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“The mind fears the heart, but the heart doesn’t mind.

No I may not be perfect, but I’m loving this life.

...

I’m a million miles ahead of where I’m from,

But there’s still another million miles to come.”

— Tim Bergling (a.k.a. Avicii), “Trouble”
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Abstract

Given a social network graph, how can we predict connections between users

and determine whether they are based on shared hobbies or common friends?

Given a database containing molecular graphs, how can we determine whether

the graphs inhibit HIV replication based on substructures they frequently share?

Similarly, in time series data from EEG recording, how can we identify seizures

and explain why they are considered abnormal? Although recent machine learn-

ing methods have shown improved performance, many remain black-box models,

making explainability challenging. This leads us to explainable artificial intelli-

gence (XAI), which offers valuable insights through its explanations and is more

practical for deployment in real-world applications.

In this thesis, we focus on developing explainable machine learning methods

tailored for graphs and time series. Each method we propose is either inherently

explainable, or designed to automatically provide data analysis or justification for

its decisions. In each part, we present effective and general algorithms, and explore

a broad range of applications.

In the first part, we focus on node-level graph mining. We propose algorithms

to analyze various types of information in graphs, e.g., the network effects of the

graph structure, and the usable information in the node features. Our proposed

linear methods are not only inherently interpretable and fast, but also outperform

baselines in solving node classification and link prediction tasks. In node classifi-

cation, our method improves the accuracy by 10.3% over the second-best baseline,

while being 2.5 times faster. In link prediction, our method achieves an average rank

1.1, outperforming baselines on 11 out of 12 real-world datasets. In the application

of graph retrieval-augmented generation, our agentic method achieves an average

relative improvement of 51%.

In the second part, we focus on graph-level graph mining. We discover fre-

quent substructures using the minimum description length (MDL) principle and

learnable graph kernels. In graph anomaly detection, our MDL-based method is 58

times faster than the second-best baseline, while achieving 1.3 times higher average

precision. In graph regression, our method with learnable graph kernels improves

the mean absolute error by 14.3%. In the application of human trafficking detection,

our method detects human trafficking ads with 84% precision, while requiring only

8 hours to process 4 million documents.

In the third part, we focus on time series mining, with an emphasis on time

series anomaly detection. Our self-supervised method effectively identifies the

ground truth hyperparameters of anomalies in time series data, resulting in an av-

erage rank 2.2 compared to the baselines. In the application involving medical EEG

signals, unlike traditional point anomaly detection methods, we focus on identify-

ing group anomalies that occur within a short period and exhibit similar abnormal

patterns. Our method is fast and scalable, and discovers and ranks both point and

group anomalies in 2 minutes for 1 million data points on a stock machine.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, many effective machine learning (ML) and deep learning methods have been

proposed to solve a variety of problems in graphs and time series. However, the majority of

the methods are designed to optimize performance, often neglecting the importance of model

transparency. In other words, these black-box methods are neither inherently explainable nor

provide explanations for their decisions.

For this reason, in recent years, explainable artificial intelligence (XAI) has gained a lot of

attention. These approaches are designed not only to provide explanations but also to remain

effective. XAI paves the way for ML methods to be adopted in the real world, especially in

domains that require well-justified solutions. These domains include legal, medical, financial,

and so on. For example, if an ML method is developed to help a physician make medical de-

cisions, it must provide explanations. It is crucial that the method and the doctor complement

each other by allowing the doctor to understand why the decision was made. Another example

is financial data, where an explainable method can provide insights into suspicious activities,

allowing domain experts to investigate further.

Among the many types of data, graphs and time series are two of the most common in

the real world. Graphs, including social networks and financial networks, have been applied

to numerous applications to identify the properties of individual nodes and the relationships

between nodes (Figure 1.1a). Meanwhile, many applications operate on databases containing

multiple graphs (Figure 1.1b), such as anomaly detection and molecular property prediction.

Similarly, time series data have been widely used in monitoring applications in various systems,

such as server machine metrics and EEG recordings, enabling us to detect anomalies in time

series (Figure 1.1c). Hence, the research questions we aim to answer are:

RQ1. Node-Level Graph Mining: How can we determine the information in the graph that

is useful for solving node-level graph tasks effectively?

RQ2. Graph-Level Graph Mining: How can we identify frequent substructures in a graph

database and leverage them for downstream graph-level graph tasks?

RQ3. Time Series Mining: How can we detect anomalies in time series data?
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Figure 1.1: Applications on graphs and time series. (a)Node-LevelGraphMining (Part I):

We solve tasks such as node classification and link prediction in an attributed graph. (b)Graph-

Level GraphMining (Part II): We detect frequent substructures in a graph database and lever-

age them to solve tasks, such as graph anomaly detection and graph regression. (c)Time Series

Mining (Part III): We detect anomalous time periods in a time series data.

1.2 Overview and Contributions

In this thesis, we focus on introducing explainable ML methods tailored for graphs and time

series. Our methods are carefully designed to be either:

1. Inherently explainable, such as linear models, or

2. Capable of providing explanations for the dataset or the decisions they make.

More specifically, we develop algorithms to address fundamental ML problems, as well as solve

a diverse range of real-world applications with domain-specific insights. As shown in Table 1.1,

our contributions can be divided into three topics: node-level graph mining (Part I), graph-level

graphmining (Part II), and time series mining (Part III); as well as two categories: algorithm and

application. We always support the necessity of the designs in our proposed methods through

careful data analysis or systematic analysis of existing algorithms.
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Topic Category Task Method Chapter Link

Part I:

Node-Level

Graph Mining

Algorithm

Node Classification

NetEffect § 3 [PDF]

SlimG § 4 [PDF]

" & Link Prediction NetInfoF § 5 [PDF]

Application Graph RAG HybGRAG § 6 [PDF]

Part II:

Graph-Level

Graph Mining

Algorithm

Graph Anomaly Detection GAWD § 7 [PDF]

" & Graph Regression RWK
+

§ 8 [PDF]

Application Human Trafficking Detection DeltaShield § 9 [PDF]

Part III:

Time Series Mining

Algorithm Anomaly Detection TSAP § 10 [PDF]

Application Seizure Detection gen
2
Out § 11 [PDF]

Table 1.1: Thesis Overview.

1.2.1 Part I: Node-Level Graph Mining

Algorithm In Chapter 3, we propose NetEffect, including a statistical test to identify if

there are network effects (i.e. homophily, heterophily, both or none) in the given graph without

node features. Thanks to our estimated compatibility matrix,NetEffect is 12.9%more accurate

and 3.4× faster for node classification. In Chapter 4, we further consider the node features and

propose SlimG, a linear graph neural network (GNN) that effectively classifies the nodes in

both homophily and heterophily graphs. Compared to non-linear GNNs, SlimG is explainable,

while being 10.3%more accurate and 2.5× faster. In Chapter 5, we extend this idea and propose

NetInfoF to measure and exploit usable information in graphs for both node classification and

link prediction. NetInfoF is the first linear GNN that is generalized to link prediction and

achieves an average rank 1.1 among state-of-the-art baselines.

Application In Chapter 6, we propose HybGRAG, a retrieval-augmented generation (RAG)

method designed to handle “hybrid” questions that require both relational and textual infor-

mation to be answered. By addressing the fundamental challenges we identified, HybGRAG

achieves an average relative improvement of 51%.

Impact NetInfoF was accepted for spotlight presentation (top 5%) at ICLR 2024.

1.2.2 Part II: Graph-Level Graph Mining

Algorithm In Chapter 7, we propose GAWD, a minimum description length (MDL) method

that identifies anomalous graphs in a database containing many graphs, based on frequent

substructure mining. GAWD is up to 58× faster, while being 1.3× better in average precision. In

Chapter 8, we further explore learning frequent substructures with graph kernels and propose

an improved random walk kernel, RWK
+
, which can be used to extract structural features from
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the graph database. Applied to a large graph regression benchmark, a model using features

extracted by RWK
+
outperforms the baseline by 14.3% in mean absolute error.

Application In Chapter 9, we propose DeltaShield, which detects shared templates across

millions of escort advertisements based on MDL and allows incremental updates by represent-

ing them as graphs. DeltaShield detects human-trafficking advertisements with 84% precision,

while requiring only 8 hours for 4 million documents.

Impact DeltaShield received media coverage from WPXI
†
.

1.2.3 Part III: Time Series Mining

Algorithm In Chapter 10, we introduce TSAP that automatically fine-tunes the best hy-

perparameters for creating pseudo-time-series anomalies, to learn the anomaly detector in a

self-supervised manner. TSAP achieves an average rank 2.2 in F1 score and identifies the true

hyperparameters of anomalies.

Application In Chapter 11, we propose gen
2
Out to detect seizures (group anomalies) in

time series EEG recordings and to distinguish them from irrelevant noise (point anomalies).

gen
2
Out is the first to detect both types of anomaly and takes only 2 minutes to run on 1

million data points.

†https://www.wpxi.com/news/top-stories/carnegie-mellon-university-res
earchers-develop-human-trafficking-algorithm/4OGNYHSW3VHZDOGFVC2Y6QHET
I/
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Chapter 2

Background

2.1 Explainability

Many explanation methods have been proposed to improve the explainability of machine learn-

ing models [Lip18, DBH18, BH21], including feature importance-based methods [RSG16, LL17,

RSG18], counterfactual explanations [WMR17, VDH20], and contrastive explanations [Mil21,

JSR
+
21]. However, most methods remain post-hoc, interpreting existing black-boxmodels after

they have been trained and evaluated. In contrast, our proposed methods in this thesis not only

achieve state-of-the-art performance on the given tasks, but also generate faithful explanations

that are integrated into the task-solving process.

We compare our proposedmethodswith existing explanationmethods in Table 2.1 and show

that our methods fulfill all desired properties, including faithfulness, explicitness, and stability

[AJ18]. Faithfulness denotes whether the explanation accurately reflects the decision-making

process; explicitness denotes whether the explanation clearly demonstrates the reasoning be-

hind a decision; stability denotes whether small perturbations in the input lead to different

explanations. A key distinction is that our proposed methods are capable of solving the task

and achieving state-of-the-art performance, while most explanation methods are post-hoc and

not designed to perform the task, making comparison of explanations less meaningful, as the

methods serve fundamentally different purposes.

Whereas most post-hoc explanation methods are not considered faithful [Rud19], our meth-

ods generate explanations that are integrated into the task-solving process and are therefore

considered faithful by design. For example, SlimG (Chapter 4) and NetInfoF (Chapter 5) are

linear models, where the learned coefficients directly reflect the influence of input features. As

argued by [AJ18], linear methods are faithful. Similarly,DeltaShield (Chapter 9) and gen
2
Out

(Chapter 11) provide faithful explanations by explicitly visualizing the intermediate steps of the

task-solving process; scatter-plots have been successfully used before for explanations, such as

in the LookOut paper [GES
+
18].
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Table 2.1: Our explainable ML methods match all specs, while baselines miss one or more.

‘?’ denotes that it depends on specific methods.

Property

Feature-Importance Counterfactual Contrastive

Our Methods

[RSG16, LL17, RSG18] [WMR17, VDH20] [Mil21, JSR
+
21]

Integrated vs. Post-Hoc Post-Hoc (Mostly) Post-Hoc (Mostly) Post-Hoc Integrated

1. Faithful ? "

2. Explicit " " " "

3. Stable ? ? "

4. Task-Solving "

2.2 Graphs

Definition 2.1: Homogeneous graph

A homogeneous graphG is a data structure that consists of nodes V and edges E ⊆ V×V ,
where both the nodes and edges are of the same type.

For example, in a social network graph, the nodes represent the users, and the edges indicate

whether two users are friends. The structure of a graph with n = |V| nodes can be represented

by an adjacency matrix A ∈ Rn×n
, where Auv = 1 if (u, v) ∈ E , and 0 otherwise. Each

node i has a unique label l(i) ∈ {1, . . . , c}, where c is the number of classes. The set of labels

y = {l(1), . . . , l(n)} can be represented by a one-hot matrix Y ∈ Rn×c
. Graphs that do not

contain node features are called featureless graphs, while graphs that contain node features or

attributesX ∈ Rn×f
, where f is the number of features, are called node-attributed graphs.

Definition 2.2: Knowledge graph

A knowledge graph (KG) is a heterogeneous graph that contains triplets K = {(u, r, t) |
u, t ∈ N , r ∈ R}, whereN andR denote the sets of entities (nodes) and relations (edges),

respectively, and each entity u ∈ N has a type t(u) ∈ T .

For example, in the Wikipedia KG, a triplet can represent a fact such as {Washington D.C.,

is-capital-of, USA}, where the type of head entity is city and the type of tail entity is country.

6



2.3 Graph Databases

Definition 2.3: Graph database

A graph database consists of I graphs G = {G1, . . . , GI}, where each graphGi(Vi, Ei) has
a set of nodes Vi and a set of edges Ei.

For example, in a molecule graph database, each graph represents a molecule, where the nodes

are atoms, and the edges are chemical bonds. If the database is node-labeled and weighted,

each node v ∈ Vi has a label l(v) ∈ T , where T is the set of unique node labels, and each edge

(u, v) ∈ Ei is associated with a weight w(u, v). If the database is node-attributed, each graph

Gi is associated with a node feature matrixXGi
∈ R|Vi|×f

, where f is the feature dimension.

2.4 Time Series Anomaly Detection

Definition 2.4: Univariate time series

A univariate time series x = {x1, x2, . . . , xT} is a sequentially ordered collection of T data

points, where xi ∈ R corresponds to a scalar observation at time step i.

For example, a time series can represent an EEG recording, or the memory utilization of a

monitoring server, collected every second.

Anomaly detection in time series can be divided into two categories: sequence-level and

point-level. In sequence-level anomaly detection, given a set of time series X = {x1, . . . ,xM},
the task is to detect anomalous time series by assigning a label yi ∈ {−1,+1} to xi ∈ X . In
point-level anomaly detection, given a time series x, the task is to detect anomalous time points

by assigning labels y = {y1, . . . , yT} to x, where y ∈ {−1,+1}.

2.5 Linear Algebra Preliminaries

This section reviews key linear algebra operations used throughout this thesis.

7



Definition 2.5: Hadamard product

The Hadamard product for two matricesX ∈ Rm×n
andY ∈ Rm×n

is as follows:

(X⊙Y)ij = XijYij, (2.1)

where Xij is the element at row i and column j.

Definition 2.6: Vectorization

The vectorization for a matrixX ∈ Rm×n
is as follows:

vec(X) = [X11, · · · ,Xm1,X12, · · · ,Xm2, · · · ,Xmn]
⊺, (2.2)

where Xij is the element at row i and column j.

Definition 2.7: Kronecker product

The Knronecker product for two matricesX ∈ Rm×n
andY ∈ Rp×q

is as follows:

X⊗Y =


X11Y X12Y · · · X1nY
X21Y X22Y · · · X2nY

.

.

.

.

.

.

.
.
.

.

.

.

Xm1Y Xm2Y · · · XmnY

 , (2.3)

where Xij is the element at row i and column j, and the size ofX⊗Y is pm× qn.

Definition 2.8: Mixed Kronecker matrix-vector product property

The mixed Kronecker matrix-vector product for matricesX, Y and Z is as follows:

(X⊗Y)vec(Z) = vec(YZX⊺) (2.4)

2.6 Acronyms

Table 2.2 lists the acronyms used in this thesis, sorted in alphabetical order.
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Table 2.2: Table of Acronyms.

Acronym Definition

AP Average Precision

ARI Adjusted Rand Index

AUC Area Under Curve

BP Belief Propagation

ES Early-Stopping

GCN Graph Convolutional Networks

GNE Generalized Network-Effects

GNN Graph Neural Network

GRAG Graph Retrieval-Augmented Generation

HQA Hybrid Question Answering

HT Human Trafficking

ICL In-Context Learning

IF Isolation Forest

KBQA Knowledge Base Question Answering

KCN Kernel Convolution Network

KG Knowledge Graph

LLM Large Language Model

LR Logistic Regression

MAE Mean Absolute Error

MDL Minimum Description Length

ML Machine Learning

MSA Multiple Sequence Alignment

NUI Network Usable Information

ODQA Open-Domain Question Answering

PCA Principal Component Analysis

POA Partial Order Alignment

PPR Personalized PageRank

RAG Retrieval-Augmented Generation

ROC Receiver Operating Characteristic

RWK Random Walk Kernel

SGC Simple Graph Convolution

SKB Semi-Structured Knowledge Base

SSL Self-Supervised Learning

SVD Singular Value Decomposition

TSAD Time Series Anomaly Detection

VSS Vector Similarity Search

XAI Explainable Artificial Intelligence

9
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Part I

Node-Level Graph Mining
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Overview of Part I

Given a graph, how can we solve node classification and link prediction?

How can we identify which information in the graph is useful for the given node-level tasks?

In a graph, the structure may or may not be useful for inferring node labels. Similarly, in

an attributed graph, node features are not necessarily useful for the task. In this chapter, given

a graph, we want an explanation of whether graph tasks can be effectively solved. In other

words, we aim to determine which aspects of the graph, such as its structure and node features,

are useful for the task.

We address this problem in three different settings of increasing difficulty and propose three

corresponding algorithms:

• § 3: Node classification in a featureless graph –NetEffect solves it and provides a statis-

tical test to determine whether nodes with different class labels are randomly connected.

• § 4: Node classification in an attributed graph – SlimG solves it by identifying whether

the graph structure or node features are useful based on the learned weights.

• § 5: Node classification and link prediction in an attributed graph –NetInfoF solves both

and quantitatively measures how informative the graph structure and node features are.

We further extend this problem to a real-world graph application:

• § 6: In graph retrieval-augmented generation (GRAG),HybGRAG determines if a question

should be answered by the information from knowledge graphs or text documents.

13
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Chapter 3

NetEffect: Discovery and

Exploitation of Generalized

Network Effects

Chapter based on work that appeared at PAKDD 2024 [LSYF24] [PDF].

Given a large graph with few node labels, how can we (a) identify whether there is gener-

alized network-effects (GNE) or not, (b) estimate GNE to explain the interrelations among

node classes, and (c) exploit GNE efficiently to improve the performance on downstream

tasks? The knowledge of GNE is valuable for various tasks like node classification and

targeted advertising. However, identifying GNE such as homophily, heterophily or their

combination is challenging in real-world graphs due to limited availability of node labels

and noisy edges.

In this chapter, we propose NetEffect, a graph mining approach to address the above

issues, enjoying the following properties: (i) Principled: a statistical test to determine the

presence of GNE in a graph with few node labels; (ii) General and Explainable: a closed-

form solution to estimate the specific type of GNE observed; and (iii) Accurate and Scalable:

the integration of GNE for accurate and fast node classification.

Applied on real-world graphs, NetEffect discovers unexpected absences of GNE in

numerous graphs, which were recognized to exhibit heterophily. Further, we show that

incorporating GNE is effective on node classification. On a million-scale graph,NetEffect

achieves over 7× speedup (14 minutes vs. 2 hours) compared to most competitors.
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Figure 3.1: NetEffect works well in node classification, thanks to its three novel con-

tributions: (a) NetEffect_Test statistically tests the existence of GNE. (b) NetEffect_Est

explains the graph with the x-ophily compatibility matrix. (c) NetEffect_Expwins and is fast.

3.1 Introduction

Given a large graph with few node labels and no node features, how can we check whether

the graph structure is useful for classifying nodes or not? Node classification is often used to

infer labels on large real-world graphs. Since manual labeling is expensive, it is common that

only a few node labels are available. For example, in a million-scale social network, identifying

even a fraction (say 5%) of users’ groups is prohibitive, limiting the application of methods

that assume many labels are given. With the prevalence of graphs in industry and academia

alike, there is a growing need among users to know whether these graph structures provide

meaningful information for inference tasks. Therefore, before investing a huge amount of time

and resources into potentially unsuccessful experiments, a preliminary test is earnestly needed.

That is to say, we want to know whether the given graph has generalized network-effects

(GNE) or not. A graph with GNE provides meaningful information through the structure that

can be used to identify the labels of nodes. For example, “engineers tend to have engineer

friends” denotes homophily, while “talkative person tends to make friends with silent ones” de-

notes heterophily. It is thus important to distinguish which GNE the graph has, i.e., homophily,

heterophily, or both (which we call “x-ophily”), if there is any. We define x-ophily as follows:

Definition 3.1: x-ophily Generalized Network-Effects

An x-ophily graph exhibits both homophily and heterophily generalized network-effects

(GNE).

For example, in an x-ophily social network, lawyers only make friends with other lawyers

(homophily), while managers are friends with engineers but not with other managers (het-

erophily). Given c classes, an intuitive way to describe GNE is via a c× c compatibility matrix,

which shows the relative influence between each class pair. It can be used to explain the graph

property, as well as be exploited to better assign the labels in the graph.
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However, identifying GNE is commonly neglected in literature: inference-based methods

such as belief propagation (BP) [WGKM18, EKF20, GGKF15, WG20] often assume that the re-

lationship is given by domain experts; most graph neural networks (GNNs) assume homophily

[KW17, KBG19, WJZ
+
19]. Although some works [LHL

+
21, MLST22, ZYZ

+
20] use homophily

statistics to analyze graphs, our work is very different for three reasons. First, they are designed

to identify the absence of homophily, and thus cannot clearly distinguish GNE, which includes

different non-homophily cases, i.e., heterophily, both, or no GNE. Second, to compute accurate

statistics, they use all the node labels in the graph, which is impractical during node classifi-

cation. Finally, their analyses rely heavily on the results of GNNs, which means in addition to

the graph structure, the node features also significantly influence the conclusions of GNE. In

contrast, our work aims to answer following research questions:

RQ1. Hypothesis Testing: How to identify whether the given graph has GNE or not, with

only few labels?

RQ2. Estimation: How to estimate GNE in a principled way, and explain the patterns of node

connection based on the estimation?

RQ3. Exploitation: How to effectively and efficiently exploit GNE on node classification with

only a few node labels?

We propose NetEffect, with 3 contributions as the corresponding solutions:

1. Principled: NetEffect_Test uses statistical tests to decide whether GNE exists at all.

Figure 3.1a shows how it works, and Figure 3.2 shows its discovery, where many large

real-world datasets known as heterophily graphs have little GNE.

2. General and Explainable: NetEffect_Est explains whether the graph is homophily,

heterophily, or x-ophily by precisely estimating the compatibility matrix with the derived

closed-form formula. In Figure 3.1b, it explains the interrelations of classes by the esti-

mated compatibility matrix, which implies x-ophily.

3. Accurate and Scalable: NetEffect_Exp efficiently exploits GNE to perform better

in node classification. It wins in both accuracy and time on a million-scale heterophily

graph “Pokec-Gender”, only requiring 14 minutes (Figure 3.1c).

