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Abstract

Many computational e�ects� such as exceptions� state� or nondeterminism�
can be conveniently speci
ed in terms of monads	 We investigate a technique
for uniformly adding arbitrary such e�ects to ML�like languages� without
requiring any structural changes to the programs themselves	 Instead� we use
monadic re�ection� a new language construct for explicitly converting back
and forth between representations of e�ects as behavior and as data	

Using monadic re�ection to characterize concisely all e�ects expressible with
a given monad� we can give a precise meaning to the notion of simulating one
e�ect by another� more general one	 We isolate a simple condition allowing
such a simulation� and in particular show that any monadic e�ect can be
simulated by a continuation monad	 In other words� under relatively mild
assumptions on the base language �allowing formation of a suitably large
answer type� control becomes a universal e�ect	

Concluding the development� we show that this universal e�ect can itself
be explicitly implemented in terms of only standard 
rst�class continuations
�call�cc and a piece of global state	 This means that we can specify an ef�
fect such as nondeterminism abstractly� in terms of result lists� then directly
obtain from this description a nondeterministic�choice operator performing
imperatively�implemented backtracking	 We include a full realization of the
general construction in Standard ML of New Jersey� and give several pro�
gramming examples	
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Chapter �

Introduction

In this chapter� we cover some general background and motivation for the work de�
scribed in this document	 After a brief discussion of two popular conceptual models for
programming with computational e�ects� we introduce a new approach that in many
ways combines the best aspects of both	 We give an informal overview of this approach
and sketch the concrete results obtained in the following chapters	

��� E�ects in functional languages

An important topic in the 
eld of programming language semantics is the study of compu�
tational e�ects	 Informally� an e�ect is any deviation from the intuitive characterization
of a program fragment as representing a simple function from inputs to outputs	 Ex�
amples are numerous� including such familiar concepts as partiality� exceptions� state�
computational complexity� I�O� nondeterminism� and concurrency	
The treatment of e�ects is particularly interesting in the context of modern functional

programming languages� such as Standard ML or Haskell	 Such languages have relatively
simple and tractable mathematical descriptions� amenable to a formal analysis	 In fact�
their basic model of computation is precisely the de
nition and evaluation of functions�
as opposed to sequential execution of program instructions	
But even though most aspects of functional programming can indeed be usefully cap�

tured with this simple declarative model� the natural formulation of many non�trivial pro�
gramming tasks still tends to involve occasional uses of �imperative� concepts � whether
for convenience in expressing an algorithm� or for interaction with the outside world	
The challenge to the semanticist is thus to admit the possibility of e�ects� while

retaining as many as possible of the appealing properties of functional programming	 This
problem� of course� is not new� but somewhat surprisingly� two distinct schools of thought
have evolved on how best to proceed� exempli
ed by the treatment of e�ects in �purely
functional� languages� such as Miranda or Haskell� versus �algorithmic functional� ones�
such as Scheme or ML	
The remainder of this section brie�y presents and contrasts these two approaches�

then introduces the basic thesis underlying this dissertation� that we can integrate key
ideas from each framework to obtain a model of specifying and using e�ects that combines
the best of both worlds	

�
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����� E�ects as data�

When the basic ideas of denotational semantics were originally proposed� a signi
cant
challenge was to demonstrate that a very abstract mathematical model of computation
based on �pure� functions could adequately model some apparently very non�functional
but �at least at that time important constructs in existing programming languages	 Per�
haps the most striking example of this was the use of continuation functions for modeling
unstructured control constructs �gotos �SW��� Rey���� simpler techniques su�ced for
concepts such as state or exceptions	

There is a close similarity between the metalanguage of denotational semantics �a con�
cise notation for specifying continuous functions between domains and actual functional
programming languages	 This has the fortunate consequence that often an appropriately
expressed denotational de
nition can be directly executed to get an interpreter for the
de
ned language �Rey���	 And in fact� many of the techniques pioneered in denotational
semantics were quickly adopted for functional programs that were not in any reasonable
sense language processors	

Speci
cally� the denotational representation of almost every computational e�ect leads
to a characteristic pattern or style in functional programs using that e�ect	 For example�
a global store can be modeled functionally by passing an additional store argument to
every function� together with returning from each function the possibly updated store�
the resulting speci
cation is commonly said to be expressed in state�passing style	

Similarly� exceptions can be modeled by tagging every function return value as either
�normal� or �exceptional�� the caller of a function must then explicitly check for and
propagate exceptions �exception�passing style	 And� perhaps best�known� continuation�
passing style �CPS� passes to every function an explicit representation of the remainder
of the computation� to be invoked on the result of that function �Rey��� Fis��� Plo���	

While these techniques for modeling computational e�ects all share a similar feel� they
do di�er substantially in the details	 It was therefore a remarkable observation by Moggi
that they could each be seen as a particular instance of a generic schema� parameterized
by a monad� a simple concept from category theory �Mog���	 This meant that much of
the theory of computational e�ects could be derived abstractly� without reference to any
speci
c notion of e�ect	

Again� it did not take long for this idea to migrate from mathematical semantics
to mainstream functional programming	 Work by Wadler and others �Wad��� Wad��b�
PW��� establishedmonadic style as a practical technique for structuring purely functional
programs in a way that could reasonably conveniently express both program�internal
e�ects �exceptions� state� etc	 and external ones �foreign function interfaces and monadic
I�O	

The bene
ts of a denotational speci
cation of an e�ect are substantial� we get a
concise yet very precise characterization of how a program fragment can behave	 For
example� in a language with exceptions and non�termination as the only e�ects� the
meaning of an integer�returning computation could be a meta�language value of type
Z� �X where X is some 
xed domain of exception names	

This immediately tells us that evaluation of an expression can have only three possible
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outcomes� it either returns a number� raises an exception� or diverges	 Thus� for example�
a simple case analysis su�ces to formally show that evaluating an expression twice is
equivalent to evaluating it only once and duplicating the result � even if we interpose an
arbitrary other computation between the two evaluations	
Analogous considerations apply to a purely functional program in exception�passing

style� we can use standard reasoning principles for sum types to deduce properties of pro�
grams with exception�e�ects� again validating program transformations such as common�
subexpression elimination	

On the other hand� the purely�functional approach is not without problems� which
become particularly evident at larger scales	 One such disadvantage is that programming
with e�ects turns into an all�or�nothing choice� to add even the most innocuous e�ect�
such as debugging output or a �gensym� facility for generating unique names� we may
have to rewrite substantial parts of the program in e�ect�passing style	
Monads alleviate this inconvenience somewhat� by allowing the program to be struc�

tured uniformly� independently of what e�ects will eventually be present	 Still� we need
to explicitly re�express the underlying functional program in monadic style � sometimes
after the fact� duplicating e�ort� and sometimes preemptively� in anticipation of possibly
having to add e�ects in the future	
Of course� since the conversion into monadic style is easily mechanizable� we can

always express programs in a more concise notation� and have them automatically ex�
panded into monadic style � either explicitly as a source transformation� or implicitly by
an interpreter	 But such an approach is not without problems either� by interposing a
translation phase for expanding monadic e�ects into their denotations� we are e�ectively
de
ning an entirely new programming language	
And for writing any non�trivial programs in this new language� we will want all the

conveniences commonly provided by a language environment� pattern�matching function
de
nitions� a static type system �giving meaningful error messages� a module system� a
standard library� etc	 Thus� the practical e�ort involved may be much larger than what
might be expected from only looking at the core translation equations	

A related� but logically distinct� problem is that monadic�style de
nitions impose
a substantial overhead on execution� whether implemented interpretively or compiled	
Even if e�ects are rare �which is one of the tenets of functional programming� the
infrastructure required to support an occasional imperative construct imposes a uniform
burden on the entire evaluation process	
For example� for exception�passing style� the speci
cation demands that after every

subcomputation that may raise an exception� we have to check for this possibility and
either proceed normally� or propagate the exception to the rest of the computation	
A simple realization of exception�passing could thus spend a large fraction of its time
checking for conditions that only occur very rarely	 A more sophisticated implementation�
especially a translation�based one� may be able to eliminate some of those checks� but
in general calls to �unknown� functions �passed as parameters or separately compiled
have to be explicitly guarded by a check for exceptional returns	
Any further improvements seem to require pushing the e�ect down into the language
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implementation itself� still providing a purely functional interface to the relevant opera�
tions� but implementing them more e�ciently than what could be expressed explicitly in
the language	 In particular� several proposals have been made for direct implementations
of state in languages like Haskell �PW��� LPJ���	
Unfortunately� such a �black�box� approach negates one of the main advantages of

the denotational approach� the ability to represent e�ect meanings explicitly as ordinary�
functional constructs that can be reasoned about directly within the language	 And even
more signi
cantly� these more e�cient implementations are only available for a select few
e�ects� programmer�de
ned� application�speci
c monads cannot take advantage of any
non�functional implementation techniques	

����� E�ects as behavior�

As noted in the previous section� there are some compelling advantages to the denota�
tional approach to e�ects� but also some signi
cant practical problems	 Whether the
former outweigh the latter is still a controversial issue� especially because there is an
alternative way of treating e�ects in programs	 This approach is often referred to by the
rather loaded term of �impure� functional programming� we will generally use the more
neutral names behavioral or operational	
The basis of this approach is that a program expressed in terms of function de
ni�

tions and applications can still be given a very natural algorithmic reading	 Speci
cally�
the fundamental principle of applicative�order reduction �namely� reducing the argument
part of a ��redex before performing the substitution can be seen as specifying a partic�
ular sequencing of evaluations	 And this sequencing can serve as a robust skeleton for
organizing general computational e�ects	
Although this idea can be traced back to early Lisp �M����� perhaps the prototypical

functional language based on such an approach is Scheme �CR���	 The three key semantic
di�erences distinguishing Scheme from a �purely functional� language are its call�by�
value evaluation strategy� the presence of explicitly mutable state� and a feature known
as �rst�class continuations	
These three characteristics make Scheme a very versatile language� but potentially

signi
cantly complicate reasoning about programs	 The problem is not that call�by�value�
state� or continuations are inherently particularly hard to reason about	 After all� they
have simple denotational counterparts� and any Scheme program can be relatively easily
expanded into a �purely functional� one by a continuation�passing transform	
In fact� we do not need to explicitly translate at all� direct�style equational theor�

ies such as the computational ��calculus are only slightly more complicated than ���
conversion �Mog���	 �The situation is complicated somewhat by dynamic creation of
mutable cells� but those too can be dealt with �FH���	 It would thus seem that ease
of reasoning about impure functional programs should be �within a constant factor� of
that about pure programs	
But there is a more subtle reason why general Scheme programs can be much harder

to analyze formally than e�ect�free ones� because the set of computational e�ects is
e�ectively 
xed at two low�level but very powerful operations� the natural programming
style consists of encoding higher�level e�ect abstractions imperatively in terms of the
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available e�ects� rather than through explicit e�ect�passing	

For a simple example� consider parameterization	 Suppose that at a few places in a
program� perhaps spread across several separately compiled modules� we need access to
a parameter supplied as part of the initial expression to be evaluated	 The two basic
approaches for achieving this are to pass the parameter around everywhere it might
eventually be needed� or to store its value in a global cell and access it only where
actually used	
If the program is su�ciently large� and the accesses to the parameter su�ciently in�

frequent� the second approach becomes the natural choice �indeed� probably the correct
choice from a software�engineering perspective	 But by encoding parameterization in
terms of state� we have e�ectively failed to represent the important fact that the para�
meter is immutable	
That is� suppose the program were otherwise purely functional	 Then in explicitly�

parameterized style� we could easily argue that the phrase f �p � f �p could always be
safely replaced by �� f �p� even when f was an unknown function	 But once we admit
general state� the optimization is no longer automatically valid� we need to be able to
inspect f � making sure that it does not change the global value of p� before we can
eliminate the common subexpressions	
In other words� where the transformation was a simple equational property in a purely

functional setting� it is at best only provable in a language with e�ects when f and all the
functions it calls are known	 The reason is that the program does not explicitly embody
the speci
cation that the global state can never be modi
ed after its initialization	
Of course� in a purely functional language� the state�based solution would not be

available at all	 Or� more accurately� given that all e�ects in a pure language must be
written out in full� parameterization would naturally be expressed as such� rather than
through �functional state�passing	 That is� if we have to be explicit about e�ects anyway�
we may as well be precise	

With control e�ects� the problem is of course compounded	 Again� an imperative
realization of e�ects such as exceptions� nondeterminism� or concurrency may well be
practically preferable to its more declarative counterpart in explicit e�ect�passing style�
but the price we pay is in loss of simple reasoning principles	
In fact� the problem is not only in analyzing programs using the e�ects� it is often

challenging even to show formally that the implementation of the e�ect itself is correct	
For example� in Scheme we can encode �the control aspects of an ML�like exception
facility in a few lines of code using call�cc and a �current handler� cell	 But a proof that
such an implementation actually agrees with the explicit exception�passing used in the
formal de
nition of SML �MTH��� is by no means a trivial task	
Similar considerations apply to analyzing control�based implementations of backtrack�

ing �Hay��� HDM��� or concurrency �Wan���� while the code may be short� elegant� and
intuitively plausible� formally relating it to a more abstract denotational speci
cation�
such as success lists �Wad��� or resumptions �Sch��� Mog���� is often a serious undertak�
ing	
One could thus say that it is in this sense that �purely functional� programs o�er
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a pragmatic reasoning advantage over �impure� ones� by penalizing all e�ects equally�
they do not discourage the use of precise� custom�tailored e�ect representations	 Impure
languages� on the other hand� leave us an unpleasant choice� trading o� precision against
verbosity� if the desired e�ect is not already explicitly available� we must decide whether
to encode it in terms of some more general standard e�ect� or to rewrite the program in
explicit e�ect�passing style	

����� A uni�ed view

As we have seen� each of the approaches has its advantages and disadvantages	 The
question thus naturally arises� whether there might be a way to somehow combine the
best features of both	 In particular� would it be possible to set things up so that we could
think �both formally and informally in terms of precise� functional denotations� but work
�both when writing and executing programs with the concise� operational behaviors�
The main goal of this thesis is to answer this question a�rmatively	 We will see

how it is indeed possible to take a purely functional denotational speci�cation of any
monadic e�ect and obtain from it a directly executable operational implementation using
call�cc and state	 In fact� we will be able to de
ne functions for converting back and forth
between denotational and behavioral views of the same e�ect with no loss of information	
The fundamental idea is to distinguish carefully between transparent and opaque rep�

resentations of a computational e�ect	 The transparent representation is the explicit�
denotational one� a computation that may raise an exception is represented as an e�ect�
free computation of a sum�typed result� a computation with state�e�ects is represented
as a pure function from old state to result and new state� a nondeterministic computation
is represented as a deterministic computation of a list of results� and so forth	
On the other hand� the opaque representation is e�ectively an abstract data type

with two operations� we can construct a trivial computation out of a value� and we can
sequence two computations� where one may depend on the outcome of the other	 How
these operations are realized depends on the particular notion of e�ects� of course	 But
when writing the bulk of a typical program� the opaque representation is all we need	
For example� a program written in monadic style would mostly use abstract unit and
bind operations for structuring� regardless of what they actually expanded to	
Only when we actually wish to perform an e�ect� such as raising an exception� ac�

cessing the store� or making a nondeterministic choice� do we need additional operations	
For such explicit e�ect�manipulations� we introduce two additional operations� converting
between transparent and opaque representations of an e�ect	
That is� given an explicit representation of the e�ect� such as a value representing a

raised exception� a function modifying the state� or a list of possibilities� we can obtain
from it the corresponding opaque representation� which can then be further combined
with other opaque computations in the usual way	
Conversely� and equally importantly� from an opaque representation� we can recover

its transparent counterpart	 For example� to handle an exception� we explicitly examine
the sum�based representation of a computation and perform the appropriate action in
each case	 Or to determine whether a nondeterministic subcomputation has at least one
successful outcome� we check if its transparent� list�based representation is non�empty	
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Although this distinction may not at 
rst appear particularly profound or useful� we
now sketch three crucial observations that together summarize the main contributions of
the thesis �with each one roughly corresponding to a chapter�

�	 Even though opaque computations are a priori simply another abstract datatype�
the two operations of value�inclusion and sequencing are exactly what forms the
e�ect�backbone of an �imperative functional� language such as Scheme or ML	 In
such a language� any subcomputation may have an e�ect	 A value such as a constant
or a lambda�abstraction is therefore a special case� which must be implicitly coerced
into a general computation	 This corresponds to the 
rst operation on our ADT of
opaque computations	

Similarly� e�ects in compound computations are implicitly sequenced by the call�by�
value evaluation order	 For example� in an applicationE�E�� 
rst E� is evaluated to
a value� then E�� and 
nally the application is performed	 Again� this corresponds
to an explicit sequencing of opaque computations� where subsequent computations
may depend on the values produced by earlier ones	

With this view� then� the conversions between transparent and opaque represent�
ations of computations provide an e�ect�introspective capability in the language�
exposing the underlying notion of e�ects when and only when it matters	 That is�
the two operators convert between computations as data and as behavior within a
single setting� integrating the views of e�ects as either being or happening	 The key
requirement is that the two conversion operations must be �two�sided inverses� so
that no information is lost when switching between the two view	

That is� by relaxing the relationship between transparent and opaque represent�
ations from their being identical to merely isomorphic� we have already gained
something important� a model for programming in a convenient� concise ML�like
language� with an intuitive imperative reading� yet at the same permitting equa�
tional reasoning about our programs as if they were written purely functionally�
with explicit e�ect�passing	 But we can actually go further�

�	 Since the ultimate goal of reasoning about programs is to characterize their observ�
able behavior� we actually have some freedom in choosing the opaque representation
of e�ects� as long as we can guarantee that it properly tracks the transparent repres�
entation in all complete programs	 In other words� we only need to ensure that the
two representations are observationally isomorphic� whether or not they actually
are denotationally so	

More explicitly� in addition to the canonical opaque representation� which simply
encapsulates the speci�cation monad of the transparent representation� there may
also be a variant opaque representation� based on a di�erent implementation monad	
Then� as long as we choose the implementation monad such that it successfully
mimics its speci
cation counterpart in all program contexts� we can still reason
about programs as if opaque e�ects were directly represented by the speci
cation
monad	
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This is of course a well�known property of abstract data types in general	 In our
case� however� the ADT operations of value inclusion and sequencing are implicitly
invoked at every single subcomputation �whether it actually performs any e�ects
or not in addition to the explicit conversions between transparent and opaque rep�
resentations	 Thus� e�ciency of the implementation becomes a signi
cant concern	

We will consider several examples of such e�ect�simulations� and give a general
characterization of the relationships the two monads must satisfy in order for one
to act as the opaque representation of the other	 But perhaps the most remarkable
and useful such instance is that� under suitable assumptions� any monad can be
simulated by a continuation monad	 In particular� this means that no matter how
apparently complex the transparent speci
cation may be� it can be implemented
uniformly by continuation�passing	

This further adds to the attractiveness of programming with monadic e�ects� we
can still reason about our programs as if their operational behavior were realized by
explicit e�ect�passing according to a �potentially computationally costly declarat�
ive speci
cation	 Yet the actual implementation only needs to incur the relatively
low �and 
xed cost of continuation�passing	 And we can do better still�

�	 Although we nominally have a way to simulate arbitrary monadic e�ects with
continuation monads� we are still some way o� from a full implementation of our
hypothetical ML�like language with behavior�data duality for user�de
nable e�ects	
We have shown that continuations are in a sense a universal e�ect� but we still need
to actually exploit this property in practice	

A key third step is therefore to note that the variant opaque representation of
an e�ect is also the canonical opaque representation of the e�ect induced by the
implementation monad	 That is� we can de
ne an ML�like language with a notion
of native e�ects that directly corresponds to the continuation monads we use for
implementing other monadic e�ects	 Any language in the style of �� above can
then be directly embedded into this one language of control e�ects	

Moreover� we can show the perhaps equally surprising result that our universal
control�e�ect language can itself be embedded in a language with only Scheme�
style 
rst�class continuations and mutable global variables	 This could be said to
validate the informal claim in the Scheme Rationale for call�cc that most useful
control abstractions can be implemented explicitly� without changing or extending
the language itself �CR���	

With this correspondence� we have e�ectively bridged the gap between the denota�
tional and the operational view of e�ects� we can reason safely in terms of the
former� but work in a practical� familiar programming language in terms of the
latter	 The general construction takes a non�trivial amount of work to develop and
prove correct� but we only need to perform it once and for all� not once for every
new e�ect we want to implement	

The presentation in this document is oriented towards call�by�value languages� which
can take full advantage of point �� above	 Still� there is in principle no reason why �� and
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�� could not also be exploited in a purely functional language� e�cient implementations
of e�ects are as important for Haskell�like languages as they are for Scheme�like ones	
We will not develop the details of such an application� however	

��� Monads and monadic re�ection

In this section� we give somewhat simpli
ed introduction to monadic e�ects	 In particu�
lar� we will assume that the monad under investigation represents the only computational
e�ect in the language	 The formal development in the next chapter considers a more gen�
eral notion of computation� where a monad serves to introduce a new e�ect on top of
potentially already existing ones	 Although the basic idea is the same� the details become
substantially more involved	 For the moment� let us therefore ignore the possibility of
e�ects other than the one being introduced	
Monads originate in category theory� like many such concepts� they have several

equivalent de
nitions	 For our purposes� the following variant �usually known as the
Kleisli triple formulation seems most convenient�

De�nition ��� �preliminary� A monad T in a functional language consists of the
following�

� A type constructor T 	

� For any type �
 a function �� � �� T� �the unit function at ��	

� For any function f � ��� T��
 a function f � � T��� T�� �the extension of f�	

These components must further satisfy the three monad laws�

f � � ��  f ���  idT� �f � � g�  f � � g�

Remark ��� In category theory� the a monad is conventionally de
ned in terms of a
functor T and natural transformations � � Id � T and � � T � � T satisfying certain
equalities �ML��� VI	��	 �In the context of functional programming� the corresponding
operations are usually referred to as map� unit� and join �Wad��a�	
It is easy to see� however� that the two formulations are equivalent� every Kleisli triple

�T� �� � determines a monad �T� �� � by

Tf  �� � f� and ��  id�T� �

Conversely� every monad determines a Kleisli triple by

f �  �� � T �f �

and moreover these assignments are inverses	 In the following� we will therefore use the
terms �Kleisli triple� and �monad� synonymously	
A simple syntactic variation on Kleisli triples� popularized by Wadler �Wad��b�� uses

a binary in
x operator to denote application of an extended function� writing t �bind� f
or t 	 f for our f � t	 This �continuation last� notation is usually preferable for writing
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actual functional programs in monadic style� but the formulation in the de
nition is more
convenient for our purposes	
It should also be mentioned that our monads are properly called strong monads in

category theory �Mog���� essentially because the f being extended need not be closed	
�The monad laws must then also hold for open terms� the formal de
nition in the next
chapter will re�ect this	 We will use the �functional programming� rather than the
�categorical� terminology throughout this document	

Monads provide a uniform framework for reasoning about computational e�ects �such
as state� exceptions� or I�O in applicative programming languages �Mog��� Mog���	
Informally� � a represents a �pure� �i	e	� e�ect�free computation yielding a� while f �t
represents the computation consisting of t!s e�ects followed by an application of f to the
result �if any computed by t	 A concrete instance may help clarify this�

Example ��� For any 
xed type 
� the monad of 
�carrying exceptions is given by

T�  � � 
� �  �a� inl a� f �  �t�case t of inl a� f a �� inr e� inr e

Here� a computation of type � is either a value a of type � �the left summand� denoting
a successful computation of a� or a value e of type 
 �right summand� representing
a speci
c failure	 The unit and extension operations capture the expected operational
behavior of exceptions� in particular� if evaluation of a function argument t raises an
exception e� that exception is simply propagated without ever applying f 	 It is easy to
check that these de
nitions do in fact satisfy the equations in De
nition �	��	

The use of monads for structuring purely functional programs � as opposed to language
semantics � is by now quite commonplace �Wad��b� PW���	 Of course� those same
structuring techniques can usually also be used with Scheme�like languages �only rarely
do monadic�style programs rely on lazy evaluation in a fundamental way� but the bene
ts
seem less clear� often a �mostly pure� program with a few isolated e�ects �e	g	� a gensym
or occasional output is both more e�cient and easier to understand at a glance than an
equivalent �completely pure� program expressed in monadic style throughout	
There is a more interesting way� however� of explicitly using monads as a structuring

tool for programs in �impure� functional languages� one that takes full advantage of an
eager evaluation strategy instead of trying to ignore it	 The study of this alternative is
the main focus of this thesis	 Speci
cally� our development is based on a simple functional
language based on �Moggi!s principle��

Computations of type � correspond to values of type T�	

As also noted by Moggi� this abstract correspondence principle can be embodied into
a concrete language construct which we will call monadic re�ection �by analogy to the
more general notion of computational re�ection �Smi��� WF���	 Speci
cally� we take�

De�nition ��� �preliminary� A re�ection of a monad T in a language is given by two
operators

" � V � T�

" � ��V  � �
and

" � E � �

" � �E� � T�
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satisfying that for any expression E � � �possibly with computational e�ects� and any
value V � T�


�E� is a value� ���E�  E� and ���V �  V

Although the presence of these two operators arises naturally from the monadic frame�
work� little is generally said about their computational interpretation� let alone their use�
fulness in actual functional programming	 As it turns out� however� monadic re�ection
provides exactly what we need to program with monadic e�ects without having to rewrite
the code in monadic style	
In operational terms� for any value V � T�� ��V  re�ects V as an �e�ectful� compu�

tation of type �� we can construct an explicit representation of the e�ect� then perform
or execute it by passing it to �� 	 Conversely� given a general computation E � �� �E�

rei�es it as the corresponding e�ect�free value of type T�� which can then be further
inspected and analyzed like any other inert piece of data	

Although it is possible to write programs using the re�ection and rei
cation operators
directly� an actual programming language would typically de
ne a collection of more
convenient operations in terms of ��  and � ��

Example ��� Consider again the exception monad from Example �	�	 We can express
the usual exception�raising construct directly as

raise E def let e E in �� inr e

where E is an expression � typically just a value � of type 
	 That is� we explicitly
construct a right�tagged value in the explicit representation of computations� then pass
it to ��  to perform the e�ect	
Conversely� �E� rei
es a possibly exception�raising ��expression E into a value of

type � � 
� so we can de
ne an exception�handling construct like this�

try E� handle e�E�
def case �E�� of inl a� a �� inr e�E�

That is� if E� returns normally� E� is ignored� but if E� raises an exception� the handler
E� is invoked with e bound to the exception data� a general pattern�matching handle
construct as found in SML can easily be expressed in terms of this one	

Example ��� For any type �� the ��state monad is de
ned by�

T�  �� �� �� �  �a� �s� ha� si� f �  �t� �s� let ha� s�i ts in f as�

Here� a computation t is represented as a �pure function accepting a current state s and
returning a value a and a new state s�� an e�ect�free computation passes the state along
without modifying or reading it� and the extension of f 
rst evaluates t in the current
state s and then f a in the state s� resulting from evaluation of t	
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Using re�ection� we can de
ne operators for updating and reading the state�

state �� E def let v  E in ���s� hhi� vi

� state
def ���s� hs� si

That is� state �� E is the e�ect represented by a function replacing the state with the
value of E �and returning hi as the result of the operation� while � state denotes the e�ect
of reading the current state without modifying it	 Neither of these de
nitions explicitly
uses the rei
cation operator	 That one is only used implicitly at the top level� if E is a
program with state e�ects� then

run E def let ha� s�i �E�s� in a

is the result of evaluating E starting with an initial state s� and discarding the 
nal
state	 A simple re
nement is of course to permit the state to persist across a sequence
of top�level evaluations� as� in the interactive read�eval�print loops of ML or Scheme	
More generally� if we take � to be a whole store �a 
nite map from locations to values�

we can de
ne� for any mutable variable x�

x �� E def let v� E in ���s� hhi� sf�x	 vgi

�x def ���s� hs�x� si

where �x is the location corresponding to the cell x	
Note that the state�accessing operations export only a subset of the functionality

of the state monad	 To express general re�ection�rei
cation in the store case� we need
access to a �
rst�class store� mechanism	 This can actually be implemented reasonably
e�ciently using version trees� without requiring the whole store to be copied �JD���
Mor���� but it does impose some overhead	

The latter example illustrates that it may not always be feasible or desirable to
export the full re�ection�rei
cation pair for a monad in a real programming language	
Nevertheless� it will be important for analysis purposes to consider the fully general
formulation of an e�ect in terms of ��  and � �� with any restrictions on accessible
functionality viewed as purely pragmatic considerations	
This is not to trivialize such concerns� only to emphasize that they are an orthogonal

issue	 Re�ection and rei
cation expose exactly the range of e�ects expressible in the
corresponding state�passing formulation � much as a traditional denotational semantics
of a language with a store does not formally enforce that the store is used in a single�
threaded way	
The exception and state monads by no means exhaust the interesting possibilities	

Some other examples of simple monadic e�ects are listed in Table �	�� we will encounter
many of these in more detail later	 And although this collection may still seem limited� we
have not even considered all the combinations that encode multiple e�ects	 For example�
T�  �� ��� 
� � represents computations with both exceptions and state	
�How to combine speci
cations of individual e�ects into composites is actually a

non�trivial problem	 Although we will not develop the details in full generality� the
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Common name Functor� T� Unit� �� Extension� f �

Identity � �a� a �t� f t
Partiality �� �a� up a �t� case t of up a� f a �� 
�

Exception � � 
 �a� inl a �t� case t of inl a� f a �� inr e� inr e
State �� �� � �a� �s� ha� si �t� �s� let ha� s�i ts in f as�

Environment � � �a� �e� a �t� �e� f �tee
Complexity ��N �a� ha� �i �ha� ni� let hb� n�i f a in hb� n� n�i
List�nondeterm	 �� �a� �a� ��a�� � � � � an�� f a� �� � � ��� f an
Set�nondeterm	 P�n� �a� fag �fa�� � � � � ang� f a� � � � � � f an
Continuation ��� o� o �a� �k� ka �t� �k� t��a�f ak

Table �	�� Some simple monads

incremental approach used in the next chapter to layer a new e�ect on top of an existing
one illustrates the basic principle� we must re
ne the de
nition of a monad to explicitly
account for the original e�ects in the new speci
cation	

��� Overview of the thesis

�	 This Introduction presents some background material about computational e�ects
and informally introduces the notion of monadic re�ection as the bridge between
the denotational and operational view of monadic e�ects	

�	 In Programming with Monadic E�ects� we 
rst specify a simple functional base
language with some notion of ambient e�ects� such as partiality	 We then formally
de
ne monads in this setting and show how a monad T induces an extension of
the base language with a new focus e�ect	 We specify the semantics of this e�ect�
enriched language by a simple but somewhat impractical �de�nitional� monadic
translation back the original language� for which we already have a semantics	 Our
task in the remaining chapters will then be to devise and prove correct an alternative
implementation of the extended language	

�	 Relating E�ects contains the main technical contribution of the thesis	 We consider
a speci�cation monad T and an implementation monad U� and investigate when
U can be said to simulate T	 We 
rst show how� given some data connecting T
and U� we can de
ne a variant translation from the T�extended language to the
base language� using U�e�ects to perform T�e�ects �but without any correctness
guarantees yet	

After some technical preliminaries� setting up the proof context� we then introduce
the concept of a monad relation between T and U� and show that given such a
relation� the de
nitional and the variant translation agree on complete T�programs	
In many cases we can obtain the required monad relation directly from existence
of a monad morphism from T to U� but the general continuation�simulation of T
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with a continuation monad involves an additional twist to capture the parametricity
properties of the �
nal answer� type	

We conclude the chapter by showing that the correspondence between monads and
continuations also allows us to de
ne the monadic re�ection operators for T directly
in terms of those for the continuation monad U	 Thus� it su�ces to provide an
implementation of the language with continuations as the notion of focus e�ect	

�	 Completing the construction� Implementing Continuation�E�ects shows how the
e�ects corresponding to a continuation monad can be embedded into a Scheme�like
language	 The proof can be broken into three distinct steps	 First� we show that the
monadic e�ects for continuations can be expressed in terms of a control abstraction
called composable continuations� which can be further decomposed into three even
simpler control operators	

Second� we show that the distinction between ambient and focus e�ects introduced
by the de
nitional monadic translation does not actually a�ect evaluation� thus
leaving us to implement a language with a single level of e�ects	 And third� we
show that this language can be implemented by embedding in language with 
rst�
class continuations and state	 We conclude by showing a concrete implementation
of the construction and a few programming examples	

�	 Finally� the Conclusion summarizes the results and outlines some promising direc�
tions for further work	



Chapter �

Programming with Monadic E�ects

In this chapter� we introduce a simple functional programming language that will serve
as a concrete framework for the results and proofs throughout the thesis	 We also form�
ally de
ne the notion of monad in this setting� and show how a monad allows us to
systematically de
ne a extended language with a new notion of e�ects	

��� The base language

����� Terminology

A language consists of a syntax L and a semantics L	 The syntax de
nes the sets of well�
formed types and of well�typed terms of a given type by means of a language signature�
i	e	� a set of type constructors and �typed term constructors from which language phrases
are built up inductively	
The semantics assigns some notion of meaning to the terms	 As a practical minimum�

we expect a semantics to provide a notion of program evaluation� i	e	� a partial function
EvalL from a suitable subset of L�terms �e	g	� closed terms of base type to some set
of observable results� say natural numbers	 An evaluation semantics induces a notion of
observational equivalence on terms� where two terms are considered equivalent if they can
be substituted for each other in any program context without changing the observable
outcome of the program	 It is easy to see that this relation on terms is in fact a congruence
wrt	 all term constructors of the language	
A denotational semantics provides more� namely a model	 That is� for every type� a

set of meanings of terms of that type� and to every term constructor� a meaning of the
constructed term expressed as a function of the meanings of the subterms	 In particular�
this provides a notion of equality� denotational equivalence� where two terms are equal i�
they denote the same element of the model� because of the compositionality requirement�
denotational equivalence is likewise a congruence	 Two terms may be observationally
equivalent without being denotationally so� but it is usually simpler to reason about
denotational equivalence	
We obtain an evaluation semantics from a denotational semantics by de
ning a func�

tion from the meanings of closed terms to observable results	 For example� the denotation
of a program could be an element of the �at domain N� of lifted natural numbers� the

��
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induced evaluation semantics is then given simply by the evident partial function map�
ping every lifted natural number to itself� and unde
ned on the 
�element of the domain	
Two di�erent semantics for a syntax �say� direct and continuation may determine the
same evaluation semantics �and hence the same notion of observational equivalence� but
induce di�erent notions of denotational equivalence	

We say that a language �L� L is a member of a language class �e	g	� the class of
lambda�calculi if its signature contains some speci
ed set of type constructors �product�
function space� etc	 and term constructors �abstraction� application� etc	� and the
meanings of these types and terms in L satisfy some equational constraints �congruences�
��conversion� etc		 Often we can prove a result for an entire class of languages by showing
that it holds generically in any model of the equations	

����� The base syntax

We now present a concrete language� in which we will be doing most of the formal
development	 Its syntax and semantics are very similar to PCF �Plo��� �even more so
to PCF with lifted types �Mit���� except that the e�ect structure is made more explicit	
We call it E�ect�PCF	 We present the syntax and informal operational interpretation in
this section� with a precise denotational semantics in the next	

E�ect�PCF is somewhat more verbose than a typical practical programming language�
because all computation sequencing is made explicit in the syntax	 For example� in an
application� both the function and the argument must be explicitly evaluated if they are
not already values	

Although we could have worked in an ML�like CBV language directly� the general
treatment of monadic e�ects becomes awkward when the sequencing is left implicit	 The
present formulation allows us to cleanly separate out the handling of e�ects from the
�purely functional� structure �exponentials� products� etc		

Moreover� there is a simple� e�ect�independent elaboration of a standard� ML�like
syntax into E�ect�PCF� so we can view the implicit sequencing of computations in call�
by�value languages as merely convenient shorthand for the corresponding E�ect�PCF
terms	 We will return to this elaboration in Section �	�	�	

The base signature is displayed in Figure �	�	

Type structure

The most notable characteristic of the syntax is the division of the types into two classes�
value types ��� and a subset called �generalized� computation types ��	 The operational
signi
cance of this division is to make the possibility of e�ects explicit in the types�
separating trivial or manifestly e�ect�free from serious computations	

We make value types properly include computation types by taking one possibility
for a value to be an unevaluated computation� represented by a value of type��	 For
example� a closed expression of type � will always be equivalent to a numeral� a general
expression expected to yield a natural number� but which may diverge �or have some
other e�ect has type��	
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Types�

� �� a j � j � j �� �
v �� j �� � �� j �

� �� �� j �� � j � j �� �
c ��

Terms�

M �� x j z j sM j ifz�M�M�� x�M� j hi j hM��M�i j fstM j sndM

j inlM j inrM j case�M�x��M�� x��M� j �x
��M jM�M�

j�M j let�x�M� in M� j �x�M

Typing� " is a type assignment x����� � � � � xn��n �with all xi distinct	

�x��  "

