I mproving Data Consistency for Mobile File
Access Using I solation-Only Transactions

Qi Lu
May 1996
CMU-CS-96-131

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Mahadev Satyanarayanan, Chair
Jeannette Wing
David Garlan
Eliot Moss, University of Massachusetts

Copyright © 1996 Qi Lu

This research was sponsored by the Air Force Materiel Command (AFMC) and the Advanced Research Projects
Agency (ARPA) under contract number F19628-93-C-0193. Additional support was provided by the IBM
Corporation, Digital Equipment Corporation, Bellcore, Intel Corporation, and AT&T.

The views and conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFMC, ARPA, the
U. S. Government, or the sponsoring corporations.

Keywords: Mobile computing, distributed file system, disconnected operation, optimistic
replication, transactions, conflict detection and resolution, application-specific resolution, |OT.

For Yin

Abstract

Disconnected operation based on optimistic replication has been demonstrated as an effective
technique enabling mobile computers to access shared data in distributed file systems. To
guard against inconsistencies resulted from partitioned data sharing, past research has focused
on detecting and resolving write/write conflicts. However, experience shows that undetected
read/write conflicts pose a subtle but serious threat to data integrity in mobile file access.
Solving this problemis critical for the future success of mobile computing.

This dissertation shows that isolation-only transaction (10T), an upward compatible trans-
action mechanism for the Unix File System, is a viable solution to this problem. The centra
idea of the IOT model is imposing serializability-based isolation requirements on partitioned
transaction executions. Transactions executed on a disconnected client stay in atentative state
until the client regains connection to relevant servers. They are committed to the servers as
soon as they pass consistency validation. Invalidated transactions are automatically or manu-
ally resolved to ensure global consistency. Powerful resolution mechanisms such as automatic
transaction re-execution and application specific resolver invocation can transparently resolve
conflicts for many common Unix applications. In addition, a concise conflict representation
scheme enables application semantics to be smoothly integrated for only conflict resolution
and consistency validation. The practical usability of IOT is further enhanced by a flexible
interactive interface, full compatibility with existing Unix applications, and the ability to retain
overall file system scalability, security and transparency.

A working IOT implementation in the Coda file system has been developed and used in
experiments in software development and document processing applications. Quantitative
evaluation based on controlled experiments and trace-driven simulations establish that the IOT
model is scalable and incurs modest performance and resource overhead.

The main contributions of this thesis research arethe following: the design of an isolation-
only transaction model specialized for improving mobile file consistency while preserving
upward compatibility with existing Unix applications; the development of a working 10T
implementation in the Coda file system; experimentation and evaluation demonstrating the
feasibility and practicality of the IOT model.

Acknowledgments

First and foremost, | would liketo thank my advisor Satya, without whom thisthesis would not
have been possible. He taught me design, implementation, and evaluation skillsthat are critical
in completing this dissertation. His patience, encouragement and support made my transition
from the previous research area of software engineering to distributed and mobile computing
systems much easier. His unparalleled expertise and insight in experimental systems research
have been a constant source of guidance throughout the thesis research process. | also would
like to thank other members of my thesis committee, Eliot Moss, Jeannette Wing and David
Garlan for their valuable help that significantly improves both the technical content and the
presentation of this dissertation.

My stay at the School of Computer Science of CMU would not have been as enjoyable and
rewarding without the wonderful people who made it a great place to do research in computer
science. | am deeply indebted to my first advisor, late Professor Nico Habermann, for his
invaluable help in my development as a graduate student and a researcher both technically
and personally. | would like to thank Sharon Burks for being so helpful when | needed the
most. Present and past Coda project members including Maria Ebling, Bob Baron, Jay Kistler,
Hiroshi Inamura, Hank Mashburn, Lily Mummert, Brian Noble, Morgan Price, Josh Raiff,
David Steer, and Tetsuro Muranaga offered me generous support. Jay helped formulating the
central theme of my thesis; Puneet was always available for help; Tetsuro used my software
in his mobile CSCW research to provide me valuable usage experience. LeAnn Neal Reilly
carefully proof read the entire dissertation. | also would like to thank my officemates, past and
present, for creating an intellectually stimulating environment.

My parents taught me the value of hard work and instilled in me the desire to be successful.
Without their love and sacrifice, | never could have come thisfar. Thanks also to my daughter,
Diana, for reminding me that there is so much more to life than computer science. Finally,
my wife, Yin, deserves greater thanks than | can possibly give. Over the past seven years, she
has been an immeasurable source of strength, love, comfort, and support. Yin, this thesisis
dedicated to you.

Contents

1 Introduction

1.1 MobileFileAccess.
Disconnected Operation
Partitioned Sharing and Datalnconsistency
TheThesis
Organization of thisDissertation

1.2
1.3
14
15

Partitions, Conflicts and Inconsistency

2.1 TheImpact of Optimistic Replication on UFS Semantics
2.2 Consistency Maintenance

2.3 From Partitioned Sharingto Inconsistency

3 Design Rationale

3.1 DesignObjectivesand Constraints.
311 DesignObjectives
312 DesignContext
3.2 HighLevel DesignDeciSions
3.21 Focusing on Disconnected Operation
322 OptimisticApproach.
3.2.3 Inconsistency Detection
3.24 Consistency Restoration
3.25 Starting Point: Inferred TransactionModel
3.3 Isolation-Only TransactionModel

ga N WO N P -

\l

X CONTENTS
331 WhatlsIOT? 25

332 ExecutionModel 26

333 WhylsolationOnly?. 28

334 Consistency Model 29

3.3.5 Handling Non-Transactional Operations. 35

3.3.6 Mode Optimization, 35

337 ClosngRemarks 38

4 Detailed Design: Consistency Enforcement 43
4.1 Concurrency Control for Connected Transactions 44
411 DesignAlternatives 44

412 RedizingOCCinCoda 45

4.2 Maintaining the Local State of A Disconnected Client 50
421 MantainingLoca Consistency 50

4.2.2 Recording TransactionHistory 51

4.2.3 Managing Disconnected Mutations 52

4.2.4 Cancelling Disconnected Transactions. 55

4.3 MegingLoca StatewithGlobal State. 58
4.3.1 SynchronizingLocal and Global States 58

4.3.2 From Serversto Client: Cache Validation 60

4.3.3 From Client to Servers: An Incremental Propagation Approach 60

434 TransactionValidation 64

435 TransactionCommitment L. 65

43.6 TransactionResolution 65

5 Detailed Design: Conflict Representation 67
5.1 Basiclssuesof Conflict Representation 67
511 InconsistentObjects L. 67

51.2 TwoVenusOperationModes 68

5.1.3 Conflict Representation Requirements 69

5.2 Conflict Representationin ServiceMode 69

CONTENTS

5.3

6.1

6.2

6.3

7.1

7.2

521 Conflict Notification
522 AccessPrevention
523 Vighility Maintenance.
Conflict Representation in ResolutionMode
5.3.1 Exposing Local and Global State of an Inconsistent Object
5.3.2 TheRedlization of Dua ReplicaRepresentation.
5.3.3 TheMultipleView Capability
5.34 Establishing Transaction Resolution Object View

Detailed Design: Conflict Resolution

A Cooperation-Based Resolution Framework
6.1.1 A ResolutionSessonModel
6.1.2 Supporting Application-Independent Resolution Actions
6.1.3 Extending Transaction State Transitions
Automatic Conflict Resolution,
6.2.1 Siteof Resolver Execution.
6.22 ResolverInvocation
6.2.3 Resolver Execution
6.24 Safetylssues.
6.25 Programming Application-SpecificResolvers
Manual Conflict Resolution
6.3.1 MaintaningA RepairSesson
6.3.2 TheTransactionRepair Tool

Detailed Design: User Interface

Programminginterface.
7.1.1 Interface for Programming Isolation-Only Transactions
7.1.2 Interface for Programming Application-SpecificResolvers
713 Otherlssues e
Interactivelnterface
7.2.1 Interactive Transaction Manipulation Using the IOT-Shell

Xi

69
70
71
75
76
81
85
86

Xii

8

CONTENTS

7.2.2 Interna Mechanisms for Interactive Transaction Execution 116
7.2.3 Controlling and Monitoring Facilities 117
724 APracticaExampleo 118
Implementation I ssues 121
8.1 Overdl Architecture 121
8.2 Maintaining Internal Transaction Representation 123
821 ManDataStructures 123
8.2.2 Recording Transaction Readset/Writeset 125
8.3 Shadow CacheFileManagement 127
8.3.1 Shadow CacheFileOrganization 127
8.3.2 Prioritized Cache SpaceManagement 128
833 ReclamingShadow Space. 130
84 Implementation Optimizations 130
84.1 Lazy Seridization Graph Maintenance 130
8.4.2 Codescing the SerializationGraph 131
8.4.3 Sharing Environment Variables 132
85 PersistenceandCrashRecovery, 132
851 PersistentDataStructures 133
852 CrashRecovery 133
8.6 TransactionValidation 134
8.6.1 Overloading with Cache Coherence Maintenance 134
8.6.2 Object VersionMaintenance 135
8.6.3 \VdidationAtomicity 135
Evaluation 137
9.1 Overview e 137
9.1.1 SystemEvolutionand Status 137
9.1.2 BasicEvaluation Approach L. 139
9.2 TransactionPerformance. 139

9.21 Performance Overhead for Normal Operations 140

CONTENTS Xiii

9.2.2 Performance Overhead for Transactional Operations 145
9.2.3 Performanceof Automatic Resolution 153

9.24 Other Performancelssues 155

925 Summary 156

9.3 ResourceCostMeasuremento 157
9.31 Globa SystemResources 157
9.32 Loca SystemResources 161
933 Summary 177

9.4 A Preliminary Usability Assessment 177
9.4.1 Interactive Transaction Invocation 178

9.4.2 Programming A Transaction 179

94.3 ResolverDevelopment. 179

95 FurtherEvauation 183
951 DaacCollection 183

952 UserSurvey 184

10 Related Work 185
10.1 Transaction ModelsandSystems 185
10.1.1 General Purpose TransactionSystems 185
10.1.2 Transaction Support for FileSystems 186
10.1.3 Optimistic Concurrency Control 186
10.1.4 Specid TransactionModels L. 187

10.2 Optimisticaly Replicated Systems 187
10.21 TheCodaFileSystem 187
10.2.2 TheFicusFileSystem 189
10.2.3 TheBayouSystem. 189
10.2.4 Davidson’s Optimistic TransactionModel 190

10.3 Commercia Products 190
10.3.1 LotusNotes 190

10.3.2 Oracle Server Replication 191

Xiv CONTENTS

11 Conclusion 193
11.1 Contributions 194
11.2 FutureWork 195

11.2.1 Implementation Extensions L. 196
11.2.2 Model Generalization 196
11.2.3 Resolver Development. 198

11.3 Find Remarks 198

List of Figures

31
3.2
3.3
34
3.5

4.1
4.2
4.3
4.4
45
46

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3

Venus Statesand Their Transitions. 18
An Example of Non-Serializable Partitioned Transactions 24
|OT Statesand Their Transitions. 27
Read-Only Transactions Violating One-Copy Seridizability 39
Relationship Among SemanticModels 41
Transaction Mutation Log Organization 47
The Transaction ReintegrationProcess. 48
The New Transaction ReintegrationProcess 54
The 1OT-Venus Statesand Their Transitions 59
An Incremental Transaction Propagation Framework 61
An Algorithm for Incremental Transaction Propagation 63
An Example of Dangling SymbolicLinks 70
Visibility of Cached Objects 74
Cached Object Statesand Their Transitions 75
The Basic Structure of Dual Replica Representation 80
An Example of Dual Replica Conflict Representation 80
Internal Structure of Dual ReplicaRepresentation 82
The Internal Structure of Local and Global Views 85
A Cooperation-Based Resolution SessonModel 90
Extended IOT State Transitions 96
The Process Structure of Automatic Resolver Execution. 99

XV

XVi

6.4

7.1
7.2
7.3
74
7.5
7.6
1.7

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

LIST OF FIGURES

A List of Transaction Repair Tool Commands 106
Library Routines for Programming Transactions 110
A Template Transaction Program Using Target Application Source Code . . . 111
A Transaction Program not Using Target Application Source Code 112
Library Routinesfor ProgrammingResolvers 113
Transaction Specification Commandsand Examples 115
Interactive Transaction Execution inthe IOT-Shell 117
A Practical TransactionExample 118
ThelOT System Architecture 122
Main Data Structuresin Internal Transaction Representation 123
Extending Kernel/Venus Communication with Process Information 126
An Example of Internal Organization of Shadow CacheFiles 128
Prioritized Cache Space Allocation 129
An Example of Coalescing a SerializationGraph 131
Performance Comparison for Andrew Benchmark 147
Comparison of Trace Replay Performance 149
Comparison of Software Build Task Performances 151
Comparison of Document Build Task Performances 152
Latency of Localization and De-locdlization 154
Reintegration Traffic for Multiple Runs of Andrew Benchmark 160
High-Water Marks of Shadow SpaceCost 165
Shadow Space Cost Without Transaction Cancellation. 169
High-Water Marksof RVM SpaceCost 171
RVM Space Cost Without Transaction Cancellation 172
SubtreeHeight Distribution L. 175
Examples for Transaction Specification 178
AnExampleof aResolverforMake L. 180

An Example of A Resolver for RCSCheckout 182

List of Tables

21

3.1
3.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

A Tableof Abbreviations 8
Inferred Transaction Types and UFS System Call Mapping 23
Transaction Specification for File Access Operations 36
Client Platforms Supported by IOT 138
Normal Operation Performance of Andrew Benchmark 141
Normal Operation Performanceof Trace Replay withA=1. 142
Normal Operation Performance of Trace Replay withA =60 143
Normal Operation Performance of Building Coda Client and Server 143
Normal Operation Performance of Typesetting a Dissertation and aProposal . 144
Transaction Execution Performance of Andrew Benchmark 146
Performance of Transactional Trace Replay withA =1 148
Performance of Transactional Trace Replay withA =60 148
Transaction Performance Overhead for SoftwareBuild Tasks 150
Transaction Performance Overhead for Document Build Tasks 151
Impact of Disconnected Transactions on Reintegration Server Load 158
Information for the Work-Day and Full-Week Traces 162
Simulated Transaction Applications 163
Transaction and File Reference Statistics of Trace Simulation 166
Transaction Application Statistics Of Trace Simulation 168
RVM Cost for Common Transactions 170
File System Object Distribution 174

XVii

XViii LIST OF TABLES

Chapter 1

| ntroduction

With the growing prevalence of portable computers, providing mobile computers with conve-
nient access to shared data in distributed file systems (DFSs) becomes an important problem.
Although disconnected operation has been shown to be a viable technique for supporting
mobile access in distributed Unix file systems (UFS) [27, 62], it induces the risk of data in-
consistency due to partitioned data sharing. This dissertation advocates a new abstraction
called Isolation-Only Transaction (10T) as an effective means to improve consistency for mo-
bile file access [40, 41]. It demonstrates the viability of this approach through the design,
implementation and evaluation of 1OT in the Coda file system.

This chapter begins with a brief background of DFSs and disconnected operation. It then
introduces the data inconsistency problems caused by partitioned sharing during disconnected
operation. It concludes with the thesis statement and an outline of its substantiation in the rest
of the document.

1.1 MobileFile Access

Distributed File Systems DFSs such as NFS [58], AFS [44, 24, 59], NetWare [50] and
LanManager arebecominganintegral part of the basic computinginfrastructurein organizations
with a large number of networked personal computers or workstations. Their increasing
popularity can be attributed to the following reasons. First, DFSs allow information to be
shared among alarge number of physically dispersed users. Second, DFSs can providelocation
transparency by hiding the physical distribution of the underlying system so that the users can
conveniently access shared data using their logical identities from anywhere within the system.
In addition, the administrative burden on usersis lessened because the users can concentrate on
their own work while tasks such as backup and software maintenance are handled by trained
personnel.

2 CHAPTER 1. INTRODUCTION

Most of the DFSsinwidespread use are organi zed according to the client/server architecture.
File data are managed by a nucleus of dedicated server machines operating at secure locations
by acentral authority. A large number of client machinesfrom different |ocations can access the
data through a standard interface such as the UFS API (Application Programming Interface).
A key technique for enabling good performance and scalability is client caching, where copies
of shared data are stored on the client machine so that they can be accessed without frequent
communication with the servers. At large scale, data availability becomes a serious concern
because frequent failures such as a network partition or a server crash denies users access to
needed data. The main technique for improving data availability is replication, where multiple
copies of the same data are maintained at different sites so that the data can accessed even
though a portion of the network or the servers are down.

The Impact of Mobile Computers Mobile computers are one of the fastest-growing seg-
ments of the computer industry. Many portable computers are powerful enough to operate as
a client of DFSs and benefit from the capability of transparently accessing shared data. Un-
fortunately, mobile access to shared datais constrained in important ways. First, mobile client
machines are often resource poor relative to their stationary counterparts. Second, portable
computers are less secure and more prone to loss and destruction. Most importantly, mobile
elements of DFSs must operate under a wider range of network conditions. Because mo-
bile connectivity is often absent, intermittent, slow or expensive, the ability to operate while
disconnected provides a crucial worst-case fall-back position that the users can rely on.

1.2 Disconnected Operation

The Coda file system pioneered the use of disconnection operation as a basic technique for
mobile file access [61]. The essence of disconnected operation is to enable a disconnected
client to act as a temporary server and continue to service file access requests using the cache
copies of the requested data. The effect of disconnection is hidden from the applications
running on the mobile client machine as long as the data they access are cached locally. In
principle, the cache copy of an object can be viewed asits second class replicaand disconnected
operation as a special form of optimistic replication [26], where the client replica can be
accessed without restriction while partitioned from the corresponding servers. The design
rationale of disconnected operation isbased on optimistic replication. It pursues maximum data
availability by relaxing the traditional partitioned replication control necessary for maintaining
one-copy equivalence [9]. Practica experience with disconnected operation in Coda has
demonstrated that it is a viable and effective technique for supporting mobile file access in a
Unix environment [62].

1.3. PARTITIONED SHARING AND DATA INCONSISTENCY 3

1.3 Partitioned Sharing and Data I nconsistency

The superior data availability brought about by disconnected operation is not without cost.
Arbitrary partitioned sharing allowed during disconnected operation can cause two kinds of
conflictsand possibly leavedatainaninconsistent state. Past research hasfocused onwrite/write
conflicts where the same object is updated on both a disconnected client and the corresponding
servers. Fortunately, empirical evidence has shown that partitioned write sharing is very rare
in practice [26] and write/write conflicts can be efficiently detected and often transparently
resolved [53, 30, 31, 29, 56, 32, 68]. The more subtle threat comes from read/write conflicts
where the same object is read in one partition and updated in another. Partitioned read/write
sharing can cause data inconsistencies in various ways as demonstrated by the following
examples.

Examplel. Maryisabusinessexecutiveand sheworksonareportfor an upcoming
shareholders meeting using a disconnected laptop during a weekend trip. Before
disconnecting, she cached a spreadsheet with the most recent budget figures and she
writes her report based on the numbers in that spreadsheet. While she is away, new
budget data become available and the server copy of the spreadsheet is updated.
The read/write conflict on the spreadsheet could leave the report in an inconsistent
state if Mary fails to recognize the stale datain her report while other presentations
by her colleagues at the meeting al cite the up-to-date figures.

It is true that even if Mary’s laptop remains fully connected to the servers, the same
inconsistency could still occur dueto lack of coordination among theusers. However, fileaccess
using disconnected operation substantially enlarges the window of vulnerability. Furthermore,
detecting stale data upon reconnection is no small chore for Mary because her report may use
data from many other files containing data such as sales figures and revenue projections. All
of them could have changed on the servers during her absence. The consistency of the report
would be much better protected if Mary could be notified upon reconnection about the server
updates on any of the data she used in writing the report.

Based on an actual instance of using disconnected operation inthe Coda file system, thefol-
lowing scenario illustrates that partitioned read/write sharing can also incur data inconsistency
during software devel opment activities.

4 CHAPTER 1. INTRODUCTION

Example 2. Joeisaprogrammer for aresearch software project and he decidesto
release aset of new libraries containing bug fixes. He executes a dedicated software
administration script whichinstallstherelevant archivefilesinto apublic areabefore
posting an electronic bboard message announcing the new release. Unfortunately,
Joe's client lost connectivity to the servers during the process and only part of the
installed archive files make it to the servers while the rest stay in the client’s cache
waliting to be propagated upon reconnection. Because of the support of disconnected
operation, the effect of disconnection is hidden from applications. Therefore, the
script has no ideathat part of the installation is only performed locally on the client
and not visible from the servers. It will continue to send a message to the bboard
to announce the installation. Let us suppose that the message is successfully posted
to the bboard via a different network communication route and another user sees
the post. The user then builds a new utility tool linking those installed libraries
without knowing that some of them are still the old version. There are read/write
conflicts here because some of thelibrary files are updated in one partition and read
in another. Such read/write conflicts could cause serious problems for the newly
built utility tool because it is linked with an incompatible set of libraries.

Note that this example is different from the previous one in that the inconsistency could
not have happened had Joe's client remained connected to the servers because that would have
guaranteed that by the time the bboard announcement was posted all the installed new libraries
were already visible on the servers. Moreover, the problem could get much worse if the utility
tool is used to mutate other objects, thereby causing cascaded inconsistencies. The latter are
often insidious and difficult to track down.

1.4 TheThess

Motivation and Objective The above scenarios of read/write conflicts are not far-fetched.
They can really be experienced during disconnected operation. Partitioned read/write sharing
will becomean increasingly important issue, particularly inlarge scale DFSswhereinformation
sharing among collaborating users is common. Undetected read/write conflicts pose a serious
threat to dataintegrity and may impede the usability of disconnected operation.

The main objective of this research is to develop a practicaly usable mechanism that
can guard against inconsistencies resulting from partitioned read/write sharing. Our central
focus is improving consistency support for disconnected operation while maintaining upward
compatibility with existing Unix applications.

Thesis Statement Our solution is an explicit transaction extension to UFS which provides
not only the necessary context information for analyzing partitioned read/write dependencies

1.5. ORGANIZATION OF THIS DISSERTATION 5

but also ample opportunities for automatic conflict resolution. Our thesis statement is:

Asan explicit extension to UFS theisolation-only transaction mechanism automatically
detects read/write conflicts via optimistic enforcement of serializability-based isolation
requirements. Equipped with flexible conflict resolution facilities, |OTs can be effectively

used to improve data consistency for mobile file access in distributed Unix file systems.

Thesis Validation This thesis has been validated through the actual development of an IOT
extension to the Coda file system. A working implementation has been produced, followed
by extensive experiments in the application domains of document processing and software
development. A thorough quantitative evaluation and an initial usability assessment offer
strong evidence in support of the thesis statement.

1.5 Organization of this Dissertation

The rest of this document is organized as follows. Chapter 2 presents a close examination of
the fundamental cause of data inconsistencies resulting from partitioned sharing. Chapter 3
highlights the key design objectives and constraints, followed by a detailed description of the
|OT model.

Chapters 4 to 8 cover the detailed design and implementation issues of the devel opment of
an 10T extension to Coda. Chapter 4 describes how the IOT consistency model is enforced
through an incremental transaction propagation scheme. Chapters 5 and 6 concentrate on the
key issues of conflict representation and conflict resolution. A library programming interface
as well as an interactive shell interface for using the 10T service are presented in Chapter 7.
The remaining important implementation issues are discussed in Chapter 8.

Chapter 9 eval uatesthe design and implementation; thefocus of the eval uationisthe amount
of system resources consumed in supporting the IOT service on amobile client. The evaluation
is based on controlled experiments as well as trace-driven simulation and analysis. Chapter 10
discusses related work and Chapter 11 concludes with a summary of the main contributions
and adiscussion of future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Partitions, Conflictsand Inconsistency

The purpose of this chapter isto discuss the fundamental cause of datainconsistencies incurred
by partitioned read/write conflicts. The two practical examples presented in the first chapter
are just different manifestations of the same problem, the discrepancy between the standard
UFS semantics and the weakened semantic guarantees induced by optimistic replication. The
gap between what is expected by the applications and what is actually provided by the system
in the presence of partitioned sharing opens awindow of vulnerability. A clear understanding
of the conceptual depth and scope of the problem is essential to developing a practical solution
because it establishes afoundation upon which important design decisions can be analyzed and
reasoned about.

To present an in-depth analysis of the causal relation between optimistic replication and
data inconsistency, this chapter first examines how standard UFS semantics is weakened by
optimistic replication. It then revisits the basic notions of data consistency and consistency
maintenance. Finally, it identifies the conditions under which partitioned sharing will result in
data inconsistency.

2.1 Thelmpact of Optimistic Replication on UFS Semantics

In this section, we first review the standard UFS semantics. We then describe how optimistic
replication is normally performed in distributed Unix file systems. Finally, we explain how
standard UFS semantics is weakened in the presence of partitioned sharing. Because there are
many abbreviations frequently used in this chapter and throughout the dissertation, a list of
important abbreviations together with a brief description and the corresponding page number
for further reference are displayed in Table 2.1.

7

8 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

Abbreviation Description Page
ACID Atomicity, Consistency, Isolation and Durability 28
API Application Programming Interface 1
ASR Application-Specific Resolver(Resol ution) 32
CCS Cache Coherence Status 60
CML Client Mutation Log 46
DFS Distributed File System 1
DRR Dual Replication Representation 79
GC Global Certification 31
G1SR Globa One-Copy Seridizability 30
IFT Inferred Transaction 23
|IOT | solation-Only Transaction 25
OCC Optimistic Concurrency Control 26
RVM Recoverable Virtual Memory 133
SG Serialization Graph 51
TML Transaction Mutation Log 46
UFS Unix File System 1
WFG Wait-For Graph 49
1SR One-Copy Serializability 23
1UE One-Copy Unix Equivalence 11
2PC Two-Phase Commitment 47
2PL Two-Phase Locking 44

Table 2.1: A Table of Abbreviations

The Standard UFS Semantics The UFS API provides applications with a hierarchically
organized file storage service via a set of system callssuch asread, wite, create and
unl i nk. The UFS semantic model for reading and writing file system objects is based on the
traditional shared-memory model. It guarantees that any read operation on an object will see
the result of the most recent update on that object, and the result of any write operation must
be immediately visible to all subsequent read operations.

By definition, the UFS semantics depends heavily on the notion of ordering among file
access operations. Such an order is quite obvious among operations performed on a single
machine, but often not so clear in a distributed environment where concurrent file access
operations can be issued from different hosts simultaneously. A widely accepted formal
definition of ordering among events in a distributed system is the Lamport time [34], which
builds up the happened before relation by modeling a distributed system with two intuitive

2.1. THEIMPACT OF OPTIMISTIC REPLICATION ON UFS SEMANTICS 9

notions of process and message communication. A process P (e.g., aUnix process) consists of
a sequence of events. If P executes a file access operation op; before another operation op o,
then op; is said to have happened before op,. If event a is the sending of a messages nsg
and event b isthe receiving of nsg, then a happened beforeb. The relationis transitive, i.e.,
if a happened before b and b happened before ¢ then a happened before c. The following
example illustrates this definition.

Example 3. Suppose that two users Joe and Mary use their own workstations to
work cooperatively on a group of objects stored in a distributed file system. Joe
fixes a bug in a source file wor k.c and sends Mary an email message after he
finishes editing it. Mary then compiles a new version of wor k. o from the updated
wor k. c for further testing. Even though performed on two different hosts, the
editing of wor k. c happened before the compiling of wor k. o because the email
communication between the two users establishes the distributed order.

UFS shared-memory semantics originated from the early days when Unix file systems were
primarily operated on time-sharing machines. It has the advantage of being simple, intuitive
and convenient for programming applications. In modern Unix systems, however, file systems
are often distributed over a number of hosts for better concurrency and resource sharing.
Distribution makes the UFS semantics more difficult to maintain, particularly when caching
and replication are involved to improve performance and availability. To retain semantic
compatibility, cache coherence protocols and replica control strategies are often the focal point
of distributed file system designs.

Optimistic Replication in UFS Replication is atechnique that has proven to be effectivefor
improving data availability. When used in distributed Unix file systems, each logical object
is maintained by multiple physical copies called replicas at different sites. When some of the
sites are not accessible, an object may still be retrievable from other replicas, depending on the
replica control policy. The traditional pessimistic replica control strategies such as read-one-
write-all anditsvariationsstrictly maintain the one-copy equivalenceto applicationsby limiting
partitioned replica accesses. Optimistic replication goes much further by allowing arbitrary
partitioned replica accesses, thus providing much higher data availability in the presence of
partition failures.

In optimistically replicated distributed file systems, a commonly used replica control strat-
egy is the read-any-write-all-available policy that allows applications to perform arbitrary
access operations on an object as long as one of its replicas is accessible. A read operation
always returns the most up-to-date version among all accessible replicas. Similarly, a write
operation always reaches all the accessible replicas. When partitions are healed, mutations
performed at different partitions of the system will be propagated to those replicas that have
not received the new update. When the same object is updated in more than one partition,

10 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

the conflicting partitioned updates may not be automatically resolvable. In that case, the file
system has to mark the object as inaccessi ble because the one-copy image for that object can no
longer be maintained. The resolution of the different replicas often requires user intervention.

Weak UFS Semantics The superior availability of optimistic replication comes at the cost of
weakened currency guarantees promised by the standard UFS semantics [61]. In the presence
of partition failures, a read operation on an object only retrieves the most recent among the
accessible replicas. There could very well be a more up-to-date replica in another partition.
Similarly, awrite operation can only propagateitsresult to the accessiblereplicas. A subsequent
read operation on the same object in adifferent partition will not be able to see the new value.
Furthermore, any partitioned update/update conflict would force the file system to break the
one-copy image to applications and request user assistance to reconcile the conflict.

For brevity of discussion, we usethetermsweak read and weak writeto refer to apartitioned
read and partitioned write operation. We also use weak UFS semantics to stand for the UFS
semantics with optimistic replication where update/update conflicts are automatically detected.
A detailed description of the actual weak UFS semantics implemented in the Coda file system
can befoundin [61].

Relaxation of UFS Semantics Many distributed UFSs relax the standard UFS semantics for
various performance benefits. For example, AFS adopts a session semantics [35] for cross-
client file sharing where updates to afilef 0o are not visible on the servers until f 0o isclosed
and other clients maintaining an open f 0o will not see the updates until f 0o isre-opened. As
another example, NFS employs a 30-second delay in its cache write-back policy to improve
performance. Updates are not immediately visible on the servers until 30 seconds later. The
semantic relaxationsin AFS and NFS are bounded rel axation because their semantic differences
with standard UFS are limited and applications can still obtain the standard UFS semantics by
using callswithin the UFS API. For example, an AFS client can alway retrieve the most recent
data on the servers using the open call. A client in AFS or NFS can use the cl ose call to
flush updates back to the serversimmediately.

The essence of optimistic replication is using controlled semantic relaxation to achieve
higher data availability. Most of the UFS semantics is not affected except for the weakened
currency guarantees and the possibilities of divergent replicas of the same object. Unlike AFS
and NFS, the semantic relaxation of optimistic replication (or the weak UFS semantics) is
unbounded relaxation because it is impossible for the applications to avoid reading a stale file

Theoretically, the file system can use one of the partitioned updates to overwrite the other if there is a well-
defined order among the partitioned updates. In practice, however, it istoo costly to keep track of such ordering
information for al partitioned mutation operations because thiswould require maintaining a complete history of
all the file access operations and message communication performed on every host of the system.

2.1. THEIMPACT OF OPTIMISTIC REPLICATION ON UFS SEMANTICS 11

by just using calls within the UFS API. The currency degradation of file access operations
depends on the dynamic system connectivity. Thus, the window of vulnerability for semantic
deviation can persist as long as disconnection continues.

One-Copy UFS Equivalence Under weak UFS, applications executed in the presence of
partition failures can produce different results than they would under standard UFS semantics.
A concept that best characterizes such behaviora difference is one-copy UFS equivalence
(LUE). A distributed file system is 1UE if for every set of computations the fina file system
state generated by any partitioned executionisidentical to executing the same computations on
asingle Unix host. Note that 1UE itself is not a semantic model. It is aconcept that describes
aspecial characteristics of the semantic model of adistributed file system. For example, Sprite
[48] is one of the few distributed file systems that are 1UE because of its faithful distributed
implementation of the standard UFS semantics.

Weak UFS is not 1UE and it can be demonstrated by the following two simple examples.
Let us consider Example 3 once again. Suppose that during Joe and Mary’s cooperation there
is a network failure that causes their workstations to fall into two different partitions of an
optimistically replicated file system. Note that even though Joe and Mary’s machines are not
able to communicate within the file system to sharefiles, it is still possible for Joe to send email
to Mary via a different network communication route. Obviously, Mary’s compilation result
wor k.o does not include Joe's bug fix because the replica of wor k. c that she accesses has
not received Joe's update yet. If both users are not aware of the disconnection, the resulting
state of wor k. o is certainly not what they have expected because repeating the same scenario
on a non-replicated file system would guarantee that the new wor k. o contains the bug fix.
Alternatively, suppose that thereisalack of coordination between Joe and Mary, and they both
edit wor k. c onthereplicaswithintheir corresponding partitions. What they end up withistwo
diverged versions of wor k. ¢ that requirethem to manually reconcile the difference, something
that never happensin anon-replicated file system.

These two examples are particular instances of two basic classes of non-1UE behaviors
called stale read and diverging writes. A stale read consists of a pair of read and write
operations on the same object obj , denoted Read(obj) and Wi te(obj). Although
Wit e(obj) happened before Read(obj) and there are no other write operations on obj
in between, Read(obj) retrieves the content of obj that existed before Wit e(obj)
updated it. The case of diverging writes consists of a pair of partitioned write operations that
update two different replicas of the same object with no well-defined order between them. Any
computation that creates non-1UE results must contain at least one instance of stale read or
diverging writes. Otherwise, any read operation in that computation would have read the same
value under standard UFS semantics and they would have created 1UE results instead.

12 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

2.2 Consistency Maintenance

The Application-Specific Nature of Consistency In the context of a Unix file system, the
notion of consistency is attached to a group of objects, denoted as OBJS = { o1, 0, ..., 0, }.
They are considered to be consistent or in a consistent state when their data contents satisfy
a set of conditions that are necessary for them to serve their intended purposes and for the
applications accessing them to function properly. The consistency requirements for OBJS are
often expressed as a set of predicates CONS(OBJS) = { Pi(01, «uy 04); ooy Po(01, ooy 00)).
It is the applications that decide whether a group of objects are consistent or not. The same
group of objects can be in a consistent or inconsistent state depending on which applications
are using them and under what situations.

Supposethat thefileswor k. ¢ andwor k. o of Example 3resideinasystem installation area
that ispublicly visible to other users. The two objects are considered mutually consistent when
wor K. o isthe compilation result of wor k. c and every timewor k. ¢ isupdated anew version
of wor k. 0 must be immediately re-compiled. Their consistency requirement is CONS(wor k
.C, Wor K. 0) . = { wor k.o is compiled from the latest version of wor k.c using cc}.
Consider adifferent scenario wherewor k. ¢ isinthe public installation areaand wor k.o isin
the private workspace of Joe and compiled with a different compiler for experimentation. Joe
may prefer wor k. 0 to remain unchanged even when wor k. ¢ gets updated by a new release.
Therefore, the new consistency requirement is CONS(wor k.c, wor k.o) ;.. ={work.ois
compiled fromversion V of wor k. c usingcc A ver si on(wor k.c) > V}.

Notethat we make aclear distinction between the two concepts of conflict and inconsistency
inthisdissertation. The notion of conflict issyntactic, meaning that the same object iswrittenin
one partition and read or written in another. The notion of inconsistency is semantic, meaning
the data contents of a group of objectsdo not satisfy the conditions required by the applications
that use those objects. Conflicts can be detected by the file system, whereas inconsistency can
only be detected by the corresponding applications.

Application Responsibility Unix file systems treat file objects as uninterpreted byte se-
guences. They do not have the semantic knowledge to interpret data stored in the files. As
long as afile system strictly implements the standard UFS semantics, it bears no responsibility
for any inconsistency which occursin thefile system. It is the applications that are responsible
for not only maintaining data consistency but also detecting inconsistency and restoring con-
sistency. After al, it is the applications that have the final say on whether a group of objects
are consistent or not.

In Unix file systems, inconsistencies among objects often exist. For example, the public
release of a software system often consists of a collection of source code, object code and
executablefiles. A common consistency requirement isthat the object and executabl e files must

2.3. FROM PARTITIONED SHARING TO INCONSISTENCY 13

be built from the corresponding source files. Such a consistency requirement is often briefly
violated during the process of system upgrade when only some of the object and executablefiles
are re-built from the new source files. In addition, human errors such as forgetting to compile
alibrary file could also cause inconsistency in the release. Thefirst kind of inconsistency only
exists for a short duration while the second kind can persist for a long period of time. But
sooner or later the inconsistencies will be discovered by the users and applications when they
lead to unexpected results, and consistency will be restored afterwards.

File System Responsibility When the implementation of afile system is not strictly faithful

to the standard UFS semantics, maintaining data consistency becomes a shared responsibility
between the file system and applications. When a relaxed semantic model such as the weak
UFS semantics is employed, there is a window of vulnerability for a certain application,
denoted APP, to produce a different computation result than it expects. Suppose that the
final system state after executing APP from the initial state S;,.;; 1S Syu_vrs(APP, Siui)

and S,c.._vrs(APP, S;.;;) under the standard UFS semantics and weak UFS semantics
respectively. Also suppose that the set of objects involved isOBJS pp and their consistency
requirement is CO\IS((BJSAPP) . f Sstd—UFS(APP, Sm“g) satisfies CG\IS(oBJ SAPP)

while S,..r_uvrs(APP, S;,;;) does not, then the inconsistency is entirely the file system’s
responsibility. In other words, the file system is responsible for any inconsistency due to its
inability to keep the semantic promises in the presence of partitioned conflicts. It isimportant
to note that application errors and user mistakes still account for many inconsistencies. When
Sai—vrs(APP, S;,;;) failsto satisfy CONS(OBJS,pp) , it is APP and its users, not the file
system, that are responsible for the inconsistency. In other words, the file system should not be
held accountable for inconsistencies caused entirely by application errors and user mistakes.

2.3 From Partitioned Sharing to I nconsistency

ConflictsCause Non-1UE Effects Weak UFSsemanticsitself does not |ead to inconsistency.
The necessary condition for an application to yield a different computation result under weak
UFS than under standard UFSis that there must be conflicting partitioned accesses to different
replicas of the same object. We define the term read/write conflict to mean a pair of read and
write operations that access the same object in two different partitions. Similarly, awrite/write
conflict means that the same object is updated in two different partitions. Conflicts are the
necessary condition for non-1UE effects because any instance of a stale read or diverging
writes must involve aread/write or write/write conflict.

However, conflicts are not a sufficient condition for non-1UE effects. A read/write conflict
can often produce the same result as under the standard UFS semantics. For example, suppose
that Joe first prints out a copy of wor k. c from his desktop workstation and later edits it on

14 CHAPTER 2. PARTITIONS, CONFLICTS AND INCONSISTENCY

his laptop, and there is a partition failure causing the two operations to be performed on two
partitioned replicas of wor k.c. But the net result would be the same even if there were no
partition failures and the standard UFS semantics are guaranteed. Notice that a write/write
conflict always produces a non-1UE effect because one-copy equivalence can no longer be
maintained.

Non-1UE Effects Cause Inconsistency Non-1UE effects can cause objects to fall into an
inconsistent state even though the involved applications and users all operate correctly. A pair
of diverging writes immediately renders an object unusable and a stale read operation can lead
to inconsistent behaviorsin many different ways. As described in Example 3, reading a stale
wor k. c can leave the compilation result of wor k. 0 in an inconsistent state because it does
not reflect the latest bug fix as its user expects. Mary might have used it to build new system
executables and happily notified other users that the bug has been fixed, only to find out later
that that is not the case. A stale read can aso inappropriately expose an inconsistent set of
objects to the users, as exemplified by the following actual Coda experience.

Example 4. A user runs a script to deposit the new release of a set of files into
apublic installation area and to announce the new release on an electronic bulletin
board. Due to a partition failure, only some of the new files get to the public area.
Other users who try to use the newly released files after seeing the announcement
will end up getting a mutually inconsistent set of the corresponding files because
only some of them are new.

Just as not al conflicts lead to non-1UE effects, not all non-1UE behaviors result in
inconsistency. As mentioned in previous discussions, sometimes the users may prefer reading
stale files to keep their own private workspace intact so that their private system development
activities will not be affected by frequent updates in the public area. In addition, users can
often tolerate reading stale files when the relevant new updates do not have any impact on
thelr activities. For example, a user would not mind using an old version of emacs when its
executable file is updated for a new release that enhances features he/she does not care about.
Finally, a user may even willingly accept a staleread if the alternative is no data access at all.

Summary Therearetwo important stepsin the causal link from partitioned sharing to incon-
sistency: conflicts cause non-1UE effects, non-1UE behaviors cause inconsistency. Both are
necessary conditionsand not sufficient conditions. When weak UFS semanticsis employed, the
file system and applications have shared responsibility for consistency maintenance. However,
the file system should only be responsible for those inconsistencies that result from non-1UE
behaviors. This is because other inconsistencies are caused by mistakes made by users and
applications, for which they are responsible.

Chapter 3

Design Rationale

This chapter outlines our fundamental design rationale and puts forth the IOT computation
model. Thefirst section highlights key design objectives and identifies main design constraints
imposed by the dominant features of the underlying Coda file system and its target usage
environment. The second section discusses a number of high level design decisions that shape
the overal IOT structure. Finally, a detailed operational description of the IOT model is
presented in the third section.

3.1 Design Objectives and Constraints

Data inconsistency resulting from partitioned sharing is a challenging problem that is of major
practical significance. To develop a new file system mechanism capable of addressing such a
complicated problem, we commence the description of our research by clarifying the main ob-
jectives we seek to achieve and determining the basi ¢ system context under which this endeavor
is carried out. We choose to discuss design objectives and constraints before presenting the
|OT model because this discussion is necessary to clarify key rationale and justify important
design features of the IOT model.

3.1.1 Design Objectives

Our ultimategoal isto develop an IOT model and aworkingimplementation that can be actually
used by Unix users and applications to effectively address the data inconsistency problemsin
mobilefileaccess. Practicality istheoverridinggoal, and it transl atesinto the following specific
design objectives.

15

16 CHAPTER 3. DESIGN RATIONALE

Improved Consistency Support Providing improved consistency support for mobile file
access is what originally motivated this thesis research. The IOT mechanism must provide
help to Unix users and application programmers to obtain better consistency protection in
the presence of partitioned file accesses, particularly on mobile computers using disconnected
operation. Specifically, we want the IOT model to be able to recognize instances of data
inconsistency that would otherwise be undetected in the current state of practice. Moreover,
it must aid Unix users and programmers in managing the often-difficult task of restoring data
consistency.

Upward Unix Compatibility A true test of practicality of any new system facility such as
|OT iswhether it can accommodate the large body of existing Unix applications. Maintaining
upward Unix compatibility is a major priority. We must ensure that the behavior of Unix
applications will remain unchanged as long as 10T is not involved. In addition, existing Unix
applications with little or no change should be able to take advantage of the |OT service.

Limited Resource Consumption One of the unique concerns in supporting mobile file
access is limiting resource cost on a portable computer because it often has less capacity than a
stationary one. The lOT mechanism must bevery sensitive to its resource consumption because
excessive consumption may lead to denial of other valuable services to users and applications.

Ease of Use We pursue two complementary goals of conceptual simplicity and access flex-
ibility. The IOT functionality must be presented to Unix users and application programmers
with a simple abstraction that is easily understood and fully compatible with the traditional
Unix application paradigm. The actual mechanisms through which the IOT service is accessed
must be flexible and easy to use.

Reasonable Overall Performance Good performanceisanintrinsic part of system usability.
The IOT mechanism will inevitably incur a certain amount of performance overhead. But, it
is imperative that we seek good overall system performance because excessive performance
degradation could seriously undermine the usability of the IOT mechanism.

Summary The pursuit of practicality for a new transaction mechanism under the compli-
cated setting of an optimistically replicated distributed file system is an arduous journey. As
subsequent design and implementation trade-off analysis will demonstrate, the specific objec-
tives of improved consistency, Unix compatibility, low resource cost, ease of use and good
performance often create competing demands on various system components at both design
and implementation levels. Our approach is to balance these concerns and make the necessary
compromises that best serve the ultimate purpose of practical usability.

3.1. DESIGN OBJECTIVES AND CONSTRAINTS 17

3.1.2 Design Context

SincetheOT mechanismisan extension to an existing distributed file system, its structural and
functional properties are fundamentally dependent upon the underlying system infrastructure.
In this section, we discuss the dominant Coda features that have substantial impact on IOT
design and implementation. Our purpose is to identify a minimum set of specific file system
characteristics under which the 10T model and its underlying principles can be applied to
provide data consistency support.

Codaln aNutshell Asadescendant of the Andrew File System (AFS), the Codafile system
provides a location-transparent view of a hierarchical name space to alarge number of clients.
Files are organized by the unit of volumes, each forming a partial subtree of the name space and
typically containing the files of one user or project. The distinct features that set Coda apart
from other distributed Unix file systems are the two complementary mechanisms it employsto
achieve high availability: disconnected client operation and server replication, both relying on
optimistic replicacontrol. Disconnected operation isthe basis for providing transparent mobile
file access on portable computersin Coda.

Client/Server Architecture Coda employs whole-file client disk caching to achieve scala-
bility and good performance. It usesthe callback mechanism to maintain cache coherence. The
Coda servers, collectively called Vice, are a group of dedicated Unix workstations placed in
secure locations and running trusted software. At a Codaclient, isauser level cache manager
called Venus that transparently intercepts fil e access requests on Coda objects and services them
using data fetched from Vice. The architectural reliance on Vice as the nucleus of the system
eases the administrative burden, allowing the system to gracefully scale up to thousands of
nodes. At the same time, it simplifies the system security model by only trusting the servers
and not the clients.

Disconnected Operation Disconnected operation providesaclient with continued file access
inthepresenceof network failures. Whentherelevant serversarenot accessible dueto voluntary
or involuntary disconnections, therole of the Venus cache manager is dramatically expanded so
that it can temporarily become a self-reliant server servicing file access requests using its cache
contents. Disconnected updates are performed only locally at the client cache and are logged
and later reintegrated to the corresponding servers upon reconnection. Coda views caching as
a specia form of replication. The cache copy of an object is regarded as a second class replica
while its server copy is afirst class replica [26]. Conceptually, the disconnected operation
mechanism is aform of optimistic second class replication.

18 CHAPTER 3. DESIGN RATIONALE

Hoarding

disconnection reintegration

complete

disconnection

Emulating) J Reintegrating
reconnection

Figure 3.1: Venus States and Their Transitions

Venus operates in three different modes to cope with unpredictably changing system con-
nectivities, as shown in Figure 3.1. When fully connected, Venus is in the hoarding state and
functions as a normal cache manager performing client disk caching and maintaining cache
coherence. When disconnected, it enters the emulating state and acts as a stand-alone server
servicing file access requests using cache copies on its local disk. For applications running
on a disconnected client, disconnection is transparent as long as the objects they access are
locally cached. When the disconnected client regains lost connections, Venus transits into
the reintegrating state to detect partitioned update/update conflict and propagate disconnected
mutations to the corresponding servers. When the client cache state is fully synchronized with
the server state, Venus goes back to the hoarding state.

Server Replication Asacomplementary mechanism to disconnected operation, server repli-
cation is aso employed by Coda to further enhance data availability. The same logical data
objects are replicated on multiple servers, alowing a client to service cache misses as long as
one of the server replicasis accessible. Replication control among first class replicas uses the
optimistic read-any-write-all-available strategy, alowing arbitrary partitioned sharing among
different partitions of the system. Partitioned update/update conflictsare automatically detected
using the version vector mechanism [53], and effective mechanisms are provided to transpar-
ently resolve conflicts [30, 31, 29, 56, 32, 68]. Although optimistic server replication helps to

3.2. HIGH LEVEL DESIGN DECISIONS 19

improve data availability, it does not have adirect role in supporting mobile file access.

Target Usage Environment Coda was designed to provide a general-purpose filing service
for a network of workstations in an academic and research environment. Each workstation is
operated by its primary user and the main target application domains are document processing,
software devel opment, and office automation. The likelihood of write-sharing among different
users across clientsis very low. Asindicated by arecent study [49], the dominant usage form
of disconnected operation is that users voluntarily disconnect their portable computers and
continue their work at home or on trips.

Summary We have identified the above set of Coda features as the IOT design context
because they have profound impact on how the IOT mechanism should operate. Although
the actual implementation of IOT on Coda is subject to more restrictions from detailed Coda
internal operations, the IOT model design is generic with respect to those main constraints.
In other words, any distributed file system that supports disconnected operation, uses a highly
scalable client/server architecture, provides good performance with client disk caching and
assumes a similar usage environment should be able to accommodate an |OT extension for
improved consistency support.