Reproducibility: Our code is publicly available at https://github.com/mengchi
llee/NetEffect.

3.2 Background and Related Work

Table 3.1 presents qualitative comparison of state-of-the-art approaches against our proposed

NetEffect. Notice that only NetEffect fulfills all the specs.

3.2.1 Background

An overview of symbols and acronyms is provided in Table 3.2 and Table 3.3, respectively. Let

G be an undirected, unweighted and featureless graph with n nodes,m edges and an adjacency

matrix A. Each node i has a unique label l(i) ∈ {1, . . . , c}, where c is the number of classes.

Let E ∈ Rn×c
be the initial belief matrix with prior information, i.e., labeled nodes. Eik = 1 if

l(i) = k, andEik = 0 if l(i) ̸= k. For nodes without labels, their entries are set to 1/c. H ∈ Rc×c
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Table 3.1: NetEffectmatches all specs, while baselines miss one or more. ‘?’ and ‘N/A’

denote unclear and not applicable.

Property B
P
[
G
G
K
F
1
5
,
K
K
K
+
1
1
]

H
O
L
S
[
E
K
F
2
0
]

G
e
n
e
r
a
l
G
N
N
s
[
K
W
1
7
,
K
B
G
1
9
]

H
e
t
.
G
N
N
s
[
A
P
K
+
1
9
,
C
P
L
M
2
1
]

N
e
t
E
f
f
e
c
t

1. Principled

1.1. Statistical Test " " "

1.2. Convergence Guarantee " " "

2. Explainable 2.1 Compatibility Matrix Estimation N/A N/A "

3. General

3.1 Handle Heterophily ? ? ? " "

3.2 Handle GNE ? ? "

4. Scalable

4.1. Linear Complexity " " " "

4.2. Thrifty " " ? ? "

is a row-normalized compatibility matrix, whereHku is the relative influence of class k on class

u. The residual of a matrix E around 1/c is Ê = E− 1/c× 1, where 1 is matrix of ones.

3.2.2 Belief Propagation

FaBP [KKK
+
11] and LinBP [GGKF15] accelerate belief propagation (BP) by approximating the

final belief assignment. In particular, LinBP approximates the final belief as:

B̂ = Ê+AB̂Ĥ, (3.1)

where B̂ is a residual final belief matrix, initialized with zeros. The compatibility matrix Ĥ and

initial beliefs Ê are centered around 1/c to ensure convergence. HOLS [EKF20] is a BP-based

method, which propagates the labels by weighing with higher-order cliques.

3.2.3 Analysis by Homophily Statistics

Many studies [LHL
+
21, MLST22, ZYZ

+
20] utilize homophily ratio to measure how common

the labels of the connected node pairs share the same class. Our work focuses on very different

aspects, as discussed in the introduction.
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Table 3.2: Table of Symbols and Definitions.

Symbol Definition

G Undirected, unweighted and featureless graph

l(i) Label of node i
n Number of nodes

c Number of classes

A ∈ Rn×n
Adjacency matrix

E ∈ Rn×c
Initial belief matrix

B ∈ Rn×c
Final belief matrix

H ∈ Rc×c
Compatibility matrix

·̂ Residual of a matrix, e.g., Ê = E− 1/c× 1

E Set of edges

P Set of priors

B Number of rounds for NetEffect_Test

F ∈ Rc×c p-value table

A∗ ∈ Rn×n
Emphasis matrix

W′ ∈ Rn×n
Approximated proximity matrix

D ∈ Rn×n
Degree matrix with node degrees along diagonal

N(i) Neighbors of node i
L Length of random walks

M Trials of random walks

d Rank for decomposition

H∗ ∈ Rc×c
Compatibility matrix estimated withA∗

f Scaling factor for propagation

Table 3.3: Table of Acronyms.

Acronym Definition

GNE Generalized Network-Effects

BP Belief Propagation

SVD Singular Value Decomposition

GNN Graph Neural Network

GCN Graph Convolutional Networks

3.2.4 Node Classification

GCN [KW17] and APPNP [KBG19] incorporate neighborhood information to do better predic-

tions and assume homophily. MixHop [APK
+
19], GPRGNN [CPLM21], and H2GCN [ZYZ

+
20]

make no assumption of homophily. Nevertheless, H2GCN requires too much memory and thus

can not handle large graphs. LINKX [LHL
+
21] introduces multiple large heterophily datasets,

but it is not applicable to graphs without node features.

3.3 Proposed GNE Test

Given a graph with few labels, how can we identify whether the graph has generalized network-

effects (GNE) or not? In other words, how can we check whether the graph structure is useful

for inferring node labels? We propose NetEffect_Test, a statistical approach to identify the

presence of GNE in a graph. Applying it to real-world graphs, we show that many popular

heterophily graphs exhibit little GNE.
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3.3.1 NetEffect_Test

We first provide two main definitions regarding GNE:

Definition 3.2

If the nodes with class ci in a graph tend to connect randomly to the nodes with all classes

1, . . . , c (with no specific preference), class ci has no GNE.

Definition 3.3

If all classes in a graph have no GNE, this graph has no GNE.

We distinguish heterophily graphs from those with no GNE by the definition. In heterophily

graphs, the nodes of a specific class are likely to be connected to the nodes of other classes,

such as in bipartite graphs that connect different classes of nodes. In this case, knowing the

label of a node gives meaningful information about the labels of its neighbors. On the other

hand, if a graph has little GNE, knowing the label of a node gives no useful information about

its neighbors. In other words, the structural information of a graph is not useful to infer the

unknown labels of nodes.

Next, we describe how we propose to determine the existence or absence of GNE. In the

inner loop, we need to decide whether class ci (say, “talkative people”), has statistically more,

or fewer edges to class cj (say, “silent people”). We propose to use Pearson’s χ2
test for that.

Specifically, given a class pair (ci, cj), the input to the test is a 2×2 contingency table containing
the counts of edges that connect pairs of nodes whose labels are in {ci, cj}. The null hypothesis
of the test is:

Null Hypothesis 3.1

Edges are equally likely to exist between nodes of the same class and those of different

classes.

If the p-value from the test is no less than 0.05, we accept the null hypothesis, which represents

that the chosen class pair (ci, cj) exhibits no statistically significant GNE in the graph. Then

we call them mutually indistinguishable:

Definition 3.4: Mutually indistinguishable

Two classes ci and cj aremutually indistinguishable if we cannot reject the null hypothesis

above.
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Algorithm 3.1: NetEffect_Test

Data: Edges E and priors P
Result: p-value table F

1 Extract E ′
such that (i, j) ∈ E , i, j ∈ P ∀(i, j) ∈ E ′

;

2 T← Oc×c; // Test statistic table
3 for b1 = 1, ..., B do

4 for c1 = 1, ..., c− 1 do
5 for c2 = c1 + 1, ..., c do
6 V← O2×2; // Contingency table

7 for (i, j) ∈ Sampled(E ′
) do

8 if l(i) = l(j) = c1 or l(i) = l(j) = c2 then
9 V11 ← V11 + 2;

10 end

11 else if (l(i) = c1 and l(j) = c2) or (l(i) = c2 and l(j) = c1) then
12 V21 ← V21 + 1 andV12 ← V12 + 1;
13 end

14 end

15 T = χ2
-Test-Statistic(V/2);

16 Tc1c2 ← Tc1c2 + T/B and Tc2c1 ← Tc2c1 + T/B;

17 end

18 end

19 end

20 Compute p-value table Fc×c with average statistics in T;

21 Return F;

Novel Implementation Details The detailed procedure of NetEffect_Test is in Algo-

rithm 3.1. A practical challenge on the test is that if the numbers in the table are too large,

p-value becomes very small and meaningless [LJS13]. Uniform edge sampling can be a natural

solution, but sampling for only a single round can be unstable and output very different results.

To address this, we combine p-values from different random sampling by Universal Inference

[WRB20]. We firstly sample edges to add to the contingency table until the frequency is above a

specified threshold, and compute the χ2
test statistic for each class pair. Next, following Univer-

sal Inference, we repeat the procedure for random samples of edges for B rounds and average

the statistics. At last, we use the average statistics to compute the p-value tableFc×c of χ
2
tests.

Our NetEffect_Test is robust to noisy edges thanks to the sampling process, and works well

given either a few or many node labels. Given a few observations, the χ2
test works well when

the frequency in the contingency table is at least 5; givenmany observations, our sampling trick

ensures the correctness and consistency of the computed p-value by limiting the frequency to

no more than 500.

If a class accepts the null hypotheses with all other classes, this class has little GNE, and

satisfies Definition 3.2. Moreover, if all classes exhibit little GNE, the whole graph satisfies

Definition 3.3. In that case, no label propagation methods will help with node classification.
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Datasets Genius Penn94 Twitch Patent-Year Pokec-Gender arXiv-Year Synthetic

# of Nodes 422K 42KM 168K 1.3M 1.6M 169K 1.2M

# of Edges 985K 1.4M 6.8M 4.3M 22.3M 1.2M 34.0M

# of Classes 2 2 2 5 2 5 6

Edge Homophily 0.618 0.470 0.545 0.132 0.425 0.222 0.314

ĥ 0.080 0.046 0.090 0.000 0.000 0.272 0.245

GNE No GNE No GNE No GNE Heterophily Heterophily x-ophily x-ophily

(g) Homophily statistics of graphs and their GNE

Figure 3.2: NetEffect_Test discovers real-world heterophily graphs with little GNE.

For each graph, we report the edge counting on the left (not available in practice), and the p-
value table output from NetEffect_Test on the right, where “P” denotes the presence of GNE,

and “F” denotes the absence of GNE.

3.3.2 Discoveries on Real-World Graphs

We apply NetEffect_Test to 6 real-world graphs and analyze their GNE. For each dataset,

we sample 5% of node labels and compute the p-value table using NetEffect_Test. This is

because: a) only few labels are available in most node classification tasks in practice, and thus

it is reasonable to make the same assumption in the analysis, and b) NetEffect_Test can

analyze GNE even from partial observations. B is set to 1000 to output stable results. Based on

Definition 3.3, our surprising discoveries are:

Discovery 3.1: Little GNE

NetEffect_Test identifies the lack of GNE in “Genius” [LB21], “Penn94” [TMP11], and

“Twitch” [RS21].
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They arewidely known as heterophily graphs. In “Genius” (Figure 3.2a), we see that both classes

1 and 2 tend to connect to class 1, making class 2 indistinguishable by the graph structure. Net-

Effect_Test thus accepts the null hypothesis, and identifies the lack of GNE. We can observe

a similar phenomenon in “Penn94” (Figure 3.2b). “Twitch” (Figure 3.2c) used to be considered

as a heterophily graph because of its weak homophily effect, but NetEffect_Test finds that

each of the classes uniformly connects to both classes, and thus it has little GNE.

Discovery 3.2: Heterophily and x-ophily

NetEffect_Test identifies GNE in “Arxiv-Year”, “Patent-Year”, and “Pokec-Gender”.

While “Patent-Year” and “Pokec-Gender” exhibit heterophily (Figure 3.2e and 3.2f), “Arxiv-Year”

exhibits x-ophily, i.e., not straight homophily or heterophily (Figure 3.2d). They are thus used

in our experiments.

Discovery 3.3: Weak vs strong GNE

NetEffect_Test identifies weak, and strong GNE: “Arxiv-Year” and “Patent-Year” exhibit

weak GNE; and “Pokec-Gender” exhibits strong GNE.

We consider graphs to have weak GNE if there exists at least one class which is not distinguish-

able from some other classes. Such graphs limit the accuracy of node classification, compared

with graphs with strong GNE (i.e., all classes have GNE), regardless of the specific method used

for classification.

Discussion of Homophily Statistics In Figure 3.2g, we report two homophily statistics.

Edge homophily [ZYZ
+
20] is the edge ratio that connect two nodes with the same class, and

ĥ [LHL
+
21] is an improved metric which is insensitive to the class number and size. We find

even using all labels, they are not enough to capture the interrelations of all class pairs in

detail, and the graphs with low homophily statistics are not guaranteed to be heterophily. They

can only detect the absence of homophily, instead of distinguishing different non-homophily

cases, including heterophily, x-ophily, and no GNE. In contrast, ourNetEffect_Test identifies

whether the graph exhibits GNE or not from only a few labels.

3.4 Proposed GNE Estimation

Given that a graph exhibits GNE, how can we estimate the all-pair relations between classes? A

compatibility matrix is a natural strategy to describe the relations, which has been widely used

in the literature. We propose NetEffect_Est, which turns the compatibility matrix estimation

into an optimization problem based on a closed-form formula. NetEffect_Est not only over-
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comes the limitation of naive edge counting, but is also robust to noisy observations even with

few observed labels.

3.4.1 Why NOT Edge Counting

The graph in Figure 3.3a exhibits heterophily between class pairs (1, 2) and (3, 4), while it

exhibits homophily in classes 5 and 6. A compatibility matrix is commonly used in existing

studies, but assumed given by domain experts, instead of being estimated. A naive way to

estimate it is via counting labeled edges, but it has two limitations: 1) rare labels are neglected,

and 2) it is noisy or biased due to few labeled nodes. The result is even more unreliable if the

given labels are imbalanced. In Figure 3.3, we upsample the training labels 10 times for class 1

using the graph in Figure 3.1b. Edge counting in Figure 3.3b biases towards the upsampled class

and clearly fails to estimate the correct compatibility matrix in Figure 3.3a, while our proposed

NetEffect_Est succeeds in Figure 3.3c. This commonly occurs in practice, since we observe

only limited labels, and becomes fatal if the observed distribution is different from the true one.

3.4.2 Closed-Form Formula

We begin the derivation by rewriting Equation (3.1) of BP. The main insight is reminiscent of

‘leave-one-out’ cross validation. That is, we find Ĥ that would make the results of the propa-

gation (RHS of Equation (3.2)) to the actual values (LHS of Equation (3.2)):

Ê︸︷︷︸
reality

≈ AÊĤ︸ ︷︷ ︸
estimate

(3.2)

Formally, we want to minimize the difference between the reality and the estimate:

min
Ĥ

∑
i∈P

c∑
u=1

∥Êiu −
c∑

k=1

∑
j∈N(i)∩P

ÊjkĤku∥2, (3.3)

whereN(i) denotes the neighbors of node i. In other words, we aim to minimize the difference

between initial belief Ê of each node i ∈ P by the ones of its neighborsN(i) ∈ P , i.e.,N(i)∩P .
To estimate the compatibility matrix Ĥ, we solve the optimization problem in Equation (3.3)

with the proposed closed-form formula:

Lemma 3.1: Network Effect Formula

Given adjacency matrix A and initial beliefs Ê, the closed-form solution of vectorized

compatibility matrix vec(Ĥ) is:

vec(Ĥ) = (X⊺X)−1X⊺y (3.4)

where X = Ic×c ⊗ (AÊ), y = vec(Ê), and Ic×c is a c× c identity matrix.
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Figure 3.3: NetEffect_Est handles imbalanced

case well. Labels of class 1 is upsampled.
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Figure 3.4: Emphasis matrix at work:

it prefers well-connected neighbors.

Proof. We derive the solution using the closed linear regression formula, and the property of

the mixed Kronecker matrix-vector product introduced before in Definition 2.8. By vectorizing

Equation (3.2) as introduced in Definition 2.6, we have:

vec(Ê) = vec(AÊĤ)

= vec((AÊ)ĤIc×c)

= (Ic×c ⊗ (AÊ))vec(Ĥ),

(3.5)

where⊗ denotes the Kronecker product (Definition 2.7). LetX = Ic×c⊗(AÊ) and y = vec(Ê),
the above equation can be solved by linear regression with the closed-form solution of vec(Ĥ),
which completes the proof. ■

3.4.3 NetEffect_Est

The algorithm is presented in Algorithm 3.2. In practice, we can use any form of adjacency

matrix for the estimation. Our proposed formula allows us to estimate the compatibility matrix

by solving this optimization problem, but there still exists a practical challenge that need to be

addressed. With few labels, it is difficult to properly separate them into training and validation

sets for the regression, and the estimation can easily be interfered by the noisy observations.

We thus use ridge regression with leave-one-out cross-validation (RidgeCV). This allows us to

fully utilize the observations without having biases caused by random splits of training and

validation sets. Moreover, the regularization effect of RidgeCV makes the compatibility matrix

more robust to noisy observations. It is noteworthy that its computational cost is negligible.

3.5 Proposed GNE Exploitation

We propose NetEffect_Exp to exploit GNE for accurate and fast node classification with few

labels. With few labels, it becomes crucial to better utilizing the graph structure. First, we

address this by paying attention to influential neighbors by the proposed “emphasis” matrix;

and then describe NetEffect_Exp with theoretical analysis.
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Algorithm 3.2: NetEffect_Est

Data: Adjacency matrixA, initial belief Ê, and priors P
Result: Estimated compatibility matrix Ĥ

1 X← Ic×c ⊗ (AÊ); // Feature matrix

2 y← vec(Ê); // Target vector
3 Extract indices i with nodes in priors P ;
4 Ĥ← RidgeCV (X[i],y[i]);

5 Return Ĥ;

3.5.1 “Emphasis” Matrix

Rationale and Overview With few priors, we propose to better utilize the graph structure,

by paying attention to only the most important part of it. That is to say, not all neighbors are

equally influential: In Figure 3.4, best practice shows that well-connected neighbors (i.e., nodes

‘B’, ‘C’, and ‘D’) have more influence on node ‘A’ than the rest. Thus, we propose “emphasis”

matrix A∗
to pay attention to such neighbors. NetEffect_Est can also benefit from it by

replacingAwithA∗
, where we denote the improved compatibility matrix as Ĥ∗

. Algorithm 3.3

shows the details. In short, it has 3 steps:

1. Favors influential neighbors by quickly approximating the node-to-node proximity

using (non-backtracking) random walks with restarts (lines 2-5);

2. Touches-up the new node-proximity by applying a series of transformations (including

the best-practice element-wise logarithm) on the proximity matrix (line 6);

3. Symmetrizes and weighs the adjacency matrix with structural-aware embedding (lines

7-8), giving higher weights to neighbors with closer embeddings (line 9).

ProximityMatrix Approximation We propose to utilize randomwalks to approximate the

proximity matrix. The approximated proximity matrixW′
ij records the times we visit node j if

we start a random walk from node i. Only the well-connected neighbors will be visited more

often. We theoretically show that it converges quickly:

Lemma 3.2: Convergence of RandomWalks

With probability 1 − δ, the error ϵ between the approximated and true distributions for

a node walking to its 1-hop neighbor by random walks of length L with M trials is no

greater than
⌈(L−1)/2⌉

L

√
log (2/δ)
2LM

.

We further speed up the convergence by using non-backtracking random walks [ABLS07].

Given the start node s and walk length L, its function is defined as follows:

W(s, L) =

{
(w0 = s, ..., wL)

wl ∈ N(wl−1), ∀l ∈ [1, L]

wl−1 ̸= wl+1,∀l ∈ [1, L− 1]
. (3.6)
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Algorithm 3.3: “Emphasis” Matrix

Data: Adjacency matrixA, number of trialsM , number of steps L, and dimension d
Result: Emphasis matrixA∗

1 W′ ← On×n;

/* Approximate proximity matrix by random walk */
2 for node i in G do

3 for m = 1, ...,M do

4 for j ∈ Wm(i, L) do
5 W′

ij ←W′
ij + 1;

6 end

7 end

8 end

/* Masking, degree normalization and logarithm */
9 Wn×n ← log (D−1(W′ ⊙A));

10 Un×d,Σd×d,V
T
d×n ← SVD(W, d); // Embedding

11 U←
√
ΣU; // Scaling

/* Boost weights of close-embedded neighbors */
12 WeighA∗

n×n, where A
∗
ij = S(Ui,Uj),∀{i, j|Aij = 1};

13 ReturnA∗
;

Thanks to it, we improve Lemma 3.2 to have a tighter bound of error ϵ:

Lemma 3.3: Convergence of Non-Backtracking RandomWalks

With the same condition as in Lemma 3.2, the error ϵ by non-backtracking random walks

is no greater than
⌈(L−1)/3⌉

L

√
log (2/δ)
2LM

.

Proof. For a L-steps random walk sequence S with M trials, its length |S| is LM . A random

variable X denotes the probability of node i will walk to its j-th neighbor is:

X = P(node i walks to N(i)j) =

∑|S|
k=1 1(N(i)j = Sk)

|S|
, (3.7)

where P is the probability and 1 is the indicator. With regular random walk in the graph, X is

upper-bounded by
⌈(L−1)/2⌉

L
. By applying Hoeffding’s inequality, we have:

P(|µ̂|S| − µ| ≥ ϵ) ≤ 2 exp
−2L3Mt2

⌈(L− 1)/2⌉2
, (3.8)

where µ̂|S| denotes the sampled mean of the given random variable, and µ denotes the expec-

tation. Let δ = 2 exp −2L3Mt2

⌈(L−1)/2⌉2 , with probability 1− δ, we have the error:

ϵ = |µ̂|S| − µ| ≤ ⌈(L− 1)/2⌉
L

√
log (2/δ)

2LM
(3.9)
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Algorithm 3.4: NetEffect_Exp

Data: “Emphasis” matrix A∗
, estimated compatibility matrix Ĥ∗

, and initial belief Ê
Result: Final belief B

1 B̂(0) ← On×c, t← 0;
/* Propagation */

2 while ∥B̂(t+1) − B̂(t)∥1 > 1 do

3 B̂(t+1) ← Ê+ fA∗B̂(t)Ĥ
∗
;

4 t← t+ 1;

5 end

6 Return B← B̂(t) + 1/c;

With non-backtracking random walk [ABLS07], the upper bound of X can be decreased to

⌈(L−1)/3⌉
L

. Let δ = 2 exp −2L3Mt2

⌈(L−1)/3⌉2 , with probability 1− δ, we now have the error:

ϵ = |µ̂|S| − µ| ≤ ⌈(L− 1)/3⌉
L

√
log (2/δ)

2LM
(3.10)

■

Structural-Aware Node Representation Based onW, we apply a series of transformations

to generate better and unbiased representations of nodes in a fast way. An element-wise multi-

plication byA (i.e., the Hadamard product in Definition 2.5) is done to keep the approximation

of 1-hop neighbor for each node, which is sparse but supplies sufficient information. We use

the inverse of the degree matrixD−1
to reduce the influence of nodes with large degrees. This

prevents them from dominating the pairwise distance by containing more elements in their

rows. The element-wise logarithm rescales the distribution in W, in order to enlarge the dif-

ference between smaller structures. We use Singular Value Decomposition (SVD) for efficient

rank-d decomposition of sparse W, and multiply the left-singular vectors U by the squared

eigenvalues

√
Σ to correct the scale.