" � x � � " � z � �

" �M � �

" � sM � �

" �M � � " �Mz � � "� x� � �Ms � �

" � ifz�M�M�� x�M� � � " � hi � �

" �M� � �� " �M� � ��

" � hM��M�i � �� �
v ��

" �M � �� �
v ��

" � fstM � ��

" �M � �� �
v ��

" � sndM � ��

" �M � ��

" � inlM � �� � ��

" �M � ��

" � inrM � �� � ��

" �M � �� � �� "� x���� �M� � � "� x���� �M� � �

" � case �M�x��M�� x��M� � �

"� x�� �M � �

" � �x��M � �� �

" �M� � �� � " �M� � �

" �M�M� � �

" �M� � �� " �M� � ��
" � hM��M�i � �� �

c ��

" �M � �� �
c ��

" � fstM � ��

" �M � �� �
c ��

" � sndM � ��

" �M � �

" ��M ���

" �M� ���� "� x��� �M� ����

" � let�x�M� in M� ����

" �M � �� �

" � �x� M � �

Figure �	�� Base signature� L�
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A computation of type ��� is often more conveniently thought of as ��computation
parameterized by an ��value� rather than as a function from values to computations	
In particular� when � is itself an arrow type� no actual evaluation occurs until all the
parameters are present	
Similarly� a computation of type ���

c �� can be viewed as a single computation impli�
citly parameterized by the choice of which component to evaluate� not as two unrelated
computations	 �In the case where �� and �� are the same type �� this is re�ected in the
isomorphism � �c � � �� � �� �	
There are actually two product�type constructors� one for value types and one for

computation�types only	 Although their typing and equational properties are identical
�and in the standard semantics� they are even interpreted by the same cpo constructor�
the two variants are logically distinct	 Still� we generally omit the superscripts when it
is clear which one is meant � i	e	� when one of the factors is a value type� or the context
requires a computation�type	
�Analogous consideration apply to the unit type� of course� but there we can simply

assume that the two types are identical without unduly constraining the semantics	
The set of value�types also includes a countable set of type variables	 �There are no

type variables for the computation�types	 When #  fa�� � � � � ang is a 
nite set of type
variables� we write

�� � type and �� � ctype

if all type variables occurring free in � and � are in #� in this case we say that � or �
is a type over #	 Clearly when #� � # then also ��� � type and ��� � ctype	 We say
that � and � are �type��closed when # is empty	 A type over # determines a type family
consisting of all types obtained by substituting closed types for type variables in #	
Note that there are no constructs within the language for explicitly binding type

variables	 �There will be� however� in an extension of L� with recursively�de
ned types
in Section �	�	�	
The canonical model of the language is given by the category of �bottomless� cpos

�predomains and continuous functions� with computation�types interpreted by pointed
cpos and the��operator on types corresponding to lifting	 See Section �	�	� for details	

Terms

The term structure and associated typing rules are again mostly conventional	 Similarly
to the parameterization of types by type variables� we write

" �� M � �

if all type variables occurring free in "� M � and � are listed in #	 M is then said to be a
term over #� again it is called type�closed when # is empty� and the set of type�closed
instances of a term over # forms a term family	
Complementing the��operator on types� there is a term operator�M � which constructs

an e�ect�free computation returning M � and let�x�M� in M�� which constructs a
computation consisting of evaluating M� and M� in sequence� with x in the second
evaluation bound to the result of the 
rst one	 A computation is treated as a 
rst�class



���� THE BASE LANGUAGE ��

object� and is not actually performed until its value is explicitly requested� either directly
by a top�level program evaluation� or through evaluation of an enclosing let	
We generally omit the type tags in terms when they are clear from the context	 Also�

we will occasionally use pattern�matching syntax in let� and lambda�bindings� with the
usual expansions� e	g	�

�let�hx�� x�i �M in M � def �let�x�M in M �f fst x�x�� snd x�x�g �x ��FV �M ���

�Note that the projections are considered to be trivial by the typing rules� so the result
of the substitution is still well�typed	
The constructs associated with type � allow us to program with natural numbers using

a zero�constant� a successor function� and a combined zero�test�predecessor operation	
Given general recursion� we can construct the standard arithmetic operations out of those
primitives	 For example� we can de
ne addition as�

plus � �� ����  �hn�� n�i� �x���� ��f��n� ifz�n��n�� n
�� let�r� f n� in��s rn�

Note� however� that because of the use of �x� the result of an addition is an ��computation�
even though the addition function happens to be total	 �We could of course extend the
language with additional primitives for arithmetic or a primitive�recursion construct�
which could then be given pure value�types	
Having 
xed points at all computation�types � also allows us to express mutual

recursion easily� as in�

even � ����
	 fst 
�x������������� 
�he� oi�h�n� ifz 
n��
 inl hi�� n

�� on��� �n� ifz
n��
 inr hi�� n�� en��i��

where � def � � � is the type of Boolean values	
On the other hand� we cannot write down a term corresponding to a 
xed point of

the pure successor function� indeed� the type ��� is not even expressible in the language	
�We can write �x�� ��l

��� let�n� l in��sn ���	 Not surprisingly� this denotes a diverging
computation in the intended interpretation of �x	
Finally� we occasionally use the standard abbreviations�

" � id� � �� �

" �M� � �� �� " �M� � ��� ��
" �M� �M� � �� ��

" � 
� � � " � n � �
�n�N�

with id�
def �x��x� M� �M�

def �x��M� �M�x� 
�
def �x� id�� and n

def sn z	

����� A denotational semantics

A program in our base language is a closed term of type��� if in the semantics that term
is equivalent to�n for some n� the program denotes a successful computation with result
n� otherwise� a diverging computation	 A denotational semantics gives the meaning of a
complete program by induction on its syntactic structure	
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Preliminaries We give a simple model of the base language in the setting of bottomless
cpos �also called pre�domains� i	e	� complete partial orders not necessarily having a least
element	 For completeness� we review the associated terminology and constructions	

De�nition ��� A cpo A is a set equipped with an ��complete partial order v
 i	e	
 such
that every countable chain a� v a� v � � � of elements in A has a least upper bound
 writtenF
i ai	 A monotone �� order�preserving� function from A to A� is called continuous if for

every chain �aii�� in A
 f�
F
i ai  

F
i f�ai	

A cpo B is called pointed if it has a least element 
B
 i	e	
 if 
B v b for every b in
B	 A function between pointed cpos B and B� is called strict if f�
B  
B� 	 We use
the name domain synonymously with pointed cpo	

There are a number of standard cpos and cpo constructions�

� base types	 Any set� such as the natural numbers N� can be organized as a cpo
by equipping it with the discrete ordering� n vN n� i� n  n�	

� unit type	 The one�element set �  f�g is trivially a cpo	 It is even degenerately
pointed� with 
�  �	

� products	 A� � A� is the cartesian product of cpos� ordered componentwise �i	e	�
�a�� a� vA��A� �a

�
�� a

�
� i� a� vA� a

�
� and a� vA� a

�
�	 If B� and B� are pointed then

so is B� � B�� with 
B��B�  �
B� �
B�	

� sums	 A� � A� is the disjoint union of cpos �note� not the �separated sum� from
standard domain�theoretic notation�

A� � A�  f��� a� j a�  A�g � f��� a� j a�  A�g

ordered inject�wise� i	e	� �i� a vA��A� �i
�� a� i� i  i� and a vAi

a�	 Such a cpo is
in general not pointed� even if the summands are	

� function space	 A� � A� is the cpo of continuous functions from A� to A�� with
f vA��A� f � if �a  A�� f�a vA� f ��a	 To minimize confusion with abstraction
and application in the language� we write �x���x and f�a for abstraction and
application in the cpo model	 A�B is pointed when B is� with 
A�B  �x�
B	

� lifting	 For any cpo A� we de
ne the lifted cpo�

A�  ffag j a  Ag � f�g

ordered such that fag vA� fa
�g if a vA a�� and � v fag for any a	 We write up�a

for fag and 
 for �	 Naturally� A� is pointed	

The strict extension of a function f � A�A�
� is the function f

y � A��A�
� given by

f y�up�a  f�a and f y�
  
	 More generally� for any pointed B and f � A�B�
f z � A��B maps up�a to f�a and 
A� to 
B	

� re�exive types	 Finally� the CPO model allows us to construct solutions �up to
isomorphism to recursive type equations	 While we will not need this immediately�
it will become important in Section �	�	�	
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Given a 
nite set I� we write
Q
i�I Ai for the I�indexed product of cpos� i	e	� the set

of functions � � I�
S
i�I Ai such that for each i  I� ��i  Ai	 Such a function is usually

called an environment	 Environments can be naturally ordered pointwise� with � v �� i�
�i  I� ��i vAi

���i	
Finally� we write � for the empty environment� ��i� �� a� 

Q
i�I�fi�gAi �where i

� may
or may not already be a member of I for the function mapping i� to a  Ai� and every
other i  I to ��i� and � n i for the function � restricted to I n fig	

Base e�ects To give a semantics to our language in the predomain model� we 
rst
need to choose a notion of base or ambient e�ects� to be denoted by the computation�
type constructor	 The canonical example of such an e�ect is partiality� but the structure
of the later proofs is largely independent of the exact choice� we only need to show that
it satis
es a few simple relational properties	
We treat the case of partiality formally� and sketch how the setup generalizes to other

ambient e�ects where appropriate	 We do not develop the semantics of ambient e�ects
in detail� however� where possible� it is more convenient to treat ambient e�ects more
uniformly� using the monadic translations to be introduced a little later	
A valid reason for considering more complicated base e�ects� however� is to model lan�

guage features that cannot be eliminated by a source�to�source transform	 For example�
�true� non�determinism �as opposed to a 
nitary variant� which can be de
ned by a
backtracking transformation� can be modelled by a powerdomain or similar construct	
Similarly� any notion of I�O operations or other extra�linguistic e�ects must somehow be
accounted for in the semantics rather than at source level	 We will not treat any of those
formally� however	

De�nition ��� An ambient�e�ect monad for the cpo semantics is given by the following
data�

� A cpo constructor T 
 such that for any cpo A
 T A is a pointed cpo	

� A family of continuous functions �A � A�T A	

� An assignment to any continuous function f � A�T A�
 a strict continuous function
f 	 � T A�T A�	 This assignment must itself be continuous
 i	e	
 satisfy the equality
�
F
i fi

	  
F
i f

	
i 	

Further
 the components must satisfy the three monad laws�

f 	 � �A  f �	A  idT A f 	 � g	  �f 	 � g	

De�nition ��� The partiality semantics is given by taking T A  A� �pointed
 as re�
quired�
 ��a  up�a
 and f 	  f y �strict by de�nition�	 It is easy to check that the
monad laws hold for this triple	

�Incidentally� the requirement that f 	 be strict ensures that �zA � A��T A is a monad
morphism from the partiality monad to T 	 We will phrase this in more general terms in
De
nitions �	��� �	��� and �	�� and in Example �	�	
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Semantics of types To every well�formed �� � type� we assign a cpo� and to every
�� � ctype� a pointed cpo�

L��a��  �a

L�����  N

L�����  �

L���� �
v ����  L������� L������

L���� � ����  L������ � L������

L���� ���  L������L�����

L���� �
c ����  L������� L������

L������  T �L�����

Semantics of terms To every well�typed " �� M � �� we assign an element L��M ��� 
�
Q

�xi��i��	 L���i��
��L�������

L��x����  ��x

L��z����  �

L��sM ����  L��M ���� � �

L��ifz�M�Mz� x�Ms����  
�
L��Mz���� when L��M ����  �
L��Ms�����x ��n� when L��M ����  n� �

L��hi����  �

L��hM��M�i����  �L��M������L��M�����

L�� fstM ����  a� when L��M ����  �a�� a�

L��sndM ����  a� when L��M ����  �a�� a�

L�� inlM ����  ���L��M ����

L�� inrM ����  ���L��M ����

L��case�M�x��M�� x��M�����  
�
L��M������x� �� a�� when L��M ����  ��� a�
L��M������x� �� a�� when L��M ����  ��� a�

L���x�M ����  �a�L��M �����x �� a�

L��M�M�����  L��M������L��M�����

L���M ����  ��L��M ����

L��let�x�M� in M�����  ��a�L��M������x �� a�	�L��M�����

L���x� M ����  
G

i
�L��M ����i�
L

���

�where for any i � �� f i is the i�th iterate of f � i	e	� f ��a  a and f i���a  f�f i�a	

Figure �	�� Denotational semantics L��T ��� �� of the base language
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Other examples can be easily adapted from the source�level monads to be presented
in Section �	�	�� for example� we obtain a notion of ambient state by taking T A  
N� �A�N�� cf	 Example �	��	 However� such L��de
nable ambient e�ects are more
conveniently dealt with at the syntactic level� through an explicit monadic translation	
Although the only explicitly accessible e�ect in our base language is divergence �via

�x� it is still useful to consider more general e�ect�structures in the semantics	 For
example� a continuation semantics may well be of interest even for a language that does
not contain explicit control operators	
We can now give a denotational semantics of the base language �parameterized by

the choice of e�ect structure in Figure �	�	 Let # be a 
nite set of type variables� and �
be a mapping of type variables in # to cpos	 The semantics then assigns to every #�type
�� �� a cpo L������ �pointed if � is computational� and to every #�term " �� M � ��
a continuous function L��M ��� from L��"���  $�xi��i��	L���i��

� to L������	 �We usually omit
� when it is clear from context	 In particular� since there are no language constructs
for binding type variables� � stays constant throughout the semantic equations� and is
omitted throughout the 
gure to reduce clutter	
Although the denotational semantics thus assigns meanings to types and terms over

arbitrary #s �interpreting type variables by arbitrary cpos� for most purposes we will not
use this generality� syntactic substitutions of closed types for type variables su�ce	 The
only uses of the ��parameterized semantics are in showing that a syntactic monad may
be used to express a semantic one in Proposition �	��� and when introducing recursively�
de
ned types in Section �	�	�	

����� Generalized let

De�nition ��� For any computation�type � of L�
 we de�ne a derived term constructor
let��
 the generalized let with typing rule

" �M� ��� "� x�� �M� � �

" � let�� x�M� in M� � �

by induction on the structure of ��

let�
�� x�M� in M�  let�x�M� in M�

let�� x�M� in M�  hi

let������ x�M� in M�  hlet��� x�M� in fstM�� let��� x�M� in sndM�i

let���� x�M� in M�  �a�� let�� x�M� in M�a

In the predomain semantics �for any T � two particular consequences of this de
nition
are�

L��let�� x�M� in M�����  
�
L��M������x �� a� when L��M�����  ��a

L

��� when L��M�����  


In the case of the partiality semantics� these are in fact the only two possibilities for
L��M�����	 We thus obtain a natural generalization of the existing �strict extension�
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let� in that M� can now be of a type interpreted by any pointed cpo� not necessarily a
directly lifted one	 Note� however� that we still need to restrict M� to be of type��� not
a general computation type� while strictness makes sense for functions B��B� between
arbitrary pointed cpos� the strict extension operation can only extend a function A�B
to A��B� not �strictify� an arbitrary function B��B�	
It is important to note the di�erence between� say� a computation returning a pair of

integers�
let�

������ x�M in�hx� �i

�where M is evaluated exactly once� yielding a pair of numbers� and the construction of
a pair of computations�

let�
����� x�M in h�x���i

�where M is evaluated when either component of the result is requested	 Similarly� we
distinguish between the diverging computation of a function�

let�
������� y�
�� in���x��� �������

and a successful computation yielding a function which diverges for all inputs�

��let����� y�
�� in ��x��� �������

����� Equational properties

When the semantics L is 
xed and clear from context� it is often preferable to reason
about programs at the level of terms� rather than explicitly about their denotations in
the semantics	 More generally� we can often isolate a set of reasoning principles that hold
for a large variety of interpretations� then check that our speci
c semantics L veri
es
those principles	
As mentioned before� for our purposes� it will su�ce to consider equational properties

of type�closed terms �i	e	� with no free type variables� although the following should
extend naturally to type and term families over a nonempty set of type variables	

De�nition ��� A signature L consists of a set of type and term constructors	 An in�
terpretation L of L assigns to every type �
 � type of L
 a set Val��� and to every
L�term " �
 M � � and �nite function � with ��xi��i  "� ��xi  Val��i
 an element
Int�M�  Val��	

An equational theory E for L is a set of typed equalities between �type�closed� L�
terms
 " � M  M � � �	 A model of an equational theory is an interpretation that
satis�es all the equations of the theory
 i	e	
 whenever " �M  M � � � is provable and �
is a "�environment
 then Int�M�  Int�M �� as elements of Val��	

It is clear that the predomain semantics �for any notion of ambient e�ects T  determ�
ines an interpretation of L�� by taking Val�� as the set underlying L����� and Int�M�

as L��M ����� forgetting continuity of L��M �� �as a function from environments to values	
We present an equational theory E� for L� and simultaneously argue that the predomain
interpretation is a model of that theory	 For particular classes of T s� additional equations
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may be axiomatizable� for example that ambient e�ects are commutative or idempotent�
we do not consider such extensions� however	
In most cases� the axioms listed below can be immediately veri
ed by referring to

the semantics� we often omit the details where they can be easily 
lled in	 Also� since
equality judgments are always about type�closed terms� we omit the implicit �
 in all
typing assumptions in the rules	

Lemma ��� In the semantics L of Figure 	
 for any terms M and M �
 the following
weakening and substitution principles hold�

L��M ����  L��M ���� n x if x � FV �M

L��MfM ��xg����  L��M �����x �� L��M ������

Proof� Routine� by induction on M 	

Given this lemma� the veri
cation of the following equations is straightforward	

Congruences� substitutions By the denotational assumption� our notion of equival�
ence is inherently a congruence wrt	 all the term constructors of the language	 We also
have general principles of closure under weakening and substitution�

" �M  M � � �

"� x � �� �M  M � � �

"� x � �� �M  M � � � " �M�  M �
� � ��

" �MfM��xg  M �fM �
��xg � �

which follow directly from Lemma �	��

L��M 
�� 	 L��M 
� n x� 	 L��M �
� n x� 	 L��M �
��

L��MfM��xg
�� 	 L��M 
��x ��L��M�
��� 	 L��M �
��x ��L��M �
�
���

	 L��M �fM �
��xg
��

Natural numbers

" �Mz � � "� x� � �Ms � �

" � ifz�z�Mz� x�Ms  Mz � �

" �M � � " �Mz � � "� x� � �Ms � �

" � ifz�sM�Mz� x�Ms  MsfM�xg � �

" �M � � "� x� � �M � � �

" � ifz �M�M �fz�xg� x��M �fs x��xg  M �fM�xg � �

Unit type

" �M � �

" �M  hi � �

�� is a terminal object	 Note that this equation means that there is only one value of
type �� there may well be di�erent computations of that value� i	e	� terms of type��	
Already in the partiality case there are two such closed terms� termination ��hi and
divergence �
��	
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Products

" �M� � �� " �M� � ��

" � fst hM��M�i  M� � ��
��symm

" �M � �� �
v ��

" � h fstM� sndMi  M � �� �
v ��

" �M� � �� " �M� � ��
" � fst hM��M�i  M� � ��

��symm
" �M � �� �

c ��
" � h fstM� sndMi  M � �� �

c ��

�Both are products in the categorical sense	 Although in the predomain semantics the
two notions of products are interpreted by the same object� we do not actually require
this in general	

Sums

" �M � �� "� x���� �M� � � "� x���� �M� � �

" � case � inlM�x��M�� x��M�  M�fM�x�g � �
��symm

" �M � �� � �� "� x��� � �� �M � � �

" � case �M�x��M
�f inl x��xg� x��M

�f inr x��xg  M �fM�xg � �

�Sums are coproducts in the categorical sense	 Veri
cation of the 
rst law is immediate�
given Lemma �	�	 For the second� we rely on the fact that L��M ���� must be a value
of the form �i� a� the equation would not be sound if � were interpreted by� e	g	� a
separated sum and M denoted a diverging computation	 A useful consequence of the
above equations is that for any h �not necessarily denoting a strict function�

h�case�M�x��M�� x��M�  h�case�x� x��M�� x��M�fM�xg
 case �M�x��h�case � inl x�� x��M�� x��M�� x��h�case � inr x�� x��M�� x��M�
 case �M�x��hM�� x��hM�

Function space

"� x�� �M� � � " �M� � �

" � ��x��M�M�  M�fM��xg � �

" �M � �� �

" � ��x��M x  M � �� �

�Categorically� �� � is an exponentiation of � and �� but we do not require existence
of exponentiations with arbitrary codomain types� so the category of types and terms is
not quite a ccc	

Computations

� �M� � �� �� x��� �M� ����

� � 
let�x��M� in M�� 	 M�fM��xg ����

� �M ���

� � 
let�x�M in�x� 	 M ���

� �M� ���� �� x���� �M� ���� �� x���� �M� ����

� � 
let�x� � 
let�x� �M� in M�� in M�� 	 
let�x� �M� in let�x� �M� in M�� ����

Each of these corresponds directly to one of the monad equations governing the
ambient�e�ect monad �T � ��	 	 For example� for the 
rst one we verify�

L��let�x��M� in M�����  ��a�L��M������x �� a�	���L��M�����
 ��a�L��M������x �� a��L��M�����  L��M������x �� L��M������
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Fixed points

" �M � �� �

" � �x�M  M ��x�M � �

This su�ces for evaluation� but for more general formal reasoning we will need additional
properties� the details of this are covered in the next chapter	 �Actually� none of the
results in the thesis depend on the 
xed�point equation being in E�� so in principle we
could safely omit it without a�ecting correctness	

We have thus established�

Proposition ��� For any ambient�e�ect monad
 the predomain semantics L�T ����� is a
model of E�
 the equational theory generated by the inference rules listed above	

����� Encodings of implicitly	sequenced languages

In actual programming languages there is often no explicit syntactic or typing distinction
between values and general terms	 Rather� the grammar of types and terms is of the form�

� �� � j � j �� � �� j �� � �� j ��� ��

E �� x j z j sM j hi j hE�� E�i j fst E j snd E j inl E j inr E

j case �E� x��E�� x��E� j �x
��E j E�E� j �x E

with trivial and serious computations a priori occupying the same type	
Our explicitly�sequenced syntax simpli
es formal manipulation of programs� but it

is somewhat inconvenient for actual programming	 �However� in common practice� it is
relatively uncommon to see� e	g	� applications of the form E�E� where one or both of
E� and E� themselves have e�ects� in particular� evaluation of E� only very rarely has
e�ects	 Nevertheless� typical programs in ML�like languages do have some sequencing
left implicit� and it would be too burdensome to force them to always be explicitly
sequenced	
Fortunately� we can treat the more compact general syntax as merely shorthand

for explicitly�sequenced terms� with programs 
rst being desugared or elaborated into
sequenced form� and only then given an operational or denotational semantics	 We
present two such elaborations� leading to either a call�by�value �CBV or a call�by�name
�CBN interpretation of the implicitly�sequenced language	

CBV Translation on types	 If � is a type of the CBV language� ���v is a type of L�	

���v  �

���v  �

���� � ��
v  ����

v �v ����
v

���� � ��
v  ����

v � ����
v

����� ��
v  ����

v������
v
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Translation on terms	 If " � E � � in the source language� then ��"v � ��Ev �����v

in L��

��xv  �x

��zv  �z

��sEv  let�x� ��Ev in��s x

��ifz�E�Ez� x� Es
v  let�n� ��Ev in ifz�n� ��Ez

v� x� ��Es
v

��hiv  �hi

��hE�� E�i
v  let�x�� ��E�

v in let�x�� ��E�
v in�hx�� x�i

�� fst Ev  let�x� ��Ev in�� fst x

��snd Ev  let�x� ��Ev in��snd x

�� inl Ev  let�x� ��Ev in�� inl x

�� inr Ev  let�x� ��Ev in�� inr x

��case �E� x��E�� x��E�
v  let�x� ��Ev in case �x� x����E�

v� x����E�
v

���x��Ev  ���x�����v ���Ev

��E�E�
v  let�f � ��E�

v in let�a� ��E�
v in f a

���x	E
v  let�F � ��Ev in���x��	��v ��f� let���	��v f

�� F f in f �

where for the CBV �x� � must be a functional type� so that ���v is a computation�type	
�We can actually also allow it to be a product of computation�types� if in the context
of mutually�recursive de
nitions we interpret � as the computation�product �c 	 The
explicit let��	��v is necessary because the type of F is ���� �v  ���v�����v	
When E is syntactically a value V � we have ��V v  �M for some M 	 Thus� for

example� we get validity of beta�value reduction because

����x�EV v  let�f � ���x�Ev in let�a� ��V v in f a
 let�f ����x���Ev in let�a��M in f a  ��x���EvM  ��EvfM�xg
 ��EfV�xgv

Similarly� in general we have

���x�E xv  ���x� let�f � ��Ev in f x   ��Ev

but when ��Ev  �M for some M � the equality does hold	

CBN A CBN interpretation gives a language essentially identical to PCF with product
and sum types	 The type translation is now�

���n  ��

���n  �

���� � ��
n  ����

n �c ����
n

���� � ��
n  ������

n � ����
n

����� ��
n  ����

n� ����
n
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Since the interpretation of every type is computational� we can form exponentials between
any pair of types exponentials� and thus the source language forms a ccc	 When the
elaboration is composed with our predomain semantics� every type is interpreted by
a �proper domain� in fact� for a partiality semantics� this gives exactly the standard
domain�theoretic model of PCF	
Translation on terms	 If " � E � � in the source language� then ��"n � ��En � ���n

in L�	

��xn  x

��zn  �z

��sEn  let�x� ��En in��s x

��ifz�E�Ez� x� Es
n  let���	��n n� ��En in ifz�n� ��Ez

n� x� ��Es
nf�x�xg

��hin  hi

��hE�� E�i
n  h��E�

n� ��E�
ni

�� fst En  fst ��En

��snd En  snd ��En

�� inl En  �� inl ��En

�� inr En  �� inr ��En

��case�E� x��E�� x��E�
n  let���	��n x� ��En in case �x� x����E�

n� x����E�
n

���x��En  �x�����n���En

��E�E�
n  ��E�

n ��E�
n

���x	 E
n  �x��	��n ��E

n

where we now have 
xed points at all source types� including �	 Note also that numbers
are still represented by a �at domain �as opposed to the lazy natural numbers� which also
include partially�de
ned values� such as s
	

��� Monads in a computational setting

In this section� we present a formal de
nition of monads� suitable for a language that
already has a notion of ambient e�ects	 This de
nition is phrased in terms of few basic
concepts� which we need to introduce 
rst	

����� A framework for e�ects

The ultimate goal of the line of research presented here is a framework for computational
e�ects which makes it possible to describe e�ects in a modular way	 Speci
cally� we want
the ability to add e�ects incrementally� the resulting language is speci
ed by a sequence
of de
nitional translations� each one of which �translates away� one level of e�ects	 For
example� we can have a language with exceptions and state� speci
ed as a composition
of an exception�passing and a state�passing transform	
For now� however� we only consider the two�level case� with a notion of ambient e�ects

�possibly already a combination of several primitive ones� speci
ed by the �semantic�
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monad T used in the denotational semantics� and a focus e�ect� speci
ed by a �syntactic�
monad T	
In order to de
ne the notion of a monad that interacts in a suitable way with ambient

e�ects� we need some amount of structure in the language	 The following provides what
we will need�

De�nition ��
 We say that a language �L�L is a computational lambda�language �cll
if it has a class of computation types �
 forming a �not necessarily proper� subset of all
types �
 and with the following properties�

� There are computations at any type
 and the set of computation�types is closed
under �nite products and function spaces �with arbitrary domain��

� type

�� ctype � ctype

�� ctype �� ctype

�� �
c �� ctype

� type � ctype

�� � ctype

We write �� � type and �� � ctype for types over a set of type variables #
 but
do not require L to assign any meaning to such types when # is nonempty	

� The syntax L includes at least the following terms and term constructors�

�x��  "

" � x � �

" �M � �

" ��M ���

" �M� ��� "� x�� �M� � �

" � let�� x�M� in M� � �

�that is
 we have variables
 computation�inclusions
 and a generalized let�
 together
with the term constructors for products and function spaces	 Again
 we write " ��
M � � for a term over #
 not necessarily given a meaning by L	

� In the semantics L
 the following equations hold �between type�closed terms��

� �M� � � �� x�� �M� � �

� � 
let�� x��M� in M�� 	 M�fM��xg � �

� �M ���

� � 
let�
�� x�M in�x� 	 M ���

� �M� ���� �� x���� �M� ���� �� x���� �M� � �

� � 
let�� x� � 
let�
���

x� �M� in M�� in M��

	 
let�� x� �M� in let�� x� �M� in M�� � �

together with the congruence and substitution rules
 as well as the axioms for unit

products
 and functions �as listed in Section 	�	��	 And �nally
 the generalized let
must satisfy �not necessarily directly by de�nition� the equations in De�nition 	�	

For example� in any cll� for every type �� there exists a �computation�type ����
�� ���	 Note that this is a slightly stronger requirement than Moggi!s T �exponentials
�Mog���� which only guaranteed existence of all function spaces of the form ������	
A weaker notion would be to take the computation types to be exactly the set of

types of the form��	 However� requiring computation�types to be closed under products
and �especially function spaces will allow us to give a uniform treatment of de
nable
computational e�ects	
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Proposition ��� Our base language �with any model L satisfying the equations in Sec�
tion 	�	�� can be organized as a cll by de�ning let� inductively as in De�nition 	�	

Proof� We only need to verify that the equational properties of the generalized let hold
for the de
nition	 The proof is a simple induction on �	 We show two sample cases� the
others are very similar	

let������ x��M� in M� 	 hlet��� x��M� in fstM�� let��� x��M� in sndM�i
ih	 h fstM�fM��xg� sndM�fM��xgi 	 h fstM�� sndM�ifM��xg 	 M�fM��xg

let���� x� � 
let�
���

x� �M� in M�� in M�

	 �a� let�� x� � 
let�
���

x� �M� in M�� in M� a
ih	 �a� let�� x� �M� in let�� x� �M� in M� a
	 �a� let�� x� �M� in 
�a� let�� x� �M� in M�a�a
	 �a� let�� x� �M� in 
let���� x� �M� in M��a
	 let���� x� �M� in let���� x� �M� in M�

Other ways of constructing computation�types may be possible� depending on the
actual set of types available	 For example� in a language with explicit polymorphism� it
seems natural to take � �� � � � j �a� �� with the generalized let extended accordingly	
For lack of a better name� we say that a computational ��language is e�ect�free if

� and�� are actually the same type �with�M  M� in this case� the cll requirements
degenerate to those of a ccc	 But e�ect�freeness should not be confused with existence
of a type �� �� �with associated abstraction and application operations for all �� � we
can have the latter without the former	
�We do not actually work with any concrete e�ect�free languages� the concept is

mainly used to show that various de
nitions and results reduce to their more familiar
counterparts in the existing work on monads for computational e�ects	

Remark ���� The essence of a generalized let at a computation�type � can be expressed
simply as existence of the function

�� ���� � def �m� let�� x�m in x

satisfying the equations
x� � � �� ��x  x � �

and
m����� � �� �let�x�m in x  �� �let�x�m in���� x � �

�In category�theoretic terms� this says that �� is the structure map of an algebra ��� �
for the monad underlying��ML��� VI	��	 Speci
cally� given such a function� we can
de
ne a generalized�let operator by

let�� x�M� in M�  �� �let�x�M� in�M�

However� the generalized�let formulation is more convenient to work with� its equational
properties being a natural generalization of the existing let� as formalized in De
ni�
tion �	�	 Remember also that our generalized let �or� equivalently� � is characterized
uniquely by De
nition �	�	
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Among other applications� the generalized let�operation can be used to de
ne a simple
�e�ect�theoretic� generalization of strictness� which in turn plays a key role in the de
n�
ition of layerable monads	

����� Rigidity

De�nition ���� We say that a term " �M � �� � � in a cll is a rigid function between
computation�types � and � � if

"� m��� �M �let�� x�m in x  �let��� x�m in Mx � � �

We write this as " �M � �
r
� � �	

Rigidity is a purely equational property� as such� we distinguish between provable rigidity
�i	e	� when the above equation is derivable in an equational theory and semantic rigidity
�when the equation holds in a model� the former implies the latter	
As an immediate consequence of the de
nition� we get�

Lemma ���� An application of a rigid function can be �moved through� an arbitrary
let�binding�

" �M � �
r
� � � " �M� ��� "� x�� �M� � �

" �M �let�� x�M� in M�  �let��� x�M� in MM� � �
�

�i	e	
 the above is derivable in E� and hence true in any model	�

Proof� Simple veri
cation�

M �let�� x�M� in M�  M �let�� x�M� in let�� y��M� in y
 M �let�� y� �let�

�� x�M� in�M� in y
 �M �let�� y�m in yf�let�

�� x�M� in�M��mg

 y �let��� y�m in M yf�let�
�� x�M� in�M��mg

 let��� y� �let�
�� x�M� in�M� in M y

 let��� x�M� in let��� y��M� in M y  let��� x�M� in MM�

where y marks the application of rigidity of M 	

In particular� for any M � ��� and rigid M ��������

MM �  M �let�x�M � in�x  let�x�M � in M ��x

Operationally� this says that an argument to a rigid function can be evaluated before
the call and the result coerced into a trivial computation� instead of the nominal CBN
evaluation for parameters of��type	 This is usually a property associated with strictness	
And indeed we have

Proposition ���� In the predomain model �for any T � of our base language
 a rigid
function is necessarily strict	 In the particular case of the partiality semantics
 the con�
verse also holds
 i	e	
 any strict function is rigid	
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Proof� First� it is easy to check the following equational reasoning principle�

"� x�� �M � �

" � �let�� x�
�� in M  
� � �

�because for any f � f 	 is strict� and L��
�����  
L

���	 Now� let h � �� � � be a rigid
function	 Then

h
�  h�let�� x�
�� in 
�  let��� x�
�� in h
�  
��

Conversely� let h be strict and let m ���	 When T A  A�� there are only two
possibilities for m�

� m  
��	 Then

h�let�� x�m in x  h�let�� x�
�� in x  h
�  
��

 let��� x�
�� in hx  let��� x�m in hx

� m  �b for some b � ��

h�let�� x�m in x  h�let�� x��b in x  hb  let��� x��b in hx
 let��� x�m in hx

In general� a function is rigid if it uses its argument exactly once� and before any other
serious computation	 But in the particular case of partiality� a function like h  �x�

� �x� let�y� x in 
 in the model also quali
es as rigid� even though it does not
explicitly reference its argument	
It is easy to check that identity and composition of two rigid functions are rigid� so

are fst � snd � �f� f a for any a� and �x� let�a� x in f a for any f 	 Likewise� if f� and f�
are rigid� so is �x�hf�x� f�xi� and if f a is rigid for every a� so is �x��a�f ax	 These are
well�known properties of strictness� but also hold for general rigidity	
In the e�ect�free case ���  �� every function is trivially rigid	

Remark ���� We can give an alternative� equivalent characterization of rigidity	 There
is a natural functorial action of�� mapping a function f � �� � � to

f 
 ������ �  �m� let�x�m in��f x

Further� recall from remark �	�� that for any �� we can de
ne

�� ���� �  �m� let�� x�m in x �

Then a function f � � � � � is rigid i� ��� � f

  f � �� �i	e	� if f is a morphism of the

corresponding��algebras� because

���� � f

m  ��� �let�x�m in��f x  let��� y� �let�x�m in��f x in y

 let��� x�m in let��� y���f x in y  let��� x�m in f x

while

�f � ��m  f �let�� x�m in x �



�� CHAPTER �� PROGRAMMING WITH MONADIC EFFECTS

����� De�nable monads

The notion of a monad in a language �L�L consists of both a syntactic and a semantic
aspect	 Syntactically� we exhibit a type constructor T and term families � and � in
L	 Semantically� we establish that certain equational properties hold among these terms
in L �but not necessarily in any particular equational theory for L	 The separation
is important � we will eventually have to consider interpretations of the � and � in a
semantics where they do not necessarily satisfy the monad laws	
When �� � type is a type over # in L and � is a substitution of �closed L�types for

variables in #� �f�g is itself a �closed type of L	 In particular� a type constructor Fa  �
�where a may occur in � can be identi
ed with a type schema �fag � type	 Analogously�
given a term " �M � �� � determines a �type�closed L�term "f�g �Mf�g � �f�g	
We can now give a formal de
nition of a monad �in the Kleisli�triple formulation�

De�nition ���� Let L be a signature of a cll	 A monad�triple T in L consists of the
following items�

� A computation�type constructor
 �fag Ta ctype	 We write T� for Taf��ag	

� A term family of unit functions
 given as instances of a term �fag �a � a�Ta	 We
write �� for �af��ag	

� A term family of extension operators
 f � a�� Ta� �fa��a�g f
� � Ta�� Ta� �strictly

speaking
 type�indexed as above
 but we always omit the type indices�	

Such a triple is an actual monad in the cll �L�L if in L the following equations hold at
all closed type instances�

�	 f ���� T�� � f � � T��
r
� T��	

�	 f ���� T�� � f � � ���  f � ��� T��	

	 � ���  idT� � T�� T�	

�	 f ���� T��� g���� T�� � f � � g�  �f � � g� � T��� T��	

�Note that �� is an equational condition like the others� because of its expansion in
De
nition �	��	 Conditions ���� also cover equations between non�variable terms� such
as M�

� ��M�  M�M�� because of closure under substitution of terms for variables	
Actually the above de
nition is more akin to that of a monad constructor than of a

simple monad� the necessary information for composition is implicit in the representation
of the monad in the computational language	 Nevertheless� we will refer to it as a monad
over L� since that is where the monad laws are required to hold � as opposed to being
provable in some equational theory for L	 Of course� showing the monad laws in the
equational theory is su�cient to establish them for a model of that theory	
Note that condition �� only makes sense because both T�� and T�� are required to

be computation types	 When L is e�ect�free� the rigidity requirement is vacuous� and
the de
nition reduces to that of an ordinary monad	
Although it is important for our concrete language that rigidity implies strictness�

the rigidity requirement for f � is not merely present for domain�theoretic reasons� it



���� MONADS IN A COMPUTATIONAL SETTING ��

is crucial for composing e�ects in general� and would be present even in a purely set�
theoretic formulation of composable monads in a setting without general recursion	 In
practice� natural monad extensions always seem to be rigid anyway	