3.2 High Level Design Decisions

This section discusses anumber of high level design decisions that essentially shape the overall
|OT structure, paving the way for next section’s presentation of the IOT computation model.

3.2.1 Focusing on Disconnected Operation

We limit the scope of this research by focusing on disconnected operation and excluding server
replication from consideration. Our IOT model assumes that thereis no server replication, and
its design is optimized to provide consistency support only for disconnected operation. The
main reasons that prompted this decision are the following. First, disconnected operation isthe
enabling technique for providing mobilefile accessin distributed file systems and improving its
consistency support has a more significant practical impact. Second, server replication greatly
complicates the task of consistency maintenance for partitioned file access operations. Third,
a number of data inconsistency problems caused by optimistic server replication have aready
been addressed by arecent Ph.D. dissertation [29].

20 CHAPTER 3. DESIGN RATIONALE

3.2.2 Optimistic Approach

There are two basic alternatives to safeguarding data consistency for disconnected operation.
The pessimistic approach is to prevent potential inconsistency from happening by restricting
partitioned file access operations using techniques such as quorum consensus and token pass-
ing [3, 18, 43, 23]. However, pessimism is fundamentally incompatible with the optimistic
design principle embodied in disconnected operation. The IOT model inherits Coda’s opti-
mistic design philosophy by putting no limit on partitioned file accesses and by validating
disconnected computations according to certain consistency criteria upon reconnection.

Similar to the traditional optimistic computation models, our approach assumes the low
likelihood of having inconsistent disconnected computation results and takes advantage of this
assumption to provide high data avail ability to applications executed on an isolated client. All
disconnected computation results are considered tentative until the optimistic premise can be
verified. The difference between our approach and the traditional optimistic models liesin the
visibility of the tentative results. During disconnected operation, they are exposed not only to
subsequent computations on the same client but al so to external observers such asahuman user,
while the traditional models conceal them until the optimistic assumption can be confirmed.
Therefore, it is imperative that we provide mechanisms that can be effectively employed not
only to verify the optimistic premise of disconnected operation but also to compensate for the
external side effects that are based on inconsistent, tentative computation results.

3.2.3 Inconsistency Detection

Because its main purpose is detecting data inconsistencies caused by partitioned file accesses,
the IOT model effectively serves as the consistency criterion for deciding what kind of parti-
tioned file accesses are admissible for disconnected operation.

Alternatives Based on the causal link from conflicts to non-1UE effects to inconsistencies
discussed in the previous chapter, thereis a spectrum of strategies for modeling the consistency
criterion of disconnected operation. The main design trade-off is between the two competing
goals of accuracy and efficiency. The accuracy of a consistency model measures how likely a
computation rejected by the model causes actual datainconsistency. The efficiency of a model
refers to the amount of computation needed for verifying the consistency of disconnected
computations.

One end of the spectrum is to model the consistency criterion of disconnected operation
using the application-specific definition of consistency itself, as has been recently explored
in the Bayou System [68]. This approach has the advantage of perfect accuracy. However,

3.2. HIGH LEVEL DESIGN DECISIONS 21

it requires application semantic knowledge for all partitioned file access operations which is
impractical for a general-purpose file system.

The other end of the spectrum is to approximate inconsistencies with partitioned conflicts.
This model can be efficiently validated by recording and comparing object version stamps.
However, its practical usability suffers from two main drawbacks. First, this approximation
is gross because many instances of read/write conflicts are acceptable to Unix users and
applications. Second, the notion of conflicts are defined for an individual object. Validating
consistency at the granularity of an object instead of a unit of computation makesit difficult for
the users to comprehend the nature and scope of the relevant inconsistency.

In between the two extremes, is another strategy which approximates inconsistencies with
non-1UE effects, a much closer approximation than conflicts. However, detecting non-1UE
effects requires the file system to maintain ordering information among al partitioned file
access operations. Thus, it is impractical because it needs every host to record a complete
history of file access operations and message communications.

Consistency Model Selection There arethree main concernsin selecting aconsistency model
for validating disconnected computations. First, the model must accommodate common con-
sistent behaviors of disconnected computationsfor typical applicationsin our target application
domains under normal circumstances. In other words, any violation of the model must be very
likely toresult in inconsistent behaviors. Second, the automatic validation of the model must be
computationally efficient. Third, the model should be able to screen out non-1UE behaviors as
much as possible. Thisisvery important in supporting our goal of Unix compatibility because
the ability to detect non-1UE effects means that those Unix applications depending on strict
UFS semantics can make use of the IOT facility to detect inconsistency without altering their
semantic behaviors.

We decided to employ aserializability-based consistency model for validating disconnected
operation. Itrequirescertain serialization propertiesto be satisfied among partitioned file access
operations. Although serializability theory has historically been used in database models to
ensure the isolation property among concurrent transactions, it also captures the consistency
requirement for a large variety of Unix applications such as make. Flexibility of the model is
attained because there are a variety of serialization requirements to choose from. As will be
shown in subsequent discussions, a strong serialization requirement called certification can be
employed to detect the most common non-1UE behaviors. Finally, the feasibility of the model
is assured because there are known efficient methods of validating serialization requirements.

Application Participation Any practical consistency model performs validation based on
the syntax instead of the semantics of the relevant partitioned file access operations. Syn-
tactic consistency validation is always capable of producing false negative results, i.e., some

22 CHAPTER 3. DESIGN RATIONALE

syntactically inadmissible disconnected computations may very well be semantically correct.
A large gap between what is syntactically inadmissible and what is semantically inconsistent
could seriously undermine the model’s practical usability. The strategy we adopt to mitigate
this problem is to provide support for controlled application participation in consistency val-
idation. The key idea is to selectively apply application semantic knowledge to re-validate
the consistency of certain disconnected computations after their syntactic validation has failed.
This strategy combines the strength of high efficiency of a syntactically aggressive model and
high accuracy from using semantic information.

3.24 Consistency Restoration

Effectively restoring dataconsistency after inconsi stencies have been detected isanintegral part
of safeguarding the integrity of disconnected operation. For compatibility reasons, we inherit
the terms conflict and conflict resolution from past research literature and use them in this
dissertation with broader meanings. A conflict not only stands for a read/write or write/write
conflict on an individual object but also refersto an invalidated transaction. Similarly, conflict
resolution means not only the reconciliation among different replicas of an object but also the
genera process of restoring consistency for an invalidated transaction. Our resolution strategy
embodies the following three characteristics.

Forward Progress Thetraditional way of restoring dataconsistency isto rollback the system
state to a recorded previous state that is known to be consistent. For disconnected operation,
however, throwing away the results of disconnected computations every time inconsistency
is detected will seriously impede its usage. Our design pursues the forward-progress strategy
so that the consistency restoration process's main mission is to preserve the work done while
disconnected via adjustment and re-computation.

Transparency Weaso provide support for automatic execution of resolution actionsthat can
restore data consistency and make the resolution process as invisible to the users as possible.
The ability to transparently resolve conflictsisvital to |OT’s practical usability.

Application-Specific Paradigm By the very nature of consistency, application semantics
have an inherent role in conflict resolution, particularly in situations where compensating
actions are necessary. Past success in using application-specific resol versto resolve write/write
conflicts[56, 32, 68] indicatethat weneed to allow pre-programmed appli cati on-specific actions
to be automatically invoked in asystematic and controlled way to more effectively restore data
consistency.

3.2. HIGH LEVEL DESIGN DECISIONS 23

3.25 Starting Point: Inferred Transaction M odel

James Kistler introduced an elegant consistency model called the inferred transaction (IFT)
model for validating disconnected computationsin Coda[26]. The key idea of the IFT model is
to let thefile system implicitly infer transactions rather than having them explicitly specified by
applications or users. Most Unix file system calls constitute their own independent transaction
and the IFT type and its corresponding system call are displayed in Table 3.1. The consis-
tency criterion for validating disconnected inferred transactions is the widely used one-copy
serializability (1SR). With a number of carefully designed optimizations intended to enlarge
the set of admissible disconnected computations, the resulting IFT model permits the same set
of disconnected computations as weak UFS.

r eadst at us[object, user]
access | ioctl | stat
r eaddat a[object, user]
(open read* close) | readlink
chown[object, user]
chown
chnod[object, user]
chnod
ut i mes| object, user]
utines
set ri ght s[object, user]
i octl
st or e[file, user]
((creat | open) (read | wite)* close) | truncate
[i nk[directory, name, file, user]
i nk
unl i nk] directory, name, file, user]
rename | unlink
r ename| directoryl, namel, directory2, name2, object, user]
rename
nkobj ect (directory, name, object(file | directory | symink), user)
creat | nkdir | open | symink
rnmobj ect (directory, name, object(file | directory | symink), user)
rename | rodir | unlink

The notation used in the second line of each descriptionisthat of regular expressions; i.e., juxtapo-
sition represents succession, “*” represents repetition, and “|” represents selection.

Table 3.1: Inferred Transaction Types and UFS System Call Mapping

24 CHAPTER 3. DESIGN RATIONALE

Although IFT is a much cleaner consistency model than weak UFS, it has two major
limitations. First, the boundary of an inferred transaction istoo small to fit the natural boundary
of applications where the 1SR requirement should be applied. The 1SR guarantee among
individual file access operations performed by a group of applications does not assure 1SR
for these applications as a whole. Second, the IFT model admits all instances of stale read
as legal partitioned computations. For Unix applications relying on strict UFS semantics for
correctness, the IFT model is not strong (or restrictive) enough to assure their consistency in
the presence of disconnections. The following two examples illustrate both limitations.

Example 5. Consider the two non-1SR transactions T1 and T2 shown in Figure
3.2. When the four involved operations are treated as individual transactions, they
canbeseriadlizedintheorder of {read A, read B, wite A wite B}.
If both T1 and T2 require one-copy serializability to work correctly, the IFT model
is not general enough to address their consistency needs.

Partition 1 Partition 2

T1: read A T2: read B
wite B wite A

This execution is not 1SR because T1 sees the value of A before T2 wrote it and T2 sees the
vaue of B before T1 wroteit.

Figure 3.2: An Example of Non-Serializable Partitioned Transactions

Example 6. Inthe Coda project, it is quite common for a user to edit a sourcefile,
say cf s.c, onaclient C.4; and then compileit on another client C'.,,,,,i1.. Suppose
that there is a network failure causing C'.,.,.ii. to fal into disconnected operation
mode. Thusthe compilation result of cf s. 0 does not include the update as the user
expects. Because the two disconnected transactions {r ead cfs.c}and {store
cfs.o} performed on C',.,i. Can be serialized before the connected transaction
{store cfs.c} performedonC.,;,theFT model would happily reintegrate the
inconsistent cf s. o to the servers.

It is the very attempt to improve the IFT model that originally motivated this thesis. We
started out this research trying to extend the scope of the IFT model so that the transaction

3.3. ISOLATION-ONLY TRANSACTION MODEL 25

boundary can fit the natural boundary of applications, and to strengthen the IFT semantics so
that it can address the consistency needs of more Unix applications. The IOT model is the
result of this effort.

3.3 Isolation-Only Transaction M odel

The essence of the IOT model is to optionally execute applications as individual isolation-
only transactions and impose serializability-based requirements for transaction® executions
under various system connectivity. By demanding partitioned transaction executions to satisfy
global serializability requirements, we establish aconsistency model for automatically detecting
partitioned read/write conflicts when partitions are healed. In addition, the |OT model provides
flexible mechanisms so that when conflicts are detected, they can be effectively resolved
automatically or manualy.

Because of our overriding goal is practical usability, we focus our description of the
IOT model on the operationa aspects of the model. In addition, we try to explain relevant
mechanisms from users’ perspective as much as possible.

3.3.1 WhatlIsIOT?

An Optional File System Facility 10T is an optiona file system facility in the Unix File
System that extends the UFS API with two new calls begi n_i ot andend_i ot . Usersand
applications can use thetwo callsto explicitly bracket the execution of applications. Since |OT
usage is optional, the semantic behavior of applications that do not use IOT are guaranteed to
remain unchanged.

Transaction Entity A transaction is the execution of an application whose file access oper-
ations are guaranteed a set of properties specially designed for safeguarding data consistency
in the presence of disconnection. The notion of a transaction in this document is used to refer
to two different kinds of system entities depending on the context. Statically, atransaction is
just an application program whose execution makes use of the two IOT calls. Dynamically,
atransaction is a sequence of file access operations bracketed by begi n_i ot and end_i ot .
The dynamic entity of a transaction is the sequence of file access operations issued by the
execution of its static entity.

LIn the rest of this dissertation, we will use the term transaction to refer to an isolation-only transaction when
there isno ambiguity in the context.

26 CHAPTER 3. DESIGN RATIONALE

ProcessHierarchy A transactionT isstarted whenthefile systemreceivesanewbegi n_i ot

call and the process that issued the call, denoted Py, is called the master process of T. Any
file access operations issued by Py or its descendent processes are considered members of the
transaction. T isterminated when an end_i ot call isreceived or the master process P exits,
whichever comes first. This hierarchical process structure is intended to emulate the process
structure of Unix application executions and ease the burden of programming transactional

applications. For example, if we want to execute the mak e application as atransaction, ssimply
putting the begi n_i ot and end_i ot calls at the beginning and end will cause al the file
access operations performed by makee to be included in the scope of one single transaction.

Flat Structure ThelOT mechanism doesnot support nested transactionsfor thefollowing two
main reasons. First, including the nesting capability in the IOT model will greatly complicate
its design and implementation on practical distributed file systems. Second, the benefits of
nested transactions such as increased concurrency and finer granularity of recovery control are
not of main concernin thisresearch. Because of theflat structure, abegi n_i ot call withinthe
scope of an ongoing transaction serves no practical purpose and is treated as a no-op; equally,
anend_i ot call outside the scope of any transaction is also ignored.

In order to avoid premature transaction termination due to inadvertent transaction nesting,
the transaction system also needs to maintain a counter for each ongoing transaction to record
the current depth of internal begi n_i ot callsissued within the scope of the transaction. The
counter is incremented for each internal begi n_i ot call, and decremented for each internal
end_i ot cal. Anongoing transaction isterminated as soon as its counter becomes negative.

3.3.2 Execution Modd

The design of the IOT execution model was inspired by Kung and Robinson’s Optimistic
Concurrency Control (OCC) model [33]. The key idea is to use the client cache as a private
workspace for transaction execution while the servers maintain the public space that reflects
the results of al the committed transactions. All file access operations issued by atransaction
execution are performed locally. The results of transactional mutations are held within the
client cache until the transaction can be validated and committed to the public space on the
servers. No partial result of transaction execution is visible on the servers and from any other
clients. The biggest advantage of this OCC-style execution model is that the scope of potential
inconsistency is limited to the boundary of aclient’slocal cache.

Asshownin Figure 3.3, the execution of atransaction can go through a number of different
states. When atransaction T is first initiated by a begi n_i ot call on aclient 7, it starts
out in the running state and stays there as long as the execution is still going on. When T is
terminated by the corresponding end_i ot call or when its master process exits, it must transit

3.3. ISOLATION-ONLY TRANSACTION MODEL 27

disconnected transaction

_ _ with partitioned
% file access

without
partitioned
file access

connected

transaction CQRebkkiSS resolving

resolution
succeeded

Figure 3.3: 10T States and Their Transitions

into a different state depending on whether it is connected or disconnected. T isadisconnected
transaction if its execution has ever accessed one object for which C'r+ did not have server
connection at the time of access? In this case, T will transit into the pending state so that
its validity can be verified when lost connections are regained. Otherwise, T is a connected
transaction and will immediately write its result to the servers and go into the committed state.

The result of a pending transaction is confined within the client cache but still visible to
subsequent processes on the same client. There can be multiple pending transactions executed
on the same client, creating possible dependencies among themselves. If atransaction T reads
from another pending transaction T’ , i.e., the execution of T reads the content of an object
that iswritten by T, then the computation result of T logically depends on that of T’ . In this
situation, T must stay in the pending state as long as T’ does, even though client C'7 may
maintain server connections for all the objects that T accessed. Therefore, the definition of
a disconnected transaction needs to be extended to include the case of reading from pending
transactions. Accordingly, the definition of a connected transaction needs to exclude those that
read from pending transactions.

2The 10T mode! assumes a volume structure in the file system name space and the client/server connectivity is
maintained at the volume level. The same client can be connected for one volume while disconnected for another.

28 CHAPTER 3. DESIGN RATIONALE

A pending transaction T is validated when the following two conditions are satisfied. First,
client C'r currently maintains server connections for all the objects accessed by T. Second,
all the transactions that T read from are already committed or resolved. The validation of T
checks whether the local result of T is consistent with the current global state maintained on
the servers according to the consistency criteria required by the IOT model to be discussed
shortly. If such validation succeeds, T's result is immediately written to the servers and T
goes into the committed state. Otherwise, T isinvalidated (or T is an invalidated transaction)
and it transits into the resolving state where its local result will be automatically or manually
resolved against the current server state. When the resolution is completed and the new resultis
written to the servers, T enters the resolved state. Conceptually, there is no difference between
the resolved and committed state; both mean that the computation (or re-computation) result
of a transaction has been committed. From practical usability point of view, it is important
to provide users with the information about whether a transaction is directly committed or
has been successfully resolved. Therefore, we use two different states in order to reflect the
different paths a terminated transaction went through.

3.3.3 Why Isolation Only?

Thename“IOT” stemsfromthefact that weretain only theisolation guarantee of thetraditional
transaction’s ACID (Atomicity, Consistency, Isolation and Durability) properties[14, 72, 20].
The design of the |OT model in many ways can be regarded as an exercise in minimalism. The
|OT model embodies only those capabilities deemed vital to providing consistency support for
disconnected operation. The consistency property in ACID requires any transaction to be a
correct program that transforms one consistent system state into another, which is generaly
assumed in most distributed systems. Although failure atomicity and durability are valuable
in distributed computing systems, they are not fully supported in the IOT model. Instead,
restricted versions of both guarantees are provided. The reasons for this are explained below.

Regional Atomicity ThelOT model does not guarantee that either all or none of atransaction
is executed during system crashes for two main reasons. First, the system resource cost needed
for supporting failure atomicity can be very expensive. In order to roll back the partial result of
atransaction after a crash, the transaction system must record sufficient information to recover
the system to a recorded consistent state. Such space cost could stretch the capacity limit
on resource-poor portable computers because transactions running Unix applications such as
make can last along time and access alarge number of big objects. Second, the all-or-nothing
property is not compatible with many existing Unix applications that have developed their
own approaches to crash recovery. For example, emacs employs auto-save files to guard
against severe data loss caused by crashes. Moreover, there are situations where atomicity is
simply undesirable. For example, suppose a user runs nak e as a transaction to compile many

3.3. ISOLATION-ONLY TRANSACTION MODEL 29

object files and build a large system. The machine crashes just before the task is about to
complete. The user would much prefer to keep the compilation results and resume the task
after the machine comes back, rather than having the system automatically throw away the
partial results and re-start the whole process al over again.

As pointed out by previous research, the atomicity boundary and the concurrency control
boundary need not be the same for many common applications [42]. The IOT model takes a
regional approach in utilizing failure atomicity for fault tolerance. Specifically, a number of
small segmentsof transacti on execution such asvalidating apending transaction and committing
its local result to the servers are performed as atomic units.

Conditional Durability The traditional durability property requires that once a transaction
completes successfully, its result must be able to survive al system failures. This also implies
that once the result of a transaction is made visible to external observers, it must remain a
permanent part of the system state until modified by later transactions. In the IOT model,
the result of a pending transaction is visible to not only subsequent transactions on the same
client but also external observers such as human users. It isalso subject to change upon future
validation and resolution, during which system crashes can happen. Therefore, the durability
of atransaction result can only be guaranteed when the transaction is successfully committed
or resolved.

3.34 Consistency Modd

In contrast to the weakened guarantees of atomicity and durability, the IOT model strengthens
the isolation guarantee to ensure that any interleaved and/or partitioned executions of a set of
transactions are equivalent to a seria execution of the same set of transactions. We use theterm
consistency model hereto stand for the actual mechanismsfor achieving isolation of transaction
execution. This is because data consistency can be ensured by the isolation guarantee as long
as each individual transaction transforms one consistent system state into another.

3.3.4.1 Connected Transactions

Connected transactions are executed under a connected system environment. All file access
operations are provided with the standard UFS semantic guarantees. Thus, a hatural selection
of the IOT consistency guarantee for connected transactions would be the traditional one-
copy seridizability (1SR). This means that when a connected transaction is committed, the
IOT mechanism guarantees that it is one-copy serializable with all previously committed

30 CHAPTER 3. DESIGN RATIONALE

transactions®.

3.3.4.2 Disconnected Transactions

Selecting the consistency requirement for disconnected transactionsis much more complicated
than for connected transactions. First, disconnected transactions represent tentative computa-
tion resultsthat are local to a disconnected client. The IOT consistency model must ensure that
the visible client state presents a locally consistent view of those disconnected transactions.
Second, the validity of disconnected transactions must be verified before they can be com-
mitted to the servers. Thus, the IOT consistency model serves as the criterion for validating
disconnected transactions and in effect decides what kind of disconnected computations are
admissible.

Local Serializability (LSR) ThelOT consistency model requiresthat any pending transaction
on adisconnected client must belocally serializable with other pending or ongoing transactions
executed on the same client. LSR ensures that local interleaved transaction executions are
always equivalent to a serial execution, which is necessary for the pending transactions to
present alocally consistent view about their results.

Global One-Copy Serializability (G1SR) The IOT consistency model adopts two
serializability-based criteria to define admissible disconnected computations. The first oneis
called global one-copy serializability (G1SR): if a disconnected transaction T'sresult is copied
tothe serversasis, T must be 1SR with all previously committed transactions. Essentially, the
G1SR consistency criterion ensures that if the results of disconnected transactions are simply
propagated to the servers, the effect woul d be equival ent to some serial execution of all involved
transactions in a non-replicated environment.

G1SR was first introduced as an optimistic transaction model by Davidson [7, 8, 9]. As
a natural adaptation of the traditional 1SR model to an optimistic replication environment,
G1SRisuseful for awide variety of applicationswhereisolation of execution sufficesto ensure
correctness. It is aso suitable in situations where the durations of disconnections are short.
This is because under such conditions, distributed computations often appear to be concurrent
computations, for which 1SR can best address the consistency needs.

However, G1SR aone is not adequate for our purpose of supporting mobile file access
because it admits many instances of non-1UE behaviors. Some Unix applications rely on the
currency guarantees of the standard UFS semantics for their correctness. The failure to catch

SWhen used in the discussion of different serializability guarantees, committed transactions also include
resolved transactions because they are conceptually equivalent in terms of their impact on the global server state.

3.3. ISOLATION-ONLY TRANSACTION MODEL 31

non-1UE effects would allow some incorrect disconnected computations to go undetected.
G1SR’s inability to detect non-1UE behaviors makes it particularly inadequate for addressing
the consistency needs of long-lasting voluntary disconnected operation sessions, the dominant
usage form of Codalaptop clients as shown in the example below.

Example 7. A Coda programmer, Joe, caches relevant files on his laptop for a
weekend trip. While disconnected, he does some hacking and executes nake as a
transaction 77;,. to build a new version of cf s, a Coda utility program. But one
of thelinked libraries| i but i | . a is updated by the system administrator on the
servers using a connected transaction 1'44,.:, during Joe's absence. Suppose that
there are no other relevant file accesses. When Joe comes back from the trip and
re-connects his laptop to the servers, 7;,. will be admitted under G1SR because
it can be serialized before 7'44,,:,,. However, Joe would like his new cf s to be
compatible with the latest libraries or at least be notified about the changes to the
filesthat his work depends on.

Global Certification (GC) As a remedy to the limitation of G1SR, the 10T consistency
model adopts a stronger consistency criterion for validating disconnected transactions called
global certification (GC). GC requires that if a disconnected transaction T's result is copied to
theserversasis, T must be not only serializable with but aso serializable after all the previously
committed transactions. GC can address the above problem by invalidating transaction 7;,.
because it can not be serialized after 7'44,..,. The 10T model provides both the G1SR and
GC consistency criteriafor disconnected transactions and allows transaction programmers and
users to specify the choice according to their consistency needs.

Intuitively, the GC criterion assures that the data accessed by a disconnected transaction are
unchanged on the servers during the disconnection. Itisavery strong consistency requirement
and any disconnected transaction satisfying GC represents a disconnected computation whose
result would be the same had the client not been disconnected at al. Infact, GCissorestrictive
that it can detect any instances of stale read where the read operation is performed on a
disconnected client. GCismuch moresuitablethan G1SR for voluntary disconnected operation
because the users are fully aware of the disconnection and more concerned about whether
their disconnected computations are still compatible with the up-to-date server state rather
than whether the disconnected computations can be serialized with committed transactions.
Furthermore, it is conceptually simple and easier for Unix users and application programmers

to grasp.

3.34.3 Conflict Resolution Options

The fundamental difference between 1SR for connected transactions and G1SR/GC for discon-
nected transactions is that the former is strictly enforced at transaction execution time while

32 CHAPTER 3. DESIGN RATIONALE

the latter can only be validated for pending transactions when communication with the relevant
servers is restored. Hence, as an integral part of consistency maintenance for disconnected
transactions, the IOT consistency model must specify what the system will do if validation
fails. Our design provides the following four conflict resolution options to assist transaction
users and programmersto restore consistency.

AutomaticRe-execution Whenadisconnected transactionfailsvalidation, oneway torestore
dataconsistency isto re-execute the transaction automatically by accessing up-to-date datafrom
the servers. Consider Example 7 once again. If Joe wants to make surethat thecf s executable
built on the disconnected laptop is compatible with the latest system release, he can choose
GC as the consistency criterion and automatic re-execution as the resolution option for 7',..
When T, isinvalidated at re-connection time, the IOT system will automatically rerun make
to build an up-to-date version of cf s by linkinginthenew | i buti | . a.

The main advantage of this option isthat it can be performed automatically without putting
additional demand on transaction programmers and users. It is particularly useful for a class
of Unix applications that primarily act as trandators, reading input data from a set of files
and generating output into a different set of files, such as make, cc, and | at ex. The
ability to restore consistency automatically and application independently provides much-
desired transparency in the resolution process, making automatic re-execution the workhorse
of conflict resolution in our target application domains.

Automatic Abort The second conflict resolution option is to automatically abort an inval-
idated transaction by throwing away its local computation result. It is similar to the rollback
mechanism of the traditional transaction recovery. Like the first option, it is also automatic
and application independent. But it is only applicable in afew situations where getting rid of
the local resultsis more appropriate than making forward progress. For example, suppose that
a transaction runs every midnight traversing a file system subtree, computing statistics such
as height and average branch factor of the subtree, and appending a new record to a log file
accumulating the statistics. If such atransaction is invalidated, it means that the statistics it
computed were based on a stale version of the subtree cached on the client. Automatic abort
is an appropriate resolution choice for this transaction because it prevents an incorrect record
from being appended to the log file.

Application-Specific Resolver (ASR) Our third option is to automatically invoke a user-
supplied application-specific resolver (ASR) [29, 32, 68]. At the start of execution, atransaction
can specify a user program that will be automatically invoked for conflict resolution if this
transaction is later invalidated. ASR is a unigque feature of the IOT model and is the key

3.3. ISOLATION-ONLY TRANSACTION MODEL 33

mechanism that allowsintegration of application semantic knowledgeinto the basic transaction
operations.

First, the ASR mechanism enables automatic compensation of disconnected transactions
containing external side effects. Consider a schedule maintenance program used by a business
executive to automatically check her schedule files and send out fax messages to arrange
business activities. Suppose that she takes her portable computer on atrip. While disconnected,
she runs the program as a transaction to enter a few new appointments and sends out fax
messages to notify relevant people about an upcoming meeting. However, her secretary adds
several conflicting activities into the server copies of the schedule files during her absence.
When the executive reconnects her portable computer to the servers, the transaction system can
automatically execute a resolver program that checks for conflicting appointments and sends
out new fax messages if necessary.

Second, the A SR mechanism allows application semantics to be utilized to resolve conflicts
more effectively. Let us revisit Example 7 one more time. Suppose Joe ran a large make
transaction to build a new kernel on the laptop. However, one of the linked libraries was
updated during the disconnection. Using the automatic re-execution option can certainly
resolve the conflict, but it would throw away all the local compilation results and rerun the
long transaction al over again. Instead, we can program aresolver that takes advantage of the
semantic knowledge of make to avoid unnecessary recompilations. In this case, the resolver
can simply keep most of the local compilation results and re-link them with the new library.

Third, the ASR option enables application-specific consistency validation. By default,
consistency validation is performed solely on the basis of syntactic information of file access
operations. But thisisaconservative approach. Aninvalidated transaction does not necessarily
mean that the datainvolved areactually inconsistent. The ASR mechanism providestheresolver
an opportunity to refine the check for datainconsistency using application semantics. Consider
the following example where machine reservations for two computer clusters A and B are
storedinfilesr eser veAandr eser veB. A simple consistency requirement for both filesis
that the same user can not reserve machines at both clusters. To reserve a ot for user Joe in
cluster A, atransaction 7),. is executed to add a new record inr eser veA after making sure
that r eser veB does not contain a conflicting record. Suppose that 7';,. is a disconnected
transaction due to a partition failure. Meanwhile, filer eser veB is updated on the servers to
add a reservation record for user Mary. Even though transaction 7';,. will be invalidated, its
local result is consistent with the new server state. The unnecessary resolution for 7', can be
avoided by using aresolver that is capable of recognizing the consistency of r eser veA and
r eser veB based on application semantics and retaining the transaction’s local result.

In summary, the application-specific conflict resolution paradigm is a centerpiece of the
|OT model that integrates different aspects of the model into a coherent design. First, our need
for practical usability and Unix compatibility demands transaction validation to be computa-
tionally efficient and capable of screening out non-1UE behaviors. Such requirementsentail the

34 CHAPTER 3. DESIGN RATIONALE

selection of arestrictive consistency criterion such as GC. However, ASR supplements GC by
integrating application semantics in consistency validation. Asaresult, consistency validation
iswell supported by two complementary mechanisms: efficient GC validation for the common
cases and application-specific validation for the subtle cases. Second, disconnected operation
departs from the traditional optimistic computation models by exposing tentative results to
external viewers. ASR addresses the vulnerability of potentially unrecoverable side effects by
serving as ageneric dispatcher for automatic compensating actions.

Manual Repair As alast resort, a transaction can choose to be manually resolved when
invalidated. We use the term repair to refer to the manual conflict resolution process. It aso
serves as the fallback option when other options fail. If an abnormal condition or an erratic
resolver results in failed automatic resolution of an invalidated transaction, the users will be
requested to manually repair the transaction. The IOT mechanism provides a repair tool to
assist the users to inspect the local and global states of the relevant objects and to create the
resolution result.

Transaction Consistency Specification Before execution starts, a transaction must specify
which criterion (G1SR or GC) to use for consistency validation when disconnected and which
resolution option to use for conflict resolution when invalidated. If the resolution option is
ASR, the user must also provide information about the resolver. We call such information
about the selection of consistency criterion and resolution option the transaction consistency
specification. It can be supplied to the transaction system through the arguments of both
begi n.i ot andend.i ot cals.

3.3.44 Implementation Restriction

We decided to implement only the GC consistency validation in this research because the im-
plementation complexity of G1SR far outweighs its practical value for the following reasons.
First, in theimplementation framework proposed by Davidson [9], validating G1SR for discon-
nected transactions requires the construction of a global graph data structure, which is likely
to hurt system availability and scalability. Furthermore, it requires the servers to maintain a
complete history of committed transactions from the beginning of a disconnection. Given the
fact that a portable client can be disconnected for along period of time, the server space cost
for recording transaction histories can be prohibitive.

Second, athough G1SR is a much more genera consistency framework than GC and less
susceptible to fal se-negative validation, the combination of GC and application-specific revali-
dation capability can adequately offset the loss of G1SR’s generality. Our experience suggests
that GCisbetter suited for the consistency needs of using disconnected operation for mobilefile

3.3. ISOLATION-ONLY TRANSACTION MODEL 35

accesses. Moreover, validating GC for disconnected transactions can be implemented much
more efficiently with minimum server resource cost, which is very important for preserving
overall system scalability.

Finally, although an implementation of G1SR is outside the scope of this dissertation, the
current |OT design and implementation are fully compatible with future support for it.

3.3.5 Handling Non-Transactional Operations

Because |OT is an optional file system facility intended to be used for selected applications,
there will be plenty of non-transactional file access operations, i.e., operations that are not
within the scope of any 10Ts. The IOT model needs to provide a semantic specification
for non-transactional file access operations that satisfies the following two criteria. First, the
original IFT semantics must be preserved for those non-transactional operations that do not
interfere with any 10Ts (i.e., do not share objects with any 10Ts). Second, the semantics of
those non-transactional operations that interfere with other IOTs must fit smoothly with the
|OT consistency model.

We adopt a uniform semantic specification that regards each individual non-transactional
file access operation as a special 10T containing only one operation and using manual repair
as its conflict resolution option. Obviously, the behavior of any non-transactional operations
under this semantic model is guaranteed to be the same as that under the IFT model, as long as
they do not interferewith IOTs. Thisisvery important to our goal of maintaining upward Unix
compatibility. The behavior of other non-transactional operations is much the same, except
that they have to obey the concurrency control requirements when interacting with 10Ts. For
example, a non-transactional operation trying to update an object obj must wait until the
ongoing 10T that has already been accessing obj finishes.

3.3.6 Model Optimization

In an effort to improve availability (i.e., to enlarge the set of admissible partitioned file access
operations), Kistler proposed anumber of innovative optimizationsfor the |[FT model [26]. The
|OT model inherits many of those optimizations for compatibility reasons and extends them to
alarger transaction granularity.

36

CHAPTER 3. DESIGN RATIONALE

Basic Operation

Readset

Writeset

Increment-Set

Decrement-Set

readstatug/o, u]

readdatalo, u]

chown [o, U]

chmod[o, u]

utimes[o, u]

setrightg[o, U]
store[f, U]

link[d, n, f, u]

unlink[d, n, f, U]

rename[dl, n1, d2, n2, o, U]

mkobject[d, n, o, u]

rmobject[d, n, o, U]

fid,

. owner,
.nodi fytime,
node,

. I'inkcount,
| engt h,
.rights[u]
fid,
.rights[u],
| engt h,
dat a[*]
fid,
.rights[u],
owner

fid,
.rights[u],
node

fid,
.rights[u],
modi fytime
fid,
.rights[u]
.fid,
.rights[u],
.nodi fytime,
.l ength,
.data[*]
.fid,
.rights[u],
.data[n],
fid

fid,
.rights[u],
.data[n],
.fid
di.fid,
dl.rights[u],
dl. data[nl],
d2.fid,
d2.rights[u],
d2. data[n2],
o.fid,
.data[‘ ‘..’
fid,
.rights[u],
.data[n], o.
fid,
.rights[u],
.data[n], o.

TeeeeRe T 0000000000000 000000000

000000 O0

"]

*

*

0. owner

0. node

o. nodi fytine

o.rights[u]

f.nodi fytinme,

f.length,
f.data[*]

d. dat a[n]

d. dat a[n]

dl. data[nl],
d2. data[n2],
o.data[‘‘..""]

d.data[n], o.*

d.data[n], o.*

d.l ength,
f.linkcount

d2.1inkcount,
d2.length

d. linkcount,
d.l ength

d.l ength,
f.linkcount

dl.linkcount,
dl.length

d. linkcount,
d.l ength

Note that in the r ename transaction o. data[‘.. "]
object isadirectory. Thistable istaken from Kistler's dissertation[26].

is relevant only when the renamed

Table 3.2: Transaction Specification for File Access Operations

3.3. ISOLATION-ONLY TRANSACTION MODEL 37

Employing Sub-Object Granularity Intuitively, Unix programmers and users regard file
access operations to operate generally on the granularity of an individual object, i.e., an entire
file, directory or symbolic link. But such a coarse granularity may cause many unnecessary
conflicts. For example, partitioned chnmod and chown on the same object would appear to be
in update/update conflict, but the conflict is false because the two operations touch different
parts of the object.

One way to avoid such false conflictsisto adopt afiner granularity of transaction specifica-
tion so that different sub-parts of an object are treated asindependent logical entities. With each
object, we associate the following set of attributes: fi d (the internal identifier of the object),
owner , nti ne4, node, | i nkcount , | engt handri ght s®. Inaddition, each object will
also have adat a field. For aregular fileand symbolic link, dat a isjust al engt h long byte
sequence. For adirectory, thedat a field isregarded as aset of <nane, f i d> pairswhere any
name can occur only once.

Because the intuitive view held by Unix users and programmersis that the <nane, f i d>
bindings are basically independent of each other, we model the directory content as afixed-size
array indexed by all the possible legal names (there are 2562%° of them). If anane is bound
toafi d inadirectory, the array element dat a[nanme] contains that fi d. For any other
unbound nane, dat a[nane] contains a specia value ni | . This directory model would
permit a partitioned pair of intuitively independent operations such as “nkdi r j oe/ f 00”
and “nkdir joe/bar”.

Eliminating Non-Critical Side Effects The standard UFS semantics require certain time
attributes such as access time and modification time to be maintained as a side effect of some
file system calls. Maintaining the strict read/write semantics for such time attributes would
severely limit the amount of legal partitioned activity admissible by the model. Because of the
low information content and limited importance of those attributes, we eliminate attributes such
as access timefrom transaction specification. Thent i e attributeisretained but it can only be
updated by theut i mes system call. Such minor semantic redefinition significantly improves
the usability of the model and the Coda experience indicates that the semantic changes have
very little impact in practice [26].

Exploiting Type-Specific Semantics The | i nkcount attribute represents the number of
directory bindings that refer to an object. Thel engt h attribute for a directory stands for the
cumulative length of all the names that are currently bound in the directory content. Both of
them are updated as side effects of operations such as| i nk and nkdi r . We cannot afford to

4The modification time stamp of the object.
5The access control list for directory object.

38 CHAPTER 3. DESIGN RATIONALE

maintain strict read/write semantics for these two attributes because it would forbid the above
pair of operations since they both need to update thetwo attributes. The solution to thisproblem
is to exploit the counter semantics of these attributes. Because the results of operations such
asl i nk and nkdi r are propagated by replaying the same operationsin another partition, the
value of the counters, i.e., | i nkcount and | engt h, are incremented and/or decremented
accordingly instead of being copied. Therefore, by expanding the transaction specification with
expliciti ncrenent - set and decr enent - set and employing counter semantics instead
of read/write semantics on the two sets, serializability can be maintained while still alowing
the above pair of operations.

The resulting transaction specification for al the basic file access operations after the above
three optimizationsis listed in Table 3.2. For an individua file access operation op, we use
the notation R(op) , W op) , | (op) and D op) to denoteits readset, writeset, increment-set
and decrement-set. Similarly, for an isolation-only transaction T, the notationsR(T) , W T) ,
I (T),D(T) refertothe same setsfor T. If the set of file access operations performed by T is
OPS(T) = {op1, Op2, -..., OP,.}, then the readset of T isjust the union of the readsets of all
the involved operations, i.e.,, R(T) = R(op1) U R(0p2) U ... UR(0op,). The definitions
forWT),I(T) andD(T) aresimilar.

Adopting Weak Consistency For Read-only Transactions The IOT consistency model
makes a special case for read-only transactions, or queries. Read-only transactions containing
multiple objects can affect the overall serializability for involved transactionsin asubtle way, as
explained in Figure 3.4. Previousresearch indicates that in many cases, it is preferableto alow
gueries to proceed rather than to restrict them merely to satisfy strict 1SR in al situations[17].
The IOT model allows read-only transactions to be weakly consistent, meaning that they each
see only a consistent state, i.e., the result of a 1SR execution of update transactions, but they
may not be 1SR with respect to each other.

In the context of a distributed file system, adopting weak consistency for queries is quite
an acceptable design tradeoff. It isasmall and controlled departure from the strict correctness
criterion. One-copy serializability is till enforced for all update transactions. On the other
hand, the availability gain is quite significant because queries are a large fraction of inferred
transactions in atypical file system environment [26].

3.3.7 Closing Remarks

Now that most of the features of the IOT computation model have been presented, we offer
further observations on several key aspects of the model. First, we identify the key character-
istics of file system state when 10Ts are used. Second, we examine the capability of the IOT
model in solving the data inconsistency problems caused by partitioned read/write conflicts.

3.3. ISOLATION-ONLY TRANSACTION MODEL 39

Partition 1 Partition 2
T1: read A T3: read B
wite A wite B
T2: read A T4: read A
read B read B

This execution is not 1SR because T2 requires an ordering where T1 precedes T3, and T4
requires one where T3 precedes T1.

Figure 3.4: Read-Only Transactions Violating One-Copy Serializability

Third, we analyze the rel ationship among different semantic models used in designing the IOT
consistency model.

Asymmetric System State In adistributed file system with disconnected operation but with-
out server replication, the entire system is divided into two kinds of partitions with distinct
consistency properties. Thefirst kind of partition consists of agroup of inter-connected servers
and clients and is called a first class partition. The serversin afirst class partition maintain
the home repository for a portion of the file system name space. The other kind of partition
consists of only one disconnected client and is called a second class partition. System failures
such as disconnection and node crash will break up afirst class partition into smaller first
class partitions and/or second class partitions. Recovery from those failureswill merge smaller
partitionsinto larger ones.

ThelOT model regardsthe portion of the system state maintained at any first class partition
to be of high quality and alwaysin a consistent state. Any second class partition containing dis-
connected computation results are considered of lesser quality. All disconnected computations
are regarded as tentative, being only locally consistent within themselves. Their validity with
respect to the state maintained on the corresponding servers is suspect. This asymmetric con-
sistency view of system state islargely independent of the IOT consistency model. Instead, itis
the combined result of the nature of disconnected operation and the OCC-based |OT execution
model, both of which make a strong distinction between the roles of aclient and a server.

We use the term global state to refer to the server state of the portion of the name space
maintained at a first class partition, and local state to refer to the portion of the name space
that is visible from a second class partition. Both the global and local states satisfy their own

40 CHAPTER 3. DESIGN RATIONALE

serializability-based consistency requirements. At any given moment, aglobal stateistheresult
of one-copy serializable execution of a set of transactions. A local state is the combination
of apreviousy 1SR consistent state (i.e., the global state that a disconnected client inherited
at the start of disconnection) and the result of a serializable execution of local disconnected
transactions.

IOT Model Capability The IOT consistency model itself constitutes a general purpose
computation model offering aflexible set of serializability-based isolation guarantees, whether
it isenforced pessimistically under a connected environment or optimistically for disconnected
operation. Itisadequate to ensure the consistency of alarge variety of Unix applications under
common circumstances. We analyze the capability of the IOT consistency model with GC as
the consistency validation criterion from two different angles.

First, we compare the IOT consistency model against the general purpose 1SR consistency
model. The capability of IOT and 1SR can be assessed by comparing the set of transaction
execution histories admissible by either model, denoted as H ;o and H,sr respectively. Obvi-
ously, based on pure syntactic recognition power, H o isonly asubset of H;sr because some
one-copy serializable histories are not recognizable by the IOT consistency model for two main
reasons. First, the GC consistency criterion will reject many partitioned transaction histories
that are 1SR. Second, the OCC-based execution model also renderssomelegal historiesin Hisr
impossible to realize because partial transaction execution results are not visible to transactions
executing on other clients. However, the A SR resolution option allows application semanticsto
enlarge the set of legal histories for the IOT model, making it possible for the IOT consistency
model to admit even more historiesthan H1sx.

Second, we evauate the capability of the IOT consistency model from the viewpoint of
maintaining compatibility with the standard UFS semantics, i.e., the ability to detect inconsis-
tencies for applications relying on standard UFS semantics instead of general seriaizability to
operate correctly. Thanks to the restrictiveness of the GC criterion, the model is capable of
detecting all instances of stale read when the read operation is performed on a disconnected
client. Generally speaking, the IOT model is capable of detecting half of all the possible
non-1UE behaviors caused by disconnected operation where the stale read is performed on a
disconnected client. Itisnot capable of detecting inconsistencies resulting from stale reads that
are performed on connected clients because the asymmetric consistency maintenance model
always allows connected computations to commit immediately. Overall, the IOT consistency
model meets our goal of safeguarding the integrity of mobile file access using disconnected
operation.

Relationship Among SemanticModels At center of thelOT consistency model designisthe
selection of an aternative semantic model that can be used to bridge the semantic gap between

3.3. ISOLATION-ONLY TRANSACTION MODEL 41

standard UFS and weak UFS. Such a model serves as the criteriafor validating disconnected
computation results by requiring certain properties to be satisfied by partitioned file access
operations. The explicit transaction extension of 1OT provides the underlying file system with
information about file access groups bracketed by transaction boundaries. This provides the
opportunity to impose a variety of serializability-based requirements on partitioned transaction
executions. Both the GC and G1SR semantic models used by |OT are capable of addressing
the consistency needs of mobile file access under various system and usage environments.
Enforcing the GC or G1SR requirements when partitions are healed enables the system to
detect situations where standard UFS semanticsis violated and data becomes inconsi stent.

Semantic Standard Weak
UFS

Modets 0 3 . GIC 61ISR UFIS Relaxation of

Example : ~ UFS Semantics

bounded _ .| unbounded __
relaxation relaxation

The concept of bounded and unbounded relaxation of standard UFSis previously discussed on page
10.

Figure 3.5: Relationship Among Semantic Models

Figure 3.5 depicts a spectrum of semantic relaxations of standard UFS. Above the gray
arrowed line are various semantic models representing different degrees of relaxation. The
further to the right, the bigger the semantic gap. Note that it is quite possible to relax standard
UFSeven further than weak UFS (e.g., optimistic replication without detection of update/update
conflicts). To formally discuss the relationship among these semantic models, we define a
stronger than relation between two semantic models 57 and S,. S; is stronger than S, (or 5>
is weaker than 57) if any admissible computation in 5 is aso admissible in S,. Obviously,
both GC and G1SR are stronger than weak UFS because they put additional constraints on
partitioned file access operations. GC is stronger than G1SR because any transaction that
satisfies GC also satisfies G1SR. However, both GC and G1SR are weaker than standard UFS
because any violation of GC or G1SR involves at least one stale read (or diverging write),
which also violates standard UFS. In addition, GC and G1SR are only an approximation of
standard UFS because there are situations such as stale reads performed on a connected client

42 CHAPTER 3. DESIGN RATIONALE

that are admissible by GC and G1SR but are not admissible by standard UFS.

Below the gray arrowed line in Figure 3.5 are examples of actual distributed file systems
that implement the corresponding semantic models above the line. For example, standard UFS
and weak UFS are readlized by Sprite and Coda respectively; GC and G1SR are supported
by 10T-Coda (Coda with 10T extension); both AFS and NFS represent different instances of
bounded relaxation of standard UFS. Note that the semantic gap between standard UFSand GC
(or G1SR) is unbounded because applications are not capable of obtaining the standard UFS
semantics by using the |OT-extended UFS API.

Chapter 4

Detailed Design: Consistency Enforcement

This isthe first of the five consecutive chapters devoted to the detailed design and implemen-
tation of an 10T extension to the Coda file system. The central theme of chapters 4, 5 and 6
is how to readlize the IOT model in Coda, which consists of two main parts. The first part is
enforcing transaction isolation within a partition, i.e., 1SR for connected transactions within
afirst class partition and LSR for disconnected transactions within a second class partition.
The second part is ensuring global transaction isolation when propagating transactions from a
reconnected client to the corresponding servers.

The first section of this chapter discusses the concurrency control issues in guaranteeing
1SR for connected transactions. In addition to discussing enforcing LSR for disconnected
transactions, the second section also describes how to maintain a local transaction history on
a disconnected client in preparation for the future consistency validation and transaction com-
mitment/resolution. Finally, the third section presents an incremental transaction propagation
scheme that propagates (i.e., validates, commits or resolves) transactions one at a time on a
reconnected client.

In the rest of this document, all the discussed design and implementation issues are newly
introduced in the Coda file system to support the IOT extension. Some of the mechanisms
necessary for supporting 10T take advantage of existing facilities in the origina Coda file
system. They will be explicitly pointed out to make a distinction between what has originally
been done in Coda and what is the new extension to support |OT.

43

a4 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT
4.1 Concurrency Control for Connected Transactions

This section concentrates on realizing the first part of the |OT consistency model, guaranteeing
1SR for connected transactions. In a connected environment, the weak UFS semantics imple-
mented in the Coda file system delivers the same semantic guarantees as the standard UFS.
Therefore, enforcing 1SR for connected transactions as required by the IOT consistency model
becomes an issue of concurrency control. We first analyze the design alternatives and then
present the detailed design of our choice, the OCC model.

4.1.1 Design Alternatives

A wide range of concurrency control techniques have been developed for enforcing 1SR
among concurrent transactions. However, not al of them are legitimate design candidates
because the OCC-based IOT execution model described in Chapter 3 precludes the possibility
of transactions executed on different clients reading each other’s partial results.