“Emphasis” Matrix Construction Directly measuring the node similarity in the graph is

not trivial, or may be time consuming (e.g., by counting motifs). Therefore, we propose to

compute the node similarity via the structural-aware node representations, which capture the

higher-order information, and construct the “emphasis” matrix A∗
by weighing A with the

node similarity. The intuition is that the nodes that are closer in the embedding space are better

connected with higher-order structures. The similarity function is S(Ui,Uj) = e−D(Uik,Ujk)
,

where e is the Euler’s number. It is a universal law [She87], which turns the distance into

similarity, and bounds it from 0 to 1. While D can be any distance metric, we use Euclidean as

it works well empirically.
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3.5.2 NetEffect_Exp

The algorithm of NetEffect_Exp is given in Algorithm 3.4. NetEffect_Exp takes as input

the “emphasis” matrixA∗
, the compatibility matrix Ĥ∗

estimated byA∗
, and the initial beliefs

Ê. It computes the beliefs B̂ iteratively by aggregating the beliefs of neighbors through A∗

until they converge. This reusage ofA∗
aims to draw attention to the neighbors that are more

structurally important. By exploiting GNE with Ĥ∗
, NetEffect_Exp propagates properly in

heterophily graphs.

Convergence Guarantee To ensure the convergence of NetEffect_Exp, we introduce a

scaling factor f during the iterations. A smaller f leads to a faster convergence but distorts the

results, thus we set f to 0.9/ρ(A∗). Its exact convergence is as follows:

Lemma 3.4: Exact Convergence

The criterion for the exact convergence of NetEffect_Exp is 0 < f < 1/ρ(A∗), where
ρ(·) denotes the spectral radius of the matrix.

Proof. NetEffect_Exp exactly converges if and only if ρ(A∗)ρ(Ĥ∗) < 1. H∗
is normalized by

row, where ρ(H∗) = 1 is a constant and it is less than 1 after centering. The scaling factor f of

propagation must be in the range of (0, 1/ρ(A∗)) to meet the criterion of exact convergence.

■

Complexity Analysis NetEffect_Exp utilizes sparse matrix representations of graphs and

scales linearly. Its complexity is as follows:

Lemma 3.5: Time and Space Complexity

The time complexity of NetEffect_Exp is approximatelyO(m) and the space complexity

is O(max (m,n · L ·M) + n · c2).

Proof. For NetEffect_Est, since there are c sets of parameters are independent, we can sepa-

rate the problem into c tasks, where each contains c features and |P| samples. The complexity

can then be reduced to O(|P| · c3), and the efficient leave-one-out cross-validation only needs

to be done once. For NetEffect_Exp, for each random walk, each node visits at most L ·M
unique nodes, so the maximum number of non-zero elements inW is either n ·L ·M if we have

not walked through all the edges, orm otherwise. SVD onW takes O(d ·max (m,n · L ·M)).
It takes at most O(m + n) for sparse matrix multiplication to run t iterations. Thus, the time

complexity is O(dmax (m,n · L ·M) + |P| · c3 +m). In practice, c, |P| and t are usually small

constants which are negligible, and m is usually much larger. Keeping only the dominating

terms, the time complexity is approximately O(m). W contains at most max (m,n · L ·M)
non-zero elements. The Kronecker product at most contains n · c2 non-zero elements. The

space complexity is O(max (m,n · L ·M) + n · c2). ■
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Table 3.4: NetEffect wins on x-ophily and heterophily datasets. Green ( , , ) marks

the top three (better is darker).

Dataset Synthetic Pokec-Gender arXiv-Year Patent-Year

# of Nodes 1.2M 1.6M 169K 1.3M

# of Edges 34.0M 22.3M 1.2M 4.3M

# of Classes 6 2 5 5

Label Fraction 4% 0.4% 4% 4%

GNE Strength Strong x-ophily Strong Heterophily Weak x-ophily Weak Heterophily

Method Acc. Time Rel. Time Acc. Time Rel. Time Acc. Time Rel. Time Acc. Time Rel. Time

GCN 16.7±0.0 3456 4.1× 51.8±0.1 2906 3.4× 35.3±0.1 132 2.5× 26.0±0.0 894 2.3×
APPNP 18.6±1.1 7705 9.2× 50.9±0.3 6770 7.8× 33.5±0.2 423 8.1× 27.5±0.2 2050 5.2×

MixHop 16.7±0.0 58391 70.0× 53.4±1.2 53871 62.1× 39.6±0.1 2983 57.4× 26.8±0.1 18787 47.6×
GPRGNN 18.9±1.2 7637 9.1× 50.7±0.2 6699 7.7× 30.1±1.4 400 7.7× 25.3±0.1 2034 5.1×

HOLS 46.1±0.1 1672 2.0× 54.4±0.1 8552 9.9× 34.1±0.3 566 10.9× 23.6±0.0 510 1.3×

NetEffect-Hom 45.6±0.1 835 1.0× 56.9±0.2 869 1.0× 37.0±0.3 52 1.0× 24.3±0.0 429 1.1×
NetEffect 80.4±0.0 841 1.0× 67.3±0.1 867 1.0× 38.9±0.1 52 1.0× 28.7±0.1 395 1.0×

3.6 Experiments

In this section, we aims to answer the following questions:

RQ1. Accuracy: How well does NetEffect work by estimating and exploiting GNE?

RQ2. Scalability: How does the running time of NetEffect scale w.r.t. graph size?

RQ3. Explainability: How does NetEffect explain the real-world graphs?

Datasets We focus on large graphs and include 8 graphs with at least 20K nodes. For each

dataset, we sample only a few node labels for training for five times and report the average.

“Synthetic” is the enlarged graph in Figure 3.1b, which exhibits x-ophily GNE.

Baselines We compare NetEffect with five baselines and separate them into four groups:

General GNNs: GCN [KW17], APPNP [KBG19]. Heterophily GNNs: MixHop [APK
+
19], GPRGNN

[CPLM21]. BP-based methods: HOLS [EKF20]. Our proposed methods: NetEffect-Hom and

NetEffect. NetEffect-Hom is NetEffect using identity matrix as compatibility matrix,

which assumes homophily and does not handle GNE.

Experimental Settings For GNNs, one-hot node degrees are used as the node features, as

implemented by PyG [FL19]. Experiments are run on a server with 3.2 GHz Intel Xeon CPU.

3.6.1 RQ1 – Accuracy

In Table 3.4 and 3.5, we report the accuracy and running time. We highlight the top three from

dark to light by , and denoting the first, second and third place. In summary, NetEffect

wins on x-ophily, heterophily and homophily graphs.

x-ophily and Heterophily In Table 3.4, NetEffect outperforms all the competitors signifi-

cantly by more than 34.3% and 12.9% accuracy on “Synthetic” and “Pokec-Gender”, respectively.
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Table 3.5: NetEffect wins on homophily datasets. Green ( , , ) marks the top three

(better is darker).

Dataset Facebook GitHub arXiv-Category Pokec-Locality

# of Nodes 22.5K 37.7K 169K 1.6M

# of Edges 171K 289K 1.2M 22.3M

# of Classes 4 2 40 10

Label Fraction 4% 4% 4% 0.4%

Method Acc. Time Rel. Time Acc. Time Rel. Time Acc. Time Rel. Time Acc. Time Rel. Time

GCN 67.0±0.8 12 2.0× 81.0±0.6 28 2.2× 25.4±0.3 216 2.3× 17.3±0.4 4002 2.9×
APPNP 50.5±2.2 46 7.7× 74.2±0.0 73 5.6× 19.4±0.6 1176 12.3× 16.8±1.7 11885 8.6×

MixHop 69.2±0.7 296 49.3× 77.8±1.3 526 40.5× 33.0±0.6 3203 33.4× 16.9±0.3 52139 37.9×
GPRGNN 51.9±1.5 47 7.8× 74.1±0.1 75 5.8× 19.7±0.3 1174 12.2× 30.0±2.0 11959 8.7×

HOLS 86.0±0.4 934 155.7× 80.8±0.5 126 9.7× 61.4±0.2 627 6.5× 63.7±0.3 8139 5.9×

NetEffect-Hom 85.2±0.5 6 1.0× 81.3±0.5 13 1.0× 61.7±0.2 96 1.0× 66.0±0.2 1437 1.0×
NetEffect 85.2±0.5 6 1.0× 81.3±0.5 13 1.0× 58.8±0.6 108 1.1× 64.8±0.8 1377 1.0×

Table 3.6: Ablation Study: Estimating the compatibility matrix using our proposed “emphasis”

matrix allows NetEffect to perform better. Green ( ) marks the winner.

Dataset GNE Strength NetEffect-Hom NetEffect-EC NetEffect-A NetEffect

Synthetic

Strong

77.7±0.0 68.0±0.1 77.4±0.0 80.5±0.0
Pokec-Gender 56.9±0.1 64.9±0.2 64.8±0.2 67.3±0.1

arXiv-Year (imba.)

Weak

37.0±0.3 36.5±1.0 35.7±0.6 38.4±0.0
Patent-Year (imba.) 24.1±0.0 24.0±0.9 28.7±0.1 28.7±0.0

These graphs exhibit strong GNE, thusNetEffect boosts the accuracy owing to precise estima-

tions of compatibility matrix. Heterophily GNNs give results close to majority voting when the

observed labels are not adequate. With homophily assumption, General GNNs and BP-based

methods also not perform well. Both “arXiv-Year” and “Patent-Year” have weak GNE (Sec-

tion 3.3.2). Even so, NetEffect still outperforms the competitors by estimating a reasonable

compatibility matrix (Figure 3.6c).

Homophily In Table 3.5, NetEffect-Hom outperforms all the competitors on 3 out of 4

homophily graphs, namely “GitHub”, “arXiv-Category” and “Pokec-Locality”, and NetEffect

performs similarly to NetEffect-Hom. In addition, NetEffect-Hom performs competitively

with HOLS on “Facebook”, while being 155.7× faster.

Ablation Study We evaluate different compatibility matrices – (i) NetEffect-EC uses edge

counting on the labels of adjacent nodes in the priors, and (ii) NetEffect-A uses the adjacency

matrix instead of “emphasis” matrix as the input of NetEffect_Est. To evaluate the cases

when imbalanced labels are given, we upsample 5% labels to the class with the fewest labels

in the datasets with weak GNE during the estimation. In Table 3.6, we find that NetEffect

outperforms all its variants in all datasets. In the graphs with strong GNE, NetEffect shows

its robustness to the structural noises and gives better results. In the imbalanced graphs, while
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Table 3.7: NetEffect is thrifty. AWS dollar cost ($) is reported, by t3.small and p3.2xlarge.

Green ( ) marks the winner.

Dataset NetEffect GCN

Pokec-Gender $0.33 (1.0×) $12.61 (45.0×)
Pokec-Locality $0.53 (1.0×) $13.66 (29.1×)
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Figure 3.5: NetEffect is scalable. It is fast and scales linearly with the edge number.

NetEffect-EC brings its vulnerability to light, NetEffect stays with high accuracy. This

study highlights the importance of a compatibility matrix estimation, as well as forming it into

an optimization problem as shown in Lemma 3.1.

3.6.2 RQ2 – Scalability

NetEffect is scalable. We vary the edge number in “Pokec-Gender” and plot against the run-

ning time, including training and inference. In Figure 3.5, NetEffect scales linearly as ex-

pected, following Lemma 3.5.

NetEffect is also thrifty. Table 3.7 shows the estimated AWS dollar cost in “Pokec-Gender”,

assuming that we use an AWS CPU machine for NetEffect, and an AWS GPU machine for

GCN. For CPU machine, we select t3.small with 3.3GHz CPU, which is faster than ours, and

costs $0.023 per hour. For GPU machine, we select p3.2xlarge with a V100 GPU, which costs

$3.06 per hour, which is about 0.89 slower than the RTX A6000 GPU when running PyTorch.

The running time of GCN on “Pokec-Gender” and “Pokec-Locality” are 673 and 730 seconds,

respectively. Using the information provided, the results in Table 3.7 can be computed.

3.6.3 RQ3 – Explainability

Figure 3.6 shows the compatibility matrices that NetEffect recovered, and the results agree

well with intuition. For “Synthetic”, NetEffectmatches the answer used for graph generation

(Figure 3.3c). For “Pokec-Gender”, NetEffect report heterophily (Figure 3.6a), where people

tend to interact more with the opposite gender [GMB
+
19]. For “arXiv-Year” and “Patent-Year”,

NetEffect find that papers and patents often cite nearby-year works (Figure 3.6b and 3.6c).
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Figure 3.6: NetEffect is explainable. Our estimated compatibility matrices are much more

robust to noises compared to edge counting (in Figure 3.2).

3.7 Conclusion

We analyze the generalized network-effects (GNE) in node classification in the presence of only

few labels. Our proposed NetEffect has the following desirable properties:

1. Principled: NetEffect_Test to statistically identify the presence of GNE,

2. General and Explainable: NetEffect_Est to estimate GNE with derived closed-form

solution, if there is any, and

3. Accurate and Scalable: NetEffect_Exp to efficiently exploit GNE for better perfor-

mance on node classification.

Applied on a real-world graph with 22.3M edges, NetEffect only requires 14 minutes, and

outperforms baselines on both accuracy and speed (≥7×).
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Chapter 4

SlimG: Accurate, Robust, and

Interpretable Graph Mining

Chapter based on work that appeared at KDD 2023 [YLSF23] [PDF].

How canwe solve semi-supervised node classification in various graphs possiblywith noisy

features and structures? Graph neural networks (GNNs) have succeeded in many graph

mining tasks, but their generalizability to various graph scenarios is limited due to the dif-

ficulty of training, hyperparameter tuning, and the selection of a model itself. Einstein said

that we should “make everything as simple as possible, but not simpler.” We rephrase it into

the careful simplicity principle: a carefully designed simple model can surpass sophisticated

ones in real-world graphs.

In this chapter, based on the principle, we propose SlimG for semi-supervised node

classification, which exhibits four desirable properties: It is (a) Accurate, winning or tying

on 10 out of 13 real-world datasets; (b) Robust, being the only one that handles all scenarios

of graph data (homophily, heterophily, random structure, noisy features, etc.); (c) Fast and

Scalable, showing up to 18× faster training in million-scale graphs; and (d) Interpretable,

thanks to the linearity and sparsity.

We explain the success of SlimG through a systematic study of the designs of existing

GNNs, sanity checks, and comprehensive ablation studies.
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Figure 4.1: SlimG wins on all sanity checks. Each row is a specific scenario of graph data

that we propose for comprehensive evaluation in Section 4.5. The table is generated from the

actual accuracy in Table 4.4: ✓ means the accuracy ≥ 80%.

4.1 Introduction

How can we solve semi-supervised node classification in various types of graphs possibly

with noisy features and structures? Graph neural networks (GNNs) [KW17, HYL17, GSR
+
17,

VCC
+
18] have succeeded in various graph mining tasks such as node classification, cluster-

ing, or link prediction. However, due to the difficulty of training, hyperparameter tuning, and

even the selection of a model itself, many GNNs fail to show their best performance when ap-

plied to a large testbed that contains real-world graphs with various characteristics. Especially

when a graph contains noisy observations in its features and/or its graphical structure, which

is common in real-world data, existing models easily overfit their parameters to such noises.

In response to the question, we propose SlimG, our novel node classification model on

graphs based on the careful simplicity principle: a simple carefully-designed model can be more

accurate than complex ones thanks to better generalizability, robustness, and easier training.

The four design decisions of SlimG (D1-4 in Section 4.4) are carefully made to follow this prin-

ciple by observing and addressing the pain points of existing GNNs; we generate and combine

various types of graph-based features (D1), design structure-only features (D2), remove redun-

dancy in feature transformation (D3), and make the propagator function contain no hyperpa-

rameters (D4).

The resulting model, SlimG, is our main contribution (C1) which exhibits the following

desirable properties:

• C1.1 – Accurate on both real-world and synthetic datasets, almost always winning or

tying in the first place (see Figure 4.2, Table 4.4, and Table 4.5).

• C1.2 – Robust, being able to handle numerous real settings such as homophily, het-

erophily, no network effects, useless features (see Figure 4.1 and Table 4.4).

• C1.3 – Fast and scalable, using carefully chosen features, it takes only 32 seconds on

million-scale real-world graphs (ogbn-Products) on a stock server (see Figure 4.2).

• C1.4 – Interpretable, learning the largest weights on informative features, ignoring

noisy ones, based on the linear decision function (see Figure 4.5).
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Figure 4.2: SlimG wins both on accuracy and training time on (left) ogbn-arXiv, (middle)

ogbn-Products, and (right) Pokec, which are large real-world graphs (1.2M, 61.9M, and 30.6M

edges, resp.). Several baselines run out of memory (crossed out).
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Figure 4.3: Why ‘less is more’: The simple model f0(x) = c (in blue) matches the reality (in

purple), while richer models with more polynomial powers end up capturing noise in the given

data: the tiny downward trend by f1(x) (in red) and the spurious curvature by f2(x) (in green).

Not only we propose a carefully designed, effective method (in Section 4.4), but we also

explain the reasons for its success. This is thanks to our three additional contributions (C2-4):

• C2 – Explanation (Section 4.3): We propose GnnExp, a framework for the system-

atic linearization of a GNN. As shown in Table 4.3, GnnExp highlights the similarities,

differences, and weaknesses of successful GNNs.

• C3 – Sanity checks (Section 4.5): We propose seven possible scenarios of graphs (ho-

mophily, heterophily, no network effects, etc.), which reveal the strong and weak points

of each GNN; see Figure 4.1 with more details in Table 4.4.

• C4 – Experiments (Section 4.6): We conduct extensive experiments to better under-

stand the success of SlimG even with its simplicity. Our results in Tables 4.6 to 4.10 show

that SlimG effectively selects the most informative component in each dataset, fully ex-

ploiting its robustness and generality.
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Less is more Our justification for the counter-intuitive success of simplicity is illustrated in

Figure 4.3: A set of points are uniformly distributed in x ∈ (−1, 1) and y ∈ (0, 1), and the fitting
polynomials fi(x)with degree i = 0, 1, 2 are given. Notice that the simplest model f0 (blue line)
matches the true generator f(x) = 0.5. Richer models use the 1st and the 2nd degree powers

(many cooks spoil the broth) and end up modeling tiny artifacts, like the small downward slope

of f1 (red line), and the curvature of f2 (green line). This ‘many cooks’ issue is more subtle and

counter-intuitive than overfitting, as f2 and f3 have only 2 to 3 unknown parameters to fit to

the hundred data points: even a small statistical can fail if it is not matched with the underlying

data-generating mechanism.

Reproducibility: Our code, along with our datasets for sanity checks, is available at https:
//github.com/mengchillee/SlimG.

4.2 Background and Related Work

4.2.1 Background

We define semi-supervised node classification as follows:

• Given an undirected and attributed graphG = (A,X), whereA ∈ Rn×n
is an adjacency

matrix,X ∈ Rn×d
is a node feature matrix, n is the number of nodes, and d is the number

of features.

• Given the labels y ∈ {1, · · · , c}m of m nodes in G, where m ≪ n, and c is the number

of classes.

• Predict the unknown classes of n−m testing nodes.

An overview of symbols and acronyms is provided in Table 4.1 and Table 4.2, respectively.

We use the following symbols to represent adjacency matrices with various normalizations

and/or self-loops. Ã = A+ I is the adjacency matrix with self-loops. D̃ = diag(Ã1n×1) is
the diagonal degree matrix of Ã, where 1n×1 is the matrix of size n × 1 filled with ones.

Ãsym = D̃−1/2ÃD̃−1/2
is the symmetrically normalized Ã. Similarly, Asym = D−1/2AD−1/2

is also the symmetrically normalized A but without self-loops. We also use a different type of

normalization Arow = D−1A (and accordingly Ãrow), which we call row normalization, based

on the position of the matrixD.

As background, we define logistic regression (LR) as a function to find the weight matrix

W that best maps given features to labels with a linear function.
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Table 4.1: Table of Symbols and Definitions.

Symbol Definition

G Undirected and attributed graph

n Number of nodes

d Number of features

c Number of classes

m Number of known node labels

y Set of node labels

A ∈ Rn×n
Adjacency matrix

X ∈ Rn×d
Node feature matrix

I ∈ Rn×n
Identity matrix

D ∈ Rn×n
Degree matrix with node degrees along diagonal

W ∈ Rd×c
Weight matrix for classification

P Feature propagator function

Table 4.2: Table of Acronyms.

Acronym Definition

LR Logistic Regression

SVD Singular Value Decomposition

PCA Principal Component Analysis

GNN Graph Neural Network

GCN Graph Convolutional Networks

SGC Simple Graph Convolution

Definition 4.1: Logistic Regression

Given a feature X ∈ Rn×d
and a label y ∈ Rm

, where m is the number of observations

such thatm ≤ n, letY ∈ Rm×c
be the one-hot representation of y, and yij be the (i, j)-th

element in Y. Then, logistic regression (LR) is a function that finds an optimal weight

matrixW ∈ Rd×c
fromX and y as follows:

LR(X,y) = argmax
W

m∑
i=1

c∑
j=1

yij log softmaxj(W
⊤xi), (4.1)

where softmaxj(·) represents selecting the j-th element of the result of the softmax func-

tion. We omit the bias term for brevity.

4.2.2 Graph Neural Networks

We provided a brief review of GNNs in Section 3.2.4 and offer a more comprehensive review

here. There exist many recent GNN variants; recent surveys [ZCH
+
20a, WPC

+
21] group them

into spectral models [DBV16, KW17], sampling based models [HYL17, YHC
+
18, ZYZ

+
20], at-

tention based models [VCC
+
18, KO21, BAY22], and deep models with residual connections

[LMTG19, CWH
+
20]. Decoupled models [KBG19, KWG19, CPLM21] separate the two major

functionalities of GNNs: the node-wise feature transformation and the propagation. GNNs

are often fused with graphical inference [YJK19, HHS
+
21] to further improve the predicted re-

sults. These GNNs have shown great performance in many graph mining tasks, but suffer from

limited robustness when applied to graphs with various characteristics possibly having noisy

observations, especially in semi-supervised learning.
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4.2.3 Linear Graph Neural Networks

[WJZ
+
19] proposed SGC by removing the nonlinear activation functions of GCN [KW17], re-

ducing the propagator function to a simple matrix multiplication. [WWYL21] and [ZK21] im-

proved SGC by manually adjusting the strength of self-loops with hyperparameters, increasing

the number of propagation steps. [LGW
+
22] proposed G

2
CN, which improves the accuracy of

DGC [WWYL21] on heterophily graphs by combining multiple propagation settings (i.e. band-

widths). The main limitation of these models is the high complexity of propagator functions

with many hyperparameters, which impairs both the robustness and interpretability of deci-

sions even with linearity.