Example ���� �Identity� Perhaps the simplest possible monad� de
nable in any cll� is
given by�

T�  ��� �  �a��a� f �  �t� let�a� t in f a

The veri
cation of the monad laws is straightforward	 The identity monad is actually a
degenerate case of many others� for example� we obtain it by specializing the exception
monad below to 
  � �a type with no values� hence no possibility of raising an exception
or the state monad to �  � �a type with one value� hence an information�free state	

Example ���� �Exceptions� Let 
 be some 
xed type of exception names �exn in
SML	 We then obtain a monad by�

T�  ��� � 
� �  �a��� inl a� f �  �t� let�v� t in case �v� a�f a� e��� inr e

For completeness� we show the complete veri
cation� since it is slightly more involved
than for an exception monad over an e�ect�free language�

f� 
let�T�� x�m in x� 	 let�v� 
let�
�������

x�m in x� in case 
v� a�f a� e��
 inr e��

	 let�x�m in let�v� x in case
v� a�f a� e��
 inr e�� 	 let�T�� x�m in f�x

f� � 	 	 �a�f� 
	a� 	 �a� let�v��
 inl a� in case 
v� a�f a� e��
 inr e��
	 �a� case 
 inl a� a�f a� e��
 inr e�� 	 �a�f a 	 f

	� 	 �t� let�v� t in case 
v� a��
 inl a�� e��
 inr e�� 	 �t� let�v� t in�v 	 �t�t 	 id

g� � f� 	 �t�g� 
f� t� 	 �t�g� 
let�v� t in case 
v� a�f a� e��
 inr e���
	 �t� let�v� t in g� 
case 
v� a�f a� e��
 inr e���
	 �t� let�v� t in case 
v� a�g� 
f a�� e�g� 
�
 inr e���
	 �t� let�v� t in case 
v� a�g� 
f a�� e�let�w��
 inr e� in case 
w� b�g b� e��
 inr e���
	 �t� let�v� t in case 
v� a�g� 
f a�� e�case 
 inr e� b�g b� e��
 inr e���
	 �t� let�v� t in case 
v� a�g� 
f a�� e��
 inr e�� 	 
�a�g� 
f a��� 	 
g� � f��

�Note that the type and term constructors are in the image of the CBN translation�
thus exceptions also form a monad in a language like Haskell� where the language�level
sum type is actually a �separated sum� in domain terminology	

Example ���
 �State� Let � be any type	 Then the ��state monad is de
ned by�

T�  ������ �� �  �a��s��ha� si� f �  �t��s� let�ha� s�i � ts in f as�

Again� the veri
cation is fairly simple�

f� 
let�T�� x�m in x� 	 �s� let�ha� s�i � 
let�	������	� x�m in x�s in f as�

	 �s� let�ha� s�i � 
let�
�����	�

x�m in xs� in f as�

	 �s� let�x�m in let�ha� s�i � xs in f as� 	 �s� let�x�m in f�xs
	 let�T�� x�m in f�x
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f � 	 	 �a�f� 
	a� 	 �a��s� let�ha� s�i � ��s��ha� sis in f as�

	 �a��s� let�ha� s�i ��ha� si in f as� 	 �a��s�f 
 fst ha� si�
snd ha� si� 	 �a��s�f as
	 �a�f a 	 f

	� 	 �t��s� let�ha� s�i � ts in ��a��s��ha� sias� 	 �t��s� let�ha� s�i � ts in�ha� s�i
	 �t��s� let�p� ts in�p 	 �t��s�ts 	 �t�t 	 id

g� � f� 	 �t� g� 
f� t� 	 �t� g� 
�s� let�ha� s�i � ts in f as��
	 �t� �s� let�hb� s�i � 
let�ha� s�i � ts in f as�� in g bs�
	 �t� �s� let�ha� s�i � ts in let�hb� s�i � f as� in g bs�
	 �t� �s� let�ha� s�i � ts in g� 
f a�s� 	 �t� �s� let�ha� s�i � ts in ��a�g� 
f a�as�
	 
�a�g� 
f a��� 	 
g� � f��

Although most practically useful monads over �L��L are actually monads in any
model of the equational theory E�� there are two important reasons to only require the
monad laws to hold with respect to speci
c interpretations	 First� since the monad
components may be de
ned using �x� it can be arbitrarily hard to show that a given
monad�triple is actually a monad� certainly E� alone will not always be su�cient	 We
only need E� to validate a few equational properties that will be used frequently in the
proofs later� the results do not rely on the monad laws for particular monads being
provable in E�	
The second� and more fundamental� reason is that certain very useful notions of

computation do not actually form monads in the presence of arbitrary ambient e�ects	
Perhaps the best known such example �KW��� is the list monad T�  ��� list� used
to model nondeterminism	 It turns out to only be a monad if the ambient e�ects are
commutative� i	e	� if the equation

let�x��M� in let�x��M� in M  let�x��M� in let�x��M� in M

�where neither xi occurs free in anMj holds in L	 Partiality satis
es the above equation�
but many other possible notions of ambient e�ects� such as state or continuations� do not	
Other examples of �fragile� monads require the ambient e�ects to also be idempotent� a
property shared by few e�ects other than partiality	
Thus� distinguishing between satisfaction of the monad laws in the equational theory

and in a speci
c model �such as the partiality semantics makes our results applicable to
list�like monads as well as the �robust� ones �such as exceptions or state� that satisfy
the monad laws for any notion of ambient e�ect	
Let us 
nally note that given a semantics that also assigns a meaning to type�open

types and terms� a stronger de
nition of monad is possible�

De�nition ���� When T is a monad in �L�L where L is the predomain interpretation
for any T 
 T is said to be uniform if its equations also hold for type�open terms	 That
is
 for each of the four monad laws " � M�  M� � � in De�nition 	��
 if we allow the
types and terms to contain type variables from #
 � assigns a cpo to each a  #
 and
�xi  L���i��� for each �xi��i  " then L��M���

���  L��M���
��� as elements of L������	

We can then state the simple consequence�
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Proposition ���� Let T be a uniform monad in the predomain semantics �for some
notion of ambient e�ect�	 Then the following determines a new ambient�e�ect monad in
the sense of De�nition 	�

T A  L��Ta��a ��A �A  L���a��
a ��A�� f 	  L��x���a� ��A��a� ��A����x �� f �

Proof� We 
rst note that because computation�types were interpreted as pointed
cpos by L� T A is pointed as required	 Similarly� because arrow�types are interpreted as
continuous�function spaces� �A and f

	 are continuous� and because L��M �� is a continuous
function from environments to values� so is the mapping f �� f 		 Finally� by Proposi�
tion �	��� we get strictness of f 	 from rigidity of x�	 The veri
cation of the monad laws
is also straightforward given uniformity of T	

However� usually there is no need to modify the semantic characterization of ambient
e�ects explicitly� we can de
ne a language with a new notion of ambient e�ects via
iterated monadic translation� in which case it is su�cient for the monad laws to hold
only for type�closed instances	

��� Extending the language with e�ects

����� The monadic translation

We now show how a monad in a language allows us to de
ne a new language with a
richer set of computational e�ects	

De�nition ���� Let T  �T� �� � be a monad�triple over a cll signature L	 Then the
signature LT consists of L extended with a new computation�type constructor


�� � type

�� � ctype

and new term constructors�

" �M� ���� "� x��� �M� � ��

" � let�x�M� in M� � ��

" �M � �

" � M � �

" �M� � �� "� x�� �M� � ��

" � let x�M� in M� � ��

" �M � �

" � �M� � T�

" �M � T�

" � ��M � �

�Note that we overload the syntactic construct let� to represent two distinct term con�
structors� the existing one
 where M� ���� and the new one de�ned above
 where M� � ��	
It will always be clear from context which one is meant	�
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There are now two basic notions of computation� the original�� �e	g	� partiality
and � which also includes T �e�ects �e	g	� raising exceptions	 As before� the set of
computation�types is closed under products and function spaces	
Because we have extended the signature �rather than merely the unstructured set of

types� every type constructor of L is still a type constructor of LT 	 In particular� for
any LT �type �� T� is a well�formed LT �type	 Generalized let �still for binding results of
��computations is also de
nable at all computation�types� with the new clause for let��
using the mixed�level let	
Re�ection ���M and rei
cation ��M� establish a correspondence between opaque

and transparent representation of computations� opaque computations may only be con�
structed and sequenced using and let � while transparent ones may be manipulated using
the full range of operations available on the type T�� such as injections� case analysis�
etc	 See Example �	�� below	
Together with the extension� we de
ne a canonical or de�nitional translation of the

extended signature back into the original one	
Since we will be dealing with several source�to�source translations� let us introduce

the following shorthand�

De�nition ���� �Translation convention� When specifying a translation �� �� from a
signature L to L� that share a lot of operations
 we generally omit clauses of the form

����X�� � � � � Xn��  ����X���� � � � � ��Xn��

where the construct � in L is translated to the same�named construct in L�	 �We do
occasionally include selected clauses of this form for emphasis or clarity� but no formal
distinction should be attached to whether a clause is included or not	�

De�nition ���� The monadic translation �� ��T maps types and terms of LT to their
L�counterparts
 such that�

� For any �� � type in LT 
 �� �����T type in L	

� For any �� � ctype in LT 
 �� �����T ctype in L	

� For any " �� M � � in LT 
 ��"��
T
�� ��M ��T � �����T in L	

The translation on types merely replaces � with its de�nitional expansion�

�� ���T  T �����T

Other type constructors are left intact
 as are type variables �i	e	
 ��a��T  a�	 Similarly

the term translation expands away the new term constructors�

��M ��T  � ��M ��T
��let�x�M� in M� �� ���T  let�T 

���T x� ��M���T in ��M���T

��let x�M� in M���T  ��x� ��M���T 
� ��M���T

����M��T  ��M ��T
���M���T  ��M ��T

with variables and other term constructors of L translated into themselves �but with any
type�annotations expanded according to the type translation�	
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Although the monadic translation is simply a de
nitional extension� rather than a
full syntactic transformation� we adopt the translation formulation to get an explicit
syntactic handle on the expansion	 In particular� when we later consider alternative
ways of translating away the new constructs of LT � it will be convenient to have an
concise notation for referring to the di�erent expansions	
Note also that because type and term variables are translated into themselves� the

translations are compositional in the sense that

���f���ag��
T
 �����

T
f������

T
�ag and ��MfM ��xg��

T
 ��M ��

T
f��M ���

T
�xg �

In particular�

��T���T  ��Taf��ag��T  ��Ta��Tf�����T �ag  Taf�����T �ag  T �����T �

and likewise for the term translations of the monad components� ������T  �

���T and
��f ���T  f � �with the implicit type�tags on � appropriately translated	

The translation of the �mixed let� may need a little explanation	 Consider the case
where T is the state monad� and the base e�ect is partiality	 Then if in the extended
language� " � M� ���� �i	e	� evaluation of M� may diverge� but has no state e�ects�
��M���T ��������T does not take a state argument� nor does it return a new state	 On the
other hand� when "� x�� � M� � �� �i	e	� M� may both diverge and access the store�
��M���T � ����������T � �� so the translation of M� should be passed the current state�
and the new state it returns is the state returned by the whole let�expression	 The
appropriate state�passing translation is therefore

��let�x�M� in M���T  �s� let�x� ��M���T in ��M���T s

which is precisely what the generalized let expands to	
More generally� it is easy to check the following derived rule� where � is an LT �

computation type �i	e	� may contain �

��let�� x�M� in M���T  let�

���T x� ��M���T in ��M���T

In the de
nitional translation� the opaque and transparent T �computations are rep�
resented by the same underlying L�type� consequently� the term translations for re�ection
and rei
cation are trivial	 Later� when we consider a di�erent representation of e�ects�
the two operators will have more interesting de
nitions	

This syntactic translation also determines a semantics�

De�nition ���� Given a semantics L for our base language L
 we obtain a semantics
LT of the extended language LT by taking

LT ������  L�������T ��
� and LT ��M ���  L����M ��T ��

�

In fact� this semantics extends the standard monadic semantics for the new ambient�
e�ect monad induced by T�
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Proposition ���� Let L be a predomain semantics of L� with some underlying ambient�
e�ect monad
 T a uniform monad in that semantics �De�nition 	���
 and let j j �
L�� LT

� be the syntactic transformation replacing every�in types and terms with 	
Then LT ��j j��  LT �� �� �for types and terms� where LT is the monadic semantics of

L� for the ambient�e�ect monad T given by interpreting in L the components of T
 as
shown in Proposition 	�	

Proof� Induction on the structure of the types and terms	 Most cases are immediate�
for computations� we get�

LT ��j��j� 	 LT �� j�j� 	 L���� j�jT 
� 	 L��T ��j�jT 

� 	 L��
Ta�f��j�jT �ag
�

	 L��Ta�
a ��L



j�j��T ���� 	 L��Taa ��L



j�j��T ��� ih	 L��Taa ��LT 

���� 	 T 
LT ���
��

	 LT ����
�

LT ��j�M j�
�� 	 LT �� jM j�
�� 	 L���� jM jT 
�
�� 	 L��	

j�j��T ��jM jT 

�
��

	 L��	

j�j��T 
�
��
L����jM jT 

�
��� 	 L��	af��j�jT �ag
�
��
L����jM jT 

�
���

	 L��	a
�
a ��L



j�j��T ��� �
��
L����jM jT 

�
��� 	 L��	a
a ��L



j�j��T ���
��
L����jM jT 

�
���
ih	 L��	a

a ��LT 

����
��
LT ��M �
��� 	 
LT 

����
LT ��M �
��� 	 LT ���M �
��

The case for let�x�M� in M� is similar	

Similarly� given an evaluation semantics for L �i	e	� a computable partial function
EvalL from closed L�terms of type�� to natural numbers� we get an evaluation semantics
for LT by taking EvalLT �M  EvalL���M ��T 	 �We can do this directly� regardless of T �
because the T �translation of a term of type�� is itself a term of type��	
It is worth remarking that when T is the �identity� monad �T�  ��� �  �x��x�

f � t  let�a� t in f a� the translation e�ectively replaces all occurrences of in the
source term with��

��M ��T  ��x��x ��M ��T  ���M ��T  ���M ��T

��let x�M� in M���T  ��x� ��M���T 
� ��M���T  let�a� ��M���T in ��x� ��M���T a

 let�x� ��M���T in ��M���T  ��let�x�M� in M���T

so when we later exhibit a relation between the T �translation and a monadic translation
for a continuation monad� we will get a relation between direct and continuation�passing
style in the presence of arbitrary �su�ciently well�behaved ambient e�ects by simply
taking T to be the identity monad	

De�ning T 	speci�c operators The re�ection and rei
cation primitives allow us to
de
ne the meanings of e�ectful terms as abbreviations within the extended language�
instead of through additional clauses in the translation equations	

Example ���� When T is the exception monad� we can de
ne the usual ML�like excep�
tion primitives

" �M � 


" � raise M � �

" �M� � � "� x�
 �M� � �

" � try M� handle x�M� � �
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as follows�

raise M def let e�M in ���� inr e

try M� handle x�M�
def let�t� �M�� in case �t� a� a� x�M�

That is� to raise an exception� we explicitly construct its sum�representation as a value
in the right inject� then �activate� it by re�ecting it into the process of computation	
Conversely� to handle a potential exception in a computation M�� we 
rst reify M� and
then inspect it� taking the appropriate action for either of the two possibilities �normal
or exceptional value	
And in fact� expanding the de
nitions using the monadic translation gives the expec�

ted results�

��raise M T 	 ��let e�M in �
�
 inr e��T 	 
�e� ���
�
 inr e��T �
� ��M T

	 let�t� ��M T in case 
t� e����
 inr e�T � e��
 inr e��
	 let�t� ��M T in case 
t� e��
 inr e�� e��
 inr e��

��try M� handle x�M�T 	 	 	 	 	 ��let�t� �M�� in case 
t� a� a� x�M��T
	 let�t� ���M��T in case 
t� a��� aT � x�M��
	 let�t� ��M�T in case
t� a��
 inl a�� x���M�T �

����� Induced equational theory

The translation induces a natural equational theory on terms of the extended language�

De�nition ���� Given an equational theory E �including the cll axioms� for L and a
monad�triple T in L
 the equational theory ET for LT consists of E extended with the
following rules �where we write � for�and � for ��

� �M� � �� �� x��� �M� � j��

� � 
let i x� iM� in M�� 	 M�fM��xg � j��

�i�j�

� �M � i�

� � 
let i x�M in ix� 	 M � i�

� �M� �
i�� �� x���� �M� � j�� �� x���� �M� � k��

� � 
let j x� � 
let i x� �M� in M�� in M��
	 
let i x� �M� in let j x� �M� in M�� �

k��

�i�j�k�

� �M � �

� � �
�M�� 	 M � �

� �M � T�

� � ��
M��	 M � T�

� �M� ���� �� x��� �M� � ��

� � �let�x�M� in M��	 
let�T�� x�M� in �M��� � T��

� �M � �

� � �M�	 	M � T�

� �M� � �� �� x��� �M� � ��

� � �let x�M� in M��	 
�x��M���
��M�� � T��

�The instance i  j  k  � in the �rst three rules is already part of E 	�
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Proposition ���
 The equational theory is sound for the monadic translation
 in the
sense that if M  M � is provable in ET 
 then ��M ��

T
 ��M ���

T
is provable in E extended

with the monad laws for T �which may or may not already be provable in E�	 This again
implies that L����M ��T ��  L����M

���T �� in any model L of E in which T is a monad	

Proof� Simple equational reasoning� using Proposition �	� �the derivable equational
properties for the generalized let	 For example�

��let�x��M� in M� � ��T 	 let�T 

����T
x����M�T in ��M�T 	 ��M�T f��M�T �xg

	 ��M�fM��xgT

��let x� M� in M�T 	 
�x� ��M�T �
� 
	 ��M�T � 	 
�x� ��M�T � ��M�T

	 ��M�T f��M�T �xg 	 ��M�fM��xgT

��let�x� � 
let�x� �M� in M�� in M� � ��T
	 let�T 

����T

x� � 
let�x� � ��M�T in ��M�T � in ��M�T
	 let�T 

����T

x� � ��M�T in let�T 

����T
x� � ��M�T in ��M�T

	 ��let�x� �M� in let�x� �M� in M�T

��let x� � 
let�x� �M� in M�� in M�T
	 
�x�� ��M�T �

� 
let�T 

����T
x� � ��M�T in ��M�T �

	 let�T 

����T
x� � ��M�T in 
�x�� ��M�T �

� ��M�T
	 ��let�x� �M� in let x� �M� in M�T

���M�T 	 ��M T 	 	 ��M T 	 ��	M T

The 
rst three rules of De
nition �	�� say that let�elimination and let��attening are
valid even for mixed levels� as long as the types match	 That is� there is a single notion of
computation�sequencing shared by all e�ects� the level�tags merely keep track of which
kinds of e�ects can happen where	
The next two express that re�ection and rei
cation are exact inverses	 For example�

in the exception case� there is a one�to�one correspondence between �dynamic�� e�ectful
computations of type �� that may raise exceptions� and �static�� exception�free values
of type��� � 
	
The remaining three equations show that � � acts as a �shallow� version of the mon�

adic translation	 According to the 
rst one� terms with ambient e�ects only are una�ected
by rei
cation for the focus e�ect� and may hence move across a � ��barrier freely	 For
example� if the ambient e�ect is state and focus e�ect is exceptions� a computation that
cannot raise an exception can be moved out of a try�handle	 �The equation is necessar�
ily satis
ed when the base language is e�ect�free� because in that case let� is simply a
substitution of M� for x in M�	
The 
nal two rules make it explicit how T �computations are realized in terms of the

monad operations� enabling us to reason �locally� about propagation of e�ects entirely
at the extended�language level	
Moreover� for all the rules it is the case that when the LHS is type�correct� then so

is the RHS	 Thus� we can always use the equations from left to right without worrying
about type preservation	
As a simple consequence of the proposition� we get�
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Corollary ���� Let j j � L� � LT
� be the translation replacing every occurrence of�in

types and terms by 	 Let L be a model of E�	 Then the interpretation LjT j� of L�
 given

by LjT j� �� ��  L
T
� ��j j�� is also a model of E� �and hence in particular itself a computational

lambda�language�	

Proof� The equations for numbers� products� sums� functions� and 
xed points follow
immediately from the translation	 For computations� take i  j  k  � in the 
rst
three rules of ET and use Proposition �	��	

Note also that ET implicitly asserts that �T� �� � form a monad in LT � because it is
easy to see that the equalities

�  �a�� a�

f �  �t��let a� ��t in ��f a�

are derivable� and the monad laws for � and f � then follow from the equations� e	g	�

f� 
	a� 	 
�t��let a� �
t� in �
f a���� a�	 �let a� �
� a�� in �
f a��
	 �let a� a in �
f a��	 ��
f a��	 f a

and for rigidity of f ��

f� 
let�T�� x�M in x� 	 �let a� �
let�T�� x�M in x� in �
f a��
	 �let a� �
let�T�� x�M in ��
x��� in �
f a��
	 �let a� �
�let�x�M in �
x��� in �
f a��
	 �let a� 
let�x�M in �
x�� in �
f a��
	 �let�x�M in let a� �
x� in �
f a��
	 let�T�� x�M in �let a� �
x� in �
f a��	 let�T�� x�M in f�x

Example ���� We can use the extended�language equations to verify the following ��
like rule for exceptions�


try M handle x� raise x�
	 let�t� �M� in case 
t� a� a� x�let e� x in �
�
 inr e���
	 let�t� �M� in case 
t� a��
� a��� x��
�
 inr x���
	 let�t� �M� in case 
t� a��
�
 inl a��� x��
�
 inr x��� 	 let�t� �M� in �
�t�
	 �
�let�t� �M� in �
�t��� 	 �
let�t� �M� in ��
�t��� 	 �
let�t� �M� in�t�
	 �
�M�� 	 M

This identity is crucial for pattern�matching exception handlers� where an exception
is implicitly re�raised if it does not match any of the clauses in a handler� we want to
ensure that such a handler has no e�ect on the result of the program	

��� Related work

There has already been much work on combining monadic e�ects� e	g	� �Mog��� KW���
CM��� Ste��� LHJ��� Esp���� of varying degrees of generality and formality	 None of these
approaches� however� were particularly concerned about nonstandard implementations of
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the newly�speci
ed e�ects� e�ectively� they all interpret programs using the modular
speci
cation directly� often at a signi
cant cost in execution time	
It seems likely that the framework outlined here for the two�level case generalizes to

multiple� explicitly�speci
ed e�ects� each with a full re�ection and rei
cation operator	
However� the primary constraint was not only to de
ne a workable notion of layered e�ect�
but also to ensure that it could be simulated in a strong sense by continuation�passing�
and further by escapes and state� as detailed in the next two chapters	 Consequently�
any broader modularity aspects of the approach have not been properly developed	



Chapter �

Relating E�ects

It is part of continuation folklore that continuations provide a very general notion of
e�ects� in that many others �such as partiality� exceptions� or state can be expressed as
a continuation semantics with a suitable answer type	 In the presence of higher�order
functions� however� proving correctness of a continuation�based simulation is decidedly
non�trivial �Rey��a� Sto��� MW���� even for a �purely functional� language with parti�
ality as the only notion of computational e�ect	

In this chapter� we will consider the relationship between a direct and a continuation
semantics for arbitrary monadic e�ects	 In fact� the continuation semantics can itself
be conveniently cast in the monadic mold� making the result a particular instance of
simulating one monadic e�ect with another	 However� the continuation�passing case is
especially complicated� and a signi
cant part of the proof consists of establishing the
general framework and necessary lemmas for this case	

Very broadly� the general idea is as follows� assume we have two monads T and U
over a base language� where U is in a suitable sense �more general� than T	 We can
then give two di�erent translations from LT to L� the original monadic translation for T
and a variant translation using U �representations of T �e�ects	 Moreover� we can exhibit
a type�indexed family of relations �� with the property that the two translations of an
LT �term of type � are related by ��� and such that the relation at base types is the
identity	 Thus� the two translations induce the same evaluation semantics	

��� Simulating monadic e�ects

In this section� we present a general principle for relating e�ects� introduce the vari�
ant translation� and argue informally for its correctness	 The actual simulation proof�
however� will be postponed until Section �	�	

����� Monad morphisms

A natural way of relating two monads consists of exhibiting a function mapping one to
the other�

��
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De�nition ��� Let T  �T� �� � and U  �U� �� � be monads over a cll �L�L	 A
�de
nable monad morphism from T to U is a type�indexed family of L�terms


�fag ia � Ta� Ua �

respecting the monad structure
 i	e	
 such that the following holds in L for all closed
L�types�

�	 � i� � T�
r
� U�	

�	 � i� � ��  �� � �� U�	

	 f � ��� T�� � i�� � f
�  �i�� � f

� � i�� � T��� U��	

We can think of i as converting T �representations of e�ects to U �representations	 Con�
dition �� is a technical constraint� ensuring essentially that the conversion of focus e�ects
respects any underlying ambient e�ects �for example� a nonterminating T �computation
must be represented by a nonterminating U �computation	 More explicitly� �� says that
a trivial T �computation is mapped into a trivial U �computation	 Condition �� may look
somewhat arbitrary at 
rst� but note that it can be written in the form of a conditional
equality emphasizing the parallel to ���

i�� � f  g � i�� � f
�  g� � i��

�where f � ��� T�� and g � ��� U��	 It expresses the requirement that if g is the U �
counterpart of an ���parameterized T �computation f � then T �extending f and converting
its output is equivalent to applying the U �extended g to the conversion of the input	

Example ��� For any monad U� the function family

h� ���� U�  �t��� let�U� a� t in �a

is a monad morphism from the identity monad I �Example �	�� to U�

h 
let�x�m in x� 	 let�U� a� 
let�x�m in x� in �a
	 let�U� x�m in let�U� a� x in �a 	 let�U� x�m in hx

h 
	a� 	 h
�a� 	 let�U� a��a in �a 	 �a

h 
f� t� 	 h 
let�a� � t in f a�� 	 let�a� � 
let�a� � t in f a�� in �a�
	 let�a� � t in let�a� � f a� in �a� 	 let�a� � t in h
f a��
	 let�a� � t in 
h � f�� 
�a�� 	 
h � f�� 
let�a� � t in �a�� 	 
h � f�� 
h t�

In fact� it is the only such morphism	 This is immediate when the base language is
e�ect�free �condition �� with �  id� but it also holds in general� Suppose h � ����U�
is another monad morphism from I to U	 Then

h� t 	 h� 
let�x� t in�x� 	 let�U� x� t in h� 
�x� 	 let�U� x� t in h� 
	x�
	 let�U� x� t in �x 	 h t
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This captures the intuitive notion that any e�ect can simulate the absence of e�ects�
which we would probably consider a minimal requirement for any notion of e�ect simu�
lation	

A more interesting example is provided by the following�

Example ��� For simplicity� assume that our base language includes a term constructor
� � � � � � �� satisfying equations � � M  M � �  M and M� � �M� � M�  
�M� �M� �M� in the model� i	e	� such that ��� ��� forms a monoid	 �We could of
course have de
ned an addition operator in the existing language using recursion� but
that would necessarily give it the type � � ����� cluttering up the terms with explicit
sequencing of the additions	 Still� it is easy to check that everything does work out
correctly even for a de
ned �	
Then the following determines a monad� usually called the complexity monad�

T�  ���� �

�  �a��ha� �i

f �  �t� let�ha�� n�i � t in let�ha�� n�i � f a� in�ha�� n� � n�i

Here� a computation of type � is represented by a base�computation yielding a value
of type � together with some notion of the cost involved in computing it� such as the
number of �oating�point operations performed �perhaps using an encoding of �oating�
point numbers in terms of �� or the amount of I�O �assuming our ambient e�ects include
some notion of communication with the outside world	 A trivial computation� � a�
resulting from viewing an already given value as a computation� has zero cost� the cost
of evaluating f � t is the sum of the cost n� of computing the value a� of t and the cost
n� of evaluating f at a�	
The complexity monad works by summing the complexities of each subcomputation	

But if most subcomputations do not invoke the operation being counted� this is poten�
tially wasteful� since we will be adding zeros most of the time	 Even more important�
complexity is a fairly �ad hoc� monad� so that we will most likely have to perform an
actual translation to get a language with the corresponding monadic e�ects	
There is an alternative way to keep track of complexity� however� maintain a running

total� which is updated only by the cost�incurring operations themselves� and passively
transmitted everywhere else	 We achieve this using the ��state monad �Example �	���

U�  ������ �� �  �a��s��ha� si� f�  �u��s� let�ha� s�i � us in f as�

We can then represent a computation of a with complexity n as a function adding n to
the current total� in addition to returning a	 And in fact�

i�  �tT���s�� let�ha� ni � t in�ha� s� ni

is a monad morphism from T to U	
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We now formally de
ne a very important class of monads�

De�nition ��� Let o be any computation�type	 Then the continuation monad with an�
swer type o
 Ko  �Ko� ��

�  is given by�

Ko�  ��� o� o� �  �a��k�ka� f�  �u��k�u��a�f ak

It is easy to check that this actually determines a monad	 For rigidity of f�� we have�

f� �let�U� x�m in x  �k��let�U� x�m in x��a�f ak
 �k� let�o x�m in x��a�f ak  �k� let�o x�m in f�xk
 let�U� x�m in f�x

Satisfaction of the other three equations is completely straightforward	
The importance of continuation monads stems from the following property�

Lemma ��� Let T  �T� �� � be a monad in a computational ��language
 and let �
be an arbitrary type �not necessarily computational�	 Take U as KT�
 the continuation
monad with answer type T�	 Then the family of functions

i� � T�� U�  �tT���k��T��k� t

forms a monad morphism from T to U	

Proof� Straightforward veri
cation�

i
let�T� t�m in t� 	 �k�k� 
let�T� t�m in t� 	y �k� let�T� t�m in k� t
	 �k� let�T� t�m in i tk 	 let�U� t�m in i t

i
	a� 	 �k�k� 
	a� 	y �k�ka 	 �a

i
f� t� 	 �k�k� 
f� t� 	y �k�
�a�k� 
f a��� t 	 �k� i t
�a�k� 
f a�� 	 �k� i t
�a� i
f a�k�
	 �k� i t
�a� ��a� i
f a�ak� 	 
�a� i
f a��� 
i t� 	 
i � f�� 
i t�

�where the equations marked with y signify application of the monad laws of T from
De
nition �	��	

When T is the identity monad� this �necessarily degenerates to an instance of Ex�
ample �	�	 More interestingly�

Example ��� For exceptions� T�  ��� � 
� the monad morphism from T to KT�

specializes to�

i�  �t��������k��������� let�v� t in case �v� a�ka� e��� inr e

Recall that the T �representation of a successful computation of type � is an included
value a in the left inject of �� 
	 The corresponding continuation�passing computation
should immediately apply its continuation to a	 And in fact� we have

i��� inl a  �k� let�v��� inl a in case�v� a�ka� e��� inr e
 �k� case� inl a� a�ka� e��� inr e  �k�ka
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Similarly� a computation that terminates with a raised exception e is represented by a
value in the right inject� the continuation�passing analog simply discards the current
continuation and returns the exceptional value as the result�

i��� inr e  �k� let�v��� inr e in case �v� a�ka� e��� inr e
 �k� case� inr e� a�ka� e��� inr e  �k��� inr e

And 
nally� a nonterminating computation is represented by a non�terminating compu�
tation �for any continuation�

i
  �k� let�v�
 in case �v� a�ka� e��� inr e  �k�


This monad morphism from an arbitrary monad T to a continuation monad KT�

will form the core of our simulation result	 However� the fact that the continuation�
based representation is in a sense parametric in the choice of � cannot be captured
equationally in our setting	 �It might be possible in a language with F��polymorphism
�Gir��� Rey��b�	 For the formal proof in Section �	�� we will therefore need a stronger�
relational characterization of i to accurately express this property	

����� The variant translation

In this section� we show how to actually exploit the existence of a monad morphism
�with some further properties to simulate one kind of e�ects with another	 Speci
cally�
we will show how to interpret our T �enriched e�ect language in terms of U �e�ects	 The
exposition is slightly simpli
ed in that we consider only a single semantics for the base
language % the actual proof in Section �	� distinguishes between a speci
cation and the
implementation semantics� mostly to make get a result of su�cient strength to support
Chapter �	 However� the formal de
nitions we give are general enough for both cases	
As motivated in the previous section� monad morphisms give us a simple way of relat�

ing two notions of e�ects	 Nevertheless� a monad morphism by itself does not guarantee
that U �e�ects simulate T �e�ects in any useful sense	 For example� for any T there is a
�unique monad morphism from T to the degenerate monad� �U�  �� �  �a�hi� f�  
id�	 To get a proper simulation� we also need a way to recover the T �representation of
an e�ect from its U �representation�

De�nition ��� Let i be a monad morphism from T to U	 A monad retraction at type
� is a left inverse of i�
 i	e	
 a term j� � U�� T� such that j� � i�  idT�	 We say that
such a retraction is schematic if all the j� are themselves members of a term family
 i	e	

if j�  jaf��ag	

We usually expect at least j� to exist� this gives us a way of extracting meanings of
complete programs	 In many cases� however� it is easy to 
nd a suitable inverse at all
types�

Example ��
 For the complexity�state simulation from Example �	�� where in particular
the monad morphism was given by

i�  �t��������s�� let�ha� ni � t in�ha� s� ni �
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taking
j�  �u���������u�

determines a monad retraction at all types	 That is� to actually extract the complexity
of a computation from its state�passing representation� we simply initialize the state to
zero� perform the computation� and read o� the complexity as the 
nal state	
It is easy to see that this j is a schematic left inverse of i	 It is not� however� a monad

morphism from U to T� it does not in any meaningful sense simulate arbitrary state�
passing computations using complexity�e�ects	

Given terms typed like the monad morphisms and retractions� we can give a di�erent
translation of our e�ect�enriched language LT � back into L� using a U �based represent�
ation of T �e�ects instead of the T �representation from the de
nitional translation	 To
de
ne the translation itself� of course� we do not need to assume any equational properties
of the terms involved�

De�nition ��� In L
 let T and U be monad�triples
 and let i be a family of terms such
that for any LT �type �
 i

���U � T �����U �U �����U 	 Further
 let � be a set ��nite or in�nite�
of LT �types and for every � in �
 a term j

���U � U �����U � T �����U 	

Now
 let LT 
� be LT but with rei�cation restricted to ��types
 i	e	
 with � � � �� T�
only for � in �	 We then de�ne the variant or implementation translation from LT 
� to
L as follows	 For types
 we take

�� ����
T
 U ������

T

�so for the type translation we have ������
T
 �����U �
 and for terms


��M ���
T
 � ��M ���

T

��let x�M� in M���
�
T
 ��x� ��M���

�
T
� ��M���

�
T

��let�x�M� in M� � ���
�
T
 let�U 

����

T
x� ��M���

�
T
in ��M���

�
T

���T�M���
T
 i

����

T
��M ���

T

���M�T ���
T
 j

����

T
��M ���

T

�We write �T�  and � �T to emphasize that these are re�ection and rei�cation operators
for T 
 not U 	� Like the de�nitional translation �De�nition 	��
 �� ���

T
is easily seen to

preserve types
 i	e	
 if " �� M � � in LT then ��"���
T
�� ��M ��

�
T
� ������

T
in L	

Of course� when U  T� with i�  j�  idT� �trivially a monad morphism with a
schematic retraction� we get exactly the original �� ��T �translation as a special case	 In
general� however� we now have ��T����

T
 T ������

T
� U ������

T
 �� ����

T
� the transparent and

opaque representations of a computation with T �e�ects are di�erent	 This is why for re�
�ection we need to internalize a T �representation of an e�ect into a U �representation that

ts with the rest of the U �passing translation	 Conversely� for rei
cation� we externalize
the U �representation into the de
nitional T �representation of the e�ect	
Although the de
nitional and the variant translation of a type are in general di�er�

ent� they do agree on base types� so in particular the results of transforming complete
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programs �closed terms of type�� are directly comparable	 And in fact� will show in Pro�
position �	�� that the two translations of a closed LT

� �term of type�� are indeed equal in
our partiality semantics �and appropriately related for other notions of ambient e�ects	
In the monad�continuation case of a monad morphism �Lemma �	�� it is not obvious

how to de
ne j� in general	 We will see in Section �	�	� how to achieve this	 For
the purposes of this section� however� let us simply restrict ourselves to performing T �
rei
cation at a single L�type � �as opposed to at arbitrary LT �types� as the standard
T �translation allows us to	 That is� we take �  f�g	
If we then let U be the continuation monad with answer type T�� we can directly

take j� � U�� T�  �u�u��� which gives us

j� �i� t  ��u�u����k�k
� t  ��k�k� t��  ��� t  t

i	e	� that j� is a monad retraction at �	

Example ���� Let T�  ����
 be the exception monad� with the continuation�based
representation U�  KT��  ������ � 
���� � 
 from Example �	�	 In this case�
the translation equations specialize to�

��M ���
T
 �k�k ��M ���

T

��let x�M� in M���
�
T
 �k� ��M���

�
T
��x� ��M���

�
T
k

��let�x�M� in M� � ���
�
T
 �k� let�

������ x� ��M���
�
T
in ��M���

�
T
k

���T�M���
T
 �k� let�t� ��M ���

T
in case �t� a�ka� e��� inr e

���M�T ���
T
 ��M ���

T
��a��� inl a

�where� for the third equation� we have used De
nition �	� to expand out the generalized
let in De
nition �	�	 The continuation�passing analogs of raise and handle� as given
by the expansions in Example �	�� then work out to�

��raise M �T 	 ��let e�M in �T
�
 inr e���T 	 �k� ��M �T 
�e� ���
T
�
 inr e���T k�

	 �k� ��M �T 
�e� let�t� ���
 inr e��T in case
t� a�ka� e��
 inr e���
	 �k� ��M �T 
�e� let�t��
 inr e� in case 
t� a�ka� e��
 inr e���
	 �k� ��M �T 
�e� case 
 inr e� a�ka� e��
 inr e��� 	 �k� ��M �T 
�e��
 inr e��

��try M� handle x�M�
�
T 	 ��let�t� �M��T in case 
t� a� a� x�M��

�
T

	 �k� let�t� ���M��
T �T in case 
t� a��� a�T � x���M�

�
T �k

	 �k� let�t� ��M�
�
T 
�a��
 inl a�� in case 
t� a�
�k�ka�k� x���M�

�
T k�

	 �k� let�t� ��M�
�
T 
�a��
 inl a�� in case 
t� a�ka� x���M�

�
T k�

�where handle can only be used with expressions of type �	 This again should match
the operational intuition that to raise an exception determined by M � we simply return
name directly as an answer �tagged as a right inject� so that an enclosing handle can tell
the di�erence	 Conversely� to handle a potential exception in M�� we invoke it with the
left injection as the continuation	 If M� returns normally i	e	� by returning inl a� we pass
a to the continuation of the handle	 On the other hand� ifM� raises an exception e� i	e	�
returns inr e� we instead evaluate M� with x bound to e� again in the control context of
the handle	
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Comparison Suppose the restrictions on rei
cation were not an issue� for example
if we were content to only allow uses of handle at a single base type �not an entirely
unreasonable restriction� we still have raise at all types	 Then given the fairly simple
correspondence between �direct� and �continuation�passing� de
nitions of exceptions�
one might reasonably ask why we formalize the T �translation at all � why not simply
take the continuation�based �� ���

T
as the �o�cial� de
nition of exceptions� Then we could

view exceptions as simply syntactic sugar for the corresponding continuation e�ects	
The problem is that the CPS translation does not satisfy the desirable equational

reasoning principles that pure exception�passing does	 For example� consider again the
reasoning principle

�try M handle x� raise x  M

We saw in Example �	�� that the T �translation veri
es this law� indeed� it is provable in
ET� 	 But with the continuation�based semantics we get�

��try M handle x� raise x���
T
 ��let�t� �M� in case �t� a� a� x����� inr x���

T

 �k� let�t� ���M����
T
in case �t� a��� a���

T
k� x������� inr x���

T
k

 �k� let�t� j ��M ���
T
in case �t� a�ka� x�i��� inr xk

 �k� let�t� ��M ���
T
� in case �t� a�ka� x�k� ��� inr x

 �k� let�t� ��M ���
T
��a��� inl a in case �t� a�ka� x��� inr x   ��M ���

T

It is easy to check that this does in fact hold when ��M ���
T
is of the form �k�ka for some a�

corresponding to an e�ect�free computation of a	 Similarly� the equation is satis
ed when
��M ���

T
 �k��� inr e for some e� corresponding to a computation raising the exception e	

Even when ��M ���
T
 �k�
� representing a non�terminating computation� the terms have

equal denotations	 But there is no simple guarantee that ��M ���
T
is in fact in one of those

forms� especially when M may call an �unknown� function	
For example� consider the case �  �	 Then one element of the type �� ����

T
 �������

T
�

��� � 
���� � 
� is �k��� inl ��� which we could call an exotic T �computation� it
represents neither a normal value� nor a raised exception� nor divergence	 And in fact� if
��M���

�
T
 �k��� inl ��� our desired reasoning principle fails because we get

��try M� handle x� raise x���
T
 �k�k�� � �k��� inl ��  ��M���

�
T

The presence of such computations means that we cannot derive the identity directly in
the U �model � we need a much more elaborate argument� involving at least an induction
over all syntactic terms in the language� and further complicated by the presence of
higher�order functions	
An analogous situation holds for the complexity�state simulation from Example �	�	 It

is easy to see that if the ambient e�ects are commutative� then so are the �e�ects de
ned
by the complexity monad	 General state passing� on the other hand� is not commutative�
so again we lose a useful equational property by specifying complexity�e�ects directly in
terms of state�passing	
That does not mean� however� that using �� ���

T
inherently presents a problem for

formal reasoning	 Recall that we will show independently that the �� ��T �translation and
the �� ���

T
�translation do agree on complete LT

� �programs	 Since the equations induced by
the T �translation are �by de
nition valid for observational equivalence in LT

� � and the
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evaluation semantics induced by the two translations is the same� we can thus reason
about e�ects in terms of their �relatively declarative T �speci
cation� rather than their
derived U �implementation	

Remark ���� In the particular case of exceptions� we could actually construct an ad�
hoc continuation semantics where the translation of a term M � � takes both a normal
continuation �of type ������o and an exceptional one �of type 
�o� invoking whichever
is appropriate	 Such a translation does verify the handle�re�raise equation above� and it
does not have a problem with the choice of answer type	
However� such a scheme requires all translation equations to be modi
ed to pass the

extra continuation along� so we cannot use a standard cps transform for the bulk of the
language	 And even more importantly� this two�continuations trick does not generalize�
because it relies on the isomorphism ����
� o� o � ���� o� �
� o� o� which
does not have a counterpart for other monadic e�ects	

��� The proof setting

This section establishes the general framework for the simulation proof in the next section	
Much of the material is relatively standard� and has consequently been relegated to an
appendix	

����� The implementation language

The base signature L�� and the derived LT
� need to be tightly constrained because we

will rely on induction over LT
� �types and �terms in the proof	 The target language for

the variant translation� on the other hand� need not be restricted to simple types	 And
in fact� to obtain the simulation result for continuations in full generality� we will need
more of the structure of our predomain model to be denotable in the implementation
language	 Accordingly� we now de
ne the required extensions for expressing �� a weak
notion of in
nitary sums and �� recursively�de
ned types	

Embedding	types

To simulate T �rei
cation using continuations� we will need to embed several di�erent
types into a single type of answers	 A suitable construct for expressing this is given by
the following�

De�nition ���� The signature L�
� extends L� with a new type constructor &�

�i  I� �� ��i type

�� &i��i type

where ���ii�I is any countable family of L�
� �types �possibly with repetitions�� we usually

abbreviate &i��i as &�	 The associated term constructors are�

" �M � ��i

" � iniM � &�
�i�I� and

" �M � &�

" � outdiM � ��i � �
�i�I�
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for injecting into and projecting from the embedding�type	 Correspondingly
 E�
� extends

E� with the equations

" �M � ��i

" � outdi �iniM  inlM � ��i � �
�i�I�

and
" �M � ��i

" � outdi� �iniM  inr hi � ��i� � �
�i�i��I� i� ��i� �

From outdi
 we can de�ne a derived term constructor


" �M � &�

" � outiM ����i
�i�I�

by outiM
def case �outdiM� a��a� u�
��i�	 Then we easily get the following derived infer�

ence rule in E�
� �

" �M � ��i

" � outi �iniM  �M ����i
�i�I��

In this chapter� ini and outi with the above equation will su�ce �in particular� we
will not use that outi� �iniM  
 when i � i�� but in Chapter �� an explicit outdi� not
tied to any particular notion of ambient e�ects� will be more convenient	
It is important that even for in
nite index sets� embedding types do not introduce

any circularity� each summand ��i must already be a well�de
ned type before we can
form &�	

When the index set is 
nite� fi�� � � � � in��g� we can simply take

&�  ��i� � �� � �� ���in�� � ����

�the terminating � merely ensures a uniform encoding for all summands with the cor�
responding operations�

ini�M  inlM
inik��

M  inr �inikM
outdi�M  case �M� a�� inl a� s� inr hi

outdik��
M  case �M� a� inr hi� s�outdik s

which are easily seen to satisfy the required equations	
In the general case� we obtain a model by a straightforward extension of the predomain

semantics to I�indexed coproducts�

L��&i��i���  f�i� a j i  I� a  L����i���g

L��iniM ��
���  �i�L��M �����

L��outdiM ��
���  

�
��� a when L��M �����  �i� a
��� � when L��M �����  �i�� a�� i� � i

It is immediate to check that this interpretation validates the equations	
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Recursive type speci�cations

Independently of the embedding�types� to express the continuation�based variant trans�
lation of rei
cation at types containing � we will need a recursively�de
ned answer type	
Accordingly� we take�

De�nition ���� For a signature L
 L extends L with a new type constructor �a� � with
well�formedness rule

�fag � type

�
 �a� � type
�

and new term constructors rolla�� and unrolla�� with typings

" �M � �f��a� ��ag

" � rolla��M � �a� �
and

" �M � �a� �

" � unrolla��M � �f��a� ��ag
�

Likewise
 E extends E with the isomorphism equations

" �M � �f��a� ��ag

" � unrolla�� �rolla��M  M � �f��a� ��ag
and

" �M � �a� �

" � rolla�� �unrolla��M  M � �a� �
�

�For simplicity we do not allow parameterized recursive types� although it would probably
do no harm to include them	
Unlike the case for domains� not every predomain equation expressed in terms of the

standard cpo constructors has a solution	 �For example� consider the equation V � V���
where � is the empty set organized as a cpo� both assuming V empty and non�empty
lead to a contradiction	 But equations arising from interpretations of L�

� �types �which
notably require codomains of arrow types to be computational� thus ruling out the above
counterexample do have solutions� essentially because we can extend the interpretation
of a parameterized type to a functor in a suitable category	 We will need the following
result�

Theorem ���� Let �fag � be a parameterized type of L�
� 	 Then there exists a cpo A

with an isomorphism i � L�����a��A �� A	

Proof� See Corollary A	� in the appendix �ignoring for now the additional minimal�
invariant property of i	

Then with the interpretation of �a� � as the A in the theorem� rolla�� as i� and unrolla��
as i��� our predomain semantics �for any T  becomes a model of E��

� 	

����� Admissible relations

Much as an equational theory allows us to reason about equivalence of terms axiomatic�
ally� rather than about equality of their denotations in a speci
c interpretation� we can
reason about more general relations between terms at the syntactic level	 That is� we

rst establish a set of generic relational reasoning principles� validated by a wide range
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of interpretations	 If we then con
ne our reasoning about programs to those principles�
the results will necessarily hold in each particular relational interpretation	
Our denotational semantics associates to every open term a �continuous function

from the meanings assigned to the free variables to the meaning of the resulting term	
When the semantics L is 
xed� we use the term constructors of L directly to denote this
semantic function	 For example� for any element a of ValL�� �not necessarily denotable
by a closed L�term� we write inl a for the element ��� a of ValL�� � ��	
Further� when �  �a��x�� � � � � an�xn assigns to every variable xi��i in " a value

ai  Val��i  L���i��� we write Mf�g for the value L��M �����x� �� a�� � � � � x� �����	 �To
improve readability� we will usually write Mf�g as M	� the two notations are equival�
ent	
Unlike the equational case� we can talk about relations between terms of two di�erent

languages	 That is� given �L�L and �L��L� we say that R is a relation between types
� of L and �� of L� if it is a relation between the sets ValL�� and ValL���

�	 When the
languages are 
xed� we write simply Rel��� �� for the set of all such relations	 �Actually�
we will only be interested in the set of all admissible relations� see De
nition �	�� below	
But sometimes it is useful to classify a relation wrt	 types before we have established
that it is admissible	
The motivation for considering di�erent languages is that when implementing a mon�

adic e�ect� we may need di�erent resources than when specifying it	 In particular� L�

may contain constructs not in L� with L� providing an interpretation for those	 Moreover�
L and L� may arise from di�erent choices of the base�e�ect monad T 	
This means that we can specify a monad T over �L�L �say� with only the constructs

of L� and with partiality as the only ambient e�ect� and show how to implement L
T using

a T ��translation into �L��L� �say� L� extended with recursive types� and a continuation
semantics for ambient e�ects � even if T does not satisfy the monad laws in L�	
For a relation R  Rel��� ��� we often write �a R a�� P �a� a� as shorthand for

�a  ValL��� a�  ValL����� a R a� � P �a� a�	 Similarly� �a R a�� P �a� a� abbreviates
�a  ValL��� a

�  ValL���
�� a R a� � P �a� a�	

We can now isolate the subset of relations we will be working with	 First� we de
ne
a relational analog of �pointed cpos�

De�nition ���� A binary relation R between �the sets underlying� cpos A and A� is
called chain�complete if for any pair of chains a� v a� v � � � in A and a�� v a�� v � � � in
A� with ai R a�i for each i
 it also holds that �

F
i ai R �

F
i a

�
i	 A relation between pointed

cpos B and B� is called pointed if 
B R 
B� 	

We can then de
ne a suitable notion of relations for our predomain semantics�

De�nition ���� Let there be given languages �L�L and �L��L�
 where L and L� are ex�
tensions of L�
 and L and L� are the corresponding extensions of the predomain semantics
from Section 	�	� �with possibly di�erent ambient�e�ect monads�	

We say that a relation between types � of L and �� of L� is admissible if it is interpreted
as a chain�complete relation between ValL�� and ValL���

�� we write ARel��� �� for the
set of such relations	 Similarly
 a computation�admissible relation between types � and
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� � is one whose interpretation is chain�complete and pointed� we use CARel��� � � for
the corresponding set	

We will refer to such a pair of languages with type�indexed sets of �computation��
admissible relations as a relational correspondence	 �This is for conciseness only� the
correspondence is already fully determined by the languages themselves and the above
de�nitions of ARel��� �� and CARel��� � �	�

In the following� we enumerate some properties of �computation�admissible relations�
especially that certain stylized methods of constructing them are available	 The proofs
are all fairly simple and can be found in the Appendix	
Given these properties� we can reason about related terms entirely within the base

language� without referring to the semantic equations� chains� continuity� etc	 explicitly	
That is� although we will not consider other notions of �computation�admissibility than
�pointed chain�completeness� the remainder of this section establishes all we actually
need to require of admissible relations for establishing the results in Section �	�	

Lemma ���� Admissible relations are closed under inverse image by term contexts and
under arbitrary intersection	 That is


�	 When R  ARel��� ��
 �x����� � � � � xn��n � M � � and �x����
�
�� � � � � x

�
n� ��

�
n� �

M � � �� are terms of L and L� respectively
 and for all i � �
 �xi  ValL��i and
��x�i  ValL���

�
i
 the relation R�  Rel���� �

�
� given by

a� R� a
�
� �� M �a��x��	� R M ��a���x

�
��	

��

is admissible	

Moreover
 when �� and ��� are computation�types
 R is computation�admissible

and the functions �x��M

	 and �x���M
�	� are rigid
 then R� is also computation�

admissible	

	 When �Rjj�J is an arbitrary �not necessarily �nite or even countable� family of
admissible relations between � and ��
 the relation

T
j�J Rj is admissible
 where

a �
�

j�J
Rj a

� �� �j  J� a Rj a
�

Moreover
 if each Rj is computation�admissible then so is
T
j�J Rj	

Proof� See Lemma A	�	

We also have a simple way of combining existing relations on individual types into
relations on constructed ones�

Lemma ���
 The standard relational actions of the type constructors
 de�ned by

i �r i� �� �n  N� i  n � i�  n

u �r u� �� true

p �R� �
r R� p

� �� fst p R� fst p� � snd p R� snd p�

s �R� �
r R� s

� �� ��a� R� a
�
�� s  inl a� � s�  inl a��

� ��a� R� a
�
�� s  inr a� � s�  inr a��

f �R��
r R� f

� �� �a R� a
�� f a R� f

�a�
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are admissible	 Speci�cally
 when all the R�s are admissible
 so are �r
 �r
 R� �r R�

R� �

r R�
 and R��r R�	 Moreover
 when the S�s are computation�admissible
 so are �r

S� �r S�
 and R�r S	

�We often omit the r when it is clear form the context that the action is on relations	
Note that the relational action of�is not in general explicitly de
nable within the lan�
guage� we characterize it in De
nition �	��	

Proof� We can actually show admissibility of �r� R� �r R� and R� �r R� using only
Lemma �	��	 The 
rst case is simply an empty intersection of �computation�admissible
relations	 The constructed relation for products is the intersection of the two admissible
relations obtained by inverse images of the projections on the admissible relations R� and
R�	 Moreover� since projections are rigid� R��R� is also computation�admissible if both
R� and R� are	 Finally� R��R� can be expressed as an intersection of the family �R

�
jj�R�

of admissible relations� where each R�
j is given by an inverse�image construction� f R�

�a�a��

f � �� f a R� f
�a�	 And again� since application is rigid� computation�admissibility of

R� implies computation�admissibility of R��R�	
The cases for natural numbers and sums� on the other hand� depend on the speci
cs

of the model� see Lemma A	������	

The reason for restricting attention to �computation�admissible relations is that they
validate the following binary version of �xed�point induction�

Lemma ���� Let S  CARel��� � �
 and let f  ValL��� � and f �  ValL���
�� � �

be such that �b S b�� f b S f � b�	 Then �x� f S �x�� f
�	

Proof� See Lemma A	��	

E�ectively� this is saying that for any computation�admissible relation S� the two
interpretations of �x are related by �S�r S�r S	

����� Computation	extension of relations

A key concept we will make use of in the following is the extension of a value�relation to
a relation on computations	 Intuitively� two computations are considered related if they
both have the same �or� more generally� related e�ects� and if any results they pass on
to further computations are related by the original relation	
For example� in the case of partiality� two computations are related if they either

both diverge� or both converge to related values	 For exceptions� two computations are
related if they produce related successful answers� or raise the same exception	 For state
�given a 
xed relation on states� they must map related initial states to related values
and related 
nal states	 And for two control�computations to be related� when invoked
with related continuations �i	e	� mapping related values to related 
nal answers� they
must themselves produce related 
nal answers	
Much as monads abstract out the common equational properties of e�ects into a

simple set of axioms for the unit and extension functions� we can characterize the minimal
requirements for a relation�extension as follows�
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De�nition ���� A computation�extension of relations assigns to any pair of types �
and ��
 and admissible relation R  ARel��� ��
 a computation�admissible relation�R 
CARel�������
 such that for all admissible R
 R� and R�
 the following holds�

�	 �a R a���a ��R�a�	

	 If �a R� a
�� f a ��R� f

�a�

then �m ��R� m
�� let�x�m in f x ��R� let�x��m� in f �x�	

That is� if two terms are related as values� their inclusions into computations must also
be related	 And if two parameterized computations are related for every pair of related
parameters� they must remain related when pre
xed by related computations computing
values for those parameters	 A simple instance is given by the following�

Proposition ���� In the standard partiality semantics �i	e	
 with T A  T �A  A��

taking for any R
�R to be the lifting of R
 i	e	


m ��R m� �� ��v R v�� m  �v �m�  �v� � �m  
�� �m�  
���

determines a computation�extension	

Proof� Lemma A	���� shows that�R is computation�admissible	 Condition ��
�v R v� � �v ��R �v� is also immediate	 For ��� assume m ��R� m� and �a R�

a�� f a ��R� f
�a�	 There are two cases� one for each disjunct in the de
nition of�R��

� m  �v andm�  �v� for some v R� v
�	 Then we get the result directly by assumption

on f and f ��

let�x�m in f x  f v ��R� f
� v�  let�x��m� in f �x�

� m  
� m�  
	 Then� by the second disjunct in the de
nition of�R��

let�x�m in f x  
 ��R� 
  let�x��m� in f �x�

�using Proposition �	�� to obtain the equalities

We will see later �Proposition �	�� how to systematically construct computation�
extensions for e�ects de
ned by an explicit monadic translation	

��� The simulation proof

To avoid repetition in the following� we 
rst de
ne�

De�nition ���� �Persistent assumption� Throughout this section
 we will assume
that there is given a relational correspondence between interpretations Ls of L� �the spe�
ci
cation language� and Li of a signature L�

� � L� �the implementation language�
 with
a �xed computation�extension of relations	 In particular
 all unquali�ed occurrences of
ARel��� ��
 CARel��� � �
 and�R will refer to this correspondence	
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For concreteness� it may help to think of L�
� as L� extended with recursive types

and embedding types �which is what we will use in the monad�continuation case in
Section �	�	�� Ls as the partiality semantics and Li as a continuation semantics �for
base computations� not to be confused with a continuation monad de
ned in �L�

� �Li�
we will use such a continuation�based interpretation of ambient e�ects in Chapter �	

����� Overview

A monad morphism i gives us a simple way of converting a T �computation t to the
U �computation representing it� by taking u  i� t	 However� this simple relationship
does not extend directly to functions on computations	 For example� given a function
f � T�� T��� how would we obtain the g � U�� U��� representing f�

If i has a left inverse j� we could try taking g  i�� � f � j�	 This is not really
satisfactory� however� for example� when �  �� and f is the identify function� we get
g � U�� U�  i� � j�� meaning that the identity on U� would in general not be the
correct representation of the identity on T�	

A better approach� therefore� is to characterize instead what a correct U �based repres�
entation g of f would be� for example by requiring it to satisfy the equation i�� �f  g� i�	
In general� then� instead of a function from higher�order values involving T �computations
to the corresponding ones with U �computations� we get a �binary relation	

The general outline of the proof is then as follows	 First� for any type family � in L��
we de
ne a family of logical relations hh�ii� and show that for any relational interpretation
of the type parameters� the two interpretations of a term family M of L� are related by
hh�ii	 In particular� this means that the term components of any monad�tripleT in L� are
related in the two interpretations	 This gives us a way of talking about related T �e�ects
in the two languages� even when T is not a monad in Li	

We then de
ne the general notion of a monad relation between a monad T in the
speci
cation language and a monad U in the implementation language	 This is a more
general notion than existence of a monad morphism from T to U� instead of assigning
to every � a function from T� to U�� we only assign a binary relation	 More precisely�
to every relation R  ARel��� ��� we assign a relation R  ARel�T�� U��	

However� if U is also a monad in the speci
cation language� any monad morphism i

from T to U induces in a canonical way a monad relation between T and U� by taking
t �R u �� i t �UR u� where UR is the standard� syntactically�derived action of U on
relations	 This way of constructing monad relations covers most of our sample monad
simulations � all except the general monad�continuation case	

Given a monad relation between T and U� we can now exhibit a family of relations
indexed by LT

� �types �� ��  ARel������T � �����U � de
ned in the usual inductive way for
the standard type constructors� and taking � � ��  ARel�T �����T � U �����U 	

Further� we show that the two translations� �� ��T � L
T
� � L� and �� ��

�
T
� LT

� � L�
� of an

LT
� �term of type � are related by ��	 Since in particular ��� ���

r� this says that the
two translations coincide for complete programs	
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Returning to the monad�continuation case� we show how to construct the appropriate
monad relation between T andKo explicitly	 �Intuitively� we need the generalization from
an equational to a relational characterization of the relationship between the monads for
the same reason that forced us to adapt a relational approach for higher�order values�
when we embed non�simple types in the answer type o of the continuation monad� the
Ko�based representation of T �e�ects will in general not be unique	
For this simulation� we also rely on the fact that our implementation language may

contain additional types and terms beyond those in L�� in particular� depending on how
general a notion of T �rei
cation we want to simulate� we will need recursive types and�or
embedding�types to construct Ko	 Once we have established the monad relation� it is
a simple consequence of the properties of � that the de
nitional T �translation and the
variant� or continuation�passing� translation agree on complete programs	
Finally� we show how to lift the simulation result from a relationship between transla�

tions to a relationship between source terms	 Speci
cally� the basic motivation for adding
re�ection and rei
cation to our source language was precisely to permit programs to be
written in direct style instead of in e�ect�passing style	 And in fact� it is possible to
express the simulation result at the source level� by de
ning the re�ection and rei
ca�
tion operators for T in terms of those for Ko	 Thus� we do not need a monad�speci
c
variant translation for implementing T�e�ects with continuations� but can use a 
xed
continuation�passing translation for all such e�ects	

����� Relating standard terms

We 
rst show that a large collection of terms are related by the relations determined
systematically from their types�

De�nition ���� Let # be a �nite set of type variables
 � a substitution of closed L��
types for variables in #
 and �� of closed L�

� �types	 Further
 let � assign to each type
variable a  # a relation � a  ARel�� a� �� a	 To every type � over # in L�
 we then
assign a relation hh�ii�  ARel��f�g� �f��g �such that hh�ii� CARel��f�g� �f��g� as
follows�

hhaii�  � a

hh�ii�  �r

hh�ii�  �r

hh�� � ��ii
�  hh��ii

� �r hh��ii
�

hh�� � ��ii
�  hh��ii

� �r hh��ii
�

hh�� �ii�  hh�ii��r hh�ii�

hh��ii�  �hh�ii�

We extend this de�nition pointwise to relate value�substitutions � and ��
 i	e	
 if for each
�xi��i  "
 ��xi hh�iii

� ���xi
 we write � hh"ii� ��	

The �computation�admissibility of these relation follows directly from Lemma �	��	 It
is also easy to see that we have the usual weakening and substitution principles�

hh�ii�  hh�ii�
a ��R� �a � FTV �� and hh�f���agii�  hh�ii�
a �� hh��ii��
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Lemma ���� �logical relations lemma� Let � and �� be substitutions of closed types
for #�variables
 and � a relation assignment for � and �� �as in De�nition �	��	 Further

let " and � be a type assignment and a type over #
 both in L�
 and let M be a term of
L� with " �� M � �	 Finally
 let � and �� be substitutions of values from Ls and Li for
variables in "
 such that � hh"ii� ��	 Then M �	 hh�ii� M ��	�	

Proof� By induction on the structure of M �

� Case xi� where �xi��i  "	 To show� x�	i hh�iii
� x�

�	�

i � i	e	� that �xi hh�iii
� ��xi�

which follows directly from the assumption on � and ��	

� Case z	 To show�
�n  N� z�	  n � z�

�	�  n

Since z�	  z� we can simply take n  �	

� Case sM 	 To show�

�n  N� s �M �	  n � s �M ��	�  n

By IH on M � we already have

�m  N�M �	  m �M ��	�  m

so we get the result by taking n  m � �	

� Case ifz�M�Mz� x�Ms	 To show�

ifz�M �	�M �	
z � x�M �	

s  hh�ii
�
ifz�M ��	� �M ��	�

z � x�M ��	�

s 

By IH onM � we know that �in LsM
�	  n and �in LiM

��	�  n for some natural
number n	 There are then two cases�

� Case n  �	 By IH on Mz� we get

ifz �z�M �	
z � xs�M

�	
s   M �	

z hh�ii� M ��	�

z  ifz�z�M ��	�

z � xs�M
��	�

s 

� Case n  m� �	 Then

ifz �sm�M �	
z � x�M �	

s   M �	
s fm�xg  M ��	��m�x��

s

and analogously on the RHS� so the result follows by IH on Ms� in the type
assignment �"� x� � and the extended substitutions ���m�x and ���� m�x	

� Case hi	 To show�
hi�	 hh�ii� hi�

�	�

which is trivially true by the de
nition of hh�ii�	

� Case hM��M�i	 To show�

hM��M�i
�	 hh�� � ��ii

� hM��M�i
��	�

That is�
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fst �hM��M�i
�	 hh��ii

�
fst �hM��M�i

��	�
� snd �hM��M�i

�	 hh��ii
�
snd �hM��M�i

��	�

Since we have
fst �hM��M�i

�	  fst hM �	
� �M �	

� i  M �	
�

and analogously on the RHS and for snd � we get the result by IH on M� and M�	

� Case fstM �sndM is analogous	 To show�

fst �M �	 hh��ii
�
fst �M ��	�

which we get from IH on M and the 
rst conjunct of the de
nition of hh�� � ��ii
�	

� Case inlM � inrM is analogous	 To show�

inlM �	 hh�� � ��ii
�
inlM ��	�

By the 
rst disjunct in the de
nition of hh�� � ��ii
�� it su�ces to show that

M �	 hh��ii
� M ��	�

which we get from IH on M 	

� Case case �M�x��M�� x��M�	 To show�

case �M �	� x��M
�	
� � x��M

�	
�  hh�ii

�
case �M ��	� � x��M

��	�

� � x��M
��	�

� 

By IH on M � we have M �	 hh�� � ��ii
� M ��	� 	 Without loss of generality� assume

that we are in the 
rst case of the de
nition of hh�� � ��ii
�	 That is� M �	  inl a�

and M ��	�  inl a�� for some a� hh��ii
� a��	 Then

case �M �	� x��M
�	
� � x��M

�	
�   case � inl a�� x��M

�	
� � x��M

�	
�   M �	

� fa��x�g

 M
��	��a��x���
�

and analogously on the RHS� so we get the result by IH on M� using the extended
substitutions ��  ��� a��x� and ���  ��

�� a���x�	

� Case �x��M 	 To show�

��x��M�	 hh�� �ii� ��x��M�
�	�

I	e	� that
�x�f�g�M �	 hh�� �ii� �x�f�

�g�M ��	�

Accordingly� let a hh�ii� a�� we must show that

��x�f�g�M �	a hh�ii� ��x�f�
�g�M ��	�a�

And since
��x�f�g�M �	a  M �	fa�xg  M ��	��a�x��

we get the result by IH on "� x�� �� M � � using the extended substitutions
��  ��� a�x and ���  ��

�� a��x	
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� Case M�M�	 To show�

�M �	
� �M

�	
�  hh�ii

� �M ��	�

� �M ��	�

� 

This follows directly from IH on M� and M�� and the de
nition of hh�� �ii�	

� Case�M 	 To show�
��M �	 hh��ii���M ��	�

By IH on M � M �	 hh�ii� M ��	� � so the result follows from the de
nition of hh��ii�

and the properties of a computation�extension �De
nition �	����	

� Case let�x�M� in M�	 To show�

let�x�M �	
� in M �	

� hh���ii
� let�x�M ��	�

� in M ��	�

�

By IH on M�� we have M
�	
� hh���ii

� M ��	�

� � i	e	�

M �	
� ��hh��ii

�M ��	�

�

Similarly� by IH on M� with appropriately extended substitutions� we get

�a� hh��ii
� a���M

��	��a��x��
� ��hh��ii

�M
���	���a���x��
�

And from those two facts and De
nition �	����� we get the required result	

� Case �x� M 	 To show�

�x�f�gM
�	 hh�ii� �x�f��gM

��	�

By IH on M � we have M �	 hh�� �ii� M ��	� � i	e	�

�b hh�ii� b��M �	 b hh�ii� M ��	� b�

The result then follows directly from 
xed�point induction �Lemma �	��� because
hh�ii� is computation�admissible	

As a simple corollary of Lemma �	��� we obtain that the two interpretations of a
monad�triple are related�

Lemma ���� Let T be a monad�triple in L�	 Then the standard relational action of T 

given by

t �TR t� �� t hhTaiia��R t�

respects the monad operations in the sense that for any R
 R�
 and R�
 the following
conditions are satis�ed�

�	 If �a R� a
�� f a �TR� f

�a�

then �m ��R� m
�� let�T�� x�m in f x �TR� let�T��� x

��m� in f �x�	
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�	 �a R a�� �� a �TR ��� a
�	

	 If �a R� a
�� f a �TR� f

�a� then �t �TR� t
�� f � t �TR� f

�� t�

Proof� All cases are simple�

�	 By assumption on f and f �� we have

f hha�� Ta�ii
a� ��R��a� ��R� f �

and by assumption on m and m��

m hh�a�ii
a� ��R��a� ��R� m�

Then use Lemma �	�� on the term

xf � a�� Ta�� xm��a� �fa��a�g let�Ta� x� xm in xf x � Ta�

�which� recall� abbreviates a term of the core syntax� given by expanding the gen�
eralized let according to the shape of T  with the substitutions �  �f�xf � m�xm
and ��  �f ��xf � m

��xm	

�	 Analogous to above� using the term xa� a �fag �axa � Ta	

�	 Analogous to above� with xf � a�� Ta�� xt�Ta� �fa��a�g x
�
f xt � Ta�	

����� Relating computational structure

We are now ready to characterize what it means for two monads to be related�

De�nition ���� A monad relation between monads T  �T� �� � in �L��Ls and U  
�U� �� � in �L�

� �Li assigns to every admissible relation R  ARel��� �� a computation�
admissible relation R  CARel�T�� U�� such that for all admissible relations R
 R�

and R�


�	 If �a R� a� f a �R� g a
�

then �m ��R� m
�� let�T�� x�m in f x �R� let�U��� x

��m� in gx�	

�	 �a R a�� �� a �R ��� a
�	

	 If �a R� a
�� f a �R� g a

� then �t �R� u� f
� t �R� g

�u	

Further
 we say that an L�
� �term i�� � T�

�� U�� is a re�ection function �with respect to
the monad relation� if for any L��type � and relation R  ARel��� ��


�	 �t �TR t�� t �R i��t
�

Analogously
 a rei
cation function is an L�
� �term j�� � U�

��T�� such that for any � and
R  ARel��� ��


�	 �t �R u� t �TR j��u
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�Note that since T need not satisfy the monad laws in Li� i cannot in general be a monad
morphism	 Nor do we explicitly require that j�� � i��  idT�� � although it often does hold	
An important special case is when a monad�triple T  U is a monad in both Ls

and Li	 Then Lemma �	�� shows that the standard relational action of T induces a
monad relation between the two copies of T� moreover� for any ��� we can simply take
i��  j��  idT�� 	 �There is still some non�trivial content to the de
nition in this case�
because Ls and Li could be di�erent models� with their ambient e�ects related only by
relation�extension	
More generally� we have the following convenient way of obtaining monad relations

directly from monad morphisms�

Proposition ���� Let T and U be monad�triples in L� such that T is a monad in Ls

and U is a monad in both Ls and Li	 Further
 let i in �L��Ls be a monad morphism
from T to U	 Then the assignment to any R  ARel��� �� of the R  CARel�T�� U��
given by

t �R u �� i� t �UR u

establishes a monad relation between T and U	
Moreover
 for any �� of L�

� 
 i�� is a re�ection function	 And if j is a schematic
retraction of i in �L��Ls then for any �� in L�

� 
 j�� is a rei�cation function	

Proof� First� R is computation�admissible� because it is de
ned as an inverse image of
the computation�admissible UR by the rigid functions i� and idU�� 	 Further� we have�

�	 Let m ��R� m
� and f �R�� R� g be given	 To show�

i�� �let�T�� a�m in f a �UR� let�U��� a
��m� in g a�

By rigidity of i�� �De
nition �	��� on the LHS� this amounts to showing

let�U�� a�m in i�� �f a �UR� let�U��� a
��m� in g a�

We get that from assumption on m and m�� and the properties of U !s relational
action �Lemma �	����	 if we can establish that

�a R� a
�� i�� �f a �UR� g a

�

And that was precisely the assumption on f and g	

�	 Let a R a�	 To show� i� ��� a �UR ��� a
�	 By De
nition �	��� on the LHS� this is

equivalent to showing

��a �UR ��� a
�

which we get from Lemma �	���� for U	

�	 Let t �R� u and f �R�� R� g be given as in the hypothesis	 We must show that

i�� �f
� t �UR� g

�u
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Again� using the property of a monad morphism �	��� on the LHS� this amounts
to showing

�i�� � f
� �i�� t �UR� g

�u

Now� by assumption on t and u� we have

i�� t �UR� u

and by assumption on f and g�

�a R� a
�� �i�� � fa �UR� g a

�

from which we get the desired result by �	����	

�	 Let t �TR t�� we must show that t �R i�� t
�� i	e	� that i� t �UR i�� t

�	 And since ia
was a term of L�� this follows from Lemma �	�� by an argument analogous to those
in Lemma �	��	

�	 Let t �R u� to show� t �TR j�� u	 From the assumption on t and u� we have
i� t �UR u� and hence again by Lemma �	�� withM  ja� we get j� �i� t �TR j�� u	
Then cancelling the j� and i� on the LHS gives us the result	

A monad relation with re�ection and rei
cation functions is exactly what we need to
relate the de
nitional and the variant translation� the monad relation itself relates the
computational structure� and the re�ection and rei
cation functions� where they exist�
convert between e�ect representations�

De�nition ���
 Let T be a monad in �L��Ls and U a monad in �L�
� �Li
 with a monad

relation between T and U	 Then for any type � of LT
� 
 the relation

��  ARel������T � �����U 

is given in the usual way by induction on the structure of � �as in De�nition �	�
 but
without the type variables�
 and with � � �� from the monad relation	

Note in particular that since the standard relational action of T in Lemma �	�� is
also given by De
nition �	��� we have �T� T�� for any L

T
� �type �	 We can now state�

Proposition ���� Let there be given a monad relation between T and U
 with a re�ec�
tion function i at every type �����U where � is a type of LT

� 	 Further
 let � be a family of

LT
� �types
 with j a rei�cation function at every ����i��U 	 Let " �M � � be a term of L

T 
�
�

�i	e	
 with rei�cations only at types in ��	 Then for any pair of substitutions of ��related
values for the variables in "
 � �	 ��
 we have ��M ��	

T
�� ��M ��

�
T

	� �where �� ���
T
is the variant

translation from De�nition �	��	

Proof� Given the de
nitions� this is a simple induction on the structure ofM 	 The cases
for variables� numbers� products� sums� functions� and base computations are exactly as
before �Lemma �	��	 For the remaining constructs� we have�
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� Case M 	 To show�
� ��M ��	

T
� � � ��M ���

T

	�

Follows from IH on M and De
nition �	����	

� Case let�x�M� in M� �of type ��	 To show�

let�T 

����T x� ��M���
	
T
in ��M���

	
T
� �� let�U 

����U

x� ��M���
�
T

	� in ��M���
�
T

	�

By IH on M� and M�� and �	����	

� Case let x�M� in M�	 To show�

��x� ��M���
	
T
� ��M���

	
T
� �� ��x� ��M���

�
T

	�� ��M���
�
T

	�

Follows from IH on M� and M� using �	����	

� Case ��M	 To show�
��M ��	

T
� � i ��M ���

T

	�

Since �T�  T��� this follows from IH on M and De
nition �	����	

� Case �M�	 To show�
��M ��	

T
�T� j ��M ���

T

	�

As above� �T�  T��� so we get the result by IH on M and De
nition �	����	

� Case �x	 As before� we need to check that �� is computation�admissible� where �
may now also contain the type �	 And in that case� computation�admissibility of
�� is ensured by the requirement of a monad relation �De
nition �	��	

