with no global optimizations (i.e., instruction scheduling only),

and (2) instruction scheduling with full global optimizations (including sinking). Except

for backprop, the number of endangered variables does not vary significantly with the

breakpoint mapping. These measurements show that the influence of using a different

breakpoint mapping on the number of endangered variables is negligible. Thus either

strategy may work well in practice and the user can be given a choice of breakpoint

mapping.

6.8 Summary

To set breakpoints and report asynchronous breaks, the debugger must accurately keep

track of the correspondence between instructions and source statements. In this chapter, I

have described how this relatively straight-forward task can be accomplished using special

statement and marker labels in the intermediate representation. Statement labels mark the

points to which source breakpoints are mapped. Marker labels identify the statement from

which an instruction is generated and are used for reporting the source location of a runtime

exception.

I consider four different transformations: (1) code duplication, which duplicates state-

ment and marker labels; (2) code elimination, which may delete all the code associated

with a statement label requiring that the label be moved; (3) code insertion, which requires

that the compiler identify the inserted code with a source statement; and (4) instruction

scheduling, which requires that the compiler decide on how to insert statement labels after

code scheduling. Measurements show that the user is unlikely to encounter unexpected

behavior in the presence of the first three transformations. Measurements also show that
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Figure 6.10: Percentage of breakpoints with 1, and 2 or more endangered variables.
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the breakpoint mapping used after instruction scheduling may have very little effect on the

number of endangered variables.



Chapter 7

Conclusion

In this dissertation, I have described necessary techniques to enable accurate source-level

debugging of globally optimized code. I have shown how accurate source-level debugging

of optimized code can be supported non-invasively for a wide range of scalar optimizations

employed in state-of-the-art compilers. I have addressed both the code location and data-

value problems in depth. For the code location problem, I have identified the problems

that optimizations cause for setting and reporting breakpoints, and described techniques

to handle these problems. I have presented the bookkeeping necessary in the compiler to

maintain an accurate mapping between source and object programs. This mapping enables

the debugger to set and report breakpoints precisely in the presence of optimizations.

I have presented a concise model for the data-value problem. This model precisely

classifies the status of a queried variable according to how optimizations have affected the

variable’s value. This model identifies two new classes of variables: nonresident variables

and suspect variables. I have also presented algorithms for classifying the status of a

variable according to this model. I have described in detail the extensions necessary in the

compiler to track the effects of optimizations and to generate the information needed by the

debugger algorithms.

Finally, I have proven the practicality of the techniques presented in this dissertation

by implementing them inside of cmcc, an optimizing C compiler that I have built in

collaboration with others. This compiler performs an aggressive set of scalar optimizations,

and generates code that is competitive with the code generated by the native MIPS cc

and gcc compilers on the DECstation 5000/200. Using this implementation, I have
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quantified the effects of different optimizations on source-level debugging and identified

the optimizations that are likely to cause the most problems for debugging.

7.1 Debugging in context: Advice to compiler writers

Based on my experience developing the cmcc compiler and implementing the algorithms

for debugging of optimized code within this compiler, I offer the following advice to

compiler writers:

� Elements in the intermediate representation should be easy to annotate with generic

information. These elements include basic blocks, nodes within expressions, and

instructions within schedules. Examples of annotations include comments, pointers

to source-level statements, orflags marking that a node or instruction was inserted by a

particular optimization phase. The idea of providing a flexible annotation mechanism

is not new and has been used in other compilers (e.g., the SUIF compiler [105]). But

annotations are crucial for debugging optimized code because they allow the compiler

to keep a trail of how optimizations have transformed a program. Annotating the IR

to provide a history of optimizations also helps in debugging the compiler.

� The intermediate representation should include support for nodes that are purely for

bookkeeping purposes and are ignored by optimizations. There are several examples

where such nodes are necessary for debugging of optimized code: statement labels,

marker labels, and markers that indicate points from which code has been eliminated.

Such nodes can also help in debugging the compiler.

� Source-level debugging should be considered from the very start when implementing

optimizations. It is much simpler to implement the bookkeeping necessary for an

optimization at the same time as the optimization is implemented.

� Frameworks provide a very powerful form of code reuse inside an optimizing compiler

[5]. A framework captures the control structure of a class of computations but leaves

specification of the exact functionality to the client of the framework. The best

example of how frameworks can be used effectively inside a compiler is for data-
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flow analysis. The data-flow analysis framework within cmcc is reused 15 times,

including the data-flow analyses for debugging optimized code.