4.2.4 Graph Kernel Methods

Traditional works on graph kernel methods [SK03, IMN
+
18] are closely related to linear GNNs,

which can be understood as applying a linear graph kernel to transform the raw features. A

notable limitation of such kernel methods is that they are not capable of addressing various

scenarios of real-world graphs, such as heterophily graphs, as their motivation is to aggregate

all information in the local neighborhood of each node, rather than ignoring noisy and useless

ones. We implement three popular kernel methods as additional baselines and show that our

SlimG outperforms them in both synthetic and real graphs.

4.3 Proposed Framework: GnnExp

Why do GNNs work well when they do? In what cases will a GNN fail? We answer these ques-

tions with GnnExp, our proposed framework for revealing the essence of each GNN. The idea

is to derive the essential feature propagator function on which each variant is based, ignoring

nonlinearity, so that all models are comparable on the same ground. The observations from

GnnExp motivate us to propose our method SlimG, which we describe in Section 4.4.

Definition 4.2: Linearization

Given a graph G = (A,X), let f(·; θ) be a node classifier function to predict the labels of

all nodes in G as ŷ = f(A,X; θ), where θ is the set of parameters. Then, f is linearized if

θ = {W} and the optimal weight matrixW∗ ∈ Rh×c
is given as

W∗ = LR(P(A,X),y), (4.2)

where P is a feature propagator function that is linear with X and contains no learnable

parameters, and P(A,X) ∈ Rn×h
. We ignore the bias term without loss of generality.
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Definition 4.3: GnnExp

Given a GNN f , GnnExp is to represent f as a linearized GNN by replacing all (nonlinear)

activation functions in f with the identity function and deriving a variant f ′
that is at least

as expressive as f but contains no parameters in P .

GnnExp represents the characteristic of a GNN as a linear feature propagator functionP , which
transforms raw features X by utilizing the graph structure A. Lemma 4.1 shows that GnnExp

generalizes existing linear GNNs. Logistic regression is also represented by GnnExp with the

identity propagator P(A,X) = X.

Lemma 4.1

GnnExp includes existing linear graph neural networks as its special cases: SGC, DGC,

S
2
GC, and G

2
CN.

Proof. We prove the lemma for each of SGC, DGC, S
2
GC, and G

2
CN. The propagator function

of SGC [WJZ
+
19] directly fits the definition of linearization. DGC [WWYL21] has variants

DGC-Euler and DGC-DK. We focus on DGC-Euler, which is mainly used in their experiments.

Then, DGC also fits the definition of linearization. S
2
GC [ZK21] computes the summation of

features propagated with different numbers of steps. The original formulation divides the added

features byK , which is safely ignored as we multiply the weight matrixW to the transformed

feature for classification.

G
2
CN [LGW

+
22] does not provide an explicit formulation of the propagator function. The

parameterized version P ′
of the propagator function is P ′(A,X; {θi}Ni=1) =

∑N
i=1 θiHi,K ,

where θi is a parameter. The k-th feature representation Hi,k is recursively defined as Hi,k =
[I− Ti

K
((bi−1)I+Asym)

2]Hi,k−1, whereL = I−Asym is the normalized Laplacian matrix,N , Ti,

and bi are hyperparameters, and Hi,0 = X. Then, we make it contain no learnable parameters

as P(A,X) = ∥Ni=1Hi,K . We prove the lemma from the four cases. ■

In Table 4.3, we conduct a comprehensive linearization of existing GNNs using GnnExp to

understand the fundamental similarities and differences among GNN variants. The models are

categorized into linear, decoupled, coupled, and attention models. We ignore bias terms for

simplicity, without loss of generality.

4.3.1 Pain Points of Existing GNNs

Based on the comprehensive linearization in Table 4.3, we derive four pain points of existing

GNNs which we address in Section 4.4.
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Table 4.3: GnnExp encompasses popular GNNs. The * and ** superscripts mark fully and

partially linearized models, respectively. We derive Pain Points (Section 4.3.1) and Distinguish-

ing Factors (Section 4.3.2) of the variants through GnnExp.

Model Type Propagator function P(A,X)

LR Linear X

SGC Linear ÃK
symX

DGC Linear [(1− T/K)I+ (T/K)Ãsym]
KX

S
2
GC Linear

∑K
k=1(αI+ (1− α)Ãk

sym)X
G

2
CN Linear ∥Ni=1[I− (Ti/K)((bi − 1)I+Asym)

2]KX

PPNP* Decoupled (I− (1− α)Ãsym)
−1X

APPNP* Decoupled [
∑K−1

k=0 α(1− α)kÃk
sym + (1− α)KÃK

sym]X

GDC* Decoupled S = sparseϵ(
∑∞

k=0(1− α)kÃk
sym) for S̃symX

GPR-GNN* Decoupled ∥Kk=0Ã
k
symX

ChebNet* Coupled ∥K−1
k=0 A

k
symX

GCN* Coupled ÃK
symX

SAGE* Coupled ∥Kk=0A
k
rowX

GCNII* Coupled ∥K−2
k=0 Ã

k
symX ∥ ((1− α)ÃK

sym + αÃK−1
sym )X

H2GCN* Coupled ∥2Kk=0A
k
symX

GAT** Attention

∏K
k=1[diag(Xwk,1)Ã+ Ãdiag(Xwk,2)]X

DA-GNN** Attention

∑K
k=0 diag(Ã

k
symXw)Ãk

symX

Pain Point 4.1: Lack of Robustness

All models in Table 4.3 fail to handle multiple graph scenarios at the same time, i.e., graphs

with homophily, heterophily, no network effects, or useless features.

Most models in Table 4.3 make an implicit assumption on given graphs, such as homophily or

heterophily, rather than being able to perform well in multiple scenarios at the same time. For

example, all models except ChebNet, SAGE, and H2GCN have self-loops in the new adjacency

matrix, emphasizing the local neighborhood of each node even in graphs with heterophily or no

network effects. This is the pain point that we also observe empirically from the sanity checks

(in Table 4.4), where none of the existing models succeeds in making reasonable accuracy in all

cases of synthetic graphs.

Pain Point 4.2: Vulnerability to Noisy Features

All models in Table 4.3 cannot fully exploit the graph structure if the features are noisy,

since they depend on the node feature matrixX.
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If a graph does not have a feature matrixX, a common solution is to introduce one-hot features

[KW17], i.e., X = I, although it increases the running time of the model a lot. On the other

hand, if X exists but some of its elements are meaningless with respect to the target classes,

models whose propagator functions rely on X suffer from the noisy elements. In such cases, a

desirable property for a model is to adaptively emphasize important features or disregard noisy

ones to maximize its generalization performance, which is not satisfied by any of the existing

models in Table 4.3.

Pain Point 4.3: Efficiency and Effectiveness

Concatenation-based models in Table 4.3 create spurious correlations between feature el-

ements, requiring more parameters than in other models.

Existing models such as GPR-GNN and GCNII in Table 4.3 perform the concatenation of mul-

tiple feature matrices transformed in different ways. For example, GPR-GNN concatenates

Ãk
symX for different values of k from 0 toK , whereK is a hyperparameter. Such a concatenation-

based propagation limits the efficiency of a model in two ways. First, this increases the number

of parametersK times, since the model needs to learn a separate weight matrix for each given

feature matrix. Second, this creates spurious correlations in the resulting features, since the

feature matrices like ÃsymX and Ã2
symX have high correlations with each other.

Pain Point 4.4: Many Hyperparameters

Hyperparameters in P impair its interpretability and require extensive tuning.

Most models in Table 4.3, even the linear models such as DGC and G
2
CN, contain many hy-

perparameters in the propagator function P . Such hyperparameters lead to two limitations.

First, the interpretability of the weight matrix W is impaired, since it is learned on top of the

transformed feature P(A,X) whose meaning changes arbitrarily by the choice of its hyperpa-

rameters. For example, DGC changes the numberK of propagation steps between 250 and 900

in real-world datasets, making it hard to have consistent observations from the generated fea-

tures. Second, P(A,X) should be computed for every new choice of hyperparameters, while

it can be cached and reused for searching hyperparameters outside P .

4.3.2 Distinguishing Factors

What are the potential choices in designing a general approach that addresses the pain points?

We analyze the fundamental similarities and differences among the GNN variants in Table 4.3.
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Distinguishing Factor 4.1: Combination of Features

How should we combine node features, the immediate neighbors’ features, and the K-

step-away neighbors’ features?

GNNs propagate information by multiplying the feature X with (a variant of) the adjacency

matrixA multiple times. There are two main choices in Table 4.3: (1) the summation of trans-

formed features (most models), and (2) the concatenation of features (GPR-GNN, GraphSAGE,

GCNII, and H2GCN). Simple approaches like SGC are categorized as the summation due to the

self-loops in Ãsym.

Distinguishing Factor 4.2: Modification ofA

How should we normalize or modify the adjacency matrixA?

The three prevailing choices are given as follows: (1) symmetric vs. row normalization, (2) the

strength of self-loops, including making zero self-loops, and (3) static vs. dynamic adjustment

based on the given features. Most models use the symmetric normalization Ãsym with self-

loops, but some variants avoid self-loops and use either row normalizationArow or symmetric

one Asym. Recent models such as DGC, G
2
CN, and GCNII determine the weight of self-loops

with hyperparameters, since strong self-loops allow distant propagation with a large value of

K . Finally, attention-basedmodels learn the elements inA dynamically based on node features,

making propagator functions quadratic withX, not linear.

Distinguishing Factor 4.3: Heterophily

What to do if the direct neighbors differ in their features or labels?

In such cases, the simple aggregation of the features of immediate neighbors may hurt perfor-

mance, and therefore, several GNNs do suffer under heterophily as shown in Table 4.4. GNNs

that can handle heterophily adopt one or more of these ideas: (1) using the square of A as the

base structure (G
2
CN); (2) learning different weights for different steps (GPR-GNN, ChebNet,

SAGE, and GCNII), and (3)making small or no self-loops in the modification ofA (DGC, S
2
GC,

G
2
CN, and H

2
GCN). The idea is to avoid or downplay the effect of immediate (and odd-step-

away) neighbors. Self-loops hurt under heterophily, as they force to have information of all

intermediate neighbors by acting as the implicit summation of transformed features.

4.4 Proposed Method: SlimG

We propose SlimG, a novel method that addresses the limitations of existing models with strict

adherence to the careful simplicity principle. We first derive four design decisions (D1-D4) that
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directly address the pain points (PPs) of existing GNN models and propose the following prop-

agator function of SlimG:

P(A,X) = U︸︷︷︸
Structure

∥ g(X)︸ ︷︷ ︸
Features

∥ g(A2
rowX)︸ ︷︷ ︸

2-step neighbors

∥ g(Ã2
symX)︸ ︷︷ ︸

Neighbors

(4.3)

where g(·) is the principal component analysis (PCA) for the orthogonalization of each com-

ponent, followed by an L2 normalization, and U ∈ Rn×r
contains r-dimensional structural

features independent of node features X, derived by running the low-rank singular value de-

composition (SVD) on the adjacency matrixA.

D1: Concatenating winning normalizations (for PP 4.1 – robustness) The main prin-

ciple of SlimG to acquire robustness and generalizability, in response to Pain Point 4.1, is to

transform the raw features into various forms and then combine them through concatenation.

In this way, SlimG is able to emphasize essential features or ignore useless ones by learning

separate weights for different components. The four components of SlimG in Equation (4.3)

show their strength in different cases: structural features U for graphs with noisy features,

self-features X for a noisy structure, two-step aggregation A2
row for heterophily graphs, and

smoothed two-hop aggregation Ã2
sym of the local neighborhood for homophily.

Specifically, we use the row-normalized matrix Arow with no self-loops due to the limita-

tions of the symmetric normalization Ãsym: First, the self-loops force one to combine all inter-

mediate neighbors of each node until the K-hop distance, even in heterophily graphs where

the direct neighbors should be avoided. Second, neighboring features are rescaled based on

the node degrees during an aggregation, even when we want simple aggregation of K-hop

neighbors preserving the original scale of features. We thus use A2
row along with the popular

transformation Ã2
sym in SlimG.

D2: Structural features (for PP 4.2 – noisy features) In response to Pain Point 4.2, we

have to resort to the structure A ignoring X when features are missing, noisy, or useless for

classification. Thanks to our design decision (D1) for concatenating different components, we

can safely add to P structure-based features which the model can utilize adaptively based on

the amount of informationX provides. However, it is not effective to use rawA, which requires

the model to learn a separate weight vector for each node, severely limiting its generalizability.

We thus adopt low-rank SVD with rank r to extract structural features U. The value of r is

selected to keep 90% of the energy ofA, where the sum of the largest r squared singular values
divided by the squared Frobenius norm ofA is smaller than 0.9. If the chosen value of r is larger
than d in large graphs, we set r to d for the size consistency between different components.

D3: Orthogonalization and sparsification (for PP 4.3 – collinearity) To improve the ef-

ficiency and effectiveness of SlimG in response to Pain Point 4.3, we use two reliable methods to

further transform the features: dimensionality reduction by PCA and regularization by group

LASSO. First, we run PCA on each of the four components to orthogonalize them and to im-

prove the consistency of learned weights. Second, we use group LASSO to learn sparse weights
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on the component level, preserving the relative magnitude of each element and suppressing

noisy features. To assure the consistency between components (especially with the structural

features U), we force all components to have the same dimensionality by selecting r features

from each component when adopting PCA.

D4: Multi-level neighborhood aggregation (for PP 4.4 – hyperparameters) Our prop-

agator function P considers multiple levels of neighborhoods through the concatenation of

different components. This allows us to remove all hyperparameters from P to tune for each

dataset, in response to Pain Point 4.4, gaining in both interpretability and efficiency. Specifi-

cally, X, Ã2
sym, and A2

row aggregate the zero-, one-, and two-hop neighborhood of each node,

respectively, considering the self-loops included in Ã2
sym. Then,U considers the global topology

information of each node, which is in effect the same as considering the distant neighborhood

in the graph. As a result, SlimG performs well in different real-world datasets without tuning

any hyperparameters in P , unlike existing GNNs that are often required to increase the value

of K up to hundreds [WWYL21].

Time Complexity The time complexity of SlimG, including all its components SVD, PCA,

and the training of LR, is linear with a graph size in most real-world graphs where the number

of edges is much larger than the numbers of nodes and features.

Lemma 4.2: Time Complexity

Given a graph, let n and e be the numbers of nodes and edges, respectively, and d be the

number of features. Then, the time complexity of the training of SlimG isO(de+d2n+d3).

Proof. The training of SlimG consists of three parts: SVD, PCA, and LR. The time complexity of

SVD isO(de+d2n) as SlimG runs the sparse truncated SVD for generating structural features.

The complexity of PCA, which is applied to each of the four components in Equation (4.3), is

O(d2n+d3). The complexity of the gradient-based optimization of LR isO(dnt), where t is the
number of epochs. We safely assume t < n, since t < 100 in all our experiments. We prove the

lemma by combining the three complexity terms. ■

4.5 Proposed Sanity Checks

We propose a set of sanity checks to directly evaluate the robustness of GNNs to various sce-

narios of node classification.

4.5.1 Design of Sanity Checks

We categorize possible scenarios of node classification based on the characteristics of node

features X, a graph structure A, and node labels y. We denote by Aij and Yi the random
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Structure

Feature

SemanticX StructuralX RandomX

HomophilyA Both help Both help A helps

HeterophilyA Both help Both help A helps

UniformA X helps None helps None helps
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Figure 4.4: Illustration of our sanity checks. (a) We consider 3 possibilities for each of A
and X, creating a total of 9 cases. (b - d) We visualize the adjacency matrices from the three

cases ofA, which exhibit different structural patterns.

variables for edge (i, j) between nodes i and j and label yi of node i, respectively, and aij refers
to a connection inA. We summarize the nine possible cases in Figure 4.4a.

Structure We consider three cases of the structure A: uniform, homophily, and heterophily,

which are defined as follows:

• Uniform: P (Yi = y | Aij = 1, Yj = y) = P (Yi = y)
• Homophily: P (Yi = y | Aij = 1, Yj = y) > P (Yi = y)
• Heterophily: P (Yi = y | Aij = 1, Yj = y) < P (Yi = y)

The uniform case means that the label of a node is independent of the labels of its neighbors.

This is the case when the graph structure provides no information for classification. In the

homophily case, adjacent nodes are likely to have the same label, which is the most common

assumption in graph data. In the heterophily case, adjacent nodes are likely to have different

labels, which is not as common as homophily but often observed in real-world graphs.

We assume the one-to-one correspondence between the structural property and the labels:

uniform with uniformly random A, homophily with block-diagonal A, and heterophily with

non-block-diagonal A. Note that the other combinations, e.g., homophily with non-block-

diagonal A, or uniform with block-diagonal A, are not feasible by definition. Figure 4.4 il-

lustrates the three cases of A. The number of node clusters in the graph, which is four in the

figure, is the same as the number of node labels in experiments.
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Table 4.4: SlimG wins on all sanity checks. Each value denotes the average and the standard

deviation of accuracy from five runs. There are three groups of scenarios: (left) only featuresX
help; (middle) only connectivity A helps; (right) both help. Green ( , , ) marks the top three

(higher is darker); red ( ) marks the ones that are too low (2σ below the third place). SlimG

is the only method without red cells and achieves the best average accuracy and average rank

(variance in the parentheses).

Model

OnlyX helps OnlyA helps Both X andA help

Avg. Acc. Avg. RankSemanticX RandomX RandomX StructuralX StructuralX SemanticX Semantic X
UniformA Homophily Heterophily Homophily Heterophily Homophily Heterophily

LR 83.7±0.6 24.2±0.7 24.2±0.7 71.4±0.9 66.8±2.2 83.4±0.6 83.4±0.6 62.4 (26.9) 10.7 (5.4)

Reg. Kernel 82.7±0.5 27.9±0.4 24.3±1.0 75.7±0.2 65.3±1.6 91.5±0.5 79.5±0.3 63.8 (27.0) 10.4 (4.3)

Diff. Kernel 26.8±1.7 38.0±8.7 37.6±7.5 79.5±0.3 73.5±0.6 70.9±23. 56.1±27. 54.6 (20.7) 10.6 (4.0)

RW Kernel 72.2±0.7 37.0±0.4 24.5±1.3 81.3±1.2 51.0±1.1 94.5±0.9 57.8±0.7 59.8 (24.7) 10.4 (3.6)

SGC 44.6±9.8 64.3±0.7 50.2±14. 87.1±0.6 84.3±0.5 93.9±0.9 91.5±0.5 73.7 (20.4) 5.7 (3.1)

DGC 63.8±1.0 50.5±13. 26.0±0.9 88.6±1.0 45.3±1.3 96.2±0.4 54.0±0.6 60.6 (24.6) 8.3 (5.9)

S
2
GC 79.9±0.6 38.5±12. 25.4±0.9 88.4±1.0 67.9±1.5 95.9±0.6 78.0±0.5 67.7 (26.2) 7.4 (3.4)

G
2
CN 25.2±0.3 24.2±1.1 25.0±0.1 88.5±1.0 88.6±1.2 24.3±1.1 50.7±31. 46.6 (30.2) 11.6 (6.3)

GCN 36.3±3.5 46.7±8.0 43.7±1.9 83.3±1.3 72.2±1.7 91.2±1.2 80.3±3.9 64.8 (22.1) 8.1 (3.0)

SAGE 80.3±1.1 31.1±0.7 34.6±2.1 83.9±0.8 81.3±0.7 94.4±0.5 94.4±0.9 71.4 (27.0) 5.7 (2.9)

GCNII 73.5±1.2 30.7±0.7 27.1±1.3 84.2±0.8 69.0±1.4 90.6±0.9 80.4±1.2 65.1 (25.7) 8.7 (1.8)

H
2
GCN 80.2±1.5 27.0±1.0 27.5±0.8 78.0±0.9 74.6±1.3 91.9±0.7 92.2±0.9 67.3 (28.2) 8.0 (3.9)

APPNP 66.0±2.6 30.3±1.2 25.2±0.7 71.2±4.9 43.8±2.0 83.2±3.8 58.7±4.5 54.1 (21.6) 12.9 (2.0)

GPR-GNN 73.4±0.4 74.6±0.7 65.9±2.1 89.9±0.6 87.6±1.2 95.0±1.1 91.9±1.1 82.6 (11.2) 3.3 (2.1)

GAT 32.7±5.5 42.6±4.8 36.8±5.7 64.0±5.7 55.6±6.8 68.5±7.1 67.0±12. 52.5 (15.0) 11.6 (4.1)

SlimG (Ours) 81.0±1.1 87.1±1.4 89.2±1.2 88.1±0.5 88.9±0.7 94.4±0.6 93.9±0.5 88.9 ( 4.5) 2.6 (1.8)

Features We consider three cases of node features X: random, semantic, and structural. The

three cases are defined in relation to A and y. We use the notation p(·) since the features are
typically modeled as continuous variables:

• Random: p(xi,xj | yi, yj, aij) = p(xi,xj)
• Structural: p(xi,xj | yi, yj, aij) ̸= p(xi,xj | yi, yj)
• Semantic: p(xi,xj | yi, yj, aij) ̸= p(xi,xj | aij)

The random case means that each feature element xij is determined independently of all other

variables in the graph, providing no useful information. The semantic case represents a typical

graph where X provides useful information of y. In this case, the feature xi of each node i is
directly correlated with the label yi. In the structural case,X provides information of the graph

structure, rather than the labels. Thus,X is meaningful for classification ifA is not uniform, as

it gives only indirect information of y.

4.5.2 Observations from Sanity Checks

Table 4.4 shows the results of sanity checks for our SlimG and all baseline models whose details

are given in Section 4.6. We assume 4 target classes of nodes, making the accuracy of random

guessing 25%. Among the nine cases in Table 4.4a, we do not report the results on two cases

where the graph does not give any information (i.e., “none helps”), since all methods produce

similar accuracy.

SlimG wins on all sanity checks, thanks to its careful design for the robustness to various

graph scenarios. Although homophilyA and useful (i.e., not random)X is a common assump-
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tion in many datasets, many nonlinear GNNs show failure (i.e., red cells) in such cases. This

implies that the theoretical expressiveness of a model is often not aligned with its actual per-

formance even in controlled testbeds, as we also show in our intuitive example in Figure 4.3.

Only a few baselines succeed in other scenarios with different A and X, as we present in the

observations below.

Observation 4.1: Summary

SlimG wins on all sanity checks without failures (i.e., no red cells). SlimG shows the best

average accuracy and the average rank compared to 15 competitors.