Using the monad relation induced by a monad morphism �Proposition �	��� Pro�
position �	�� immediately gives us correctness of a number of e�ect�simulations	 For
example� the complexity�state monad morphism from Example �	� validates the state�
based maintenance of complexities	
For our monad�continuation simulation in full generality� however� we have to work

a little harder	 To obtain rei
cation at arbitrary types� we cannot use purely equational
properties of the monad morphism and the standard relational action of U alone � we
need to construct the appropriate monad relation explicitly	

����� Relating monads to continuation	passing

Recall from Example �	�� that the main limitation of our monad�morphism formulation of
the continuation�based variant translation was its incomplete treatment of T �rei
cation	
Speci
cally� it did not directly allow us to de
ne a rei
cation operation �� at more than
one type and �� at types containing 	 We will now see how to overcome these problems
by using a more elaborate monad relation	
At the same time� we will take care of an independent technical complication ��

with simulating a monad T with a continuation monad Ko	 Following Lemma �	�� we
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would expect to take the answer type o to be T� for some �	 However� the constraints
imposed by our eventual application in Section �	�	� will not always allow us to do this	
Speci
cally� we will need the answer type to be expressible as�� for some �� but T� is
not necessarily of this form	
Fortunately� the relational approach allows us considerable latitude in picking the

actual answer type o� as long as it is �larger� than the T� that we originally needed	 �Be�
cause the answer type occurs both positively and negatively in the continuation monad�
we cannot express this condition purely equationally	 For conciseness� we formulate the
requirement in general terms�

De�nition ���� An answer�embedding of L�
� �computation�types o� into o� consists of

a pair of functions �� � o�� o� and �� � o�� o�
 such that in Li
 ��� �
� is rigid and ��

�� � ��  ido�	

�Taking o�  o�  T� and ��  ��  idT� certainly satis
es these requirements�
and still gives us a result strong enough to solve problems �� and �� mentioned above	
Thus� on a 
rst reading� it may be helpful to simply ignore all occurrences of �� and ��

throughout this section	 However� for the purpose of the next section� it is important
that the we only rely on the weaker properties guaranteed by De
nition �	��	
We are now ready to state a central result about relating monads and continuations	

The essential trick is that� although we commit to a 
xed answer type for the continuation
monad� we are still free to consider all possible relational interpretations of that type�

Lemma ���� �continuation	simulation of monads� Let T be a monad in �L��Ls	
Further
 let � be a type and o a computation�type of L�

� 
 with an answer�embedding �� �
T��o and �� � o�T�	 Then the mapping of R  ARel��� �� to R  CARel�T��Ko�

�
given by

t �R u
�� ��� typeL� � O  ARel���� �� k  ValLs��� T��� k

�  ValLi
���� o�

��a R a�� k a �TO �� �k� a�� k� t �TO �� �uk�

is a monad relation between T and Ko	 Moreover


i��  �tT�
�

��k�
��o��� ���� � k� t and j�  �u���o��o��� �u��� � ��

form a re�ection function for all �� and a rei�cation function for �	

�Intuitively� the outer quanti
cation over �� allows us to overcome limitation �� from
above� if we only needed rei
cation at a single LT

� �type �� we could simply 
x ��  �����T 	
Further� the inner quanti
cation over O takes care of ��� by replacing a 
xed relation
on answer types �where in particular � may be recursive with a stronger parametricity
condition	 And 
nally� as already mentioned� we need �� and �� for ��	
It is instructive to compare the cases of the following proof with the corresponding

ones in Proposition �	��	 Although some common structure could clearly be abstracted
out� it is probably easier to follow how the continuations are being passed around in a
concrete formulation	
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Proof� First� we check that R is computation�admissible when R is admissible� R
is de
ned as an intersection over inverse images of the computation�admissible relations
TO by the rigid functions k� and �� � �u�uk�	 For the speci
c requirements� we have�

�	 Assume �a R� a
�� f a �R� g a

� and m ��R� m
�	 To show�

let�T�� x�m in f x �R� let������o��o x
��m� in gx�

i	e	� that
let�T�� x�m in f x �R� �k

�� let�o x
��m� in gx�k� �

Let O� k� and k� be given� with

�a R� a
�� k a �TO �� �k�a� �

We must then show that

k� �let�T�� x�m in f x �TO �� �let�o x
��m� in gx�k� �

Using rigidity of k� �De
nition �	���� on the LHS and rigidity of �� �De
ni�
tion �	���� on the RHS� this is equivalent to showing

let�T�� x�m in k� �f x �TO let�T� x
��m� in �� �gx� k� �

Now� by Lemma �	���� and the assumption that m ��R� m
�� it su�ces to show

that
�a R� a

�� k� �f a �TO �� �g a�k�

and that follows from the assumption that f a �R� g a
�	

�	 Assume a R a�	 Then for O� k� and k� as above� we must show that

k� �� a �TO �� ��a�k�

i	e	� using law �	���� and the de
nition of �� that

ka �TO �� �k�a�

which was precisely the assumption on k and k�	

�	 Assume �a R� a
�� f a �R� g a

� and t �R� u	

Let O� k and k� be given as before� to show�

k� �f � t �TO �� �g�uk�

using monad law �	���� on the LHS and expanding the RHS� this amounts to
showing

��x�k� �f x� t �TO �� �u��x�g xk�

This follows from the de
nition of t �R� u if we can show that

�a R� a
�� ��x�k� �f xa �TO �� ���x�g xk�a�

i	e	� that
�a R� a

�� k� �f a �TO �� �g a�k�

And that follows from the assumption that f a �R� g a
�	
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�	 Again� let O� k� and k� be given with �a R a�� k a �TO �� �k� a�� and t �TR t�� we
must show that

k� t �TO �� ��� ���� � k�� t�

i	e	� cancelling the �� and �� �De
nition �	����� that

k� t �TO ��� � k�� t� �

By Lemma �	����� it su�ces to show that

�a R a�� k a �TO ��� � k�a� �

And that was precisely the assumption on k and k�	

�	 Let R  ARel��� � be given� with t �R u	 To show�

t �TR �� �u��� � ��

Here we 
nally need to instantiate the O in the de
nition of R	 Take

��  �� O  R� k  ��� k�  �� � �� �

Clearly this O is admissible� because R was assumed to be	 Further� let a R a�	
Then� because � respects the relational action of T �Lemma �	����� we have�

ka  � a �TO � a�  �� ��� �� a�  �� �k�a�

From the assumption on t and u� and monad law �	����� we therefore obtain

t  �� t  k� t �TO �� �uk�  �� �u��� � �

as required	

Although the construction only gives rei
cation at � directly� by choosing � appro�
priately� we can de
ne rei
cation functions at other types�

Lemma ���� Let there be a monad relation between T and U
 and let j� � U�� T� be
a rei�cation function at �L�

� �type� �	 Let �� be any type of L�
� with term constructors

 � ��� � and � � ����� such that �in Li� a��
� � � �a  �a	 Then the term

j
�
���� � � U�

�� T�� def �uU�
�

���s�� let�T�� a� � s in ��� a
� �j� ���a

�� � �� �a
�u

is a rei�cation function at ��	

Proof� Let � in L� and R  ARel��� �� be given� with t �R u� we must show that
t �TR j��� �� �u	 Accordingly� de
ne R�  ARel��� � by

a R� s ���a ��R � s �
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This is clearly admissible� being given as an inverse image of the admissible�R	 Moreover�
from the assumption on  and �� and the properties of the computation�extension�R
�De
nition �	����� we immediately get

�a R a�� a R� a
� �

which� together with the assumption on t and u and the properties of the monad relation
�De
nition �	������� gives us

t  ��a�� a� t �R� ��a
�� ��a��u �

From this� we get by the assumption on j� that

t �TR� j� ���a
�� ��a��u �

And 
nally� using all three parts of Lemma �	�� and the de
nition of R��

t  ��a� let�T� a��a in � a� t
�TR ��s� let�T�� a

�� � s in � a�� �j� ���a
�� ��a�u�   j

�
���� �u

as required	

For the j from Lemma �	�� speci
cally� this works out to�

j
�
���� �  �uKo�

�

���s�� let�T�� a� � s in � a� ��� �u��a�
�

���� � ��a

Consider now an LT
� �program	 Because our type system is monomorphic� every � ��

operator in that program can be uniquely labeled with a speci
c type	 There is thus
only ever a 
nite set � of LT

� �types � such that �����
�
T
needs to be embedded in the �

from Lemma �	��	 �Note that this is a static property of the program� with the set of
rei
cation�types bounded linearly by the program size	 This in contrast to� say� 
nite
unrollings of 
xed points� where we cannot a priori determine how deeply to unroll	
Thus� we can simulate rei
cation with a 
nite sum� if we are willing to construct

the relevant type �  &i����i��
�
T
for each program	 In fact� for any 
nite � covering all

rei
cations in an LT
� �program� we get the same overall result when using any larger � for

de
ning �	 We can thus formally de
ne the evaluation semantics of programs resulting
from the variant translation to be the unique meaning determined by any �su�ciently
large� 
nite collection �	
Or� we can use a single� in
nite embedding type that works for all programs	 In

particular� we can simply take I to be the countable set of names of closed LT
� �types�

with ��'�!  �	 Giving such an enumeration is unproblematic� the set of LT
� �types

does not itself contain any embedding�types	 Also� the tags themselves are inherently
unstructured� in particular� for a monadic translation� we have ��in���M ��T  in�����M ��T �
not in�

���

T
���M ��T 	 �In the actual ML implementation� we use an extensible data type for

&�� with tags dynamically generated and assigned at each instance of rei
cation	
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Embedding�types alone do not su�ce to express a continuation�based simulation of
rei
cation� however� there is an independent problem with reifying at LT

� �types containing
the type constructor 	 Suppose for simplicity that we only needed rei
cation at a single
LT
� �type ��� and moreover that we could choose the answer type of the continuation
monad freely	 Then it would seem natural to simply take �  ������

�
T
and o  T�	

But since the continuation�passing �� ���
T
�translation is itself de
ned in terms of the

answer type o� this would require us to solve the recursive type equation o  T ������
�
T

exactly� which is too strong a requirement in general	 Instead� we still take �  ������
�
T
�

but only o � T�	 In fact� the latter need not even be a full isomorphism� an answer�
embedding su�ces	
�Alternatively� we could have broken up the recursion by taking o  T� and � � ������

�
T
	

This approach gives a slightly simpler abstract correspondence between monads and
continuation�passing� but does not allow us to express the construction in the next section
in full generality	

����� Factorizing the variant translation

Although it translates from LT to L� the �� ���
T
�translation using U �e�ects is actually

much more like the standard U �monadic translation �� ��
U
from LU to L� sharing the

type translation and most of the term translation clauses with the latter	 The only non�
standard clauses are for re�ection and rei
cation of T �e�ects	 And in fact� we can express
the �� ���

T
�translation entirely in terms of the �� ��U �translation by expanding T �re�ection

and rei
cation into LU �de
nable terms	
In practice� this means that if we have a good �e�cient� convenient� etc	 way of

implementing evaluators for LU �whether using the de
nitional translation for U or some
other technique� as long as it gives correct results for complete programs� we can ob�
tain an evaluator for LT by simply viewing T �re�ection and �rei
cation as de
nitional
extensions of LU 	
When i and j are de
nable in L� �and hence invariant under the translations� this

is immediate� we can simply take �T�M  �U�iM and �M�T  j�M�U 	 When U is a
continuation monad with a recursively�de
ned answer type� however� it will be more con�
venient to work with a formulation of U �e�ects that integrates the recursion isomorphisms
in the continuation�passing translation	
First� since for any monad�triplesT andU� the sets of types of LT and LU are actually

the same �given by the type constructors of L together with � we use the name L��type
for a type from the extended signature� independent of the actual monad �which only
a�ects the types of ��  and � �	 We can then de
ne a suitable notion of �native� e�ects
for an L��continuation monad�

De�nition ���� Let L be a cll signature	 Then for any closed L��type �
 the signature
LK�	 extends L with a new computation�type constructor �
 the associated value�inclusion
and two lets �with types as in De�nition 	��
 and the following two term constructors�

" �M � ��������

" � �K�M � �

" �M � �

" � �M�K � ��������
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Note that this strictly generalizes our previous de
nition of a monad�extended signature�
because in the case where � is actually a type of L �i	e	� does not contain any � the
above is exactly what we get by taking the monad T in De
nition �	�� to be K��	
Unlike the case for a standard monad�extension of a signature� however� we will not

always be able to translate LK�	 back into L� because the corresponding monad now
involves a recursive type de
nition	 But when the target syntax includes ��types� we can
give such a translation�

De�nition ���� The translation �� ��K � L
K�	 � L is de�ned as follows� �rst take

(�  �a� �����K�a and o  �(�

�where the type translation �� ��K�a expands � into ������K�a��a��a and preserves all type
constructors of L�	 We abbreviate the associated isomorphisms as�

� def rolla�

���K�a
� �����Ko

�� (� and � def unrolla�

���K�a
� (� �� �����Ko

�where we write � � � �� �� to summarize the typing rule of a term constructor � building
���terms from ��terms�	

Then the type and term translation is the standard monadic translation for the monad
Ko
 except with the clauses for re�ection and rei�cation reading�

���K�M��K  �k� let�r� ��M ��K ��a� let�o� ka in���o in���r

���M�K��K  �k� let�o� ��M ��K ��a� let�r� ka in���r in���o

Note that when the isomorphisms are identities� as we can always trivially ensure when
� is only an L�type� this reduces to the original de
nition of a monadic translation
�De
nition �	�� because of the law let�x�M in�x  M 	
The usual direct�style reasoning principles for re�ection and rei
cation from De
ni�

tion �	�� still hold for the more general notion of monadic translation	 Speci
cally�

Lemma ���� In addition to the equations for let and inclusion from De�nition 	�

the following equations are sound for the �� ��K �translation from De�nition �	���

�K��M�K  M

��K�M�K  �k�M k  M

�M�K  �k�kM

�let x�M� in M��
K  �k��M��

K ��x��M��
K k

�let�x�M� in M��
K  �k� let�x�M� in �M��

K k

�where k does not occur free in any of the Ms�	

Proof� Simple calculation� we mainly have to verify that the isomorphisms cancel out	
For example� for the third equation�
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���M�K K 	 �k� let�o� �� M K 
�a� let�r� ka in�
r�� in�
�o�
	 �k� let�o� 
�k��k� ��M K �
�a� let�r� ka in�
r�� in�
�o�
	 �k� let�o� 
let�r� k ��M K in�
r�� in�
�o�
	 �k� let�r� k ��M K in let�o��
r� in�
�o� 	 �k� let�r� k ��M K in�
� 
r��
	 �k� let�r� k ��M K in�r 	 �k�k ��M K 	 ���k�kM K

The others are similar	

Note again the similarity of the direct�style equations characterizing � � to those of an
explicit continuation�passing translation	 The operational intuition is that �K�M passes
to M a functional representation of the current evaluation context� i	e	� the continuation
waiting for the result of �K�M	 Conversely� �M�K evaluatesM with a given continuation
and returns the answer	 For example� taking �  �� we have

�let x� �K
�k� let�r� k� in kr� in 
sx��K 
�a��a�
	 ��K
�k� let�r� k� in kr��K 
�x�� 
sx��K 
�a��a��
	 
�k� let�r� k� in kr�
�x�
�a��a�
sx�� 	 
�k� let�r� k� in kr�
�x��
sx��
	 let�r� 
�x��
sx��� in 
�x��
sx��r 	 let�r��
s �� in 
�x��
sx��r
	 
�x��
sx��� 	��

That is� k gets bound to the function �x���s x and applied twice to �	

Remark ���� The circularity inherent in allowing � to be an L��type is genuine� even
without �x in the language� it is possible to write non�terminating programs in LK�	 	
For perhaps the simplest example� take �  �	 Then re�ection and rei
cation �as shown
above� they are still two�sided inverses give us an isomorphism

�  � � �������� � �����

And indeed� we can de
ne a diverging term )�� by the usual double self�application made
type�correct by the isomorphisms�

d � ����  �x	��x���hi��x

d� � �  ���k���	� let�x� k hi in dx

) ���  dd�

It turns out that picking a 
xed shape for the answer type �i	e	� requiring it to be of
the form�� necessitates a slight twist when simulating monads whose type constructors
do not contain an outermost�� this is why we allowed the answer�embedding in De
ni�
tion �	�� to be a retraction� rather than a full isomorphism	 First� we slightly transform
the monad to be simulated�

De�nition ���� Let T  �T� �� � be a monad�triple	 We then de�ne a new monad�
triple �T  � (T �(�� �� as follows�

(T�  ��T�

(�  �a���� a

f ��  �m� let�t�m in����a� let�T�� r� f a in r� t
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For example� for state �Example �	��� this gives

(T�  �������� �

(�  �a����s��ha� si

f �  �m� let�t�m in���s� let�ha� s�i � ts in let�r� f a in r s

Now (T� does have an outermost�	 On the other hand� �T is not in general a monad�
even if T was	 In particular� for law �	���� we only get

f �� �(� a  let�t���� a in����a� let�T�� r� f a in r� t

 ����a� let�T�� r� f a in r� �� a  ��let�T�� r� f a in r   f a

�T is� however� a monad �up to extensionality�� when evaluated and applied to a
value� f a and f �� �(�a do behave identically�

let�r� f �� �(� a in r s  let�r���let�T�� r� f a in r in r s
 �let�T�� r� f a in rs  let�r� f a in r s

And in fact� our construction will ensure that functions like f are always �fully applied��
so that we can use (� and �� instead of � and �	
We can now de
ne re�ection and rei
cation for T in terms of the corresponding

operators for continuations as follows�

Theorem ���
 Let T be a monad in �L��Ls
 and let M be an LT
� �program without

top�level focus e�ects
 �i	e	
 � � M ����	 Further
 let � be a family of types containing
at least all LT

� �types for which M contains a rei�cation�operator	 Take �  T �&�
 a
well�formed �L�

� 
��type
 and in �L�

� 
K�	 de�ne the term constructors �T�  and � �T by�

�T�M  �K��k�k�� ��M

�M�T  let�T� t� ��r� let�a� outi r in (� a
�� ��M�K ��a� (� �inia in t ��i����

Now take L�
�  �L

�
� 


 with Li a model of �E�
� 

 from Section �		�	 Then replacing
all T �re�ection and �rei�cation operators in M with the de�nitions above �picking i for
each rei�cation arbitrarily
 subject to the constraint�
 yields an �L�

� 
K�	�program M � such

that ��M ��T ���
r ��M ���K 	

Proof� Let (� � ��T �&���K with associated isomorphisms be as in De
nition �	��� and
take �  &i����i��K � then �����K  ��T �&���K  T ��&���K  T �&�����K   T�	 It is also
easy to see that the functions de
ned by

�� � T���(�  �r����r

�� ��(�� T�  �m� let�T� o�m in �o

form an answer�embedding in the sense of De
nition �	��	
Now� using the i from Lemma �	�� directly� we get �omitting a few tedious let�

simpli
cation steps�
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���T
M�K 	 ���K
�k�k�� 
�M��K 	 ���K
�k��

�a� let�� r� ka in r��M��K
	 �k� let�r� ���k��

�a� let�� r� ka in r��M�K 
�a� let�o� ka in�
�o�� in�
r�
	 �k� let�r��

�a� let�T� o� ka in �o�� ��M K � in�
r�
	 �k��


�a� let�T� o� ka in �o�� ��M K �� 	 �k�� 

�a��� 
ka��� ��M K �

	 i

���K ��M K 	 ���
M��T

Similarly� using j from �	�� as extended by Lemma �	�� �with   ini and �  outi�
satisfying the retraction condition by de
nition� we get�

���M�T K 	 ��let�T� t� 
�r� let�a� outi r in �	 a��� 
�M�K 
�a� �	 
inia��� in tK
	 let�T 

���K

t� ���M�K K 
�a��
	 
ini a��� in 
�r� let�T 

���K
a� outi r in 	a�� t

	 let�T 

���K
o� ��M K 
�a��

	 
ini a���� in 
�r� let�T 

���K

a� outi r in 	a�� 
�o�

	 
�r� let�T 

���K
a� outi r in 	a�� 
let�T� o� ��M K 
�a�� 
	 
inia��� in �o�

	 
�r� let�T 

���K
a� outi r in 	a�� 
�� 
��M K 
�a�
� � 	�
inia����

	 j
�


���K


ini� outi� ��M K 	 ���M��T

We can thus apply Proposition �	�� �with empty � and �� to get the result	

Remark ���� When the monad T is already of the form T�  ��T �� for some type
constructor T � �e	g	� for exceptions� T ��  � � 
� a slightly simpler construction is
possible	 Take �  T ��&� so that o  �(� � ��T ��  T�� �� t  let�s� t in���s� and
��m  let�r�m in���r	 �Here �� and �� are actually two�sided inverses	 Then we
get the analog of Theorem �	�� by de
ning re�ection and rei
cation as follows�

�T�M  �K��k�k�M

�M�T  ��r� let�a� outi r in � a� ��M�K ��a�� �inia ��i����

The actual ML code in Section �	� takes advantage of this optimization by not including
an explicit suspension in the de
nition of monads like T� but instead having it implicitly
inserted by the CBV elaboration from Section �	�	�	 In other words� the type constructor
T in the ML signature of such a monad actually corresponds to the T � above� so that�
e	g	� ����� T��

v  ����
v����T��v  ����v� T ����

v	 We could� however� simply use
Theorem �	�� directly in all cases	

We have thus reduced the problem of implementing a language with monadic e�ects
for an arbitrary de
nable monad T to that of implementing a language with re�ection
and rei
cation operators for a continuation monad with an answer type�� for some value�
type �	 In the next chapter� we will show how this can itself be achieved by embedding
the continuation�e�ect language into a Scheme�like one	

����� Induced relational correspondence

We 
nally show how the relational correspondence between Ls and Li can be generalized
to the case where the base language is itself given by a monadic translation	 That is� we
consider the language where we take as the distinguished computation�type constructor�
while�and its related operations become simply additional type and term constructors	
Corollary �	�� showed that this new language is also a model of E�� the following shows
that this equational characterization extends to a relational one�
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Proposition ���� Let there be given a monad relation between T in Ls and U in Li

�De�nition �	��	 Then the relation assignment determined by the monad relation is a
computation�extension in the sense of De�nition �	� for �computations in the languages
�LT

� �L
T
s  and �L

�
�
U �LUi 
 as given by De�nition 	�	

Proof� For the 
rst condition� let R  ARelLTs �LUi ��� �
� be a relation� and let a R a��

we must show that a �R a�� i	e	� that in the original correspondence�

�� a��T  � a �R �a  �� a��U

and that follows immediately from De
nition �	����	
Similarly� assume that �a R� a

�� f a �R� f
� a� and m �R� m

�	 We must show that

let x�m in f x �R� let x��m� in f �x�

in the new correspondence� i	e	� that

��let x�m in f x��T  ��x�f x
�m  f �m

�R� f
��m�  ��x��f �x��m�  ��let x��m� in f �x���U

in the original one� which is precisely the statement of �	����	

��� Related work

The study of relationships between direct and continuation semantics has a long history	
Early investigations �Rey��a� ST��� Sto��� were set in a domain�theoretic framework
where the main di�culties concerned re�exive domains� as a result� these methods and
results were closely tied to speci
c semantic models	 On the other hand� Meyer and
Wand!s more abstract approach �MW��� applied to all models of simply�typed ��calculi�
but did not encompass computational e�ects � not even nontermination	
The present work� while formulated in a simply�typed setting� and using mostly ax�

iomatic reasoning� is nevertheless closer conceptually to the domain�theoretic results	 In
particular� it explicitly handles general recursion in computations by 
xed�point induc�
tion� and should extend to recursively�de
ned types without too many obstacles	 �The
initial version in �Fil��� was based on the Meyer�Wand approach� but it is not clear how
well that would scale to ambient e�ects and especially recursion	

A possible correspondence between monads and continuation�passing style �CPS was
conjectured by Danvy and Filinski �DF���� and more concretely presented by Wadler
�Wad��b�	 �The general idea of using a monad morphism to simulate one monadic ef�
fect with another is also due to Wadler �Wad���	 However� this work was largely in�
formal	 Most notably� the problems with rei
cation �needed� e	g	� to express handle for
continuation�based exceptions in a typed setting were not addressed at all	
Peyton Jones and Wadler �PW��� probe the relationship between monads and CPS

further� and Wadler �Wad��� analyzes composable continuations from a monadic per�
spective� but in both cases the restriction to Hindley�Milner typable translations ob�
scures the general correspondence� properly expressing the answer�type parametricity
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in a simulation of general monads by continuation�passing requires a more �exible type
system	
Finally� another glimmer of the connection between monads and continuations can

be seen in Sabry and Felleisen!s result that ���equivalence of CPS terms coincides with
direct�style equivalence in Moggi!s computational ��calculus �SF��� Mog���� the latter
captures exactly the equivalences holding in the presence of arbitrary monadic e�ects	
While this does not by itself imply that any monadic e�ect can be simulated by a continu�
ation monad� it does indicate that continuations form a maximally �but not necessarily
most general notion of e�ect	
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Implementing Continuation�E�ects

In this chapter� we continue the simulation of e�ects by showing that a language with
re�ection and rei
cation operators for a continuation monad can itself be embedded in
a language with a more traditional set of e�ects� Scheme�style 
rst�class continuations
and typed state	
That is� in the previous chapter we showed that continuations are in a precise sense

a universal e�ect� any de
nable monad can be simulated by a continuation monad with
a suitable answer type	 Now we show that this universal e�ect can itself be expressed
in terms of two speci
c� low�level e�ects	 Thus� we can program directly with monadic
e�ects in a language such as Scheme� or ML with continuations	
The development consists of three major steps	 First� we re�express re�ection and

rei
cation for continuations in terms of an alternative� more operationally motivated
pair of control operators	 These implement a control abstraction known as composable
continuations	 We further decompose the composable�continuations operators into a
standard escape�operator� an abort�operator� and a control delimiter	

Then we show that the level�tags ��and on value�inclusions and lets introduced
by the monadic translation are actually unnecessary for evaluation�purposes� the level�
erasure of a program evaluates to the same result as the original one	 The proof involves
another set of logical relations� indexed by types of the original two�level language� and
relating original and level�erased terms at each type	

Finally� in the level�erased language� we de
ne the control operators in terms of
Scheme�like primitives	 The key step here is to re�express the sequencing of already
continuation�passing terms in meta�continuation�passing style� then observe that the
metacontinuation is used in a single�threaded way throughout the translation and can
hence be maintained in a 
xed cell of the store	 Again� a simple logical�relations argu�
ment shows the equivalence of the original de
nitions of the control operators to their
escape�state simulation	
We conclude the chapter with an actual implementation of the construction in Stand�

ard ML of New Jersey� which includes language support for 
rst�class continuations	 In
addition to the complete code implementing monadic re�ection and rei
cation in terms
of escapes and state� we show a few simple programming examples	 In particular� we
illustrate how de
nable monadic e�ects� such as nondeterministic or probabilistic com�
putations� 
t very naturally into a traditional call�by�value setting	

��
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��� Continuation�re�ection and composable continuations

For convenience� we will assume that all signatures in the following contain an empty type
� with no value constructors	 Our implementation signature L�

�  L��
� �i	e	� L� with

recursive types and embedding�types certainly does� for example de
ning � as �a� a or as
an embedding�type with empty index set	 We need not require that � has a counterpart
in the speci
cation language L� as well� although adding it there would be unproblematic	
Further� for any computation�type � there is a �unique function from � to �� express�

ible as� e	g	� �z�
�� which we write as V�	 In fact� � and V are simply the zero�ary analogs
of sums and case �except that we do not require a V� for arbitrary �� in particular� for
any monadic translation we have �����

T
 � and ��V� M ��T  V

���T ��M ��T 	

Unlike Chapter �� where the simulation results were parameterized by the fairly com�
plex notion of a de
nable monad �which included a type constructor and type�indexed
families of term constructors� all the constructions in this chapter are parameterized by
a 
xed� closed value�type �	 Accordingly� except within de
nitions of recursive types
with �� we only need to consider type�closed types and terms	
The continuation�passing translation allows us to de
ne a wide range of control oper�

ators in the source language	 We have already seen re�ection and rei
cation� but many
others are possible	 In particular� we have�

De�nition ��� Let L be a cll signature with a ��type
 and let � be a type of L�	 Then
in LK�	 �De�nition �	���
 we de�ne the operations

" �M � ��� �� �

" � CM � �

" �M � �

" � AM � �

" �M � �

" � *M ���

" �M � ������ �

" � SM � �

by the expansions�

CM  ���k���	��M ��a�����q����	�k a���z��V��z

AM  ���q���	��M

*M  �M���r	��r

SM  ���k���	��M k���r	��r

The operational intuition is as follows� CM �escape invokes M with a representation
of the current evaluation context as a procedure q � �� � that� when applied to a value
a � �� will abandon the then current context of evaluation and return a as the result of
CM � e	g	�

C ��q� let z� q � in � � �  �

�regardless of what happens in � � �	 The ���returning� q can invoked in a context ex�
pecting an ���typed result by writing let z� q a in V �� z	 C thus acts very much like
Scheme!s call�cc� except that the M must explicitly invoke q in order to return a value
from CM 	 Each variant can be used to de
ne the other� however	
AM �abort immediately terminates the current computation� returning M as the

answer	 Like a q supplied by C� it can be used in combination with V to break out of
any computation�typed context	



�� CHAPTER �� IMPLEMENTING CONTINUATION�EFFECTS

*M �reset or prompt evaluates M in an empty evaluation context and returns the

nal answer of that evaluation� thus delimiting any control e�ects M might have	 For
example� when �  �� we get

*�let z�A� in �  ��

Finally� SM �shift captures and erases the current evaluation context up to �but
not including the innermost enclosing *� passing this context to M as a composable
function	 For example� still with �  �� we have

*�let x�S ��k� let�r�� k� in let�r�� kr� in r� in �s x  ��

Note also that we could de
ne AM  S ��k���	� M

Although probably not as well known as call�cc� control operators like S� A� and *
have already seen a fair amount of study� e	g	� �Fel��� SF��� DF��� Wad��� Fil��� GRR����
we will brie�y compare the various approaches in Section �	�	
For reference� and since we will need it later �in De
nition �	�� let us note�

Lemma ��� The translations of the derived control operators using De�nition �	�� work
out to�

��CM ��K  �k� ��M ��K ��a��q�ka��z�V z

��AM ��K  �q���� ��M ��K 

��*M ��K  let�o� ��M ��K ��r����r in���o

��SM ��K  �k� ��M ��K ��a� let�o� ka in���o��r����r

Proof� Straightforward	 For example�

��AM K 	 ���K
�q��M�K 	 �k� let�r� ���q��M K 
�a� let�o� ka in�
�o�� in�
r�
	 �k� let�r� 
�q����M K �
�a� let�o� ka in�
�o�� in�
r�
	 �k� let�r����M K in�
r� 	 �k��
 ��M K �

The others are similar	

The reason why we can concentrate on the composable�continuations operators in�
stead of the seemingly more general �K�  and � �K is the following property�

Lemma ��� Shift and reset form a complete set of control operators
 in the sense that
we can use them to express re�ection and rei�cation as follows�

�K�M  S ��k���	� let�r�M k in r

�M�K  �k���	�*�let a�M in let�r� ka in r

and get equivalent translations under �� ��
K
	

Proof� The actual translations of the terms contain explicit isomorphisms� which
clutter up the equational proofs	 It is thus more convenient to use the standard direct�
style reasoning principles for re�ection and rei
cation� whose soundness with respect to
the �� ��

K
�translation was established in Lemma �	���
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S 
�k� let�r�Mk in r� 	 �
�k��
�k� let�r�Mk in r�k�
�r��r��
	 �
�k��let�r�Mk in r�
�r��r�� 	 �
�k� let�r�Mk in � r�
�r��r��
	 �
�k� let�r�Mk in 
�k�k r�
�r��r�� 	 �
�k� let�r�Mk in�r� 	 �
�k�M k�
	 �
M�

�k��
let a�M in let�r� ka in r� 	 �k��let a�M in let�r� ka in r�
�r��r�
	 �k��M�
�a��let�r� ka in r�
�r��r�� 	 �k��M�
�a� let�r� ka in � r�
�r��r��
	 �k��M�
�a� let�r� ka in 
�r��r�r� 	 �k��M�
�a� let�r� ka in�r�
	 �k��M�
�a�ka� 	 �k��M�k 	 �M�

That is� re�ection essentially captures the current continuation and passes it to M �
while rei
cation evaluatesM in a delimited control context containing only k	 This simple
reading is somewhat obscured by the explicit lets and value�inclusions used to coerce
between the two kinds of computation	 However� when we eliminate the operational
distinction between�and in the next section� the two mixed�level lets �binding r can
actually be replaced with just M k and ka	

Somewhat surprisingly� the re�ect�like S can itself be decomposed into a standard
escape�operator and two simpler constructs�

Lemma ��� S is de�nable in terms of C
 *
 and A by

SM  C ��c�� �� let r�M ��a��*�let z� ca in V �z in Ar

Proof� As in Lemma �	�� we can use direct�style reasoning for the actual veri
cation�

C 
�c� let r�M 
�a��
let z� ca in V z�� in Ar�
	 �
�k��
�c� let r�M 
�a��
let z� ca in V z�� in Ar�
�a��
�q�ka���
�z�V z��
	 �
�k��let r�M 
�a��
let z� 
�a��
�q�ka��a in V z�� in Ar�
�z�V z��
	 �
�k��M 
�a��
let z� �
�q�ka� in V z���
�r��Ar�
�z�V z���
	 �
�k��M 
�a��let z� �
�q�ka� in V z�
�x��x���
�r���
�q��r��
�z�V z���
	 �
�k��M 
�a���
�q�ka��
�z��V z�
�x��x����
�r�
�q��r�
�z�V z���
	 �
�k��M 
�a�
�q�ka�
�z��V z�
�x��x����
�r��r�� 	 �
�k��M 
�a�ka��
�r��r��
	 �
�k��M k�
�r��r�� 	 SM

Here� we wrap the escaping continuation c provided by C in a control delimiter� making
it into a composable function that can be passed to M 	 Since S also needs to erase the
continuation after capturing it� we explicitly abort with the result r returned by M 	

Because C� A and * were themselves de
ned in terms of �K�  and � �K� in principle
it does not matter which set we use in the following	 Pragmatically� however� �C�A�*
have the advantage that their types contain no negative occurrences of�� which slightly
simpli
es the arguments in Section �	�	 We therefore now switch attention to the new
set�
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De�nition ��� Let L be a cll signature with a ��type
 and let � be a type of L�	 The
signature LKcc

�	 extends L with a computation�type constructor 
 associated value�inclusion
and lets
 and the term constructors C
 A
 and *
 typed as in De�nition �	�	 There is an
evident translation from LK�	 to LKcc

�	 
 given by the statements of Lemmas �	� and �	�	
The de�nitional translation �� ��K from LKcc

�	 to L is identical to the one for LK�	 from
De�nition �	��
 except that the clauses for �K�  and � �K are replaced with the clauses
for C
 A
 and * from Lemma �		

Note that� since we consider complete programs to be terms of type��� the type system
ensures that all control e�ects in an LKcc

�	 �program occur within the dynamic scope of
some *	

��� Level�erasure

Between Chapter � and Section �	�� we have now reduced monadic e�ects to shift�reset
and further to escapes� abort� and reset� all dependencies on the original monadic transla�
tion are gone from the translation equations� with the monad simulation being performed
entirely by expanding T �re�ection and �rei
cation into simple control operators and com�
ponents of the monad�triple	
However� our e�ect�enriched language LT

� still has a signi
cant practical limitation� we
need to explicitly indicate the levels on all value�inclusions and lets	 From a speci
cation
perspective� this is reasonable� with general re�ection and rei
cation available� we must
distinguish properly between�� and �computations in order to even de
ne the monadic
translation	
Moreover� most programs can actually be written in terms of �computations alone�

with uses of�restricted to the de
nitions of monad�speci
c e�ects from re�ection and
rei
cation� such as the raise and handle in Example �	��	 Thus� for particular compu�
tational e�ects� we may not need to explicitly expose��computations to the language as
a whole	
On the other hand� if we are to provide re�ection and rei
cation for arbitrary�

programmer�de
ned monads� we do need general��computations to be directly express�
ible in the language	 In languages such as E�ect�PCF �i	e	� our L�� where computation�
sequencing is already explicit� adding level�annotations to all inclusions and lets may not
be too problematic	 But in an ML�like language� implicitly elaborated into E�ect�PCF
as in Section �	�	�� there is no room for signi
cant e�ect�annotations of source terms	
And fortunately� as far as program evaluation is concerned� the levels can actually be
safely elided	
The idea is to view�� as a subtype of �� rather than as an entirely separate type	

Membership in�� then becomes a semantic property on values� with the type system
guaranteeing absence of e�ects in certain terms� but not playing an active role in the
actual evaluation process	 Accordingly� we now de
ne a new language with a uni�ed
notion of control�e�ects�

De�nition ��� Take L� to be L�
� extended with an empty type � and associated V	 We

further de�ne the set of L����types to be the same as that of L�
 but with the type constructor
�replaced by a new constructor�	
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When � is an L����type
 the signature LCC	
� of the composable�continuations language

then consists of L� with all instances of�replaced by��so in particular
 for computations
we now have�

" �M � �

" ��M ���

" �M� ���� "� x��� �M� ����

" � let�x�M� in M� ����

but no��computations�
 together with the following additional term constructors�

" �M � ��������

" � CM ���

" �M � �

" � AM ���

" �M ���

" � *M ���

We can de
ne a translation from our two�level control�e�ect language into the uni
ed
one by simply dropping the distinctions between the levels�

De�nition ��� The level�erasure translation j j is de�ned as follows	 First
 for any
L�
��type �
 j�j is the L

��
��type obtained by replacing all occurrences of�and in � with��

j��j  j �j  �j�j

with the other type constructors una�ected	 For terms
 level�erasure likewise con�ates all
uses of�and into��e	g	
 j�M j  jM j  �jM j�
 and maps the constructors C
 A
 and *
to their counterparts from De�nition �	�	

It is easy to see that if " �M � � in LKcc
�	

� then j"j � jM j � j�j in LCCj	j
� 	

We can also give a de
nitional translation of the one�level language�

De�nition ��
 Let � be an L����type	 We then de�ne the continuation�passing translation
�� ��K from LCC	

� to L
� as follows	 First
 let the auxiliary �� ��K�a on types be the syntactic

expansion of�� into ������K�a ��a��a
 and take

��  �a� �����K�a �

We also write

+� � �����K
��	

�� ��  rolla�

���K
�a

and +� � �� �� �����K
��	
 unrolla�

���K

�a

for the associated isomorphisms	 The translation of types is then given by�

������
K
 ������

K
��������

�with the other type constructors not a�ected�	 Correspondingly
 the non�identity clauses
of the term translation are�

���M ��K  �k�k ��M ��K
��let�x�M� in M���K  �k� ��M���K ��x� ��M���K k

��CM ��K  �k� ��M ��K ��a��q�ka��z�V z

��AM ��K  �q���+� ��M ��K 

��*M ��
K
 �k� let�o� ��M ��

K
��r���+�r in k � +�o

As usual
 this translation is easily seen to be type�preserving� if " �M � � in LCC	
� then

��"��
K
� ��M ��

K
� �����

K
in L

� 	
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We can now state our goal concretely� we want to show that the original �� ��K �
translation from De
nition �	� is equivalent for evaluation purposes to a level�erasure
followed by the �� ��K �translation	 To establish this equivalence� we will de
ne a collection
of relations between the types arising from the two translations	 The key ingredient here
is a suitable relational action of the type constructor�in the two translations�

De�nition ��� Let there be given a relational correspondence between two interpreta�
tions of L

� 
 with a computation�extension of relations R ���R �De�nition �	��	 Then
for any relation R  ARel��� ��
 we de�ne the relation ��R  CARel���� �����������
by�

m ���R u
�� ��� typeL
� � O  ARel���� ��� �k� let�x�m in kx ��R��O��O u

�� ��� typeL
� � O  ARel���� ��� k � ������ k
� � �������

��a R a�� k a ��O k�a�� let�a�m in ka ��O uk�

�Note that this is essentially the monad relation from Lemma �	��� with T taken as the
identity monad� �  ��� o  ���� and ��  ��  id	 That is� we are using a continuation
monad to simulate a trivial notion of focus e�ects	
We can now de
ne our system of relations�

De�nition ���� Let � be an L�
��type
 take (�

� �����K �De�nition �	��� and �� � ��j�j��K
�De�nition �	��
 and let

�  ARel�(�� ��

be an admissible relation on �nal answers� for the moment we leave its de�nition unspe�
ci�ed	 For any type � of L�

�
 the relation

��  ARel������K � ��j�j��K 

is then given in the usual way for base types
 sums
 products
 and functions	 For the
remaining L�

��type constructors
 we take�

z �� z
� �� z �r z� �� false

s �� s
� �� s �&r

i��i� s
� �� �i  dom�� a ��i� a

�� s  inia � s�  inia
�

m ��� u �� m ����� u

u � � u
� �� u ���������� u

�

�� �k� k�� ��a �� a
�� k a ��� k� a�� uk ��� u�k�

It is easy to see that all �� are admissible �we can view �� as being de
ned by an
inverse image of constant functions� z �� z

� �� � �r � � for ��� see Lemma A	�����
and that ��� and � � are also computation�admissible	
The representation of a���value in the ��j j��K �translation will always be of the form

�k� let�x�m� in kx for some m�� and thus in particular must be parametric in the
answer type	 Hence� we could de
ne ��� without committing to any particular relational
interpretation of answers� � does not occur in the de
nition of ��� from ��	
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On the other hand� for � � the identity of the answer type is explicitly exposed to
the source language� because A takes an arbitrary value of type � to be an answer� while
* allows answers to be inspected as �control�e�ect�free computations of type �	 Thus�
if we want to relate terms containing A and *� we cannot choose � arbitrarily� it must
match up with ��	 Fortunately� this circular dependency can be resolved� because of the
following important result�

Theorem ���� Let F and F � be type constructors
 and let � be a formal relation con�
structor
 built out of ��� the standard relational actions of L��type constructors
 �� con�
stant admissible relations �computation�admissible for computation�types�
 and ��� the re�
lation constructor��� so that � maps any relation R  ARel��� �� to �R  ARel�F�� F ���	

Then � has an invariant relation �R� �R  ARel��a� Fa� �a� F �a
 such that

a ��R� �R a� �� unrolla�Faa
���R� �R unrolla�F �aa

� �

Proof� See Corollary A	�� in Section A	�	

Form this we immediately obtain�

Lemma ���� There exists an admissible relation �  ARel�(�� �� such that

o � o� �� �o ��
+�o�

�where �� is de�ned in terms of � by De�nition �	���	

Proof� The existence of � hinges on �� being de
ned from it using only the operations
enumerated in Theorem �	��	 Thus� we can directly take � to be the invariant relation
for the action � mapping � to ��	

Note that even though �� is genuinely recursive when � contains any computation�
type constructors� the circularity in the de
nition of � still only occurs when � contains
a 	 Otherwise� �� becomes just an unparameterized de
nition by induction on �� and in
particular does not depend on �	 We can then simply take Lemma �	�� as the de�nition
of �� there is nothing to prove in that case	
We can now state the correctness result for level�erasure�

Lemma ���� If " �M � � is a term of L
Kcc
�	

� and � �	 �� then ��M ��	
K
�� ��jM j��	

�

K
	

Proof� The proof is by induction on M 	 The interesting cases are�

� Case�M 	 To show�
���M ��	

K
��� �k

��k� ��jM j��	
�

K

I	e	� that for any O and k �����O k��

let�a����M ��	
K
in ka ��O k� ��jM j��	

�

K

With a simpli
cation of the LHS� this reduces to showing

k ��M ��	
K
��O k� ��jM j��	

�

K

which we get immediately from IH on M and the assumption on k and k�	
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� Case let�x�M� in M� ����	 To show�

let�x� ��M���
	
K
in ��M���

	
K
���� �k

�� ��jM�j��
	�

K
��x� ��jM�j��

	�

K
k�

That is� for any O and k ���� ��O k
�� we must show

let�a�� �let�x� ��M���
	
K
in ��M���

	
K
 in ka� ��O ��jM�j��

	�

K
��x� ��jM�j��

	�

K
k�

Again� by a simple rewriting of the LHS� this is equivalent to

let�x� ��M���
	
K
in ��x� let�a�� ��M���

	
K
in ka�x

��O ��jM�j��
	�

K
��x� ��jM�j��

	�

K
k�

By IH on M� and the de
nition of ���� � it su�ces to show that

�a� ��� a
�
�� ��x� let�a�� ��M���

	
K
in ka�a� ��O ��x� ��jM�j��

	�

K
k�a��

i	e	� that for all a� ��� a
�
��

let�a�� ��M���
	
K
fa��xg in ka� ��O ��jM�j��

	�

K
fa���xgk

�

And that follows immediately from the IH on M�� with extended substitutions
��� a��x and ��

�� a���x	

� Case let�x�M� in M� � ��	 To show�

�k� let�x� ��M���
	
K
in ��M���

	
K
k � �� �k

�� ��jM�j��
	�

K
��x� ��jM�j��

	�

K
k�

That is� for k ���� ��� k
��

let�x� ��M���
	
K
in ��M���

	
K
k ��� ��jM�j��

	�

K
��x� ��jM�j��

	�

K
k�

Again� by a simple rewriting of the LHS� this is equivalent to

let�x� ��M���
	
K
in ��x� ��M���

	
K
kx ��� ��jM�j��

	�

K
��x� ��jM�j��

	�

K
k�

As above� by IH on M� and the de
nition of ���� � taking ��  (� and O  �� it
su�ces to show that

�a� ��� a
�
�� ��x� ��M���

	
K
ka� ��� ��x� ��jM�j��

	�

K
k�a��

which follows immediately from the IH onM�� with extended substitutions ��� a��x
and ���� a���x	

� Case AM 	 To show�

�q���� ��M ��	
K
 � � �q���+� ��jM j��

	�

K


I	e	� that when q ������ q� �vacuously true for any q and q� then

��� ��M ��	
K
 �����+� ��jM j��	

�

K
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By property �	���� of��� it su�ces to show that

� ��M ��	
K
� +� ��jM j��	

�

K

which by Lemma �	�� is equivalent to

� �� ��M ��	
K
 ��

+� �+� ��jM j��	
�

K


and that we get by IH on M after cancelling out the isomorphisms	

� Case *M 	 To show�

let�o� ��M ��	
K
��r����r in���o

��� �k�� let�o�� ��jM j��	
�

K
��r����+�r� in k� � +�o�

I	e	� that for any O and k ��� ��O k��

let�x� �let�o� ��M ��	
K
��r����r in���o in kx

��O let�o�� ��jM j��	
�

K
��r����+�r� in k� � +�o�

which simpli
es to

let�o� ��M ��	
K
��r����r in k ��o

��O let�o�� ��jM j��	
�

K
��r����+�r� in k� � +�o�

By de
nition of � and the assumption on k and k�� we have

�o � o�� k ��o ��O k � +�o�

so by �	����� it su�ces to show that

��M ��	
K
��r����r ��� ��jM j��	

�

K
��r����+�r�

By IH on M � we have ��M ��	
K
� � ��jM j��

	�

K
� so we only need to show that

�r �� r�����r �����+�r�

which follows from �	���� if we have

�r �� r�� �r � +�r�

and that is again an immediate consequence of the de
nition of �� as in the case
for AM above	

� Case CM 	 Simple � same translation on both sides	

� Case V�M 	 To show�
V

���K ��M ��

	
K
�� V

j�j��K ��jM j��

	�

K

But by IH on M � ��M ��	
K
�� ��jM j��

	�

K
� so this case can never actually occur �indeed�

there are no closed values of type �	
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� Case iniM 	 To show�

ini ��M ��
	
K
�� ini ��jM j��

	�

K

By IH on M � we have ��M ��	
K
��i� ��jM j��

	�

K
� so we get the result directly from the

de
nition of ��	

� Case outdiM 	 To show�

outdi ��M ��
	
K
��i��� outdi ��jM j��

	�

K

I	e	� that

outdi ��M ��
	
K
���i� � � outdi ��jM j��

	�

K

By IH on M and the de
nition of ��� ��M ��
	
K
 ini� a and ��jM j��

	�

K
 ini� a

� for some
i�  dom� and a ��i�� a

�	 There are two possibilities�

� i�  i	 Then by de
nition of �r we have

outdi �inia  inl a ���i� � � inl a�  outdi �inia
�

� i� � i	 Then� again by de
nition of the relational actions of � and ��

outdi �ini� a  inr hi ���i� �� inr hi  outdi �ini� a
�

��� Composable continuations from escapes and state

We now only have to implement a one�level language with escapes� prompts� and abort�
speci
ed by a simple continuation�passing transform	 Since we may want to perform the
continuation�passing translation anyway� e	g	� for cps�based code generation �App���� we
seem to be on the right track	 On closer inspection� however� the translation does not
quite produce �proper� continuation�passing terms� there is still a little bit of explicit
sequencing left in the output	
Recall the equations for �� ��K from De
nition �	�	 The problem is with A� and espe�

cially with *� which introduce an explicit notion of sequencing of already continuation�
passing terms	 By a stroke of good luck� however� we can express this sequencing in
terms of another standard e�ect� namely state	
The key idea is to eliminate the remaining traces of explicit sequencing by performing

another continuation�passing transformation� using a new metacontinuation � to keep
track of the nested��computations	 That is� we take the implementation interpretation of
ambient e�ects to also be given by a continuation monad	 �We do not constrain the answer
type of this monad� so we retain the full range of possible ambient computational e�ects	
While this may at 
rst seem to move us farther away from a direct implementation� we
will see that the �properly continuation�passing� terms are e�ectively una�ected by this
second translation� while the translations of A and * change in a useful way	
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De�nition ���� In L
� 
 let there be given a computation�type � of ultimate answers� we

will often abbreviate �� � as ��	 We then de�ne �� ��
C
� L

� � L
� to be the translation

expanding��computations into continuation�passing with answer type �
 i	e	


������C  ������C � �� �

���M ��C  ���� ��M ��C
��let�x�M� in M���C  ��� ��M���C ��x� ��M���C �

�with other type and term constructors una�ected as usual�	

We also de
ne a new continuation�passing translation of LCC	
� � where the answer

type is itself explicitly a type of continuation�passing computations �as opposed to the
unspeci
ed notion of ambient e�ects in����

De�nition ���� Let � be an L����type
 and take ,�  �a� �����K��a with isomorphisms

�u � �����K��		

�� ,�  rolla�

���K��a and �u � ,� �� �����K��		
 unrolla�

���K��a

We then de�ne �� ��Ku � LCC	
� � L

� as follows�

������Ku  K���������Ku  ������Ku ���,����,�

���M ��
Ku  �k����k ��M ��

Ku �

��let�x�M� in M���Ku  �k���� ��M���Ku ��x����� ��M ��Ku k���

��CM ��Ku  �k���� ��M ��Ku ��a��q�����k a����z������V z ����

��AM ��Ku  �q����� ��u ��M ��Ku 

��*M ��
Ku  �k���� ��M ��

Ku ��r������� ��u r��o�k ��u o�

Note that all but the underlined occurrences of � can be ��reduced away� so the trans�
lations for value�inclusions� lets� and escapes form a completely standard continuation�
passing transformation	
It is also easy to see that this translation consolidates the two nested continuation�

passing translations into one�

Lemma ���� For any type � of LCC	
� 
 �������K ��C  �����Ku and for any termM 
 ����M ��K ��C  

��M ��Ku �in the predomain interpretation of L
��	

Proof� The only complication is the type�recursion in the de
nition of the translations	
Recall the key cases�

� ������K  K��������K where ��  �a� �����K�a 	

� ������Ku  K���������Ku where ,�  �a� �����K��a 	

� ������
C
 K������C  �������C 	
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We 
rst strengthen the relationship for the type translation to� for any o of L
� �

�������
Ko
��
C
 �����

K

o��C
�-

The proof of �- is a simple induction on �� the only interesting case is

������Ko
C 	 ��
���Ko

� o�� oC 	 
�����Ko
C � ��oC �� ��oC

ih	 
���K

o��C
� ��oC �� ��oC 	 K

o��C

���K

o��C
	 ����K

o��C

Now� 
rst take o  �a in �- to get

����C 	 ���a� ���K�a C 	 �a� �����K�a C 	 �a� ���K

�a��C
	 �a� ���K��a 	 ��

and then� with o  ����

�����K C 	 �����K��	 C 	 ���K

��	��C
	 ���K��

�	��C

	 ���K��		

Given the equalities on types� the equality on terms is completely straightforward	
The cases for value�inclusion� let� and escape are immediate since their �� ��

K
�translations

do not contain any sequencing� we obtain the result by simple ��conversion	 For A and
*� we use that

�� �M C 	 ��rolla�

���K�a M C 	 rolla�



���K�a ��C
��M C 	 rolla�

���K��a

��M C 	 u ��M C

and analogously for +� 	 Then� for example�

����AM K C 	 ���q��
� ��M K �C 	 �q����� 
u ����M K C �
ih	 �q����� 
u ��M Ku �

	 ��AM Ku

����� Re	tying the recursive knot

Our metacontinuation translation �� ��
Ku was derived directly from the original �� ��

K
	

However� to match it up with he state�passing translation later� we 
rst need to relate
�� ��Ku to an equivalent formulation� using an isomorphic answer type�

De�nition ���� Let �  �a��������K�a� with isomorphisms

�n � ������K��
�� �  rolla���

���K�a� and �n � � �� ������K��  unrolla���

���K�a�

Then de�ne �� ��Kn to be the continuation�passing translation with answer type ��
 and
with translation equations for escape
 abort and reset now reading�

��CM ��Kn  �k��g� ��M ��Kn ��a��q��g��k ag���z��g���V z g��g

��AM ��Kn  �k��g��ng ��M ��Kn

��*M ��
Kn  �k��g� ��M ��

Kn ��r��g���n g� r��n ��a�kag

It should be intuitively plausible that this de
nition is equivalent to the one in De
ni�
tion �	�� above� we state this precisely in Corollary �	�� below� to which one may proceed
without loss of continuity	

From Section A	�� we include�
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De�nition ���
 The functorial action of L��type constructors on isomorphisms is given
as follows
 so that for any � � ��

�� ��
 .
i
a���� � �f���ag

�� �f���ag and /i
a���� �

�f���ag
�� �f���ag�

.i
a�a��a  �a

.i
a����n  n

.i
a����u  hi

.i
a��������p  h.i

a������ fst p�.
i
a������snd pi

.i
a����z  z

.i
a��������s  case�s� a�� inl �.

i
a�����a�� a�� inl �.

i
a�����a�

.i
a����s  case�s� i� ai� ini �.

i
a��i���ai

.i
a����b  /i

a����b

/i
a�����m  let�x�m in��.i

a����x

/i
a����o  hi

/i
a��������p  h/i

a������ fst p�/
i
a������snd pi

/i
a������g  �x�/i

a�����g �.
i
a����

��x

We then take advantage of the fact that our chosen solutions to recursive type equa�
tions are unique up to isomorphism� so that in particular it does not matter where we
break up the recursion when de
ning a pair of mutually recursive types�

Lemma ���� Let F and G be type constructors of L� �not necessarily covariant�
 and
let �  �a� F �Ga and ��  �a�� G�Fa� be the solutions to the corresponding recursive
type equations	 Then in the predomain model
 there exists an isomorphism 
 � G� �� ��

which further satis�es the following two �equivalent� coherence equations�

x�G� � rolla��G�Fa�� �.
i
a��G�Fa���
�.

i
a�Ga�unrolla�F �Ga�x  
x � ��

y��� � .i
a�Ga�rolla�F �Ga��.

i
a��G�Fa���


���unroll a��G�Fa�� y  
�� y � G�

Proof� See Lemma A	�� in the appendix	

In our case� we obtain from this the following instance�

Lemma ���� There exists an isomorphism 
 � �,� �� �	 This induces for any type � of
LCC	
� an isomorphism 0� � �����Ku

�� �����Kn  .i
a��

���K�a�

�

 and moreover

g� �� r� �����Ku � 
�� g ��u r  �n g �0� r � �

Proof� De
ne the type constructors Fa�  �����
K�a�

and Ga  �a	 Then we have

,�  �a� �����K��a  �a� F �Ga and �  �a��������K�a�  �a�� G�Fa�

We thus get the isomorphism 
 � �,�� � directly from Lemma �	��	 Moreover� we can
write 0�  .

i
a��Fa��
	 Now� 
rst note that
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�i
a���
��hx 	 �i

a����
��hx 	 �i
a��
��
h
�

i
a��
�

���x�� 	 id 
h
�i
a��
�

���x��
	 h
�i

a��
�
���x�

And then� using the second form of the coherence equation from �	��� we get

��� g 
u r� 	 �i
a��a


u� ��i
a���

���K�a�


����
�n g� 
u r�

	 ��i
a���

���K�a�


����
�n g� 
�i
a�a
�

u�
u r�� 	 ��i
a���

���K�a�


����
�n g� 
�u 
u r��

	 �i
a���

���K�a�


����
�n g�r 	 �n g 
�i
a��

���K�a�


��r� 	 �n g 
�� r�

Because the translations from De
nitions �	�� and �	�� are both continuation�passing
translations with isomorphic answer types� they are very closely related� instead of the
usual logical relation� we get a simple equational correspondence�

Lemma ���� Let "  �x����� � � � � xn��n
 and let us write 0	 for the substitution
�0�� x��x�� � � � �0�n xn�xn	 Then for any LCC	

� �term " �M � �


0� ��M ��Ku  ��M ����

Kn

Proof� The cases for the standard terms �products� sums� and functions are straight�
forward	 For example� for abstractions and applications� we have

���� ���x�M Ku 	 �a��� 

�x� ��M Ku �
���
� a�� 	 �a�
�x��� ��M Ku �
���

� a�
ih	 �a�
�x� ��M �����x�x

Kn �
���
� a� 	 �a� ��M ����� x�x

Kn f���
� a�xg 	 �a� ��M ����� ����

� a��x
Kn

	 �a� ��M ���a�x
Kn 	 
�x� ��M Kn ��� 	 ���x�M ��

Kn

�� ��M�M�Ku 	 �� 
��M�Ku ��M�Ku � 	 
�a��� 
��M�Ku a�� ��M�Ku

	 
�a���� 
��M�Ku 
���
� a���
�� ��M�Ku � 	 
���� ��M�Ku �
�� ��M�Ku �

ih	 ��M�
��
Kn ��M�

��
Kn 	 
��M�Kn ��M�Kn ��� 	 ��M�M�

��
Kn

For computations� let us 
rst name the induced isomorphisms on meta�computations

� � ��,� �� ��  .i
a��a�
 and ��� � �� �� ��,�  .i

a��a�

��

The value isomorphism for computations then becomes�

���u 	 �i
a�

����K�a


��u 	 �i
a��

���K�a��a���a
��u

	 �k��i
a��a
��
u
�

i
a�

���K�a��a
�

���k��

	 �k�� 
u
�a��i
a��a
�

���
k 
�i
a�

���K�a


��a���� 	 �k�� 
u
�a���� 
k 
�� a����

With this� the cases for inclusion and let are also simple� e	g	�

��� ���M Ku 	 ��� ���k�k ��M K C 	 ��� 
�k�k ��M Ku �
	 �k�� 

�k�k ��M Ku �
�a���� 
k 
�� a���� 	 �k�� 
��� 
k 
�� ��M Ku ���
	 �k�k 
�� ��M Ku � ih	 �k�k ��M ��

Kn 	 ���M ��
Kn

The interesting cases are for A and *� which actually depend on the answer type	
Here we need to expand the � and ����

�f  .i
a��a�
f  �g�f �
�� g and ��� f  .i

a��a�

��f  ���f �
�

in 0�� to get
0��u  �k��g�u��a����k �0�a�
��


�� g �

We then check�
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��� ��AM Ku 	 ��� ���q��

u ��M K �C 	 ��� 
�q����� 


u ��M Ku ��
	 �q��g���� g 
u ��M Ku � 	y �q��g��n g 
�� ��M Ku � ih	 �q��g��n g ��M ��

Kn

	 ��AM ��
Kn

where the step marked with y uses the coherence equation from Lemma �	��	
For reset� the calculation is a little more involved� since here we do not simply discard

the continuation�

��� ���M Ku 	 ��� ���k� let�o�M 
�r��
u r�� in k 
�u o�C
	 ��� 
�k���� ��M Ku 
�r������� 
u r��
�o�k 
�u o����
	 �k��g� ��M Ku 
�r������� 
u r��
�o�k 
�� 
�

u o��
�
��� g���
	 �k��g� ��M Ku 
�r������� 
u r��
�o�k 
�� 
�

u o��g�
	 �k��g� ��M Ku 
�r������� 
u r��
�o�
�r�k r g�
�� 
�

u o���
	 �k��g� ��M Ku 
�r�������� 
����
u r��
�o��n 
n 
�r�k r g��
�� 
�

u o���
	y �k��g� ��M Ku 
�r������n 
����
�� r��
�o��

�� 
n 
�r�k r g��
u 
�u o���
	 �k��g� ��M Ku 
�r������n 
����
�� r��
�

�� 
n 
�r�k r g���
	 �k��g�
��� ��M Ku �
�r��g���n g� r�
n 
�r�k r g��
ih	 �k��g� ��M ��

Kn 
�r��g
���n g� r�
n 
�r�k r g�� 	 ���M ��

Kn

where again the y marks two applications of the coherence equation	

We can now state the observable consequence of the above result� expressed using
only constructs of L

� � i	e	� without the �helper� isomorphisms 
 and 0��

Corollary ���� LetM be a closed LCC	
� �term of type��	 Then for any a� � � and p � ���


��M ��Ku ��n�����pn��o�a�  ��M ��Kn ��n��g��pn��n ��r�a�

Proof� Simple equational veri
cation� using Lemma �	�� �with empty "� 0�  
.i
a����
  id� and the coherence equation�

��M Kn 
�n��g��pn�
n 
�r�a��� 	 
��� ��M Ku �
�n��g��pn�
n 
�r�a���
	 ��M Ku 
�n����� ��n����pn 
��n�
��

���
��� 
n 
�r�a����
	 ��M Ku 
�n�����p
��n��
�o��

�� 
n 
�r�a���

u 
�u o���

	y ��M Ku 
�n�����pn�
�o��n 
n 
�r�a���
�� 
�
u o���

	 ��M Ku 
�n�����pn�
�o�
�r�a��
�� 
�
u o��� 	 ��M Ku 
�n�����pn�
�o�a��

Although this corollary may at 
rst appear too specialized� it actually covers exactly
what we need	 In particular� ifM is a term without escaping e�ects� it must be equivalent
to an included numeral��n in the �� ��

Ku �translation� and we get�

��M Ku 
�n�����pn�
�o�a�� 	 ���nKu 
�n�����pn�
�o�a��
	 ���nKn 
�n��g��pn�
n 
�r�a��� 	 ��k��g�kng 
�n��g��pn�
n 
�r�a��� 	 pn

On the other hand� if M actually invokes the metacontinuation �through an A not
protected by an enclosing *� both translations return the �error answer� a�	
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����� The continuation	state language

Let us now assume that we have available a language with Scheme�like escapes and state
as the e�ects	 For simplicity� we consider the state to consist of only a single� typed cell
�additional state could still be accommodated by choosing � appropriately�

De�nition ���� Let � be an L����type	 Then the signature LCS�
� of the continuation�state

language consists of L� with all occurrences of�replaced by��as in De�nition �	��
 and
extended with the following term constructors�

" �M � ��������

" � CM ��� " � � st ���

" �M � �

" � st ��M ���

Note that the type � can be a complex type� such as ����� so that values stored in the
cell can be procedures that themselves read or modify the state	 This again introduces
a re�exivity in the types� and it is well known that one can de
ne a 
xed�point operator
using higher�order state �as actually done for letrec in Scheme �CR���	 As usual� we
give a de
nitional translation of the new language�

De�nition ���� Let � be a computation�type of L
� 
 and let � be a L����type	 Then the

translation �� ��S from LCS�
� to L

� is given by
 on types�

������S  K��	�����S where (�  �a� �����K�a

We have �s � �����
S

�� (� and �s � (� �� �����
S
in the two directions	 �As usual
 these can

be taken as identities if � does not contain�	� Then we can give the term translations of
the new constructs�

���M ��
S
 �k��s�k ��M ��

S
s

��let�x�M� in M���S  �k��s� ��M���S ��x��s
�� ��M���S ks

�s

��CM ��S  �k��s� ��M ��S ��a��q��s
��k as���z��s���V z s��s

��� st��S  �k��s�k ��s ss

��st ��M ��
S
 �k��s�k hi��s ��M ��

S


Again� all but the underlined instances of state�passing in the above can be eta�
reduced away	 In other words� for the core computational structure� this is a standard
continuation�translation with answer type (�� �	

Now pick �  ����	 We then have

(� � ��������S  �����S � ��� (�� �� (�� �

We will use (� to represent our metacontinuation �	 Although this state�based encod�
ing of � now also gets passed a continuation ���(� and a state (�� it will use neither of
these	 That is� we informally have �(� � �����S � ��	
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Having chosen a suitable state type� we also need to express the relevant operations
on the metacontinuation in terms of the constructs of our continuation�state language	
For conciseness� we introduce the abbreviation�

" �M� ��� " �M� ���

" �M��M� ���

with expansion
M��M�

def let�hi �M� in M�

We already have value�inclusion� computation�sequencing� and escapes directly avail�
able in LCS�

� 	 For the remaining two constructs of LCC	
� � we take�

De�nition ���� Let � be an L����type	 Then in LCS	���
� 
 we de�ne operators A and *


typed as in De�nition �	�
 as follows�

AM def let�g� � st in gM

*M def C ��c	���� let�g� � st in �st �� ��v	��st �� g� cv� let�x�M in Ax

Note in particular that the procedure stored into st in * does not use the previous
value of st� nor does it return to its point of call �not that it could� since its return type
is empty	
We now set up a system of logical relations suitable for showing that the above state�

based de
nitions of the control operators capture the behavior of the metacontinuation�
based translation�

Lemma ���� Let there be given a relational correspondence between two interpretations
L and L� of L

� 
 with a computation�extension of relations R ���R	 Let �  CARel��� �
be an arbitrary computation�admissible relation on ultimate answers	 Then there exists
a collection of relations with the following properties�

� On �wrapped� ultimate answers� ��  CARel��� ����(�� (�� �

m �� m� �� �q  ValL�����(�� s  ValL��(�� m � m� q s

� On metacontinuations�state� �  ARel��� (�


g � s �� �n g ���� �� �s s �� �r �� r�� �n g r �� �s sr�

� On meta�computations� �  CARel�� � �� (�� �  ����
 i	e	


x � x� �� �g � s� xg � x� s

� On values� for any L����type �
 ��  ARel������Kn � �����S
 de�ned in the usual way
for the standard type constructors
 and in particular


u ��� u
� �� u �������� u�
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Proof� First assume that the relation � is given independently� and de
ne the oth�
ers in terms of it �thus satisfying all of the equivalences in the lemma except the one
characterizing �	 Further� de
ne ��  CARel������Kn � �� �����S � ����(�� (�� � by

� ��� �� �� � ��� � �� �� �� �r �� r�� � r �� �� r�

�� is a computation�admissible relation� being given as an intersection over inverse
images of � by the �rigid functions id on the LHS and �m�mqs on the RHS	 ��� does
not depend on �� so there is no concern about admissibility of the action de
ning it	
All of the relational actions de
ning �� from � are thus standard� so by Theorem �	��
we can take � as the invariant relation for the overall action� i	e	�

g � s �� �n g ��� �s s

giving us the remaining equivalence of the lemma	

Having established existence of the appropriate relations� we can now easily show
correctness of the state�based representation of the metacontinuation�

Lemma ���� Let " � M � � be a term of LCC	
� and � �	 ��	 Then ��M ��	

Kn �� ��M ��
	�

S

�where on the RHS we use the expansions of A and * from De�nition �	�	

Proof� By induction on M 	 Most cases are immediate� with the term constructors
having the same expansions in the two translations	 The only exceptions are�

� Case AM 	 We 
rst compute

��AM S 	 ��let�g� � st in gM S 	 �q��s� ��� stS 
�g��s
�� ��gM S q s

��s
	 �q��s�
�g��s��g ��M S q s

��
�s s�s 	 �q��s�
�s s� ��M S q s

We must then show that ��AM ��	
Kn ��� ��AM ��	

�

S
� i	e	� that

�q��g���n g ��M ��Kn ��� �q
���s���s s ��M ��	

�

S
q� s

So let q ���� q�	 Then we must show

�g���ng ��M ��	
Kn � �s���s s ��M ��	

�

S
q� s

Accordingly� let g � s� it then su�ces to show that

��n g ��M ��	
Kn �

� ��s s ��M ��	
�

S

which follows from the de
nition of g � s and the IH that ��M ��	
Kn �� ��M ��

	�

S
	

� Case *M 	 Again� we 
rst expand the RHS�

���M S 	 ��C 
�c� let�g� � st in 
st �� 
�v�
st �� g� cv��� let�x�M in Ax��S
	 	 	 	 	 �k��s� ��M S 
�x��s

��
�s s��x
�z�V z�s��
s 
�v��q��s���k v 
s 
�s s����
	 �k��s� ��M S 
�x��s

��
�s s��x
�z�V z�s��
s 
�v��q��s���k v s��

We must now show that ��*M ��	
Kn ��� ��*M ��	

�

S
� i	e	� that
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�k��g� ��M ��	
Kn ��r��g

���n g� r��n ��a�kag

��� �k���s� ��M ��	
�

S
��x��s����s s�x��z�V zs���s ��v��q��s���k� v s

As usual� assume k ��� � � k� and g � s� we must then show

��M ��	
Kn ��r��g

���n g� r��n ��a�kag

� ��M ��	
�

S
��x��s����s s�x��z�V zs���s ��v��q��s���k� v s

By IH on M � it su�ces to show that the continuations and metacontinuations
passed to the two translations are related	 For the continuations� we must show
that if r �� x and g� � s� then

�n g� r � ��s s�x��z�V zs�

which follows from the de
nition of g� � s�	 Similarly� for the metacontinuations�
we must show that

�n ��a�kag � �s ��v��q��s���k� v s

Again� by de
nition of �� this requires showing that for r �� r�	

�n ��n ��a�kagr �� �s ��s ��v��q��s���k� v sr�

i	e	� cancelling the isomorphisms� that

krg �� �q��s���k� r� s

which follows immediately from the de
nition of �� and the assumption on k and
k�	

��� Putting it all together

Summarizing the results of this chapter� we can state�

Theorem ���
 Let there be given a relational correspondence between a language �L
� �L

and itself
 with a computation�extension of relations R ���R such that �  ���r is an
equivalence relation	

Further
 let �� ��C � L

��L

� be the translation of ambient e�ects using the continuation
monad with answer type �  �� from De�nition �	��
 p  ValL���� a printing function

and a�  ValL�� an error answer	

Finally
 let � be a type of L�
�
 �� ��K the continuation�passing transform with answer type

� from De�nition �	��
 and �� ��S the continuation�state transform from De�nition �	�

with state type �  j�j ��� and ultimate�answer type �	

Then for any complete program � �M ��� in LK�	
� 


����M ��K ��C p � ��M
�
���S ��n��s

��pn��s ��x��q��s�a�

where � � M �
� ��� is a term of LCS�

� obtained syntactically from M by ��� erasing all
level�annotations on value�inclusions and lets
 and �� de�ning �K�  and � �K in terms
of escapes and state as detailed in Lemmas �	� and �	�
 and De�nition �	�	
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�For a correctly e�ect�strati
ed programM � the initial error�metacontinuation on the
right�hand side will never be invoked	 When the implementation is hosted in an ML�like
language� however� the system cannot statically verify that M is typable in our stricter
system� only that the level�erasure of M is ML�typable	 Pragmatically� to give a more
useful behavior for e�ect�typing errors �notably if M has escaping control�e�ects� i	e	� if
it e�ectively has type � rather than��� we therefore take the initial metacontinuation to
produce a distinct answer a� when invoked� we want to show that the simulation is still
correct with this error�catching extension	

Proof� First� let LC be the predomain semantics for the ambient�e�ect monad induced
by K�� �which is easily checked to be a uniform monad in the predomain semantics as
in Proposition �	��	 Proposition �	�� �straightforwardly extended to the additional term
constructors of L

�  then gives us that

LC�� ��  L���� ��C ��

for types and terms	 Moreover� the standard relational action of K�� in L� i	e	�

m �CR m� �� m ��R������ m�

�� ��� ��� ��a R a�� � a � ��a��m� � m���

is easily seen to be a computation�extension for the notion of ambient e�ects determined
by the continuation monad� for any a and a� such that a R a��

���a��C  �k�ka ��R��� � �k�ka�  ���a���C �

and similarly for let�	
Let M � now be the L

Kcc
�	

� �program obtained from M by de
ning �K�  and � �K in
terms of C� A� and * �still with their two�level types	 Then from De
nition �	� �with
associated lemmas we get that in LC� ��M ��K  ��M

���K � and hence in L that

����M ��K ��C p  ����M
���K ��C p �-

We can now use the level�erasure Lemma �	�� to get� in the relational correspondence
between the two copies of LC�

��M ���
K
��� ��jM

�j��
K

Since �� is simply equality of numerals� this expands to

��� typeL
� � O  ARelLC�LC���� ��� k  ValLC������� k
�  ValLC�������

��n  N� kn ��O k�n� let�x� ��M ���
K
in kx ��O ��jM �j��

K
k�

Or� in the original correspondence�

��� typeL
� � O  ARelL�L�������C � ������C �

k  ValL��� �������C � �� �� k�  ValL��� �������C � �� ��
��n  N� kn �CO k�n� ��� ����M ���K ��C ��x�kx� �CO ����jM

�j��K ��C k
�

Somewhat surprisingly� the actual choice of the relation O does not matter much� it is
the use of C to computation�extend O that is important	 In fact� we can simply take
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��  �� and O to vacuously relate every element of � to every element of ������C 	 Then
consider the two continuations

k  �n��������pn and k�  �n������

�	��C���pn� �

Let n be a natural number� we must show that kn �CO k�n� i	e	� that

��� ��� ��o O o�� � o � �� o�� kn� � k�n�� �

Since both k and k� ignore their metacontinuation arguments� this reduces to pn � pn�
which we get from re�exivity of �	 We thus have�

��� ����M ���K ��C p  ��� ����M ���K ��C ��x�kx�
�CO ����jM �j��

K
��
C
k�  ���� ����jM �j��

K
��
C
��n������pn��

Take �  �z�V� z and ��  �o�a�� they vacuously map all O�related values to ��
related results	 Expanding the de
nition of CO� we therefore get�

����M ���K ��C p � ����jM
�j��K ��C ��n���

���pn��o�a� �-

We can now take the step to escapes and state	 Let M�  jM �j	 First� Lemma �	��
gives us