Lock Based Approach The most commonly used concurrency control method is using locks
to coordinate accesses on shared objectsamong concurrent transactions. Astherepresentativeof
this approach, two phase locking (2PL) and its variations can be found in plenty of commercial
database systems. Although it is possible to employ distributed locking to ensure 1SR for
connected transaction execution in Coda, there are many disadvantages. Among other things,
managing distributed locks in a large scale system with unpredictable disconnections is very
difficult and costly. In addition, standard locking protocols such as 2PL are not suitable for
IOT implementation because they are known to be susceptible to poor performance for long
running transactions [4, 2] and Unix applications such as mak e often access alarge number of
objects and last along time.

Time Stamp Based Method Another major class of concurrency control algorithms asso-
ciates each transaction with a unique time stamp, and attaches time stamp information to
every object accessed by ongoing transactions. Serializability is achieved by enforcing time
stamp order for all conflicting file access operations issued by concurrent transactions [5]. Its
main disadvantage is that the time stamp information attached to objects must be immediately
updated on the serversfor every file access operation to globally synchronize concurrent trans-
actions. Thiswill greatly increase the client/server communication traffic and negate much of
the performance benefit of client caching. In addition, maintaining time stamp information* on
each object also incurs significant server space cost.

1The content of such information depends on the specific concurrency control algorithm and typically includes
the time stamps of the latest transactionsthat have read and written the object.

4.1. CONCURRENCY CONTROL FOR CONNECTED TRANSACTIONS 45

Optimistic Concurrency Control Our choice of the concurrency control method for con-
nected transaction execution is the OCC model [33]. It is a natural fit because the 10T
execution model isbased on OCC. In OCC, transaction execution is performed within aprivate
workspace. At the end of the execution, a transaction is validated against the public space to
see if its private execution result can be serialized with previously committed transactions. |If
so, the transaction’s private result is committed to the public space. Otherwise, it is thrown
away and the transaction is automatically re-executed.

There are several advantages for using OCC as the IOT concurrency control algorithm in
a connected environment. First, previous studies indicate that OCC offers strong performance
in systems such as Coda where the likelihood of data contention is very low [71, 6, 75].
Second, it can be implemented highly efficiently in Coda by simply recording and comparing
the object version information already maintained [61], thusincurring almost no extraresource
cost. Third, it fits well with Coda's highly scalable architecture because the essence of OCC
in Coda is trading client transaction re-execution for the global communication needed for
synchronizing concurrent accesses on shared objects. 1n alarge scale distributed file system,
client computation time isamuch less critical resource than global communication bandwidth.

4.1.2 Realizing OCC in Coda

Although conceptually simple, OCC has not been used in practical systems for concurrency
control so far. The actua realization of OCC in Coda needs to address a number of important
iSsues.

41.2.1 OCC Validation

The IOT execution model uses the client disk cache as the private workspace for transaction
execution. The public space reflecting all the committed transactions is maintained on the cor-
responding servers. All file access operations issued by a connected transaction are performed
locally. The main task of OCC validation isto check whether any of the data itemsthat are ac-
cessed by the transaction have been updated on the servers during the execution. Because OCC
validation islogically identical to the GC validation for disconnected transactions, it sharesthe
same basic mechanisms used by the GC validation, which will be discussed in Section 4.3.4.

4.1.2.2 Committing Transaction Result

As required by OCC, the execution result of a connected transaction must be held within the
client cache until it is successfully validated and then committed to the corresponding servers.
The specific mechanisms used in performing transaction commitment are based on the client

46 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

mutation logging and reintegration mechanisms of the existing Coda file system. The next
two paragraphs describe these mechanisms. We then explain how they are extended to support
committing the result of a connected transaction to the servers.

Client Mutation Log (CML) During disconnected operation, Venus maintains a separate
client mutation log (CML) in persistent storage for each volume for which it has cached
objects. A CML record is constructed and appended to the appropriatelog whenever amutation
operationisperformedlocally. Each CML record contains sufficient information about alocally
performed mutation operation so that it can later be replayed on the corresponding server. The
only exception is the st or e operation whose CML record does not include the actual data
content of the operation. Instead, it is supplied by the cache copy of the corresponding file.

Client Mutation Reintegration Logged client mutationsare propagated to the corresponding
serversonavolumeby volumebasisthrough Coda’ sreintegration mechanism. Inthefirst phase,
Venus packs the CML records of a volume into a buffer and transmitsit to the corresponding
server. During the second phase, the server locks the relevant volume, checks that none of
the received mutation operations are in conflict with involved server replicas, and replays all
the mutation operations in order. For ast or e operation on object obj , the server needs to
back-fetch the cache copy of obj from the client because the data content is not included in
the CML record. Inthefinal phase, the server sends back the reintegration outcome and Venus
accordingly updates the cache status of all involved objects. Note that the entire reintegration
process is atomic, either al or none of the mutationsin the CML are reintegrated.

Transaction Mutation Log (TML) We now describe how to extend the existing volume
based CML tolog mutationsfor connected transaction execution. Conceptually, all themutation
operations performed by a connected transaction T are recorded in its transaction mutation log
denoted TML(T) . The physical organization of TM.(T) utilizes the underlying CML data
structures. To deal with the possibility of concurrent transactions mutating objects in the same
volume, a new field is added to the basic CML record format to store the identifier of the
transaction that issued the mutation operation. Every time a mutation operation is locally
performed by transaction T, a new record containing t i d(T) 2 is created and appended to the
corresponding CML. As shown in Figure4.1, the recordsof TML(T) may be scattered around
different CMLs because T can update objects in multiple volumes.

Transaction Reintegration Logged mutationsin TML(T) of aconnected transaction T are
committed to the servers by utilizing a generalized reintegration mechanism called the basic

2We use the notationt i d(T) to refer the transaction-id of T.

4.1. CONCURRENCY CONTROL FOR CONNECTED TRANSACTIONS a7

reintegration process. Instead of taking the entire CML, the basic reintegration process takes
as an input argument an already-packed mutation log composed of records from a subsequence
of a CML and performs the second and third phases of the original reintegration mechanism.
The transaction reintegration process commitsthe result of T by extracting its records from the
relevant CMLs and applying the basic reintegration process for every volume T has updated.
Thisisillustrated by the pseudo code in Figure 4.2.

CBi-+m+-+m*-*m+-

CML-2 -
[— — ——
Volume-2
TD -0
—— —|
Volume-3

- Transaction-1 Log Record Transaction-2 Log Record

Figure 4.1: Transaction Mutation Log Organization

During the transaction reintegration process, failure atomicity is only guaranteed at the
granularity of single-volumereintegration. To ensurefull atomicity for transaction commitment
as required by the IOT model, a distributed protocol such as two phase commitment (2PC) is
needed [19, 5, 20]. The current IOT implementation has not included full failure atomicity
for transaction commitment mainly because it is not necessary in practice most of the time.
Volumes contain logically related objects and it is unlikely that an individual transaction will
update objects in multiple volumes. In our limited experience of executing common software
development and document processing tasks as transactions, we have yet to find one that
mutates objects in more than one volume. Because 2PC is a mature technique in transaction
processing, it will be straightforward to extend the current transaction commitment mechanism
to include full 2PC support in arefined IOT implementation in the future.

48 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

Transaction-Reintegration(T) {
foreach (volunme V updated by transaction T) {
extract TM(T) records fromthe CM. of V,
pack the records into nlog;
apply the basic reintegration process on nlog;
if (reintegration failed) break;

Figure 4.2: The Transaction Reintegration Process

4.1.2.3 Automatic Abortion and Re-execution

When a transaction T fails validation, OCC requires its local result to be aborted and the
transaction to be automatically re-executed. Aborting the local transaction result can be
accomplished by throwing away all the TML(T) records and invalidating the cache copies
of all the mutated objects so that they can be re-fetched from the servers during transaction
re-execution. Since automatic transaction re-execution is a'so employed by the IOT model as
one of the basic conflict resolution options, we defer detailed discussions until Chapter 6.

One problem caused by the automatic OCC re-execution isthe visibility of repeated trans-
action side effects. Many Unix applications include externa side effects such as displaying
messages on terminals and they will re-appear during the OCC re-execution and confuse users.
As Pausch has shown [54], including external effectsin the transactional model isavery diffi-
cult problemwith no easy solutions. The current IOT implementation alertsthe user by printing
out awarning message“... isbeing re-executed because of data contention” immediately before
the OCC re-execution takes place.

4.1.2.4 Local Concurrency Control

The OCC validation only takes care of concurrency control among transactions executed
on different clients. We need a second level concurrency control mechanism because the
client cache is not a true private workspace for transaction execution. Concurrent connected
transactions executed on the same client can access shared objects in the same client cache.
They must be synchronized so that the same physical client cache can serve as alogical private
workspace for each of them.

4.1. CONCURRENCY CONTROL FOR CONNECTED TRANSACTIONS 49

We decided to employ the strict two phase locking protocol for local concurrency con-
trol. The main reason for selecting strict 2PL is its simplicity and a proven record of being
able to deliver reasonable performance when data sharing among concurrent transactions is
infrequent [2]. Because Coda clients are typically operated by a single user, the likelihood
of executing concurrent transactions involving heavy read/write sharing is low. Under such
an environment, implementation simplicity makes 2PL the most suitable choice as the local
concurrency control algorithm.

4.1.25 Deadlock and Livelock

Deadlock Detection Inloca concurrency control, it is possible for a group of transactions
executing on the same client to deadl ock because of the 2PL protocol. Thetraditional techniques
for deadlock prevention are not applicable because we have no control over the order of
file access operations issued by a transaction. We therefore employ the standard deadlock
detection technique of maintaining a wait-for graph, denoted WFG. Every running transaction
T corresponds to a hode in WFG denoted wr. When atransaction T needs to wait for another
transaction T' due to 2PL, an edge from w+ t0 wy isinserted into WFG. Deadlock detection
is performed by a periodic daemon checking for cycles in WFG. If WFG becomes cyclic, it
means that the corresponding transactions on the cycles are deadlocked. When that happens,
the transaction system will print out messages notifying the users that this group of transactions
are deadlocked and some of them must be killed in order to make progress. Note that the user
must explicitly kill transactions. The transaction system does not do this automatically.

Livelock Prevention On the other hand, cross-client OCC concurrency control can suffer
from the livelock problem. When thereis heavy data contention, it is possible for atransaction
to follow an endless cycle of “execution — invalidation — abortion — re-execution”. In
other words, a transaction can suffer from starvation and never be able to commit its result
because there are endless conflicting transactions executing on other client machines. Because
the likelihood of livelock is extremely low in our target environment, our approach is to detect
this situation and notify the users. We do this by attaching a re-execution counter to each
ongoing transaction. When the counter exceeds a certain threshold, we force termination of the
transaction and inform the users that there is too much data contention and that this transaction
should betried at alater time.

4126 Summary

A significant portion of the 10T consistency model, the guarantee of 1SR for connected
transactions, isrealized using a combination of inter-client OCC and intra-client 2PL. The key

50 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

insight is the recognition that OCC fits well with Coda's client/server architecture and target
usage environment to deliver high performance and scalability, and that the client disk cache
can serve as the transaction processing workspace as required by OCC. The implementation
of OCC in Coda relies on extending Coda’s existing client mutation logging and reintegration
mechanisms for performing local transaction execution and committing transaction results to
the servers.

4.2 Maintaining the Local State of A Disconnected Client

The transaction system running on a disconnected client has two major responsibilities. First,
it needs to fulfil the IOT consistency model’s local consistency requirement of enforcing LSR
for disconnected transactions executed on the same client. Second, it must maintain a local
history of disconnected transactions and manage disconnected mutations in preparation for
future transaction propagation (i.e., validation followed by commitment/resolution). The latter
is critical to realizing the central focus of the IOT consistency model, guaranteeing global
transaction isolation when propagating disconnected transactions from a reconnected client to
the servers. This section focuses on four key issues:

e maintaining local consistency (1SR for disconnected transactions)
¢ recording disconnected transaction history information
e managing disconnected mutations to support transaction propagation

e cancelling redundant disconnected transactions to reduce resource cost

4.2.1 Maintaining Local Consistency

The 10T consistency model ensures the consistency of the local state of a disconnected client
by requiring disconnected transactions to satisfy local serializability. At any moment during a
disconnected operation session, theresult of all the disconnected transactionsmust be equival ent
to a serial execution of the same set of transactions. Thus, the issue of local consistency
mai ntenance becomes a matter of concurrency control among disconnected transactions. Since
alocal concurrency control mechanism using 2PL isalready employed for connected transaction
execution, we reuse the same mechanism for disconnected transaction execution based on the
same design rationale. Similarly, deadlock among concurrent disconnected transactions is
detected by maintaining the WFG and periodically checking for cycles.

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 51
4.2.2 Recording Transaction History

A critical step in transaction propagation is consistency validation, which requires the transac-
tion system running on a disconnected client to record history information about disconnected
transaction executions. We use the following two persistent data structures.

Transaction Table A client-wide table is used to keep track of al live transactions, i.e.,
transactions that are not yet committed or resolved. Conceptually, each table entry stores the
internal representation of a transaction, recording the transaction readset and writeset anong
other things. Each element of the readset or writeset corresponds to a Coda object that is read
or written by the transaction respectively. It contains the necessary information needed by
transaction validation such asthe internal identifier of the object (f i d) and adescription about
the sub-parts of the object that are actually accessed by the transaction. Because the IOT model
uses weak consistency for read-only transactions, the table entries for read-only transactions
are immediately discarded after their execution is completed.

Note that we do not record the transaction increment-set and decrement-set because their
main purpose in transaction specification is to propagate updates on the counter attributes and
they do not affect the outcome of transaction validation based on readset and writeset. 1n addi-
tion, transactions are committed to the servers via the reintegration mechanism which replays
disconnected mutations on the servers and includes the effect of incrementing/decrementing
counter attributes.

Serialization Graph An important part of local transaction history is the inter-dependency
among livetransactions. Itisrecorded by adatastructurecalled the serialization graph, denoted
SG, where each node corresponds to a transaction (either IOT or IFT). For transactions T and
T , weuse ny and ny to denote their corresponding nodes in SG. There is an edge from node
nr tong, denoted ny—ny, if and only if transactions T and T' performedapair of conflicting
operationsand T did its operation before T’ . This means that transaction T must be serialized
before transaction T’ . Because of the 2PL local concurrency control, SGis guaranteed to be
acyclic and defines a partial order among all disconnected transactions. A total order can be
obtained by atopological sort on the nodes of SG.

To avoid the performance overhead of checking every file access operation, we adopt the
following strategy for SG maintenance. A new node is created and inserted into SG each time
a transaction starts execution. Some SG edges are constructed as a by-product of the 2PL
concurrency control. For example, when atransaction T needs to wait for another transaction
T , we can safely add an edge n—nr to SG. Other edges for the node n; are created at the
conclusion of T's execution. All we have to do is to check all the pending transactions. If a
pending transaction T performed an operation that conflicts with T, then an edge n—nr is

52 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

inserted into SG. The node nr is removed from SG and discarded as soon as transaction T is
committed or resolved.

4.2.3 Managing Disconnected M utations

During transaction propagation, a successful consistency validation means the result of a
disconnected transaction can be committed to the servers as is. This requires the transaction
system running a disconnected client to carefully manage disconnected mutations so that the
transaction result can be written to the servers using the transaction reintegration infrastructure
discussed earlier. Two key data structures needed for this task are the transaction mutation log
and the shadow cachefile.

4.2.3.1 Transaction Mutation Log

As in connected transaction execution, all the mutations performed by a disconnected transac-
tion T are recorded in its transaction mutation log TM_(T) . In addition, transaction mutation
logs are organized using the same underlying CML data structures and maintained in asimilar
manner. Every timeadisconnected mutation operationisperformedlocally, alog recordfor that
operation is created and appended to the CML of the corresponding volume. The transaction-id
field of the new record stores the identifier of the transaction (whether it isan 1OT or an IFT)
that issued the mutation operation. However, there is a major difference between mutation
logging for connected transactions and disconnected transactions. For a connected transaction,
all its logged mutations are prevented from being overwritten by other transactions because
of the local 2PL. But, the same cannot be said for disconnected transactions. This difference
requires the use of shadow cache files for reasons explained below.

4.2.3.2 Shadow CacheFile

The Need to Supplement TML The main reason for supplementing the TML is the trans-
action system’s need to represent the complete mutation results of individual disconnected
transactions so that they can be independently committed to the servers. For a st or e op-
eration performed on a file object obj by transaction T, its data content is not recorded in
TM_(T) but instead provided by the cache copy of obj denoted cache(obj). Thus, itis
the combination of TML(T) and cache(obj) for every obj stored by T that represents T's
complete mutation effect. TML(T) is adequate when T is a connected transaction because the
local 2PL prevents obj from being overwritten until T is committed. However, if Tisadis
connected transaction, itis possible for obj to beoverwritten by alater transaction T' . Insuch
a situation, cache(obj) no longer holds the value written by T. Therefore, the transaction

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 53

system must use an additional mechanism to record the value that T wrote on obj so that the
complete mutation effect of T is till retained.

Compensate TML With Shadow CacheFile Our strategy isto maintain shadow copies for
the overwritten cachefiles. If afileobject obj isupdated by apendingtransaction T andisabout
to be overwritten by another transaction T’ , the transaction system will automatically create
a shadow copy for cache(obj) . We use the notation shd(T, obj) to refer to the shadow
cache filethat containsthe data content of obj that waswritten by transaction T. Because T can
have more than one overwrittenfile, weuseshdset (T) to denotethe complete set of shadow
cache files for transaction T. The data content of any st or e operation on a file object obj
performed by T is guaranteed to be preserved by either a shadow cachefileinshdset (T) or
the current cache(obj) .

With the aid of shdset (T), the previously introduced transaction reintegration process
can be applied to commit the local result of transaction T with slight modifications on the
Venus side as described by the pseudo code in the Figure 4.3. The temporary switch of
cache file bindings is necessary for the servers to back-fetch the correct data content during
reintegration for those locally overwritten st or e operations performed by T. An internal
Venus volume locking mechanism is employed to prevent the temporary binding between obj
and shd(T, obj) from being inappropriately exposed to the users and applications.

Other Uses of Shadow Cache Files The use of shadow cache files goes beyond supporting
independent reintegration of individual transactions. During conflict resolution for an inval-
idated transaction T, the IOT system must preserve sufficient information about T's original
execution so that the resolver can investigate what has been performed by T locally. Aswill be
explained in detail in Chapter 5, the IOT conflict representation provides a snapshot original
view for all the objects accessed by T. For any file object obj accessed by T, thisview presents
the data content of obj when it was last read or written by T. Even if obj isonly read by
T, we still need to make a shadow copy of cache(obj) beforeit is updated to preserve the
data content that T originally read. In general, for any file object obj accessed by at least one
pending transaction, a shadow copy of cache(obj) needsto be created whenever it is about
to be updated.

Shadow Cache File Maintenance Because the same shadow cache file can be shared by
multiple disconnected transactions, the management of shadow cache files requires the trans-
action system to maintain apool of shadow entries, an internal representation of shadow cache
files. Each shadow entry contains two components. a pointer to the inode of the disk container
file that physicaly holds the shadow content and a counter that records the number of live
transactions that have accessed the shadow content.

94 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

Every time a cached file object obj isopened for update (write, append or truncate) while
disconnected, the transaction system must check to see if any pending transaction has accessed
the current contents of obj . If there are K pending transactions that have accessed the current
cache(obj), anew shadow entry for obj denoted se(obj) is created and its counter is
initialized to K. The transaction system will allocate disk space, create a new container file F,
copy cache(obj) into F, and set the file pointer of se(obj) to point to F. Finally, each of
the K pending transactions must extend its shdset to include the newly created se(obj) .
Whenever apending transaction T is committed or resolved, the transaction system will iterate
through every shadow entry inshdset (T) and decrement its counter. When the counter of a
shadow entry reaches zero, the shadow entry is discarded after the corresponding disk container
file isremoved to reclaim the disk space.

New Tr ansacti on- Rei ntegration(T) {
foreach (volunme V updated by transaction T) {
extract TM(T) records fromthe CM. of V,
pack the records into nlog;
| ock volune V;
foreach (overwitten "store obj" in mog) {
preserve cache(obj);
bind obj to shd(T, obj)eshdset(T);

h

apply the basic reintegration process on nlog;

foreach (overwitten "store obj" in mog) {
re-bind obj to preserved cache(obj);

h

unl ock vol une V;
if (reintegration failed) break;

Figure4.3: The New Transaction Reintegration Process

A challenging problem in shadow cache file maintenanceis client disk space management.
Maintaining shadow copies for large files that are repeatedly overwritten during disconnected
operation could cost a substantial amount of local disk space. Our disk space alocation policy

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT 55

adopts two basic strategies. First, shadow cache files are maintained on the best-effort basis,
i.e., shadow copies are created only when sufficient disk space is available for supporting
normal disconnected activities. When the transaction system runs out of shadow space, the
reintegration or resolution process for the affected transactions will be performed differently.
The specific details are presented in the relevant discussions later in this chapter and the next
two chapters. Second, we allow the usersto dynamically adjust the limit on the amount of disk
space that can be allocated for shadowing cache files. Fortunately, the typical shadow space
usage for normal disconnected operation is small even when the disconnection lasts for along
time, as will be shown by the evaluation results in Chapter 9. The impact of the best-effort
shadow space all ocation policy on other aspects of the transaction system will be analyzed when
appropriate in rest of the document. The implementation details of shadow space management
are presented in Chapter 8.

4.2.4 Cancelling Disconnected Transactions

M aintai ning disconnected transactions costs client local resourcesin two main areas: persistent
memory space for recording transaction history and disk spacefor storing shadow cachefiles. To
support long-lasting disconnected operation sessions involving alarge number of disconnected
transactions, it is necessary for the transaction system to reduce such client resource costs. Our
strategy is to cancel those redundant transactions that no longer have any impact on the file
system state. Note that transaction cancellation is only an optimization in realizing the IOT
model in Coda, which does not change the overall 10T consistency model.

An important phenomenon in disconnected operation is that many file access operations
cancel the effect of previous ones. For example, in the typical “edit — compile — debug”
cycles during software development, a st or e operation often overwrites a previous one and
arenove operation is likely to offset an earlier cr eat e operation. This is exploited by
the non-10OT Venus (i.e, the Coda Venus without the IOT extension) to cancel unnecessary
records from the CML during disconnected operation, and it results in significant resource
savings [26]. The IOT implementation extends the same principle to a larger granularity to
cancel those pending transactions that no longer have any effect on local client state. Such
transaction cancellation has two important benefits. First, it frees up client resources such
as persistent storage space used by the transaction internal representation and the disk space
occupied by shadow cachefiles. Second, it reduces the amount of server/client communication
traffic as well as server computation time needed for transaction validation and commitment.
Evaluation results presented in Chapter 9 will show that these benefits are substantial.

Basic Mutation Cancellation Behaviors To understand how a pending transaction can be
cancelled, let us first consider two kinds of basic mutation cancellation behaviors. The first

56 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

kind of mutation cancellation is called overwriting which means that the effect of a mutation
operation is eliminated or made obsolete by a later mutation operation. For example, the
effect of “st or e f 00” can be overwritten by a later “st ore fo00” or “renove foo0”.
The second kind of mutation cancellation is called offsetting which means that the effect of a
pair of mutation operations offset each other so that their combined result produces no effect
a al, i.e, ano-op. For example, a“create fo0” can be offset by a later “r enpove
foo” anda“renane foo bar” can offset a previous “r enane bar foo”. The basic
principle behind mutation cancellation is that when the effect of a disconnected mutation
operation op; is eliminated by a later operation op,, there is no point of preserving op; in the
mutation log and propagating its effect viareintegration. This is because after op; is replayed
on the corresponding server during the reintegration, the subsequent replay of op, by the same
reintegration process will immediately nullify op,’s effect.

Transaction Cancellation Criteria Intuitively, cancelling a pending transaction must pre-
serve certain correctness conditions and we adopt the following three criteriato decide whether
a pending transaction can be cancelled or not.

e The first criterion requires that a pending transaction T must be obsolete before it can
be cancelled. T is an obsolete transaction if none of its effects are visible on the
client local state due to subsequent transactions. For example, a make transaction
compiling a filewor k. c, i.e, T,..e ={R(work.c), Wwork. o) }, can be made
obsolete by another make transaction performing the same compilation. As another
example, apair of transactions T..,....c = {creat e foo, create bar}andT, ...
= {renove foo, renove bar } areboth made obsolete by each other. In essence,
this criterion ensuresthat the cancellation of T does not affect the final outcome when all
the disconnected transactions are committed to the servers.

e The second criterion requires any cancellable transaction to be covered. It means that
the removal of atransaction T from the local transaction history will not affect the vali-
dation outcome of other disconnected transactions. Although an obsolete transaction T
does not leave behind any visible effects, it is still capable of influencing the validation
outcome of other pending transactions. Consider the following example. A transaction
T, = {R(work.c), R(work.h), Wwork. o)} compiled an object filewor k. o
that is later used by another transaction T, = {R(wor k. o), Wwor k) } to build
an executable file wor k. A third transaction T3 = {R(wor k. c), R(work. h),
W wor k. 0) } re-compiled wor k. o after some updates are made to wor k. ¢ and ren-
dered T, obsolete. However, cancelling transaction T; will remove the indirect depen-
dency between transaction T2 and fileswor k. ¢ andwor k. h fromthelocal transaction
history, thus possibly affecting the validation outcome of T,. If wor k. h is updated on
the servers, transaction T, will pass the GC validation and commit to the servers even

4.2. MAINTAINING THE LOCAL STATE OF A DISCONNECTED CLIENT S7

though its result indirectly depends on the old version of wor k. h. Preserving T in the
local transaction history is necessary to allow the transaction validation process to follow
the dependencies and appropriately invalidate T4, and thereafter T,.

e Even if atransaction T is both obsolete and covered, it does not necessarily mean that
we can cancel it. Suppose that T contains just one operation nkdi r hone/ f oo and
it is made obsolete by another transaction T' containing r ndi r hone/ f oo. Both
T and T" must be cancelled together because cancelling T alone will cause failure in
propagating T’ . Formally, when one of T's mutation operations off sets another belonging
to transaction T’ , we say that the two transactions have an offsetting relation between
them and the two must be cancelled together. Thisis because cancelling either of them
while leaving the other behind would result in a non-equivalent global state after the
remaining transactions are validated and committed to the servers. Therefore, the third
cancellation criterionfor T requiresthat all the transactionsthat have an offsetting relation
with T can be also cancelled together with T.

Note that it is quite possible that some of the cancelled transactions may have been inval-
idated if they had remained in the transaction history. For example, consider the following
two disconnected, offsetting transactions T, = {nkdir hone/foo} and T, = {rndir
home/ f 0oo}. Suppose that a new object hone/ f 0o has been created on the servers during
the disconnection. If T; and T, are not cancelled, they will be invalidated because of the
update/update conflict onhone/ f 00. Thus, transaction cancellation increases the chancesfor
the complete history of disconnected transactions to pass validation and commit their results
to the servers. Formally, if thelocal transaction history for a disconnected operation session is
H, and the set of cancelled transactionsis ", thenit is possible that (/7; — >°) can be validated
while H,; can not.

Checking the Cancellation Criteria The automatic checking of the first cancellation crite-
rion can beimplemented using Coda's original mechanism for cancelling inferred transactions.
For each non-transactional, disconnected mutation operation, Venus iterates through the entire
CML of the corresponding volume in reverse chronological order to search for and remove
any log record that is overwritten or offset by the new mutation. In the case of offsetting,
the new mutation operation itself will also be removed from the CML [26]. Similarly, for
every disconnected mutation operation opr performed by atransaction T, Venus searches the
corresponding CML and marks all the log records that are either overwritten or offset by opr,
including opy itself. If al the recordsin TML(T) are marked, it means that the result of T is
no longer visible on the client local state and Venus then marks T as obsol ete.

Validating the second cancellation criterion for a pending transaction T can be performed
by checking all the live transactions that read from T. We user ead- f r on(T) to denote the

58 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

set {T' | Theexecution of T' reads an object whose valueiswritten by T.}. T can be marked
as acovered transaction if every transaction T' €r ead-fr om(T) satisfies the condition that
R(T) isasuper-set of R(T) . Because the readset of atransaction is always a super-set of its
writeset, this is sufficient to guarantee that the removal of T from the local transaction history
will not affect the GC validation outcome of any other pending transactions.

The third criterion is more difficult to validate because it requires a group of transactions
to satisfy a certain relationship. A key observation is that the offsetting relation induces an
equivalence relation among all the disconnected transactions. Pending transactions belonging
to the same partition of the equivalence relation must be cancelled together when al of them
are marked as obsolete and covered. Thus, this problem can be solved by representing the
offsetting relation with a smple graph and identifying fully connected components. Although
detecting cancellable isolation-only transactions is a more complicated process than that of
inferred transactions, the benefits of transaction cancellation far outweighs the detection cost.

Intra-Transaction Optimization Typica transactions such as make usually perform a
lengthy computation accessing a large number of objects. Such long transactions often cre-
ate temporary objects and later remove them. The same cancellation mechanism used for
inferred transactions by Venus is applied within the scope of a single transaction to remove the
unnecessary records from the TML.

4.3 Merging Local State with Global State

This section discusses how to realize the central part of the IOT consistency model, ensuring
global transaction isolation during transaction propagation. Our discussion concentrates on the
actions performed by the transaction system when a disconnected client is able to re-establish
communicationwith relevant servers. Wefirst outlineageneral framework of synchronizing the
local client statewiththeglobal server state, establishing abroader perspectivefor thediscussion
of the transaction propagation process. We then describe how the results of disconnected
transactions are incrementally propagated to the servers, i.e., validated and committed or
resolved one at atime. Finally, detailsabout transaction validation and transaction commitment
are presented. Due to its complexity, the discussion of transaction resolution is deferred to the
next two chapters.

4.3.1 Synchronizing Local and Global States

During disconnected operation, both the local state of a disconnected client and the global
state of the servers evolve aong their own courses, departing from the shared initial state at

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 59

disconnection time. Upon re-connection, the disconnected computation results on the client
need to be validated and propagated to the corresponding servers. In addition, cached objects
need to reflect new server updates. Such synchronization between the local and the global
states demands a change in the basic Venus operation states.

Hoarding

local and global state
fully synchronized

disconnection

disconnection

Emulating) ‘(Synchronizing

reconnection

Figure4.4: The IOT-Venus States and Their Transitions

In the original Venus, propagating disconnected mutations is carried out during the rein-
tegrating state as illustrated in Figure 3.1. It is a transient state because reintegration can
be performed in a short period of time and Venus immediately transits to the hoarding state
even if the reintegration fails [26]. In the I0T-Venus (the Venus with the IOT extension), the
process of propagating disconnected computation results can last arbitrarily long. Transactions
may be invalidated and conflict resolutions can take an unlimited amount of time because the
transaction system has no control over how long manual repair will last. In short, there can
often be a sustained period during which thelocal state of aphysically connected client remains
asynchronous(i.e., unsynchronized) with the global state.

Asaresult, Venus may not be able to transit from the emulating state into the hoarding state
by passing through a short transitional state. As shown in Figure 4.4, the original reintegrating
state is replaced by a synchronizing state. A client isin the synchronizing state if it possesses
physical connectionsto the relevant serversbut containstransactionsthat are still inthe pending

60 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

state. Inthisstate, new computations can be performed but will be checked to seeif they depend
on any currently pending transactions. If so, they will become new pending transactions and
wait to be propagated to the servers. Otherwise, the new resultswill be committed to the servers
immediately. The fundamental difference between the original Venus's reintegrating state and
the new synchronizing state needed for supporting 10T is that the former is a short-lived
transient state while the latter can be sustained for along period of time.

4.3.2 From Serversto Client: Cache Validation

Cache validation is the process by which a re-connected client synchronizes itself with server
state. During disconnected operation, Venus marks the cache coherence status(CCS) of al
cached objectsto be suspect. Uponre-connection, the cache validation mechanismwill compare
the local and global versions of every cached object with suspect CCS. If the two versions are
identical, the object’s CCS will be reset as valid again. Otherwise, it is marked asinvalid so
that a subsequent access to the object will cause Venus to re-fetch the new global version from
the corresponding server. The actual cache validation process is carried out as a side effect of
demand fetching or viaaperiodic daemon, whichever comesfirst. Logically, cached objectscan
be regarded as immediately re-synchronized with the global state upon re-connection, except
for those accessed by transactions that are yet to be committed or resolved. Note that the CCS
of objects accessed by live transactions is temporarily marked as valid to prevent their server
copy from being fetched until the relevant transactions are committed or resolved. Note that
the cache validation process described in this paragraph is aready supported in the existing
Coda Venus. No changes in cache validation are needed for supporting 10T.

4.3.3 From Client to Servers. An Incremental Propagation Approach

The other direction of client/server state synchronization is merging disconnected computation
results with the servers. We decided to employ an incremental approach where disconnected
transactions are validated, committed or resolved one at a time. Note that the incremental
transaction propagation mechanisms to be discussed shortly do not exist in the original Coda
system. They are specifically introduced in Coda for the purpose of supporting 10T.

Rationale The key reason behind the incremental propagation approach is the overriding
concern of practical usability. For many Unix users and application programmers, the concept
of atransaction service providing serializability-based isolation guarantees is new. Requiring
them to deal with the potential conflicts by either programming resolversor manually repairing
invalidated transactions is even more demanding. Reducing conceptual complexity, minimiz-
ing the scope of conflicts, and cutting down the exposure of transaction operation details is

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 61

of paramount importance. The incremental approach emphasizes simplicity by localizing the
scope of potential inconsistency and exposing conflicts to the resolver one invalidated transac-
tion at atime. This allows the resolver to concentrate on what the transaction has done locally
and what has been changed on the global state during disconnection, without worrying about
possible interference from other transactions. Although propagating disconnected transactions
in groups could lead to reduced performance cost, on balance the incremental strategy better
serves our key design objectives.

servers client

. propagation channel

R1...... Ri-1 T
receive Ri validate Ti
replay Ri prepare Ri
commit Ri transmit Ri
receiver sender

Figure 4.5: AnIncremental Transaction Propagation Framework

Intuitive Description A better way to describe the incremental propagation process is to
imagine that thereis alogical channel through which local computation results are transmitted
from the client to the servers, as show in Figure 4.5. There is a sender at the entrance of the
channel to ensure that only consistent results are allowed to go through the channel. At the
server end, areceiver fetches the propagated results from the channel and atomically installs
them. Suppose that the local transaction history contains » transactions: Ty, To,, T,,. The
sender repeatedly grabs the transaction at the head of the list, say T;, validates its consistency
and preparesR;, the representation of the final outcome of T, that isactually transmitted through
the channel. If the validation succeeds, R; isjust the mutationlog of T,. Otherwise, the sender
will force a resolution for T, and R; is the sequence of logged mutations representing the
resolution outcome. When the receiver obtains R;, it replays the mutation operationsin the log

62 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

on the corresponding servers. After all the replay results are atomically committed, it notifies
the sender to propagate the next transaction T, ;.

Propagation Algorithm Venus dedicates a specia thread called the propagator to carry out
the mission of incremental transaction propagation. The propagator is awakened every time
the client regains a lost connection to a server. The pseudo code in Figure 4.6 describes the
algorithm of incrementally validating, committing or resolving disconnected transactions.

Two steps in the above agorithm need further explanation. First, the step that invokes
the automatic resolver is not limited to application-specific resolvers. It includes automatic
transaction re-execution and automatic abort as special caseswhen theresolver isthetransaction
itself or a no- op respectively. Second, the successful resolution of T[i] often requires
adjusting the state of those transactions that read fromit. For example, suppose that transaction
T[j] (j >i) readsthevaluethat T[i] wrote on an object obj , and the resolution of T[i]
produces a new server replica of obj that is different from what it wrote during the original
execution. Clearly transaction T[j] needsto beinvalidated because it has accessed an object
value that no longer existsin thefile system. Specifically, the propagator thread needsto iterate
through each object obj that T[i] updated and for which T[i] ’s resolution created a new
server replica. Any pending transaction that read thevalue T[i | wroteonobj isimmediately
invalidated.

Transaction Group One important issue that is not included in the algorithm is that the
incremental approach cannot be strictly followed when some of the transactionsare not equipped
with their complete set of shadow cache files due to client disk space shortage. Suppose that
a pending transaction T updated a file object obj during its execution. However, obj is
overwritten by another transaction T' and shdset (T) does not include a shadow cache
file for obj . We call T an incomplete transaction and T’ the overwriter of T. Under such
circumstances, propagating T aloneis semantically incorrect because obj will reflect the result
of T" instead of T.

Our solution to this problem is to group an incomplete transaction T with its overwriter(s)
into a result propagation unit denoted RPU(T) . Because the overwriting relation among
disconnected transactions is transitive, atransaction T' is a member of RPU(T) if it satisfies
one of the following conditions:

1. T isT itself.

2. T" overwrote T on afileobject obj and shdset (T) does not include a shadow cache
filefor obj .

3. There exits another transaction T" eRPU(T) suchthat T" overwrote T" on afile object
obj’ andshdset (T") does not include a shadow cache filefor obj ’ .

4.3. MERGING LOCAL STATE WITH GLOBAL STATE

63

Start:
NeedRepeat = fal se;
perform topol ogical sort on the serialization graph SG
put all live transactions in sorted order T[1..n];
foreach (i in 1..n) {
if (T[i] has no predecessor in SG and is fully connected) {
validate T[i];
if (validation succeeds) {
conmit T[i];
if (comm tment succeeds) {
transit T[i] into commtted state;
renove T[i]’s correspondi ng node from SG
NeedRepeat = true;
} else {
transit T[i] into resolving state;
}

} else {
transit T[i] into resolving state;
}

if (T[i] is in resolving state and

can be automatically resolved) {

i nvoke automatic resolver;

if (automatic resolution succeeds) {
transit T[i] into resolved state;
adjust state for transactions that read from T[i];
renove T[i]’s correspondi ng node from SG
NeedRepeat = true;

} else {
T[i] stays in resolving state;
request manual repair;

}
}
if (NeedRepeat) goto Start;

Figure 4.6: An Algorithm for Incremental Transaction Propagation

64 CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

The following minor adjustment needs to be incorporated into the algorithm described in
Figure 4.6. When the current transaction T[i] is an incomplete transaction, the transaction
set RPU(T[i]) iscomputed and istreated as one singlelogical transaction. If all the member
transactionsof RPU(T[i]) passvalidation, their combined resultswill be transmitted together
to the corresponding servers for commitment. Otherwise, we will conservatively invalidate
all of them and request manual repair for them because it is too complicated to automatically
resolve a group of transactions. Note that this is likely to be rare in practice because it
requires three conditions to be satisfied together: (a) overwriting transactions, (b) transaction
invalidation, and (c) client running out of shadow space.

4.3.4 Transaction Validation

The most frequent activity during the incremental propagation process is validating discon-
nected transactions. Because the G1SR consistency criterion is not supported in the current
implementation, we focus on consistency validation using the GC criterion, which will be re-
ferred to as transaction certification for compatibility with past research literature. Intuitively,
the certification of a transaction T is to check whether any object accessed by T has been
updated on the corresponding server since it was first accessed by T.

Version Certification There are two basic aternatives for transaction certification. Value
certification records the data values of objects accessed by a pending transaction and compares
them against the corresponding server values. Itisimpractical for IOT implementation on Coda
because recording transaction accessed data values will cost too much client disk space. We
adopt the version certification strategy by recording the local version identifiers of transaction
accessed objects and comparing them against the corresponding server version identifiers.

The process of version certification for a pending transaction T consists of the following
actions. For each element in R(T) and W T) 3, we first use its recorded f i d to locate the
corresponding cached object obj and its local version vector* denoted | vv(obj) . We then
sendfidandl vv(obj) tothecorresponding server and let it comparel vv(obj) against
the current global version vector of obj denotedgvv(obj) . If thetwo version vectors do not
match, transaction T fails certification and is invalidated. Otherwise, the version comparison
process is repeated until both R(T) and W T) are exhausted. To improve performance, the
fi d’s and their corresponding local version vectors are batched and sent to the servers in
groups.

3The notations R(T) and W T) stand for the readset and writeset of transaction T respectively.

4Coda maintains a version vector for each individual object required by server replication. Since this thesis
research does consider server replication, a version vector in this dissertation is treated in the same way as a
version stamp.

4.3. MERGING LOCAL STATE WITH GLOBAL STATE 65

Value Certification for Attributes The main drawback of version certification is the possi-
bility of falseinvalidation because version vectorsin Codaare maintained at an object level. As
discussed in Chapter 3, sub-object level transaction specification is needed to more accurately
represent the transactional file access behaviors and avoid unnecessary conflicts. However,
maintaining version vectors for each sub-part of an object demands substantially higher server
space cost and performance overhead.

Our strategy to reduce the likelihood of false invalidation is to apply value certification on
attributes. Each element of the transaction readset and writeset must record not only which
attributes of an object are actually accessed by atransaction but also the val ue of those accessed
attributes. Suppose that a pending transaction T updated the node bits of an object obj
during the disconnected operation while obj ’s data content is updated on the corresponding
server. During the certification of T, even though the version comparison on obj will show
the difference between itslocal and global version vectors, the success of value certification on
the node bitsof obj can help to avoid the unnecessary invalidation of T.

Value Certification for Directory Contents Similarly, directory access operations also need
value certification to avoid unnecessary conflicts. For every directory access operation per-
formed by a disconnected transaction T, R(T) and W T) will record the actual names that
are accessed by T. For example, suppose that T performs an operation “nkdi r home/ f 00”,
W T) will contain an element for directory honme which recordsthat the name*“foo” isinserted
under hone. Thevaluecertification of T on directory hone succeeds aslong asthe name*foo”
is still unbound under the corresponding server replica of hone. Thiskind of directory value
certification can correctly avoid the unnecessary conflict on a pair of independent partitioned
operationssuch as“nkdi r hone/ f 0oo” and “nkdi r hone/ bar”.

4.3.5 Transaction Commitment

The second most frequent activity during the incremental propagation process is committing
avalidated transaction. Asin connected transaction execution, we rely on Coda's underlying
mutation logging and reintegration mechanismsto commit the local result of atransactionto the
servers, using the same transaction mutation log structures and the new transaction reintegration
process described in Figure 4.3.

4.3.6 Transaction Resolution
The least frequent but most challenging activity during the incremental propagation processis

resolving an invalidated transaction. We devote the next two chapters to describing support for
this aspect of our design.

66

CHAPTER 4. DETAILED DESIGN: CONSISTENCY ENFORCEMENT

Chapter 5

Detailed Design: Conflict Representation

When apending transaction isinvalidated, the |OT consistency model requiresit to be resolved
using one of the four resolution options. However, a number of important issues need to be
addressed before resolution takes place. How can the local and global state of relevant objects
be conveniently accessed by the resolver? Which portions of the local and global state should
be visible? How are the users notified that an invalidated transaction needs to be manually
resolved if it chose that option? The underlying theme of these questions is how to properly
represent the information about invalidated transactions so that they can be effectively resolved
by automatic resolvers or human users. Because conflict representationis crucial to the success
of conflict resolution, this chapter is devoted to the detailed design issues of representing
information about conflicts.

The central focus of this chapter is to present a systematic study on important issues
and design trade-offs in providing a concise conflict representation mechanism for the IOT
extension to the Coda file system. The first section identifies the fundamental problems and
key requirementsin conflict representation. The second section mainly describes how to notify
users and applications about detected conflicts. The third section discusses how to expose
conflict information to the resolvers. In addition, detailed mechanisms of a novel conflict
representation scheme are presented.

5.1 Basiclssuesof Conflict Representation

5.1.1 Inconsistent Objects

Asdiscussed in Chapter 3, thenotion of conflict inthisdissertationisassociated withinvalidated
transactions. Intuitively, if atransaction T is invalidated, it means that some of the objects it

67

68 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

accessed are likely to be in an inconsistent state, i.e., their value does not satisfy the necessary
consistency requirements. Because transaction T is a past thread of computation, it is those
objects that embody the conflicts caused by T. We define an object obj to beinconsistent if it
satisfies both of the following two conditions:

1. obj e(R(T) UWT)) whereT isaninvalidated transaction. In other words, an inconsis-
tent object must have been accessed by an invalidated transaction.

2. lv(obj)+#gv(obj) wherel v(obj) and gv(obj) stand for the local and global
version of obj respectively. This meansthat obj is either mutated by transaction T or
updated on the corresponding server during the disconnection, or both.

We use i nc(T) to denote the set of inconsistent objects caused by transaction T. Any
objectini nc(T) iseither accessed by T and updated on the corresponding server or mutated
by T. Itisnot difficult to see that further accesses to objectsini nc(T) could lead to cascading
conflicts. Suppose that an object obj €i nc(T) is accessed by an ongoing transaction T" .
T will certainly be invalidated if obj has aready been updated on the corresponding server.
Evenif obj isonly mutated by T, T' isstill likely to be invalidated because the resolution of
T may cause the server replicaof obj to be updated.

Objectsini nc(T) capture the key information about the conflicts caused by T for two
reasons. First, any object that is known to have adifferent current server state than T originally
accessed isamember of i nc(T) . Second, i nc(T) contains the complete effect created by T
becauseitisasuperset of W T) by definition. Thus,i nc(T) embodieswhat T would have seen
and produced differently had it not been disconnected. In essence, conflict representation for
transaction T is exposing information about objectsini nc(T) under different circumstances.

5.1.2 Two Venus Operation Modes

A transaction T may not be immediately resolved after its invalidation for two reasons. First,
T may have chosen the manual resolution option, and the user may defer repairing it. Second,
even though T has chosen one of the automatic resolution options, the transaction system may
not be able to resolve it right away because new failures could cause the client to lose some
of the necessary server connections. Hence, there could be an arbitrarily long period between
T's invalidation and resolution. During this period, objects in i nc(T) must be marked as
inconsistent and prohibited from any new accesses to prevent cascading conflicts. However,
as soon as the resolution starts, both the local and global state of objectsini nc(T) must be
made visible to T's resolver so that it can analyze and resolve the conflicts. Therefore, the
same inconsistent objects must possess different visibilities depending on whether T is being

5.2. CONFLICT REPRESENTATION IN SERVICE MODE 69

resolved or not. The I0T-Venus adopts two basic operation modes to serve these two distinct
needs.

ThelOT-Venus operatesin the service mode when no transactionsare being resolved. Inthis
mode, accesses to inconsistent objects are denied while other non-inconsistent objects behave
normally. When an invalidated transaction T starts resolution, the IOT-Venus switches to
the resolution mode and dynamically adjuststhe internal representation of relevant inconsi stent
objects so that their local and global state can be accessed by theresolver. To avoid interference,
transactions are resol ved one at atime and regular transaction executions are blocked during the
resolution mode. The lOT-Venusreturnsto service modeas soon as T’ sresolution is completed.
At any given moment, it operatesin either of the two modes and there is no overlap.

5.1.3 Conflict Representation Requirements

The central mission of conflict representation is to provide necessary information about the
conflicts caused by invalidated transactions to the resolvers. When operating in the service
mode, the IOT-Venus has two responsibilities other than the regular cache management duties
such as servicing cache misses. First, it must notify the users about the existence of conflicts.
Second, it must prevent inconsi stent objects from being accessed. During the resolution mode,
the 10T-Venus must provide the resolver with convenient access to both the local and global
state of al theinconsistent objects accessed by the transaction being resolved. 1naddition, only
the global state of all other objects should be made visible to the resol ver.

5.2 Conflict Representation in Service Mode

5.2.1 Conflict Notification

Design Alternatives Therearetwo basic approachesto notifyingthe users about detected con-
flicts. The first approach utilizes outside communication facilities such as sending email [56],
displaying messages on terminals, sending on-line zephyr [10] messages, etc. This external
approach has the advantages of being informative and simple to implement. However, there
are many disadvantages. First, notification messages are often transient and non-repeatable. If
the users do not pay attention or the messages get lost, the users will remain ignorant of the
detected conflicts. Second, this approach is not suitable for informing ongoing applications
trying to access inconsistent objects. Third, it rendersthe proper functioning of the transaction
system dependent upon the availability of specific message communication facilities.

To overcome these shortcomings, our design adopts an internal conflict notification ap-
proach by changing the visibility of inconsistent objects inside the Coda namespace. The

70 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

key ideais to make those objects look different from they otherwise would under normal cir-
cumstances so that both the users and the applications can be aware of the fact that they are
inconsistent. This approach is persistent in the sense that the notification message is attached
to the objects themselves and is repeated every time an inconsistent object is accessed. It also
makes the transaction system more self-contained.

Dangling Symbolic Link The mechanism for internal conflict notification is converting an
inconsistent object into a dangling symbolic link, i.e., a symbolic link that does not point
to any real object. The link content uses a special format of @.y. z where x, y and z
are a hexadecimal number encoding the three components, vol unme-i d, vhode-i d and
uni qui fi er of thefi d of the inconsistent object. Note that such dynamic conversion is
performed only on the client where inconsi stent objects are detected and they appear as normal
objects on other clients. Figure 5.1 shows an actual example of dangling symbolic links. To
ensure that the symbolic links are always dangling and never point to any real objects, the Coda
file system forbids any object to have a name of the above format. In essence, we give up a
tiny portion of legal names so that accesses to inconsistent objects are guaranteed to yield an
unexpected result.