Observation 4.2: No Network Effects

Only a few models including S
2
GC and GraphSAGE perform well in uniformA, where the

graph structure provides no useful information, since they have the rawX (not multiplied

with A) in their propagator functions P .

Observation 4.3: Useless Features

None of the existing models in Table 4.4 succeeds with useless (i.e., random) features X,

since their propagator functions P rely onX in all cases.

Observation 4.4: Heterophily Graphs

Models that can utilize even-hop neighbors, such as G
2
CN, GraphSAGE, and GPR-GNN,

succeed in heterophily graphs either with semantic or structuralX.

4.6 Experiments

We conduct experiments on 13 real-world datasets to answer following research questions (RQ):
RQ1. Accuracy: How well does SlimG work for semi-supervised node classification on real-

world graphs?

RQ2. Success of Simplicity: How does SlimG succeed even with its simplicity? What if we

add nonlinearity to SlimG?

RQ3. Speed and Scalability: How fast and scalable is SlimG to large real-world graphs?
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Table 4.5: SlimG wins most of the times on 13 real-world datasets (7 homophily and 6 het-

erophily graphs) against 15 competitors. We color the best and worst results as green and red,

respectively, as in Table 4.4. SlimG is the only approach that exhibits no failures (i.e., no red

cells) in all datasets. Most competitors cause out-of-memory (OOM) errors on large graphs.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec Avg. Rank

LR 51.5±1.2 52.9±4.5 79.9±0.5 73.9±1.2 79.3±1.5 48.3±1.9 56.4±0.5 24.9±1.7 26.7±1.9 27.8±0.8 63.5±0.5 53.0±0.1 61.3±0.0 11.7 (4.2)

Reg. Kernel 67.8±2.5 62.1±4.4 83.4±1.4 80.3±1.4 87.1±1.2 O.O.M. O.O.M. 29.4±2.6 24.3±2.3 29.6±1.4 O.O.M. O.O.M. O.O.M. 12.2 (3.8)

Diff. Kernel 70.6±1.5 62.7±3.8 82.1±0.4 83.1±1.0 89.8±0.6 O.O.M. O.O.M. 34.5±7.9 28.3±1.5 24.7±0.9 53.5±0.8 O.O.M. O.O.M. 11.8 (2.5)

RW Kernel 72.7±1.7 64.1±3.9 83.1±0.7 84.2±0.7 90.6±0.7 63.2±0.2 74.2±0.0 34.9±3.5 25.0±1.6 26.4±1.1 63.1±0.7 57.6±0.1 59.5±0.0 8.3 (3.3)

SGC 76.2±1.1 65.8±3.9 84.1±0.8 83.7±1.6 90.1±0.9 65.0±3.4 74.6±5.1 38.1±4.5 33.1±1.0 24.6±0.8 64.0±1.1 56.5±0.1 69.8±0.0 6.6 (4.2)

DGC 77.8±1.4 66.1±4.2 84.3±0.6 83.9±0.7 90.4±0.2 65.2±4.0 68.7±13. 37.2±3.7 29.2±1.2 25.2±2.1 62.5±0.4 58.2±0.2 60.7±0.1 6.6 (3.2)

S
2
GC 78.3±1.5 66.9±4.4 84.3±0.3 83.1±0.8 90.1±0.8 62.0±7.4 58.3±18. 34.9±4.9 27.6±1.8 26.7±1.8 63.1±0.5 58.7±0.1 61.2±0.0 6.6 (2.7)

G
2
CN 76.6±1.5 64.2±3.3 81.4±0.6 82.8±1.6 88.8±0.5 O.O.M. O.O.M. 40.7±2.9 32.1±1.5 24.3±0.5 O.O.M. O.O.M. O.O.M. 10.5 (4.5)

GCN 76.0±1.2 65.0±2.9 84.3±0.5 85.1±0.9 91.6±0.5 62.8±0.6 O.O.M. 38.5±3.0 31.4±1.8 26.8±0.4 62.9±0.7 57.0±0.1 63.9±0.4 6.3 (2.4)

SAGE 74.6±1.3 63.7±3.6 82.9±0.4 83.8±0.5 90.6±0.5 61.5±0.6 O.O.M. 39.8±4.3 27.0±1.3 27.8±0.9 O.O.M. 56.6±0.4 68.9±0.1 8.5 (3.5)

GCNII 77.8±1.7 63.4±3.0 84.9±0.8 82.3±1.8 90.8±0.6 45.7±0.5 O.O.M. 30.5±2.5 21.9±3.0 29.0±1.3 64.5±0.5 56.9±0.6 62.1±0.3 8.4 (4.6)

H
2
GCN 77.6±0.9 64.7±3.8 85.4±0.4 49.5±16. 75.8±11. O.O.M. O.O.M. 31.9±2.6 25.0±0.5 28.9±0.6 63.9±0.4 58.7±0.0 O.O.M. 8.9 (4.9)

APPNP 80.0±0.6 67.1±2.8 84.6±0.5 84.2±1.7 92.5±0.3 53.4±1.3 O.O.M. 30.9±4.7 23.9±3.2 26.1±1.0 63.7±0.9 47.3±0.3 57.4±0.4 7.6 (4.8)

GPR-GNN 78.8±1.3 64.2±4.0 85.1±0.7 85.0±1.0 92.6±0.3 58.5±0.8 O.O.M. 31.7±4.7 26.2±1.6 29.5±1.1 64.5±0.4 57.6±0.2 67.6±0.1 5.4 (3.7)

GAT 78.2±1.2 65.8±4.0 83.6±0.2 85.4±1.4 91.7±0.5 58.2±1.0 O.O.M. 39.1±4.1 28.6±0.6 26.4±0.4 60.5±0.8 O.O.M. O.O.M. 7.5 (3.7)

SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1 1.9 (1.5)

Table 4.6: SlimG effectively combines different components. SlimG-Ci represents that we
use only the i-th component shown in Equation (4.3). Node classification is done accurately

even we use a single component at each time, and SlimG outperforms the best accuracy of a

single component in 11 out of the 13 datasets. Green ( , ) marks the top two.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

SlimG-C1 46.3±3.0 29.2±2.5 64.5±1.0 77.6±1.0 78.5±0.9 51.4±0.2 73.6±2.9 41.9±2.0 29.1±1.0 21.6±1.2 60.9±0.6 59.3±0.1 66.7±0.0
SlimG-C2 53.5±1.5 53.6±3.6 79.3±0.3 74.5±1.1 81.4±0.9 49.8±0.2 57.4±0.1 25.1±1.5 21.8±0.9 29.9±2.1 62.3±0.5 53.0±0.1 61.1±0.0
SlimG-C3 77.6±0.7 62.7±4.3 77.4±0.8 86.0±1.0 90.3±0.8 66.2±0.2 82.5±0.0 40.6±1.0 27.6±3.2 24.1±1.4 64.7±0.6 53.1±0.1 73.2±0.1
SlimG-C4 76.8±0.9 64.7±3.6 82.1±0.7 85.3±1.2 90.9±0.7 65.3±0.3 78.3±0.1 40.4±2.2 31.6±1.4 23.7±1.4 64.3±0.7 56.3±0.1 68.4±0.2

SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

RQ4. Interpretability: How to explain the importance of graph signals through the learned

weights of SlimG?

RQ5. Ablation Study: Are all the design decisions of SlimG, such as two-hop aggregation,

effective in real-world graphs?

Flexibility Table 4.6 illustrates the accuracy of SlimGwhen only one of its four components

in Equation (4.3) is used at each time. The accuracy of SlimG with only a single component is

higher than those of most baselines in Table 4.5 when an appropriate component is picked for

each dataset, e.g., C1 for Twitch, C2 for Actor, C3 for Cora, and C4 for CiteSeer. This shows

that high accuracy in semi-supervised node classification can be achieved by a well-designed

simple model even without high expressivity. SlimG focuses on the best component in each

dataset effectively, improving the accuracy of individual components in 11 out of 13 datasets.

Datasets We use 7 homophily and 6 heterophily graph datasets in experiments, which were

commonly used in previous works on node classification [CPLM21, PWC
+
20, LHL

+
21]. Cora,

CiteSeer, and PubMed [SNB
+
08, YCS16] are homophily citation graphs between research ar-
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Table 4.7: Linearity is enough for SlimG: it outperforms its own variants with nonlinearity

that replace the linear classifier or the PCA function g with a nonlinear neural network. Green

( , ) marks the top two.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

w/ MLP-2 65.9±1.1 54.2±5.3 83.3±0.2 84.8±0.5 90.1±1.9 65.8±0.1 85.7±0.0 40.0±2.5 30.5±0.5 28.8±1.0 66.7±1.7 60.3±0.3 76.5±0.1
w/ MLP-3 66.1±2.0 50.3±3.6 80.9±0.9 85.2±0.8 90.0±0.8 63.0±0.1 84.9±0.9 38.5±5.5 30.9±0.7 28.9±1.2 65.1±0.6 60.3±0.2 76.4±0.2
w/ NL Trans. 70.7±2.3 57.5±5.1 81.0±0.4 71.4±10. 77.9±2.2 57.0±0.6 O.O.M. 41.3±3.2 30.0±1.6 27.6±2.4 61.8±1.6 61.5±0.3 75.7±0.5

SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

ticles. Computers and Photo [SMBG18] are homophily Amazon co-purchase graphs between

items. ogbn-arXiv and ogbn-Products are large homophily graphs from Open Graph Bench-

mark [HFZ
+
20]. Since we use only 2.5% of all labels as training data, we omit the classes with

instances fewer than 100. Chameleon and Squirrel [RAS21] are heterophily Wikipedia web

graphs. Actor [TSWY09] is a heterophily graph connected by the co-occurrence of actors on

Wikipedia pages. Penn94 [TMP11, LHL
+
21] is a heterophily graph of gender relations in a so-

cial network. Twitch [RS21] and Pokec [LK14] are large graphs, which have been relabeled by

[LHL
+
21] to be heterophily. We make the heterophily graphs undirected as done in [CPLM21].

Evaluation We perform semi-supervised node classification by randomly dividing all nodes

in a graph by the 2.5%/2.5%/95% ratio into training, validation, and test sets. In this setting

[CPLM21, DWCL22], which is common in real-world data where labels are often scarce and ex-

pensive, we can properly evaluate the performance of eachmethod in semi-supervised learning.

We perform five runs of each experiment with different random seeds and report the average

and standard deviation. All hyperparameter searches and early stopping are done based on

validation accuracy for each run.

Competitors and Hyperparameters We include various types of competitors: linear mod-

els (LR, SGC, DGC, S
2
GC, and G

2
CN), coupled nonlinear models (GCN, GraphSAGE, GCNII,

and H2GCN), decoupled models (APPNP and GPR-GNN), and attention-based models (GAT).

We perform row-normalization on the node features as done in most studies on GNNs. We

search their hyperparameters for every data split through a grid search. The hidden dimension

size is set to 64, and the dropout probability is set to 0.5. For the linear models, we use L-BFGS

to train 100 epochs with the patience of 5. For the nonlinear ones, we use ADAM and update

them for 1000 epochs with the patience of 200.

We also include three graph kernel methods [SK03], namely Regularized Laplacian, Dif-

fusion Process, and the K-step Random Walk. They focus on feature transformation and are

used with the LR classifier as SlimG is. Thus, they perform as the direct competitors of SlimG

that apply different feature transformations. The propagator functions of graph kernel methods

[SK03] are given as follows:

(Reg. Kernel) P(A,X) = (In + σ2L̃)−1X (4.4)

(Diff. Kernel) P(A,X) = exp(−σ2/2L̃)X (4.5)

(RW Kernel) P(A,X) = (aIn − L̃)pX, (4.6)
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Table 4.8: SlimG is scalable. We measure the runtime of SlimG by varying the numbers of

features and edges in a graph.

Number of Features 20 40 60 80 100

Time (s) 13.0 16.2 18.6 22.9 27.8

Number of Edges 12M 25M 60M 80M 100M

Time (s) 12.3 19.9 21.9 24.0 27.8

Table 4.9: Ablation Study: SlimG works best with the current design. Each design deci-

sion of SlimG leads to an improvement of accuracy in real-world graphs; SlimG is among the

top two in all datasets, marked as green ( , ).

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

w/o Sp. Reg. 77.8±0.6 65.0±3.5 83.8±0.5 85.9±0.8 91.7±0.7 65.2±0.2 83.4±1.9 40.1±3.8 30.7±1.0 30.1±0.6 67.4±0.6 59.8±0.1 74.2±0.0
w/o PCA 74.8±1.5 66.0±3.1 84.7±0.5 84.4±1.1 90.3±0.7 60.8±0.2 84.5±0.0 41.3±2.0 31.8±1.1 27.3±1.1 67.7±0.7 59.1±0.2 72.8±0.1
w/o Struct. U 78.1±1.0 67.4±2.5 84.4±0.3 86.0±0.5 92.1±0.4 66.1±0.2 82.5±0.6 37.5±4.2 29.8±0.4 31.3±0.5 65.8±0.6 56.8±0.0 72.8±0.1

SlimG 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

where L̃ = D−1/2(D−A)D−1/2
is the normalized Laplacian matrix, and σ = 1, a = 1, and

p = 2 are their hyperparameters.

SlimG contains two hyperparameters, which are the weight of LASSO and the weight of

group LASSO. It is worth noting that SlimG does not need to recompute the features when

searching the hyperparameters, while most of the linear methods need to do so because of

including one or more hyperparameters in P .

4.6.1 RQ1 – Accuracy

In Table 4.5, SlimG is compared against 15 competitors on 13 real-world datasets (7 homophily

and 6 heterophily graphs). We color the best and worst results as green and red, respectively, as

in Table 4.4. We report the accuracy in Table 4.5 where , , represent the top three methods

(higher is darker), SlimG outperforms all competitors in 4 homophily and 5 heterophily graphs,

and achieves competitive accuracy in the rest; SlimG is among the top three in 10 out of 13 times.

Moreover, SlimG is the only model that exhibits no failures (i.e., no red cells), and shows the

best average rank with a significant difference from the second-best. It is notable that many

competitors, even linear models such as the kernel methods and G
2
CN, run out of memory in

large graphs. This shows that linearity is not a sufficient condition for efficiency and scalability,

and thus a careful design of the propagator function P is needed as in SlimG.

4.6.2 RQ2 – Success of Simplicity

We conduct studies to better understand how SlimG exhibits the superior performance on real-

world graphs even with its simplicity. Tables 4.6 and 4.7 demonstrate the strength of simplicity

for semi-supervised node classification in real-world graphs.
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Expected

(a) No Network Effects (b) Useless Features

Figure 4.5: SlimG is interpretable: it suppresses useless information and focuses on informa-

tive ones for each scenario: (a) self-features g(X) and (b) structural features U. The learned

weights are directly matched with the expectations.

Table 4.10: Ablation Study: Two-step aggregation is good enough for SlimG. The values

krow and ksym represent the numbers of propagation steps for theArow and Ãsym components in

Equation (4.3), respectively. We observe no consistent improvement of accuracy by increasing

krow and ksym, supporting the current design of SlimG. Green ( , ) marks the top two.

krow ksym Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Penn94 Twitch Pokec

{2, 4, 6} {2, 3, 4} 79.4±1.1 66.0±4.4 84.4±0.4 85.9±0.5 91.3±0.5 67.9±0.2 84.8±2.1 41.0±3.9 31.4±0.6 29.8±0.6 68.2±0.6 60.7±0.1 76.6±0.2
{2, 4} {2, 3} 78.9±0.9 66.9±2.5 84.0±0.5 86.2±0.7 91.5±0.5 67.4±0.1 73.9±23. 41.4±4.0 31.0±0.7 30.4±0.4 68.3±0.5 60.8±0.1 76.0±0.1

6 4 79.2±0.7 66.2±3.4 84.0±0.3 85.2±0.7 91.0±0.8 67.3±0.2 84.7±1.7 38.2±6.3 29.2±1.5 31.2±0.8 67.7±0.7 59.8±0.1 74.2±0.2
4 3 79.2±0.8 66.1±3.5 84.2±0.5 85.8±0.6 91.3±0.4 67.2±0.1 85.4±0.0 38.6±7.1 29.5±1.8 30.4±0.7 67.5±0.6 60.0±0.1 74.6±0.1

2 (ours) 2 (ours) 77.8±1.1 67.1±2.3 84.6±0.5 86.3±0.7 91.8±0.5 66.3±0.3 84.9±0.0 40.8±3.2 31.1±0.7 30.9±0.6 68.2±0.6 59.7±0.1 73.9±0.1

Nonlinearity Many recent works on linear GNNs have shown that nonlinearity is not an

essential component in semi-supervised node classification [ZK21, WWYL21, LGW
+
22]. To

support the success of SlimG, we design three nonlinear variants of it:

• w/ MLP-2: We replace LR with a 2-layer MLP.

• w/ MLP-3: We replace LR with a 3-layer MLP.

• w/ Nonlinear (NL) Transformation: We replace the PCA function g(·) as a nonlinear
function. Specifically, we adopt a 2-layer MLP for the first two components and a 2-layer

GCN for the last two components. The transformed features are concatenated and given

to another 2-layer MLP.

We use dropout with a probability of 0.5 to prevent overfitting in both MLP and GCN. The

nonlinear models are trained with the same setting as GCN reported in Table 4.5. We report the

result in Table 4.7, showing that adding nonlinearity does not necessarily improve the accuracy

while sacrificing both scalability and interpretability.
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4.6.3 RQ3 – Speed and Scalability

We plot the training time versus the accuracy of each model on the ogbn-arXiv, ogbn-Products,

and Pokec graphs, which are the largest in our benchmark, in Figure 4.2. We report the train-

ing time of each model with the hyperparameters that show the highest validation accuracy.

SlimG achieves the highest accuracy in the ogbn-arXiv and ogbn-Products datasets while being

10.4× and 2.5× faster than the second-best model, respectively. SlimG also shows the highest

accuracy in the Pokec dataset, while being 18.0× faster than the best-performing deep model.

It is worth noting that SlimG is even faster than LR in ogbn-arXiv, taking fewer iterations than

in LR during the optimization. Its fast convergence is owing to the orthogonalization of each

component of the features.

Table 4.8 shows the training time of SlimG in the ogbn-Products graph with varying num-

bers of features and edges. Smaller graphs are created by removing edges uniformly at random.

SlimG scales well with both variables even in large graphs containing up to 61M edges, showing

linear complexity as we claim in Lemma 4.2.

4.6.4 RQ4 – Interpretability

Figure 4.5 illustrates the weights learned by the classifier in SlimG for the sanity checks, where

the ground truths are known. SlimG assigns large weights to the correct factors in graphs

with different mutual information between variables. When there are no network effects in

Figure 4.5a, it successfully assigns the largest weights to the self-features g(X), ignoring all

other components. When the features are useless in Figure 4.5b, it puts most of the attention

on the structural featuresU, which does not rely on X.

4.6.5 RQ5 – Ablation Studies

Design Decisions In Table 4.9, we show the accuracy of SlimGwhen each of its core ideas is

disabled: sparse regularization, PCA, and the structural features U. SlimG performs best with

all of its ideas enabled; it is always included in the top two in each dataset. This shows that

SlimG is designed effectively with ideas that help improve its accuracy on real-world datasets.

Note that the sparse regularization and PCA improve the efficiency of SlimG, by reducing the

number of parameters, as well as its accuracy.

Receptive Fields To analyze the effect of changing the receptive field of SlimG, we vary the

distance of aggregation (i.e., the value ofK) in Table 4.10. The values of krow or ksym given as sets,

e.g., {2, 4, 6}, represent that we include more than one component to SlimG with different K ,

increasing the overall complexity of decisions. Since Arow is designed to consider heterophily

relations, we use only the even values of krow. Table 4.10 shows no significant gain in accuracy

by increasing the values of krow and ksym, or even including more components to SlimG; the

accuracies of all variants are similar to each other in all cases. That is, SlimGworks sufficiently

well even with the 2-step aggregation for bothArow and Ãsym.

54



4.7 Conclusion

We propose SlimG, a simple but effective model for semi-supervised node classification, which

is designed by the careful simplicity principle. We summarize our contributions as follows:

• C1 – Method: SlimG outperforms state-of-the-art GNNs in synthetic and real datasets,

showing the best robustness; SlimG succeeds in all types of graphs with homophily, het-

erophily, noisy features, etc. SlimG is scalable to million-scale graphs, even when other

baselines run out of memory, making interpretable decisions from its linearity.

• C2 – Explanation: Our GnnExp framework illuminates the fundamental similarities

and differences of popular GNN variants (see Table 4.3), revealing their pain points.

• C3 – Sanity checks: Our sanity checks immediately highlight the strengths and weak-

nesses of each GNN method before it is sent to production (see Table 4.4).

• C4 – Experiments: Our extensive experiments explain the success of SlimG in various

aspects: linearity, robustness, receptive fields, and ablation studies (see Tables 4.5 to 4.10).
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Chapter 5

NetInfoF: Measuring and

Exploiting Network Usable

Information

Chapter based on work that appeared at ICLR 2024 [LYZ
+
24] [PDF].

Given an attributed graph, and a graph task (link prediction or node classification), can we

tell if a graph neural network (GNN) will perform well? More specifically, do the graph

structure and node features carry enough usable information for the task? Our goals are:

(1) to develop a fast tool to measure how much information is in the graph structure and

in the node features, and (2) to exploit the information to solve the task, if there is enough.

In this chapter, we propose NetInfoF, a framework including NetInfoF_Probe and

NetInfoF_Act, for the measurement and the exploitation of network usable informa-

tion (NUI), respectively. Given a graph data, NetInfoF_Probe measures NUI without any

model training, and NetInfoF_Act solves link prediction and node classification, while

two modules share the same backbone. In summary, NetInfoF has following notable ad-

vantages: (a) General, handling both link prediction and node classification; (b) Principled,

with theoretical guarantee and closed-form solution; (c) Effective, thanks to the proposed

adjustment to node similarity; (d) Scalable, scaling linearly with the input size.

In our carefully designed synthetic datasets, NetInfoF correctly identifies the ground

truth of NUI and is the only method being robust to all graph scenarios. Applied on real-

world datasets, NetInfoFwins in 11 out of 12 times on link prediction compared to general

GNN baselines.
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5.1 Introduction

Given a graph with node features, how to tell if a graph neural network (GNN) can perform

well on graph tasks or not? How can we know what information (if any) is usable to the tasks,

namely, link prediction and node classification? GNNs [KW17, HYL17, VCC
+
18, LZX

+
21] are

commonly adopted on graph data to generate low-dimensional representations that are versa-

tile for performing different graph tasks. However, sometimes there are no network effects, and

training a GNN will be a waste of computation time. That is to say, we want a measurement of

how informative the graph structure and node features are for the task at hand, which we call

network usable information (NUI).