7.2 Future work

There are several issues that are left open by this dissertation that should be addressed by

future work on debugging of optimized code. One open issue is optimization coverage. This

dissertation covers the large majority of standard optimizations found in modern production

compilers, but does not address software pipelining and loop-nest transformations (e.g.,

interchange, skewing, etc.). Most production compilers are only beginning to include

these optimizations. With the increase in available instruction-level parallelism, as well as

the increasing gap in access time between different levels of the memory hierarchy, these

optimizations are becoming more important and will sooner or later have to be addressed

by a debugger for optimized code.

The general truthful approach of detecting and warning the user of endangered variables

is likely the best approach to dealing with software pipelining. The general approach of

Chapter 5 can be used to develop an algorithm for detecting endangered variables caused by

software pipelining: first determine which assignments have been executed out of order at a

breakpoint, and then detect endangered variables by determining the side effects of out-of-

order assignments. Since software pipelining overlaps multiple loop iterations, we also need

to discover variables that are endangered across loop iterations (inter-iteration endangered

variables). That is, if execution halts inside a software-pipelined loop at some iteration

index i, then a variable may be endangered because an assignment from a prior iteration

(e.g., i�1) has not yet executed, or because an assignment from a subsequent iteration (e.g.,

i � 1) has executed prematurely. Thus, typical responses involving endangered variables

may be that several elements of an array A (e.g., elements A�i� 3� to A�i� 1�) have not yet

been updated, or that several elements (e.g., A�i� 1� to A�i� 3�) have been prematurely

assigned.

The best approach to handling loop transformations may be to expose these optimiza-

tions to the user by rewriting the source to reflect the effects of loop transformations (as

discussed in Section 2.4.3). Loop transformations are typically performed on an almost
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abstract syntax tree-level representation of a program (e.g., a representation with explicit

for loop constructs). In fact some loop transformation systems operate as source-to-source

preprocessors. Since these transformations operation at such a high level, their results may

still be meaningfully represented to the user.

Another open issue is the integration into a debugger of the techniques for debugging

optimized code. Several engineering issues must be addressed in a production implementa-

tion. One such issue is the interface between the compiler and debugger. The information

collected by the compiler must be passed to the debugger. Traditional object file formats

are clearly not powerful enough to support this interface. The newer DWARF 2.0 debug

format [40] supports the communication of residence information: the compiler can specify

the storage location associated with a variable for a given range of instructions. DWARF,

however, does not define a mechanism for communicating endangerment information to the

debugger. One possible mechanism for communicating this information are the assignment

descriptors described in Chapter 5.

A related engineering issue is the partitioning of the task of detecting nonresident and

endangered variable between the compiler and debugger. Because the communication of

residence information is defined by DWARF, residence determination should be done by

the compiler using either live range information or the available resident data-flow analysis

described in Chapter 4. The implementation of this data-flow analysis can take advantage

of any data-flow analysis framework that may be available in the compiler. When the user

queries the value of a variable V , the debugger uses the stopping instruction as an index

into V ’s list of address ranges to find V ’s residence.

The data-flow analysis required for detecting endangered variables can also take ad-

vantage of available data-flow frameworks and be done in the compiler. The results of

this data-flow analysis can be communicated to the debugger via the assignment descrip-

tors. The debugger then detects endangered variables using the local analysis presented in

Section 5.2.

An important practical concern in the context of a production debugger is testability.

In the absence of optimizations, the testing of a standard source-level debugger can be

automated easily. A given set of breakpoints and queries should always produce the same

result regardless of changes to the compiler or debugger. Thus, testing can easily be
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automated using a script. Testing a source-level debugger for optimized code, however,

is more difficult to automate because the results of a given set of breakpoints and queries

can differ with changes to the compiler’s optimization phases. If the results of a test are

different after a change to the compiler or debugger, then human intervention is necessary

to verify the results. Quality assurance for a debugger of optimized code may be difficult.

This dissertation addresses only the low-level problems that optimizations cause for

debugging and leaves open user-interface issues. One important user interface issue is

how to report a nonresident or endangered variable to the user. When a variable V is

endangered, the debugger can provide additional information to the user describing which

source statement(s) assigned the actual value of V . This information can be gathered by

computing the reaching definitions of V in the object file or by performing a backward slice

for V [103, 104].