LGAR.CODA.CS.CMU.EDU

[ELGAR:conflict]:B71 1s -1
total 2
lr=-r--r-- 1 root 27 Mar 18 14:38 inconsistent,c -» BPFO00Z79,0000035d, 00020582
lr=-r—-r-- 1 roat 27 Mar 18 14238 test -» GFFO00ZTI, 00000363, 00020283
[ELGAR:conflict 14672]

This xt er mimage displays the dangling symbolic links for a file i nconsi stent.c and a
directory t est that are detected to be inconsistent. The three hexadecimal components of each
symbolic link correspond to the three components of the actual f i d.

Figure5.1: An Example of Dangling Symbolic Links

5.2.2 AccessPrevention

The dangling symbolic link representation can not only visually notify the users about conflicts
but also serve the purpose of preventing new processes from accessing inconsistent objects.

5.2. CONFLICT REPRESENTATION IN SERVICE MODE 71

Performing common file access operations such asopen, read andwr i t e, etc. oninconsis-
tent objects will all fail because the corresponding symbolic links point to nowhere. The only
exception is when the inconsistent object is a symbolic link itself because ar eadl i nk oper-
ation on it can still succeed. But ther eadl i nk operation will return the specialy formated
string instead of the real link content.

However, it is possible for an object obj to be detected as inconsistent while an ongoing
process P has already obtained a reference to the vnode of obj , alowing P to continue
accessing the current server replica of obj . This causes a sudden content switch because P
was accessing the local version of obj and changes to the global version without knowing it.
Obviously, we must prevent this from happening because it can result in serious consegquences.

Our solution is to create a table containing the f i d of all the inconsistent objects. For
every file access operation, the 10T-Venus will search the table to see if any operand has a
fi d aready marked as inconsistent. If so, the error code EACCES will be returned to deny
the operation. An obvious drawback of this method is the performance overhead of searching
the table for every file access operation. To alleviate this problem, we attach a flag to each
cached volume to indicate whether it contains any inconsistent objects or not. Thus, we can
check the volume tag to avoid unnecessary table searching when the corresponding volume
does not have any inconsistent objects. Because conflicts are rare and tend to localize in afew
volumes, thistechnique allows usto avoid paying a significant performance price under normal
circumstances.

5.2.3 Vishbility Maintenance

Visually notifying the users about inconsi stent objects and preventing further access to them are
only part of the general task of maintaining tentative computation results for live transactions.

5.2.3.1 Maintaining Live Transaction Results

The IOT-Venus hastwo main responsibilitiesin service mode. First, it must performtheregular
cache management duties such as servicing cache misses and maintaining cache coherence.
Second, it needs to maintain the tentative computation results produced by the live transactions
so that they are visiblein the client local state.

Object Asynchrony The essence of maintaining tentative computation results is to keep
relevant cached objectsasynchronousfromtheir server state. Here, we usethetermsasynchrony
or asynchronous to refer to the situation where the client local state remains different from the
server global state. In order to keep the result of arunning or pending transaction visible in the
client local state, the IOT-Venus must hold onto the cache copies of objects that are mutated

72 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

by the transaction without fetching their server replicas even if they are updated. Furthermore,
cache copies of objects only read by those transactions need to remain in the client cache
even though their server counterparts might have been changed. Thus, inconsistent objects
are only a portion of the asynchronous objects that are made inaccessible to avoid spreading
inconsistencies.

Visibility Control The key to managing asynchronous objects is to control their visibility,
i.e., the way they are visible to the users and applications. Object visibility has many aspects
such as object form (regular file, directory and symbolic link) and object accessibility. The
|OT-Venus dynamically adjusts different aspects of object visibility of asynchronous objects to
serve different needs under different circumstances. The dangling symbolic link representation
for inconsistent objects is just one form of visibility control where the accessibility of an
inconsistent object is revoked and the form of the object is dynamically transformed to make a
visual difference.

5.2.3.2 State-Based Visbility Maintenance

The difficulty of maintaining asynchronous cached objects is that their visibility needs to be
dynamically adjusted in response to different kinds of system activities. Events such as a
new transaction starting execution, a pending transaction being committed, an invalidated
transaction being successfully resolved, and the server replica of an asynchronous object being
updated, require the visibility of the relevant objects to be dynamically changed. Because live
transactions may create complicated inter-dependencies among themselves, questions such as
when an inconsistent object can become anormal object again become very difficult to answer.

Our strategy isto use a state-based approach to maintain visibility for cached objects. The
key ideaisto classify al the cached objects into a small number of states such that any system
activity only causes the relevant objects to transit from one state into another. By assigning a
specific visibility control policy to each state, visibility maintenance becomes the disciplined
action of following state transitions and adjusting visibility accordingly.

Basic States of Cached Objects Any asynchronous cached object obj must have been
accessed by at least one live transaction. Each such transaction is called a guardian of obj .
We classify al cached objectsinto the following four basic states.

e Consistent State

An object obj isin the consistent state if it does not have any guardian, i.e, it has
not been accessed by any live transaction. The visibility control policy for consistent
objects uses the regular callback cache coherence protocol to keep their cache copies

5.2. CONFLICT REPRESENTATION IN SERVICE MODE 73

fully synchronized with the corresponding server replicas. In other words, consistent
objects are synchronous objects.

e Clean-Local State

Anobject obj isintheclean-local stateif it hasat |east oneguardian and itslocal version
isidentical to its current server version, i.e., | v(obj) = gv(obj). This means that
obj is accessed by some live transactions but has not been mutated either locally on
the client or globally on the server. It is clean because it has not been updated and it is
local because it must remain in the client cache until all its guardians are committed or
resolved. The visibility control policy for clean-local objects exposes their local state in
their original form but pins them inside the client cache so that their server state will not
be visible.

e Dirty-Local State

An object obj isin the dirty-local state if it has been updated by at least one of its
guardians and none of the guardians that mutated obj are invalidated. obj is local
because it needs to stay in the client cache until al its guardians are committed or
resolved. It is dirty because it has been updated on the client (and by definition not
updated on the server). The visibility control policy for dirty-local objectsisthe same as
clean-local objects. Their local state is accessible in their original form but their global
state remainsinvisible.

¢ Inconsistent Object

As previously defined, an object obj isin the inconsistent state if it has been accessed
by at least one invalidated guardian T such that it has either been mutated by T or it has
been updated on the server. Because accessing inconsistent objectswill lead to cascading
inconsistencies, the visibility control policy for inconsistent objects prohibitstheir local
or global state from being visible and their formis changed into a dangling symbolic link
to visualy notify the users about the conflicts.

Under normal circumstances, most of the cached objects are in the consistent state and
fully synchronized with their server replicas. A small portion of them remain asynchronous
because they are accessed by livetransactions. Some of them display their local statein order to
represent the tentative computation results of live transactions. Some of them are temporarily
inaccessible due to invalidated transactions. Figure 5.2 depicts a visibility distribution among
all the cached objectsin aclient cache.

Object State Transitions The four basic states characterize all the possible situations of any
cached object. All the legal transitions among them are shown in Figure 5.3 and explained as
follows.

74

CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

synchronous global state
accessible

-y -1
local state

asynchronous dirty-local objects accessible
inconsistent objects inaccessible

Figure5.2: Visihility of Cached Objects

Consistent Object

A consistent object can become a clean-local or a dirty-local object when it is first
read or written by an ongoing transaction respectively. It cannot directly become an
inconsistent object because it has to be accessed by a running transaction first in order to
be inconsistent.

Clean-Local Object

A clean-local object can go back to be a consistent object when its last guardian is
committed or resolved. It can become a dirty-local object when it is updated by an
ongoing transaction. In the worst case, it will degenerate into an inconsistent object
when its server replicais updated.

Dirty-L ocal Object

A dirty-local object can similarly go back to be aconsistent object whenitslast guardianis
committed. 1t can becomeaclean-local object whenitslast update-guardianiscommitted
while still having other read-guardians. It will fall into the inconsistent state when one
of the following two things happens: its server replicais updated or one of its update-
guardiansisinvalidated.

I nconsistent Object

When the last guardian of an inconsistent object obj (it has to be an invalidated trans-
action by definition) is resolved, the object is reborn as a fully synchronized consistent

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 75

object. The resolution or commitment of obj ’sread-guardians does not change its state.
However, if obj still has other guardianswhen an update-guardian T isresolved, it could
remain inconsistent if it has other invalidated guardian(s) that have accessed a local
version of obj different from the current global version. Otherwise, obj will become
either a clean-local or a dirty-local object depending on whether it has been mutated by
the remaining guardians or not.

inconsistent

clean-local ‘dirty-locaj

Figure 5.3: Cached Object States and Their Transitions

consistent

5.3 Conflict Representation in Resolution M ode

The resolution mode is tied to the resolution of one and only one invalidated transaction. The
main responsibility of the IOT conflict representation mechanism is to provide the resolver
with convenient access to the local and global states of al inconsistent objects accessed by
the transaction. For all other objects, only their global state should be visible to the resolver
to guarantee that the resolution outcome does not depend on the result of any other live
transactions.

Despite its importance in conflict resolution, the issue of how to best represent conflict
information to the resolvers has not been adequately addressed in previous research. Our
design principle hereis to expose conflict information to the resolversin as simple and concise
a form as possible to reduce the burden of programming application-specific resolvers and
make the process of manual resolution easier. This section not only presents our novel conflict
representation scheme but also studies key alternativesto justify our design decisions.

76 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION
5.3.1 Exposing Local and Global State of an Inconsistent Object
5.3.1.1 Naming Replicas

TheNeed for NamingReplicas Conceptually, thelocal and global replicas of aninconsistent
object obj , denoted | r (obj) and gr (obj), are two physical copies recording the client
and server state of obj . Under normal circumstances, replicas are not first class citizens
because they cannot be directly named and accessed though the standard UFS API. However,
during the resolution of an invalidated transaction T, the local and global replicas of objects
ini nc(T) need to be accessed by T's resolver in the same way as normal objects. Thisis
vital to effective conflict resolution. Otherwise the resolver will require a separate interface for
accessing replicas. It meansthat al the existing system facilities, applications and tools cannot
be directly used for resolving conflicts. Thiswill severely limit the capability and effectiveness
of resolvers and also complicate their programming.

There are two important usability issues for the IOT conflict resolution mechanism. For
manual conflict resolution, we should allow the users to take advantage of whatever facilities
exist at their disposal (such as emacs, | at ex, make and gcc) to repair an invalidated
transaction. For automatic conflict resol ution, we should facilitate the programming of resolvers
by alowing replicas to be accessed via the standard UFS API. This alows resolvers to use
existing applications and tools. It is clear that the practical usability of 10T conflict resolution
demands that replicas be treated as first class citizens during conflict resolution.

Design Alternatives In Unix file systems, objects are named with their unique locations in
the hierarchical namespace. Any object obj can be named by its unique pathname denoted
pn(obj) starting at the top of the namespace. Allowing a replicato be named in the same
way as a normal object requires it to be stored at a specific location of the file system. In
addition, there needs to be a convention that maps the pathname of an inconsistent object into
the pathnames of itslocal and global replicas. In other words, for any inconsistent object obj ,
there needsto be adeterministicway of computingpn(| r (obj)) andpn(gr (obj)) based
onpn(obj).

The specific replica naming issues for an inconsistent object obj include the following:
What are the pathnames of | r (obj) and gr (obj) and where are they stored? What is
the visible content at the original location of pn(obj) ? What is the convention to translate
pn(obj) intopn(lr(obj)) andpn(gr (obj)) ? Therearedifferent alternatives that can
address each of the questions. For example, an earlier Coda implementation stored the local
replica of an inconsistent object in a closure file using the t ar format on a loca disk file
system [26]. The local replicais not directly accessible until extracted from the closure file.
The corresponding global replicais accessible at the object’s original location.

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 77

The In-Place Naming Strategy Our design uses an in-place replica naming strategy that
has been used in Coda for representing conflicts among server replicas [29]. It has two key
characteristics that are summed up by the phrase “in-place’. First, all replicas are represented
within the Coda namespace. We do not rely on any other file system to maintain replicas of
inconsistent objects. Second, the local and global replicas of an inconsistent object obj are
stored in locations near the original location pn(obj) . The closeness in namespace makes
it easier for the resolver to locate and inspect needed replicas. It is aso easier for users doing
manual resolution. When directly accessed viathe UFS AP, replicas are read-only and their
main purpose isto provide information about the local and global state of relevant inconsistent
objects.

The in-place naming convention of an inconsistent object obj uses pn(obj) /1 ocal
and pn(obj)/ gl obal asthe pathnames of itslocal and global replicas. The visible content
at location pn(obj) becomes a directory containing only two children named “local” and
“global” representing the local and global replicas of obj respectively. For example, if
afile/ coda/ m sc/t est isinconsistent, its loca and global replicas will be located at
/ coda/ m sc/test/| ocal and/ coda/ m sc/test/ gl obal respectively.

5.3.1.2 Dealingwith Directory Replicas

For asimple object such asafileor asymboliclink, itslocal or global replicaisjust another file
or symbolic link storing its local and global state. However, the representation of a directory
replica needs to be different because the data content of a directory contains referencesto other
objects.

Subtree Representation For compatibility reasons, we inherit the subtree representation
form for directory replicathat is also employed by the Coda file system to represent conflicts
among server replicas [29]. Note that Coda employs a different set of mechanisms for sup-
porting optimistic server replication and disconnected operation. This subtree form of replica
representation was employed by the original Coda system to only represent conflicts among
server replicas, not in disconnected operation which is the focus of this dissertation. The con-
flict representation mechanisms discussed in this document are all newly added to the existing
Coda system for supporting 10T.

The local replica of an inconsistent directory di r is represented by the local subtree
consisting of cache copies of objects that are descendents of di r . Similarly, the global replica
of di r is represented by the global subtree consisting of server replicas of objects that are
descendants of di r. It is only during conflict resolution that they are represented by the
corresponding local subtree and global subtree respectively. We regard subtrees as the general
form of replicarepresentation. Note that the local and global subtrees of an inconsistent file or
symbolic link contain only one node.

78 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

The advantage of subtree representation is that it retains the original hierarchical structure
among replicaswithinthelocal and global subtreesof aninconsistent directory, makingit easier
for the resolver to probe around inspecting and comparing relevant replicas. The drawback is
that it may cause significant client space overhead because two subtrees are needed to represent
an inconsistent directory. When a conflict occursin adirectory at ahigh level inthefile system
hierarchy, hundreds of nodes could be involved.

Space Cost Analysis There are two kinds of client space costs associated with the subtree
representation for directory replicas. Because the entire local subtree of any inconsistent
directory needs to be kept in the client cache, the internal representation of cached objects
within the subtree could consume a fair amount of persistent storage space. In addition, the
cache files of those objects could occupy a significant amount of disk space. When the server
replicas of the corresponding global subtree are being accessed, more persistent storage and
disk space are needed.

We conducted afeasibility study by analyzing the persistent storage and disk space needed
for storing a typical subtree. The key observation is that directory update activities tend to
occur at the bottom levels of the namespace hierarchy. Since any inconsistent directory must
be caused by a directory update operation, the typical subtree corresponding to an inconsistent
directory is small. The analysis was performed based on previously collected file reference
traces [46] and statistics about file system object distributions [12]. It shows that the space
cost for storing atypical subtree is modest and acceptable in normal circumstances. Detailsare
presented in Chapter 9.

The Caching Factor Another important factor that enhances the feasibility of subtree repre-
sentation is that only the local subtree of an inconsistent directory needs to be resident in the
client cache. Because the server replicas within a global subtree can be accessed as normal
objects, they are demand fetched to the client cache and swapped out when the client runs out of
cache space. Furthermore, local subtrees of inconsistent directories already reside in the client
cache. Thus, both the local and global subtrees of any inconsistent directory can be accessed
through demand fetching and cache replacement activities.

Handling Uncached Objects The local subtree of an inconsistent directory sometimes is
incomplete because some of the objects in the subtree may not have been cached when the
client was disconnected. If we do not include those un-cached objects in the local subtree,
there will be an ambiguity problem because the resolver cannot distinguish whether those
objects were initially un-cached or locally removed. To avoid this problem, we bind the names
of un-cached objects to specialy-generated f i ds so that their names are visible in the local
subtree but any attempt to access them will result in an error code of ETI MEDOUT. Although

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 79

this approach may seem confusing to the users doing manual repair, it achieves the important
goal of presenting the local subtree in exactly the same way when the client was disconnected.

5.3.1.3 Providing Resolution Workspace

The Need For Workspace Resolving conflicts needs a workspace to build up the resolution
result. For example, suppose that an invalidated make transaction T,,,,. compiled an object
filewor k. 0 and its resolution needs to compile a new version for wor k.o. The IOT conflict
representation mechanism needs to provide aworkspace for the inconsistent object wor k. 0 so
that it can be used as the place-holder for storing the new compilation result.

Design Alternatives Several different strategies can be used to provide resol ution workspace.
One method used by the Coda file system for repairing conflicts among server replicas of a
file object allows the repairer to use any file from any file system as the workspace for holding
repair results. The repairer must provide information about the location of the workspace file
to Coda so that its data content can be fetched and installed as the repair outcome for the
corresponding inconsistent file.

The second alternative is to extend the current form of conflict representation so that an
inconsistent object obj will bedynamically converted into adirectory containing threechildren.
In addition to the original local and global children, athird child named “workspace” is added
and initialized with an identical copy of the corresponding global subtree. The workspace
subtreeisdirectly mutableviathe UFS API so that theresolver can useit to store the resolution
result for obj . When resolution is over, the transaction system will automatically install the
current state of the workspace subtree as the final resolution outcome for obj .

The Dual Replica Representation The second alternative is appealing because it fits well
with the overall design philosophy of localizing conflict representation for access convenience.
However, its implementation will be very complicated because Venus needs to maintain the
internal representation of three different replicas of the same object, and allow two of them to
be mutable. Thus, we decided to settle for avariation. The key ideais to overload the global
and workspace subtrees of an inconsistent object obj . The global subtree of obj serves both
purposes of providing access to the current global state of obj and the place-holder for storing
the resolution result of obj . We call this approach the dual replica representation (DRR) and
Figure 5.4 shows its basic structure. A dlight disadvantage of this approach is that the resolver
needs to access all the needed global replicas before updating them to store the resol ution result.
Figure 5.5 presents an actual example of dual replica conflict representation.

CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

inconsistent
object
global local
subtree subtree
mutable read-only

Figure 5.4: The Basic Structure of Dual Replica Representation

ELGAR.CODA.CS.CMLU.EDLY

[ELGAR:conflict1:EEE 1= -1 inconsistent,c

total 18

—-rw-r——r-— 1 luqgi 8313 Mar 18 14:20 global
—-ru—-r——r-— 1 lugi 8469 Mar 18 14:20 local
[ELGARiconflict1iEE4 1= -1 test

total 4

drwxr—xr—x 2 luqi 20428 Mar 18 14:22 global
drwxr—=r-x 3 lugi 2048 Mar 18 14:20 local
[ELGAR:conflict]1:BES 1= -1 test/local

total B

—-ruw-r——r—— 1 luqgi 4087 Mar 17 23:16 conzistent,c
drwxr—xr—x 2 luqi 2048 Mar 18 14:20 data
[ELGAR:conflict]:BEE 1= -1 testsglobal

total &

—-ruw—-r——r—— 1 lugi 4037 Mar 17 23:16 conzistent,c
—-ruw-r——r—— 1 luqgi 175 Mar 18 14:22 data
[ELGAR:conflict1:667 1

This xt er mimage shows the dual replica conflict representation of the two inconsistent objects
showninFigure5.1. Ascan beseen, filei nconsi st ent . ¢ hastwo replicas with different sizes.
The local subtree of directory t est contains a directory named dat a while the global replica
contains afile named dat a.

Figure 5.5: An Example of Dual Replica Conflict Representation

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 81
5.3.2 TheRealization of Dual Replica Representation

The maindifficulty of implementing DRR comesfromthefact that thel OT-Venus must maintain
both the local replica and the cache copy of the global replicaof the sameinconsistent object in
the cache. The main data structures and methods used for DRR implementation are discussed
below.

5.3.21 Key Data Structures

A Special Local Volume As both a system administration unit and a key design component,
the concept of volume is deeply rooted in every aspect of the design and implementation of
Coda. Because the Coda implementation requires that every object must belong to a volume,
we use a specia local volume to serve as the home of al local replicas. Unlike a normal
volume, the local volume does not correspond to any actual server and remains resident at
every client. It is aread-only volume and stays in the connected state, making local replicas
always accessible.

Logically, each client is the server of its own local volume because it provides the home
for storing the cache copies of all local replicas. In the actual implementation, the |OT-Venus
treats the local volumein the same way as anormal cached volume except that it must suppress
any attempt at server communication on behalf of the local volume. From the viewpoint of a
resolver, local replicas appear the same as normal objects except that they are read-only.

Internal Structureof Dual ReplicaRepresentation For aninconsistent object obj , itsdual
replica representation uses an internal structure shown in Figure 5.6 and it will be referred to
asthe DRR subtree of obj . The lOT conflict representation mechanism dynamically converts
obj from a dangling symbolic link into a directory containing the local subtree and global
subtree of obj . There are six key nodesin the DRR subtree and their roles are as follows:

e The topmost node is the parent of obj and is called the DRR-base because it provides
the basis for planting the DRR subtree of obj intheclient local state. It playstherole of
a connector that links the regular Coda namespace hierarchy with obj 's DRR subtree.
It must be pinned in the client cache until the relevant conflicts are resolved because
fetching its server replicawill cause the DRR subtree to be orphaned.

e The object that occupies the original location of obj in the Coda namespace is called
the fake-root of the DRR subtree. It usesafakef i d that does not correspond to any red
object in the file system. Its main functionality is to serve as a place-holder directory to
host the local and global subtrees of obj . Note that fake-root is aread-only directory.

82

CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

DRR-base
fake-root
nmount global m local
poi nt child point child
mount global nount local
root root root root
global subtree local subtree

Figure 5.6: Internal Structure of Dual Replica Representation

local child is a temporary object with a fake fi d. It is the child of fake-root named
“local” and serves as the mount-point for the local subtree of obj to be hooked with the
DRR subtree.

Similarly, global child is also atemporary object withafakef i d. Itisthe child of fake-
root named “global” and is used as the mount-point for connecting the global subtree of
obj with the DRR subtree. Since the top three nodes play therole of ajoint linking the
obj 'slocal and global subtrees with its parent and they al use the fake fi d, we cal
them the fake-joint of the DRR subtree.

local root corresponds to the local cache copy of obj . When obj isafile or asymbolic
link, its local subtree only contains the local root itself. When obj is adirectory, local
root is the root of the local subtree of obj . The mounting of the local subtree to the
local childislazy. Inother words, it is deferred until the resolver tries to access the local
replicaof obj .

Similarly, global root correspondsto the server replicaof obj , whichisroot of the global
subtree of obj if itisadirectory. The mounting of the global subtree to the global child
isalso lazy.

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 83

A DRR SubtreeTable Inordertokeeptrack of all theinconsi stent objectsand their associated
DRR subtrees, we maintain a persistent table storing information of all the DRR subtrees. Each
entry of the table contains key information such as fi ds of the top six nodes of a DRR
subtree. This table plays an important role in situations where the detection of new conflicts
or the resolution of existing conflicts require adjustment to existing DRR subtrees, as will be
explained later in this section.

A Local/Global Fid Map Inthedua replicaconflict representation, the global replica of an
object retains its origina f i d while the local replica must use a generated local f i d so that
it can belong to the special local volume. Since the maintenance of DRR subtrees needs the
correspondence between local and global replicas, we maintain a persistent table to provide
this mapping.

5.3.2.2 DRR Subtree Construction

Building the Fake-Joint To create a DRR subtree for an inconsistent object obj , the first
step is to locate the cache copies of obj and its parent denoted p(obj) . After de-linking
the parent/child relation between p(obj) and obj , we fashion a new directory with a fake
fid and use it as the fake-root by making it a child of p(obj) with the origina name of
obj . In addition, two mount-point objects with fake f i ds are manufactured and inserted as
the children of fake-root named “local” and “global” respectively.

CreatingtheL ocal Subtree Thesecond stepisto createthelocal subtreeof obj by traversing
the cache copies of objectsthat are descendants of obj . For each traversed cached object, we
generate a new local fi d and use it to replace its original f i d and insert the pair of fi ds
into the local/global fi d map. This step is called localization because the f i d replacement
effectively localizes the entire cached subtree rooted at obj . In other words, it virtually copies
the cached subtree of obj into the local volume. Note that the cache manager guarantees that
the ancestors of any cached object are also cached.

Forming theGlobal Subtree Because the global replicaof each individual object retainsthe
original f i d, theformation of theglobal subtree of obj becomesanatural result of the demand
fetching and cache replacement activities performed by the IOT-Venus. The global subtreeis
mounted when the server replica of obj isfirst accessed by the resolver. The server replicas
within the global subtree are brought to the client cache only when they are accessed by the
resolver. At any given moment, the global subtree may be partially or fully cached depending
on the activities performed by the resolver and the IOT-Venus.

84 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION
5.3.2.3 DRR Subtree Destruction

When an invalidated transaction is resolved, its associated DRR subtrees need to be discarded
immediately. The first step is to de-link fake-root from DRR-base, unmount the local and
global subtrees, and remove the three fake-joint objects. The second step simply restores the
parent/child linkage between DRR-base and global root and discards those local replicas that
are not pinned by any other live transactions.

However, throwing away all the un-pinned local replicas could be very wasteful when the
subtree containsalarge number of nodesand few of them areinvolvedin conflicts. Thisproblem
is particularly acute on amobile client operating in aweakly connected environment with low
network bandwidth because re-fetching many of the discarded objects that are unchanged on
the serverstakes along time to complete. We address this problem by recovering local replicas
that have not been mutated and whose corresponding server replicas are not cached. Their
original f i ds will be restored and their cache status will be marked as questionable. The next
time they are accessed, the client only needs to validate their cache status instead of fetching
their data content as long as they are not updated on the servers.

5.3.2.4 DRR Subtree Maintenance

When new conflicts are detected or old conflicts are resolved, some existing DRR subtrees need
to be adjusted.

Subtree Merge Suppose that an inconsistent object obj ; is represented by a DRR subtree
ST, and one of its ancestors obj , is later detected to be in conflict. Because of the subtree
representation, the local and global subtrees of obj , contain those of obj ; respectively. Thus,
creating the DRR subtreeof obj ,, denoted ST, requiresamerge with ST;. The construction of
ST, can proceed with the normal steps except when thelocalization encountersthe DRR-base of
ST;. Thefake-joint of ST, isremoved and itslocal subtreeis merged with the partially formed
local subtree of ST, before the localization resumes. The DRR subtree table still maintains an
entry for ST, but marksit as a covered subtree.

Subtree Split Suppose that the above two inconsistent objects obj ; and obj ; belong to two
independent, invalidated transactions T, and T,, respectively, and T, is resolved before T;.
Thisrequires ST, to be discarded and ST, to be recovered because obj ; remainsinconsistent.
The destruction of ST, can proceed with the regular procedure except that the original local
subtree of ST, needs to be split out from that of ST, and the full DRR subtree of ST; must be
re-established based on recorded information in the DRR subtree table.

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 85

5.3.3 TheMultiple View Capability

The Need for MultipleViews Conflict resolution often needsto apply existing Unix applica
tions and tools on replicas of relevant inconsistent objects. However, the proper functioning of
many applications such asmak e requiresinvolved objects to be positioned in specific locations
within the namespace hierarchy. In other words, the pathnames of the relevant objects must
satisfy certain configuration requirements. For example, system buildings using make often
require a particular structure for source and object directories. This requirement is violated by
the insertion of “local” and “global” into pathname in DRR subtrees.

Our solution is to provide the ability for resolvers to view globa or local replicas of
inconsistent objects in their original locations. We provide three different views. The default
is called mixed view which is the canonical form of DRR subtree where both local and global
replicas are accessible with twisted pathnames. The resolver can select the global view to
access the global replica of an inconsistent object obj using its origina pathname. It can also
choose the local view to view the local replica of obj at its original location. The multiple
view capability isthe key to allow existing applications to be utilized for conflict resolution.

DRR-base | DRR-base
fake-root fake-root
mount globa nount local mount global local
poi nt child point child poi nt child child
nount globad nount local nmount global
r oot root root root root root
global subtree local subtree global subtree local subtree
internal structure for global view internal structure for local view

Figure 5.7: The Internal Structure of Local and Global Views

86 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

The Global View Intuitively, the global view allows the resolver to see through the local
mutations of live transactions and access the server replica of selected objectsin their original
namespace locations. It can be used in several different ways to support conflict resolution.

First, automatic transaction re-execution only needs to access the global replicas of relevant
inconsistent objects. Setting the global view for their DRR subtrees would allow the corre-
sponding server replicas to be accessed using their original pathnames while none of the local
replicas are visible.

Second, the automatic execution of an application-specific resolver for an invalidated
transaction T may need to access objects that T originally did not access. If some of them are
currently inconsistent due to other invalidated transactions, their global state must be exposed
to the resolver and this can be accomplished by setting the global view for the corresponding
DRR subtrees.

Third, the global view capability allows the users to access the globa state of certain
inconsistent objects to serve immediate needs without having to resolve the conflictsfirst.

ThelLocal View Thelocal view allowsthelocal replicaof aninconsistent object to be viewed
with itsorigina pathname. Although not quite as useful asthe global view, it can be used in the
situations where the local state of certain inconsistent objects are needed to serve immediate
purposes without having to resolve the conflicts. Thisis particularly useful for mobile clients
operating in aweakly connected environment where resolving conflicts is too time consuming
due to fetching needed global replicas over slow connections.

The Realization of Multiple Views The implementation of the global and local views are
amost identical. The key is to alter the internal structure of a DRR subtree so that its global
or local subtreeis directly hooked with the DRR-base. Figure 5.7 depicts the updated internal
structuresfor both views. To create the global view, the |IOT-Venuswill temporarily de-link the
parent/child relations between DRR-base and fake-root as well as fake-root and global child, as
indicated by the dotted lines in the picture. In addition, it establishes a temporary parent/child
linkage between DRR-base and global child, which enables the global subtree to be accessed
at the original location of the inconsistent object. The local view can be created in the same
manner.

5.3.4 Establishing Transaction Resolution Object View
At the start of conflict resolution of aninvalidated transaction T, the IOT conflict representation

mechanism will perform resolution initialization to create an appropriate object view for the
corresponding resolver. At the conclusion of the resolution, resolution finalization is performed

5.3. CONFLICT REPRESENTATION IN RESOLUTION MODE 87

to discard the relevant DRR subtrees, and to adjust and restore object views according to the
resolution outcome.

Two Basic Requirements First, the resolver must be able to access both the local and global
replicas of any object ini nc(T) . In addition, the local replicas must contain the origina
content that was last accessed by T. This is necessary for T's resolver to find out what T has
performed locally and what has been changed on the servers. Furthermore, the resolver needs
to use the corresponding global replicas to store resolution results. Second, for any object not
ini nc(T), only its global state should be visible to the resolver. This guarantees that the
resolution outcome will not depend on any other live transactions.

Mixed View for Accessed Inconsistent Objects To satisfy the first requirement, resolution
initialization will create a DRR subtree for each object ini nc(T) . By setting the mixed view
for the relevant DRR subtrees, the resolver can access the local and global replicas of any
objectini nc(T) . Resolution finalization will discard these DRR subtrees immediately after
the resolution succeeds.

There are two important issues to mention here. First, the local replicas of relevant DRR
subtrees must reflect the data content that was originally accessed by the execution of T. For any
object obj i nc(T) updated by subsequent transactions, resolution initialization will restore
its original content using the following method. If obj isafile object and was overwritten by
alater transaction, the transaction system can restore its original content by binding obj tothe
corresponding shadow cache filein shdset (T) which saved the data last accessed by T. If
obj isadirectory object, itsoriginal content can berestored by performingtheinverseoperation
for every directory mutation operation performed on obj by the subsequent transactions. For
example, if a new object f 00 is created under obj , the inverse operation is to remove f 00
from under obj . Finaly, if obj 's attributes were updated by subsequent transactions, the
original values can be restored using the corresponding attribute values recorded in TML(T)
or theinitial attributes stored in the internal representation of obj . Notethat areverse process
needs to be performed by resolution finalization.

Second, transaction T may have multiple inconsistent objects and some of them may
have ancestor/descendant relationships. In order to avoid unnecessary DRR subtree merges,
resolution initialization will first compute the set r oot (T) = {obj | obj €i nc(T) A obj
does not have any ancestor ini nc(T) }. Creating aDRR subtree for each object of r oot (T)
can cover the entirei nc(T) without any subtree merges.

Global View for Other Inconsistent Objects When T is being resolved, there could be
other inconsistent objects that are not ini nc(T) . The resolution initialization for T needs to
construct DRR subtrees for those inconsistent objects and set global view for them so that only

88 CHAPTER 5. DETAILED DESIGN: CONFLICT REPRESENTATION

their global state is visible. Because the resolution of T tends to only access objects it has
already accessed, the actual creation of the global view DRR subtrees for those inconsistent
objects can be performed lazily until they are accessed by the resolver. Resolution finalization
will revert their representation back to the dangling symbolic link form.

Hiding Other Local Mutations If there are pending transactions when T is about to be
resolved, resolutioninitialization needsto hideall thelocal mutationsmade by thosetransactions
so that only the corresponding global state is visible. This can be accomplished by creating
a globa view DRR subtree for each dirty-local object. Similarly, the actual creation of the
global view DRR subtrees can be delayed until the resolver tries to access the corresponding
dirty-local objects. Resolution finalization will ssimply discard all the DRR subtrees associated
with dirty-local objects.

Optimizationfor AutomaticRe-execution Because automatictransaction re-execution does
not need thelocal state of any inconsistent object, resolution initialization will simply set global
view for all DRR subtrees that are created.

Chapter 6

Detailed Design: Conflict Resolution

Conflict resolution is the process of restoring consistency to the inconsi stent objects updated by
an invalidated transaction. This chapter presents detailed designs for realizing the four conflict
resol ution optionsprovided by thelOT consistency model. Wefirst describeaconflict resolution
framework based on the cooperation between the transaction system and the resolver. We then
discuss the basic mechanisms that support both automatic and manual conflict resolutions.

6.1 A Cooperation-Based Resolution Framework

Resolving conflicts in genera requires knowledge about the application associated with the
invalidated transaction being resolved, referred to as the target transaction in the rest of the
discussion. Resolution actions that understand application semantics must be supplied by
either a pre-programmed resolver or a human user. Our main design objective is to minimize
the burden on the resolver to enhance the practical usability of the IOT conflict resolution
mechanisms. To that end, the transaction system must fully cooperate with the resolver by
performing those resolution actions that do not require application-specific knowledge. This
section focuses on establishing a cooperation-based resol ution framework where the transaction
system and the resolver are each responsible for a core set of resolution actions necessary for
supporting the four IOT conflict resolution options.

6.1.1 A Resolution Session M odel
Resolution Session and Its Process Model As discussed in Chapter 4, invalidated transac-

tions are resolved one at atime. We use the term resolution session to refer to the process of
resolving an invalidated transaction. Sometimes, a resolution session is also called a repair

89

90 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

session if theresolutionis performed manually. Figure 6.1 presents aresol ution session process
model describing the main control flow.

Start B Resolver Action
Resolution ; ;
o B Transaction System Action

[1 User/Transaction System Action
Resolution

Initiaization

Inspect
Replicas

Create .

Resolution Consistency

Result o Validation
invalidated

Commit
Resolution

Resolution
Finalization

Figure 6.1: A Cooperation-Based Resolution Session Model

Transaction Encapsulation The cooperation-based session model requires an entire resolu-
tion session to be treated as if it is a connected isolation-only transaction. Such transaction
encapsulation providesthree key properties. First, the mutations used by the resolver to create
the resolution result are performed only locally and will not be visible on the servers until the
session is successfully completed. Second, a resolution session must be validated in the same
way as ahormal transaction to guarantee that the resolution result is consistent with the most
recent server state. Third, the resolution result is committed to the servers atomically. These

6.1. A COOPERATION-BASED RESOLUTION FRAMEWORK 91

properties are very important for conflict resolution to achieve its ultimate goal of restoring
consistency for the inconsistent objects caused by the target transaction. Conceptually, areso-
lution session is just another computation and is subject to the inconsistency problems caused
by partitioned sharing. Transaction encapsulation enables the resolution result to obtain the
same level of consistency guarantees provided by the IOT model.

Basic Resolution Actions Asshown in Figure 6.1, each resolution session must go through
a sequence of basic steps:

Start Resolution Session

The beginning of a resolution session is triggered either implicitly by the propagator
thread descried in Chapter 4 in an attempt to automatically resolve the target transaction,
or explicitly by the user using the transaction repair tool to be discussed later in this
chapter.

Resolution I nitialization

The purpose of resolution initialization is to create the resolution object view described
in Chapter 5, so that only the original local state accessed by the target transaction and
the up-to-date global state are visible.

I nspect Replicas
The first step a resolver usually undertakes is inspecting the relevant local and global

replicas to find out the cause of inconsistency (if any) and decide the resolution actions
that can restore consistency.

Create Resolution Result

The central act of a resolution session is when the resolver performs the necessary
computation to create the resolution result. As in connected transaction execution, all
the mutation operations issued by the resolver are logged and performed locally. Their
effect is not visible on the servers until the resolution session is successfully completed.

Consistency Validation

New updates on the servers during aresol ution session may cause the resolution result to
be in conflict with the latest global state. Consistency validation safeguards the validity
of the resolution outcome by ensuring that none of the objects accessed by the resolver
have been updated on the servers during the resolution session.

Commit Resolution Result

This step gathers al the logged mutations performed by the resolver and atomically
commits them to the corresponding servers.

92 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

e Discard Resolution Result

In case the resolution session needs to aborted due to failures in consistency validation
or result commitment, all the mutations performed by the resolver will be discarded
immediately so that the local client state appears to the users as if this resolution session
has never happened.

e Discard Local Result

After the resolution result has been successfully committed to the servers, the origina
local result of the target transaction is no longer needed and isimmediately thrown away.

¢ Resolution Finalization

Asdescribed in Chapter 5, the main responsibility of resolution finalization isto properly
restore and adjust object views to reflect the resolution outcome.

Model Generality The four IOT conflict resolution options can be fully accommodated by
the resolution session model, although not all of them need to go through every step.

e Automatic ASR Execution

The automatic execution of an application-specific resolver is the most powerful res-
olution option and can be realized by the transaction system automatically invoking a
user-supplied resolver immediately after resolution initialization. The resolver will typ-
icaly inspect replicas and create the resolution result using application-specific knowl-
edge. Upon termination of resolver execution, an exi t status of zero indicates that
the resolver actions have succeeded and the transaction system will immediately commit
the resolution result. Any non-zero exi t status will cause the resolution session to be
aborted.

e Automatic Re-execution

The resolution session model regards automatic transaction re-execution asa specia case
of the previous option where the resolver is the transaction itself. The only difference
isthat the resolver starts creating the resolution result right away without examining the
relevant local replicas.

e Automatic Abort

The automatic abort option can be accomplished by the transaction system alone per-
forming only the steps that discard the local result of the target transaction and adjust
object views accordingly. Note that this option is equivalent to a resolver that does not
perform any mutation.

6.1. A COOPERATION-BASED RESOLUTION FRAMEWORK 93

e Manual Repair

The default resolution option is supported by a stand-alone transaction repair tool whose
details will be provided at the end of this chapter. After the user initiates arepair session
with the begi n_repai r command, the transaction system will perform resolution
initialization so that the user can repair the conflicts by directly operating on the relevant
objects. When the user issuesacommi t _repai r or abort _repai r command, the
transaction system will go through the necessary steps to commit or abort the repair
session respectively.

6.1.2 Supporting Application-Independent Resolution Actions

Detailed designs on supporting aresol ver to perform application-specific resol ution actions will
be presented in the next two sections. This section focuses on the basic mechanisms that are
application-independent and performed by the transaction system to support the various steps
in the cooperation-based resolution model described in Figure 6.1.

6.1.2.1 Handlingthe Resolution Result

Almost all resolution sessions involve creating, committing or discarding the resolution result.
The proper handling of resolution mutationsin thefollowing three areasisthe key to supporting
these activities.

L ogging Resolution Mutations The resolution result is created by the resolver performing
mutation operations on three kinds of targets: the global replicaof an inconsistent or local-dirty
object, the cache copy of aclean-local object, or the cache copy of a consistent object. Because
global replicas can be accessed in the same way as normal objects, al resolution mutations
are treated uniformly. Similar to connected transaction execution, mutation operations are
performed locally and logged in the CML of the corresponding volumes. Internally, the entire
resolution session is treated as a specia transaction and a unique transaction-id is used to
identify all the CML records performed by the resolver. One thing worth pointing out here
is that overwriting a clean-local file object by the resolver will cause a corresponding shadow
cache file to be created if the object has live guardians other than the target transaction. This
is because its local content needs to be saved for possible future resolution as explained in
Chapter 4.

Committing Resolution Mutations The resolution result is committed to the servers using
the underlying reintegration mechanism. Because a specia transaction-id identifies all the

94 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

logged resolution mutation operations, the commitment can be performed by the transaction
reintegration process described in Figure 4.5. Although the resolution session model requires
atomicity for result commitment, it is only guaranteed on a single-volume granularity as
explained in Chapter 4. Since most transactions and therefore their corresponding resolution
sessions only mutate objects within a single volume, either all or none of the resolution result
will be globally visible under normal circumstances. If the underlying reintegration process
fails because of lost server connections or new conflicts against the latest server updates, the
resolution session will be aborted. After the resolution mutations are successfully reintegrated,
special care must be taken to restore the original state for any clean-local object that is updated
by the resolver and has other live guardians. Such state restoration can be accomplished by the
same methods described in Chapter 5, using shadow cache files and inverse directory mutation
operations.

Discarding Resolution Mutations When a resolution session needs to be aborted, al the
resolution mutations must be immediately discarded. For mutation operations performed
on consistent objects or the global replicas of inconsistent and local-dirty objects, this can
be accomplished by simply throwing away their cache copies and the corresponding CML
records. For mutation operations performed on clean-local objects, the transaction system must
similarly restore their original state prior to the resolution session as mentioned above. The
corresponding CML records are discarded afterwards.

6.1.2.2 HandlingtheLocal Transaction Result

Discarding Local Transaction Result Ultimately, any invalidated transaction T will be
successfully resolved and its original local result needs to be discarded. The first step is to
eliminate T's effect on the cache copy of objectsin W T) . If an object obj eW T) will become
a consistent object again after resolution, its cache copy is discarded and fetching the server
replica will wipe out T's mutation on obj . If obj has other live guardians, the transaction
system needs to revert its local state to the one prior to the resolution session if resolution
initialization had adjusted the local replica of obj to represent the state last accessed by T.
This can be achieved through a process that is the inverse of the one described in Chapter 5
for restoring previous object state. The second step ssimply throws away all the CML records
belongingto TML(T) .

Preserving Local Transaction Result The ASR conflict resolution option can be used for
application-specific consistency re-validation where a resolver utilizes application semantics
to determine whether the local result of the target transaction is actually consistent with the
up-to-date global state. If such re-validation succeeds, the local result can be reused and

6.1. A COOPERATION-BASED RESOLUTION FRAMEWORK 95

committed to the corresponding servers as is. To facilitate application-specific consistency
re-validation, the transaction system provides a special preserve-operator (an 10T library call)
that can be used by theresolver to preservethelocal result of thetarget transaction. The operator
automatically replays all the logged mutation operations performed by the target transaction
on the corresponding global replicas. Note that such replay may fail because some of the
operations could bein conflict with the latest server state.

6.1.2.3 Other Issues

Resolution Initialization/Finalization Resolutioninitializationisresponsiblefor creating an
appropriate object view for the resolution session, while resolution finalization is responsible
for restoring and adjusting object views based on the resolution outcome. Details about these
two steps have been presented in the previous chapter. Thereisaminor adjustment in the object
view for a manual repair session which will be discussed in the last section of this chapter.

Resolution Consistency Validation The transactional encapsulation of a resolution session
requires the transaction system to automatically record all the objects that are accessed by a
resolver inthe sameway asrecording thetransaction readset and writeset. Sincethe consistency
validation of a resolution session is intended to ensure that none of those objects have been
changed on the servers during resolution, the transaction certification technique discussed in
Chapter 4 can be directly applied for this purpose.

6.1.3 Extending Transaction State Transitions

To fully account for the difference between automatic and manual resolution, as well as the
handling of resolutionfailures, theoriginal transaction state transition model describedin Figure
3.3 needsto be extended, as shown in Figure 6.2. The original resolving state is expanded into
several new states. Their meanings and state transitions are discussed below.

To-beresolved State When a pending transaction T is invalidated and has chosen one of
the automatic resolution options, it goes into the to-be-resolved state. The transition from the
pending state to the to-be-resolved state can be triggered by any event that would make it
known to the transaction system that there is an object whose global version cannot possibly be
equal to the local version that T has accessed. For example, it can happen when T failsthe GC
validation, when an object accessed by T is updated on the corresponding server, or when the
resolution of an earlier transaction that T read from causes T to have accessed an object value
that nolonger exists. T will remaininthe to-be-resolved state aslong asit isnot fully connected
or has at least one predecessor in the SG. As soon as it is fully connected, all its predecessors

96 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

% with partitioned file access

without
partitioned
file access

invalidated & use
manual repair

invalidated & use
automatic resolution

committed

invoke abort
repair repair
session session

invoke
resolution
session

abort
resolution
session

resolving repairing

commit
repair
session

commit
resolution

Figure 6.2: Extended 10T State Transitions

are resolved or committed, and there is no other transaction execution or resolution going on,
T will transit into the resolving state and start its automatic resolution session.

To-be-repaired State Similar to the to-be-resolved state, a pending transaction T goes into
the to-be-repaired state when it is invalidated and has selected the manual resolution option.
The transition from the pending state to the to-be-repaired state can be triggered by the same
events described above. T will go into the repairing state when the user successfully invokes
arepair session for it using the repair tool. More details about starting a repair session are
presented at the end of this chapter.

Resolving State A transaction T remains in the resolving state as long as its automatic
resolution session is still going on. If the session is successfully committed, T goes into the
resolved state. Otherwise, the transaction system will force T to be manually repaired by
transiting it into the to-be-repaired state.

6.2. AUTOMATIC CONFLICT RESOLUTION 97

Repairing State Similarly, atransaction T stays in the repairing state as long as its manual
repair session continues. If therepair session issuccessfully committed, T goesinto therepaired
state. Otherwise, it goes back to the to-be-repaired state and the users have to start another
repair session to repair it again.

Resolved and Repaired State Both the resolved and the repaired states are conceptually
identical to the committed statein that they are the final state of aterminated transaction. Once
again, for the purpose of enhancing the practical usability of 10T, we decided to use different
states to inform the users about the different paths the transaction has gone through in its
lifecycle.

6.2 Automatic Conflict Resolution

The ability to resolve conflicts automatically is vita to the overall practicality of the IOT
conflict resolution mechanisms. This section concentrates on important design issues related
to the automatic execution of a resolver, whether it is a pre-programmed application-specific
resolver or the target transaction itself. Note that the original Coda file system provides a
different application-specific resolution mechanism for resolving write/write conflicts among
server replicasfor individual objects[29]. The new automatic resol ution mechanisms discussed
inthissection are specifically designed for resolving conflicts caused by invalidated transactions
asrequired by the |OT consistency model.

6.2.1 Site of Resolver Execution

A fundamental design issue about automatic conflict resolution pertains to the site of resolver
execution. There are two main choices: on the client machine where the target transaction
was originally executed or on a selected server machine. We decided to use the same strategy
adopted by earlier work in Coda [32] and execute the resolver on the client machine for the
following reasons. First, allowing arbitrary resolversto be executed on aserver machinewould
violate the Coda security model’s basic requirement that server machines only run trusted
software. The second reason is for maintaining system scalability. Since the resource cost of
resolver execution could be significant for many applications, overall system scalability isbetter
preserved by shifting such burden to the client machines. The third and the most important
reason isthat much of the supporting machinery such as conflict representation is only present
on the client machine. Furthermore, the server machines may not be able to execute resolvers
at all if they use different architectures (CPU and operating system).

98 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION
6.2.2 Resolver Invocation

Recording Necessary Information In order to automatically resolve the target transaction
T, the transaction system must record the following information when T is initiated.

e The resolution option chosen by T, denoted opt (T) .

¢ The pathname of the application executable file of transaction T, denoted app(T) . This
is necessary when opt (T) isautomatic re-execution since the resolver isjust app(T)
itself.

e The pathname of the user-supplied resolver executable file, denoted asr (T) . Thisis
necessary when opt (T) isautomatic ASR execution.

e Theorigina execution environment of T including the command line arguments (denoted
argv(T)), the environment variable list (denoted env(T)), the umask value of the
master process (discussed in Chapter 3) of T (denoted unask(T)), and the pathname of
the working directory (denoted pwd(T)).