We proposeNetInfoF, a framework tomeasure and exploit NUI in a given graph. First,Net-

InfoF_Probemeasures NUI of the given graph with NetInfoF_Score (Equation (5.10)), which

we proved is lower-bound the accuracy (Theorem 5.2). Next, ourNetInfoF_Act solves both the

link prediction and node classification by sharing the same backbone with NetInfoF_Probe.

To save training effort, we propose to computeNetInfoF_Score by representing different com-

ponents of the graph with carefully derived node embeddings. For link prediction, we propose

the adjustment to node similarity with a closed-form formula to address the limitations when

the embeddings are static. We demonstrate that our derived embeddings contain enough usable

information, by showing the superior performance on both tasks. In Figure 5.1, NetInfoF_Act

outperforms the GNN baselines most times on link prediction; in Figure 5.2, NetInfoF_Score

measured byNetInfoF_Probe highly correlates to the test performance in real-world datasets.

In summary, our proposed NetInfoF has following advantages:

1. General, handling both node classification and link prediction (Lemma 5.1 and 5.2);

2. Principled, with theoretical guarantee (Theorem 5.1 and 5.2) and closed-form solution

(Lemma 5.1 and 5.2);

3. Effective, thanks to the proposed adjustment of node similarity (Figure 5.1);

4. Scalable, scaling linearly with the input size (Figure 5.6).

In synthetic datasets, NetInfoF correctly identifies the ground truth of NUI and is the only

method being robust to all possible graph scenarios; in real-world datasets, NetInfoF wins in

11 out of 12 times on link prediction compared to general GNN baselines.

Reproducibility: Code is at https://github.com/amazon-science/Network
-Usable-Info-Framework.

5.2 Related Work

We introduce the related work in two groups: information theory, and GNNs. In a nutshell,

NetInfoF is the only one fulfills all the properties as shown in Table 5.1.

5.2.1 Information Theory

The typical measure of the dependence between the random variables is themutual information

[KSG04]. It is powerful and widely used in sequential feature selection [LCW
+
18], but its exact

computation is difficult [Pan03, BBR
+
18] especially on continuous random variables [Ros14,
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Figure 5.1: NetInfoF wins in real-

world datasets on link prediction (most

points are below or on line x = y).

0.5 0.6 0.7 0.8 0.9 1.0
NetInfoF_Score

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 H
its

@
K

y=2x-1

Ideal

(a) Link Prediction

0.2 0.4 0.6 0.8 1.0
NetInfoF_Score

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

x=y

Ideal

(b) Node Classification

Figure 5.2: NetInfoF_Score highly correlates to

test performance in real-world datasets. Each point

denotes the result of a component from each dataset.

MS21] and high-dimensional data [FWV06, MT19]. Recently [XZS
+
20, ECS22] proposed the

concept of V-information. However, the definition needs a trained model, which is expensive

to obtain and is dependent on the quality of training.

Only a few works study the usable information in the graphs, but are not feasible in our

problem settings because of three challenges, i.e., our desired method has to: (1) work without

training any models, where [ALB23] requires model training; (2) identify which components

of the graph are usable, where [DK23] ignores the individual components; and (3) generalize to

different graph tasks, where [LSYF24] focuses on node classification only.

5.2.2 Graph Neural Networks

Our review of GNNs in Section 4.2.2 focuses on models for node classification; here, we also

include those designed for link prediction. Although most GNNs learn node embeddings as-

suming homophily, some GNNs [APK
+
19, ZYZ

+
20, CPLM21, LWJ22] break this assumption

by handling k-step-away neighbors differently for every k, and some systematically study

the heterophily graphs on node classification [PKBP23, LHL
+
22, LHX

+
23, MCJ

+
23, CCG

+
24,

MLST22]. Subgraph GNNs [ZC18, YZW
+
22] are designed only for link prediction and are ex-

pensive in inference. Linear GNNs [WJZ
+
19, WWYL21, ZK21, LGW

+
22, YLSF23] target inter-

pretable models. Such approaches remove the non-linear functions and maintain good perfor-

mance. As the only method being robust to all graph scenarios, SlimG [YLSF23] works well on

node classification. However, it is unclear how well it works for link prediction.

5.3 NetInfoF_Score: Would a GNN work?

How to tell whether aGNNwill performwell on the given graph task? A graph data is composed

of more than one component, such as graph structure and node features. In this section, we

define our problem, and answer two important questions: (1) How to measure the predictive

information of each component in the graph? (2) How to connect the graph information with
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Table 5.1: NetInfoF matches all properties, while baselines miss more than one property.

Property G
e
n
e
r
a
l
G
N
N
s

S
u
b
g
r
a
p
h
G
N
N
s

S
l
i
m
G

N
e
t
I
n
f
o
F

1. General 1.1. Node Classification " " "

w.r.t. Graph Task 1.2. Link Prediction " " "

2. Principled

2.1. Theoretical Guarantee "

2.2. Closed-Form Solution " "

3. Scalable " " "

4. Robust 4.1. Node Classification " "

w.r.t. Input Scenario 4.2. Link Prediction "

the performance metric on the task? We identify that a GNN is able to perform well on the task

when its propagated representation is more informative than graph structure or node features.

5.3.1 Problem Definition

Given an undirected graph G = (V , E) with node features Xn×f , where n is the number of

nodes and f is the number of features, the problem is defined as follows:

• Measure the network usable information (NUI), and

• Exploit NUI, if there is enough, to solve the graph task.

We consider two common graph tasks, link prediction and node classification. In link predic-

tion, E is split into Etrain and Epos. The negative edge set Eneg is randomly sampled with the same

size of Epos. The goal is to predict the existence of the edges, 1 for the edges in Epos, and 0 for

the ones in Eneg. In node classification, |Vtrain| node labels y ∈ {1, ..., c}|Vtrain|
are given, where c

is the number of classes. The goal is to predict the rest |V| − |Vtrain| unlabeled nodes’ classes.

An overview of symbols and acronyms is provided in Table 5.2 and Table 5.3, respectively.

5.3.2 Proposed Derived Node Embeddings

To tell whether a GNNwill performwell, we can analyze its node embeddings, but they are only

available after training. For this reason, we propose to analyze the derived node embeddings

in linear GNNs. More specifically, similar to SlimG in Chapter 4, we derive five components of

node embeddings that represent the information of graph structure, node features, and features

propagated through structure.

C1: Structure Embedding. The structure embedding U is the left singular vector of the adja-

cency matrix A, which is extracted by the singular value decomposition (SVD). This aims to

capture the community information of the graph.
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Table 5.2: Table of Symbols and Definitions.

Symbol Definition

G Undirected and attributed graph

V Set of nodes

E Set of edges

n Number of nodes

f Number of features

c Number of classes

d Number of dimensions

y Set of node labels

A ∈ Rn×n
Adjacency matrix

X ∈ Rn×f
Node feature matrix

I ∈ Rn×n
Identity matrix

D ∈ Rn×n
Degree matrix with node degrees along diagonal

H ∈ Rd×d
Compatibility matrix for adjusting node similarity

Table 5.3: Table of Acronyms.

Acronym Definition

NUI Network Usable Information

SVD Singular Value Decomposition

PCA Principal Component Analysis

PPR Personalized PageRank

LR Logistic Regression

GNN Graph Neural Network

GCN Graph Convolutional Networks

SGC Simple Graph Convolution

C2: Neighborhood Embedding. The neighborhood embedding R aims to capture the local

higher-order neighborhood information of nodes. This component is designed for link predic-

tion and therefore not used by SlimG. Similarly to our random walk approach in Section 3.5.1,

to mimic Personalized PageRank (PPR), we construct a random walk matrix APPR, where each

element is the number of times a node visits another node in T trials of the kPPR-step random

walks. Random walks highlight local higher-order structures in the vicinity of nodes. To make

APPR sparser and to speed up embedding extraction, we eliminate noisy elements with only one

visit time. We extract the left singular vectors ofAPPR by SVD as neighborhood embeddingsR.

C3: Feature Embedding. Given the raw node featuresX, we represent the feature embedding

with the preprocessed node features F = g(X), where g is the preprocessed function.

C4: Propagation Embedding without Self-loop.We row-normalize the adjacencymatrix into

Arow = D−1A, where D is the diagonal degree matrix. The features are propagated without

self-loop to capture the information of krow-step neighbors, where krow is an even number. This

is useful to capture the information of similar neighbors when the structure exhibits heterophily

(e.g., in a bipartite graph). Therefore, we have node embedding P = g(l(A2
row

X)), where l is
the column-wise L2-normalization, ensuring every dimension has a similar scale.

C5: Propagation Embedding with Self-loop. The adjacency matrix with self-loop is useful to

propagate features in graphs that exhibit homophily. Following the most common strategy, we

symmetrically normalize the adjacency matrix into Ãsym = (D+I)−
1
2 (A+I)(D+I)−

1
2 , where

I is the identity matrix. Similar to C4, we have node embeddings S = g(l(Ã
ksym
symX)).

While C1-2 aim to capture the information with only the graph structure, C4-5 aim to cap-

ture the information of propagation, which is similar to the one that a trained GNN can capture.

To ensure that the embeddings have intuitive meanings, we set all the number of steps kPPR,
krow and ksym as 2, which works sufficiently well in most cases. As C1-2 adopted SVD as their

last step, the embedding dimensions are orthogonalized. For C3-5, we use principal component

analysis (PCA) as g to reduce and orthogonalize the embedding dimensions, leading to faster

convergence and better performance when training the model. Each component has the same

number of dimensions d.
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5.3.3 NetInfoF_Score: Definition and Theorems

Next, we want to find a formula that connects the metrics of graph information and task per-

formance. To begin, we derive the inequality between entropy and accuracy:

Theorem 5.1: Entropy and Accuracy

Given a discrete random variable Y , we have:

2−H(Y ) ≤ accuracy(Y ) = max
y∈Y

py (5.1)

where H(Y ) = −
∑

y∈Y py log py denotes the Shannon entropy.

Proof. Let Y be a discrete random variable with n outcomes (y1, . . . , yn), and with probabilities

(p1, . . . , pn), where:
1 = p1 + · · ·+ pn (5.2)

Let pmax be the highest probability (break ties arbitrarily), that is:

pmax = max
i

pi (5.3)

For ease of presentation, and without loss of generality, assume that the most likely outcome

is the first one, y1, and thus pmax = p1. Given no other information, the best classifier for Y is

the one that always guesses outcome y1, and it has accuracy:

accuracy(Y ) = p1 ≡ pmax (5.4)

The entropy H(Y ) is:
H(Y ) = −(p1 log p1 + · · ·+ pn log pn) (5.5)

Thus we have:

2−H(Y ) = pp11 ∗ p
p2
2 · · · ∗ ppnn (5.6)

≤ pp1
max
∗ pp2

max
∗ · · · ∗ ppn

max
// ∵ pmax ≥ pi (5.7)

≤ pp1+p2+···+pn
max

(5.8)

≤ pmax (5.9)

which completes the proof. ■

Before extending Theorem 5.1 to the case with two random variables, we need a definition:

Definition 5.1: NetInfoF_Score of Y given X

Given two discrete random variables X and Y , NetInfoF_Score of Y given X is defined

as:

NetInfoF_Score = 2−H(Y |X)
(5.10)

where H(·|·) denotes the conditional entropy.
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We prove that NetInfoF_Score low-bounds the accuracy:

Theorem 5.2: NetInfoF_Score

Given two discrete random variablesX and Y ,NetInfoF_Score of Y givenX low-bounds

the accuracy:

NetInfoF_Score = 2−H(Y |X) ≤ accuracy(Y |X) =
∑
x∈X

max
y∈Y

px,y (5.11)

where px,y is the joint probability of x and y.

Proof. Let Y andX be two discrete random variables with n outcomes (y1, . . . , yn) andm out-

comes (x1, . . . , xm), respectively, then their joint probabilities are (p1,1, . . . , pm,n), where:

1 = p1 + · · ·+ pm =
n∑

j=1

p1,j + · · ·+
n∑

j=1

pm,j (5.12)

The accuracy is:

accuracy(Y |X) =
m∑
i=1

max
j

pi,j (5.13)

The conditional entropy H(Y |X) is:

H(Y |X) = p1 ∗ (−
n∑

j=1

p1,j
p1
∗ log2

p1,j
p1

) + · · ·+ pm ∗ (−
n∑

j=1

pm,j

pm
∗ log2

pm,j

pm
) (5.14)

Thus we have:

⇒ −H(Y |X) = p1 ∗ (
n∑

j=1

p1,j
p1
∗ log2

p1,j
p1

) + · · ·+ pm ∗ (
n∑

j=1

pm,j

pm
∗ log2

pm,j

pm
) (5.15)

≤ p1 ∗ log2 (
n∑

j=1

(
p1,j
p1

)2) + · · ·+ pm ∗ log2 (
n∑

j=1

(
pm,j

pm
)2) // ∵ Jensen’s Inequality

(5.16)

≤ p1 ∗ log2 (p−2
1 ∗

n∑
j=1

p1,j
2) + · · ·+ pm ∗ log2 (p−2

m ∗
n∑

j=1

p2m,j) (5.17)

≤ p1 ∗ log2 (p−1
1 ∗max

j
p1,j) + · · ·+ pm ∗ log2 (p−1

m ∗max
j

pm,j) (5.18)
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This is because ∀i = 1, . . . ,m:

n∑
j=1

p2i,j = pi,1 ∗ pi,1 + · · ·+ pi,n ∗ pi,n (5.19)

≤ pi,1 ∗max
j

pi,j + · · ·+ pi,n ∗max
j

pi,j (5.20)

≤ (pi,1 + · · ·+ pi,n) ∗max
j

pi,j (5.21)

= pi ∗max
j

pi,j (5.22)

To continue, we have:

⇒ 2−H(Y |X) ≤ 2p1∗log2 (p
−1
1 ∗maxj p1,j)+···+pm∗log2 (p

−1
m ∗maxj pm,j)

(5.23)

≤ (p−1
1 ∗max

j
p1,j)

p1 ∗ · · · ∗ (p−1
m ∗max

j
pm,j)

pm
(5.24)

≤ max
j

p1,j + · · ·+max
j

pm,j // ∵ Weighted AM-GM Inequality (5.25)

= accuracy(Y |X) (5.26)

which completes the proof. ■

Theorem 5.2 provides an advantage to NetInfoF_Score by giving it an intuitive interpre-

tation, which is the lower-bound of the accuracy. When there is little usable information to

the task, the value of NetInfoF_Score is close to random guessing. To empirically verify it,

we run the experiments on the synthetic datasets with five splits, and report NetInfoF_Score

and accuracy for all components of the derived embeddings. In Figure 5.3, we find that even

for the validation set, NetInfoF_Score is always less than or equal to the accuracy, strictly

following Theorem 5.2. In the next sections, we show how NetInfoF_Score can be effectively

and efficiently computed with our proposed NetInfoF_Probe.

Pinsker’s inequality [Pin64], like our Theorem 5.2, also links information-theoretic quan-

tities with probabilistic bounds. However, they differ in that Pinsker’s inequality provides an

upper bound on the total variation distance between two probability distributions, while Net-

InfoF_Score offers a lower bound on accuracy. Moreover, in classification tasks, accuracy is

generally more intuitive and interpretable for users than the total variation distance.

5.4 NetInfoF for Link Prediction

With the derived node embeddings, how can we measure NUI in link prediction as well as

solve the task? Compared to general GNNs, the node embeddings of linear GNNs are given by

closed-form formula. They are thus rarely applied on link prediction because of following two

reasons: (1) Predicting links by GNNs relies on measuring node similarity, which is incorrect

if the neighbors are expected to have dissimilar embeddings; for example, in a bipartite graph,

while a source node is connected to a target node, their structural embeddings are expected

to be very different, resulting in low node similarity by linear GNNs; (2) To perform well on

Hits@K , it is crucial to suppress the similarity of the nodes of negative edges, i.e. the unexisting
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Figure 5.3: Theorem 5.2 holds. The value of

NetInfoF_Score is always less than or equal

to validation accuracy.
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Figure 5.4: NetInfoF_Score predicts right.

It is correlated to the test performance in the

synthetic datasets.

connections in the graph. Hits@K is the ratio of positive edges that are ranked atK-th place or

above among both the positive and negative edges, which is preferred in link prediction where

most real-world applications are recommendations. Since the embeddings of linear GNNs are

static, they can not learn to separate the embeddings of nodes on each side of the negative

edges. Therefore, how to generalize linear GNNs to solve link prediction remains a challenge.

For these reasons, we propose an adjustment to the similarity of the nodes, which gen-

eralizes NetInfoF to link prediction, including NetInfoF_Probe to measure NUI and Net-

InfoF_Act to solve the task.

5.4.1 Proposed Adjustment to Node Similarity

To solve the limitations of linear GNNs on link prediction, it is crucial to properly measure the

similarity between nodes. We consider cosine similarity as the measurement, whose value is

normalized between 0 and 1. By L2-normalizing each node embedding z1×d, the cosine simi-

larity reduces to a simple dot product zi · zj . However, even if node i and node j are connected
by an edge, it may result in low value if they are expected to have dissimilar embeddings (e.g.

structure embeddings in a bipartite graph). Therefore, before the dot product, we propose us-

ing the compatibility matrix Hd×d to transform one of the embeddings, and rewrite the node

similarity function into ziHz⊺j .
The compatibility matrixH represents the characteristics of the graph: if the graph exhibits

homophily,H is nearly diagonal; if it exhibits heterophily,H is off-diagonal. It is used in belief

propagation (BP) to handle the interrelations between node classes. In our case, H represents

the interrelations between the dimensions of node embeddings. By maximizing the similarity

of nodes connected by edges,H can be estimated by the following lemma:
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Lemma 5.1: Compatibility Matrix

The compatibility matrixH has the closed-form solution and can be solved by the follow-

ing optimization problem:

min
H

∑
(i,j)∈E

∥ziH− zj∥22, (5.27)

where E denotes the set of (positive) edges in the given graph.

Proof. The goal is to maximize the similarity of nodes connected by edges. If we start from

cosine similarity and L2-normalize the node embeddings z, we have:

ziHz⊺j
∥zi∥∥zj∥

= 1,∀(i, j) ∈ E

⇒ziHz⊺j = ∥zi∥∥zj∥ = 1

⇒ziH = zj

(5.28)

Setting zi as the input data and zj as the target data, this equation can be solved by d-target
linear regression with d coefficients, which has the closed-form solution. ■

This optimization problem can be efficiently solved bymulti-target linear regression. Neverthe-

less, this estimation of H does not take into account negative edges, which may accidentally

increase the similarity of negative edges in some complicated cases. This hurts the perfor-

mance especially when evaluating with Hits@K . Therefore, based on Lemma 5.1, we propose

an improved estimationH∗
, which further minimizes the similarity of nodes connected by the

sampled negative edges:

Lemma 5.2: Compatibility Matrix with Negative Edges

The compatibility matrix with negative edgesH∗
has the closed-form solution and can be

solved by the following optimization problem:

min
H∗

∑
(i,j)∈E

(1− ziH
∗z⊺j )−

∑
(i,j)∈Eneg

(ziH
∗z⊺j ), (5.29)

where Eneg denotes the set of negative edges.
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Algorithm 5.1: Compatibility Matrix with Negative Edges

Input: Preprocessed node embedding Ẑ, edge set E , and sample size S
1 Extract 2-core edge set Epos from E ;
2 EstimateH with Ẑ and Epos by Lemma 5.1;

3 if |Epos| > S then

4 Sample S edges from Epos;
5 end

6 InitializeH∗
with H;

7 Keep top coefficients in upper triangle ofH∗
with 95% energy;

8 Sample 2|Epos| negative edges as Eneg;
9 EstimateH∗

with Ẑ, Epos and Eneg by Lemma 5.2;

10 ReturnH∗
;

Proof. We rewrite the adjusted node similarity s from matrix form into a simple computation:

s(zi, zj,H) = ziHz⊺j

=
[
zi,1 · · · zi,d

] H1,1 · · · H1,d
.
.
.

.
.
.

.

.

.

Hd,1 · · · Hd,d


zj,1...
zj,d


=

zi,1zj,1 · · · zi,1zj,d
.
.
.

.
.
.

.

.

.

zi,dzj,1 · · · zi,dzj,d

⊙
H1,1 · · · H1,d

.

.

.

.
.
.

.

.

.

Hd,1 · · · Hd,d


= zi,1zj,1H1,1 + zi,1zj,2H1,2 + · · ·+ zi,1zj,dH1,d + · · ·+ zi,dzj,dHd,d,

(5.30)

where⊙ is the Hadamard product introduced in Definition 2.5. Next, to maximize the similarity

of nodes connected by positive edges, and to minimize the similarity of nodes connected by

negative edges, we have:

s(zi, zj,H) =

{
1 (i, j) ∈ E
0 (i, j) ∈ Eneg

(5.31)

Therefore, this equation can be solved by linear regression with d2 coefficients, which has the

closed-form solution. ■

With great power comes great responsibility, estimating H∗
has a higher computational

cost than estimatingH. Thus, we provide three techniques to speed up the computation ofH∗

with the help ofH, and the details are in Algorithm 5.1.

T1: Warm Start. We approximate the solution by LSQR iteratively and warm up the approxi-

mation process withH. SinceH is similar toH∗
and cheap to compute, this step largely speeds

up the approximation process and reduces the number of iterations needed for convergence.

T2: Coefficient Selection. We reduce the number of coefficients by only estimating the upper

triangle ofH∗
, and keep the ones with 95% energy inH. This is because the similarity function
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Algorithm 5.2: NetInfoF_Probe for Link Prediction

Input: Node embedding Z, train edge set Etrain, valid edge set Evalid, valid edge labels

yvalid, sample size S, and bin size k
1 Preprocess Z into Ẑ by column-wise standardization and row-wise L2-normalization;

2 H∗ = Compatibility-Matrix-with-Negative-Edges(Ẑ, Etrain, S);
3 if |Epos| > S then

4 Sample S edges from Epos;
5 end

6 else

7 Epos ← E ;
8 end

9 Sample 2|Epos| negative edges as Eneg;
10 Fit k-bins discretizer with ẑiH

∗ẑ⊺j ,∀(i, j) ∈ Epos ∪ Eneg;
11 Discretize ẑiH

∗ẑ⊺j ,∀(i, j) ∈ Evalid into k bins as svalid;

12 Return NetInfoF_Score, computed with svalid and yvalid by Equation (5.10);

is symmetric, and the unimportant coefficients with small absolute values in H remain unim-

portant in H∗
. The absolute sum of the kept coefficients divided by

∑d
i=1

∑d
j=i+1 |Hij| is 95%

and the rest are zeroed out. This helps us to reduce the number of coefficients from d2 to less

than (d+ 1)d/2.
T3: Edge Reduction.We sampleS positive edges from the 2-core graph, and 2S negative edges,

where the sample size S depends on d. Since in large graphs |E| is usually much larger than d2,
it is not necessary to estimate fewer than (d+ 1)d/2 coefficients with all |E| edges. Moreover,

the 2-core graph remains the edges with stronger connections, where each node in it has at

least degree 2. Sampling from the 2-core graph avoids interference from noisy edges and leads

to better estimation.