The static measurements presented in this dissertation provide useful insight into the

effects of different optimizations on debugging, but these measurements do not indicate how

likely it is for a debugger user to encounter unexpected behavior because of optimizations.

A necessary future work is a user study that measures how often users actually run into

debugging problems because of optimizations. Such a user study can measure how often

users query variables that are nonresident, suspect, or noncurrent, and how often users set

control breakpoints at statement labels that have been moved because of code elimination.

In addition to measuring how often a debugger user is affected by optimizations, a

user study can generate source-level debugging profiles that characterize typical debugging

sessions. For example, to profile the locations of source breakpoint, the debugger can be

instrumented to classify breakpoints according to whether they are at function entry points,

loop entry points (i.e., loop preheader), loop exit points, initial loop statements, or any

other type of location that may be interesting. To profile variable queries, one possibility is

to measure how often variables are queried at breakpoints within their source live ranges.

Another possibility, is to characterize variable queries in relation to the control reference

statement. For example, the debugger can measure how often a variable is queried at a

control reference statement that immediately follows an assignment to the variable, at a

control reference statement that immediately precedes a use of the variable, at a control

reference statement that immediately follows a last use of the variable, and so on.
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User profiles can be used to extrapolate the effects of optimization on source-level

debugging by biasing the static measurements presented in this thesis. User profiles can

also be used to develop optimization heuristics that allow aggressive optimizations while

minimizing the effects of optimizations on source-level debugging. For example, if mea-

surements indicate that users are very likely to query the value of an induction variable

at statements immediately following a loop, then the register allocator can extend the live

ranges of induction variables by a few statements to minimize the chances that a user will

run into a nonresident variable.

Another area of future work is minimizing the impact of optimizations on debugging

by relaxing the invasiveness constraint. One of the main contributions of this dissertation

is an in-depth insight into the effects of each optimization on source-level debugging.

This insight can be gained only by looking at the most constrained case of non-invasive

debugging. The motivation for non-invasiveness was the same as for debugging optimized

code: eliminating perturbations that could change program behavior and maintaining the

ability to debug the production (i.e., fully optimized) version of a program. There are cases,

however, where some amount of invasiveness may be acceptable. For example, during

interactive debugging, small amounts of perturbations to execution time may be acceptable,

since invocation of the debugger and interaction with the user drastically perturbs execution

time anyway. Or, in languages where unrestricted use of pointers is disallowed — for

example, ML or Java — perturbation of the storage layout to enable debugging may be

acceptable. In all cases, however, we would like to minimize perturbations since such

perturbations are likely to affect performance. The insights we have gained from this

research now allow us to understand how to minimize the effects of optimizations on

source-level debugging while allowing only a minimal amount of invasiveness.

One way the invasiveness constraint can be relaxed is by modifying compiler optimiza-

tions to reduce the effect of optimizations on debugging. The interesting question is how

much performance is sacrificed to gain debuggability. A good example of how this can help

minimize the impact of optimizations is the elimination of nonresident variables. The results

of Section 5.8 show that the most problematic optimization is potentially register allocation.

One way to eliminate the problems caused by this optimization is to save a variable’s value

before the register assigned to the variable is re-used by the register allocator. The runtime
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cost of these saves can be minimized by using redundancy elimination techniques, or by

scheduling the saves into empty slots in the final schedule; the cost of executing these

additional saves may be minimal on a superscalar architecture. Another possibility is to

extend an integrated register allocation and instruction scheduling framework to also handle

saves at the end of live ranges.

Another example is the elimination of endangered variables. Optimizations that cause

endangered variables can be constrained so that problems do not occur. For example,

partial redundancy elimination (i.e., code hoisting) can be constrained so that assignments

to source variables are not moved; since assignments are very rarely moved by this opti-

mization anyway, this constraint is likely to have only a minimal impact on performance.

Instruction scheduling can be constrained such that only the instructions within a statement

are reordered. Or, scheduling can be constrained such that side-effecting instructions such

as assignments, function calls, and branches are executed in their original source order.

Dead code elimination can be constrained such that it eliminates an assignment to a vari-

able only when the assigned value can be reconstructed from other runtime values; for

example, an induction variable is eliminated only when its value can be recovered from a

compiler-synthesized induction variable.