Restoring Original Execution Environment The automatic invocation of the resolver for
target transaction T must be performed under an appropriate environment. Our design restores
the recorded origina environment of T. The rationale behind this decision is to regard the
automatic resolution of T as an alternative computation for achieving the original goal of
T under a different system state. Because any dlight difference in execution environment
could result in drastic changes in the computation outcome, restoring the recorded execution
environment before the resolver invocation is necessary to provide an identical starting point.
Immediately before the invocation starts, the transaction system will cd into pwd(T) , set the
environment variable list to env(T) and pass ar gv(T) as the command line arguments to
the resolver.

Process Structure Automatic resolution sessions are initiated by the propagator thread. To
invoke the resolver, the propagator thread spawns a subprocess and uses the exec system
call to launch the resolver after appropriately closing the open file descriptors. Note that the
propagator thread cannot use the wai t system call to await the completion of the resolution
process because that will cause the entire Venus process to be blocked. Instead, it will yield
and sleep until it is awakened up by the Venus signal handler when it catches a SIGCHILD
generated by the termination of the resolution process. The file access operations on Coda
objects performed by the resolver are serviced by a worker thread after the corresponding
requests are passed through the kernel, as shown in Figure 6.3.

6.2. AUTOMATIC CONFLICT RESOLUTION 99

Venus process
propagator ~ worker worker
process
- fork .
exec resolver v service _
- sleep Coda idle
SIGCHLD 2 gnal acceisﬂ
file handler wake requ
access
request y
/ Coda request
N Kernel 4

Figure 6.3: The Process Structure of Automatic Resolver Execution

6.2.3 Resolver Execution
6.2.3.1 Transactional Encapsulation

The automatic execution of aresolver for the target transaction T is performed within the scope
of aspecial isolation-only transaction denotedr es(T) . Thetransaction system manipul atesthe
internal representation of r es(T) so that it implicitly inserts the begi n_i ot and end_i ot
calls before the exec and after the exi t of the resolution process respectively. The entire
execution of r es(T) isperformedin amanner similar to anormal connected transaction. All
the file access operations performed by the resolver are recorded in the readset and writeset of
res(T) . Inaddition, mutation operations are performed locally and logged in the CML of the
corresponding volumes.

6.2.3.2 HandlingFailures

The only differences between the execution of r es(T) and a regular connected transaction
are the way in which failures are handled.

Validation Failure The consistency of an automatic resolution session for target transaction T
isvalidated by performingthe OCC validationforr es(T) . For anormal connected transaction,

100 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

the response to OCC validation failure is automatic abortion and re-execution. However, this
approach isnot suitableforr es(T) because the automatic resolver execution holds exclusive
control over many client resources and automatically re-executing r es(T) could deny the
users needed services for along period of time. For simplicity, our design aborts the result of
res(T) aswell asthewholeresolution session and conservatively forcesthe usersto manually
repair T by transiting it into the to-be-repaired state.

Abnormal Termination For aregular connected transaction, the termination of its execution
means the compl etion of thetransaction regardiessof theexi t status. Withrespecttor es(T),
however, any abnormal termination such as crashes due to segmentation fault, etc., must be
treated as a failure and the resolution session must be aborted. Thus, it is very important for
the resolver to carefully check for abnormal conditions such as getting an ETI MEDOUT error
code when opening a Codafile, and exit with non-zero status appropriately.

6.2.3.3 Managing Interactivel/O

The Challenge of Interactivel/O Unix applications often employ interactive I/O to inform
the users about the status of the execution and request feedback for further computation.
Previous research has demonstrated that including interactive /O into the transaction model
is a very difficult problem and there is no general solution [54]. Handling interactive 1/0
during automatic resolution is even more of a challenge because the I/0O environment is often
different from when the target transaction was originaly executed. The user who executed
the target transaction may not even be logged in on the client machine while the resolution is
going on. In general, it is very difficult for the transaction system to automatically select the
proper devices for the resolver execution to conveniently interact with the users. The current
IOT implementation only provides limited support for the standard input/output operations
performed by the resolver so that automatic conflict resolution for typical Unix applications
can be performed. Tackling the complete problem of interactive 1/0 in automated conflict
resolution is beyond the scope of this dissertation.

Supporting Automatic Transaction Re-execution When the resolver is the target transac-
tion itself, standard 1/O during resolution is performed in the same way as during the original
transaction execution. Our strategy of supporting standard output is to maintain resolution
transparency while preserving output messages. The specific mechanism binds the standard
output of the re-execution process to a specia disk file so that a complete history of standard
output during the resolutionisrecorded. The output messages are not visibleto the users unless
specifically requested. A monitoring tool is provided to continuously display the growing
content of the special file for any user who wishes to closely follow the resolution process.

6.2. AUTOMATIC CONFLICT RESOLUTION 101

Standard input during automatic re-execution is much harder to deal with and thereis no
satisfactory solution. Although it is possible for the transaction system to create a designated
window or pseudo-terminal for the users to type input data, resolution transparency has to be
sacrificed because standard output messages must be made visible to prompt for user input.
The current 10T implementation does not provide special support for standard input other than
binding it to the terminal wherethe current Venusincarnation wasinitiated. Thus, the automatic
re-execution resolution option should be used only for applications that do not need interactive
input such as make and gcc. Fortunately, thisis not a severe limitation in practice because
Unix applications for which automatic re-execution is likely to be selected as the resolution
option typically read input from files instead of interactively from the users.

Supporting AutomaticASR Execution Thedefault support for interactivel/O during the au-
tomati c execution of an application-specific resolver isthe same as for transaction re-execution.
However, an application-specific resolver does not have to perform interactive I/O in the same
way as its corresponding transaction. It has the complete freedom to manage interactive 1/0
in its own way. For example, the resolver can take advantage of existing facilities such as
t cl /t k [52] to dynamically create windows for displaying messages to the users and reading
input data from them. An actual example using this approach will be presented in Chapter 9.
In summary, the transaction system only provides support for resolvers that perform standard
output but not standard input. If reading interactive input is a necessity for aresolver, it must
manage its own standard input and output together.

6.2.3.4 Local Concurrency Control

Strict local concurrency control isimposed to protect aresolution session from being interfered
with by the execution of other ongoing transactions. New isolation-only transactions are not
allowed to start until an ongoing resolution session is completed. Furthermore, al the cached
volumes are write-locked by the resolution process.

6.2.4 Safety |ssues

Enforcing safety is a critical issue for automatic conflict resolution because an application-
specific resolver or a target transaction itself is not a piece of trusted software. A wide
range of catastrophes from simple coding mistakes to full-fledged Trojan horse attacks have
to be guarded against. The problem is made more difficult because resolution is performed
transparently. In other words, a user may be completely unaware of the damages caused by
an erratic or even malicious resolver. We address the following three resolution safety issues
using measures similar to those used in previous Coda research [32].

102 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

Security To limit the potential damage that can be done by the automatic execution of a
resolver, the transaction system providestwo levels of security protection. At thefirst level, we
employ the set ui d mechanism so that the execution of aresolver only has the privilege of
the user who originally invoked the target transaction. Thus, the potential damageis limited to
those portions of the Coda namespace where the target transaction’s invoker has update rights.

The second level provides control over which resolvers can be automatically executed.
The transaction system will only execute resolvers residing at certain trusted locations. Users
and system administrators can store trusted resolvers in designated directories where only they
have the privilege to make changes and provide the transaction system with the pathname of
those directories. The transaction system will verify that the resolver is from one of the trusted
directories before automatically executing it. This scheme can be further extended to include
a fingerprinting mechanism [73] to detect tampering of resolvers.

Robustness Erratic resolvers with programming errors can seriously degrade the robustness
of aclient. For example, aresolver trapped in an endlessloop can hold the client hostage forever
without allowing the users to obtain needed services. As another example, a resolver waiting
for the user to provide input data without properly informing them will also lead to prolonged
service denial. The transaction system addresses thisissue by limiting the total elapsed time of
resolver execution. Because no statically chosen timelimit can meet the demand for all possible
resolution tasks, the key istoimpose alimit that is proportional to the expected amount of work
needed by the resolution task at hand. The best estimation known to the transaction system is
the target transaction’s original execution time. Since the resolver is expected to spend some
extratime probing relevant local and global replicas, we set the time limit of resolver execution
to be twice that of the original transaction execution time. There is a Venus daemon thread
that periodically checks the time limit for the resolution process. If its limit is exceeded, the
transaction system will stop the resolver execution and abort the resolution session.

Another measure that can enhance the robustness of automatic resolution is to periodically
check the progress of the resolution process. If the resolver staysidle for more than athreshold
value, there is reason to believe that it may be waiting for user input. Warning messages can
be displayed by the codacon tool [60] so that the users watching the monitoring window are
notified.

Atomicity Resolver execution can crash for various reasons such as coding errors, abnormal
conditions and client machine crashes. Coping with partial resolution results can be very
messy and needs failure atomicity support. Globally, the reintegration mechanism assures that
the resolution result will show up on the servers atomically. Localy, the partia resolution
result left behind by a resolver crash is automatically cleaned up by the relevant steps of the
resolution session. If the client machine crashes while the resolution is going on, special

6.2. AUTOMATIC CONFLICT RESOLUTION 103

cleanup is performed during the ensuing 10T-Venus start-up. The transaction system will
analyze the persistent image of theinternal system state to discover that aresolution session did
not compl ete because of the machine crash. 1t will automatically abort the unfinished resolution
session and transit the target transaction into the to-be-repaired state.

6.2.5 Programming Application-Specific Resolvers

As a fundamental component of the IOT consistency model, executing application-specific
resolvers plays a key role in automatic conflict resolution. The viability of the application-
specific resolution approach very much depends on how effectively the task of programming
the resolver of a given target application can be accomplished. In order to make resolver pro-
gramming as convenient as possible, the overall IOT design envisions a basic paradigm within
which resolvers can be methodically developed for their corresponding target applications.
Such a paradigm relies on a set of basic assumptions and is supported by the combination of
various system components as well as specialy designed facilities.

6.25.1 Programming Model

Basic Assumptions A fundamental assumption about resolver programming is that the de-
velopers of aresolver must possess intimate knowledge about the internal details of the target
application. The best candidates for writing a resolver are the target application’s origina
developers or installation site maintainers. For other programmers to develop a resolver for
an existing application, they need to devote a significant amount of time to learn the internal
mechanisms of the application. In our experience of writing resolvers for some typical Unix
applications, much of the time is spent on studying the source code of the applications. The
availability of the source code of atarget application is essential to its resolver development.

Scopelsolation Theincremental transaction propagation framework describedin Chapter 4is
designed very much with the ease of resolver programmingin mind. Invalidated transactionsare
resolved one at atime and the target transaction does not depend on any other live transactions
when it is being resolved. In addition, the conflict representation mechanisms guarantee that
the effect of other live transactions are not visible during the resolution. Therefore, the scope
of inconsistency is greatly reduced since the resol ver isrelieved from the burden of considering
complicated interactions between the target transaction and other live transactions. Logically,
the resolver can regard the target transaction as the only one performed during the disconnected
operation session. Hence, the task of a resolver is confined to investigating what the target
transaction has done locally and what has been changed globally, determining the nature of
inconsistency (if any), and performing the necessary actions to restore consistency.

104 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

Object View The design of the IOT conflict representation is directly aimed at supporting
resolver programming. Thein-placedual replicarepresentationformallowstheresolutionresult
to be created via direct mutations on the relevant global replicas, eliminating the need for the
resolver to use an extraworkspace for resolution computations. The multiple view capabilities
enable the resolver to utilize existing software tools and packages to resolve conflicts more
effectively. Finally, the automatic elimination of the target transaction’s local result further
reduces the resolver’s responsibilities.

Overall Structure For brevity, we use APP and asr (APP) to denote the target application
and its application-specific resolver respectively. A key design rationale in supporting resolver
programming is to regard the task of a resolver as performing an aternative computation to
achieve the original goal of the target transaction under a different system state. This enables
asr (APP) to be programmed with an overall structure that parallels that of APP. The main
control flow of APP can usually be decomposed into performing a sequence of specific tasks.
For each task that APP would attempt under the new conditions (reflected by the automatically
restored original execution environment and the relevant global replicas), asr (APP) can
perform the following actions.

It first checks whether the same task has already been performed by the target transaction
and whether the local result is still compatible with the global state. If so, asr (APP) can
reuse the local result by copying it into the relevant global replicas. Otherwise, asr (APP)
needs to perform the task using the up-to-date global replicas. If the original goal of the task
needs to be adjusted due to changes in the global state, asr (APP) must come up with the new
goal and perform the necessary computation to achieve it. Actions for compensating external
side effects such as sending emai | aretypicaly performed under such circumstances.

Several special resolution outcomes are worth mentioning. They are effectively degenerate
cases. If the resolver execution reuses the entire local result of the target transaction, thisis
equivalent to a successful application-specific revalidation rescuing a syntactically invalidated
transaction. If the resolution ends up performing every attempted task using the up-to-date
global replicas, it is the same as resolution via automatic re-execution. If the global state is
changed so muchthat asr (APP) doesnot attempt any task, thetarget transactioniseffectively
aborted.

6.2.5.2 Programming Facilities

The main support for resolver programming is embodied in the incremental transaction propa-
gation framework and the way conflicts are represented to the resolvers. There are two groups
of library routines designed to provide information and convenience to the resolvers. Thefirst
group includes routines that allow the resolver to test which objects are read or written by the

6.3. MANUAL CONFLICT RESOLUTION 105

target transaction. In addition, given the original pathname of a Coda object, there are routines
that can trandlate it into the pathnames of the corresponding local and global replicas. The
second group contains routines that enable the resolver to dynamically adjust object views. 1t
also includes the preserve-operator that automatically reproduces the target transaction’s local
result on the corresponding global replicas. The specific details of these routines are presented
in the next chapter.

6.3 Manual Conflict Resolution

Manual conflict resolution is the safety net of the 10T conflict resolution mechanisms. It is
used not only as the default choice of resolution options but also the fall-back mechanism
when other alternatives fail. This section first discusses the main areas where a manual repair
session differs from an automatic resolution session and then describes a repair tool provided
for manually repairing invalidated transactions.

6.3.1 Maintaining A Repair Session

Transaction Group The transaction system allows multiple transactions to be repaired in a
single session because sometimes repairing a group of related transactions together is more
effective and easier for the users to handle. Thus, each manual repair session is associated
with atransaction group TG= {T;.....T,,} (n > 1) that satisfies the following two conditions.
First, al the transactions in TG are fully connected and in the to-be-repaired state. Second,
transactions in TG do not depend on any live transactionsthat are not in TG

Identifying Repair Mutations A difficult problem in supporting a repair session is identi-
fying which mutation operations are performed for the purpose of repairing conflicts. This
is because manual repair actions can be issued by a user from different processes (e.g., from
different windows) and it is quite possible for the user to perform some mutation operations
that are completely unrelated to repairing conflicts. Since there is no reliable means for the
transaction system to exactly identify the mutation operations belonging to the repair session,
the current implementation includes al the mutation operations performed on those volumes
originally updated by the target transactions. They will be performed locally and logged in the
CML of the corresponding volumes with a special transaction-id.

Relaxed Consistency Validation Becausearepair sessioniscarried out interactively, the user
may browse many filesfor other purposes during the repair session. Itishighly inappropriateto
abort arepair session just because the user read some irrelevant objects that are updated on the

106 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

servers during the repair session. Thus, the original resolution consistency validationis relaxed
so that it only requires those objects mutated during the repair session to remain unchanged on
the servers.

Relaxed L ocal Concurrency Control Local concurrency control during arepair session still
prohibits any new isolation-only transaction to be started. However, cached volumes are no
longer write-locked and there is no limit on accessing Coda objects.

Repair Object View The usersrepairing a group of invalidated transactions are usually less
knowledgeable about the internal details of the applications involved than the corresponding
automatic resolvers. However, they typically know more about the current client state and other
live transactions. Since providing full conflict information about other transactions generally
helps the user to better repair conflicts, the mixed view is adopted for all the DRR subtrees
during arepair session.

6.3.2 TheTransaction Repair Tool

begin_repair <tid> [<tid>]
commit_repair

abort_repair

list_predecessor <tid>
list_successor <tid>

set_global view <tid>

set_local view <tid>
set_mixed_view <tid>

list_local _mutations <tid>
preserve_local_mutations <tid>>

Figure6.4: A List of Transaction Repair Tool Commands

We have developed a transaction repair tool that provides a set of commands supporting
manual transaction resolution, as shown in Figure 6.4. The usage and functionality of these
commands are as follows:

6.3. MANUAL CONFLICT RESOLUTION 107

e Thebegi n_repai r command takes alist of transaction identifiers (integers) as argu-
ments and starts a new repair session for the corresponding transactions. It will verify
the necessary conditions required by a transaction group discussed above and perform
the resolution initialization to create the repair object view.

e The comm t repai r command tries to commit the current repair session. If the
commitment fails, the repair session is automatically aborted. Because some of the
inconsistent objects may remain inconsistent even after the session is successfully com-
mitted and cause confusion to the users, this command prints out a list of such objects
and explains that they will remain inconsistent until some of their guardians are resolved
or committed.

e Theabort _r epai r command simply aborts the current repair session.

e Thel i st _predecessor andl i st _successor commandstake atransaction iden-
tifier as an argument and print out a list of SG predecessors or successors of the cor-
responding transaction respectively. The main purpose of these two commands is to
provide information about the inter-dependency among live transactions.

e The set gl obal vi ew, set | ocal .vi ewand set _nm xed_vi ew commands set
the selected view for al the inconsistent objects corresponding to the transaction whose
identifier is given as the argument.

e The preserve_l ocal _-nut ati ons command replays all the logged mutations for
the given transaction on the relevant global replicas. Itisintended to support reusing the
local result of atarget transaction being repaired by the current session.

e Thel i st | ocal _mut at i ons command prints out the local mutation operations per-
formed by the target transaction whose identifier is given as the argument.

108 CHAPTER 6. DETAILED DESIGN: CONFLICT RESOLUTION

Chapter 7

Detailed Design: User Interface

Presenting the IOT functionality to users and application programmers in a simple and easy-
to-use manner is extremely important to the viability of the |lOT model. This chapter describes
an |OT programming interface that consists of a set of library routines, an interactive interface
of aspecia C Shell, and related facilities.

7.1 Programming Interface

7.1.1 Interfacefor Programming Isolation-Only Transactions
7.1.1.1 Library Routines

Because the IOT service isintended as an extension to Unix file systems, there are two basic
alternatives to presenting its programming interface: using new system calls implemented
in the kernel or library routines at user level. We choose the latter for the following two
reasons. First, placing the IOT programming interface at system level runs against the long-
held tradition of keeping the system call interface intact while enhancing operating system
services for various purposes. Second, alibrary interface is more convenient to implement and
port to other platforms. Although the current interface is provided only in the C programming
language, it can be extended to other programming languages straightforwardly if needed.

ThelOT programminginterface containstwo basic routinesindicating the beginning and the
end of atransaction. Because of the need to specify aconflict resolution option, they arenot mere
syntactic tokens and carry crucia information from the application to the transaction system.
The definition of the two routinesis shown in Figure 7.1 and their usage and functionality are
described below.

109

110 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

typedef struct { char opt, char *asr } iot_spec;
typedef struct { char **argv, char **env,

char *pwd, int unmask
} iot_env;
int beginiot(iot spec *, iot_env *);
int endiot(int, iot_spec *);

Figure 7.1: Library Routines for Programming Transactions

The begi n_i ot routine is used to start a new transaction. Its return value is either a
positive integer which represents the identifier of the newly created transaction or a negative
integer which records an 10T-defined error code. The first argument specifies the conflict
resolution requirement of the transaction. The opt component uses pre-defined constants to
select the resolution option, and the asr component supplies the pathname of the resolver
executable file if the selected option is ASR. The second argument provides the environment
information necessary for automatic conflict resolution. The ar gv component is a list of
strings containing the pathname of the transaction application executabl e file and the command
line arguments. The env component isalist of strings representing the environment variable
definitions. The pwd component records the pathname of the working directory where the
transaction execution is started.

Theend_i ot routineisused to terminateacurrently running transaction. A returnvalue of
zero means that the call succeeded. Otherwise it contains an 10T-defined error code. The first
argument is the identifier of the transaction to be terminated, while the second argument is the
same asthefirst argument of thebegi n_i ot routine. Theoretically, i ot _end isabetter place
than begi n_i ot to specify the resolution option because the application has aready known
what happened during the transaction execution when end_i ot iscalled. However, from the
reliability point of view, begi n_i ot is a more appropriate choice because the transaction
execution may encounter abnormal situations and exit before the corresponding end _i ot ever
getscalled. Asacompromise, we allow resolution requirement to be specified in both routines.

7.1.1.2 Programming A Transaction

Well Structured Code Adaptation The programming of atransaction is straightforward by
simply using the two routinesto wrap up the code segment whose execution needs to be treated
as a transaction. When the source code of the target application is available, the additional
transaction code only needs to make up the resolution requirement specification, obtain the

7.1. PROGRAMMING INTERFACE 111

necessary environment information and put a pair of begi n_i ot and end_i ot calls at the
appropriate locations, as shown in Figure 7.2. Even if the source code of the target application
isnot available, it is still possible to put the transaction wrappers around it as shown in Figure
7.3.

#i nclude "iot.h"
/* other decls. */
extern char **environ;
mai n(char **argv, int argc) {
i ot spec spec = { ASR "/coda/ m sc/bin/resolver" };
i ot _.env env;
char pwd[MAXPATHLEN] ;
int tid,
/* other definitions */
get wd(pwd) ;
env.argv = argv; env.env = environ; env.pwd = pwd;
env. umask = umask(0); umask(env.unmask);
tid = begin.ot(&pec, &env);
/* main body */
(void) endiot(tid, &spec);
}

/* the rest of the program */

This is a template that shows the overall structure of a transaction program. ASRis a pre-defined
constant used to indicate the corresponding conflict resolution option. The error handling for the
IOT interface callsisintentionally left out for clarity.

Figure 7.2: A Template Transaction Program Using Target Application Source Code

Transactional Application Development The development of atransactional applicationis
rather simple. The IOT system provides a standard header filei ot . h that contains all the
necessary declarations and definitionsfor using thetwo 10T interface routines. The transaction
program only needsto includei ot . h and link with the provided I1OT library filel i bi ot . a.

112 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

Transaction ScopelL imitation Inprinciple, atransaction should be ableto cover any segment
of a program and obtain the standard 10T properties for the execution of that segment. In the
current implementation, it isonly suitableto bracket the entire application, i.e., thewholemai n
function of the program, as a single transaction. The main reason is that when the transaction
needs to be OCC re-executed, the transaction system is only capable of re-executing the entire
application instead of the selected segment. Note that this restriction is more the consequence
of the transaction system’s lack of run-time transaction execution knowledge rather than the
design decision of using OCC as the concurrency control algorithm. If the transaction system
were fully integrated with the application run-time system, it would be possible to provide the
ability to re-execute any segment of a program.

#i ncl ude "iot.h"

extern char *environ;

mai n(char **argv, int argc) {
i ot spec spec = { MANUAL, (char *)0 };
i ot _.env env;
char pwd][MAXPATHLEN], cnd[1024];
int tid, i;
get wd(pwd) ;
env.argv = argv; env.env = environ,
env. pwd = pwd; env.unmask = 0;
tid = begin.ot(&pec, &env);
sprintf(cnd, "/usr/msc/bin/latex");
for (i =1, i < argc; i++)

sprintf(cnmd + strlen(cnmd), " %", argv[i]);

systen(cnd);
(void)end.iot(tid, &spec);

This program can execute | at ex as a transaction using the manual conflict resolution option, as
indicated by the pre-defined constant MANUAL . The syst emcall will create a sh sub-process to
execute the assembled | at ex command. The error handling for the |OT interface callsisleft out
for clarity.

Figure 7.3: A Transaction Program not Using Target Application Source Code

7.1. PROGRAMMING INTERFACE 113

7.1.2 Interfacefor Programming Application-Specific Resolvers

We provide a set of library routinesto assist the programming of application-specific resolvers
for target applications. They are listed in Figure 7.4 and their usage and functionality is as
follows:

nt inreadset(char *);

nt inwiteset(char *);

nt set gl obal view);

nt set |ocal view);

nt set _m xed.view);

nt get |ocal replica(char *, char *);
nt get gl obal replica(char *, char *);
nt preservelocal result();

Figure 7.4: Library Routines for Programming Resolvers

e Theinreadset() andi n.wite_set () routinesalow the resolver to determine
whether a particular Coda object has been read or written by the target transaction
respectively. The argument is the pathname of the object to be tested. Any positive
return value means that the test is positive, i.e., the object has been read or written by the
target transaction respectively. On the other hand, a zero return value means that the test
is negative. A negative return value corresponds to an |OT-defined error code.

e The set gl obal view(), set |Iocal view) and set_m xed_vi ewm) rou-
tines enabl e the resolver to dynamically adjust views for the relevant inconsi stent objects
according toitsneed. A zero return value means that the call has succeeded and negative
return values are |OT-defined error codes.

e Theget | ocal replica() andget gl obal replica() routinescan transate
the pathname of a regular Coda object into the pathnames of its local or global replicas
respectively. Thefirst argument is the input pathname and the second argument contains
the result pathname of the corresponding replica. The return value has the same meaning
as the previous three routines.

114 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

e The preservel ocal resul t() routine implements the preserve operator dis-
cussed in chapter 5 which allows the resolver to reuse the local result of the target
transaction. The return value has the same meaning as the previous routines.

7.1.3 Other Issues

Communicating Between Applicationand IOT-Venus SincethelOT interfaceroutinesare
linked and executed as part of the transaction application, they must be able to communicate
with the IOT-Venus. There are several alternatives for supporting such communication, such
as using a standard RPC package. We decided to use the 1/O control call i oct | [1] on the
pseudo device where the Coda file system is mounted. The information exchange between the
interfaceroutinesand the transaction systemisencodedinthei oct | buffer and passed through
Coda’'s Mini-Cache [67] in the kernel. The main benefit of this approach is implementation
convenience. Another benefitisthat thereisless object code needsto belinked inthetransaction
executable.

Handling Automatic OCC Re-execution We decided to implement automatic OCC Re-
execution through the cooperation between theend_i ot routine and the transaction system so
that standard 1/0O operations during re-execution can be performed in the transaction’s original
execution environment. When atransaction T fails OCC validation, the transaction system will
put the internal representation of T into a special queue and notify end_i ot that T needsto be
OCC re-executed. Theend_i ot routinewill then restore T's original execution environment
obtained from the transaction system and employ the exec call to re-execute the transaction
program. When the ensuing begi n_i ot call issued by the re-execution is received by the
transaction system, it will be ableto locate T from the special queue and manipulateitsinternal
representation so that T appears asif it has just started its execution.

7.2 Interactive Interface

AlthoughthelOT programming interfaceissimpleto use, it still requiresthetarget applications
to be adapted and re-compiled before they can be executed as transactions. To enhance
Unix compatibility, we decided to develop an interactive |OT interface so that existing Unix
applications can be executed as transactionswithout change. Since Unix userstypically interact
with the operating system through a shell command interpreter, we extended the CMU C-Shell
so that transactions can be specified and executed. We use |OT-Shell to refer to the extended
C-Shell that contains a set of new built-in commands for interactive transaction specification,
execution and monitoring.

7.2. INTERACTIVE INTERFACE 115

7.2.1 Interactive Transaction Manipulation Using the | OT-Shell

Transaction Specification Figure 7.5 shows the two new commands that support interactive
transaction specification. Theset i ot command takes one mandatory argument which is the
pathname of the executable file of the application to be specified as a transaction. The other
two arguments are optional. The opt i on argument uses one of the four strings {*“manual”,
“reexec”, “abort”, “asr” } to indicate the corresponding conflict resolution option. If the “asr”
option is selected, the third argument must be supplied with the pathname of the resolver
executable file. The effect of this command is to treat any subsequent invocation of the
specified application from this shell as a transaction using the conflict resolution requirement
provided by the command arguments. The unset i ot command alows users to eliminate
a transaction specification when the corresponding application no longer needs to be treated
as a transaction. Figure 7.5 shows transaction specification examples for some commonly
used Unix applications. The similarity between set i ot /Junset i ot and the commonly used
set env/unset env commands enables the new commands to be used in traditional Unix
styles. For example, the users can use a profile to automatically set transaction specifications
at login timejust like setting environment variables.

Command Syntax
setiot <pathname> [<option>] [<asr>]
unsetiot <pathname>

Examples

setiot /usr/misc/bin/latex reexec

setiot /usr/cs/bin/make asr /coda/usr/Iugi/bin/make-asr
setiot /usr/cs/compress abort

setiot /usr/cs/bin/emacs manual

Figure 7.5: Transaction Specification Commands and Examples

Transactionlnvocation Theinvocation of atransactionisthe sameasany normal application.
When transactions are specified using the set i ot command, the 10T-Shell maintains an
internal table containing all the current transaction specifications. When a new command
is issued, the IOT-Shell will search the transaction specification table to check whether the
pathname of the command executable file is specified in the table. If so, the IOT-Shell will

116 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

automatically insert theappropriatebegi n_i ot andend_i ot callssothat theentirecommand
execution is enclosed within the scope of a single transaction.

On-line Transactions There are situations where users want to enclose a sequence of activ-
ities into the scope of a single isolation-only transaction. For example, writing a report on a
disconnected client machine often involves browsing, editing and typesetting a collection of
related files. It is desirable to treat these actions as a unit and be notified about server updates
to any of the involved files. To support this goal, the IOT-Shell provides a pair of commands
begi n_i ot andend_i ot sothat the users can bracket a sequence of shell commandsinto an
on-linetransaction. The standard |OT properties are guaranteed for on-line transactions except
that their only conflict resolution option is manual repair.

Transaction Monitoring We provide an additional command | t (short form for list trans-
actions) for displaying transaction information. When used without argument, this command
will print out the identifier, the state and the application name for al the live transactions
as well as the recently terminated ones. It can also take a transaction identifier as the argu-
ment and display detailed information about the corresponding transaction including resolution
specification, readset, writeset, and other statistics.

7.2.2 Internal Mechanismsfor I nteractive Transaction Execution

Inserting Transaction Wrappers The key to supporting interactive transaction execution is
the automatic insertion of transaction wrappers, i.e., the begi n_i ot and end_i ot calls, by
the 10T-Shell as shown in Figure 7.6. For every new command received by the IOT-Shell, it
spawns achild process which will lookup the pathname of the command’s executablefilein the
transaction specification table. If the command has been specified as a transaction, the child
process will automatically issue abegi n_i ot call using the resolution specification from the
table and spawn a grandchild process to execute the received command as a transaction. The
corresponding end_i ot call ismade as soon as transaction execution is completed. Note that
amodified end_i ot routineis used so that it will pass the OCC re-execution request from the
transaction system back to the IOT-Shell, which in turn will repeat the previous two steps to
perform automatic OCC re-execution.

Executing On-line Transactions Because an on-line transaction consists of a sequence
of commands, its execution needs special support to ensure that al the relevant file access
operations are properly included in the scope of the transaction. Because the |OT-Shell spawns
achild process for every new command it receives and assigns a new process group identifier
to it, the file access operations performed by an on-line transaction will be associated with

7.2. INTERACTIVE INTERFACE 117

different process group identifiers. This createsdifficulty for the transaction system to correctly
recognize the file access operations belonging to the on-line transaction. Our solutionisto let
the IOT-Shell inform the transaction system of the new process group identifier every time a
new command is to be executed within the scope of an on-line transaction. The transaction
system can then dynamically update the process group identifier associated with the on-line
transaction to recognize the corresponding file access operations.

shell fork child
process wait process
A A
cmd look up
cmd
normal transactional
execution‘ execution '
exec L
emd ™1 begin_iot)
grand-child
+ process
ocC. fork Y
re-execution wait ~—_| oxec
+ cmd
— end iot

Figure 7.6: Interactive Transaction Execution in the IOT-Shell

7.2.3 Controlling and Monitoring Facilities

We extended Coda'scf s [60] utility program to provide facilitiesfor controlling the behavior
of the transaction system and displaying transaction information. The “cfs shd <pct >”
command takes an integer argument (between 0 and 100) and sets it as the percentage limit
on how much cache space can be allocated for storing shadow cache files. The“cfs asrd
<pat h>" command takes the pathname of a directory as the argument and notifies the trans-
action system that the directory contains trusted resolver programs. The“cfs |t [tid]”

118 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

command prints out transaction information in the same way as the IOT-Shell’s| t command.
In addition, the transaction system uses adedicated local file/ usr / coda/ i ot/ | ogtorecord
the messages about important events such as the start of a new transaction, the commitment
of a pending transaction and the resolution of an invalidated transaction. It also includes the
standard output messages from any automatic resolver execution. There is a tool to open a
transaction monitor window that continuously displays the growing content of the messagefile.

7.2.4 A Practical Example
Figure 7.7 is the screen image of a Coda laptop showing an actual example of using the

interactive |OT interface. The work window displays the process of disconnecting the client,
specifying make and | at ex as transactions, executing a make transaction and a | at ex

10T Monitor

iot 40 accessed the following irmwalid objects
Aoodudusrdlugl ddemods 1ibdd 386 _mochAlibutils o
resolue dok 4 via wutomatic resmecubion

cd Aoodasusrelugi Ademedob s A8z s Autools

G —a -5 —o cfs cfs+o Aoodadprojectlcodadulphacdlibdpioctleo Aoodada
srolugiddemoslibAlibutilea

£35% Using ATAET CH Uerzion S.0 s

Husr-/cs.’bln/cc —LAnfs Soseomusmoludmi s o Aot @z us Al pho’lib -0 cfs —g
cfmsn AoodudprojectleodadalphaslibApioctles Aoodadus A logiddemodll
b/11but11.u -1c

xFFII0279+ 1 ek dubid

iot 40 pesclution succeeded

ot 41 i= succesrulls Peintegrate
inish time iz Sat Now 19 00206346 1394

CTEMPEST wtool=11828 ofs dizconnect
[TEMPEST twtool=1:589 setiot AusrAcs hindmake reexec : setiot AusrAmizcAbinAdlatex manual

[LTEMPEST twtools1190 make ofs

cd ScodadusrdSlugiddemosobjs s BeysSwtools

CC —g —g -0 cofs ofs,o0 AocodadprojectAdocodadalphadlibApioct]l o AcodadusrASlugiAsdemoslibAlibntkil a
mms sing ATET C4++ Wersion 3,0 MM

Jusrdoslbindoco —-LAafs A os cmu, edusmiscsot+ A Psyssalphaslib —o ofs —g —g ofs,o0 Joodadprojectdocodadal
haslibApioct]l o AocodasusrASlugisdemnoslibAlibutil a —1C

[TEMFEST fwtool=1391 cd AcodadusrSlugisdemosdos § latex paper,tex

This is TeX, C Yersion 2,991 (no format preloaded?

Cpaper, bex

LaTekx YWersion 2,09 <24 Hay 1929

CAusrAmiscs, texdlibemacrossdarticle, sty

Document Style *article’ {16 Mar 82,

tAusrsmizes texslibdmacrosAtartdld shynd (Ausrsmised texdlibemacrosAftines sty
tAusrsmizes, texdlibdmacros A pefonts . sty (paper,auxs [11 [2]1 [3] [41]
tpaper.bkl [51) [&] (paper,aus)

Output written on paper.dvi (6 pages,. 24380 bytesa,

Transcript written on paper,log,

CTEMPEST idoc]sd2 1t

TID STAHTE COMMAMHD

41 FPEHDIHG Ausrdmizcdbhindlatex paper.tex

4 FPENDIMG Ausrdocsdbindmake ofs

CTEMPEST:doc]i93 ofs reconnect

[TEMPEST ;doc13%d 1t

TID STATE COMMAMD

41 COMMITTED AdusrdmiscAdbingdlatex paper,tex

40 RESOLWED Adusrdocsshindmake ofs

[TEHPEST $doc1:95 []

Figure 7.7: A Practical Transaction Example

7.2. INTERACTIVE INTERFACE 119

transaction, reconnecting the client, and checking the transaction statususing thel t command.
At reconnection time, the make transaction is invalidated because it has linked a library
['ibutil.a which was updated on the server during the disconnection. The IOT monitor
window shows the automatic re-execution of the make transaction and the commitment of the
| at ex transaction.

120 CHAPTER 7. DETAILED DESIGN: USER INTERFACE

Chapter 8

| mplementation | ssues

The last four chapters have presented detailed designs on how to enforce the IOT consistency
model for transactions executed under various circumstances and how 1OT can be used by users
and application programmers. To complete the picture, this chapter addresses the remaining
important implementation issues.

We begin by describing the overall architecture and main components of the transaction
system. Because many of the basic mechanisms have already received in-depth coverage
in previous chapters, we focus on issues that have not yet been addressed. These include
internal transaction representation, space management for shadow cache files and tuning of the
implementation for reduced performance overhead and resource cost.

8.1 Overall Architecture

As shown in Figure 8.1, the entire transaction system is predominately implemented inside
the user-level Venus cache manager. There are two main reasons for such an architectural
organization. First, because of the strong distinction between the roles of a client and a server
in both the underlying Coda architecture and the IOT consistency model, conducting much of
the transaction operations on the client side better preserves Coda’'s security model and overall
system scalability. Second, building transaction mechanisms at user level is more convenient
for system development and maintenance.

The transaction system inside the I0T-Venus consists of four components. The execution
monitor is in charge of recording transaction execution information such as readset/writeset
and maintaining important data structures such as the transaction serialization graph. The
concurrency controller performs two levels of concurrency control: OCC across clients and
2PL within aclient. The representation manager’s main responsibility is maintaining conflict

121

122 CHAPTER 8. IMPLEMENTATION ISSUES

representation, providing accesses to local and global replicas, and managing shadow cache
files. The consistency maintainer is responsible for the central tasks of validating, committing
and resolving transactions.

Application Repair Tool
I I
Client
execution consistency _
- monitor mai ntai ner S
= 2 —
(’%— representation || concurrency i
manager controller o
10T
system

[] Kernel

This picture presents the overall architecture of the IOT extension to Coda. Each rectangular box
represents a major component of the underlying Coda system. The shaded areas represent system
components that are modified or created to support transaction operations. Note that the shaded
areain Appl i cat i on referstothe IOT interface.

Figure8.1: ThelOT System Architecture

Minor modifications are made to other parts of the Coda system. The interface between
the kernel and Venus is extended so that process information can be obtained and employed
to identify the file access operations belonging to ongoing transactions. There are some
dlight adjustments to the server to ssimplify the process of reintegrating a subsequence of
the CML of avolume. In addition, a stand-alone transaction repair tool is provided so that
invalidated transactions can be manually repaired. Finally, the cf s utility tool is extended
with new commands for controlling the transaction system behavior and displaying transaction
information.

8.2. MAINTAINING INTERNAL TRANSACTION REPRESENTATION 123

8.2 Maintaining Internal Transaction Representation

Thedesign of internal transaction representationisvery important to overall system performance
and resource consumption. This section describes the main data structures shown in Figure 8.2
and how transaction readset and writeset are recorded.

8.2.1 Main Data Structures
A Client-Wide Transaction Database To centralize data management, all the important

transaction information is stored in a client-wide data structure called | OTDB, which contains
the following items.

10TDB

. committed running pending
MsSC g5 €NV jot-|ist iot-list 1ot-list
dat a DB

iotrep
'/’ s I . _ read writeread write
/f msc 1ot 10t oot set vol-set vol-set
l data spec env
| |
objrep EIVijd
fid IEI

spec

m sc
dat a

[name || name —{ name |- Ir?gme

This figure shows the main data structures used by the internal transaction representation. Each
rectangular box corresponds to a major dataitem and the shaded areas represent data structuresthat
are further explained in the figure or the subsequent discussion.

Figure 8.2: Main Data Structuresin Internal Transaction Representation

124 CHAPTER 8. IMPLEMENTATION ISSUES

e Transaction Lists

The most important | OTDB component is a group of transaction lists, each contain-
ing al the transactions in a particular state. For example, all the running transac-
tions are in the runni ng-iot-1i st and al the pending transactions are in the
pendi ng-iot-1ist. Each element of the list is a pointer to i ot r ep, the inter-
nal representation of an 10T. The main purpose of using multiple transaction lists is
to reduce the performance overhead resulting from frequent internal search activities.
Note that terminated transactions are temporarily maintained in their lists and garbage
collected by a periodic daemon.

e Serialization Graph

The transaction serialization graph (SG) maintains the local dependency among al live
transactions with each node representing an |OT or an IFT. SG nodes and edges are
inserted and removed as transaction activities proceed. Internally, SGis represented by
agroup of doubly linked lists.

¢ Environment Database

An environment database (envDB) is created to allow different transactions executed by
the same user to share common environment variables.

e Miscellaneous Data

There are miscellaneous data items mainly used by the basic internal transaction opera-
tions. An exampleisthe wait-for graph for detecting transaction deadl ock.

Transaction Representation The interna representation of an isolation-only transaction,
referredto asi ot r ep in Figure 8.2, contains the following key elements.

e Transaction Specification

This group of information contains both the identity and the conflict resolution require-
ment of the transaction. It includes the transaction identifier, the process-id and process
group-id of the Unix process that invoked the transaction, the transaction’s selection of
resolution option and the pathname of the resolver executable file if the selected option
iISASR.

e Environment I nfor mation

i ot r ep stores the environment information needed for possible automatic resolution.
As described in Chapter 7, such information contains the pathname of the transaction
executable file, the command line arguments, the environment variable list, the unask
of the master process, and the pathname of the working directory.

8.2. MAINTAINING INTERNAL TRANSACTION REPRESENTATION 125

e Readset and Writeset

Readset and writeset are the most important components of i ot r ep. They are repre-
sented by a doubly linked list with each element containing a pointer to obj r ep, the
internal representation of an object accessed by the transaction. obj r ep records the
information about all the access operations this transaction has performed on the object.

e VolumelLists

Because of the need to frequently check transaction connectivity, alist of volumes read
by a transaction is included in itsi ot r ep with each element containing the internal
identifier of a volume. Similarly, thei ot r ep aso maintains a list of volumes that are
updated by the transaction.

e Miscellaneous Data

There are miscellaneous data items in i ot r ep for recording information such as the
current transaction connectivity, transaction execution time, etc.

Representation of a Transactionally Accessed Object The most important information
recorded in obj rep isthef i d of the object. The dataitem named spec in Figure8.2isa
bitmap recording the sub-parts of the object that are actually read or written by the transaction.
For adirectory object, itsobj r ep containsalist of the namesthat are accessed in thedirectory.
Miscellaneous data items include a pointer to the shadow cache file of the object if one exists.

8.2.2 Recording Transaction Readset/\Writeset

The most frequent internal bookkeeping activity during transaction execution is recording
readset and writeset. For every file access operation, the transaction system must detect
whether it is performed on behalf of an ongoing transaction. Because such detection needs
the process group-id associated with each file access operation, the communication interface
between the kernel and the IOT-Venus is extended to pass such process information.

Extending the Kernel/Venus Interface Client support in Coda is divided between a small
in-kernel Mini-Cache [67] and a much larger user-level Venus cache manager. The main
purpose of Mini-Cache isto reduce the frequency of kernel/Venus communication by caching a
small amount of information (such asthe result of successful | ookup calls) inthekernel. The
Mini-Cache intercepts file system calls on Coda objects from the kernel Vnode layer [28, 57]
and redirects them to the user-level Venus by exchanging messages through the Coda pseudo-
device. The information about each operation passed from Mini-Cache to Venus is defined in
the Vnode interface including the operation code, theinternal identifier of the operands and the

126 CHAPTER 8. IMPLEMENTATION ISSUES

ucr ed data about the user who issued the operation [28, 57]. Unfortunately, such information
does not include the needed process information associated with the operation. To address this
problem, we extended the Mini-Cache/VVenus communication interface to pass thisinformation,
as shown in Figure 8.3.

Application IOT-Venus
Kernel "\

VFS/Vnode L ayer

vhode_opr vnode_opr +
process info

uarea process_info Coda MiniCache

Thisfigureillustratesthe kernel extension needed for the | OT-Venusto obtain the necessary process
information for every file access operation on Coda objects. The Mini-Cache packs the process
information obtained from the kernel uar ea into messages sent to the |OT-Venus.

Figure 8.3: Extending Kernel/Venus Communication with Process Information

Recording Readset/Writeset Recording transaction readset and writeset involves searching
and updating the relevant data structures. Upon receiving anew file access operation opr from
the kernel, the first step the transaction system undertakes is checking whether opr belongsto
an ongoing transaction. This is accomplished by linearly scanning all the transactions in the
runni ng-i ot -1 i st using the attached processinformation. If opr isfoundto belongtoa
currently running transaction T, we must search T's readset or writeset depending on whether
opr isaread or update operation.

Suppose that opr is a read operation and has only one operand obj . The transaction
system will linearly search through the linked list representing T's readset. If obj isnot in
thelist, anew obj r ep iscreated and inserted into the list, storing information about obj and
the sub-parts of obj accessed by opr . If obj isalready in the readset, the spec bitmap in

8.3. SHADOW CACHE FILE MANAGEMENT 127

the obj r ep of obj isupdated to include the sub-parts of obj accessed by opr . If obj isa
directory, anew name may need to be inserted into the name-list of the obj r ep depending on
theactionsperformedby opr . Update operationsinvolving multipleoperands can be processed
in asimilar manner. Note that the performance overhead caused by the linear search activities
can be reduced by using more advanced data structures such as a hash table, particularly for
large transactions accessing hundreds of objects.

Detecting Abnormal Termination The ability to accurately identify the scope of a running
transaction influences the amount of search activity needed for recording transaction readset
and writeset. If atransaction T forgot to issuetheend_i ot call or its program exits before the
end_i ot call can be made, T will remain in the running state and cause unnecessary internal
search activities. Thus, we need a reliable mechanism to detect such abnormal transaction
termination. Intuitively, solving this problem requires either the kernel to notify the IOT-Venus
every time aprocess exits or the |OT-Venus to poll the kernel about whether the master process
of a running transaction has exited. Both approaches are costly in performance and increase
complexity to the kernel/Venus communication interface.

We use a much simpler solution based on the observation that whenever a process exits,
the kernel always closes all its open descriptors. We designate a special Coda object /coda
and internally open it for read on behalf of any transaction at the beginning of itsbegi n_i ot
call. The transaction system maintains a counter ini ot r ep which is incremented whenever
/ coda is opened by the transaction and decremented whenever it is closed by the transaction.
If the counter reaches zero while the transaction is still in the running state, this means that
the transaction’s master process has exited without calling end_i ot and the final decrement
causing the counter to reach zero resulted from the kernel closing the open /coda. Note that
this approach assumes that transactions do not close / coda without opening it first.

8.3 Shadow Cache File Management

8.3.1 Shadow Cache File Organization

As discussed in Chapter 4, the transaction system maintains two entities for each shadow cache
file, adisk container file holding the shadow content, and a shadow entry containing a pointer
to the contained file and a counter recording the number of live transactions that accessed the
shadow content. An example of the internal organization of shadow cache files is shown in
Figure 8.4. There is a central database (SCFDB) containing key information about shadow
cache files and their management. The main components of SCFDB are alist of shadow entries
and some data items used for managing shadow space allocation. The relation between a

128 CHAPTER 8. IMPLEMENTATION ISSUES

transaction and its shadow cache files is maintained by the shadow entry pointer stored in the
relevant obj r ep belonging to the transaction.

SCFDB | fMise

> Container File Pool

\AJ

%

|
loj-1] [obi-2] [obj-2] [obj-3
[}) } i

read write read write
et et et et

T1 T2

—|

shadow entry list

Thisfigure presents an exampletoillustratetheinternal organization of shadow cache files. SCFDB
is a central data structure that contains a list of all the shadow entries, each of them pointing
to a container file in the container file pool. The same shadow entry can be shared by multiple
transactions. There are three highlighted shadow entries shared by two live transactions T, and T».
Thefirst entry corresponds to the shadow cache file for obj - 1 that isread by T4, while the second
entry corresponds to the shadow cache file for obj - 2 that is shared by the writeset of T, and the
readset of T,. Thelast entry correspondsto the shadow cache file for obj - 3 that iswritten by T».

Figure 8.4: An Example of Internal Organization of Shadow Cache Files

8.3.2 Prioritized Cache Space M anagement

The main challenge in maintaining shadow cache files is space management. Our overall
principleis best-effort allocation, allocating shadow space as long as the physical capacity and
the user-specified policy permit. Specifically, we adopted a strategy that managesregular cache
space and shadow cache space under the same pool by assigning lower priority to shadow

8.3. SHADOW CACHE FILE MANAGEMENT 129

cache files. In addition, we introduce a user adjustable hard limit on how much shadow space
can be alocated, with the default set at 20% of the total cache capacity. The main advantage
of this combined and prioritized space allocation scheme is that it maximizes cache space
utilization while giving preferential treatment for normal cache files. When allocating space
for aregular cache file, the total available space is the capacity minus all the occupied space.
When allocating space for a shadow cache file however, the total available space is restricted
by the hard limit, asillustrated in Figure 8.5.