5.4.2 NetInfoF_Probe for NUI Measurement

Based on Theorem 5.2, we propose NetInfoF_Probe that computes NetInfoF_Score, without

exactly computing the conditional entropy of the high-dimensional variables. By sampling

negative edges, the link prediction can be seen as a binary classification problem. For each

component of embeddings, NetInfoF_Probe estimates its corresponding H∗
and discretizes

the adjusted node similarity of positive and negative edges. To avoid overfitting, we fit the k-
bins discretizer with the similarity of training edges, and discretize the one of validation edges

into k bins. NetInfoF_Score can then be easily computed between two categorical variables.

For instance, the node similarity between node i and j with embedding U is (ÛiH
∗
Û
) · Ûj ,

where ·̂ denotes the embedding preprocessed by column-wise standardization and row-wise

L2-normalization. The details are in Algorithm 5.2.
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5.4.3 NetInfoF_Act for NUI Exploitation

To solve link prediction, NetInfoF_Act shares the same derived node embeddings with Net-

InfoF_Probe, and uses a link predictor following by the Hadamard product of the embeddings.

We transform the embeddings on one side of the edge withH∗
, which handles the heterophily

embeddings and better separates the nodes in the negative edges. By concatenating all compo-

nents, the input to the predictor is as follows:

ÛiH
∗
Û
⊙ Ûj︸ ︷︷ ︸

Structure

∥ R̂iH
∗
R̂
⊙ R̂j︸ ︷︷ ︸

PPR

∥ F̂iH
∗
F̂
⊙ F̂j︸ ︷︷ ︸

Features

∥ P̂iH
∗
P̂
⊙ P̂j︸ ︷︷ ︸

Features of

2-Step Neighbors

∥ ŜiH
∗
Ŝ
⊙ Ŝj︸ ︷︷ ︸

Features of

Grand Neighbors

(5.32)

where (i, j) ∈ E ∪ Eneg and where ⊙ is the Hadamard product (Definition 2.5). Among all the

choices, we use logistic regression as the predictor for its scalability and interpretability. We

suppress the weights of useless components, if there is any, by adopting sparse-group LASSO

for the feature selection. The time complexity of NetInfoF_Act is:

Lemma 5.3: Time Complexity

The time complexity of NetInfoF_Act for link prediction is linear on the input size |E|:

O(f 2|V|+ f 3 + d4|E|) (5.33)

where f and d are the number of features and embedding dimensions, respectively.

Proof. NetInfoF_Act includes four parts: SVD, PCA, compatibility matrix estimation, and lo-

gistic regression. The time complexity of truncated SVD is O(d2|V|), and the one of PCA is

f 2|V|+ f 3
. Compatibility matrix estimation is optimized by Ridge regression with regularized

least-squares routine, whose time complexity is d4|E|. The time complexity of training logis-

tic regression is dt|E|, where t is the number of epochs. In our experiments, t is no greater

than 100, and |V| is much less than |E| in most datasets. By combining all the terms and keep-

ing only the dominant ones, we have time complexity of NetInfoF_Act for link prediction

O(f 2|V|+ f 3 + d4|E|). ■

5.5 NetInfoF for Node Classification

In this section, we show how we can generalize NetInfoF to node classification. Since node

classification does not rely on the node similarity, it does not need compatibility matrix.

5.5.1 NetInfoF_Probe for NUI Measurement

To effectively and efficiently compute NetInfoF_Score, we propose to assign labels to the

nodes by clustering. This idea is based on the intuition that good embeddings for node clas-

sification can be easily split by clustering. Among clustering methods, we use k-means as it
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Algorithm 5.3: NetInfoF_Probe for Node Classification

Input: Train, valid, and test node embedding Ztrain, Zvalid, and Ztest, train and valid

node labels ytrain and yvalid, and cluster number k
1 Preprocess Z into Ẑ row-wise L2-normalization;

2 Fit clustering model with Ẑtest;

3 Assign cluster labels strain and svalid to Ẑtrain and Ẑvalid, respectively;

4 Return NetInfoF_Score, computed with strain ∪ svalid and ytrain ∪ yvalid by

Equation (5.10);
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Figure 5.5: Scenarios of node featuresX and graph structureA in synthetic datasets.

is fast. We cluster each component of the embeddings and compute NetInfoF_Score, where

k ≥ c. To ensure that the clustering is done stably, a row-wise L2-normalization is done on the

embedding. The details are in Algorithm 5.3.

5.5.2 NetInfoF_Act for NUI Exploitation

To solve node classification, we again concatenate the embeddings of different components,

and the input of classifier is as follows:

l(U)︸︷︷︸
Structure

∥ l(R)︸︷︷︸
PPR

∥ l(F)︸︷︷︸
Features

∥ l(P)︸︷︷︸
Features of

2-Step Neighbors

∥ l(S)︸︷︷︸
Features of

Grand Neighbors

(5.34)

where l is the column-wise L2-normalization. Similar to NetInfoF_Act in link prediction, we

use logistic regression as the classifier and adopt sparse-group LASSO for the regularization.

5.6 Synthetic Datasets for Sanity Checks

To ensure that NetInfoF is robust to all graph scenarios, we carefully design the synthetic

datasets for sanity checks. We include all possible graph scenarios, where the ground truth of

NUI is available. For the experiments of node classification in the synthetic datasets, please

refer to the paper [LYZ
+
24].
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Table 5.4: NetInfoF wins on link prediction in the synthetic datasets. Hits@100 is reported.
Green ( ) marks the winner.

Model

Rand. X Rand. X GlobalX GlobalX Local X LocalX Avg.

Diag. A Off-Diag. A Diag. A Off-Diag. A Diag. A Off-Diag. Rank

GCN 82.7±1.1 70.9±1.2 87.2±0.5 85.1±1.2 17.4±1.7 19.2±1.8 4.3 (0.9)

SAGE 77.4±1.1 66.5±4.1 86.2±1.0 85.2±2.2 11.0±1.2 09.5±1.0 5.1 (1.1)

GAT 86.3±0.9 83.1±0.3 87.3±0.9 85.2±0.6 16.0±2.0 16.9±2.1 3.3 (1.5)

H
2
GCN 24.5±4.3 58.9±3.7 75.3±1.1 85.8±2.5 19.8±2.0 19.2±1.5 5.0 (2.1)

GPR-GNN 75.1±0.8 52.3±1.6 83.4±1.3 79.5±1.6 19.3±1.7 17.1±2.0 6.0 (1.1)

SlimG 85.7±0.8 67.8±2.8 87.9±1.0 85.1±1.3 82.5±1.6 31.1±1.1 3.3 (1.3)

NetInfoF 87.3±0.7 86.7±0.6 89.8±0.3 89.8±1.0 89.6±0.2 90.8±0.7 1.0 (0.0)

5.6.1 Designs

We separate the nodes into c groups to simulate that there are usually multiple communities in

a graph. To cover all the possibilities in the real-world, the scenarios are the cross-product of

different scenarios on the node features X and the graph structure A, as shown in Figure 5.5.

We ignore the scenario that X is useful but A is useless, since this is impractical in the real-

world. There are 3 scenarios of node featuresX:

1. Random: the node features are random, with no correlation with the existence of edges.

2. Global: all dimensions of the node features are correlated with the existence of edges.

3. Local: only a subset of dimensions of the node features are correlated with the existence

of edges, where there is no overlapping between the subsets of node groups.

There are 2 scenarios of graph structureA:

1. Diagonal: the nodes and their neighbors are in the same group.

2. Off-Diagonal: the nodes and their neighbors are in two different groups.

5.6.2 Observations

In Table 5.4, NetInfoF receives the highest average rank among all GNN baselines, and is the

only method that can handle all scenarios. While GNNs have worse performance when X is

either random or local, SlimG, a linear GNN, cannot handle cases with off-diagonalA.

5.6.3 Would a GNN work?

Figure 5.4a shows that NetInfoF_Score is highly correlated with test Hits@100, with high

R2
values, where each point denotes a component of embeddings from each split of synthetic

datasets. Table 5.5 reports NetInfoF_Score and test performance of each component. By

measuring their NetInfoF_Score, NetInfoF_Probe tells when propagating features through

structure contains less information than using features or structure itself. For example, in sce-

narios where node features are useless (the first two scenarios in Table 5.5), NetInfoF_Probe

spots that F (i.e., g(X)) provides little NUI to the task, and thus the propagated embeddings
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Table 5.5: NetInfoF_Score and test Hits@100 of each derived node embeddings on link pre-

diction. Green ( ) marks the winner and red ( ) marks the results close to random guessing.

Metric

Feature RandomX RandomX GlobalX Global X LocalX LocalX
Component Diagonal A Off-Diag. A DiagonalA Off-Diag. A Diagonal A Off-Diag. A

NetInfoF_Score

C1 : U 75.1±0.9 74.3±0.5 75.3±0.6 74.1±0.7 75.2±0.8 74.8±0.5
C2 : R 76.5±0.9 76.3±0.5 76.7±0.8 76.3±0.2 76.6±0.8 76.3±0.4
C3 : F 50.0±0.0 50.0±0.0 67.0±0.5 71.5±0.6 75.9±1.1 75.5±0.6
C4 : P 75.1±0.7 73.2±0.6 78.2±0.7 78.5±0.5 78.5±1.2 78.9±0.5
C5 : S 74.3±1.1 72.0±0.5 78.7±1.0 79.2±0.5 79.0±0.9 81.1±0.6

Test Hits@100

C1 : U 83.3±1.2 76.4±2.1 83.5±1.2 76.7±0.5 83.2±1.1 78.2±0.9
C2 : R 83.0±1.5 74.7±1.4 83.0±1.3 75.0±1.5 83.2±1.0 75.3±0.7
C3 : F 02.2±0.2 02.5±0.2 52.3±1.9 63.0±2.2 80.7±1.1 77.1±1.0
C4 : P 82.3±1.2 73.4±0.4 86.2±1.1 79.3±0.7 85.7±1.5 79.4±1.3
C5 : S 80.7±0.9 68.1±1.8 86.4±0.9 79.2±1.1 86.5±1.0 85.2±1.1

P and S have less NUI than the structural embeddings U and R. This indicates that training

GNNs is less likely to have a better performance than only utilizing the information from the

graph structure, which correctly matches the test performance in Table 5.5.

5.7 Experiments

We conduct experiments by real-world graphs to answer the following research questions (RQ):

RQ1. Effectiveness: How well does NetInfoF perform in real-world graphs?

RQ2. Scalability: Does NetInfoF scales linearly with the input size?

RQ3. Ablation Study: Are all the design choices in NetInfoF necessary?

For the experiments of node classification in the real-world datasets, please refer to the paper

[LYZ
+
24]. The experiments are conducted on an AWS EC2 G4dn instance with 192GB RAM.

5.7.1 RQ1 – Effectiveness

Real-World Datasets We evaluate NetInfoF on 7 homophily and 5 heterophily real-world

graphs. We randomly split the edges into training, validation, and testing sets by the ratio

70%/10%/20% five times and report the average for fair comparison. Since our goal is to propose

a general GNN method, we focus on comparing NetInfoF with 6 GNN baselines, which are

general GNNs (GCN, SAGE, GAT), heterophily GNNs (H
2
GCN, GPR-GNN), and a linear GNN

(SlimG). While Hits@100 is used for evaluating on most graphs, Hits@1000 is used on the

larger ones, namely, Products, Twitch, and Pokec, which have much more negative edges in

the testing sets.

In Table 5.6, NetInfoF outperforms GNN baselines in 11 out of 12 datasets, and has the

highest average rank, as our derived embeddings include comprehensive graph information,

that is, structure, features, and features propagated through structure. Compared to non-linear

GNNs, SlimG performs worse in most heterophily graphs, showing that it cannot properly

measure the node similarity of heterophily embeddings in link prediction. By addressing the
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Table 5.6: NetInfoF wins on link prediction inmost real-world datasets. Hits@100 is reported
for most datasets, and Hits@1000 for the large datasets (Products, Twitch, and Pokec). Green

( ) marks the winner.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec Avg. Rank

GCN 67.1±1.8 60.4±10. 47.6±13. 22.5±3.1 39.1±1.6 14.8±0.6 02.2±0.1 82.1±4.5 16.5±1.0 31.1±1.7 16.2±0.3 07.9±1.7 4.1 (1.3)

SAGE 68.4±2.8 55.9±2.5 57.6±1.1 27.5±2.1 40.0±1.9 00.7±0.1 00.3±0.2 84.7±3.6 15.5±1.5 27.6±1.4 08.7±0.6 05.5±0.5 4.5 (1.2)

GAT 66.7±3.6 65.2±2.6 55.1±2.4 28.3±1.6 44.2±3.5 05.0±0.8 O.O.M. 84.8±4.5 15.6±0.8 32.3±2.4 08.2±0.3 O.O.M. 4.0 (1.7)

H
2
GCN 64.4±3.4 35.7±5.4 50.5±0.9 17.9±0.7 29.5±2.4 O.O.M. O.O.M. 79.3±4.5 16.0±2.6 28.7±2.1 O.O.M. O.O.M. 6.2 (1.0)

GPR-GNN 69.8±1.9 53.5±8.1 66.3±3.3 20.7±1.8 34.1±1.1 13.8±0.8 O.O.M. 77.2±5.6 14.6±2.7 32.1±1.3 12.6±0.2 05.0±0.2 4.6 (1.8)

SlimG 77.9±1.3 86.8±1.0 55.9±2.8 25.3±0.9 40.2±2.5 20.2±1.0 27.6±0.6 76.9±2.8 19.6±1.5 18.7±1.0 12.0±0.3 21.7±0.2 3.5 (1.8)

NetInfoF 81.3±0.6 87.3±1.3 59.7±1.1 31.1±1.9 46.8±2.2 39.2±1.8 35.2±1.1 86.9±2.3 24.2±2.0 36.2±1.2 19.6±0.7 31.3±0.5 1.1 (1.3)

limitations of linear GNNs, NetInfoF is able to consistently outperform both SlimG and non-

linear GNNs in both homophily and heterophily graphs. Note that the results in Pokec are

similar to the ones in homophily graphs, since it can be labeled as either homophily (by locality)

or heterophily (by gender).

OGB Link Prediction Datasets We evaluate NetInfoF on OGB datasets. Table 5.7 shows

that NetInfoF outperforms other baselines, while using a model with much fewer parameters.

NetInfoF has only 1280 learnable parameters for all datasets, while GCN and SAGE have at

least 279K and 424K, respectively, which is 218× more than the ones that NetInfoF has.

5.7.2 RQ2 – Scalability

We plot the number of edges versus the run time of link prediction in seconds on the real-world

datasets. In Fig. 5.6, we find that NetInfoF scales linearly with the number of edges, thanks to

our speed-up techniques in estimating compatibility matrix H∗
. To give a concrete example,

the numbers of coefficients ofH∗
U are reduced from d(d+1)/2 = 8256 to 3208, 5373, and 4293,

for Products, Twitch, and Pokec, respectively. Moreover, those numbers are very reasonable:

Products is a homophily graph, its H∗
U has the fewest coefficients, which are mostly on the

diagonal; Twitch is a heterophily graph, itsH∗
U has the most coefficients, which are mostly on

the off-diagonal; Pokec can be seen as either homophily or heterophily, itsH∗
U has the number

of coefficients in between.

5.7.3 RQ3 – Ablation Study

To demonstrate the necessity of addressing the limitations of linear GNNs in link prediction

with our design choices, we study NetInfoF (1) without compatibility matrix (w/o CM), and

(2) with only compatibility matrixH (w/ onlyH), which is not optimized with negative edges.

Table 5.8 shows that NetInfoF works best with both design choices. In heterophily graphs,

merely using H leads to better performance because of properly handling heterophily embed-

dings; while in homophily graphs, it accidentally increases the similarity between nodes in

negative edges and hurts the performance. Taking into account both heterophily embeddings

and negative edges, using H∗
as the compatibility matrix has the best performance in both

heterophily and homophily graphs.
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on link prediction, being linear with

number of edges.

Table 5.7: NetInfoF wins on link prediction in

OGB datasets. Hits@20, Hits@50, andHits@100 are
reported for ddi, collab, and ppa, respectively. Green

( ) marks the winner.

Model ogbl-ddi ogbl-collab ogbl-ppa

GCN 37.1±5.1 44.8±1.1 18.7±1.3
SAGE 53.9±4.7 48.1±0.8 16.6±2.4
SlimG 35.9±0.6 45.1±0.2 21.1±0.6

NetInfoF 56.8±3.4 53.7±0.2 24.2±0.1

Table 5.8: Ablation Study: All design choices in NetInfoF are necessary on link predic-

tion. CM stands for compatibility matrix, and H is not optimized with negative edges. Green

( ) marks the winner.

Model Cora CiteSeer PubMed Comp. Photo ArXiv Products Cham. Squirrel Actor Twitch Pokec

w/o CM 79.8±0.9 86.5±1.6 58.5±1.2 27.9±0.2 44.7±3.2 35.9±1.8 34.6±0.4 74.6±1.5 14.3±0.6 29.5±1.8 08.9±0.8 30.5±0.3
w/ only H 80.9±0.5 87.0±1.4 58.8±1.4 26.5±1.2 43.4±2.1 32.5±1.6 30.6±0.4 74.3±3.2 19.3±1.2 32.2±1.6 10.3±3.1 29.8±0.4

NetInfoF 81.3±0.6 87.3±1.3 59.7±1.1 31.1±1.9 46.8±2.2 39.2±1.8 35.2±1.1 86.9±2.3 24.2±2.0 36.2±1.2 19.6±0.7 31.3±0.5

5.8 Conclusion

We propose the NetInfoF framework to measure and exploit the network usable information

(NUI). In summary, NetInfoF has the following advantages:

1. General, handling both link prediction and node classification (Lemma 5.1 and 5.2);

2. Principled, with theoretical guarantee (Theorem 5.1 and 5.2) and closed-form solution

(Lemma 5.1 and 5.2);

3. Effective, thanks to the proposed adjustment of node similarity (Figure 5.1);

4. Scalable, scaling linearly with the input size (Figure 5.6).

Applied on our carefully designed synthetic datasets, NetInfoF correctly identifies the ground

truth of NUI and is the only method that is robust to all graph scenarios. Applied on real-world

graphs, NetInfoF wins in 11 out of 12 times on link prediction.
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Chapter 6

HybGRAG: Hybrid

Retrieval-Augmented Generation

on Textual and Relational

Knowledge Bases

Chapter based on work that appeared at ACL 2025 [LZM
+
25] [PDF].

Given a semi-structured knowledge base (SKB), where text documents are interconnected

by relations, how canwe effectively retrieve relevant information to answer user questions?

Retrieval-Augmented Generation (RAG) retrieves documents to assist large language mod-

els (LLMs) in question answering; while Graph RAG (GRAG) uses structured knowledge

bases as its knowledge source. However, many questions require both textual and rela-

tional information from SKB – referred to as “hybrid” questions – which complicates the

retrieval process and underscores the need for a hybrid retrieval method that leverages

both information.

In this chapter, through our empirical analysis, we identify key insights that show why

existing methods may struggle with hybrid question answering (HQA) over SKB. Based on

these insights, we propose HybGRAG for HQA, consisting of a retriever bank and a critic

module, with the following advantages: (1) Agentic, it automatically refines the output

by incorporating feedback from the critic module, (2) Adaptive, it solves hybrid questions

requiring both textual and relational information with the retriever bank, (3) Interpretable,

it justifies decision making with intuitive refinement path, and (4) Effective, it surpasses all

baselines on HQA benchmarks.

In experiments on the STaRK benchmark, HybGRAG achieves significant performance

gains, with an average relative improvement in Hit@1 of 51%.
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Hybrid Question:

What nanofluid heat transfer papers have been published by John Smith?

(c) HybGRAG (Ours)

(b) GRAG(a) RAG

Refine

Retrieve
RetrieveRetrieve

Textual Aspect:
What nanofluid heat transfer papers
have been published by John Smith.

Relational Aspect:
nanofluid heat transfer papers,
by John Smith

Relational Aspect:
nanofluid heat transfer papers,
by John Smith
Textual Aspect:
None

Relational Aspect:
by John Smith
Textual Aspect:
nanofluid heat transfer papers

Figure 6.1: HybGRAG solves hybrid questions in SKB, which are semi-structured, involv-

ing textual and relational aspects. (a) RAG overlooks the interconnections between documents

and does not meet the requirements specified by the relational aspect. (b) GRAG relies solely

on the relational aspect and misidentifies the textual aspect as part of the relational one. (c)

HybGRAG refines the question routing through self-reflection and successfully retrieves the

target document in SKB, addressing both textual and relational aspects.

6.1 Introduction

Retrieval-augmented generation (RAG) [LPP
+
20, GLT

+
20] enables large language model (LLM)

to access information from an unstructured document database. This allows LLMs to address

unknown facts and solve Open-Domain Question Answering (ODQA) with additional textual

information. Building on this, Graph RAG (GRAG) has extended this concept by retrieving

information from structured knowledge bases, where documents are interconnected by rela-

tionships. The existing GRAG methods can be categorized into two primary directions. The

first focuses on leveraging the capability of LLMs for Knowledge Base Question Answering

(KBQA) [YRB
+
21, SXT

+
24, JXZ

+
24, MK24], extracting and using relational information from

knowledge graphs (KGs). The second aims to build relationships between documents in the

database to improve ODQA performance [LHG
+
24, DFP

+
24, ETC

+
24].

Recently, an emerging problem concentrates on “hybrid” question answering (HQA), where

a question requires both relational and textual information to be answered correctly, given a

semi-structured knowledge base (SKB) [WZY
+
24]. SKB consists of a structured knowledge

base, i.e., knowledge graph (KG), and unstructured text documents, where the text documents

are associated with entities of KG. In Figure 6.1 top, an example of hybrid questions is given,

which involves both the textual aspect (paper topic) and the relational aspect (paper author),

and SKBs are the cylinders.
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21%
Higher

10%
Higher

Figure 6.2: HybGRAG wins in STaRK, outperforming baselines by up to 21% in Hit@1.