Another way in which invasiveness can be relaxed is by allowing the debugger to collect

runtime information at key program points during interactive debugging. This can be

implemented with “hidden breakpoints” that transparently suspend and resume execution.

This technique can be used to eliminate nonresident variables: the debugger saves away

variable values at the end of their live ranges (or before they become nonresident). To

minimize the impact on execution time, this can be done for a subset of variables specified

by the user or for all variables that are in scope at the source breakpoints set by the user.

By allowing invasiveness only during interactive debugging, performance is affected only

during interactive debugging rather than on production runs of a program. Of course, these

techniques do not help post-mortem debugging.

By allowing invasiveness during interactive debugging, the debugger can also eliminate

the impact of instruction scheduling on source-level debugging. To eliminate both the code

location and data-value problems caused by instruction scheduling, when the user sets a

breakpoint inside a basic block B, the debugger can halt execution at the first instruction of
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B and then interpret the instructions inside B one at a time in original source order until all

instructions from statements prior to the breakpoint statement have been executed. In effect,

the debugger re-orders instructions back to their original source order before a breakpoint

is taken. This technique is, of course, subject to constraints. For example, function calls

should probably be executed rather than interpreted. And the debugger must analyze the

dependences induced by the reuse of registers to maintain correct semantics.

Finally, optimizations also affect other components of the program development tool

chain; the techniques developed in this dissertation may be applicable to these other com-

ponents. For example, profile-based performance analysis tools must understand the corre-

spondence between the source and object codes to convey profiling results to the user. This

dissertation presents the bookkeeping necessary inside the compiler to map instructions and

runtime locations accurately back to source statements and variables, respectively. These

mappings are also useful for performance analysis tools.

7.3 Concluding remarks

Source-level debuggers are valuable program development tools that help a user locate the

source of a programming error and analyze the dynamic behavior of a program. When

compiler optimizations have been performed, current compiler tool chains either preclude

source-level debugging, or allow debugging without considering the effect of optimizations

on the execution behavior expected by the user — in the later case, the responses from the

debugger are often inaccurate and misleading.

Accurate source-level debugging of optimized code is important because there are many

instances where debugging the optimized translation of a program is necessary. For example,

bugs may surface when optimizations are enabled, even when optimizations are correct;

debugging the unoptimized translation will not locate the source of the bug. Or, it may be

impossible to re-execute a crashed program under the control of a source-level debugger

(e.g., the shipped optimized version of a program may crash in the field allowing only

post-mortem debugging); in this case, debugging the unoptimized translation is impossible.

Most importantly, debugging of optimized code is important because optimizations are

becoming “default”. Designers of modern computer systems are relying more and more on
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compiler optimizations to deliver higher performance in new processor generations. It has

become very expensive — both in development costs and processor cycle time — to rely

purely on hardware techniques to achieve higher performance. Thus processor designers

are investigating techniques such as predicated execution, VLIW, and software-controlled

memory hierarchies that require extensive compiler support and rely on the compiler’s ability

to analyze globally the source program. As the reliance on compiler optimizations increases

so will the impetus for providing some level of compiler optimization by default; otherwise,

there will be no immediate gain from adopting a new processor generation. This in turn

will drive the demand from application writers for better and more accurate debugging

support. Even if optimizations are not performed by default, optimizations should not

preclude accurate source-level debugging. Without debugging support, application writers

are less likely to enable optimizations; thus, systems are less likely to perform close to their

full potential.

There is a common belief among compiler and debugger implementors that debugging

of optimized code is a difficult and infeasible task. No commercially available program

development tool chain to date supports accurate and truthful debugging of optimized code

(as described in this dissertation). CXdb, the only commercial debugger that provides

support for optimization, unnecessarily burdens the user by exposing all optimizations and

by leaving it to the user to figure out the effects of optimizations. For the typical application

writer this burden is unacceptable.

This dissertation establishes that accurate source-level debugging of optimized code is

feasible. This dissertation shows that the debugger can go far in analyzing the effects of

optimizations on source-level debugging. The measurements that I have presented show

that in many cases the debugger can make optimizations transparent. Using the techniques

developed in this dissertation it is finally practical to implement a source-level debugger

for globally optimized code. No longer is it necessary to support a “debug-mode” for the

compiler; it is possible to debug the best code produced by the compiler.
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