Shadow Space Limit

Regular Cache Space Shadow Space
User Adjustable

@

(b)

©

The picture in (@) illustrates that regular and shadow cache space alocation is similar to the stack
and heap space allocation scheme where each side starts at the end and grows toward the middle.
However, there is a hard limit on how much shadow space can grow while there is no limit on
regular cache space until the capacity isexhausted. Picturesin (b) and (c) show the situationswhere
shadow space exhausts its limit and regular cache space allocation reduces the amount of space
available for shadow cache files respectively.

Figure 8.5: Prioritized Cache Space Allocation

130 CHAPTER 8. IMPLEMENTATION ISSUES

8.3.3 Reclaiming Shadow Space

When the cache capacity is exhausted, a variety of techniques can be employed to reclam
shadow space while minimizing the negative effect on potential conflict resolution. The
current IOT implementation only supports the automatic compression mechanism.

Manual Deletion One approach is to provide information about shadow space usage and to
allow usersto select filesto be deleted. However, this approach exposes the details of resource
management and puts extra burden on the users.

Incorporating User Heuristics We allow the users to supply heuristics to the transaction
system so that the shadow cache files for those objects that are deemed unimportant to conflict
resolution can be automatically reclaimed. For example, a shadow cache file recording the
content of alarge object file created by a make transaction can be safely discarded because it
can be easily regenerated.

Compression Compression is a commonly used technique for reducing file size without
information loss. Inthe context of reclaiming shadow space, it has an extra advantage because
most shadow cache files are discarded without ever being used, eliminating the need for de-
compressing.

8.4 Implementation Optimizations

Many aspects of the transaction system have been optimized to minimize the performance
degradation and resource consumption resulting from transaction operations. This section
describes the most important cases of these optimizations.

8.4.1 Lazy Serialization Graph Maintenance

One performance optimization is lazy SGmaintenance. Our initial implementation followed a
straightforward strategy: a new SG node was added as soon as a transaction was invoked and
new edges were inserted as soon as dependencies among transactions are detected. However,
this approach results in significant performance overhead during disconnected sessions where
isolation-only transactions are rarely used. The reason is that each disconnected mutation
operation is treated as a separate inferred transaction and requires adding a new node and
related edges to SG. Because SG is maintained in persistent storage, each update entails an
asynchronous disk /O operation, which substantially increases the performance overhead.

84. IMPLEMENTATION OPTIMIZATIONS 131

To aleviate this problem, we switched to alazy maintenance scheme where SGupdates are
delayed until necessary. There are two situations where SG needs to be updated immediately.
The first situation is when an isolation-only transaction completes its execution and enters the
pending state. The transaction system must establish all the edges representing the dependency
between the newly completed transaction and other live transactions. The second occasion
is when a partition is healed and disconnected transactions must get ready for validation and
commitment/resolution. The propagator thread requires the correct dependency among all
the live transactions during the incremental transaction propagation process. This technique
substantially reduces the performance overhead for disconnected operation, particularly when
isolation-only transactions are seldom used. When isolation-only transactions are not used
at all during a disconnected operation session, a further optimization is adopted to skip SG
building al together and avoid penalizing the users for the service that they do not use.

8.4.2 Coalescingthe Serialization Graph

Ty
*
T2 Ta T
T3
Ts Ts

(a) Before Coalescing (b) After Coalescing

The picture in (a) shows an SG containing two nodes(large and dark) corresponding to 10Ts and
four nodes (small and light) corresponding to consecutively executed IFTs. Asdescribed in Chapter
4, an edge from T; to T; means that transaction T; must be serialized before transaction T;. The
picture in (b) shows the result of coalescing with the large light node representing the compound
node.

Figure 8.6: An Example of Coalescing a Serialization Graph

132 CHAPTER 8. IMPLEMENTATION ISSUES

Another SG maintenance optimization is to reduce the space cost by coal escing the nodes
corresponding to a consecutive sequence of inferred transactions. For a long-lasting discon-
nected operation session containing few isolation-only transactions, there could be a large
number of SGnodes and edges corresponding to inferred transactions. We have experienced
SGswith hundredsof nodesand over two thousand edges. A huge SGcosts asignificant amount
of persistent storage space, a scarce resource on amobile client. To mitigate this problem, we
have modified the SG maintenance mechanism so that the nodes corresponding to a long se-
guence of consecutively executed inferred transactions will be automatically coalesced into a
compound node whenever transaction propagation is triggered. Edges among the coalesced
nodes are eliminated while those in and out of the group are preserved and connected to the
compound node, as shown in Figure 8.6.

Thismethod candrastically reducethe size of SGand itspersistent space cost. Thepricepaid
for this optimization is that all the inferred transactions corresponding to the coalesced nodes
must now be treated as aunit, validated and committed together. Theincreased granularity can
lead to unnecessary dependency among transactions. In the example shown in Figure 8.6, if
transaction Ty isinvalidated, transaction T, must wait until Tg is resolved to be propagated to
the server. Without SG coalescing, the transaction system will know that T, does not depend
on Ty and can be propagated without waiting. However, thanksto the low likelihood of conflict
in practice, this strategy is acceptable and consistent with the batch reintegration adopted in the
vanilla Venus.

8.4.3 Sharing Environment Variables

Another optimization that can significantly reduce persistent space cost is sharing environment
variables among live transactions. As will be shown in the next chapter, the persistent space
used to store environment variablesis about 2KB per transaction in our environment. The key
observation that leadsto this optimization is that usersrarely change their environment variable
definitions. Even if there is modification, the changes are limited to only a few variables.
Instead of maintaining an entire environment variable list for each individua transaction, the
transaction system maintains a global environment variable list in | OTDB for each user who
has invoked at least one live transaction. The environment variable information stored in the
i ot r ep of aparticular transaction only records the difference between the variables defined
in the global list and those specific to the transaction.

8.5 Persistence and Crash Recovery

Because the client can crash for various reasons such as fatal runtime errors and machine
shutdown, maintaining critical information in persistent storage is crucial for the transaction

8.5. PERSISTENCE AND CRASH RECOVERY 133

system to resume normal operations after system restart. This section focuses on recording a
persistent image of the transaction system and recovering from crashes.

85.1 Persistent Data Structures

TheRVM Package Liketherest of the Codasystem, thelOT implementation uses RVM [63],
a lightweight transaction facility, for maintaining persistent data structures. RVM exports the
abstraction of recoverable virtual memory to its host application which can map regions of
recoverable segments onto portions of its virtual address space. Accesses to mapped data are
performed using normal memory read and write operations. However, if such accesses are
bracketed with RV M’s begin and end-transaction statements, failure atomicity isautomatically
provided. RVM asynchronously flushes updates to recoverable memory to the backing disk
and allows the application to control the frequency of such flushes. The transaction system
inherits existing Coda policies of scheduling asynchronous RVM flushes during disconnected
operation [26].

Recoverable Image Almost all the important information included in the transaction data
structures discussed previously such as transaction readset/writeset, transaction specification
and environment information are stored in RVM. Because RVM space is a scarce resource,
particularly on aportable client machine, the design of the datastructures minimizesthe portion
that must remain persistent. Dataitems used to record transient system state, such asthe current
connectivity of a transaction are not kept in RVM because their values can be re-computed
from other data.

8.5.2 Crash Recovery

Upon startup, the transaction system on a client loads necessary information from RVM and
restores theinternal transaction data structuresto a consistent state so that previoustransactions
are retained and normal transaction services can be resumed.

Recovering Live Transactions Recovering transactions in the pending, to-be-resolved and
to-be-repaired state is straightforward and merely consists of reloading the RVM image of
the relevant data structures and resetting those data items that can be re-computed from other
data. Therecovery of transactionsin the running, resolving and repairing state needs additional
work. The current implementation forces such active transactions into a steady state because
thelir original execution or resolution before the crash cannot be automatically resumed. For a
running transaction, the recovery mechanism will transit it into the pending state because its

134 CHAPTER 8. IMPLEMENTATION ISSUES

execution result is still in the client cache. This allows the transaction to be propagated to the
servers via commitment or resolution. For a resolving transaction, the recovery mechanism
will automatically abort the resolution result and transit it into the to-be-repaired state. Thus,
a client crash during the resolution is considered the same as a resolver crash. Similarly, a
repairing transaction will be recovered as a to-be-repaired transaction again and the original
repairing result is automatically discarded.

Recovering Conflict Representation Because updates to the persistent data structures for
conflict representation can be originated from different modules of the transaction system and
not enclosed within asingle RVM transaction, it is possible for a client crash to occur during
certain operations such as splitting a DRR subtree and to leave the corresponding datain a bad
state. Thus, thekey to recovering conflict representation is to gather the relevant persistent data
and reorgani zethem into aprevious state that satisfiestherequirementsof conflict representation
for the involved objects. Note that some of the work up to the point of crash could be lost.
For example, alocal subtree could be left unmounted due to resolution activities when a crash
happened. The recovery mechanism must clean up the fake-joint objects of the corresponding
DRR subtree so that the local subtree can be automatically re-mounted when accessed again.
As another example, all the DRR subtrees that switched to the local or global views before the
crash will be automatically reset to the default mixed view.

8.6 Transaction Validation

Asdiscussed in Chapter 4, both OCC validation for connected transactionsand GC validationfor
disconnected transactions are performed by the underlying transaction certification mechanism.
This section discusses three important implementation issues about transaction validation that
have not been addressed in the previous chapters.

8.6.1 Overloading with Cache Coherence Maintenance

Transaction validation is an expensive operation involving exchanging a variable number
of messages between the client and the relevant servers depending on the transaction being
validated. However, it can be overloaded on Coda’'s underlying cache coherence mechanisms.

Coda servers maintain a callback for every cached object on a connected client and send a
message to break the callback of an object when its server replicais updated by another client.
As soon as the callback of an object obj is broken, the transaction system iterates through all
the live transactions that have accessed obj and immediately invalidate them if they have not
already been. If such atransaction isstill in the running state, the transaction system will make

8.6. TRANSACTION VALIDATION 135

an internal mark so that it can continue its execution and be automatically invalidated upon
completion. On the other hand, new callbacks for cached objects are al so established whenever
possible after a transaction validation contacted the servers for the corresponding objects.

During disconnected operation, all the cached objects are demoted by marking their CCS
(cache coherence status) as suspect. When the client is reconnected to the corresponding
servers, Venus (via a periodic daemon) will try to verify for each demoted object whether it
has a newer version on the server or not, and re-synchronize the local and server versions by
establishing the callback relationship and promoting the CCS. When validating a disconnected
transaction, the transaction system first checks the CCS for every accessed object. If the CCS
is demoted, it will check with the servers in the same way as the Venus daemon would do. As
aresult, it will also re-establish callback and promote CCS whenever possible.

8.6.2 Object Version Maintenance

Certifying a transaction involves comparing the local version-id and the globa version-id
of objects accessed. Asindicated in Figure 8.2, the transaction data structures do not include
version-id'sinthereadset/writeset. Thissignificantly reducesthe space cost becausethe current
Coda implementation uses a version-vector as the version-id. This means that the |OT-Venus
cache manager must maintain the following invariant for any transaction T when it is being
OCC or GC validated: For any object obj ¢(R(T) UWT)), | vv(obj) #gvv(obj) ifand
only if T accessed aversion of obj that is different from its current server replica. Recall that
| vv(obj) andgvv(obj) arethelocal and global version-vector of obj respectively.

Thekey to maintaining theinvariantisto keep | vv(obj) unchanged when obj islocaly
updated. Only the successful commitment of a local transaction that updated obj will cause
both | vv(obj) and gvv(obj) to change to an identical new version-vector. When T is
being validated, there are two basic scenarios about obj . If obj had not been locally updated
before being accessed by T, | vv(obj) representsthe server version of obj when it was last
fetched by the client. If obj had been locally updated by previous transactions before being
accessed by T, those transactions must have already successfully committed their update on
obj totheserver. Either way, | vv(0bj) representsaversion of obj that has not only been
accessed by T but has also appeared on the server. Thus, adifferent gvv(obj) meansthat T
has accessed a different version of obj than its current server replica.

8.6.3 Validation Atomicity

To guard against race conditionsamong concurrent transactions across clients, the validation of
atransaction and its ensuing commitment need to be performedin an atomic unit. Asexplained
in Chapter 4, such atomicity has not been fully provided in the current implementation. The

136 CHAPTER 8. IMPLEMENTATION ISSUES

purpose of this discussion is only to present a relatively smple scheme that can satisfy the
atomicity requirement.

Integration with 2PC The standard technique for achieving atomicity among a set of dis-
tributed activities is the two phase commitment protocol (2PC). Previous research proposed a
strategy that can integrate transaction validation and commitment into a2PC framework so that
they can be performed atomically [70, 55].

Thevalidation and the possible commitment of atransaction T startswith the client selecting
one of the involved servers as a coordinator and sending it information about (R(T) UWT))
and TML(T) . In thefirst phase, the coordinator sends a PREPARE message to all the involved
servers and their share of the objects to be validated as well as the mutations to be committed
(if any). Upon receiving the message, a participating server will performitslocal validation. If
such validation fails, a FAI L message is sent back to the coordinator. Otherwise, it will replay
the necessary mutations in shadow space [38, 5], log a PRE- COMM T record and send an OK
message back to the coordinator.

The second phase begins when the coordinator receives all the responses from the partic-
ipating servers. If al the local validations are successful, a COVM T record is logged and
the COMM T message is sent to all those servers. When a remote server receives a COVM T
message, it simply commits the shadowed replay result (if any). If any of the local validations
fails, the coordinator will send an ABORT message to those servers that voted OK so that their
replay result can be discarded. Finaly, the coordinator will notify the originating client about
the outcome of the validation and commitment.

Global Mutual Exclusion Inaddition to atomicity, the global validation of transactions must
ensurethat the correspondinglocal validationsare processed inthesame order at all theinvolved
servers. Any server participating in the validation of one transaction cannot be involved in
the same task for another. Mutual exclusion among global transaction validations is necessary
to ensure the correctness of the validation outcome. A simple scheme to achieve this can be
the following. Each server dedicates a shared resource such as a nut ex and requires that
any server thread trying to participate in the validation of a transaction must acquire exclusive
control of the resource before it can start the process. Thus, whenever a server receives a
request from a coordinator or the originating client, it will first try to grab the resource and will

havetowait if the server is already engaged in the validation of another transaction. A problem
of this approach is that servers may deadlock. However, this can be addressed by selecting an
appropriate interval to timeout and re-try.

Chapter 9

Evaluation

A working implementation of an |OT extension to the Codafile system has been operational for
nearly ayear. Thisrealization of the |IOT model in apractical distributed file system establishes
a solid foundation for us to demonstrate the viability of thisthesis. In this chapter, we provide
data from the implementation to quantify the cost of supporting IOT. We also provide some
gualitative usage data to augment the quantitative data.

9.1 Oveview

9.1.1 System Evolution and Status

An early version of an IOT extension to the Coda file system with basic transaction function-
alities and the automatic re-execution resolution capability became operational in the summer
of 1994. It served as a basic prototype for experimenting and fine tuning various design and
implementation alternatives. The lOT programminginterface aswell asthe C-Shell interactive
interface were devel oped shortly afterwards. However, further development was briefly stalled
while design and implementation complications pertaining to conflict representation and res-
olution were being resolved. In late 1994, a mgjor system overhaul and re-implementation
were conducted for the integration of the conflict representation and resolution components.
A new version supporting most of the IOT model has been operational and stable since early
1995. Sincethen, most of the development activities have been of the nature of bug fixing and
minor enhancement. The current IOT implementation supports most functionality of the IOT
model. The two major exceptions are: (a) only the global certification consistency guarantee
is provided; (b) the commitment of distributed transactions is not fully atomic.

Asof thiswriting, thel OT implementationismaintai ned as a separate branch of themainline
Coda system with the portions for conflict representation, kernel changes and server changes

137

138 CHAPTER 9. EVALUATION

being incorporated in the production Coda release. The IOT facility is available to the Coda
user community for anyone willing to install the client withthe IOT extension. The transaction
system is supported on two client platforms shown in Table 9.1. Besides being used by the
author on adaily basisfor over ayear, the |OT service has also been used by another Coda user
as a base for implementing a mobile CSCW repository system [47].

Client Brand CPU Memory | Disk (ON
desktop || DEC 5000/200 | R3000(25MHz) | 32MB | 400MB | Mach 2.6
laptop DECpc 425SL | 1486(25MHz) 32MB | 200MB | Mach 2.6

This table displays key information about the two kinds of client machines that 10T supports. In
the rest of this chapter, we will simply usetheterm | apt op and deskt op to refer to them.

Table 9.1: Client Platforms Supported by |OT

The current 10T system configuration consists of the following components. The binary
of aspecia Venus that embodies most of the transaction system (referred to as the |OT-Venus)
must be used in place of the regular Venus(referred to in contrast as the vanilla Venus). The
executable of the special IOT C-shell needs to be installed at a proper location so that it can
be used as a login shell or conveniently invoked when needed. In addition, a special repair
tool is needed for manually repairing invalidated transactions. Programming transactions or
application-specific resolversrequires the installation of a set of 10T libraries and header files.

The 10T source code lives in several Coda modules, all maintained as branches off the
mainline Coda source. The iot module implements the core IOT functionality and contains
over 9000 lines of C++ code. The venus module contains IOT related modifications and
extensions to the vanilla Venus. It is a shadow of the mainline venus module and has 24 files
containing about 1000 lines of modified or added C++ code. The source modulefor the special
|OT C-Shell is also a shadow of the CMU Mach C-Shell source containing eight source files.
The conflict representation mechanisms implemented by over 5000 lines of C++ code have
been merged into the production release of Coda. There are separate modules for the IOT
programming interface and the 10T repair tool totaling about 1000 lines of C++ code. Other
miscellaneous 10T related system items include the 10T data collection mechanism, minor
Coda server changes and Mach kernel extensions, which all have been promoted to production
Codarelease.

The current 10T implementation in Coda is more complex than anticipated. The primary
source comes from the need to operate the client in two different modes for conflict repre-

9.2. TRANSACTION PERFORMANCE 139

sentation and resolution. The design is optimized for simplifying the resolution process and
resolver programming. However, it requires using complicated data structures and algorithms
to manage replicas and the relevant system resources. The implementation could be much
more complicated if we were to provide the G1SR consistency guarantee because it would
require the servers to maintain a complete transaction history and a distributed graph during
consistency validation. Tasks such as managing server space for recording transaction history
and handling failures during consistency validation could add a great deal of complexity to the
overall system.

9.1.2 Basic Evaluation Approach

The ultimate purpose of this dissertation is to verify the thesis that an explicit transaction ex-
tension to the Unix file system with serialization-based isolation guarantees can substantially
improve consistency support for mobile file access using disconnected operation. Recall that
the specific goals we set to achieve are: offering improved consistency support for discon-
nected operations; maintaining upward Unix compatibility; and seeking good performance,
low resource cost and practical usability. The previous chapters have shown how the 10T
model, by design, meets the first two goals. This chapter focuses on the third goal: showing
that the performance and resource cost for supporting transaction operationsin Coda areindeed
acceptable.

Our evaluation approach is to rely on carefully controlled experiments. Transaction per-
formance and resource cost are evaluated based on quantitative experimental results. Other
facilities such as collected file reference traces and previous file system study data are utilized
to enhance the realism and quality of the evaluation. Section 9.2.1 and Section 9.2.2 employ
both controlled experiments and trace replay to measure |OT incurred performance overhead.
Section 9.3.1 relies on controlled experiments to measure global system resource costs such as
server CPU and I/0O time and network traffic. Section 9.3.2 uses trace simulation and analysis
to examine local system resource cost such as client disk and RVM space. Because of its
subjective nature, only a preliminary assessment of |OT usability is presented in Section 9.4.
Finally, aplan is presented for further usability evaluation in section 9.5.

9.2 Transaction Performance

The design and implementation of 10T in Coda has pursued a lightweight strategy, stripping
away as many unnecessary features as possible to minimize performance overhead. The key
performance eval uation question we want to answer is. can the Coda file system with an 10T
extension offer satisfactory overall system performance for executing common applicationswith
or without using thetransaction service? Because the performanceis predominantly influenced

140 CHAPTER 9. EVALUATION

by the underlying Coda operations, our evaluation will focus on comparing performance with
and without using transactions to determine IOT-incurred overhead.

We use the term transactional operation to stand for the file access operations that are
executed within the scope of an explicit isolation-only transaction and normal operation for
those that are outside the scope of any transaction. Obviously, an application executed as a
transaction will have to pay a performance cost. What is not so obvious is that even normal
file access operations suffer a small performance penalty when executed in a system that sup-
ports IOT. Thisis because both transactional and normal operations share the same underlying
infrastructure and the file system often has to commit internal resourcesto differentiate and co-
ordinate these two kindsof operations. We measurethe IOT incurred performance overhead for
normal operations and transactional operationsin section 9.2.1 and Section 9.2.2 respectively.

9.2.1 Performance Overhead for Normal Operations

Minimizing the performance overhead for normal file access operationsiscritical to the success
of the IOT model. Because IOT is an optional facility intended to be used only for selective
applications, normal operations usually dominate file system activities. Slowing down these
operations significantly will render the entire system unattractive to the users.

In the current implementation, almost all of the internal transaction activities occur in the
|OT-Venus, which works with the production Coda servers, kernel and client/server commu-
nication facilities. This means that our evaluation only needs to compare the performance
between the |OT-Venus and the vanilla Venus running the same set of applications. 1n addition,
the experiments focus only on disconnected operation because the current |OT implementation
performs the same amount of extrawork for normal operationsregardless of whether the client
is connected or disconnected. The specific question we investigate here is: what is the IOT
incurred performance overhead on normal file access operations for common activities during
disconnected operation?

9.2.1.1 Methodology

The main source of performance overhead comes from the need to distinguish and coordinate
the transactional and normal file access operations. For example, we need to decide for every
file access operation whether it belongsto arunning transaction or not. Thisinvolvesgetting the
additional process group information from the kernel and searching linked lists representing
active transactions. Also contributing to the overhead are the searching and bookkeeping
activities performed by internal tasks such as local concurrency control and shadow cache file
mai ntenance.

9.2. TRANSACTION PERFORMANCE 141

We use a variety of experiments to evaluate this performance overhead. Each of them
involves executing a certain workload on both the |aptop and desktop clients described in Table
9.1 and measuring the total elapsed time. The first experiment uses the Andrew Benchmark,
awidely used file system benchmark [24]. The second experiment consists of trace replay of
file references traces collected by Lily Mummert from workstations in our environment [46].
Four segments of file reference traces are replayed to emul ate the execution of the applications
that generated the references originally. From the two main target application domains of
software devel opment and document processing, we select two representative tasks from each:
compiling the Coda server and client, and typesetting a Ph.D. dissertation and athesis proposal
using | at ex.

L aptop Desktop

Vanilla 1OT Over- Vanilla IOT Over-

Venus(sec) | Venus(sec) | head Venus Venus head

MakeDir 1.3 (0.5 1.3 (05) | 0.0% 0.9 (0.6) 1.0 (05) | 11.1%
Copy 128 (09| 133 (09) | 3.9% | 113 (09) | 11.3 (09 | 0.0%
ScanDir | 147 (.7)| 156 (0.7) | 6.1% || 14.6 (0.7) | 15.6 (0.7) | 6.9%
ReadAll 236 (08)| 246 (08) | 42% | 25.2 (1.0) | 25.6 (1.0) | 1.6%
Make 85.0 (12) | 854 (10) | 0.5% || 59.2 (24) | 59.3 (1.9 | 0.2%
Total 137.4 (0.7) | 140.2 (0.9) | 2.0% | 111.2 (33) | 112.8 (25 | 1.4%

This table shows the elapsed time of executing the Andrew Benchmark as a normal application on
disconnected client machines. The time values represent the mean over ten runs of the benchmark.
Numbers in the parentheses are standard deviations. In addition, the performance overhead of

|OT-Venus versus vanillaVenusis also listed.

Table 9.2: Normal Operation Performance of Andrew Benchmark

9.2.1.2 Results

Andrew Benchmark The Andrew Benchmark performsfile access operationsin five phases.
The MakeDi r phase creates four directoriesin the test area; the Copy phase copiesfiles from
the sourcetest tree; the ScanDi r phase opens all the directories and examines the status of all
the files, the ReadAl | phase opens and reads al the files; and the Make phase compiles an
application from those files. The measured elapsed time of al five phases on both Iaptop and
desktop clientsislisted in Table 9.2.

142 CHAPTER 9. EVALUATION
The results on both laptop and desktop clients indicate that the maximum performance
overhead incurred by the IOT extension is about 7%, ignoring the MakeDi r phase which is
too short. The overall performance overhead is 2% or less. The MakeDi r phase has a higher
overhead than that of the entire benchmark and the probable cause is that the metric of seconds
is too coarse relative to its duration. Any noise in the measurement can lead to a significant
skew in the result. This can also explain why the standard deviations as a percentage of the
execution duration for this phase are higher than that of any other phase.

L aptop Desktop
Trace Vanilla IOT Over- Vanilla IOT Over-
Venus(sec) | Venus(sec) | head | Venus(sec) Venus(sec) | head
Concordl || 1655.8 (5.3) | 1659.8 (16.5) | 0.2% || 1615.8 (10.1) | 1624.6 (20.6) | 0.5%
Concord2 || 1564.8 (7.8) | 1572.4 (5.4) | 0.5% | 1541.0 (11.6) | 1546.0 (12.7) | 0.3%
Messiaen || 1523.4 (8.1) | 1537.4 (8.8) | 0.9% | 1526.8 (5.1) | 1529.8 (6.7) | 0.2%
Purcell 1564.6 (5.1) | 1570.2 (3.9) | 0.4% | 1602.6 (5.9) | 1607.6 (8.4) | 0.3%

Table 9.3: Normal Operation Performance of Trace Replay with A = 1

This table shows the elapsed time of running trace replay with A = 1 on disconnected laptop and
desktop clients. The time values represent the mean over five runs. The numbers in parentheses
are standard deviations.

TraceReplay To further examine the performance overhead of normal operations, we replay
segments of collected file reference traces as the experiment workloads. File access operations
recordedin areferencetrace arefirst extracted usingtheunt r ace tool [46] and then storedina
command file. Wethen usethecr epl ay tool [46] to re-run the file access operations recorded
in the command file. cr epl ay reads the operations from the command file and generates
Unix system calls that are serviced by the Coda file system as if they have been generated by
a human user or an application. Realism in the workload is largely preserved because the only
difference is that now a single Unix process issues al the replayed system calls whereas the
original trace might have been produced by multiple processes. The four trace segments used
in the experiments each lasted 30 minutesin their original execution and are carefully screened
to ensure that they contain active file references. Their names, purcell, messiaen, concord-1
and concord-2 come from the workstations from which the traces were taken.

Animportant issuein trace replay isto incorporate the effect of the delay intervals between
the file access operationsin the original traces. We adopt a parameter called think threshold ()

9.2. TRANSACTION PERFORMANCE 143
L aptop Desktop

Trace Vanilla 1OT Over- Vanilla |OT Over-

Venus(sec) | Venus(sec) | head || Venus(sec) | Venus(sec) | head
Concordl || 224.2 (9.0) | 225.0 (8.3) | 0.4% | 156.6 (1.5) | 157.0 (4.7) | 0.3%
Concord2 || 277.2 (5.0) | 278.6 (8.7) | 0.5% || 173.0 (3.4) | 174.2 (4.7) | 0.7%
Messiaen || 125.0 (1.6) | 125.4 (4.7) | 0.3% || 80.2 (0.8) | 80.8 (0.8) | 0.8%
Purcell 246 (0.6) | 24.8 (0.8) | 0.8% 15.4 (05) | 15.6 (05) | 1.3%

Table 9.4: Normal Operation Performance of Trace Replay with A = 60

This table shows the elapsed time of running trace replay with A = 60 on disconnected |aptop and
desktop clients. The time values represent the mean over five runs. The numbers in parentheses
are standard deviations.

proposed in [45] to control the delay effect. 1t means that any delay greater than A seconds in
the original trace will be preserved in the replay experiment. We choose two different A values
of 1 and 60 in our experiments. When A\ = 1, most of the original delays were preserved so
that the trace replay proceeds at a speed close to the original pace. When A = 60, there are
no delays between file references during the replay, giving us an opportunity to observe the
performance overhead under very 1/0 intensive conditions.

The trace replay results are shown in Table 9.3 and Table 9.4. The measured time is the
total elapsed time of executing the cr epl ay program on a given trace command file. The
observed performance overhead for normal operationsis less than 1% in almost all cases.

Software L aptop Desktop

Build Vanilla 10T Over- Vanilla IOT Over-
Task Venus(sec) Venus(sec) | head | Venus(sec) Venus(sec) | head
Venus 3662.0 (37.0) | 3679.2 (50.7) | 0.5% || 2960.8 (49.7) | 2976.0 (70.6) | 0.5%
Server 9920 (80)| 9986 (63) | 0.6% | 642.6 (46)| 645.6 (34) | 0.5%

This table shows the elapsed time of building a Coda client and a Coda server on disconnected
laptop and desktop clients. The time values represent the mean over five runs. The numbersin
parentheses are standard deviations.

Table 9.5: Normal Operation Performance of Building Coda Client and Server

144 CHAPTER 9. EVALUATION

Software Build Tasks We measure the performance of two common software build tasks in
the Coda project, building a Coda client and a Coda server. The resultsin Table 9.5 show that
the performance overhead for the two common software build tasksis only about half apercent.

Document L aptop Desktop

Build Vanilla IOT Over- Vanilla 10T Over-
Task Venus(sec) | Venus(sec) | head || Venus(sec) | Venus(sec) | head
Thesis 145.4 (06) | 146.0 (1.9 | 0.4% || 96.0 (22) | 96.4 (1.8) | %0.4
Proposal 338 (05) | 342 (05 | 1.2% || 240 (12 | 242 (0.8) | %0.8

This table shows the elapsed time of typesetting a Ph.D. dissertation and a thesis proposal using
| at ex. The time values represent the mean over five runs. The numbers in parentheses are
standard deviations.

Table 9.6: Normal Operation Performance of Typesetting a Dissertation and a Proposal

Document Build Tasks Document processing is one of the most common activities in our
target environment. We measure the performance of using | at ex to typeset a272-page Ph.D.
dissertation and a 54-page thesis proposal. The results in Table 9.6 confirm that the 10T
incurred performance overhead for normal operations in such tasksis small.

9.2.1.3 Discussion

The above set of experiments cover a broad range of workloads in disconnected operation.
The observed performance degradation for normal operations caused by the IOT extension is
small across all our workloads. The measured results are also in complete agreement with our
gualitative perception of performance in actual usage.

There are two kinds of pathological situations where the performance can be worse than
what has been measured. First, when anormal file access operation istrying to access an object
that is currently locked by an ongoing isolation-only transaction, it will have to block until
the two-phase-locking protocol completes. Second, if a normal mutation operation istrying to
update an object accessed by a currently pending transaction, additional internal work needs
to be done to create a shadow cache object. We do not take these two factors into account in
our experiments because they are rare and because their impact can vary widely, depending on

9.2. TRANSACTION PERFORMANCE 145

the frequency and the extent of interaction between transactional and normal operations. Only
empirical data from actual 10T usage can provide meaningful data on these two factors.

Finally, the current implementation has not been fully tuned for performance. More careful
tuning could lead to further reduction in the performance overhead.

9.2.2 Performance Overhead for Transactional Operations

Clearly, there are performance coststo be paid for applicationsto gain theimproved consistency
support from the |OT service. The question is, how much?. More specifically, we want to
know: what is the performance overhead for executing common applications as transactions
on a disconnected client?

9.2.2.1 Methodology

The performance overhead for transaction execution comes from a variety of sources. First,
maintaining transaction readset and writeset requires frequent operations on the linked lists
representing them, such as searching, inserting and deleting. Second, every list mutation
operation requires an RVM transaction, triggering asynchronous disk writes caused by RVM
flushes. Findly, there are other internal bookkeeping operations such as maintaining the
serialization graph, pinning transactionally accessed objects in the client cache, and recording
the transaction environment and consistency specification at transaction start-up time.

To quantify this overhead, we repeated the set of experiments described in Section 9.2.1,
this time using |OTs. Each experiment involves running the workload first encapsulated in a
transaction, and then asanormal application. The experimentsare conducted on the |OT-Venus
on disconnected laptop and desktop clients as specified in Table 9.1. We measure the elapsed
time and compare the results from the two Venii to derive the performance overhead. In order
to measure the performance of multiple transaction executions, we also compare running each
phase of the Andrew Benchmark as a separate transaction versus running the entire benchmark
as asingle transaction.

9.2.2.2 Results

Andrew Benchmark Table 9.7 show the results of executing the Andrew Benchmark as a
single transaction or one transaction per phase. Figure 9.1 presents a graphical representation
of the same data combined with the data presented earlier in Table 9.2. The performance
overhead for single transaction execution isaround 10% on both platforms. However, different
phases exhibit different levels of performance degradation. This is because the key factor in
determining transaction performance overhead is the intensity of 1/0 activity of an application.

146 CHAPTER 9. EVALUATION

Higher 1/O intensity usually leads to a bigger performance penaty. As more file access
operations are performed per unit execution time, the more likely that the transaction readset
and writeset need to be updated using RVM transactions. Hence, there are fewer opportunities
for asynchronous RVM flushes to overlap with application computation (or user think) time,
thus leading to higher performance overhead.

L aptop Desktop

Single Multiple Single Multiple
Phase Transaction Transaction Transaction Transaction
Elapsed | Over- | Elapsed | Over- | Elapsed | Over- | Elapsed | Over-

Time head Time head Time head Time head
(second) | (%) | (second) | (%) (second) | (%) | (second) | (%)
MakeDir 16 (05 | 231 1.7 (0.7) | 308 1.3 (0.5 | 300 1.4 (0.5) | 400
Copy 17.9 (1.0) | 346 195 (1.1) | 46.6 149 (1.1) | 319 16.0 (1.1) | 416
ScanDir 17.3 (0.8) | 10.9 185 (0.8) | 18.6 174 (0.7) | 115 18.0 (0.9) | 154
ReadAll 275 (1.3) | 118 282 (09) | 14.6 275 (1.1) | 74 279 (1.0) | 90
Make 87.7 (16) | 27 879 (23) | 29 605 (1.5) | 20 60.7 (1.8) | 24
Total 1520 (22) | 84 | 1558 (28) | 1113 || 1216 (27) | 7.8 | 1240 (1.9 | 9.9

Table 9.7: Transaction Execution Performance of Andrew Benchmark

Thistable shows the elapsed time of executing the Andrew Benchmark first as a single transaction
and then with each phase encapsulated in its own transaction, on disconnected laptop and desktop
clients. Thetime values represent the mean over ten runs. The numbersin parentheses are standard
deviations. The displayed performance overhead is relative to the elapsed time of executing the
benchmark as a normal application on the |OT-Venus as shown in Table 9.2.

For example, the first two phases of the benchmark take a much worse performance hit
than the overall benchmark because they contain consecutive nkdi r, creat e and st ore
operationswhichresult ininternal RVM transactions. Although the third and fourth phasesalso
require updates in the transaction readset, the overhead is much lower because these phases
spend time reading the contents of objects. This permits overlap of 1/0 from asynchronous
RVM flushes. Thelast phaseincursavery small overhead becausethereis plenty of compilation
time in between file access operations to accommodate more overlapping RVM flushes.

Theoverheadfor each phaseishigher inthe multiple-transaction execution of the benchmark
mainly due to the separate transaction initialization and finalization costs. The higher standard
deviationsfor the MakeDi r phaseisdue to the coarse metric of seconds. This magnifiesslight
timing differencesin system internal activities such as RVM flushes.

9.2. TRANSACTION PERFORMANCE 147

Total

[N
o
o

Phase 5

80
60

40 Phase 4

Phase 2 Phase 3
20
=2 (Tl [Tl

VITM VITM VITM VITM VITM VITM

o

(a) On Disconnected Laptop Client

—~140
Total

[
N
o

Elapsed Time (secs
5
o
|

80
Phase 5

60

40 Phase 4

Phase 2 Phase 3
20

Phase 1
VITM VITM VITM VITM VITM VITM

(b) On Disconnected Desktop Client

The two graphsin thisfigure plot the performance data displayed in Table 9.2 and Table 9.7. The
capital letters on the X-axis indicate the condition under which the benchmark is executed. V
means that it is executed on the vanilla Venus as a normal application. | means that the execution
is on the IOT-Venus as a normal application. T means that the benchmark is executed as a single
transaction, and M means that each phase of the benchmark is executed as a separate transaction.

Figure 9.1: Performance Comparison for Andrew Benchmark

148

CHAPTER 9. EVALUATION

L aptop Desktop
Trace Normal Transaction | Over- Normal Transaction | Over-
Execution Execution head Execution Execution head
second) (second) (%) (second) (second) (%)
Concordl || 1659.8 (16.5) | 1687.4 (20.8) | 1.7 | 1624.6 (20.6) | 1649.4 (21.3) | 15
Concord2 || 1572.4 (5.4) | 1597.8 (9.00 | 1.6 | 1546.0 (12.7) | 15534 (95 | 0.5
Messiaen || 1537.4 (8.8) | 1564.0 (195 | 1.7 | 1529.8 (6.7) | 1536.8 (8.0) | 0.5
Purcell 1570.2 (3.9) | 15754 (.0)| 0.3 | 1607.6 (84) | 16184 (6.1) | 0.7

Table 9.8: Performance of Transactional Trace Replay with A = 1

Thistable showsthe el apsed time of running trace replay asanormal applicationand asatransaction
on disconnected clients using the IOT-Venus. Because the A parameter is set at 1, the total replay
elapsed timeisclosetothe original trace duration of 30 minutes. Thetimevalues represent the mean
over five runs. The numbers in parentheses are standard deviations. The table also displays the
performance overhead of transactional trace replay relativetonormal trace replay onthe | OT-Venus.

Trace Replay We also conducted trace replay experiments to examine the transaction per-
formance overhead under actual workloads. Table 9.8 and Table 9.9 show the elapsed time of
running the trace replay experiments as transactions and their performance overhead compared
to running them as normal applications on the IOT-Venus. The same data in Table 9.3, Table
9.4, Table 9.8 and Table 9.9 are plotted into more informative graphs displayed in Figure 9.2.

L aptop Desktop
Trace Normal | Transaction | Over- Normal | Transaction | Over-
Execution | Execution | head || Execution | Execution | head
(second) (second) (%) (second) (second) (%)
Concordl || 225.0 (8.3) | 250.0 (10.8) | 11.1 || 157.0 (47) | 176.8 (5.9 | 12.6
Concord2 || 278.6 (8.7) | 309.4 (7.4) | 111 || 174.2 (47) | 201.2 (58) | 15.7
Messiaen || 125.4 (4.7) | 149.6 (29) | 19.3 80.8 (0.8) | 95.2 (36)| 17.8
Purcell 248 (08) | 29.2 (16) | 17.7 156 (05 | 174 (05 | 115

Table 9.9: Performance of Transactional Trace Replay with A = 60

Thistable showsthe el apsed time of running trace replay asanormal applicationand asatransaction
on disconnected clientsusing the |OT-Venus. Because the A parameter is set to 60, thereplay isvery
I/O intensivewith few delays between file references. The time values represent the mean over five
runs. The numbersin parentheses are standard deviations. The table aso displaysthe performance
overhead of transactional trace replay relative to normal trace replay on the |OT-Venus.

9.2. TRANSACTION PERFORMANCE

149

7350
9 Concord2
2300
E |Concordl
—250
e}
2 _
4
& 200
w Messaien
150

100

50 Purcell

VIT VIT VIT VIT

(a) Trace Replay with A = 60 on Laptop

N
N
o

Concord2

N
o
o

Concordl

=
[=2]
o

Elapsed Time (secs)
|

[
N
o

Messaien

[oc]
o

ey
o

Purcell

VT VIT VIT

(c) Trace Replay with A = 60 on Desktop

% 1800|Concord1
§ . Cgmordz Messaien ﬂjrcell
¢ -
E
'_
1200
1]
[oN
S
w

600

VT VIT VIT VIT

(b) Trace Replay with A = 1 on Laptop

~1800
0 Concordl
§ —1 Concord2 Messaien E"Cdl
e . -
£
'_
1200
n
Q
©
L

600

VT VIT VIT VIT

(d) Trace Replay with A = 1 on Desktop

The four graphsin thisfigure plot the trace replay performance data presented earlier in Table 9.3,
Table 9.4, Table 9.8 and Table 9.9. Note that there are big differences in the time scale on the
y-axis between the horizontally adjacent graphs. The letters V, |, T indicate the measurement of
running the workload on vanilla-Venus, as a normal application on |OT-Venus, and as atransaction

respectively.

Figure 9.2: Comparison of Trace Replay Performance

150 CHAPTER 9. EVALUATION

The performance of transactional replay on the four traces with A = 60 demonstrate the
negative impact of 1/O intensity on transaction performance, causing degradations between
10% to 20%. They are till significantly lower than those of thefirst two phases of the Andrew
Benchmark mainly due to their much longer execution durations, making RVM flushes less
influential intotal performance. However, they aredightly higher than that of theentire Andrew
Benchmark because the trace replay transactions have much larger readsets and writesets,
resulting in longer search times on transaction readset/writeset membership testing. Replaying
the same traceswith A = 1 only resultsin less than 2% performance overhead.

L aptop Desktop
Software Normal Transaction | Over- Normal Transaction | Over-
Build Execution Execution head Execution Execution head
Task (second) (second) (%) (second) (second) (%)
Venus 3679.2 (50.7) | 3738.8 (345 | 1.6 | 2976.0 (70.6) | 3020.0 (60.1) | 1.5
Server 998.6 (6.3) | 10186 (36)| 1.9 645.6 (34)| 655.8 (11.3) | 1.6

Table 9.10: Transaction Performance Overhead for Software Build Tasks

Thistable showsthe elapsed time of building a Coda client and a Coda server both as atransaction
and asanormal application ondisconnected clientsusing the |OT-Venus. The time val ues represent
themean over fiveruns. The numbersin parenthesesare standard deviations. Thistablealsodisplays
the transaction performance overhead comparing the two kinds of performance data listed in the
table.

Software Build Tasks The measured elapsed time for the two software build tasks are
presented in Table 9.10 and Figure 9.3. Because of the long execution duration, transaction-
triggered RVM flushes have plenty of opportunities to be overlapped with computations per-
formed by the compiler, linker, etc. Therefore, the main contributor to performance overhead
becomes search activities for the transaction readset/writeset membership test, which incur less
than 2% of performance overhead.

Document Build Tasks The measured elapsed time for the two document build tasks are
presented in Table 9.11 and Figure 9.4. The performance overhead is a little higher than
that of the two long-running software build tasks, mainly due to shorter execution duration.
This alows IOT-generated RVM flushes to have a stronger negative impact on the overall
performance.

9.2

TRANSACTION PERFORMANCE

L aptop Desktop
Document Normal Transaction | Over- Normal | Transaction | Over-
Build Execution | Execution | head || Execution | Execution | head
Task (second) (second) (%) (second) (second) (%)
Thesis 146.0 (1.9) | 150.8 (15| 3.3 | 964 (18| 99.2 (11| 29
Proposal 342 05 | 356 (06| 41 | 242 (08 | 250 (12| 3.3

Table 9.11: Transaction Performance Overhead for Document Build Tasks

This table shows the elapsed time of typesetting a Ph.D. dissertation and a thesis proposal both as
a transaction and as a normal application on disconnected clients using the |OT-Venus. The time
values represent the mean over five runs. The numbersin parentheses are standard deviations. This
table also displays the transaction performance overhead comparing the two kinds of performance

data listed in the table.

151

3L
o
o
o

Desktop Venus Build

3000

Elapsed Time (sec

2000

1000

Laptop VenusBuild

(a) Venus Build Performance

)
=
N
o
o

900

Elapsed Time (secs

300

Desktop Server Build

Laptop Server Build

(b) Server Build Performance

Thetwo graphsin thisfigure plot the performance data for the software build tasks presented earlier
in Table 9.5 and Table 9.10. Note that there is a big difference in the time scale on the y-axis
between the two graphs. The lettersV, |, T indicate the measurement of running the workload on
vanilla-Venus, as a normal application on |OT-Venus, and as a transaction respectively.

Figure 9.3: Comparison of Software Build Task Performances

152 CHAPTER 9. EVALUATION

180

5

Laptop Thesis-Build Laptop Proposal-Build

w
o

Desktop Proposal-Build

=
N
o

Desktop Thesis-Build

Elapsed Time (secs)
Elapsed Time (secs

N
o

60
10

(8) Thesis Typesetting Performance (b) Proposal Typesetting Performance

The two graphs in this figure plot the performance data for the document build tasks presented
earlier in Table 9.6 and Table 9.11. Notethat thereisabig difference in thetime scale onthe y-axis
between the two graphs. The lettersV, |, T indicate the measurement of running the workload on
vanilla-Venus, as a normal application on |OT-Venus, and as a transaction respectively.

Figure 9.4: Comparison of Document Build Task Performances

9.2.2.3 Discussion

During the IOT design and implementation stages, we expected that the performance overhead
for transaction execution would come from two main sources: transaction readset and writeset
membership testing and RVM transactions for manipulating the persistent transaction data
structures. We were very much concerned about the first source because our implementation
usesasimplelinkedlist to represent the transaction readsets and writesets. When thetransaction
Size gets bigger, the quadratic growth of search time for set membership testing could incur
significant slow down. But we decided to defer the use of more complex data structures until
measurements indicate the necessity.

Our experiment results confirm the impact of the two sources on transaction performance.
However, they also reveal the clear dominance of the second source in performance overhead
which we did not fully anticipate. The first source turns out to be only mildly influential in

9.2. TRANSACTION PERFORMANCE 153

transaction performance, even for large transactions such as the trace replay and Venus build
tasks where the transaction readsets contain hundreds of files.

In summary, 1/0 intensive applications should expect a performance degradation between
10% to 20%. Generally speaking, given the same 1/0O intensity, the longer it takes to run the
transaction theless performancepenalty it suffers. Fortunately, file access operationsare usually
interleaved with application computation time and/or user think time in normal disconnected
operation. Thus, the typical user observable performance degradation is likely to be around
3%, which is quite acceptable and in agreement with our qualitative usage experience.

Finally, the performance of the current implementation can be further fine tuned. Priority
should be given to re-arranging the persistent transaction data structures to reduce RVM flush
activities. In addition, using more advanced data structures such as hash tables in place of
linked lists to represent transaction readsets and writesets could further reduce the performance
overhead.

9.2.3 Performance of Automatic Resolution

Although automatic conflict resolutionis expected to be used only occasionaly, its performance
still needs to be investigated to make sure that it can be done within a reasonably amount of
time. Excessively slow resolution could hold up system resources for along time causing great
inconvenience.

Thelatency of anautomatic conflict resol utiontask depends mainly ontheresolver involved,
which could be an application-specific resolver or the application itself in the case of automatic
re-execution. In the current implementation, the execution of a resolver is performed in a
manner identical to a normal transaction. The performance overhead of this has already
been evaluated in section 9.2.2. Therefore, what we evaluate here is the performance cost of
resolution initialization and finalization. The main task of resolution initialization is to create
the appropriate object viewsfor theresolver, i.e., thelocalization of subtreesthat arein conflict.
Resolution finalization is mainly responsible for de-localization: i.e., removing the relevant
localized subtrees and restoring the normal object view. The specific question we investigate
is: what is the latency associated with localization and de-localization?

9.2.3.1 Methodology

The latency of localization and de-localization is determined by the size of the subtrees to be
localized and de-localized. Since subtree size can vary over a wide range depending on the
conflicts involved, we conducted a sensitivity analysis for this parameter. Based on the size of
atypical subtree (to be discussed in section 9.3.2.3 on page 176), we can obtain an estimate of
the typical latency for resolution localization and de-localization.

154 CHAPTER 9. EVALUATION
Our experiment first creates a subtree of specified size on a disconnected laptop client; it
then performs a conflicting mutation through another connected client; finally thefirst clientis
reconnected to the servers. We measure the total elapsed time for the laptop client to localize
the subtree after the conflict isdetected. Similarly, we measure the elapsed time of de-localizing

the subtree after discarding all local mutations using the repair tool.

_ _ g40000' =—= Localization Time
Subtree | Localization | De-localization |¢ « « De-localization Time
Size | Latency(ms) | Latency(ms) E .
50 2855 (28) | 2890 (194) | 200001 o
100 5852 (208) | 5804 (232 o
150 8921 (221) | 8579 (157) 20000t e’
200 | 12033 (39) | 11553 (243) =
250 | 15479 (119) | 14473 (176) 2
300 | 18985 (69) | 17655 (197) | o000l A
350 | 22707 (61) | 20870 (268)
400 | 27286 (640) | 24282 (237)
450 | 30735 (264) | 27140 (195) !
500 35617 (309) | 31096 (65) ° 100 Szuol?tree Siggf)Numbe‘;rOoOf Nodeg)00

The tablein thisfigure showsthelatency of localization and de-localization of subtrees of different

sizes. The time values are in milliseconds and represent the mean over ten runs. The numbers
in parentheses are standard deviations. The same data are plotted in the graph to present a visual

display of the relationship between localization/de-localization latency and subtree size.