����M���K ��C ��n���
���pn��x�a�  ��M���Ku ��n������pn��x�a� �-

and then Corollary �	���

��M���Ku ��n������pn��x�a�  ��M���Kn ��n��g�pn��n ��x�a� �-

From Lemma �	��� we get� in the L�correspondence�

��M���Kn ��� ��M
�
���S

where M �
� is obtained from M� by de
ning A and * in terms of C� � st and st �� as in

De
nition �	��	 We want to get from this that

��M���Kn ��x��g��px��n ��x�a� � ��M
�
���S ��x��s

��px��s ��x��q��s�a� �-

Expanding the de
nition of ���� we need to verify that the continuations are related�
i	e	� that for every n �� n

� �i	e	� n  n�� �g��pn � �s��pn�� which again reduces to just
pn � pn�	 We must also check that the initial metacontinuation and state are related by
�� i	e	� that for r �� r�� and q� s arbitrary�

�n ��n ��x�a�r � ��
s ��s ��x��q��s�a�r

� q s

And that is true since both sides simplify to a�	
Finally� taking the lines marked with �� above together in sequence� using the trans�

itivity of �� gives us the desired result	
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And 
nally� taking this theorem together with Chapter �� with nontermination as the
notion of ambient e�ects� and simply diverging for e�ect�typing errors� we get�

Corollary ���� Let L� be the partiality interpretation of L
� 
 and let T be a monad in

�L��L�	 Then we can pick a state type � in L��� such that for any complete LT
� �program

� �M ���


L�����M ��T ����  L�����M
���S ��n��s

���n��s ��x�
����

where M � is a term of LCS�
� obtained syntactically from M by ��� erasing all the levels

on value�inclusions and lets
 and �� de�ning �T�  and � �T in terms of escapes
 state

embeddings
 and the term constructors of T	

Proof� In the partiality semantics� with relation lifting as the computation�extension�
two closed terms of type�� are related by �  ���r i� their denotations are equal in the
model �so in particular� � is an equivalence relation	

First� letT�  I be the identity monad �Example �	�� andU�  K�� the continuation
monad with answer type�� �De
nition �	�	 Then by Lemma �	� there is a monad
morphism h from T� to U� de
ned as follows�

h�  �m���������� let�a�m in � a

From this� Proposition �	�� gives us a monad relation between I and K��� mapping a
relation R  ARel��� �� to R  CARel���� �������� by�

m �R m� �� hm  ��� let�x�m in � x ��R��� � m�

�� ��� ��� ��a R a�� � a � �� a�� let�x�m in � x � m� ��

Hence� by Proposition �	��� we get a relational correspondence between the interpreta�
tions given by Ls�� ��  L��� �� and Li�� ��  L����� ��C ��� with computation�extension�R taken
as the R de
ned above	

Theorem �	��� with � taken as an enumeration of all closed LT
� �types� now gives us

that� in the correspondence between Ls and Li�

��M ��T ���
r ��M���K

where M� in L
K�T �	�
� is obtained fromM by de
ning �T�  and � �T in terms of �K�  and

� �K� the components of T� and the operations for embedding�types	 Using �r as our R
above� with �  ��  �x��x� we thus get in the original correspondence�

��M ��
T
 let�x� ��M ��

T
in ��x��xx � ����M���K ��C ��x��x

And from this� we get the desired result directly by Theorem �	�� with p  �x��x and
a�  
��	
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��	 ML implementation and examples

In this section we illustrate how the abstract construction presented so far can be tran�
scribed into runnable code	 To emphasize the typing issues involved� we use the New
Jersey dialect of Standard ML �AM��� as our concrete language� but the operational
content should translate straightforwardly into Scheme as well �though instantiation to
di�erent monads may be less convenient without a �parameterized module� facility	
We also give several examples� the reader may want to compare these with Wadler!s
presentation �Wad��b�	

����� Composable continuations

In SML�NJ� 
rst�class continuations have a type distinct from the type of general pro�
cedures	 Let us therefore 
rst set up a Scheme�style representation of such continuations
as non�returning procedures �this is not essential but makes for a more direct corres�
pondence with the development in Section �	��

signaturesignaturesignature ESCAPE �
sigsigsig

typetypetype void
valvalval coerce � void �� �a
valvalval escape � ���	a �� void
 �� void
 �� �	a

endendend�

structurestructurestructure Escape � ESCAPE �
structstructstruct

datatypedatatypedatatype void � VOID ofofof void
funfunfun coerce �VOID v
 � coerce v
funfunfun escape f � callcc �fnfnfn k �� coerce �f �fnfnfn x �� throw k x




endendend�

For example� we can write

letletlet openopenopen Escape
ininin �  escape �fnfnfn k �� k ��  coerce �k 	


 endendend�
�� val it � � � int ��

�The use of void and coerce instead of an unconstrained type variable in Escape permits
continuations to be stored in ref �cells while staying within the ML type system �HDM���	
Now we can de
ne a composable�continuations facility� parameterized by the type of


nal answers �using De
nition �	�� and Lemma �	��

signaturesignaturesignature CONTROL �
sigsigsig

typetypetype ans
valvalval reset � �unit �� ans
 �� ans
valvalval shift � ���	a �� ans
 �� ans
 �� �	a

endendend�

functorfunctorfunctor Control �typetypetype ans
 � CONTROL �
structstructstruct
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openopenopen Escape
exceptionexceptionexception MissingReset
valvalval mk � �ans �� void
 ref � ref �fnfnfn � �� raiseraiseraise MissingReset

funfunfun abort x � ��mk x


typetypetype ans � ans
funfunfun reset t �

escape �fnfnfn k �� letletlet valvalval m � �mk
ininin mk �� �fnfnfn r �� �mk �� m� k r

�

abort �t�

 endendend

funfunfun shift h �

escape �fnfnfn k �� abort �h �fnfnfn v �� reset �fnfnfn �
��coerce �k v





endendend�

For example�

structurestructurestructure IntCtrl � Control �typetypetype ans � int
�

letletlet openopenopen IntCtrl
ininin 	  reset �fnfnfn �
 �� � � shift �fnfnfn k �� k �k 	�


 endendend�
�� val it � �� � int ��

����� Monadic re�ection

Building on the composable�continuations package� we implement the construction of
Section �	�	�	 The signature of a monad is simple�

signaturesignaturesignature MONAD �
sigsigsig

typetypetype �a t
valvalval unit � �a �� �a t
valvalval ext � ��a �� �b t
 �� �a t �� �b t
valvalval show � string t �� string

endendend�

�The monad laws have to be veri
ed manually� though	 The component show is included
in the signature for convenience only	 We require it to satisfy show �unit  id� on terms
that do not factor through unit� it provides an informal string�based representation of
the e�ect if possible	 It might at 
rst seem more general to parameterize over types�
i	e	� have a show�� ��a �� string	 �� �a t �� string� but we can recover that as
fn ms
�fn t
�show �ext �unit o ms	 t		 Our goal is to de
ne re�ection and rei
c�
ation operations for an arbitrary monad M to get

signaturesignaturesignature RMONAD �
sigsigsig

structurestructurestructure M � MONAD
valvalval reflect � �	a M�t �� �	a
valvalval reify � �unit �� �	a
 �� �	a M�t
valvalval run � �unit �� string
 �� string

endendend�
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Here� run is again mostly for illustration purposes� it takes a suspended string�returning
computation and returns the result of executing it� annotated by an external represent�
ation of its computational e�ects� if any	
Using Control we can now de
ne a representation of the continuation monad for an

arbitrary answer type �Lemma �	�� but simpli
ed because of level�erasure�

functorfunctorfunctor ContMonad �typetypetype answer
 � MONAD �
structstructstruct

typetypetype �a t � ��a �� answer
 �� answer
funfunfun unit a � fnfnfn k �� k a
funfunfun ext f t � fnfnfn k �� t �fnfnfn a �� f a k

funfunfun show t � raiseraiseraise Fail �show not defined�

endendend�

functorfunctorfunctor ContRep �typetypetype answer
 � RMONAD �
structstructstruct

structurestructurestructure C � Control �typetypetype ans � answer


structurestructurestructure M � ContMonad �typetypetype answer � answer

valvalval reflect � C�shift
funfunfun reify t � fnfnfn k �� C�reset �fnfnfn �
 �� k �t �



funfunfun run t � raiseraiseraise Fail �run not defined�

endendend�

�where show and run cannot be de
ned when the answer type is unknown	
To implement the general construction� we also need to somehow represent the in�


nitary embedding type from Section �	�	�	 This might at 
rst seem fundamentally
incompatible with SML!s type system� especially if we want a �parametric� solution�
independent of the collection of available base types and type constructors	 But the con�
struction only requires us to exhibit an embedding for those types at which we actually
perform a rei
cation	 Thus� all we need is what could be called a �generative type
dynamic�� a structure matching

signaturesignaturesignature DYNAMIC �
sigsigsig

typetypetype dyn
valvalval newdyn � unit �� ��	a �� dyn
 � �dyn �� �	a


endendend�

such that for any monotype ��a� an invocation of newdyn �	 returns a pair of functions
�to�d from�d	 with from�d � to�d equal to the identity on ��a	 This signature can
actually be implemented type�safely in SML� by exploiting the fact that the standard
datatype exn �nominally of exception names� but useful for other purposes as well can
be dynamically extended with new summands�

structurestructurestructure Dynamic � DYNAMIC �
structstructstruct

exceptionexceptionexception Dynamic
abstypeabstypeabstype dyn � DYN ofofof exn
withwithwith funfunfun newdyn �
 �

letletlet exceptionexceptionexception E ofofof �	a
ininin �fnfnfn a �� DYN �E a
� fnfnfn DYN �E a
 �� a � � �� raiseraiseraise Dynamic
 endendend



��� CHAPTER �� IMPLEMENTING CONTINUATION�EFFECTS

endendend
endendend�

Note that we never actually raise or handle the exception E anywhere� we only use it as
a dynamically�allocated tag	

Remark ���� Encoding dynamic types in terms of exception names is probably the
most e�cient approach in SML�NJ �short of bypassing the type system entirely via
System�Unsafe�cast� but we do not actually depend on existence of an �extensible
datatype� for the construction	 In fact� we can get the same e�ect by representing a
value of type dyn as a procedure unit �� unit� setting a speci
c cell to the desired
value�

structurestructurestructure Dynamic� � DYNAMIC �
structstructstruct

exceptionexceptionexception Dynamic
abstypeabstypeabstype dyn � DYN ofofof unit �� unit
withwithwith funfunfun newdyn �
 �

letletlet valvalval r � ref NONE
ininin �fnfnfn a �� DYN �fnfnfn �
 �� r �� SOME a
�

fnfnfn �DYN d
 ��
�r �� NONE� d �
�
casecasecase �r ofofof SOME a �� a � NONE �� raiseraiseraise Dynamic

 endendend

endendend
endendend�

However� this needlessly builds a closure for the dynamic value� and is perhaps a bit more
obscure than the exn�based de
nition above	

We can now complete the construction �Theorem �	���

functorfunctorfunctor Represent �structurestructurestructure M � MONAD
 � RMONAD �
structstructstruct

structurestructurestructure CR � ContRep �typetypetype answer � Dynamic�dyn M�t


structurestructurestructure M � M
funfunfun reflect m � CR�reflect �fnfnfn k �� M�ext k m

funfunfun reify t �

letletlet valvalval �to�d� from�d
 � Dynamic�newdyn �

ininin M�ext �M�unit o from�d
 �CR�reify t �M�unit o to�d

 endendend

funfunfun run t � M�show �reify t

endendend�

����� Example� exceptions

Example �	� from the Introduction becomes� in the concrete setting of our ML�based
implementation�

structurestructurestructure ErrorMonad �
structstructstruct

datatypedatatypedatatype �a t � SUC ofofof �a � ERR ofofof string
valvalval unit � SUC
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funfunfun ext f �SUC a
 � f a
� ext f �ERR s
 � �ERR s


funfunfun show �SUC a
 � a
� show �ERR s
 � ��Error� � � s � ���

endendend�

functorfunctorfunctor ErrorOps �structurestructurestructure R � RMONAD sharingsharingsharing R�M � ErrorMonad
 �
sigsigsig

valvalval myraise � string �� �	a
valvalval myhandle � �unit �� ��a
 �� �string �� ��a
 �� ��a

endendend �
structstructstruct

openopenopen ErrorMonad
funfunfun myraise e � R�reflect �ERR e

funfunfun myhandle t h � casecasecase R�reify t ofofof SUC a �� a � ERR s �� h s

endendend�

Note that the operations myhandle and myraise are de
ned generically in terms
of any valid implementation of re�ection and rei
cation for the exception monad	 For
example� since SML already has exceptions we could simply take

structurestructurestructure ErrorRep� � RMONAD �
structstructstruct

exceptionexceptionexception Exc ofofof string�

structurestructurestructure M � ErrorMonad openopenopen M
funfunfun reflect �SUC a
 � a

� reflect �ERR e
 � raiseraiseraise Exc e
funfunfun reify t � SUC �t �

 handlehandlehandle Exc e �� ERR e
funfunfun run t � show �reify t


endendend�

We can� however� also plug in the �canonical� de
nitions obtained from Represent�

structurestructurestructure ErrorRep � Represent �structurestructurestructure M � ErrorMonad

structurestructurestructure FX � ErrorOps �structurestructurestructure R � ErrorRep
 openopenopen FX�

funfunfun mydiv �x�y
 � ififif y � � thenthenthen myraise �Div�� elseelseelse x div y�
�� val mydiv � int � int �	 int ��

ErrorRep�run �fnfnfn �
 �� makestring �	  mydiv �	��� �


�
�� val it � 
��
 � string ��

ErrorRep�run �fnfnfn �
 �� makestring �	  mydiv �	��� �


�
�� val it � 
�Error� Div	
 ��

ErrorRep�run �fnfnfn �
 �� myhandle �fnfnfn �
 �� makestring �	  mydiv �	��� �



�fnfnfn s �� �Oops� � � s

�

�� val it � 
Oops� Div
 ��

The type inferred for myraise above is actually overly conservative wrt	 weakness�
since an exception�raising operation never returns normally in the 
rst place� it is safe
to give it a fully polymorphic type	 We can achieve this by simply changing the de
n�
ition of myraise to Escape�coerce �reflect �ERR e			 Unfortunately� myhandle is
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also only weakly polymorphic� which can be traced back to the fact that reify in the
functor Represent has a weakly polymorphic type �and that itself is a consequence of
its de
nition in terms of Dynamic�newdyn	

It is instructive to inspect the expansion of myraise and myhandle into the underlying
state and continuation manipulations� the cell allocated for the metacontinuation in
Control e�ectively contains the �current handler continuation�� which is invoked by a
raise and temporarily rebound in the scope of each new handle	 This is very much like
the way exceptions are actually implemented in SML�NJ� although the details are not
quite the same� an exception�speci
c implementation can take advantage of particular
operational properties of the monad �notably that handler continuations are invoked at
most once to optimize the generic construction a bit	

����� Example� state

The state monad is straightforward�

functorfunctorfunctor StateMonad �typetypetype state
 � MONAD �
structstructstruct

typetypetype �a t � state �� �a � state
funfunfun unit a � fnfnfn s �� �a�s

funfunfun ext f t � fnfnfn s �� letletlet valvalval �a�s�
 � t s ininin f a s� endendend
funfunfun show t � raiseraiseraise Fail �not defined�

endendend�

structurestructurestructure IntStateMonad � MONAD �
structstructstruct

structurestructurestructure S � StateMonad �typetypetype state � int
 openopenopen S
funfunfun show t �

letletlet valvalval �a�s�
 � t ��
ininin ififif s� � �� thenthenthen a elseelseelse ��s� � � makestring s� � �� � � a endendend

endendend

functorfunctorfunctor IntStateOps �structurestructurestructure R � RMONAD sharingsharingsharing R�M � IntStateMonad
 �
sigsigsig

valvalval store � int �� unit
valvalval fetch � unit �� int
valvalval tick � unit �� unit

endendend �
structstructstruct

funfunfun store n � R�reflect �fnfnfn s �� ��
�n


funfunfun fetch �
 � R�reflect �fnfnfn s �� �s�s


funfunfun tick �
 � R�reflect �fnfnfn s �� ��
�s	



endendend

structurestructurestructure IntStateRep � Represent �structurestructurestructure M � IntStateMonad

structurestructurestructure FX � IntStateOps �structurestructurestructure R � IntStateRep
 openopenopen FX�

IntStateRep�run �fnfnfn �
 �� �store �� tick �
�
letletlet valvalval x � fetch �

ininin tick �
� makestring �� � x
 endendend

�

�� val it � 
�s� �	 ��
 ��
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Here the general construction is clearly wasteful� however� we could easily have rep�
resented the state monad without using callcc at all	 This is also true for many other
�state�like� monads� such as I�O or complexity	 Thus� the real value of the general con�
struction is when the decomposition into escapes and state is not immediately apparent�
as in the following examples	

����� Example� nondeterminism

A nondeterministic computation can be represented as a list of answers	 �Formally� this
goes beyond the monads considered in Chapter �� but extending the proof to a language
with inductive datatypes such as lists is straightforward	

structurestructurestructure ListMonad � MONAD �
structstructstruct

typetypetype �a t � �a list
funfunfun unit a � �a�
funfunfun ext f �� � ��

� ext f �h��t
 � f h � ext f t
funfunfun show �� � ��fail��

� show �x� � x
� show �h��t
 � h � � �or� � � show t

endendend�

functorfunctorfunctor ListOps �structurestructurestructure R � RMONAD sharingsharingsharing R�M � ListMonad
 �
sigsigsig

valvalval pick � �	a list �� �	a
valvalval fail � unit �� �	a
valvalval results � �unit �� �	a
 �� �	a list

endendend �
structstructstruct

funfunfun pick l � R�reflect l
funfunfun fail �
 � R�reflect ��
funfunfun results t � R�reify t

endendend�

structurestructurestructure ListRep � Represent �structurestructurestructure M � ListMonad

structurestructurestructure FX � ListOps �structurestructurestructure R � ListRep
 openopenopen FX�

ListRep�run �fnfnfn �
 �� letletlet valvalval x � pick ����� � pick �����
ininin ififif x �� �� thenthenthen makestring x elseelseelse fail �
 endendend
�

�� val it � 
�� �or	 � �or	 ��
 � string ��

More generally� we get Haskell�style list comprehensions �for free�� in that the schema

�E j x�	E�� � � � � xn	 En�

�where each xi may be used in Ei��� � � � � En and in E can be expressed directly as

�let x�  ��E� in � � � let xn  ��En in E�

Of course� this is probably not the most e�cient way of implementing list comprehen�
sions in ML	 As observed by Wadler� however� list comprehensions can be generalized
to arbitrary monads �Wad��a�� similarly we get general monad comprehensions in ML
simply by supplying the appropriate � � and ��  operations	
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����� Example� probability

A slight re
nement of the nondeterminism monad permits us to keep track not only of
the possible outcomes of a nondeterministic evaluation� but also their relative probab�
ilities� given a distribution on the individual choice operations	 That is� a probabilistic
computation of type � is represented by a 
nite set of pairs �ai� pi� where ai is a value
of type �� pi  ��� ��� all the ai are distinct� and the pi sum to �	
However� this example also illustrates a technical problem with monads as a struc�

turing tool for functional programs� as opposed to describing programming language
semantics� the de
nition of a monad requires that the operations � and � be de
ned
uniformly at all types� but in general we cannot properly implement sets of higher�order
values because elements of such type cannot be tested for equality	
For example� we cannot algorithmically identify two probabilistic computations like

f��x� x� �g and f��x� x� �� �� ��x� x� �� �g� even though both represent the same �def�
inite� identity function	 Note that the latter variant can easily arise even if we do
not allow explicit non�deterministic choice at higher types � consider a source term like
let y  amb ��� � in �x� x � y  y	
While this non�uniqueness is not in itself a problem � after all� we cannot observe

functions directly � we need to ensure that any ground�type result we may obtain by a
series of applications of potentially higher�order probabilistic functions is still uniquely
represented	 An easy way of achieving this is to always represent �active� probabilistic
computations non�uniquely using list�nondeterminism� but then only expose rei�cation
at types for which we can eliminate duplicates�

abstractionabstractionabstraction ProbMonad �
sigsigsig

includeincludeinclude MONAD
valvalval to�t � ��a � real
 list �� �a t
valvalval from�t � ��a t �� ���a � real
 list

endendend �
structstructstruct

typetypetype �a t � ��a � real
 list �� ��p����� sum�p� � �� ��
funfunfun unit a � ��a�	��
�
funfunfun ext f �����a t
 � ��

� ext f ��a�p
 �� t
 � map �fnfnfn �b�q
 �� �b�p�q

 �f a
 � ext f t
funfunfun show� ��a� 	��
� � a

� show� �� � ��
� show� ��a�p
 �� t
 � ��p� � � makestring p � ��� � a � show� t

funfunfun to�t l � l �� could do some sanity checking here ��
funfunfun tally �a�p
 ������a t
 � ��a�p
�

� tally �a�p
 ��a��p�
 �� t
 �
ififif a � a� thenthenthen �a�pp�
 �� t elseelseelse �a��p�
 �� tally �a�p
 t

funfunfun from�t t � fold �fnfnfn �h�l
 �� tally h l
 t ��
funfunfun show t � show� �from�t t


endendend�

functorfunctorfunctor ProbOps �structurestructurestructure R � RMONAD sharingsharingsharing R�M � ProbMonad
 �
sigsigsig

valvalval choose � ��	a � real
 list �� �	a
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valvalval flip � real �� bool
valvalval distribution � �unit �� ��	a
 �� ���	a � real
 list

endendend �
structstructstruct

funfunfun choose l � R�reflect �ProbMonad�to�t l

funfunfun flip p � ififif p �� ��� thenthenthen false

elseelseelse ififif p �� 	�� thenthenthen true
elseelseelse choose ��true�p
� �false�	���p
�

funfunfun distribution t � ProbMonad�from�t �R�reify t

endendend�

structurestructurestructure ProbRep � Represent �structurestructurestructure M � ProbMonad

structurestructurestructure FX � ProbOps �structurestructurestructure R � ProbRep
 openopenopen FX�

ProbRep�run �fnfnfn �
 �� ififif flip ��� � flip ��� thenthenthen �same� elseelseelse �diff�
�
�� val it � 
�p� ���	same�p� ���	diff
 � string ��

Here we have used the SML�NJ abstraction extension to hide the implementation
of the type t� an analogous e�ect could be achieved� slightly more verbosely� using the
standard abstype construct	 Also� strictly speaking� the above only gives us uniqueness
up to permutation� to get a truly unique representation we actually need the type ��a
to be linearly orderable� not only supporting an equality predicate	

We can use probabilistic e�ects to solve �textbook problems� such as 
nding the
distribution of the total number of heads in n tosses of a biased coin�

funfunfun toss p � � �
� toss p n � ififif flip p thenthenthen 	toss p �n�	
 elseelseelse toss p �n�	
�

�� val toss � fn � real �	 int �	 int ��

distribution �fnfnfn �
 �� toss ��� �
�
�� val it � ���������� ���������� ��������� ����������

���������� ��������� � �int � real� list ��

Of course� in this particular case� there already exists a simple analytic solution� but
the �probabilistic execution� approach also handles less regular experiment protocols�
where very dissimilar branches may be taken depending on outcomes of probabilistic
choices	

Note that the simulation keeps track of all possible computation paths� at a potentially
exponential cost in computation time	 In cases where the same net outcome can be
achieved in many di�erent ways �as in the example above� it is therefore often useful to
add an explicit wrapper�

choose �distribution �fn �
 �� E



around such a subcomputation E	 This has no e�ect on the result computed �almost by
de
nition� it is an instance of the principle ���E�  E� but it improves e�ciency by
consolidating computation paths in a manner analogous to dynamic programming	
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����� Example� continuations

Finally� let us consider the continuation monad �for an arbitrary but 
xed answer type	
This lets us de
ne both escapes and composable 
rst�class continuations	 We already
have the functor ContMonad	 Let us create a speci
c instantiation�

structurestructurestructure StringContMonad � MONAD �
structstructstruct

structurestructurestructure S � ContMonad �typetypetype answer � string
 openopenopen S
funfunfun show t � t �fnfnfn x �� x


endendend

functorfunctorfunctor StringContOps �structurestructurestructure R � RMONAD sharingsharingsharing R�M � StringContMonad
�
sigsigsig

valvalval mycallcc � ���	a �� �	b
 �� �	a
 �� �	a
valvalval myshift � ���	a �� string
 �� string
 �� �	a
valvalval myreset � �unit �� string
 �� string

endendend �
structstructstruct

funfunfun mycallcc h �
R�reflect �fnfnfn k �� letletlet funfunfun c a � R�reflect �fnfnfn k� �� k a


ininin R�reify �fnfnfn �
 �� h c
 k endendend

funfunfun myshift h �

R�reflect �fnfnfn k �� R�reify �fnfnfn �
 �� h k
 �fnfnfn x �� x


funfunfun myreset t � R�reify t �fnfnfn x �� x


endendend�

structurestructurestructure StringContRep � Represent �structurestructurestructure M � StringContMonad

structurestructurestructure FX � StringContOps �structurestructurestructure R � StringContRep
 openopenopen FX�

StringContRep�run �fnfnfn �
 �� makestring ��  mycallcc �fnfnfn k �� � � k 	


�
�� val it � 
�
 � string ��

StringContRep�run �fnfnfn �
 �� �a� � myreset �fnfnfn �
 ��
�b� � myshift �fnfnfn k �� k �k �c�



�

�� val it � 
abbc
 � string ��

��
 Related work

Di�erent notions of functional or composable continuations have been studied by a num�
ber of researchers	 Early work �JD��� FWFD��� DF��� presumed explicit support from
the compiler or runtime system for the actual implementation� such as the ability to mark
or splice together delimited stack segments	 However� an encoding in standard Scheme
of one variant was devised by Sitaram and Felleisen �SF���	 Still� this embedding was
quite complex� relying on dynamically�allocated� mutable data structures� eq��tests� and
the dynamic typing of Scheme	

Another explicitly Scheme�implementable notion of partial continuations was pro�
posed by Queinnec and Serpette �QS���� the code required is perhaps even more intric�
ate	 And more recently� an implementation of a related construct in Standard ML of
New Jersey was presented by Gunter� R1emy and Riecke �GRR���	
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At least initially� most of these operators appear more general than monadic re�ection
for continuations� but it is not clear if the additional expressive power is su�ciently
useful in practice to justify their fairly complex implementations	 The much simpler
construction presented in this chapter uses only a single� statically�typed cell holding a
continuation� perhaps the minimal increment over call�cc alone	
Much more signi
cantly� however� this implementation is directly derived from and

related to the original speci
cation� other e�orts gave at most an informal argument that
the �usually operationally speci
ed control construct was correctly implemented by the
code	 Given the relatively complex correctness proof for even the very simple control
operators used in this chapter �A and *� it is not likely that any of the alternatives
would be easier to verify	
The term metacontinuation� with a fairly broad meaning� was 
rst used in giving a

formal semantics to a notion of computational re�ection by Wand and Friedman �WF���	
The more restrictive usage of the term� where the metacontinuation actually arises from
a standard continuation�passing transform of an �almost�cps� term� is due to Danvy and
Filinski �DF���	
The further observation that the metacontinuation can be represented by a storage

cell was 
rst exploited in a preliminary version of the present work �Fil���	 An application
of this technique for continuation�based partial evaluation was reported by Lawall and
Danvy� who found that a call�cc�based implementation of composable continuations uni�
formly outperformed the equivalent explicit continuation�passing translation� especially
with respect to heap usage �LD���	
The main di�erence between the variant of composable continuations considered in

this chapter and the previous formulations is that we start with an even more abstract
speci
cation of the original operators� distinguishing in the type system between com�
putations with and without control e�ects	 Correspondingly� the de
nitional translation
only has a non�trivial e�ect on computations of the former kind	
This distinction gives us a very simple correspondence between composable continu�

ations and monadic re�ection for the continuation monad� further motivating composable
continuations as the canonical control e�ect	 �The change was also partially necessitated
by the introduction of ambient e�ects� in �Fil���� the target language of the de
nitional
translation was assumed to be e�ect�free in the present terminology	



Chapter �

Conclusions

	�� Summary

We have analyzed a new approach to incorporating computational e�ects in a functional
language	 In many ways� it combines the best features of the existing �purely functional�
and �imperative� models for e�ects� as well as providing a basis for introducing e�ects
incrementally	 Let us recapitulate the main properties of the construction�

Convenience� An important advantage of monadic re�ection is the ease with which it

ts into the familiar programming paradigm of ML�like languages	 There is essen�
tially no up�front cost� programs do not have to be �rewritten in any particular
style� the e�ects used do not have to be settled upon in advance� and we can directly
use the existing type checker� module system� etc	

In fact� there is no need to even explicitly mention monads when writing the bulk
of the program	 Typically� the programmer simply de
nes the desired operations
�such as raise and handle for exceptions� pick and results for nondeterminism� or
spawn and yield for resumptions using monadic re�ection for a suitable monad�
then expresses the program in terms of those new primitives alone	

The visible di�erence from a �manual� implementation of the e�ects in terms of
continuations and state �or� even more markedly� as part of the compiler is the
amount of e�ort and ingenuity required	 Usually� the monad speci
cation consists
of only a few lines of simple� e�ect�free code	 Likewise� the exported operations
are generally a simple combination of the re�ection and�or rei
cation operators	
We never have to think about capturing� storing� retrieving� and invoking continu�
ations to implement� say� a backtracking search� all the required low�level code is
synthesized mechanically from an abstract speci
cation of nondeterministic choice	

Ease of reasoning� Despite its apparent �imperative� nature� monadic re�ection can
equally well be viewed as a technique for writing �purely functional� programs
in a more concise notation� much like monad comprehensions �Wad��a�	 In fact�
any imperative program fragment is extensionally equivalent to its monadic�style
counterpart� in the sense that there exist language�de
nable isomorphisms between
the two representations	

���
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A crucial point� however� is that this correspondence to monadic style is a means�
not an end� for reasoning about programs	 Simply �being expressible with a mon�
ad�� or �having a translation into purely functional code� are vacuous properties�
true of any program using continuations and state �since both are monadic e�ects�
and do not help us prove anything new	 Rather� we must exploit the knowledge that
a program is expressible with a particular monad� with a more restrictive notion of
e�ects than the continuation�state monad into which it happens to be embedded
for implementation purposes	

For example� in an ML�like language de
ned by exception�passing on top of par�
tiality� it is easy to argue correctness of a source�level transformation such as
f x � f x  � � f x� the subcomputation f x must either succeed with a value�
raise an exception� or diverge� in all three cases� the two expressions are equivalent	
On the other hand� if we examine only a hand�coded implementation of exceptions
in terms of escapes and state � even if the latter e�ects are used for no other purpose
in the program � we cannot argue nearly as directly that common�subexpression
elimination is a valid optimization principle	

E�ciency� Execution e�ciency is an important concern for practical uses of e�ects� and
monadic re�ection usually fares signi
cantly better than an actual translation into
monadic style	 If e�ects are rare� programs run at full speed without the overhead
of explicitly performing the administrative manipulations speci
ed by the monad�
such as tagging and checking return values for exceptions	

To ensure good performance of the re�ection and rei
cation operators as well� we
do need to assume a reasonably e�cient implementation of call�cc in the host
language	 In cps�based compilers� providing a cheap 
rst�class continuation facility
is generally straightforward �App���	 And even in stack�based implementations�
good techniques exist for keeping at least the amortized cost per call�cc acceptably
low �HDB���	

Still� if a particular e�ect is heavily used� it may be preferable to rewrite the program
in the corresponding monadic style	 For example� if the parameter provided by
an environment monad changes very frequently� we should make it an explicit
argument to all functions using it	 Not only is this likely to be faster than going
through the store on every access� but it will probably result in a clearer program as
well	 Conversely� of course� rarely�used arguments can be made implicit� improving
both execution speed and clarity � the latter by focusing attention on the few
cases where some value changes� rather than on all the ones where it is merely
propagated	

In either case� however� the changeover need not be done all at once� because we
can use re�ection and rei
cation to interface between program fragments using the
two approaches	 Indeed� the best solution may well be to make the e�ect explicit in
parts of the program that use it heavily� and implicit in those that are not directly
a�ected by it	
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	�� Future work

Several opportunities for extensions and future investigation arise naturally�

Recursive types in the speci�cation language� Even though our language for de�

ning monadic e�ects was simply typed� there do not appear to be any fundamental
problems in allowing general recursive types	 In fact� the logical�relations proofs in
Chapter � already handle recursion in the answer type for the continuation monads
using invariant relations� and similar techniques could in all likelihood be used in
Chapter � as well	

However� a proper treatment of recursive types would probably include more than
merely adding the ��types from Section �	�	� to the speci
cation language	 For
example� it might be appropriate to also allow recursively�de�ned computation�
types� i	e	� types of the form �b� �� with an explicit notion of computation�type
variables and the associated extensions to generalized let� etc	

Even more important� we would want a general treatment of recursive monad spe�
ci�cations� such as used in the continuation�passing translation of De
nition �	��	
The required structure seems to be an L��monad in the usual sense� but parameter�
ized by an L�

��type	 This would allow us to express� for example� ML�style ref �cells
storing procedures� or exceptions carrying non�ground data� without introducing
explicit isomorphisms	

Layering e�ects� Although its potential was not fully realized in this thesis� the organ�
ization in terms of ambient and focus e�ects should generalize directly to multiple�
layered e�ects	 In other words� we should be able to integrate di�erent notions of
e�ects in a single language by a series of nested monadic translations� at each step
taking the previous focus e�ect as the new notion of ambient e�ect	

Moreover� this layered strategy for modularly specifying e�ects promises to general�
ize to a modular implementation of such e�ects in terms of continuations and state	
More speci
cally� we would 
rst relate a heterogeneous tower of monads to a tower
of continuation�monads �applying at each level the construction in Chapter �� then
�atten this cps tower into a single�level implementation �as in Chapter �� with a
collection of cells� each holding one meta�continuation of the hierarchy	

Indeed� an apparently�working implementation based on this strategy already ex�
ists� and preliminary investigations into both its theoretical justi
cation and prac�
tical usefulness have been very encouraging	 However� time constraints made it
infeasible to include a treatment this generalized construction in the thesis	 Fully
formalizing and analyzing the multiple�e�ect case is therefore left as future work	

Practical e�ect	typing for monadic e�ects� While one of the goals of the construc�
tion was to permit a direct embedding of the e�ect�enriched language into ML�
this does not mean that we could not take advantage of a more re
ned type sys�
tem	 Some discipline is required when writing programs with e�ects� and it would
be useful to detect violations of e�ect�strati
cation statically� rather than during
program execution	
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Accordingly� there should be a way to optionally make the e�ects used by a piece
of code manifest in its type� especially at module boundaries	 We could of course
achieve this by always exporting procedures in their �fully rei
ed� form	 Such an
approach� however� tends to be impractically verbose� and the additional conver�
sions� although semantically transparent� may impose a non�negligible overhead	
We would want a concise and unobtrusive way of representing that same informa�
tion in direct style	

Existing work in this area tends to consider mainly low�level notions of e�ects
�jumps and state manipulation �JG��� KJLS���� rather than application�speci
c�
higher�level concepts	 But given the often complex relationship between a monadic
speci
cation and its imperative implementation� it seems highly unlikely that an
automated analysis based on the latter would be able to detect a higher�level pattern
such as an exception�handling system	

Moreover� current e�ect�type systems are generally phrased in terms of Curry�style
type inference �i	e	� with the semantics of a program given a priori� and independ�
ently of its type	 The re�ection�based approach to e�ects� on the other hand� also
seems well suited for Church�style type reconstruction �where type information is
considered an inherent part of the program� only elided for conciseness� as already
advocated for ML in �HM���	

	�� Closing remarks

Perhaps the most concise way of stating the main conclusion of this work is that a func�
tional program can and should distinguish between speci�cation and implementation of
computational e�ects � as it already would for any other abstract data type	 Oversim�
plifying grossly� we could summarize the alternatives by following Hegelian triad�

� Thesis� the implementation is the speci
cation	 The meaning of an e�ect is fully
determined by a reference implementation	 For example� a Scheme program could
be written with intuitive but informal abstractions such as error handlers� back�
tracking� or threads� ultimately de
ned only by their expansions into call�cc and
set2	

� Antithesis� the speci
cation is the implementation	 The behavior of an e�ect
is fully determined by a purely functional executable speci�cation	 For example�
a Haskell program could be written in monadic style� expanding into explicit
exception�passing� success lists� or resumptions	

� Synthesis� the implementation is related to the speci
cation	 An e�ect has a
declarative meaning and an imperative behavior� with the latter obtained from the
former in a systematic� but not necessarily direct way	 For example �but by no
means exclusively� a program could be written and analyzed in terms of monadic
re�ection� but eventually executed using e�ects built out of escapes and state	

In other words� the tension between Haskell�style monads and Scheme�style primitive
e�ects need not and should not be resolved in unilateral favor of one or the other� it is
precisely through their interplay that the best qualities of both are exposed	



Appendix A

Properties of the Predomain Model

In this chapter we summarize a few auxiliary results about the predomain semantics�
needed in Chapters � and �� but somewhat tangential to the main development	 Most are
fairly simple adaptations of standard domain�theoretic results to our predomain setting	

A�� Recursive type de�nitions

The proof that all recursive type equations have solutions in the predomain semantics
hinges on exhibiting for any type constructor a suitable functorial action in the category
of domains and strict continuous functions	 That is� in addition to the evident action on
objects� we need an action on morphisms	