Figure 9.5: Latency of Localization and De-localization

9.2.3.2 Resultsand Discussion

Figure 9.5 shows the measured latencies of localization and de-localization for different subtree
sizes. A simple linear regression finds good fit for both curves. For localization latency, the
regression coefficient is 70.62 with respect to the size of the subtree and the 22 value is .994.
For de-localization, the regression coefficient is 61.56 and the £? valueis .998. Both latencies

9.2. TRANSACTION PERFORMANCE 155

grow slightly faster than linear because they involve quadratic components in their operations
such as scanning the cached object database to perform fid-translation. The graph also shows
that the latency for localization grows a bit faster than that of de-localization. Thisis because
localization needs to perform more internal operations such as checking for un-cached objects
within alocal subtree.

To obtain an estimate of latency for resolution localization and de-localization, we need to
know the number of nodes in alocal subtree and the number of local subtrees associated with a
transactionto beresolved. Theanalysisin Section 9.3.2.4 on page 177 showsthat atypical local
subtree contains about 30 nodes. Our experience indicates that a non-certifiable transaction
typically hastwo local subtrees. Inthis case, the resolution localization/de-localization latency
should typically be between 4 and 5 seconds.

While4to 5 seconds may seem high, the cost must be considered within context of automatic
conflict resolution. First, the automatic resolution for typical applicationssuch asmake usualy
involves a fair amount of computation, making such latency insignificant. More importantly,
transparent conflict resolution relieves the user from spending possibly much more time to
manually repair conflicts. Thus, afew seconds isasmall priceto pay.

9.2.4 Other Performance | ssues

Sofar wehave evaluated the primary factorsreflecting the overal 10T performancefor common
applications in disconnected operation. In this section, we address some of the secondary
performance issues.

Connected Transaction Execution We do not measure the performance of transaction ex-
ecution in a connected environment for two main reasons. First, since 10T is intended to be
used mainly on disconnected mobile client machines, connected transaction performanceis not
a particularly important metric. Second, by design, the performance overhead of connected
transaction execution is basically the same as that of disconnected execution. The only differ-
ence is that connected transaction execution has the write-back caching effect for its mutation
operations. Even on afully connected client, all the mutations performed by a transaction are
logged and committed (reintegrated) at theend. Thisissimilar to the write-back caching policy
for propagating updates from a client to the servers. Asis well known, write-back caching
offers superior performance to the write-through caching policy currently employed by Coda.
Hence, it ispossible for transactional execution of aparticul ar application to take less timethan
its non-transactional execution on a connected client. To avoid misleading results resulting
from this major difference, we decided not to eval uate connected transaction performance.

156 CHAPTER 9. EVALUATION

Global Concurrency Control For connected transaction execution, a potentia performance
cost isthe need to automatically re-execute transactions when cross-client read/write sharing is
detected. Thisis, of course, intrinsic to the OCC concurrency control scheme. We do not have
enough usage information to offer areasonabl e estimation of how likely OCC re-execution will

be. Nor do we have sufficient data to design meaningful controlled experiments that can yield
insightful results. There have been OCC performance studies in the literature [71, 6, 75], but
they mostly assume atraditional database environment. To the best of our knowledge, there has
been no actual transaction system in practical use employing OCC as its concurrency control

algorithm. A credible study of the performance impact of OCC in a distributed file system
environment needs to await adequate usage experience.

Two Phase Commitment The 2PC protocol for distributed transaction commitment will
cause additional performance overhead. Since 2PC has not been fully implemented due to time
constraints, we cannot measure its actual performance impact. In practice, however, 2PC has
very little effect on transaction commitment performance because almost al of the transactions
we experienced only update data in a single volume. In such a situation, the atomicity of
transaction commitment is guaranteed by the current Coda’s underlying reintegration process.

Local Concurrency Control 10T usesstrict 2PL for local concurrency control among trans-
actions (both1OT and I FT). The performanceof afileaccess operationwill be affected whenever
itisinconflict with an ongoing |OT. We exclude 2PL from the evaluation for two main reasons.
First, adisconnected client istypically operated by asingle user and the likelihood of executing
concurrent transactions performing conflicting accesses on shared dataisvery low. Second, the
performanceimpact of 2PL depends on the data sharing pattern among concurrent applications.
We do not have enough transaction usage experience to design meaningful experiments to
measure such effect.

9.25 Summary

It is still premature to draw definitive conclusions about the overall IOT performance when
the system has only been used by afew users. However, the experiments we have conducted
provide substantial evidence to support the following characterizations.

The performancedegradationfor normal file access operationsissmall and barely noticeable
for most disconnected activities. The performance overhead of running common applications
as transactions is generally around 3%. When the I/O intensity of the applications increases,
the performance overhead becomes higher, typically in the range of 10-20%. Long-running
transactions tend to suffer less from 10T incurred overhead because it allows more 10T-
generated internal disk writes to overlap with application computation or user think time.

9.3. RESOURCE COST MEASUREMENT 157

Some of the performance overhead is due to certain specific implementation choices and could
be improved by using better alternatives. In summary, there is sufficient evidence to believe
that the IOT model can berealized at modest performance cost.

9.3 Resource Cost M easurement

The discussion in the previous section focused entirely on the client CPU overhead of using
|OT. But the use of IOT aso incurs other overheads, such as client memory, server CPU
and network bandwidth. The current IOT implementation ensures that normal file access
operations do not increase any system resource usage other than client CPU cycles. Hence, we
only examine resource costs associated with transactional operations. The key questions we
want to investigate are:

1. Which system resources are subject to increased consumption by transaction execution?

2. What is the overhead of executing a common application as a transaction for each kind
of affected resource?

We classify system resources into two broad categories: local system resources and global
system resources, and study the IOT impact on their usage separately.

9.3.1 Global System Resources

Global system resources refer to system resources outside of a Coda client such as network
bandwidth, server CPU time and server disk space. Because the current IOT implementation
requires no change to any server interna data structures, transaction execution does not cost
any additional server disk space. Hence, our evaluation focuses on two main global resources:
server load and network traffic. We use the term server load to refer to the total amount of
server CPU and server 1/0 time spent on behalf of a particular system task associated with
transaction operations. We studied the following two specific questions:

1. How is server load affected by transaction-related system activities?

2. How is network traffic affected by transaction-related system activities?

Thereare threekinds of transaction related activitiesthat consume global system resources:
transaction reintegration, transaction validation, and connected transaction execution. We first
present the measurements of global system resource cost incurred by transaction reintegration,
and then discuss the impact of transaction validation and connected transaction execution on
global system resource usage.

158 CHAPTER 9. EVALUATION

9.3.1.1 Server Load for Reintegrating Disconnected Transactions

Methodology When there are no transaction executions, mutations performed in a discon-
nected operation session are reintegrated to the servers in one batch requiring a single reinte-
gration operation on the corresponding servers. When there are disconnected transactions, the
mutations will be reintegrated in different batches requiring multiple reintegration operations
on the servers. Thus, theimpact of reintegrating disconnected transactions on server load boils
down to reintegrating the same set of mutations in one batch versus in multiple batches.

The server load for reintegrating a set of mutations depends on many factors such as the
number, the type and the mixture of theinvolved mutation operations. Overall, thereintegration
server load can be considered as consisting of two main factors: afixed initial setup cost and
the cost that is proportional to the number of mutation operations involved. When the number
of mutationsis small, thefirst factor dominates the reintegration server load. In contrast, when
the number of mutations is large, the second factor dominates. Moreover, it grows at a faster
than linear speed because it involves activities such as sorting.

Reintegration Server Load

Experiment One Run Two Runs
Workload (millisecond) | (millisecond)
Andrew Benchmark || 11003 (617.3) | 45429 (1276)
CFS-Build 912 (8.2) | 1724.6 (20.6)

This table shows the total elapsed time for a dedicated server to perform reintegration for the
disconnected mutations of one and two independent runs of the Andrew Benchmark and CFS-build
task. The time values are in milliseconds and represent the mean over five runs. The numbersin
parentheses are standard deviations.

Table 9.12: Impact of Disconnected Transactions on Reintegration Server Load

Asaresult, theimpact of disconnected transactions on thetotal reintegration server load can
go either way. Generally speaking, when the total number of mutationsis small, disconnected
transactions will increase the reintegration server load. On the other hand, when the total
number of mutations is large, disconnected transactions can reduce the reintegration server
load. We use two experiments to demonstrate this effect.

Thefirst experiment comparesthe server load of reintegrating one and two independent runs
of the Andrew Benchmark, which containsalargenumber of mutations. The second experiment
compares the server load of reintegrating one and two independent runs of the CFS-build task,

9.3. RESOURCE COST MEASUREMENT 159

which compiles the Coda cf s tool and contains only a few mutations. Each experiment
run consists of the execution of the workload (one or two independent runs of the Andrew
Benchmark and CFS-build task) on a disconnected laptop client and the ensuing reintegration
from the laptop client to a dedicated server. In order to eliminate possible interference from
other clients, we use a separate network between the client and the server during reintegration
and make sure that there are no other concurrent threads or RVM activities on both the client
and the server during reintegration.

Results The results of the two experiments are shown in Table 9.12. Because the Andrew
Benchmark contains a lot of mutations, the server elapsed time for reintegrating two discon-
nected benchmark runs together is much bigger than the sum of reintegrating the two runs one
at atime. In contrast, the CFS-build task contains only a few mutations. Hence, reintegrating
the two runs separately costs more server time than reintegrating them together. Suppose
that there is a disconnected operation session containing two independent runs of the Andrew
Benchmark, the reintegration server load will decrease when either of the two runsis executed
as atransaction. Conversely, if the disconnected operation session contains two independent
runs of the CFS-build task, using a transaction for either of the two runs will increase the
reintegration server load.

9.3.1.2 Network Traffic for Reintegrating Disconnected Transactions

Methodology If a disconnected operation session does not contain any transaction execu-
tion, all disconnected mutations are sent to the servers using one reintegration RPC. When
disconnected transactions areinvolved, the same set of mutationswill be broken up into several
smaller reintegration RPC calls. This results in network traffic overhead because transmit-
ting the same amount of data using multiple RPC calls consumes more packets than a single
RPC call. Unlike server load, disconnected transactions always increase reintegration network
traffic.

We use multipleindependent runs of the Andrew Benchmark to measure the network traffic
overhead by comparing reintegrating the multiple runs using a single RPC to that using one
RPC per run. The experiment was conducted in the same environment as described in section
9.3.1.1.

Results The measured results displayed in Figure 9.6 indicate that there isonly aslight over-
head in reintegration network traffic for disconnected transactions containing alarge number of
mutations, such as the Andrew Benchmark. The overhead could be higher when the involved
disconnected transactions contain only a few mutation operations.

160 CHAPTER 9. EVALUATION

)
=
(S
o
o
o

] s—a Combined Reintegration
Run Reintegration % * — Separate Reintegration
Number | Traffic(KB) £ 12000t
1 1313 (7.6) F
2 2366 (75.2) 5 oot
3 3923 (30.3) §
4 5222 (44.5) :
5 6476 (34.7) o 000
6 7689 (19.3)
7 8925 (40.3) 30007
8 10262 (38.8)
9 11537 (24.8) s
10 12858 (377) : ; ’ ' 5Numb(::rofAerreWBgenchmsairkRu%0

Thetablein thisfigure showsthe measured network traffic for reintegrating disconnected mutations
of multiple independent runs of the Andrew Benchmark. The metric used is KB and the values
represent the mean over five runs. The number in parentheses are standard deviations. The two
curves on the right plot the same data presented in the table and a linear projection based on the
reintegration traffic of a single benchmark run.

Figure 9.6: Reintegration Traffic for Multiple Runs of Andrew Benchmark

9.3.1.3 Thelmpact of Transaction Validation

Transaction validation as currently designed is just comparing version vectors for the involved
objects. We do not measure its effect on both server load and network traffic because it does
not have any long term effect on these two global system resources. The main reason isthat the
internal mechanisms for transaction validation are overloaded with those for cache coherence
maintenance, as discussed in section 8.6.1. In essence, the server workload and network traffic
spent on behalf of validating a transaction will relieve the same amount of work that otherwise
would have been carried out by client cache validation and callback maintenance, and vice
versa,

9.3. RESOURCE COST MEASUREMENT 161

9.3.1.4 Thelmpact of Connected Transaction Execution

Connected transaction execution has an impact on both the server load and the network traffic.
There are two main factors: the write-back caching effect due to mutation logging and the 2PC
protocol for distributed transaction commitment. Obviously, 2PC will increase both the server
load and the network traffic. However, the write-back caching effect of mutation logging can
influence both the server load and network traffic in either direction due to the fact that the
current Coda implementation uses a write-through caching policy.

Connected transactional execution of applications containing a large number of mutation
operations can reduce both the server load and network traffic compared to connected non-
transactional execution. There are two main reasons. First, because mutations get batched
at the client, there are opportunities to cancel redundant mutation operations as discussed in
Chapter 4. Second, it consumes less network traffic and server load to transmit and perform a
large number of mutations at once than to process them one at atime. On the other hand, both
the server load and network traffic can be increased by connected transaction execution if the
application containsonly afew mutation operations because theinitial overhead of reintegration
will dominate the cost.

We decided not to evaluate the effect of connected transaction execution on server load
and network traffic for the following reasons. First, the 2PC protocol has not been fully
implemented yet. Thus, how it increases the server load and network traffic will not be known
until the actual mechanisms are put in place. Second, a fair comparison on the server load
and network traffic between connected transactional and non-transactional executions cannot
be made until Coda implements awrite-back caching policy.

9.3.2 Local System Resources

With the continuing trend of miniaturization of portable computers, a mobile client is likely
to remain resource poor compared to its stationary counterpart. Hence, minimizing the con-
sumption of resources local to a mobile client machine is critical to the viability of the IOT
model. Two kinds of local resources are of primary concern: disk space and RVM space. Local
resources are heavily used and sometimes in shortage during disconnected operation. Our
evaluation concentrates on local resource cost of disconnected transactions. The key questions
to be addressed are:

1. What is the disk space and RVM space cost for executing a typical application as a
transaction?

2. How long can a disconnected client support transaction operations in the two target
application domains before exhausting local resources?

162 CHAPTER 9. EVALUATION
Disconnected transaction execution consumes additional client disk space in two main
categories: shadow cachefilesand the cachefilesof local objectsusedin conflict representation.
RVM spaceis used for storing persistent transaction information such as readsets and writesets,
local aobjects in conflict representation, the serialization graph, the wait-for graph and other
miscellaneous items. We only measure the first two contributors to RVM usage because the
rest of the items usually consume only atrivial amount of RVM space.

9.3.2.1 Disk Space Cost for Shadow Cache Files

Methodology A shadow cache file is created when its corresponding Coda object is to be
updated and its present content has been accessed by at least one live transaction (other than
the transaction that is doing the update). Reclamation of a shadow file occurs when all the live
transactions that accessed the shadow content are committed or resolved.

For a disconnected operation session, the total amount of disk space used for maintaining
shadow cachefilesis mainly decided by the amount of sequential read/write sharing among live
transactions (both 1OTs and IFTs) executed during the same disconnected operation session.
Estimating disk usage for shadow cache filesis difficult because of many complicating factors
such as the number, the size and the distribution of transactions as well as the sizes of objects
accessed by transactions.

Trace Identifier Machine Name Machine Type Simulation Start Records
Work-Day #1 brahms.coda.cs.cmu.edu IBM RT-PC 25-Mar-91, 11:00 197,985
Work-Day #2 holst.coda.cs.cmu.edu DECstation 3100 22-Feb-91, 09:15 354,105
Work-Day #3 ives.coda.cs.cmu.edu DECstation 3100 05-Mar-91, 08:45 136,425
Work-Day #4 mozart.coda.cs.cmu.edu DECstation 3100 11-Mar-91, 11:45 239,668
Work-Day #5 verdi.coda.cs.cmu.edu DECstation 3100 21-Feb-91, 12:00 299,560
Full-Week #1 concord.nectar.cs.cmu.edu Sun 4/330 26-Jul-91, 11:41 4,008,084
Full-Week #2 holst.coda.cs.cmu.edu DECstation 3100 18-Aug-91, 23:31 2,303,306
Full-Week #3 ives.coda.cs.cmu.edu DECstation 3100 03-May-91, 23:21 4,233,151
Full-Week #4 messiaen.coda.cs.cmu.edu DECstation 3100 27-Sep-91, 00:15 1,634,789
Full-Week #5 purcell.coda.cs.cmu.edu DECstation 3100 21-Aug-91, 14:47 2,193,320

The Recor ds column refers to the number of trace records that are actually processed by the trace
simulator during the simulated period, i.e., between simulation-start and simulation-start plus 12 or

168 hours.

Table 9.13: Information for the Work-Day and Full-Week Traces

9.3. RESOURCE COST MEASUREMENT 163

To obtain a reliable measurement on how much shadow space is needed for a typical
transaction and the accumulated shadow space cost over an extended period of disconnected
transaction operations, we decided to simulate disconnected transaction executions using col-
lected file reference traces. We choose the same ten traces that were used in a previous Coda
performance study [26]. They were carefully screened to ensure that they contain active file
references and the main application domainsinvolved are software devel opment and document
processing. There are five “Work-Day” and five “Full-Week” traces that are 12 hours and 168
hours long respectively and cover atypical working day or week for the primary user of the
workstation. Table 9.13 lists key information about each of the selected traces.

Thetracesarefed to asimulator that mimicsthe space allocation and de-all ocation activities
for disconnected transaction executions. The simulator takes as argument a list of pathnames
for those applications that are to be simulated as transactions. It tracks all the f or k and

Application Path Name Occurrence
awk /binfawk 8.72%
(o]0 /usr/cg/bin/cc 5.26%
cp /bin/cp 2.12%
cpp lusr/cs/lib/cpp 0.34%
emacs /usr/cg/bin/emacs 1.10%
find lusr/cs/bin/find 1.44%
| d lusr/cs/bin/ld 0.04%
make /usr/cg/bin/make 6.61%
rcsci /usr/misc/bin/resci 0.07%
rcsco /usr/misc/bin/rcsco 0.42%
scri be /usr/misc/bin/scribe 0.34%
sed /bin/sed 8.29%
sh /bin/sh 64.30%
Vi /usr/ucb/vi 0.95%

Thistabledisplaysthelist of applicationsthat areto be simulated astransactions. The*“Occurrence”

column showsthe percentage of each application among the total number of transactions simulated.
awk and sed are selected because both are frequently used script languages. nake, cc, cpp and
| d are commonly used in software development using the C programming language. scri be is
the only typesetting tool found in the traces, whereas the more popular | at ex is notably absent

from all trace records. Both emacs and vi are commonly used interactive editors at the time,
whiler csci andr csco areimportant toolsfor maintaining source code revisions. Finally, sh is
chosen because important tasks are often carried out viaa shell script.

Table 9.14: Simulated Transaction Applications

164 CHAPTER 9. EVALUATION

execve trace records that are performed on the selected applications and uses process group
id to identify the file reference trace records that belong to the corresponding transactions.
In order to accurately reflect important aspects of disconnected transaction execution such as
transaction optimization, the simulator maintains a mini-database of all accessed objects and
imitates key internal activities of the Venus cache manager and the transaction system. The
simulator is written based on some existing trace analysis tools and contains over 5000 lines of
C++ code, not including the linked libraries from the existing trace analysis tool package.

A key variablein this experiment is the sel ection of applicationsto be simulated as transac-
tions. We manually screened all the execve trace records and chose fourteen applications (listed
in Table 9.14) based on their importance in our target application domains and their frequency
of occurrencein thetraces. Other applicationswere not chosen either because we deemed them
of lower importance or because they do not show up in the traces.

Results Because the trace simulation experiment produced a large quantity of informative
results, we discuss them in three steps: (a) how much disk space is needed to maintain shadow
cachefilesfor an extended period of disconnected transaction operations; (b) how much shadow
spaceis needed for each individual transaction; (c) what isthe key factor in keeping the shadow
space cost low.

First, Figure 9.7 shows the high-water mark of shadow space cost for the ten traces, where
each trace is interpreted as an extended disconnected operation session. A magjority of the
Work-Day disconnected sessions require less than 100KB of shadow space. One of the traces
results in a much higher cost at about 6.4MB. The reason for this anomaly is that there are
several make transactions compiling the Coda Venus module that end up saving two shadow
copies of the SMB Venusbinary. In case shadow space is exhausted, thetwo nak e transactions
will losetheir shadow Venusbinary. Since binariesare easily regeneratedablefrom the relevant
source files, discarding the binaries will not pose serious problems for a future resolution of
these mak e transactions.

The shadow space cost in the five Full-Week sessions has much less variance, with the
highest cost less than 9M B and the average cost about 5SMB. Similar to the Work-Day sessions,
many of the repeatedly shadowed objects are software target objects such as the library file
['i brvm a (about 700KB) and the executablefiler virut i | (about S00KB) in trace #4. The
curve corresponding to the second trace is shaped like a regularly increasing step function
because of a shell script that is executed daily over-writing alarge sup [65] log file.

9.3. RESOURCE COST MEASUREMENT

165

100007 —— Trace #1 -
----- Trace #2 —
- — Trace #3 ,
i — — Trace #4 '
1000 -— Trace #5 -, ------------------------
100 - -

Shadow Space High-Water Mark(KB)
|_\
o

10 12

Time(Hour)
89- —— Trace#1| 000 = = = — = = = = = = = =
ég- ----- Trace #2 I
=< — — 4
s - — Trace #3 |
=7 | — — Trace#4 e
o) -— Trace #5 ' :
T6[L
2 - -
=5 , o
= R r
Za .~
& b J__"—_;—I___
a3 — ==
< | .
22 I
S ST o
@1 —
S o
U) L 1 1 1 1 1]
0 24 48 72 96 120 144 168
Time(Hour)

(b) Full-Week Traces

The two graphs in this figure show the high-water marks of shadow space cost recorded by the
simulator for the five Work-Day and five Full-Week traces listed in Table 9.13. Notethat the y-axis
in the Work-Day traces uses log scale to better represent the shadow space cost over time because
one of the traces has much higher cost than the others.

Figure 9.7: High-Water Marks of Shadow Space Cost

166

CHAPTER 9. EVALUATION

Total Live Read Cancelled Total Transactional
Trace | Tran. | Transaction Only Transaction File File
Count Count Transaction Count Reference Reference
Count Count Count
#1 49 | 13(265%) | 17(34.7%) | 19(38.8%) | 197,985 | 20,915(10.6%)
#2 88 | 27(30.7%) | 25(28.4%) | 36(40.9%) | 354,105 | 157,909(44.6%)
#3 50 | 14(28.0%) | 19(38.0%) | 17(34.0%) | 136,425 12,321(9.0%)
#4 26 9(34.6%) 7(26.9%) | 10(385%) | 239,668 5,298(2.2%)
#5 23 8(34.8%) 4(17.4%) | 11(47.8%) | 299,560 | 104,315(34.8%)
Avg 47.2 | 14.2(30.1%) | 14.4(30.5%) | 18.6(39.4%) | 245,548.6 | 60,151.6(24.5%)
(a) Work-Day Traces
Total Live Read Cancelled Total Transactional
Trace | Tran. | Transaction Only Transaction File File
Count Count Transaction Count Reference Reference
Count Count Count
#1 1028 51(5.0%) | 277(26.9%) 700(68.1%) | 4,008,084 2,596,980(64.8%)
#2 781 86(11.0%) | 182(23.3%) 513(65.7%) | 2,303,306 1,267,155(55.0%)
#3 495 | 57(11.5%) | 231(46.7%) | 207(41.8%) | 4,233,151 396,427(9.4%)
#4 142 | 40(28.2%) | 21(14.8%) 81(57.0%) | 1,634,789 442 855(27.1%)
#5 952 63(6.6%) | 514(54.0%) 375(39.4%) | 2,193,320 642,647(29.3%)
Avg || 679.6 | 59.4(8.7%) | 245(36.1%) | 375.2(55.2%) | 2,874,530 | 1,069,212.8(37.2%)
(b) Full-Week Traces

Table 9.15: Transaction and File Reference Statistics of Trace Simulation

Thistable shows statistics of transaction and file reference activitiesduring trace simulation such as
the number of transactions simulated during Week-Day and Full-Week, the number of transactions
that are cancelled, the number of file references that areissued by transactions, and the total number
of file references in each trace.

The shadow space cost issmall considering thelength of disconnection, therapidly growing
disk capacity on portable computers, and particularly the amount of disconnected transaction
activity shown in Table 9.15. On average, 47 transactions are executed on each Work-Day and

9.3. RESOURCE COST MEASUREMENT 167

about a quarter of the file references are performed by transactions. During a Full-Week, an
average number of 680 transactions are executed and about 37% of the file access operations
are issued by transactions.

Second, Table 9.16 contains detailed transaction information about each selected applica
tion during the trace simulation. It displays important statistics such as the total number of
transactional executions for each selected application, the number of transactions that are can-
celled, the average size of thereadset and writeset, as well as detail ed resource cost information.
The average shadow space cost associated with each live transaction is very small (lessthan a
couple of hundred bytes) for applications such as awk, cpp, | d, rcsci,rcsco, scri be,
sed and vi . Other applications such as emacs use more shadow space but average only
around a dozen KB.

The make transactions are the biggest shadow space consumers, which average around
718K B per transaction during Work-Day and 295K B per transaction during Full-Week. The
other big shadow space consumer is sh, which uses an average of 284KB per transaction
during Work-Day and 111KB per transaction during Full-Week. These two applications tend
to access large objects and have read/write sharing with subsequent transactions. However,
large shadow files are often associated with objects that can be automatically re-generated such
as library and executable files. Thus, the consequence is rather acceptable even if the limit on
shadow space is exhausted and some transactions must lose their shadow cache files.

Third, the modest shadow space usage for disconnected transactionsis primarily due to the
effectiveness of transaction cancellation. In order to find out the exact impact of transaction
cancellation on shadow space cost reduction, we perform the same trace simul ation experiment
to measure the shadow space cost without transaction cancellation, and the results are displayed
in Figure 9.8. Without transaction cancellation, the highest shadow space cost for Full-Week
is close to 115MB and the average cost is over 40MB. Compared to the data shown in Figure
9.7, the reduction in shadow space cost is about one order of magnitude. Another important
issue isthat the longer the disconnected operation duration, the more effective the transaction
cancellation is. From Table 9.15, an average of 39.4% of transactions are cancelled during
Work-Day and an average of 55.2% of transactions are cancelled during Full-Week.

168

CHAPTER 9. EVALUATION

Total | Live | Read | Cancelled | Average | Average | Average | Average
App. Trans. | Trans. | Only Trans. Read Write RVM Shadow
Name | Count | Count | Trans. Count Set Set Space Space

Count Size Size Cost(B) | Cost(B)
awk 6 0 4 2 1.0 0.3 225.0 0.0
cc 11 7 1 3 104 24 603.4 17.7
cp 27 19 3 5 220 111 | 1,562.4 211.9
cpp 10 0 10 0 16.7 0.0 805.9 0.0
emacs 14 13 1 0 229 26| 10424 2,089.8
find 3 0 3 0| 12393 0.0 | 46,043.3 0.0
Id 1 0 0 1 7.0 1.0 447.0 0.0
make 28 10 4 14 78.9 48 | 3,121.0 | 718,190.7
rcsci 1 1 0 0 13.0 7.0 785.0 0.0
rcsco 5 3 2 0 7.6 34 540.0 24.0
scribe 9 4 2 3 10.6 21 614.3 8.8
sed 16 0 16 0 0.0 0.0 190.3 0.0
sh 99 12 26 61 145 15 730.0 | 284,348.2
Vi 6 2 0 4 4.5 25 362.7 0.0
(a) Work-Day Traces

Total | Live | Read | Cancelled | Average | Average | Average | Average
App. | Trans. | Trans. | Only Trans. Read Write RVM Shadow
Name || Count | Count | Trans. Count Set Set Space Space

Count Size Size Cost(B) | Cost(B)

awk 311 0 309 2 0.02 0.01 188.8 0.0
cc 180 15 6 159 18.1 2.7 862.7 | 51,992.3
cp 50 33 10 7 30.5 153 | 2,126.3 | 28,770.2
cpp 2 0 0 2 51.5 1.0 | 2,093.5 0.0
emacs 26 22 1 3 35.6 40| 15433 | 11,054.0
find 49 2 46 1 62.5 03| 25125 | 98,906.0
Id 0 0 0 0 0 0 0 0
make 212 40 14 158 108.7 13.6 | 4,726.4 | 294,566.5
rcsci 1 1 0 0 13.0 7.0 779.0 0.0
rcsco 10 9 0 1 9.0 4.6 614.4 384.0
scribe 3 2 0 1 13.7 3.0 745.7 175
sed 285 1 279 5 0.1 0.02 193.1 0.0
sh 2241 165 561 1515 50.9 25| 2,108.1 | 111,366.7
Vi 28 6 0 22 55 24 390.2 99.7

(b) Full-Week Traces

Table 9.16: Transaction Application Statistics Of Trace Simulation

9.3. RESOURCE COST MEASUREMENT 169

é\lOOOO [—— Trace #1 .

= || ----- Trace #2 e — e —

S - — Trace#3| L.t } --------------------------

= i — — Trace#4| - .

= 1000 -— Trace #5|, .. ,

(&) .

c

]

O

O 1001

=

)

(&)

(4]

o

0 101

=

O v

kS :

& |
0 2 4 6 8 10 12

Time(Hour)

(a) Work-Day Traces

120 —— Trace #1
----- Trace #2
1001 - — Trace #3
— — Trace #4
-— Trace #5

(0]
o

N
o

N
o

Shadow Space W/O Cancellation(MB)
(2]
o

0 24 48 72 96 120 144 168
Time(Hour)

(b) Full-Week Traces

The two graphsin this figure show the high-water marks of recorded shadow space cost when the
simulator does not perform transaction cancellation for the 10 traces listed in Table 9.13. Similar
to Figure 9.7, the y-axisin the Work-Day traces uses log scale.

Figure 9.8: Shadow Space Cost Without Transaction Cancellation

170 CHAPTER 9. EVALUATION

9.3.22 RVM Space Cost for Persistent Transaction Data Structures

Methodology For each transaction, key information such as the readset and writeset, the list
of accessed volumes, the conflict resolution option, and the execution environment needs to
be stored in RVM. These persistent transaction data structures are maintained only when the
transaction is alive and are reclaimed as soon as the transaction is committed or resolved. Two
main factors decide the total amount of RVM cost for persistent transaction data structures.
The first factor is the duration of a disconnected operation session: longer sessions typically
result in more live transactions. The second factor is the transaction usage pattern such as the
number and size of live transactions.

We empl oy the same trace simul ation experiment described in the previous Section (9.3.2.1)
to measure the accumulated RVM cost over a sustained period of disconnected transaction
operations. We also use controlled experiments to measure the RVM cost for individual
transactions. The experiment workloads include software build and document build tasks of
small, medium and large sizes. In addition, we execute three different synrgen micro models
[12] as interactive transactions containing repeated editing and compiling activities.

RVM Space Cost(Byte)
Application Total | Readset | Writeset | Volume-set | Other
Latex Dissertation(252 pages) 3162 2340 612 96 114
Latex Proposal (54 pages) 1052 756 108 80 108
Latex Short Paper(6 pages) 830 540 108 80 102
Build Coda Venus 13278 8280 4794 9% | 108
Build Coda Server 7493 6012 1247 128 | 106
Build Repair Tool 2146 1584 340 112 | 110
Synrgen Codahacker 6071 2700 3205 48 118
Synrgen Programmer 5933 2664 3103 48 118
Synrgen Synrgenhacker 5641 2664 2808 48 121

This table shows the measured RVM space cost breakdown for executing common applications
as transactions. The Readset, Wit eset and Vol une- set columns display the RVM cost
for storing the transaction readset, writeset and the list of accessed volumes. The Ot her column
contains the RVM cost for storing the conflict resolution option, process group id, and pathname
of the working directory, etc. Note that the total cost here does not include the RvM space used to
store the environment variable list, which is stored in a shared environment variable database and
its average RVM space cost is about 2.4KB.

Table 9.17: RVM Cost for Common Transactions

9.3. RESOURCE COST MEASUREMENT 171

@120 - —— Trace #1
>~ || Trace #2
@ — — Trace #3
= o — — Trace #4
o %0 -— Trace #5 4/
<
=
S
F 60
o e
(&S]
S
(% ---------
S 30f e o
é — - — e — e — - .
R e
et R .
0 2 4 6 5 " -
Time(Hour)
(a) Work-Day Traces
51500 [—— Trace #1
>~ || Trace #2
S L - — Trace#3|
= 1200 — — Trace #4
3 -— Trace #5 o : .
g . . __.n
> 900T - o
2 .
3 AR |
© e0Of g
S
o
U) _____
= 300f
m ________
et ——
0 24 48 72 96 120 144 168
Time(Hour)
(b) Full-Week Traces

The two graphsin thisfigure show the high-water marks of RV M space cost recorded by the simula-
tor for the five Work-Day and five Full-Week traceslistedin Table 9.13. The simulator assumes that
the environment variable list for individual transactionsis stored in a shared environment database
occupying 3KB RVM space.

Figure 9.9: High-Water Marks of RVM Space Cost

172

CHAPTER 9. EVALUATION

@120 [— Trace #1

~ || - Trace #2

8 - — Trace#3| | e

= — — Trace #4 ’

(5 L

5 90 — Trace #5

o | -V ..t

=

]

O

O 60

=

(¢b]

(&S]

c

& 30 T

= r LTI T — -

> S -

o - — - ._/ _

e — T L — —
0 2 4 6 8 10 12
Time(Hour)
(a) Work-Day Traces

@2000 [— Trace #1

= || Trace #2

© - — Trace #3

< || — — Trace#4 B

% 1500 — Trace #5 /

(&)

C

]

O

Q10001

=

(b]

(&)

]

o

9 500f

=

S

o

0 24 48 72 96 120 144 168
Time(Hour)
(b) Full-Week Traces

The two graphs in this figure show the high-water marks of recorded RVM space cost when the
simulator does not perform transaction cancellation for the 10 traces listed in Table 9.13.

Figure 9.10: RVM Space Cost Without Transaction Cancellation

9.3. RESOURCE COST MEASUREMENT 173

Results Similar to the discussion of shadow space cost, we present the measurement results
on RVM space cost in three steps: (a) how much RVM space is needed for an extended period
of disconnected transaction operation; (b) how much RVM space is needed for each individual
transaction; (c) what the key factor isin keeping the RVM space cost low.

First, Figure 9.9 displays the high-water marks of RVM space cost recorded during trace
simulation. The simulator assumes that the total RVM space cost for maintaining the shared
environment variable database is 3KB, which is typical under normal circumstances. For
supporting disconnected transaction operations in a Work-Day, the highest RVM space cost is
about 100K B and the average RVM space cost is less than 50KB. For the longer duration of a
Full-Week, the highest RVM space cost isabout 1.2MB and the average cost is about half aMB.
Once again, considering the length of the disconnected duration and the amount of transaction
activity shown in Table 9.15, such RVM space costs are acceptable.

Second, we discuss the measurement results on RV M space cost for individual transactions
from both trace simulation and controlled experiments. Note that the RVM space cost shown
in Table 9.16 does not include the environment variable list since we store them in a shared
environment variable database as described in Chapter 8. For most applications, the RVM
space cost per transaction is quite small, from a couple hundred bytes to several KB. The only
exception isthef i nd transactions in the Work-Day traces where they read 1239.3 objects on
average and cost about 46KB RV M space per transaction. Table 9.17 liststhe RVM space cost
for running typical applications as transactions ranging from 1KB to 13KB.

Third, transaction cancellation again plays an important role in keeping the accumulated
RVM space cost low over an extended period of disconnected transaction operations, as shown
in Figure 9.10.

9.3.2.3 Disk Space Cost for Conflict Representation

Methodology When asubtreeislocalized to represent the client state of an object in conflict,
al the local objects inside the subtree still retain their container cache file. This results
in additional disk space usage. Two factors decide the amount of disk space used by a local
subtree: the number of filesin the subtree and the sizes of thosefiles. We employ acombination
of empirical datafrom AFS and trace analysis to first estimate the number of filesin atypical
local subtree, and then estimate the corresponding disk space cost for maintaining that subtree.

Our first step in estimating the number of filesin atypical local subtree is to use the result
of aprevious study on the distribution of various physical characteristics of AFS reported by
MariaEblingin [12] shownin Table 9.18. Although the study was done over alarge number of
AFS volumes, the strong similarity in file system structures and usage environments between
Coda and AFS makes the extrapolation to Coda acceptable. Our second step is to obtain an
estimation of the height of a typical local subtree using trace analysis and then deduce the

174 CHAPTER 9. EVALUATION

Volume Type

Physical Characteristic User | Project | Sysem | BBoad | All

Total Number of Volumes 786 121 72 71 1050
Total Number of Directories 13955 33642 9150 2286 59033
Total Number of Files 152111 313890 113029 144525 723555
Total Size of File Data(MB) 1700 7000 1500 560 11000
File Size (KB) 10.3 (65.0) | 24.0 (145.7) | 16.4 (726) | 2.6 (7.0) | 19.1 (118.0)
Directories/Directory 36 (134 | 30 (45 | 36 (104)| 68 (194) | 3.2 (83
Files/Directory 14.6 (30.6) | 16.2 (35.6) | 159 (36.9) | 66.9 (142.4) | 15.7 (34.5)
Hard Links/Directory 37 (124 | 20 (@5 | 40 @39 | 00 (0 | 34 (57
Symbolic Links/Directory 41 (101) | 34 (75 | 136 (453)| 6.0 (259 | 6.3 (249

Thistable, adapted from [12], summarizes various physical characteristics of system, user, project,
and bulletin board (“bboard”) volumes in AFS at Carnegie Mellon University in early 1990. This
datawas obtained via static analysis. The numbersin parentheses are standard deviations. The data
in thistable was collected by Maria Ebling.

Table 9.18: File System Object Distribution

number of files in the subtree. The basic idea is that every local subtree corresponds to a
conflict, and every conflict involves a partitioned mutation operation. 1f we know the typical
location of an object that is updated by a mutation operation in the file name space, we can
find out the corresponding height of the subtree rooted at that location. That subtree will be
localized if the mutation resultsin a conflict.

We built an analysis tool that reads trace records and computes the distribution of the
height of the subtrees rooted at the locations touched by directory mutation operations which
occurred in the input trace. We restrict the trace analysis to only directory mutations because
file mutations can only result in the trivial case of single node subtrees.

Resultsand Analysis We performed trace analysis on four of the five Full-Week traceslisted
in Table 9.13. Asindicated by the results shown in Figure 9.11, most directory mutations are
performed at the bottom levels of the file name space. A typical local subtree has only two
levels, i.e., itsheight is two.

To obtain the relationship between the height of a subtree and the number of files in that
subtree, all we need to do isto solve the following recurrences:

P(1) = 0 (9.1)
P(H) = F+Dx«P(H-1) (9.2)

9.3. RESOURCE COST MEASUREMENT 175

Subtree Subtree Height Distribution Over Directory Mutation(%)
Height || Create | Link | Unlink | Mkdir | Rmdir | Symlink | Rename | Total
1 0.00 | 0.00 145| 0.00| 0.00 0.00 0.00 1.46
2 3653 | 1.05| 3714 | 015| 0.00 194 567 | 8250
3 249 | 0.13 416 | 0.07 0.05 1.26 0.82 8.99
4 0.77 | 0.17 103 | 0.01 0.00 0.14 0.16 2.28
5 0.01 | 0.00 000 | 0.00| 0.00 0.00 0.00 0.04
6 0.06 | 0.00 006 | 0.00| 0.00 0.00 0.88 0.99
7 0.00 | 0.00 000 | 0.00| 0.00 0.00 0.86 0.86
8 0.00 | 0.00 000 | 0.00| 0.00 0.00 0.00 0.00
9 0.00 | 0.00 000 | 0.00| 0.00 0.00 0.00 0.00
10 0.00 | 0.00 000 | 0.00| 0.00 0.00 0.00 0.00
11 0.13 | 0.13 027 | 0.00| 0.00 0.00 0.00 0.53
12 0.67 | 0.32 098 | 0.00| 0.00 0.00 0.00 1.98
13 0.03 | 0.03 031| 0.00| 0.00 0.00 0.00 0.36
total 40.69 | 1.83 | 4540 | 0.24| 0.07 3.36 8.41 | 100.00
glOO r
S
-‘E sor
2
60[
4071
20
— 1 ——1
o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Subtree Height

The table in this figure shows the distribution of subtree height over different kinds of directory
mutation operations. Theresult isaobtained by using the trace analysistool on four Full-Week traces
listed in Table 9.13. Trace #3 is omitted because of atechnical difficulty pertaining to a particular
record in the trace. The graph in thisfigure plots the same distribution data displayed in the table.

Figure 9.11: Subtree Height Distribution

176 CHAPTER 9. EVALUATION

where P(H) is the number of files in a subtree of height H, [’ is the number of files per
directory and D isthe number of directories per directory. The solution to the above equations
IS

P(H) = F+(D"t-1)/(D-1)

Using the numbers from Table 9.18, we have:

P(H) = 157%(321"1-1)/22

Therefore, a typical local subtree of height 2 will have 16 files in it. Since the average
filesizeis 19.1KB from Table 9.18, atypical subtree costs about 306K B, which is reasonably
small.

9.3.24 RVM Space Cost for Conflict Representation

Methodology Local objectsin conflict representation still need to be maintained inthe cached
object database, which must be stored in RVM. The total amount of RVM space cost for alocal
subtree depends on the number of objectsin the subtree because each of them occupies roughly
the same amount of RVM space. We use the same methodology used in section 9.3.2.3 to
measure the RVM space cost for local subtrees.

Results and Analysis The relationship between the number of nodes and the height of a
subtree is the solution of the following recurrences.

N(1) = 1 (9.3)
N(H) = (14 F+L+8)+Dx*N(H-1) (9.4)

where NV isthe number of nodes; H isthe subtree height; F' isthe number of files per directory;
L isthe number of links per directory; S is the number of symbolic links per directory and D
is the number of directories per directory. The solution is the following formula:

NH) = (DP+(F+L4+S«DP - —L-S—-1)/(D-1)

Using the numbersin Table 9.18, we have:

94. A PRELIMINARY USABILITY ASSESSMENT 177

N(H) = (32" +254%3.2071 _26.4)/2.2

According to this formula, atypical subtree with a height of 2 contains 30 nodes. Under
the current Venus implementation, each node costs about 392 bytes of RVM space. Hence, a
typical local subtree will cost around 11.7KB of RVM space. It isdlightly higher than that of a
typical transaction in Table 9.17, but still small.

9.3.3 Summary

Global Resource Cost Our evaluation based on both quantitative measurements and quali-
tative analysis indicates that transaction executions have limited impact on the overall usage
of global system resources. By design, transaction validation has no long term effect on global
system resource usage. Due to the write-through caching policy employed by the current Coda
implementation, both the server load and network traffic can be increased or decreased as a
result of connected transaction execution depending on the specific circumstances. There can
be a dlight increase in server load and network traffic caused by reintegrating disconnected
transactions.

Local Resource Cost Trace driven simulation and controlled experiments offer convincing
evidence that the local system resource cost associated with disconnected transaction usage for
common applicationsis modest. Both disk space and RVM space costs are small relativeto the
normal capacity of today’s portable computers. Thisisin large part due to the effectiveness of
transaction cancellation.

Local resource cost for conflict representation is also affordablein typical situations and our
anecdotal experience conforms with our evaluation results. In addition, conflicts are rare and
often short lived (quickly resolved afterwards), thus conflict representation incurred resource
costs are unlikely to pose serious problemsin practice.

9.4 A Préiminary Usability Assessment

While the previous sections demonstrate the feasibility of the IOT model on the cost side, key
usability issues remain unanswered. For example:

1. How easy it isto program, specify and invoke a transaction? How easy it isto program
an automatic resolver?

178 CHAPTER 9. EVALUATION

2. How often can conflicts be transparently and automatically resolved?

3. How effectiveisthetransaction repair tool in helping usersto manually resolve conflicts?

Questions such as these cannot be answered until there is substantial actual system usage
from a sizable user community. What is presented here is the best we can offer at the present
time: apreliminary assessment of afew usability issues based on our limited usage experience.

9.4.1 Interactive Transaction Invocation

i‘bhinAremake

-t,
1al
phasbhindalphaci manual

pha option=manual

asrpath=/usrluyi binremake

Figure 9.12: Examples for Transaction Specification
The window image in this figure shows the content of an IOT profile and the effect of sourcing
it to specify applicationssuch asr csci , | at ex and make as transactions with various conflict
resolution options.

Our experienceindicates that the interactive interface of the IOT C-shell servesitsintended
purposes well. Specifying an application to be treated as a transaction as well as its resolution
option is straightforward. Any existing Unix application can be invoked as a transaction with
ease. Thisislargely dueto thesimplicity of theset i ot andunset i ot commands, and their
resemblance to the commonly used set env and unset env shell commands. For example,
transactions can be specified by setting a profile and sourcing it at the login time. Figure 9.12
shows the content of such an 10T profile and its effect on transaction specification.

We have experimented executing most of the common applications in our environment as
transactions. Two areas of our implementation need further improvement. First, we should
extend the current interface to better accommodate the traditional C-Shell idioms. Specificaly,

94. A PRELIMINARY USABILITY ASSESSMENT 179

shell commands connected by pipelines or involving input/output re-directions need to be
properly included in the scope of transaction executions. Second, we need to extend the C-
Shell wild-card mechanism so that a group of applications can be specified as transactions
together. For example, we may want to specify that all applicationsunder / usr/ cs/ bi n are
to be treated as transactions by using the command of set i ot /usr/cs/ bin/*.

9.4.2 Programming A Transaction

We have used the IOT programming interface to put a transaction wrapper on several common
applications such asr csco, make and | at ex. Our experience confirms much of what was
expected fromtheinterface: straightforward programmingand well-structured code adaptation.
The most sophisticated use of the |OT programming interface so far has been in devel oping the
IOT C-Shell. The begi n_i ot and end_i ot calls are used to bracket the execution of any
applications specified by setiot to be treated as transactions. There is some extra code dealing
with failures and abnormal conditions. Overall, IOT related codeis cleanly integrated with the
rest of the C Shell source code.

9.4.3 Resolver Development

Compared to programming a transaction, the programming of an application-specific resolver
can beademandingtask. We conducted anumber of case studiesto writeresolversfor somenon-
trivial and commonly-used Unix applications. Our purpose wasto evaluate how well thetask of
programming resolvers was supported. In this section, we first present two resolver examples,
and then summarize our resolver programming experience with some general observations.

9.4.3.1 Case Studies

A Smart Resolver for Make We developed aresolver for make based on the source code
of the CMU Mach make to demonstrate that our application-specific resolver paradigm can
indeed work for practical and sophisticated Unix applications. The main objective of this
exercise isto investigate how application semantics can be employed to resol ve conflicts more
efficiently.

When a make transaction fails to certify, it means that some of the objects accessed by
the transaction have been updated on the servers. As discussed in Chapter 3, an automatic
re-execution of the same transaction under the original environment is guaranteed to restore
data consistency as required by the semantics of make. But, re-execution is often wasteful,
because it throws away local results even when most of them can be reused. For example,

180

CHAPTER 9. EVALUATION

10T Monitor _

iot 9 starts execution
start thE Sun Jul 2 0210329 1995
running "Ausridos/bincmake -c ofs
iok 9 execution finished
iot @ goes into pending state because the following wolumes are disconnected
p.cealpha
coda_root, readonly
ocoda_toot,usk
wolugid
iot 9 goes into to-ke-resolued state because
it accessed the following inwalid objec
/Doda/usr"/luql/test/masr‘/l1b/11butll‘E
iot 9 goes inta resolving state
resolve iot 3 by executing the following resolvert
Jusrdocodasetosmake—asr —c ofs
First Phase: check and reuse local results
cd /coda/usr“/luﬂ|1/test/masr/obds/@sgs/vtools/local
*ofs.0” is compatible with the current global state
Reuze local result by copying Joods/usrs lugl test/masr/objs/Peys/viools local /ofe,0 to Jooda/usr/lugiste
shomasr/ohis/Beus vtonls E10kal /5.0 vausves
tofs” iz not compatible with the current glokal state and needs to be remade,
Second Phased re-maske targets incompstible with glokal state
Set zlokal chject wisw
oo Aoodaduseslugi dbestonasrdob) s Bays vtools
cC -g -1, -1, -I/codasprojects/oodasalphasinclude -1 coda/project/cods/alphalinclude-zpecial —I/usr/es/in
clude -TAusrdmachAinclude —I usrAinclude —DPRIVATE=static - —o ofs ofs.o Aoodadusrslugidtestomasrdl
ikfpioctl,o /coda/usr"/luql/test/masr‘/l1b/1lbutll a
war sing C4+ Wersion 3.
Juskrossbindoo -Ls/afss/cs . omu, edu/nlsc/c-H-/@sgs/alPha/lib -0 ofs -1, -I, -l/codasprojectscoda’a
lphading lude *1/coda/pr‘o,ject/coda/alpha/include*special —lAusrdosdinclude -1 usrsmachAinclude —IAusrding
lude -DPRIVATE=static ofs.o Jocodasusrslugistest/masr/libApioctl,o Joodasusrdlugistest/masr/likslibutil,a
C

gnu—enac

O TFO00279, 5908, 135810

wclock

zload
ELGAR,CODA,CS.CHU.EDU

Restare object view
ot 9 resolution succeeded
1ot 9 iz recolued and results are committed to the servers

Login

[ELGAR:wtonls111389 ofs disconnect

[ELGAR:vtools1:1390 ofs checkservers

Contacting servers ,....