Although we could construct such functors directly in the model� using the standard
notation for continuous functions� it seems more convenient and consistent to use the
existing term syntax for e�ects �
xed to be partiality in the de
nitions� and only consider
the denotations of the constructed terms in the end	

For the purposes of this appendix only� let us therefore extend our term syntax by
introducing the additional computation�type constructor �� and term constructors �M
and let� x�M� in M� with types�

" �M � �

" � �M � ��

" �M� �
�� "� x�� �M� � �

" � let� x�M� in M� � �

analogous to the existing ambient e�ects� but always referring to the partiality monad	
The let� is actually more like the generalized let�� than like let�� because the result can be
of any computation�type	 We omit the explicit type subscript in let�� however� because
we already have a uniform semantic characterization of its meaning at all pointed types�

L�������  L�������

L���M �����  up�L���M �����

L��let� x�M� in M���
���  ��a�L��M���

����x �� a�z�L��M���
���

where f z is the generalized strict extension from Section �	�	��lifting	

���
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For embedding�types� we also de
ne a general case�construct� dispatching among all
the possibilities in ��

" �M � &� �i  I� "� x���i �M�i � �

" � case�M� i� xi�M�i � �

with semantics

L��case�i�M� i� xi�M�i�����  L��M�i������xi �� ai� when L��M �����  �i� ai

Again� this case is never used in writing actual programs� it merely gives us a convenient
way of referring to semantic entities in the predomain model	

De�nition A�� For any value�type � and computation�type � over fag in L� �i	e	
 L�
�

extended with an empty type�
 we de�ne a type constructor .a��� �  and a computation�
type constructor /a��� �  by

.a����
�� ��  �f���a�� ���a�g and /a����

�� ��  �f���a�� ���a�g

where �f���a�g means � with �� substituted for all positive occurrences of a
 and ana�
logously for negative occurrences	

Further
 we de�ne term constructors .a��� �  and /a��� �  with types�

f� � ��� �
���� f� � ��

� �
���

�

.a���f
�� f� � .a����

�
� � �

�
� �

�.a����
�
� � �

�
� 

f� � ��� �
���� f� � ��

� �
���

�

/a���f
�� f� � /a����

�
� � �

�
� �/a����

�
� � �

�
� 

as follows�

.a�a�f
�� f�  �a�f�a

.a���f
�� f�  �n��n

.a���f
�� f�  �u��hi

.a�������f
�� f�  �p� let� x�� .a����f

�� f�� fst p
in let� x�� .a����f

�� f��snd p in �hx�� x�i

.a���f
�� f�  �z��z

.a�������f
�� f�  �s� case�s� x��let

� y��.a����f
�� f�x� in

�� inl y��
x��let

� y��.a����f
�� f�x� in

�� inr y�

.a���f
�� f�  �s� case�s� i� xi� let

� yi� .a��i��f
�� f�xi in

��ini yi

.a���f
�� f�  �b���/a���f

�� f�b

/a����f
�� f�  �m� let�x�m in let� y�.a���f

�� f�x in�y

/a���f
�� f�  �u�hi

/a�������f
�� f�  �p�h/a����f

�� f�� fst p�/a����f
�� f��snd pi

/a�����f
�� f�  �g��x� let� y� .a���f

�� f�x in /a���f
�� f��g y
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A few simple properties of these de
nitions are�

Lemma A�� ��� When a does not occur free in � or � then

.a���f
�� f�  �a��a /a���f

�� f�  �b�b

More generally
 �� the type�directed actions are compositional�

.a���.a����f
�� f��.a����f

�� f�  .a��f���ag�f
�� f�

/a���.a����f
�� f��.a����f

�� f�  /a��f���ag�f
�� f�

Finally
 ��� the de�nitions are functorial in the following sense�

.a����x�
�x� �x��x  �a��a /a����x�

�x� �x��x  �b�b

.a����x� let
� y� f�� x in f�� y� �x� let� y� f�

� x in f�
� y

 �a� let� r� .a���f
�
� � f

�
� a in .a���f

�
� � f

�
� r

/a����x� let
� y� f�� x in f�� y� �x� let� y� f�

� x in f�
� y

 �b�/a���f
�
� � f

�
� �/a���f

�
� � f

�
� b

�i	e	
 .a��� �  is an endofunctor in the Kleisli category of the lifting monad
 while
/a��� �  is a functor from the Kleisli category to the underlying one�	

Proof� Simple induction on � and � in all cases	 Note� however� that veri
cation of
the value�product case of �� relies on partiality being a commutative e�ect	

We can also de
ne an �ordinary� functorial operation on functions between lifted
types�

De�nition A�� When g� and g� are strict functions �i	e	
 rigid with respect to ��
e�ects�
 we de�ne the term constructor

g� � ���� �
���� g� � ���

� �
���

�

.d
a���g

�� g� � �.a����
�
� � �

�
� �

�.a����
�
� � �

�
� 

by
.d

a���g
�� g�  �m� let� x�m in .a����x�g

� ��x� �x�g� ��xx

We then have�

Lemma A�� .d
a��� �  is functorial in the following sense�

.d
a���id� id  id

.d
a���g

�
� � g

�
� � g

�
� � g

�
�   .

d
a���g

�
� � g

�
�  � .

d
a���g

�
� � g

�
� 

Proof� Simple veri
cation� using Lemma A	����

�d
a��
id� id� 	 �m� let� x�m in �a��
�x�

�x� �x��x�x 	 �m� let� x�m in 
�a��a�x
	 �m� let� x�m in �x 	 �m�m 	 id
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�d
a��
g

�
� � g�� � g

�
� � g�� � 	 �m� let� x�m in �a��
�a�g

�
� 
g�� 
�a��� �a�g�� 
g�� 
�a���x

	y �m� let� x�m
in �a��
�a� let

� y� g�� 
�a� in g�� 
�y�� �a� let� y� g�� 
�a� in g�� 
�y��x

	 �m� let� x�m
in let� r� �a��
�y�g

�
� 
�y�� �a�g�� 
�a��x in �a��
�a�g

�
� 
�a�� �y�g�� 
�y��r

	 �m� let� r� 
let� x�m in �a��
�y�g
�
� 
�y�� �a�g�� 
�a��x�

in �a��
�a�g
�
� 
�a�� �y�g�� 
�y��r

	 �m��d
a��
g

�
� � g

�
� �
�

d
a��
g

�
� � g

�
� �m� 	 �d

a��
g
�
� � g

�
� � � �

d
a��
g

�
� � g

�
� �

where y uses that for a strict g�

gm 	 g 
let� x�m in �x� 	 let� x�m in g 
�x�

Let us also recall some elementary properties of least 
xed points�

Lemma A�� Let �xB � �B�B�B denote the least��xed�point operator for a pointed
cpo B	 Then

�	 For any continuous f � B� B and g � B��B�
 and strict continuous h � B�� B
with f � h  h � g
 �xB�f  h��xB��g	

	 For any continuous f � B�B� and g � B��B
 �xB�g � f  g��xB��f � g	

Proof�

�	 Follows directly from the de
nition of �x�

h��xB��g  h�
G

i
gi�
B�  

G
i
h�gi�
B�  

G
i
f i�h�
B�  

G
i
f i�
B

 �xB�f

�	 �We cannot simply use the above result here� because g is not necessarily strict	
Let x  �xB��f � g and y  �xB�g � f	 First� since g�x is a 
xed point of g � f
�because �g � f�g�x  g��f � g�x  g�x� we have y v g�x	 Analogously�
since f�y is a 
xed point of f � g� x v f�y� and hence by monotonicity of g�
g�x v g�f�y  y	 And thus� since v is a partial order� we get g�x  y	

Although for the purposes of Chapter �� all we need is a solution to the type equa�
tion �not necessarily the least one� for Chapter � we will also need that the relevant
isomorphism satis
es an additional equational property�

De�nition A�� Let Cpo� be the category of pointed cpos �domains� and strict continu�
ous functions	 Let F � Cpoop� �Cpo��Cpo� be a functor �we call such an F a mixed
functor in Cpo��� it is locally continuous if its action on morphisms is continuous	 A
minimal invariant for F is an object X together with an isomorphism i � F �X�X�X
such that

�xX�X ��h�i � F �h� h � i
��  idX
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One can show that the standard inverse�limit construction for solving recursive do�
main equation actually yields minimal invariants�

Theorem A�� Every locally continuous mixed functor in Cpo� has a minimal invari�
ant	

Proof� See �Pit���	

Using this� we get for our predomain language�

Corollary A�
 Every recursive type equation in L� has a solution in the predomain
model
 i	e	
 for any parameterized type �fag � type
 there exists a cpo A with an iso�
morphism i � L�����a ��A�A	 Moreover
 interpreting �a� � as A
 rolla�� as i
 and unrolla��
as i��
 the following equation is satis�ed in the model�

�x�a�����a�� ��f��a� let
� x� .a���f� f�unrolla��a in

��rolla��x  �a��a

Proof� Every pointed cpo is isomorphic to a lifted cpo	 So we can use Theorem A	�
with the functor given by

F �A�
�� A

�
�  �L��.a���a

�� a���a
� ��A��a� ��A�

��

F �g� � A�
� ��A�

� �� g
� � A�

� �� A�
� �

 L��.d
a���x

�� x���a
�
� ��A�� �����a

�
� ��A�

� ���x� �� g�� x� �� g��

to obtain a pointed cpo A� with an isomorphism j � �L�����a ��A��A�	 Moreover� since
j is an isomorphism� it both preserves and re�ects 
� and must hence be expressible as
j  i�  �m� let� x�m in ��ix for some isomorphism i � L�����a ��A� A	
Further� we get the minimal invariant property for i from the minimal invariant

property of j wrt	 .d
a��� � � using Lemma A	��� to rearrange the �x body�

�x 
�f��x� let� r� �a��
f� f�
�x� in
�
r��

	 �x 

�g��x�g 
�x�� � 
�f��m� let� x�m in let� r� �a��
f� f�
�x� in
�
r���

	 
�g��x�g 
�x��

�x 

�f��m� let� x�m in let� r� �a��
f� f�
�x� in

�
r�� � 
�g��x�g 
�x����
	 �x� �x 
�g��m� let� x�m

in let� r� �a��
�x�g 

�x�� �x�g 
�x��
�x� in �
r��
�x�

	 �x� �x 
�g��m� let� x�m in let� r� �d
a��
g� g�


�
�x�� in �
r��
�x�
	 �x� �x 
�g��m�
�m� let� r�m in �
r��
�d

a��
g� g�
let
� x�m in �
�x����
�x�

	 �x� �x 
�g��m�j 
�d
a��
g� g�
j

��m���
�x� 	 �x� id 
�x� 	 �x��x

A�� Admissible relations

In this section we review the properties of �computation�admissbile relations in the cpo
semantics� in particular� we show admissibility of the key relation�forming constructs	
Let there be given a relational correspondence between predomain interpretations L

of L and L� of L� �De
nition �	��	 Most notably� admissibility is then preserved by
formation of inverse images and intersections �e	g	� �Pit����
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Lemma A�� Recall that a �computation��admissibile relations between closed types �
and �� is a �pointed� chain�complete relation between cpos L����� and L�������	 We then
have�

�	 When R  ARel��� ��
 �x����� � � � � xn��n � M � � and �x����
�
�� � � � � x

�
n� ��

�
n� �

M � � �� are terms of L and L� respectively
 and for all i � �
 �xi  ValL��i and
��x�i  ValL���

�
i
 the relation R�  Rel���� �

�
� given by

a� R� a
�
� �� M �a��x��	� R M ��a���x

�
��	

��

is admissible	

Moreover
 when �� and ��� are computation�types
 R is computation�admissible

and the functions �x��M

	 and �x���M
�	� are rigid
 then R� is also computation�

admissible	

	 When �Rjj�J is an arbitrary �not necessarily �nite or even countable� family of
admissible relations between � and ��
 the relation

T
j�J Rj is admissible
 where

a �
�

j�J
Rj a

� �� �j  J� a Rj a
�

Moreover
 if each Rj is computation�admissible then so is
T
j�J Rj	

Proof� Both parts are fairly simple�

�	 De
ne the continuous functions f � L�������L����� and f � � L���������L������� by

f  �a��L��M �����x� �� a�� x� ���x�� � � � xn ���xn�

and

f �  �a���L
���M ������x�� �� a��� x

�
� �� ��x��� � � � � xn� ����x�n� �

Then a� R� a
�
� i� f�a� R f ��a��	

Now let �a�ii�� and �a
�
�ii�� be chains in L������ and L��������� respectively� such that

for all i  �� a�i R� a
�
�i� i	e	� f�a�i R f ��a��i	 By monotonicity of f � the sequences

�f�a�ii�� and �f
��a��ii�� then form chains in L����� and L�������� and since R was

assumed chain�complete� we have

G
i
f�a�i R

G
i
f ��a��i

By continuity of f and f �� this is equivalent to

f�
G

i
a�i R f ��

G
i
a��i

which says that
F
i a�i R�

F
a��i� meaning that R� is chain�complete	

Further� to show R� pointed� we must show f�
 R f ��
� which follows from
pointedness of R and the fact �Proposition �	�� that a rigid function is strict	
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�	 Let Rj be a family of chain�complete relations between cpos L����� and L�������� and
let �aii�� and �a

�
ii�� be chains componentwise related by the intersection R of all

the Rj	 That is�
�i  �� �j  J� ai Rj a

�
i

Exchanging the two universal quanti
ers� we get

�j  J� �i  �� ai Rj a
�
i

Now� since each Rj was assumed chain�complete� this implies

�j  J�
G

i
ai Rj

G
i
a�i

And thus�
F
i ai �

T
j�J Rj

F
i a

�
i as required to show chain�completeness of R	

Similarly� if each Rj relates 
L

��� and 
L�

����� then so must their intersection� and
thus

T
j�J Rj is pointed	

We can also show admissibility of the standard relational actions of the type con�
structors �where it does not already follow directly from the previous lemma�

Lemma A��� If the R�s are admissible relations
 then so are ��� �r and �� R� �
r R�

�de�ned as in Lemma �	���
 and ��� the &r
iRi
 given by

s �&r
iRi s

� �� �i  I� �ai Ri a
�
i� s  iniai � s�  inia

�
i

Moreover
 if relation extension is taken as relation�lifting �from Proposition �	��
 then
����R is computation�admissible	

Proof� The relations determined by the de
nitions in each case can be written as�

�r  f�n� n j n  Ng

R� �
r R�  f���� a�� ��� a

�
� j �a�� a

�
�  R�g � f���� a�� ��� a

�
� j �a�� a

�
�  R�g

&r
iRi  f��i� ai� �i� a

�
i j i  I� �ai� a

�
i  Rig

�R  f�up�a� up�a� j �a� a�  Rg � f�
�
g

We then check each case�

�	 Case �r	 Since the cpo N of natural numbers was discretely ordered� any chain in
N must be constant� so least upper bounds of componentwise related chains are
obviously also related	

�	 Case R��
rR�	 A chain in A��A� must lie entirely within one of the injects	 Assume

wlog	 that it is of the form ���� aii�� for some chain �aii�� in A�	 Analogously�
the related chain must be of the form ���� a�ii��� with ai R� a

�
i	 By assumption on

R��
F
i ai R�

F
i a

�
i	 The result then follows by observing thatG
i
��� ai  ���

G
i
ai �R� �R� ���

G
i
a�i  

G
i
��� a�i
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�	 Case &r
iRi is analogous to �

r� only with the set of tags taken as I instead of f�� �g	

�	 Case�R	 Let �mii�� and �m
�
ii�� be chains such that mi ��R m

�
i	 There are then

two possibilities	 It could be that for all i� mi  
A� and m�
i  
A�

�
	 In this case�

G
i
mi  
A� ��R 
A�

�
 
G

i
m�

i

by the second disjunct of the de
nition� and we are done	 Or there exists an i� � ��
such that for all i � i�� mi  up�ai and m�

i  up�a�i for some ai R a�i	 By
de
nition of the ordering in A�� the ai form a chain �if up�ai v up�ai�� then
ai v ai��	 Analogously for the a

�
i	 Because R was assumed chain�complete� we

have
F
i�i� ai R

F
i�i� a

�
i	 And since the initial segment of 
s in a chain does not

a�ect its least upper bound� we get
G

i
mi  

G
i�i�

up�ai  up�
G

i�i�
ai ��R up�

G
i�i�

a�i  
G

i�i�
up�a�i  

G
i
m�

i

Also� directly by the second component of the de
nition��R is pointed	

And 
nally� we can verify our 
xed�point induction principle�

Lemma A��� Let S be a computation�admissible relation between � and � �	 Let f 
ValL���� and f �  ValL���

��� � be such that �b S b�� f b S f � b�	 Then �x� f S �x�� f
�	

Proof� We have L���x� x�����x �� f �  
F
i f

i�
L

���� and analogously for f
�	 Since in

particular S is admissible� i	e	� chain�complete in the model� it su�ces to show that for
all i � ��

f i�
L

��� S f �i�
L

����

This follows by a simple induction on i	 For i  �� we get the result from pointedness
�computation�admissibility of S	 And for the inductive step� we use that if f i�
 S f �i�

then by assumption on f and f ��

f i���
  f�f i�
 S f ��f �i�
  f �i���


A�� Isomorphisms of recursive types

The de
nition of .a���f
�� f� allows it to act on partial functions �i	e	� total functions

into a lifted cpo� we need this generality for solving recursive type equations� because
the approximants will not be total	 But when the type�directed functor acts on known
isomorphisms between cpos �not necessarily pointed� a simpler de
nition is possible�

De�nition A��� When � is a term constructor denoting an isomorphism �e	g	
 roll or
unroll�
 we de�ne term constructors .i

a���� and /
i
a���� with types�

� � ��
�� ��

.i
a���� � �f���ag

�� �f���ag
and

� � ��
�� ��

/i
a���� � �f���ag

�� �f���ag
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as follows�

.i
a�a��a  �a

.i
a����n  n

.i
a����u  hi

.i
a��������p  h.i

a������ fst p�.
i
a������snd pi

.i
a����z  z

.i
a��������s  case�s� a�� inl �.

i
a�����a�� a�� inl �.

i
a�����a�

.i
a����s  case�s� i� ai� ini �.

i
a��i���ai

.i
a����b  /i

a����b

/i
a�����m  let�x�m in��.i

a����x

/i
a����o  hi

/i
a��������p  h/i

a������ fst p�/
i
a������snd pi

/i
a������g  �x�/i

a�����g �.
i
a����

��x

Lemma A��� The functorial actions on isomorphisms are related to their general coun�
terparts as follows�

��.i
a����a  .a����x�

�����x� �y����ya

/i
a����b  /a����x�

�����x� �y����yb

Proof� Straightforward induction on � and �	

Note also that we have .i
a���.

i
a������  .

i
a���f���ag��	

Lemma A��� Let F and G be type constructors of L� �not necessarily covariant�
 and
let �  �a� F �Ga and ��  �a�� G�Fa� be the solutions to the corresponding recursive
type equations	 Then in the predomain model
 there exists an isomorphism 
 � G� �� ��

which further satis�es the following two �equivalent� coherence equations�

x�G� � roll a��G�Fa�� �.
i
a��G�Fa���
�.

i
a�Ga�unrolla�F �Ga�x  
x � ��

y��� � .i
a�Ga�rolla�F �Ga��.

i
a��G�Fa���


���unroll a��G�Fa�� y  
�� y � G�

Proof� When � � ��
�� �� is a term constructor� we de
ne the function

�
 � ����
���  �m

��� � let� x�m in ���x

For terms� take F �f�� f�  .d
a�Fa�f

�� f� and also write (F �f for F �f� f	 Analogously
for G	 Further� we de
ne the usual abbreviations �  rolla�F �Ga� and ��  rolla��G�Fa���
with � and �� for the inverses	
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Now let i  �
 � �F �G�� �� and j  ��
 � �G�F��� ��� be the minimal in�
variants for the corresponding functors	 We 
rst show that there exists an isomorphism
l � �G��� ���	 Take

�l�� l  �x ���h
�����G�� k

�G������
�G�i��� i �G�F �h� k� F �k� h � j��� j �G�F �k� h� F �h� k �G�i� i��

We want to show that l� is actually the two�sided inverse of l	 Accordingly� consider the
strict function c  ��h� k� k � h	 Lemma A	� then gives us�

c � 
�
h� k�� 
G
i��� i� �G
F 
h� k�� F 
k� h�� � j��� j �G
F 
k� h�� F 
h� k�� �G
i� i�����
	 �
h� k�� j �G
F 
k� h�� F 
h� k�� �G
i� i��� �G
i��� i� �G
F 
h� k�� F 
k� h�� � j��

	 �
h� k�� j �G
F 
k� h�� F 
h� k�� �G
i�� � i� i�� � i�� �G
F 
h� k�� F 
k� h�� � j��

	 �
h� k�� j �G
F 
k� h�� F 
h� k�� �G
id�FG�� id�FG�� �G
F 
h� k�� F 
k� h�� � j��

	 �
h� k�� j �G
F 
k� h�� F 
h� k�� � id�GFG� �G
F 
h� k�� F 
k� h�� � j��

	 �
h� k�� j �G
F 
h� k� � F 
k� h�� F 
h� k� � F 
k� h�� � j��

	 �
h� k�� j �G
F 
k � h� k � h�� F 
k � h� k � h�� � j�� 	 �
h� k�� j � �G
 �F 
k � h�� � j��

	 �
h� k�� 
�f�j � �G
 �F 
f�� � j���
k � h� 	 
�f�j � �G
 �F 
f�� � j��� � c

From Lemma A	��� and a let�simpli
cation� we obtain that

.d
a�Ga�.

d
a�Fa�f� f�.

d
a�Fa�f� f  .

d
a�G�Fa��f� f

so by Lemma A	��� and the fact that j is a minimal invariant for GF � we get

l� � l 	 c
�x 
�
h� k�� 	 	 	�� 	 �x 
�f�j � �G
 �F 
f�� � j��� 	 id��� 	 id


��

In the other direction� taking c�  ��h� k� h � k� we similarly get�

c� � 
�
h� k�� 
G
i�� � i� �G
F 
h� k�� F 
k� h�� � j��� j �G
F 
k� h�� F 
h� k�� �G
i� i�����
	 �
h� k�� G
i��� i� �G
F 
h� k�� F 
k� h�� � j�� � j �G
F 
k� h�� F 
h� k�� �G
i� i���
	 �
h� k�� G
i��� i� �G
F 
h� k�� F 
k� h�� �G
F 
k� h�� F 
h� k�� �G
i� i���
	 �
h� k�� G
i��� i� �G
F 
h � k� h � k�� F 
h � k� h � k�� �G
i� i���
	 
�g�G
i��� i� �G
F 
g� g�� F 
g� g�� �G
i� i���� � c�

	 
�g�G
i � F 
g� g� � i��� i � F 
g� g� � i���� � c� 	 
�g� �G
i � �F 
g� � i���� � c�

And thus we have� using both parts of Lemma A	� and the minimal�invariant property
of i�

l � l� 	 c� 
�x 
�
h� k�� 	 	 	�� 	 �x 
�g� �G
i � �F 
g� � i���� 	 �G
�x 
�f� i � �F 
 �G
f�� � i����

	 �G
id��� 	 id�G� 	 id


G�

We can thus take 
 to be the unique isomorphism such that 

  l	

Further� knowing that l and l� are actually inverses� we get the second part of the
result by unrolling their 
xed�point de
nition once�


l�� l� 	 
G
i��� i� �G
F 
l�� l�� F 
l� l��� � j��� j �G
F 
l� l��� F 
l�� l�� �G
i� i����

Now� take advantage of the following simple relationship between the functorial ac�
tions on an isomorphisms�

�d
a��
�

��
� �
� 	 �d
a��
�m� let� x�m in �
���x�� �m� let� x�m in �
�x��

	 �m� let� x�m in �a��
�x� let
� x� �x in �
���x�� 	 	 	� 	 	 	�x

	 �m� let� x�m in �a��
�x�
�
���x�� �x��
�x��x

	 �m� let� x�m in �
�i
a��
��x� 	 �i

a��
��
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From this we get�

�
 	 l 	 j �G
F 
l� l��� F 
l�� l�� �G
i� i���
	 �
 � �d

a�Ga
�
d
a�Fa
�


� ���
���d
a�Fa
�

��
� �
�� � �d
a�Ga



� �
�
	 �
 � �d
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and since lifting is injective� we get the 
rst coherence equation	 The second one is
analogous	

A�� Invariant relations over recursive types

We now want to show that certain principles for constructing relations over recursive
types are valid� speci
cally� that a class of well�behaved relational actions allows us to
solve �recursive relation equations�	 The following presents only the speci
c results we
need for the proofs in Chapter �� for a general treatment of the subject� see �Pit���	
Throughout this section� let us assume a 
xed relational correspondence between

predomain interpretations L of L and L� of L�� with a computation�extension of relations	
In keeping with the general convention in this appendix� we also write �R for relation�
lifting	 We 
rst characterize a particularly well�behaved way of constructing admissible
relations�

De�nition A��� Let F and F � be type constructors	 A �mixed� relational action F for
F and F � assigns to every pair of relations R�  ARel���� ��� and R�  ARel���� ���
a relation F�R�� R�  ARel�.a�Fa��

�� ���.a�F �a��
��� ���	 We say that this action is

admissible if it satis�es�

��x R�
� x�� f�x ��R�

�  f
��x� � ��x R�

� x�� f�x ��R�
�  f

��x�
��y F�R�

� � R
�
�  y

��.a�Fa�f
�� f�y ��F�R�

� � R
�
�  .a�F �a�f

��� f ��y�

Likewise
 for computation�type constructors G and G�
 a relational action is called
computation�admissible if it maps R�  ARel���� ��� and R�  ARel���� ��� to a
relation G�R�� R�  CARel�/a�Ga��

�� ���/a�G�a��
��� ��� such that

��x R�
� x�� f�x ��R�

�  f
��x� � ��x R�

� x�� f�x ��R�
�  f

��x�
��y G�R�

� � R
�
�  y

��/a�Ga�f
�� f�y G�R�

� � R
�
�  /a�G�a�f

��� f ��y�

It is easy to see from the de
nition of .a���f
�� f� that any computation�admissible

action is also admissible	 Moreover� we have a number of standard ways of constructing
�computation�admissible relational actions�

Lemma A��� The following relational actions are all admissible �and computation�
admissible where noted��

�	 F�R�� R�  R� for Fa  F �a  a	
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	 F�R�� R�  R� for Fa  �� and F �a  ���
 where �� and ��� do not depend on a

and R�  ARel���� �

�
� is an arbitrary admissible relation	 F is also computation�

admissible if R� is	

�	 F�R�� R�  F��R
�� R��rF��R

�� R� for Fa  F�a�F�a and F
�a  F �

�a�F �
�a


where F� is admissible for F� and F �
�
 and F� is admissible for F� and F �

�	 F is
also computation�admissible if both F� and F� are	

�	 F�R�� R�  F��R
�� R��rF��R

�� R� for Fa  F�a�F�a and F
�a  F �

�a�F �
�a


where F� is admissible for F� and F �
�
 and F� is admissible for F� and F �

�	

�	 F�R�� R�  &r
iFi�R

�� R� for Fa  &iFia and Fa  &iF
�
ia
 where for every

i  I
 Fi is admissible for Fi and F �
i 	

�	 G�R�� R�  F�R�� R��rG��R
�� R� for Ga  Fa�G�a and G

�a  F �a�G�
�a


where F is admissible for F and F �
 and G� is computation�admissible for G� and
G�

�	 G is also computation�admissible	

�	 G�R�� R�  �F�R�� R� for Ga  ��Fa and G�a  ��F �a
 where F is admissible
for F and F �	 G is also computation�admissible	

�	 F�R�� R�  
T
j�J Fj�R

�� R� for any F and F �
 when for every j  J 
 Fj is
admissible for F and F �	 F is also computation�admissible if each Fj is	

Proof� Simple veri
cation in all cases	 For example� and since it is somewhat non�
standard� let us go through the details of ��� i	e	��F�R�� R�	 First� we note that for
any computation�extension of relations we have that if �a R� a

�� f a ��R� f
�a� then

�m ��R� m
�� let� x�m in f x ��R� let

� x��m� in f �x�

�Note that this is simply condition �� of a monad relation from De
nition �	�� in the case
where the ambient e�ect is partiality� and�R� is taken as the R� of the de
nition	 This
holds because�R� is by de
nition computation�admissible and hence pointed	 Thus� since
m ��R� m

� means that either both m and m� are 
� or both are liftings of R��related
elements� we get the required relationship in either case	
We can now verify admissibility of the action �R�� R� ���F�R�� R� for the type

constructors Ga  ��Fa and G�a  ��F �a when F is an admissible action for F and F �	
Let the Rs and fs be as in De
nition A	��� we must then show�

�y ��F�R�
� � R

�
�  y

��/a��Fa�f
�� f�y ��F�R�

� � R
�
�  /a��F �a�f

��� f ��y�

So assume y ��F�R�
� � R

�
�  y

�	 Expanding /a��Fa�f
�� f� according to De
nition A	�� we

must then establish that

let�x� y in let� r� .a�Fa�f
�� f�x in�r ��F�R�

� � R
�
�  let�x�� y� in � � �

By property �� of relation�extension and the assumption on y and y�� it su�ces to show
that
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�x F�R�
� � R

�
�  x

��
let� r� .a�Fa�f

�� f�x in�r ��F�R�
� � R

�
�  let

� r�� .a�F �a�f
��� f ��x� in�r�

Let x F�R�
� � R

�
�  x

� be given	 By assumption on F � we then have that

.a�Fa�f
�� f�x ��F�R�

� � R
�
�  .a�F �a�f

��� f ��x�

And hence� by the observation at the beginning of the proof� it su�ces to show

�r F�R�
� � R

�
�  r

���r ��F�R�
� � R

�
� �r

�

which follows immediately from property �� of relation extension	

We also have the following principle for constructing new computation�admissible actions
from old ones�

Lemma A��� Let G� be a computation�admissible relational action for G� and G�
�
 and

let G and G� be another pair of computation�type constructors	 Further let h be a rigid
natural transformation from G to G�
 i	e	
 satisfying

h�/a�Ga�f
�� f�x  /a�G�a�f

�� f��hx

and analogously for h�	 Then the relational action G for G and G� de�ned by

x G�R�� R� x� �� hx G��R
�� R� h�x�

is computation�admissible	

Proof� We 
rst note that G�R�� R� is a computation�admissible relation by assump�
tion on G� and rigidity of h and h�	 Further� let the Rs and fs be as in De
nition A	���
we must show that

�y G�R�
� � R

�
�  y

��/a�Ga�f
�� f�y G�R�

� � R
�
�  /a�G�a�f

��� f ��y�

I	e	� that

�y� y�� hy G��R
�
� � R

�
�  h

� y�� h�/a�Ga�f
�� f�y G��R

�
� � R

�
�  h

� �/a�G�a�f
��� f ��y�

Now� by assumption on h and h�� this is equivalent to

�y� y�� hy G��R
�
� � R

�
�  h

� y��/a�G�a�f
�� f��hy G��R

�
� � R

�
�  /a�G��a

�f ��� f ���h� y�

and that follows form the assumption that G� was admissible �taking y and y� in the
de
nition of admissibility to be the hy and h� y� above	

From this� we get admissibility of the action relating ambient computations to their
continuation�passing counterparts�
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Lemma A��
 Let � be a type of L�
 and for any R  ARel��� �� let the relation ��R 
CARel���� ��������� be given by�

m ���R u
�� ��� typeL� O  ARel���� �� �k

����� � let�x�m in kx ��R��O��O u

Further
 let F and F � be type constructors
 with an admissible relational action F 	 Then
the relational action G given by

G�R�� R�  ��F�R�� R�

is computation�admissible for Ga  ��Fa and G�a  �F �a������	

Proof� First note that for any �� and O  ARel���� �� the action GO� given by

GO� �R
�� R�  �F�R�� R��r�O�r�O

is computation�admissible for G��
� a  �Fa�������� and G

� by Lemma A	������	
Let h  �m��k� let�x�m in kx	 This mapping is a natural transformation between

the functors derived from G and G��
� �

h
�a��Fa
f
�� f��m� 	 h
let�r�m in let� y� �a�Fa
f

�� f��r in�y�
	 �k� let�x� 
let�r�m in let� y� �a�Fa
f

�� f��r in�y� in kx
	 �k� let�r�m in let� y� �a�Fa
f

�� f��r in ky
	 �k�
hm�
�r� let� y� �a�Fa
f

�� f��r in ky� 	 �k�
hm�
�a�Fa����
f
�� f��k�

	 �k� let� y� �
�a�Fa����
f
�� f��k� in 
hm� y 	 �a��Fa���������
f

�� f��
hm�

�using that /a�����f
�� f�  id��� by Lemma A	���� because a cannot appear free in ��	

Thus� taking h� as the identity in Lemma A	��� we get that the action given by GO�

m �GO�R�� R� u  �k� let�x�m in ka �GO� �R
�� R� u

is computation�admissible for G and G�	 And 
nally� since G�R�� R� is the intersection
of all GO�R�� R�� we get the result by Lemma A	����	

We can now state the main result motivating the de
nition of admissible actions�

Theorem A��� Let F be an admissible relational action for type constructors F and F �	
Then there exists an invariant relation for F 
 i	e	
 a relation #  ARel��a� Fa� �a� F �a
such that a # a� �� unrolla�Faa F�#�# unrolla�F �a a�	

Proof� �The proof technique is due to Pitts and can essentially be found in �Pit���	
However� since we are working with binary relations instead of unary ones� and a few
details are slightly more involved for predomains than for domains� it seems worth spelling
out the construction	
As usual� we abbreviate roll as � and unroll as �	
We 
rst note that a functorial action on relations preserves inclusions	 For let R�

� !
R�

� and R�
� ! R�

� 	 Take f�  f�  �a��a and f ��  f ��  �a���a�	 Then clearly
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f� �R�
� �

�R�
�  f

�� and f� �R�
� �

�R�
�  f

��	 Hence for any y F�R�
� � R

�
�  y� we get

from Lemma A	��� that

�y  .a�Fa��a�
�a� �a��ay ��F�R�

� � R
�
�  .a�F �a��a

���a�� �a���a�y�  �y� �

Moreover� we easily see that �x ��R �x� i� x R x� �by de
nition of relation�lifting speci
c�
ally� not true for computation�extension of relations in general� so we get y F�R�

� � R
�
�  y

��
i	e	� F�R�

� � R
�
�  ! F�R�

� � R
�
� 	 In other words� F is monotone in its second argument

and antimonotone in the 
rst one	
Let R� and R� be arbitrary relations in ARel��a� Fa� �a� F �a� and de
ne the rela�

tions R�� R�  ARel��a� Fa� �a� F �a by

a R� a� �� �a F�R�� R� �� a� and a R� a� �� �a F�R�� R� �� a� �

We can then de
ne an operator 3� mapping �R�� R� to �R�� R�� antimonotone in
the 
rst position and monotone in the second	 Further� the set of admissible relations
between two types is closed under arbitrary intersection� so ARel��a� Fa� �a� F �aop �
ARel��a� Fa� �a� F �a forms a complete lattice	 Hence� by the Knaster�Tarski 
xed�point
theorem� 3 has a least 
xed point �#��#�� with #��#�  ARel��a� Fa� �a� F �a
satisfying

a #� a� �� �a F�#��#� ��a� and a #� a� �� �a F�#��#� ��a� �

Moreover� �#��#� is clearly also a 
xed point of 3� and so must be greater than the
least one� giving �for both components the inclusion #� ! #�	
It thus remains to show containment in the other direction	 Consider the relation

r  CARel��a� Fa� ��a� Fa� �a� F �a� ��a� F �a determined by

h r h� �� �a #� a�� ha ��#� h�a�

�r is computation�admissible because it is given by an intersection over inverse images
�by application� which is rigid of the computation�admissible �#�	 Now de
ne the
functional H � ��a� Fa� ��a� Fa� ��a� Fa� ��a� Fa by�

H  �h
a�Fa��
a�Fa��a
a�Fa� let� x� .a�Fa�h� h��a in
���x

and analogously for H �	 We want to show that when h r h� then also Hh r H �h�� i	e	�
that

�a #� a�� let� x� .a�Fa�h� h��a in
���x

��#� let� x�� .a�F �a�h
�� h����a� in ����x�

This follows from the usual properties of relation�extension� the equations de
ning #�

and #� above� and the functorial action of F �taking f�  f�  h� f ��  f ��  h��
R�

�  R�
�  #

�� and R�
�  R�

�  #
�	

Thus� since the relation r was computation�admissible� we get by 
xed�point induc�
tion �Lemma �	�� that �xH r �xH �	 And because �xH  �x��x by the minimal�
invariant property �Corollary A	�� we have

�a #� a�� �a ��#� �a� �



A��� INVARIANT RELATIONS OVER RECURSIVE TYPES ���

Finally� by the same argument about �R as at the beginning of the proof� this simpli
es
to #� ! #�� completing the proof that we can take #  #�  #� as the invariant
relation for F 	

From this� we immediately get that � much like recursive type equations � a large
class of recursive relation equations has solutions�

Corollary A��� Let F and F � be type constructors
 and let � be a formal relation con�
structor
 built out of ��� the standard relational actions of L��type constructors
 ��
constant admissible relations �computation�admissible for computation�types�
 and ���
the relation constructor �� �for any ��� so that � maps any relation R  ARel��� �� to
�R  ARel�F�� F ���	

Then there exists a relation �R� �R  ARel��a� Fa� �a� F �a such that

a ��R� �R a� �� unrolla�Faa
���R� �R unrolla�F �aa

� �

Proof� By induction on �� using Lemmas A	�� and A	��� we directly obtain an admiss�
ible mixed relational action F � such that

F�R�R  �R

By Theorem A	��� this F has an invariant relation #	 And because of the equation
above� we can simply take �R� �R to be #	
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