These servers still down: WAGNER.CODALCS.CHULEDU HAYIM,CODALCS.CHULEDU GRIEG.CODALCS.CHULEDU ROSSIM
L,C0DA,CS,CHULEDU PUCCINI,CODA,CS,CHMULEDU SCARLATTI,CODA,CS,CHULEDU

[ELGAR:vtools]:1391 make -c cfs

od Jcodadusrdlugi/test/masr/objs/Baysvtonls

CC -g -1, -I. -I/codadproject/codasalphasinclude -I/coda/project/codasalphadinclude-special I usr/cs/in
clude -Ifusrsmach/include —IAusr/include -IPRIMATE=static -c fcodadusr/lugistestsmasr/srodvtools/cfs,c
#kk Using ATAT C++ Version 3,0 %k

CC +g Acodasusr/luqistest/masr/sroivtools/cfs, o1

Ausrdoedinclude/sus/paran.ht 231 BSD redefined

"cfs,c". line 15: warning: :ircsid defined but not used

Ausrfoedbindce - -g -1, -1, -l/codadproject/codadalphalinclude -1/coda/project/codadalphading lude-sp
ecial -TAusrdcs/include -I/usr/mach/include -[Ausrdinclude -IPRIVATE=static cfs.c

CC -g -1, -1, -I/codadproject/codasalphasinclude -I/coda/project/coda’alphadinclude-special —I/usr/cs/in
clude -I/usr/mach/include -I/usrdinclude -IPRIVATE=static -g -0 cfs cfs,0 fcodafusrdlugistest/masr/]
ib/pioctl,o Acodadusrdlugiftest/mazr/lib/libutil,a

% Using ATET C++ Version 3,0 sk

fusrfesdbinfee . LAafsdes, onu,edusnisc/c+/Bsys/alphaslib -0 ofs —g —g -1, -I, -I/coda/project/codada
Ipha/include -I/coda/project/codasalphadinclude—special -Idusrdes/include -1 usr/mach/include -Idusrdine
lude -DPRIVATE=static cfs,o Joodadusrdluqidtest/masr/libdpioctl,o Acodadusrdluqistest/masr/lib/libutil,a

[
[COPLAND:1ugqili828 /bindcp -p fcodasusrd lugidtest/masr<ob
JsfBsysAutil/libutil,a Acodasusrdlugistest/masr/1ib/libut

COPLAND

il.a
[COPLAND : 1uqi 13829 []

[ELGAR:wtools1:1392 1t
TID STATE COMMAND
FENDING Ausr/ocedbindmake —c ofs
ELGAR:wtools1:1393 ofs reconnect
ELGAR:wtonls111334 ofs checkservers
ontacting servers ,....
11 zervers up
ELGAR:wtools111395 1t
1 STATE
RESOLYED
ELGAR:wtonls1:1396 [

COMHAND
Ausr/ocedbindmake -c ofs

The window image in this figure is taken from the console of elgar, a desktop Coda client. The
Logi n window displays the main actions on elgar: disconnecting it from the servers, executing
a make transaction that compilesacf s. o file and linksit withalibrary | i but i | . a and other
libraries to create the cf s binary file. Before elgar reconnects to the servers, another connected
client COPLAND installsanew version of library | i but i | . a, as shown by the COPLAND telnet
window. Upon reconnection, the transaction system on elgar failsto certify the make transaction
and automatically invokes the smart-make resolver. The | OT NMboni t or window shows the
resolution actions where the local result of cf s. o isreused and the new versionof | i butil . a
is linked to create an up-to-date version of cf s.

Figure 9.13: An Example of a Resolver for Make

94. A PRELIMINARY USABILITY ASSESSMENT 181

suppose a disconnected make transaction compiles dozens of object files and builds a Venus
binary. However, one of the libraries linked in was updated on the servers during the discon-
nection. Upon reconnection, we can reuse those locally compiled object files and re-link them
with the new version of the library to produce an up-to-date Venus binary. This can avoid
the unnecessary recompilations of the objects that would have been performed by automatic
re-execution.

We developed a resolver for make caled smart - make. Its first part is programmed
based on both the original mak e source code and the resolution object view provided by 10T’s
dual-replica conflict representation. It extends the basic make dependency checking with the
inspection of the local and global replicas for objects that are in conflict. This enables it to
identify those local objects that were updated by the original make transaction and are till
compatible (as required by the mak e dependency semantics) with the current global state. For
each make target, the resolver first obtains its local replica, and then tracks the dependencies
defined in the corresponding makef i | e(s) tofind out all the objects that the target depends
on. If any of them has different local and global replicas, the target is re-made. Otherwise, the
local replicaof the target can be reused and is copied onto the corresponding global replica.

The second part of smar t - make uses the ASR programming library routines to set the
global object view so that only the global state is visible to the resolver. Note that the visible
global state after the first part may contain the reusable local results that just have been copied
into the relevant global replicas. The resolver smply callsinternal make functionsto re-make
the remaining targets and restore the original object view. When the resolver exits, the IOT
system will take over and automatically commit the new results to the servers and discard all
the previouslocal results. A complete examplethat illustrates how thesmar t - make program
can efficiently resolve amake transaction is shown in Figure 9.13.

An Interactive Resolver for RCS Checkout For some Unix applications, there are often
different alternatives to resolve a read/write conflict and the best strategy for an application-
specific resolver is to interact with the user. Because such interactive resolvers need to display
messages to the users and read input from them, they have to manage input/output as explained
in Chapter 6. Figure 9.14 illustrates an interactive resolver we have developed for the RCS
checkout command (r csco). The resolver was developed using t cl / t k and written as a
W sh script.

9.4.3.2 General Observations

Programming aresolver can be quite difficult, particularly for complicated applications. Work-
ing knowledge of the source code of the original application is a must. We spent a significant
amount of timein studying themak e source code during the development of thesmar t - make

182 CHAPTER 9. EVALUATION

Keap the Local Version | Merge the Local and Global Versions | Checkout the New Global Version |

The Local RCS Version of wot.h EI The Giohal RCS Yersson of ioh
cleass cmlenk; Er:i.unl:l class :|.|:h|:-l:1]J_-_;
class volent: friend class faabi:
clas= dotdb; Eri=nd cla== wockec,
claaz Faobj; —i |— privaka:
int tid, FeR=jre fr;

J JEPASSE Rraneaction iokany *eny; fupefre kg
*an; SERHS S Eranamaction unaigred char atate: i AL
d charc mbate; JEpe S0 (HOENING, BL un:l-:i.g:'i:d_char walidiky; fepefie R
d char ealidity; Sep St (RN QOKELICT struct timewal £1; SRS Lo
timewal =1, F*p+ S+ local stact struct timewal t2) fe=g= 1o
= [= bt =] -

Thee: DilTerence Between the Lical and Global RCS Versions al iolh I
£37d4 33
i Erisnd cla== wockec,
SEpatiy
> rec_dlist rex_iot thl; P = to-bhe-reexecuted tramsaction table +f J
5814577
= |= &

The window image in this figure demonstrates an interactive resolver for r csco. The target
transaction being resolved isan r csco command that checked out an old versionof i ot . h during
disconnection, which was later updated on the servers. The resolver isautomatically invoked after
the read/write conflict is detected. It displays the content of both the local and global versions
of i ot. h and the difference between them. It also provides the user three resolution options by
simply clicking the corresponding button.

Figure 9.14: An Example of A Resolver for RCS Checkout

resolver. In general, the original author(s) or the site maintainer(s) of an application are the
best candidates for writing the corresponding resolver.

The 10T resolution model is not easily understood at first sight. It usually requires some
concrete examples for a novice IOT programmer to grasp the essence of the model and be
able to code resolvers. The difficulty usually lies in figuring out what is detected by the
IOT mechanism and what the file level conflict means to the application at a semantic level.
However, once the user is able to code asimple resolver, it is not as difficult to apply the same
principles to more complicated cases.

IOT’s incremental resolution model indeed simplifies the programming of resolvers. It

9.5. FURTHER EVALUATION 183

localizes the effect of conflicts and allows the resolver-writersto concentrate only on two sides,
the current global state and the local actions of the transaction being resolved. The multiple
view capability isalso aplus, enabling the resolver to take advantage of the original application
capabilities as demonstrated in the smar t - make example.

Support for resolver programming could be further improved. Among other things, finding
out what has been accessed (and updated) by the transaction being resolved can be difficult for
some resolvers. A better facility such as iterators capable of enumerating all the elementsin
the transaction’s readset and writeset will be helpful. More support is needed to help resolvers
to find and compare local and global replicas of a given object.

9.5 Further Evaluation

So far, we have evaluated the performance overhead, resource cost and some usability issues
of the IOT mechanism based on controlled experiments and case studies. Many other system
usability issues are still unaddressed pending further accumulation of usage experience. More-
over, some of the previous quantitative measurement results need to be further strengthened or
adjusted with more usage data. Herewe describe the ongoing work and abrief plan of collecting
|OT usage data and further evaluating the system when sufficient experience is obtained.

9.5.1 DataCollection

We have implemented a data collection mechanism for 10T usage that has been operational
in the production release of Coda for half ayear. It is based on the data collection machinery
called nrond implemented by Brian Noble [49]. Each running IOT-Venus sends two kinds of
datato anond server which puts the datainto alog file. The nond server periodically ships
the log file to a distributed relational database so that the collected data can be post-processed

using SQL.

The first kind of 10T datais about a particular transaction: its application name, conflict
resol ution option, resource usage, and statetransition history, etc. When atransaction completes
its lifecycle, such arecord is sent from the IOT-Venus to the nond server. The second kind
of datais periodically transmitted from the IOT-Venus to the nond server. This data contains
statistics such as maximum and average readset/writeset size and various information about
localized subtrees and transaction repair sessions.

Other 10T usage datais also collected and persistently stored at the client. Thisincludesin-
formation such asthe high-water mark of shadow space cost and statistics about the serialization
and wait-from graphs.

184 CHAPTER 9. EVALUATION
9.5.2 User Survey

Many usability issues are highly subjective. A reliable evaluation requires a scientific survey
of 10T users with substantial experience. Such a survey will have to await the emergence of
asizable IOT user community. The survey will be used to examine those aspects of the IOT
model and implementation with which users or programmers directly interact. It will need
to ask the users to grade, characterize and comment on their perceptions about issues such as
the effectiveness of the IOT support for resolver programming and manual conflict resolution.
Combined with automatically collected data, this will enable a comprehensive usability study
and shed morelight on IOT.

Chapter 10

Related Wor k

To the best our knowledge, 10T is the first transaction model that is designed for the sole
purpose of providing consistency support for partitioned file access operations, and specifically
addresses the unique constraints and needs of mobile computing such as the resource limitation
on a mobile client. Although the design and implementation of 10T builds upon existing
techniques from areas such as transaction processing and optimistic replication, no other system
offers the combination of propertiesthat |OT possesses.

Thefirst section of this chapter surveysimportant transaction systems and models that have
had strong impact on the IOT model. The second section compares the conflict detection and
resol ution mechanisms between |OT and afew other optimistically replicated systems. Finally,
several commercia products employing optimistic replication techniques are reviewed.

10.1 Transaction Models and Systems

10.1.1 General Purpose Transaction Systems

The basic transaction processing techniques were originally developed in the database com-
munity and have been successfully applied in commercial systems. Because of its ability to
relieve programmers from complicated tasks of handling concurrent accesses to shared data
and various failuresin distributed systems, a number of research systems have been developed
to explore transactions as a basic system construct as well as a general programming paradigm
for building reliable distributed applications.

The Camelot system [13] providesaset of librariesfor managing key aspects of transaction
processing such as locking and logging so that applications can use them to construct dis-
tributed applicationsthat have the ACID properties. While systems such as Argus [37, 36] and

185

186 CHAPTER 10. RELATED WORK

Avalon [23] emphasize programming language support for transaction operations, the TABS
system [66] supported transactional accesses to user defined abstract data types. A common
objective behind these general purpose transaction systems was to facilitate the management
of system resources and services that possess some or all of the ACID properties. The 10T
model inherits this spirit, except that it specializes in isolation enforcement for partitioned file
services.

10.1.2 Transaction Support for File Systems

QuickSilver QuickSilver [69, 64] is a distributed operating system that uses transactions
as the basic tool to organize all system resource management tasks. Its distributed Unix file
system provides failure atomicity, durability and arelaxed isolation guarantee. It shares1OT’s
pursuit of upward compatibility through an easy-to-use transaction interface that allow existing
Unix applications to be executed as transactions without change. In addition, both consistency
models fine tuned their guarantees for read-only transactions to minimize their performance
impact. However, QuickSilver's transaction service does not support partitioned file access
operations.

Locus The Locus distributed operating system [74] provides a general purpose nested trans-
actionfacility. Itsmain purposeisto support the construction of reliable distributed applications
that are able to deal with complex system failures in amulti-machine environment. Locus uses
a shadow page technique to support atomic file updates on all files and guarantees global atom-
icity viaatwo-phase commit protocol across al sitesinvolved in atransaction. It employsboth
implicit and explicit record-level locking to perform concurrency control. Although Locusis
one of the first to adopt optimistic replication, its transaction service is not intended to guard
against data inconsistencies resulted from partitioned sharing.

10.1.3 Optimistic Concurrency Control

An important transaction processing model that has significant impact on 10T is Kung and
Robinson’s optimistic concurrency control model [33]. The OCC model and disconnected
operation share the basic design philosophy of performing computations in a local scope and
verifying their global validity later. Theentire |OT execution model isdesigned based on OCC.
OCC is directly adopted for cross-client concurrency control for connected transactions. The
optimistic isolation enforcement for disconnected transactions is also OCC-like: consisting
two main steps of local execution and global validation. The major differences are that the
validation is delayed until the client is reconnected to the corresponding servers, and that there
are more options to deal with an invalidated transaction than OCC'’s designated choice of

10.2. OPTIMISTICALLY REPLICATED SYSTEMS 187

automatic re-execution. In addition, the original goal of OCC was to reduce the performance
overhead of concurrency control instead of optimistic replication.

10.1.4 Special Transaction Models

In the voluminous research literature about transaction processing techniques, there are a few
specialized transaction models that share important common ground with 1OT.

Saga: A Model of Long-Lived Transactions The Saga model [16] is an attempt to apply
transaction models to long running applications. The key idea is to circumvent the strict
serializability requirements by exposing the result of long running transactions and employing
compensating actionsto bring the database system into a consistent state. The strong similarity
between Sagas and IOTs is their common belief that it is usually acceptable to expose tentative
transaction results to other transactions as long as their validity can be established later. They
also assume that data consistency can be effectively restored by using application provided
compensating actions. However, Sagaand |OT use different transaction execution models and
consistency validation schemes. In addition, the Sagamodel does not deal with mobility issues
and has not been implemented in an actual system.

Utilizing Transaction Semantics Garcia-Molina proposed to utilize application semantic
knowledge for transaction processing in distributed database systems [15]. This approach
shares |0T’s design philosophy of integrating application semantics to serve useful purposes.
However, it aims to obtain performance gains in concurrency control rather than better con-
sistency maintenance. The model in [15] divides each individua transaction into steps and
acquires application semantic information in the form of transaction types, compatibility sets
and countersteps. Using such information, the transaction manager can produce more efficient
schedules that are not necessarily serializable but still preserve data consistency.

10.2 Optimistically Replicated Systems

10.2.1 TheCoda File System

In addition to disconnected operation, the Coda file system also employs optimistic server
replication to enhance data availability. It uses the version vector technique to automatically
detect partitioned write/write conflicts among server replicas, and separate mechanisms to
resolve conflicts for directories and files. Note that Coda’s earlier focus was on write/write
conflictsand 10T isthe first attempt to address the issue of partitioned read/write conflicts.

188 CHAPTER 10. RELATED WORK

L og-Based Directory Resolution Codauseslogging to record partitioned directory mutation
operations performed on server replicas [29]. Because directories are used as meta data for
organizing file system structures, the semantics of directory mutation operations are known to
the file system. Such semantics can be employed to automatically resolve many write/write
conflicts such as a partitioned pair of nkdi r f oo and nkdi r bar, aslong as the names
f oo and bar are not used in the parent directory. The resolution protocol gathers al the
mutation logs from the diverged replicas of a directory; deduces a compensation mutation log
for each replica; replays compensation mutations at the corresponding replicas so that they
become identical again. Actual experience has shown that most conflicts on directories can be
automatically resolved and thelog-based approach isvery effective because it usually consumes
only asmall amount of server space.

Application-Specific File Resolution For write/write conflicts on the server replicas of file
objects, Coda employs a rule-based framework for the users to supply application-specific
resolvers to be automatically invoked [32]. Each resolver is associated with an individual
file and the object/resolver binding is specified in a special rule file. The automatic resolver
invocation is performed lazily, i.e., it istriggered by an attempt to access an inconsistent object.

This object-based ASR differs from 10T's ASR mechanism in resolver binding and re-
solver’s knowledge of the relevant conflicts. Either approach has its pros and cons. The
object-based ASR is more suitable for applications involving files whose consistency can be
decided by its content alone without knowing the relevant partitioned computations that caused
the conflict (e.g., thecalendar program). 10T’s ASR knows moreinformation about the conflict
and can be applied to more common applications.

Representation of Server/Server Conflicts 10T’ sdual-replicaconflict representation scheme
is based on Coda's original representation for write/write conflicts among server replicas. It
uses the same in-place approach and each inconsistent object is dynamically converted into a
directory containing all the accessible server replicas. In addition, dangling symbolic links are
also used to prevent an inconsistent object from being accessed [29].

Original Representation of Local/Global Conflicts Coda's original representation for lo-
cal/global conflicts adopted a different strategy than the one used for conflicts among server
replicas. Thelocal replicaof aninconsistent object was represented outside of the Coda name-
gpace. All the data in the local replicas were contained in a closure file stored on the client’s
local disk [26]. The global replicaof the inconsistent object was visible at its original location.
This approach has the advantage of simpleimplementation, but it isvery difficult for automatic
resolvers to access the local replica. The closure file is still retained in the current system to
serve as a backup copy for local transaction results.

10.2. OPTIMISTICALLY REPLICATED SYSTEMS 189
10.2.2 TheFicusFile System

The Ficus distributed file system is a descendant of Locus and performs optimistic replication
within a peer-to-peer system architecture [22, 21].

Conflict Resolution Ficus only detects and resolves partitioned write/write conflicts. There
is no support for detecting and resolving read/write conflicts. In contrast to Coda's log-based
approach, Ficus employs an inferential method to deduce and resolve conflicts on directories.
Although it avoids the space cost for logging partitioned mutations, the resolution process
becomes much more complicated and a two phase distributed protocol is needed to garbage
collect removed objects, which negatively affects the overall system scalability. Similar to
Coda, Ficustransparently invokes an application specific resolver when afileis detected to be
in conflict [56]. It adopts a slightly different method for binding files with their corresponding
resolvers. Resolvers are executed on the servers, making it more susceptible for security
attacks. In addition, there is no transaction encapsulation for resolver execution.

Conflict Representation Ficus uses a different strategy for conflict representation. It puts
the diverged replicas of an inconsistent object into a special per-volume directory called an
orphanage and notifies the users about the conflict by sending an email. The limitations of this
approach have already been discussed in Chapter 5.

10.2.3 TheBayou System

Bayou is a recent optimistically replicated storage system designed for a mobile computing
environment that includes portable computers with less than ideal network connectivity [68].

Application-Specific Consistency Validation A unique feature of Bayou is its reliance on
application-specific semantics for detecting and resolving write/write conflicts. For every
update operation, the user must supply a routine called dependency check and it will be
automatically executed on the servers so that application-specific knowledge can be employed
to validate whether the current updateis in conflict with the previous server state or not. Recall
that 10T’s ASR mechanism can also be employed to perform application-specific consistency
validation. However, Bayou carries the design philosophy of utilizing application semantics to
the extreme. Application-specific consistency validation is performed for every single update
operation. In contrast, Coda's approach is to rely on the inexpensive version comparison for
the common cases and to use the more expensive application-specific consistency validation
only when the first approach fails.

190 CHAPTER 10. RELATED WORK

Application-Specific Conflict Resolution In Bayou, the user must also provide a merge
procedure for every update operation so that it can be automatically invoked to resolve conflict
when the dependency check fails. This is similar to IOT's ASR mechanism because the
application provided resolvers are associated with actions instead of objects. However, an
action in Bayou is only one individua update operation, while it is the entire execution of
an application in |OT. Because the current Bayou design requires full replication of an entire
database on each host of the system in order to maintain full consistency, it isimpractical for
applications involving large or multiple databases.

10.2.4 Davidson’s Optimistic Transaction M odel

The optimistic transaction model proposed by Davidson established the theoretical foundation
for transaction processing in optimistically replicated database systems [9]. The main purpose
of the model is to guarantee that the effect of partitioned transaction executions is equivalent
to a serial execution of the same set of transactions in a connected environment. The key
techniqueis to establish a global data structure called the precedence graph based on recorded
transaction histories. If the graph has cycles, it means that the partitioned transactions are not
globally serializable and some of them must be backed out to restore data consistency.

This model provides the basis on which the 10T consistency model is built, athough
the current implementation only supports the more restrictive serialization criterion of global
certification. However, there are some important differences between Davidson's model and
|OT. First, the base semantics that Davidson’s model is trying to protect from partitioned
sharing is the traditional serializability-based isolation model instead of the shared memory
Unix model. Second, Davidson’s model is designed for a distributed database environment
and pays no attention to constraints of mobility. Third, its only way of restoring consistency is
through transaction back-out. Finally, there has been actual implementation of this model so
far.

10.3 Commercial Products

Optimistic replication techniques have already found their way into several existingcommercial
software products to improve data availability.

10.3.1 Lotus Notes

Lotus Notes [25] is one of the first commercia products to embrace optimistic replication.
Not es is based on a shared document database system that is designed to support a group

10.3. COMMERCIAL PRODUCTS 191

of people working on shared documents in a personal computer network where the database
servers are rarely connected. Group communication is accomplished primarily through adding
documents to a shared database. Optimistic replication is valuable because typical not es
databases such as an address book and software project bug reports are not heavily updated
once the documents are placed in the database. In addition, group members sharing the
documents do not need to see up-to-date data al the times. The replication algorithm of
not es uses aone-way pull model [11] and guarantees eventual consistency of the documents
inall replicas (i.e., changes made to one copy eventually migrateto al). Because of itsintended
purposes and operating environment, not es only promises to detect partitioned write/write
conflicts and provides no support for dealing with partitioned read/write conflicts.

10.3.2 Oracle Server Replication

A recent release of Oracle database servers employs optimistic read-only and symmetric (read-
write) replicationtoimprovedataavailability [51]. A completecopy or asnapshot (partial copy)
of a database table can be replicated at different sites. Read-only replicas are automatically
refreshed to reflect the new updates based on the intervals specified by the users. Updates
to read-write replicas are first performed at the local site and then propagated to the other
sites via the deferred transaction mechanism either periodically (at the intervals specified by
the users) or at specific points in time when connectivity is available or the communication
costs are cheap. Similar to the incremental propagation scheme of the IOT model, deferred
transactions are re-applied one-by-one at the remote site. The difference isthat the consistency
validation for deferred transactions relies on value certification and it is only performed for
objects in the transaction’s writeset. If a partitioned write/write conflict is detected, either a
pre-defined conflict resolution procedure or a user specified resolver is automatically executed,
with manual resolution as the last resort. Although Oracl€e’s optimistic replication mechanisms
adopt many measures similar to Coda, it does not have the capability to detect and resolve
partitioned read/write conflicts, which could be quite important for database applications. In
addition, the design and implementation do not pay attention to the constraints of mobility.

192 CHAPTER 10. RELATED WORK

Chapter 11

Conclusion

This dissertation has described 10T, an explicit transactional extension to the Unix file sys-
tem for safeguarding data consistency in mobile file access. The central idea is optimistic
enforcement of serializability-based isolation requirements for partitioned transaction execu-
tion, aided by flexible conflict resolution mechanisms and integration of application-specific
semantics in not only conflict resolution but also consistency validation. Adopting OCC as
the underlying implementation framework is critical to the successful realization of the 10T
model, where the key insight is recognizing that the disk cache of a mobile client can serve
as the private workspace for optimistic transaction processing under unpredictably changing
system connectivities.

The design, implementation, experimentation and evaluation of a working IOT extension
to the Coda file systems enables us to reach the following conclusions.

e ThelOT model is afeasible way of addressing the data inconsistency problems caused
by partitioned read/write conflicts in mobile file access.

e Itspracticality is demonstrated by its ability to maintain upward Unix compatibility and
the ample evidence indicating that the support of 10T only incurs modest performance
overhead and low resource costs.

e Initial evidence from controlled experiments shows the effectiveness of 10T’s conflict
resol ution mechanisms and the conflict representation scheme in supporting application-
specific resolvers for common Unix applications. It also demonstrates the ease of use of
the IOT interfaces for transaction programming, specification and invocation.

e Dueto the lack of usage experience, definitive conclusion on the usability of IOT needs
to be deferred until substantial usage data is accumulated.

193

194 CHAPTER 11. CONCLUSION

The actual realization of the IOT model is much more complicated than anticipated. This
can be attributed to the inherent difficulty of maintaining and propagating tentative transaction
results under unpredictable connectivitiesin a mobile environment. The design of incremental
transaction propagation and in-place conflict representation strives to simplify the process of
connectivity transitions and transaction resolutions. But it overloads the client with multiple
duties of maintaining the results of uncommitted local transactions, reflecting the changing
global server state, and representing resol ution object views to resolvers. Therefore, the design
trade-off for aclean model of client/server state synchronization and transaction resolutionisnot
only additional computation and resource costs but also significantly increased complexity and
its associated system development and maintenance costs. Such design knowledge could not
have been obtained without the complete process of engineering an actual |OT implementation
in the Coda file system, and is one of the most important findings of this research.

11.1 Contributions

To the best of our knowledge, this research isthefirst attempt to develop a practical file system
facility to address the data inconsistency problems caused by partitioned read/write conflicts;
and 10T is the first transaction model designed solely for the purpose of improving data
consistency inmobilefileaccess. Centered around those two aspects: the specific contributions
of this thesis research can be classified into the following four areas:

1. Conceptual Analysis

¢ A study of datainconsistencies caused by partitioned read/write conflicts within the
context of a shared-memory consistency model.

¢ Ananalysisof theroleof aserializability-based consistency model in detecting data
inconsistencies resulting from partitioned read/write sharing.

2. System Design

e Thedesign of anew abstraction, the |OT model, that balances three distinct criteria:
guarding against datainconsistencies in partitioned file access, maintaining upward
Unix compatibility, and incurring only modest performance and resource costs.

e The smooth integration of application-specific knowledge into the IOT model for
both purposes of conflict resolution and consistency validation.

e A concise conflict representation scheme that provides resolvers with convenient
access to information relevant to resolving an invalidated transaction.

11.2. FUTURE WORK 195

e Anincremental transaction propagation model that simplifies the tasks of resolver
programming and manual conflict resolution.

3. Implementation

e A successful combination of optimistic concurrency control across clients with
strict local two phase locking for transaction processing under various system
connectivities.

e A safe and robust resolver invocation mechanism that supports both automatic
transaction re-execution and automatic execution of application-specific resolvers.

e An interactive transaction interface in the form of a specia C-Shell that enables
convenient transaction specification and invocation.

e A model of identifying and cancelling redundant transactions during disconnected
operation.

4. Experiment and Evaluation

e Empirica measurements based on controlled experiments, trace simulation and
trace analysis that confirm 10T’s modest performance and resource costs.

e The development of application-specific resolvers for commonly used Unix appli-
cations.

e Thedemonstration of the effectiveness of transaction cancellationin reducing client
space cost for long-lasting disconnected operation sessions.

11.2 Future Work

For implementation expedience, a few minor features logically belonging to the current 10T
model have not yet been fully supported. A number of implementation enhancements have
been suggested in previous chapters. For example, Chapter 8 outlined a strategy for achieving
full atomicity for transaction validation and commitment. This section describes additional
implementation extensions that will make the current 10T service in Coda more complete. In
addition, two areas worth further investigation are discussed: generalizing the IOT model to
other system environments and providing support for the development of application-specific
resolvers.

196 CHAPTER 11. CONCLUSION

11.2.1 Implementation Extensions

Providing the G1SR Consistency Guarantee Recall that the IOT consistency model de-
scribed in Chapter 3 contains two basic consistency criteriafor validating disconnected trans-
actions, namely G1SR and GC. The current 10T implementation in Coda only provides the
GC consistency guarantee. However, for tasks involving tight sharing and frequent concurrent
accesses to shared data from different clients such as the traditional database applications, the
G1SR consistency guarantee may be more suitable for safeguarding their data integrity.

The specific design issues of implementing G1SR have been presented in an earlier doc-
ument [39]. The key is using Davidson’'s optimistic database transaction model [9] where
the servers maintain a transaction history and build a global precedence graph when pending
transactions need to be propagated. Theoretically, the testing of G1SR can be achieved by
simply checking whether the precedence graph is acyclic or not. In practice, however, there
are many challenging design issues that require further investigation. These include reducing
server space cost for maintaining a global transaction history, performing automatic resolution
actions, and handling server and partition failures during the G1SR validation process.

SupportingResolver /O Theresolution of transactions containinginteractivel/O operations
often requires communicating with the users through interactive 1/O. The current IOT imple-
mentation requires the resolvers to manage their own standard 1/0 environment. Providing a
library of window-based 1/O operations would significantly simplify the writing of interactive
resolvers.

11.2.2 Model Generalization

Thecurrent|OT model isdesigned to support mobilefileaccessinanetworked Unix workstation
environment. It also does not deal with server replication for the sake of ssimplicity. However,
the basic principles behind IOT can be applied to a more general setting.

Server Replication Ascurrently designed, the IOT model only supports disconnected oper-
ation (i.e., optimistic second class replication). However, the IOT model can be generalized
to provide consistency support for optimistic server replication (i.e., first class replication).
There are two alternatives to extending the current transaction propagation model to deal with
multiple servers that are potentially partitioned. The first approach is to superimpose a pes-
simistic replication scheme on server replicas before transaction propagation. In other words,
the transaction system will propagate the result of a tentative transaction to the servers only
when a mgjority of the replicas of the involved objects are accessible. This method inherits
much of the original IOT model and greatly simplifiesthe process of transaction validation and

11.2. FUTURE WORK 197

resolution. The second approach is to aggressively propagate transactions to any replicas that
are currently accessible. This would require a complicated transaction propagation protocol
such as the anti-entropy model used in the Bayou system [68] to guarantee eventual mutual
consistency among replicas. Although this approach offers better data availability, it adds
considerable complexity to the transaction model and makes automatic conflict resolution more
difficult.

Database Environment The IOT model can be applied to guard against datainconsistencies
caused by partitioned sharing in optimistically replicated database systems. The basic principle
of imposing serializability-based requirements for partitioned transaction executions naturally
addresses the consistency needs of mobile access in database systemsfor the following reasons.
First, transactions are already an inherent part of the data access model of typical database
systems. Therefore, thereis no need for API extension and maintaining upward compatibility.
Second, serializability-based requirements are commonly adopted as the consistency model
for interleaved transaction executions in database systems. Therefore, they can be uniformly
employed for both executing connected transactions and validating disconnected transactions.

Many important aspects of the IOT model are likely to remain effective in a database
environment, such as the conflict resolution options of automatic transaction re-execution and
automatic invocation of application-specific resolvers. However, some design decisions and
implementation strategies need to be adapted in order to apply the IOT model to database
systems. For example, the consistency validation criterion for disconnected transactions needs
to be changed from GC to G1SR because most database systems use 1SR as their consistency
model. Inaddition, typical database applicationsinvolve frequent data sharing among different
users performing concurrent accesses to shared data, making G1SR more suitable than GC.
As another example, OCC may no longer be an appropriate concurrency control algorithm for
connected transaction executions because heavy cross-client datasharing will result in frequent
transaction re-executions required by OCC, which leadsto excessive performance overhead.

Non-Unix File Systems The basic IOT model should be applicable to other non-Unix file
systems such as those used in Windows 95, Windows NT and DOS. Due to the differencesin
system usage environmentsand application paradigms, important aspects of the |OT model such
as consistency validation criterion and conflict resolution options may need to be changed ac-
cordingly. Inaddition, specific mechanisms such as OCC and 2PL used for concurrency control
may also need to be modified to adjust to the new environment. However, the basic principle of
optimistic enforcement of serializability-based isolation requirementsfor partitioned file access
operations can remain intact. Inaddition, the hierarchical file system structure would allow the
current conflict representation scheme to be largely retained.

198 CHAPTER 11. CONCLUSION

11.2.3 Resolver Development

Application-specific resolution plays akey role in the IOT model. However, thereis alack of
support for the programming of application-specific resolvers. Although we have successfully
developed experimental resolvers for commonly used Unix applications such as make, our
approach has been ad-hoc. Generally speaking, the research on how to best support resolver
development isstill initsinfancy. Fundamental issues such as the semantic model and logical
framework of resolversare yet to be understood. Basic mechanisms such as secure and reliable
resolver invocation and supporting resolver 1/0 require further investigation. We discuss the
following two specific areas of future research on resolver development.

Programming Methodology There is a need to gain considerably more experience in de-
veloping resolvers for a large number of applications spanning a wide variety of application
domains. Only when sufficient empirical experienceisaccumulated, will we be ableto classify
common resolver architectures and relate them to application characteristics. A programming
methodology for resolvers will contain a set of basic guidelines for writing a resolver based
on application characteristics. Because conflict resolution requirements for applications in
different domains can be very different, it is likely that such a programming methodology
will be domain-dependent. This means that applications need to be classified into domains
and resolver development for a particular application needs to follow a set of domain-specific
guidelines.

Development Tool Resolver programming is fundamentally different from normal applica-
tion programming. First, a resolver is invoked only under special conditions. Second, the
specific missions of a resolver depend very much on the dynamic system state on the client
and accessible servers. Third, a resolver must be able to handle a wide range of situations
involving partitioned data sharing. As a result, testing resolvers is much more difficult than
testing applications. To facilitate resolver development, it would help to provide a devel opment
tool that assists the users to test resolvers. For example, the tool could alow developers to
supply specifications about the target application and its resolver, and automatically generate
test cases for the resolver. Of course, the development tool must also establish the proper
system environment for invoking the resolver, and present the resolver execution outcome for
inspection.

11.3 Final Remarks

This dissertation has shown that it is practical to use a transactional extension to the Unix file
system for improving the consistency of accessing shared data on a disconnected client in a

11.3. FINAL REMARKS 199

mobile environment. Two basic ideas made it possible: imposing serializability-based isola-
tion requirements for partitioned transaction execution and adopting OCC as the underlying
transaction processing framework under changing system connectivities. In addition, the inte-
gration of application-specific semantics via pre-programmed resolvers provesto beinvaluable
in consistency maintenance for mobile file access.

Enabling isolated components of a distributed computing system to operate autonomously
will become increasingly desirable due to growing system size and component mobility. The
successful introduction of disconnected file servicefour years ago was amilestonein thistrend.
This dissertation represents another significant step because it addresses a major limitation of
disconnected file service.

200 CHAPTER 11. CONCLUSION

Bibliography

[1] 4.3 BERKELEY SOFTWARE DISTRIBUTION. UNIX Programmer’s Reference Manual, 1986.

[2] AGRAWAL, D. The performance of protocols based on locks with ordered sharing. |EEE
Transactions on Knowledge and Data Engineering 6, 5 (1994).

[3] ALSBERG, P, AND DAY, J. A principle for resilient sharing of distributed resources. In
Proceedings 2nd International Conference on Software Engineering (October 1976).

[4] BARGHOUTI, N., AND KAISER, G. Concurrency control in advanced database applications.
ACM Computing Surveys 23, 3 (1991).

[5] BERNSTEIN, P, HADZILACOS, V., AND GOODMAN, N. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

[6] DAN, A., TOWSLEY, D., AND KOHLER, W. Modeling the effects of data and resource
contention on the performanceof optimistic concurrency control protocols. InProceedings
of the 4th International Conference on Data Engineering (1988).

[7] DAVIDSON, S. An Optimistic Protocol for Partitioned Distributed Database Systems. PhD
thesis, Princeton University, October 1982.

[8] DAVIDSON, S. Optimism and consistency in partitioned distributed database systems.
ACM Transactions on Database Systems 9, 3 (September 1984).

[9] DAVIDSON, S., GARCIA-MOLINA, H., AND SKEEN, D. Consistency in partitioned networks.
ACM Computing Surveys 17, 3 (September 1985).

[10] DELLAFERA, A., EICHIN, M., FRENCH, R., JEDLINSKY, D., KOHL, J., AND SOMMERFELD, W.

The Zephyr notification service. In Proceedings of the 1988 USENIX Winter Conference
(1988).

[11] DEMERS, A., GREENE, D., HAUSE, C., IRISH, W., LARSON, J., SHENKER, S., STURGIS, H.,
SWINEHART, D., AND TERRY, D. Epidemic algorithmsfor replicated database maintenance.
ACM Operating Systems Review (January 1988).

201

202 BIBLIOGRAPHY

[12] EBLING, M. R., AND SATYANARAYANAN, M. SynRGen: An Extensible File Reference
Generator. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (Nashville, TN, May 1994).

[13] EPPINGER, J., MUMMERT, L., AND SPECTOR, A. Guide to the Camelot Distributed Trans-
action Facility including the Avalon Language. Prentice-Hall, Englewood Cliffs, NJ,
1989.

[14] EswARAN, K., GRAY, J., LORIE, R., AND TRAIGER, |I. The notions of consistency and
predicate locks in a distributed database system. Communications of the ACM 19, 11
(1976).

[15] GARCIA-MOLINA, H. Using semantic knowledgefor transaction processing in adistributed
database. ACM Transactions on Database Systems 8, 2 (1983).

[16] GARCIA-MOLINA, H., AND SALEM, K. Sagas. In Proceedings of ACM S GMOD Confer-
ence (May 1987).

[17] GARCIA-MOLINA, H., AND WIEDERHOLD, G. Read-only transactions in a distributed
database. ACM Transactions on Database Systems 7, 2 (June 1982).

[18] GiFFORD, D. Weighted voting for replicated data. In Proceedings of the Seventh ACM
Symposium on Operating Systems Principles (August 1979).

[19] GRAY, J. Notes on database operating systems. In Operating Systems. An Advanced
Course, Lecture Notes in Computer Science. Springer-Verlag, 1978.

[20] GRAY, J.,, AND REUTER, A. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

[21] Guy, R. Ficus: A \Very Large Scale Reliable Distributed File System. PhD thesis,
University of California, Los Angeles, June 1991.

[22] Guy, R., HEIDEMANN, J., MAK, W., PAGE, T., POPEK, G., AND ROTHMEIER, D. Im-
plementation of the Ficus replicated file system. In Proceedings of the Summer Usenix
Conference (June 1990).

[23] HERLIHY, M. A quorum-consensus replication method for abstract data types. ACM
Transactions on Computer Systems 4, 1 (February 1986).

[24] HOwARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDE-
BOTHAM, R., AND WEST, M. Scale and performance in a distributed file system. ACM
Transactions on Computer Systems 6, 1 (February 1988).

BIBLIOGRAPHY 203

[25] KAWELL, L., BECKHARDT, S., HALVORSEN, T., AND OzzIE, R. Replicated document
management in a group communication system. In Groupware: Software for Computer-
Supported Cooperative Work. IEEE Computer Society Press, 1992.

[26] KISTLER, J. Disconnected Operation in a Distributed File System. PhD thesis, Carnegie
Mellon University, Pittsburgh, May 1993.

[27] KISTLER, J., AND SATYANARAYANAN, M. Disconnected operation in the Codafile system.
ACM Transactions on Computer Systems 10, 1 (February 1992).

[28] KLEIMAN, S. Vnodes: An architecture for multiple file system types in Sun UNIX. In
Summer Usenix Conference Proceedings (June 1986).

[29] KUMAR, P. Mitigating the Effects of Optimistic Replication in a Distributed File System.
PhD thesis, Carnegie Melon University, Pittsburgh, December 1994.

[30] KUMAR, P, AND SATYANARAYANAN, M. Log-based directory resolution in the Coda
file system. In Proceedings of the Second International Conference on Parallel and
Distributed Information Systems (January 1993).

[31] KUMAR, P, AND SATYANARAYANAN, M. Supporting application-specific resolution in
an optimistically replicated file system. In Proceedings of the 4th IEEE Wbrkshop on
Workstation Operating Systems (Napa, CA, October 1993).

[32] KUMAR, P, AND SATYANARAYANAN, M. Flexible and safe resolution of file conflicts. In
Proceedings of the Winter Usenix Conference (New Orlean, LA, January 1995).

[33] KUNG, H., AND ROBINSON, J. On optimistic methods for concurrency control. ACM
Transactions on Database Systems 6, 2 (1981).

[34] LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of ACM 21, 7 (July 1978).

[35] LEVY, E., AND SILBERSCHATZ, A. Distributed file systems: Concepts and examples. ACM
Computing Surveys 22, 4 (1990).

[36] Liskov, B., DAY, M., HERLIHY, M., JOHNSON, P, LEAVENS, G., SCHEIFLER, R., AND
WEIHL, W. Argus reference manual. Tech. Rep. Technical Report-400, MIT Laboratory
for Computer Science, November 1987.

[37] Liskov, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust,
distributed programs. ACM Transactions on Programming Languages and Systems 5
(July 1983).

204

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

LoriE, R. Physical integrity in a large segmented database. ACM Transactions on
Database Systems 2, 2 (1977).

Lu, Q. Isolation-only transactions in distributed Unix file systems. Thesis proposal,
Carnegie Mellon University School of Computer Science, May 1993.

Lu, Q., AND SATYANARAYANAN, M. Isolation-only transactions for mobile computing.
ACM Operating Systems Review (April 1994).

Lu, Q., AND SATYANARAYANAN, M. Improving data consistency in mobile computing
using isolation-only transactions. In Proceedings of the 5th Hot Topics in Operating
Systems (Orcas Island, WA, May 1995).

MARTIN, B., AND PEDERSEN, C. Long-lived concurrent activities. Tech. Rep. HPL-90-178,
HP Laboratories, 1990.

MINOURA, T., AND WIEDERHOLD, G. Resilient extended true-copy token scheme for a
distributed database system. In IEEE Transactions on Software Engineering (May 1982).

MORRIS, J. H., SATYANARAYANAN, M., CONNER, M., HOWARD, J., ROSENTHAL, D., AND
SMITH, FE. Andrew: A distributed personal computing environment. Communications of
the ACM 29, 3 (March 1986).

MUMMERT, L., EBLING, M., AND SATYANARAYANAN, M. Exploiting weak connectivity
in mobile file access. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (Copper Mountain, CO, December 1995).

MUMMERT, L., AND SATYANARAYANAN, M. Long term distributed file reference trac-
ing : Implementation and experience. Tech. Rep. CMU-CS-94-213, Carnegie Mellon
University School of Computer Science, 1994.

MURANAGA, T., LU, Q., AND SATYANARAYANAN, M. Supporting cooperative work in a
mobile distributed file system using isol ation-only transactions. Carnegie Mellon Univer-
sity School of Computer Science, manuscript in preparation, 1996.

NELSON, M., WELCH, B., AND OUSTERHOUT, J. Caching in the Sprite network file system.
ACM Transactions on Computer Systems 6, 1 (1987).

NOBLE, B., AND SATYANARAYANAN, M. An empirical study of a highly available file
system. In Proceedings for the 1994 ACM S GMETRICS Conference on Measurement
and Modeling of Computer Systems (Nashville, TN, May 1994).

NOVELL CORPORATION. NetWare User Manual, 1993.

BIBLIOGRAPHY 205

[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

ORACLE CORPORATION. Oracle7 Server Distributed Systems, 1995.
OusTERHOUT, J. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

PARKER JR., D., PoPEK, G., RUDISIN, G., STOUGHTON, A., WALKER, B., WALTON, E.,
CHow, J., EDWARDS, D., KISER, S., AND KLINE, C. Detection of mutual inconsistency in
distributed systems. |EEE Transactions on Software Engineering SE-9, 3 (May 1983).

PauscH, R. Adding Input and Output to the Transaction Model. PhD thesis, Carnegie
Mellon University School of Computer Science, 1988.

RAHM, E., AND THOMASIAN, A. Distributed optimistic concurrency control for high per-
formancetransaction processing. I|n PARBASE-90 I nter national Conference on Database,
Parallel Architectures and Their Applications (1990).

REIHER, P, HEIDEMANN, J., RATNER, D., SKINNER, G., AND POPEK, G. Resolving file
conflictsin the Ficusfile system. In USENIX Summer Conference Proceedings (Boston,
MA, June 1994).

ROSENTHAL, D. Evolving the Vnode interface. In Proceedings of the Summer Usenix
Conference (June 1990).

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. Design and im-
plementation of the Sun network file system. In Summer Usenix Conference Proceedings
(June 1985).

SATYANARAYANAN, M. Scalable, secure, and highly available distributed file access.
Computer 23,5 (May 1990).

SATYANARAYANAN, M., EBLING, M., AND RAIFF, J. Coda File System: User and Sys-
tem Administrator’s Manual. Carnegie Mellon University School of Computer Science,
December 1995.

SATYANARAYANAN, M., KISTLER, J., KUMAR, P, OKASAKI, M., SIEGEL, E., AND STEERE,
D. Coda: A highly available file system for a distributed workstation environment. IEEE
Transactions on Computers 39, 4 (April 1990).

SATYANARAYANAN, M., KISTLER, J.,, MUMMERT, L., EBLING, M., KUMAR, P.,, AND LU,
Q. Experience with disconnected operation in a mobile environment. In Proceedings
of USENIX Symposium on Mobile Location-Independent Computing (Cambridge, Mas-
sachusetts, August 1993).

SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P, STEERE, D. C., AND KISTLER,
J. J. Lightweight recoverable virtual memory. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (Asheville, NC, December 1993).

206 BIBLIOGRAPHY

[64] ScHMucK, F., AND WYLLIE, J. Experience with transactions in QuickSilver. In Pro-
ceedings of the 13th ACM Symposium on Operating Systems Principles (Monterey, CA,
October 1991).

[65] SHAFER, S. The SUP Software Upgrade Protocol User Manual. Carnegie Mellon Uni-
versity School of Computer Science, August 1990.

[66] SPECTOR, A., DANIELS, D., DUCHAMP, D., EPPINGER, J., AND PAUSCH, R. Distributed
transactions for reliable systems. In Proceedings of the 10th ACM Symposium on Oper -
ating Systems Principles (Orcas Isand, WA, Decemeber 1985).

[67] STEERE, D., KISTLER, J., AND SATYANARAYANAN, M. Efficient user-level file cache man-
agement on the Sun Vnode interface. In Proceedings of the Summer Usenix Conference
(June 1990).

[68] TERRY, D., THEIMER, M., PETERSEN, K., DEMERS, A., SPREITZER, M., AND HAUSER,
C. Managing update conflicts in a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles (Copper
Mountain, Colorado, December 1995).

[69] THEIMER, M., CABRERA, F., AND WYLLIE, J. Quicksilver: Support for access to data in
large, geographically dispersed systems. In 9th International Conference on Distributed
Computing Systems (1989).

[70] THOMASIAN, A., AND RAHM, E. A new distributed optimistic concurrency control method
and a comparison of its performance with two-phase locking. Tech. Rep. IBMC 15073,
IBM Watson Research Center, 1989.

[71] THOMASIAN, A., AND Ryu, |. Analysis of some optimistic concurrency control schemes
based on certification. In Proceedings of the 1985 S GMETRICS Conference on Measure-
ment and Modeling of Computer Systems (1985).

[72] TRAGER, I., GRAY, J,, GALTIERI, C., AND LINDSAY, B. Transactions and consistency in
distributed database systems. ACM Transactions on Database Systems 7, 3 (1982).

[73] TYGAR, D., AND YEE, B. Strongbox: A system for self securing programs. In CMU
Computer Science: 25th Anniversary Commemor ative. Addison-Wesley, 1991.

[74] WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND THIEL, G. The LOCUS distributed
operating system. In Proceedings of the Ninth ACM Symposium on Operating Systems
Principles (October 1983).

[75] Yu, P, AND DIAS, D. Notes on modeling optimistic concurrency control schemes. Tech.
Rep. IBMC 14825, IBM Watson Research Center, 1989.