Nevertheless, through our empirical analysis, we uncover two critical insights showing that

existing methods that perform RAG or GRAG cannot effectively tackle HQA, which requires a

synergy between the two retrieval methods. First, they focus solely on retrieving either textual

or relational information. As shown in Figure 6.1(a) and (b), this limitation reduces their appli-

cability when the synergy between the two modalities is required. Second, in hybrid questions,

the aspects required to retrieve different types of information may not be easily distinguishable.

In Figure 6.1(c), question routing [LLZ
+
24] is performed to identify the aspects of the question.

However, in an unsuccessful routing, confusion between the textual aspect “nanofluid heat

transfer papers” and the relational aspect “by John Smith”, leads to incorrect retrieval.

To solve HQA in SKB, we propose HybGRAG. HybGRAG handles hybrid questions with

a retriever bank, which leverages both textual and relational information simultaneously. To

improve the accuracy of the retrieval, HybGRAG performs self-reflection [RG24], which itera-

tively improves its question routing based on feedback from a carefully designed critic module,

as shown in Figure 6.1(c). Similarly to chain-of-thought (CoT) [WWS
+
22], which is widely

regarded as interpretable, HybGRAG’s refinement path provides intuitive explanations for the

performance improvement. Last but not least, the framework of HybGRAG is designed to be

flexible, and can easily be adapted to different problems. We summarize the contributions of

HybGRAG as follows:

1. Agentic: it automatically refines the question routing with self-reflection;

2. Adaptive: it solves textual, relational and hybrid questions with a unified framework;

3. Interpretable: it justifies the decision making with intuitive refinement path; and

4. Effective: it outperforms all baselines on real-world HQA benchmarks.

In Table 6.1,HybGRAG is the only work that satisfies all the desired properties and solves HQA.

In Figure 6.2, evaluating on a HQA benchmark STaRK,HybGRAG outperforms the second-best

baseline significantly with relative improvements in Hit@1 47% in STaRK-MAG, and 55% in

STaRK-Prime, respectively.
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Table 6.1: HybGRAGmatches all properties, while baselines miss more than one property.

Property R
e
g
u
l
a
r
R
A
G

T
h
i
n
k
-
o
n
-
G
r
a
p
h

A
v
a
T
a
R

H
y
b
G
R
A
G

1. Agentic " "

2. Adaptive

2.1. Questions in ODQA " " "

2.2. Questions in KBQA " "

2.3. Questions in HQA "

3. Interpretable ? " " "

Table 6.2: Table of Symbols and Definitions.

Symbol Definition

G Knowledge graph

N Set of entities in KG

R Set of relations in KG

TN Set of entity types

TR Set of relation types

D Set of text documents

q Question

X Set of retrieved documents

Table 6.3: Table of Acronyms.

Acronym Definition

LLM Large Language Model

RAG Retrieval-Augmented Generation

GRAG Graph Retrieval-Augmented Generation

SKB Semi-Structured Knowledge Base

KG Knowledge Graph

HQA Hybrid Question Answering

ODQA Open-Domain Question Answering

KBQA Knowledge Base Question Answering

VSS Vector Similarity Search

PPR Personalized PageRank

ICL In-Context Learning

6.2 Proposed Insights: Challenges in HQA

What new challenges in HQA over SKB remain unsolved by existing methods? In this section,

we first define the problemHQA, and then conduct experiments to uncover two critical insights,

laying the foundation for designing our method for HQA.

6.2.1 Problem Definition

An overview of symbols and acronyms is provided in Table 6.2 and Table 6.3, respectively. A

semi-structured knowledge base (SKB) consists of a KGG = (N ,R), whereN andR represent

the sets of entities and relations. It also includes a set of text documents D =
⋃

i∈N Di, where

Di is the document associated with entity i. Entity and relation types are denoted by TN and

TR, respectively. Each hybrid question q in SKB involves semi-structured information, namely,

textual and relational information. We define hybrid question answering (HQA) as follows:
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Table 6.4: Textual and relational information

are both useful to answer hybrid question in

STaRK-MAG.

Method Hit@1 Hit@5

Text Retriever: VSS 0.2908 0.4961

Graph Retriever: PPR 0.2533 0.5523

Optimal Routing 0.4522 0.7463

Table 6.5: LLMs frequently extracts a sub-

graph from KG in SKB without target entities

in STaRK-MAG.

# of Iterations Feedback Type Hit Rate

1 N/A 0.6769

2 Simple 0.7914

2 Corrective 0.9231

• Given a SKB consisting of a KG G = (N ,R) and a set of documents D, and a hybrid

question q.
• Retrieve a set of documents X ⊆ N , where each document satisfies the requirements

specified by the relational and textual aspects of q.

6.2.2 Insight 1: Hybrid-Sourcing Question

To investigate if it is necessary to leverage both textual and relational information to answer

hybrid questions, we conduct an experiment to show that text documents and KG contain useful

but non-overlapping information. As a retriever that uses only textual information, vector

similarity search (VSS) [KOM
+
20] performs retrieval and ranking by comparing the question

and documents in the embedding space (“ada-002”); as a retriever that uses only relational

information, Personalized PageRank (PPR) [ACL06] performs random walks from the topic

entities identified by an LLM (Claude 3 Sonnet) and ranks neighboring entities based on their

connectivity in KG.

In Table 6.4, the text and graph retrievers have competitive performance. Interestingly, if

an optimal routing always picks the retriever that gives the correct result, the performance

is significantly higher, indicating little overlap between the strengths of the text and graph

retrievers. This highlights the importance of a solution to leverage both textual and relational

information simultaneously by synergizing these two retrievers. In Figure 6.1(c), we show a

hybrid question that requires both textual and relational information to be answered. Based on

this observation, we uncover the first challenge:

Challenge 6.1: Hybrid-Sourcing Question

In HQA, there are questions that require both textual and relational information to be

answered.

6.2.3 Insight 2: Refinement-Required Question

The success of KBQA often relies on the assumption that the target entities are within an ex-

tracted subgraph from KG [LHJ
+
23]. Similarly, answering a question in HQA requires extract-

ing a subgraph from KG in SKB. As hybrid questions involve both textual and relational aspects,
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they can be challenging for an LLM to comprehend. To study this, we test if an LLM can extract

a subgraph from KG that contains the target entities (hit). More specifically, an LLM (Claude

3 Sonnet) is prompted to identify the relational aspect in the question, i.e. topic entities and

useful relations used to extract the subgraph. An oracle is used to instruct LLM to perform an

extra iteration with feedback if the target entities are not included in the subgraph.

In Table 6.5, if the result is incorrect, simply prompting LLM to redo the extraction gives a

much better hit ratio. Moreover, if the LLM receives feedback that points out the erroneous part

of the extraction (e.g., extracted topic entity is wrong), it significantly improves the result. This

is because in hybrid questions that contain both textual and relational aspects, LLM can falsely

identify the textual aspect as the relational one. In Figure 6.1(c), there is an error in retrieving

the correct reference from LLM, as it confuses the textual aspect as an entity of type “field of

study” on the first attempt. Based on this observation, we uncover the second challenge:

Challenge 6.2: Refinement-Required Question

In HQA, LLM struggles to distinguish between the textual and relational aspects of the

question on the first attempt, necessitating further refinements.

6.3 Proposed Method: HybGRAG

To solve HQA, we propose HybGRAG, consisting of the retriever bank and the critic module, to

address Challenge 6.1 and Challenge 6.2, respectively.

6.3.1 Retriever Bank

To solve Challenge 6.1, we propose the retriever bank, composed of multiple retrieval modules

and a router. Given a question q, the router determines the selection and usage of the retrieval

module, a process known as question routing. The selected retrieval module then retrieves the

top-K references X , as elaborated in the next paragraph.

Retrieval Modules We design two retrieval modules, namely text and hybrid retrieval mod-

ules, to retrieve information from text documents and SKB, respectively. Each retrieval module

includes a retriever and a ranker, which offers the flexibility to cover a wide range of questions.

The text retrieval module retrieves documents using similarity search for a question q, such
as dense retrieval, which is designed to directly find answers within text documents. We use

VSS between question q and documentsD in the embedding space as both the retriever and the

ranker. This is typically used when nothing can be extracted from the hybrid retrieval module.

The hybrid retrieval module takes the identified topic entities N̂ and useful relations R̂
as input. It uses a graph retriever to extract entities in the ego-graph of N̂ , connected by R̂.
For example, in Figure 6.1, {N̂ = {John Smith}, R̂ = {author writes paper}} and the graph

retriever extracts the entities/papers connected by the path “John Smith -> author writes paper

-> {paper(s)}”. If more than one ego-graph is extracted, their intersection is used as the final
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Table 6.6: Corrective feedback of the critic module in HybGRAG for STaRK.

Error Source Error Type Feedback

Identification

Incorrect Entity/Relation

Entity/relation {name} is incorrect. Please remove or substitute this

entity/relation.

Missing Entity

There is only one entity but there may be more. Please extract one

more entity and relation.

No Entity

There is no entity extracted. Please extract at least one entity and

one relation.

No Intersection

There is no intersection between the entities. Please remove or

substitute one entity and relation.

Incorrect Intersection

There is an intersection between the entities, but the answer is not

within it. Please remove or substitute one entity and relation.

Selection Incorrect Retrieval Module

The retrieved document is incorrect. The current retrieval module

may not be helpful to narrow down the search space.

result. Finally, to solve hybrid questions, we propose ranking the documents associated with

the extracted entities using a VSS ranker between question q and documents D. This ensures
the synergy between the relational and textual information.

Router Given a question q, the LLM router performs question routing to determine the selec-

tion and usage of the retrieval module. More specifically, the router first identifies the relational

aspect, i.e., topic entities N̂ and useful relations R̂ based on the types of entities TN and the

types of relation TR using few shot examples [BMR
+
20]. The router then makes the selection

st, determining whether to use a text or a hybrid retrieval module. Identifying N̂ and R̂ before

determining st improves the quality of st. For example, if there is no entity extracted N̂ = ∅, a
text retrieval module is a better option.

6.3.2 Critic Module

Given a hybrid question q, the router is asked to perform question routing, including identifying

topic entities N̂ and useful relations R̂. However, as mentioned in Challenge 6.2, they may be

incorrectly identified in the first iteration.

To solve this, we propose the critic module, which provides feedback to help the router

perform better question routing. Instead of using a single LLM to complete this complicated

task, we divide the critic into two parts, an LLM validator Cval to validate the correctness of the

retrievalX , and an LLM commenterCcom to provide feedback ft if the retrieval is incorrect. This
divide-and-conquer step, similar to previous works [GDP

+
23, AWW

+
24], is crucial to our critic

module, offering two key advantages: (1) By breaking a difficult task into two easier ones, we

can now leverage pre-trained LLMs to solve them while maintaining good performance. This

avoids issues arising from fine-tuning LLMs, such as the unavailability of labels or catastrophic

forgetting [TSdC
+
19]. (2) Since the tasks of Cval and Ccom are independent, they can each have
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Algorithm 6.1: HybGRAG

Input: Question q, a SKB with G and D, Entity Types TN , Relation Types TR, and
Maximum Iterations T

1 f1 = "";
2 for t = 1, . . . , T do

3 /* Retriever Bank */

4 st, N̂t, R̂t = Router(q, TN , TR, ft);
5 if st is hybrid retrieval module then

6 Xt = HybridRM(q,G,D, N̂t, R̂t);
7 else

8 Xt = TextRM(q,D);
9 end

10 /* Validator */
11 if Cval(q,Xt) = True then
12 Return Xt;

13 else

14 /* Commenter */

15 ft+1 = Ccom(q, st, N̂t, R̂t);

16 end

17 end

18 Return Xt;

their own exclusive contexts, preventing the inclusion of irrelevant information and avoiding

the “lost in the middle” phenomenon [SCM
+
23, LLH

+
24].

Validator The LLM validator Cval aims to validate if the top references retrieved X meet

the requirements specified by the question q, which is a binary classification task. To improve

accuracy, we provide an additional validation context for the validator. We use the reasoning

paths between topic entities and entities in the extracted ego-graph as the validation context,

which are used to verify whether the output satisfies certain requirements in the question. The

reasoning paths are verbalized as “{topic entity} → {useful relation} →... → {useful relation} →
{neighboring entity}”. For example, if a hybrid question asks for a paper (i.e. a document) from a

specific author, then the context including the reasoning paths “{author} → {writes} → {paper}”

is essential for verification.

Commenter The LLM commenter Ccom aims to provide feedback f to help the router refine

question routing. To effectively guide the router, we construct corrective feedback that it can

easily understand. In more detail, it points out the error(s) in each action, such as incorrect

identification of topic entities, as shown in Table 6.6. Unlike natural language feedback, which

may cause uncertainty or inconsistency depending on the LLM used, our corrective feedback

provides clear guidance on how to refine the question routing. Furthermore, it leverages in-

context learning (ICL) to provide sophisticated feedback. We collect a small number of success-
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ful experiences (≈ 30) in the training set as examples, with each experience {st, N̂t, R̂t, ft+1}
comprising a pair of router action and feedback, which is verified by ground truth. During in-

ference, the commenter gives high-quality feedback based on multiple pre-collected examples.

6.3.3 Overall Algorithm

The algorithm of HybGRAG is in Algorithm 6.1. Given a question q, in iteration t, the router
determines st, N̂t and R̂t to retrieve the references Xt from both G and D in SKB, or only D,
with the selected retrieval module. The validatorCval in the critic module then decides whether

to accept Xt as the final answer or reject it. If Xt is rejected, the commenter Ccom generates

feedback ft+1 for the router to assist in refining its action in iteration t+ 1.

6.4 Experiments

We conduct experiments to answer the following research questions (RQ):

RQ1. Effectiveness: How well does HybGRAG perform in the real-world HQA benchmark?

RQ2. Ablation Study: Are all the design choices in HybGRAG necessary?

RQ3. Interpretability: How does HybGRAG refine its question routing based on feedback?

RQ4. Adaptive: How well does HybGRAG perform in an end-to-end RAG setting?

RQ5. Cost Analysis: How much does HybGRAG cost to run?

Benchmarks We conduct experiments on two QA benchmarks: STaRK [WZY
+
24], which

serves as the primary evaluation benchmark and focuses on retrieval, and CRAG [YSX
+
24], a

complementary benchmark to evaluate end-to-end RAG performance. While STaRK focuses

on HQA, CRAG encompasses both ODQA and KBQA as sub-problems.

6.4.1 RQ1 – Effectiveness

We use the default evaluation metrics provided by STaRK, which are Hit@1, Hit@5, Recall@20

and mean reciprocal rank (MRR), to evaluate the performance of the retrieval task. We compare

HybGRAG with various baselines, including recent methods (QAGNN [YRB
+
21] and Think-

on-Graph [SXT
+
24]); traditional RAG approaches; and self-reflective LLMs (ReAct [YZY

+
23],

Reflexion [SCG
+
23], and AvaTaR [WZH

+
24]).

In Table 6.7, HybGRAG outperforms all baselines significantly in both datasets in STaRK.

Most baselines are designed to handle ODQA and KBQA, and the results have shown that they

cannot handle HQA effectively (Challenge 6.1). Our hybrid retrieval module is the second-best

performing method, highlighting the importance of designing a synergized retrieval module

that uses both textual and relational information simultaneously. In addition, HybGRAG per-

forms significantly better than the hybrid retrieval module, indicating that the extracted entity

and relation are frequently incorrect in the first iteration (Challenge 6.2). By tackling Chal-

lenge 6.1 and 6.2 with our retriever bank and critic module respectively, HybGRAG has a sig-

nificant improvement in performance.
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Table 6.7: Retrieval Evaluation on STaRK: HybGRAG wins. ‘*’ denotes that only 10% of

the testing questions are evaluated due to the high latency and cost of the methods. Green ( ,

) marks the top two.

Method

STaRK-MAG STaRK-Prime

Hit@1 Hit@5 Recall@20 MRR Hit@1 Hit@5 Recall@20 MRR

QAGNN 0.1288 0.3901 0.4697 0.2912 0.0885 0.2123 0.2963 0.1473

Think-on-Graph* 0.1316 0.1617 0.1130 0.1418 0.0607 0.1571 0.1307 0.1017

Dense Retriever 0.1051 0.3523 0.4211 0.2134 0.0446 0.2185 0.3013 0.1238

VSS (Text Retrieval Module) 0.2908 0.4961 0.4836 0.3862 0.1263 0.3149 0.3600 0.2141

Multi-VSS 0.2592 0.5043 0.5080 0.3694 0.1510 0.3356 0.3805 0.2349

VSS w/ LLM Reranker* 0.3654 0.5317 0.4836 0.4415 0.1779 0.3690 0.3557 0.2627

ReAct 0.3107 0.4949 0.4703 0.3925 0.1528 0.3195 0.3363 0.2276

Reflexion 0.4071 0.5444 0.4955 0.4706 0.1428 0.3499 0.3852 0.2482

AvaTaR 0.4436 0.5966 0.5063 0.5115 0.1844 0.3673 0.3931 0.2673

Hybrid Retrieval Module (Ours) 0.5028 0.5820 0.5031 0.5373 0.2492 0.3274 0.3366 0.2842

HybGRAG (Ours) 0.6540 0.7531 0.6570 0.6980 0.2856 0.4138 0.4358 0.3449

Relative Improvement 47.4% 26.2% 29.3% 36.5% 54.9% 12.7% 10.9% 29.0%

Hit@1 Hit@5 Recall@20 MRR
0.5

0.6

0.7

0.8

0.9

1.0
STaRK-MAG

Val. w/o Context
Com. w/ 5-Shot
HybGRAG
Oracle

Hit@1 Hit@5 Recall@20 MRR
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0.6
STaRK-Prime

Figure 6.3: Design choices in HybGRAG are necessary in STaRK. We compare HybGRAG

with two variants: a validator without validation context, and a commenter with only 5-shot.

Oracle uses ground truth during inference.

6.4.2 RQ2 – Ablation Study

Critic Module We compare HybGRAG variants with a validator without validation context,

a commenter with only five shots, and those with oracles. The oracle has access to the ground

truth, which gives the optimal judgement on the correctness of the output and the error type

of question routing, if there is any. In Figure 6.3, we show that HybGRAG performs the best

with all our design choices, approaching the performance of an oracle.

Self-Reflection In Figure 6.4, we demonstrate that with more self-reflection iterations, the

performance of HybGRAG improves further. Performance improves significantlywhen increas-

ing the number of iterations from 1 to 2, where no self-reflection is performed in iteration 1. It

is also shown that a few iterations are sufficient, as the improvement diminishes over iterations.
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Figure 6.4: HybGRAG improves its question routing thanks to the critic module.

Table 6.8: HybGRAGmaintains strong performance with a less powerful LLM model in

STaRK-MAG. Green ( ) marks the winner.

Base Model Hit@1 Hit@5 Recall@20 MRR Speedup

Claude 3 Haiku 0.6019 0.7084 0.6067 0.6483 1.96×
Claude 3 Sonnet 0.6540 0.7531 0.6570 0.6980 1.00×

Model Size Although we do not have access to Claude 3 Opus, we conduct experiments with

Claude 3 Haiku, a more cost-efficient but less powerful alternative to Claude 3 Sonnet
∗
. In

Table 6.8, HybGRAGmaintains strong performance even with Claude 3 Haiku. The results also

follow the scaling law of LLMs [KMH
+
20].

Multi-Agent Perspective Since HybGRAG can be interpreted as a multi-agent system, we

add a single-agent baseline, which relies on the router to make decisions and provide feedback

for self-reflection. In Table 6.9, HybGRAG outperforms both single-agent and no-agent base-

lines. This highlights that self-reflection is essential for achieving strong performance in HQA,

as pointed out in Challenge 6.2. Moreover, unlike the plain text feedback generated by the

single-agent baseline, the feedback generated by HybGRAG more effectively guides the router

in refining its decision, thanks to our carefully designed critic module.

6.4.3 RQ3 – Interpretability

Figure 6.5 illustrates examples of the interaction between the router in the retriever bank and

the critic module in STaRK-MAG. In the first iteration of Figure 6.5(a), the router misidentifies a

“optical TALU implementations in electronic circuits” as a topic entity representing the field of

study (relational aspect). Since the ego-graph extracted based on this entity has no intersection

with the ego-graph extracted based on “Netaji Subhash Engineering College”, the critic module

recognizes that the former entity has a higher chance of being a textual aspect. Thus, it gives

the feedback to the router, and the router addresses it accordingly. This refinement path of

HybGRAG is similar to CoT, making it interpretable and easy for the user to understand.

∗https://www.anthropic.com/news/claude-3-family
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Table 6.9: HybGRAG performs best with multi-agent design in STaRK-MAG. “Router for

SR” baseline performs self-reflection using a single LLM router. Green ( ) marks the winner.

Method Setting Hit@1 Hit@5 Recall@20 MRR

Hybrid RM No-Agent 0.5028 0.5820 0.5031 0.5373

Router for SR Single-Agent 0.6206 0.7069 0.6187 0.6587

HybGRAG Multi-Agent 0.6540 0.7531 0.6570 0.6980

Q: Any 2012 publications from Netaji Subhash Engineering 
College on optical TALU implementations in electronic circuits?

Action 1: 
Selection: Hybrid retrieval module
Entity: Netaji Subhash Engineering College (institution), optical 
TALU implementations in electronic circuits (field of study)
Relation: author affiliated with institution, author writes paper, 
paper has topic field of study

Feedback 1: The retrieved document is incorrect. 
Entity “optical TALU implementations in electronic circuits” and 
relation “paper has topic field of study” are incorrect. Please 
remove or substitute one entity and relation.

Action 2: 
Selection: Hybrid retrieval module
Entity: Netaji Subhash Engineering College (institution)
Relational: author affiliated with institution, author writes paper

Feedback 2: Accept. ✅

Q: Are there any 2016 publications by co-authors of "A Low Abundance of 
135Cs in the Early Solar System from Barium Isotopic Signatures" which 
discuss the comparison of Earth's chemical composition with that of chondrites?

Action 1: 
Selection: Hybrid retrieval module
Entity: A Low Abundance of 135Cs in the Early Solar System from Barium 
Isotopic Signatures (paper)
Relation: author writes paper

Feedback 1: The retrieved document is incorrect. 
There is only one entity but there may be more. Please extract one more entity 
and relation.

Action 2: 
Selection: Hybrid retrieval module
Entity: A Low Abundance of 135Cs in the Early Solar System from Barium 
Isotopic Signatures (paper), chondrites (field of study)
Relational: author writes paper, paper has topic field of study

Feedback 2: Accept. ✅

(a) Error Type: Incorrect Entity/Relation (b) Error Type: Missing Entity

Figure 6.5: HybGRAG is interpretable. In examples from STaRK-MAG, HybGRAG success-

fully refines its entity and relation extraction based on corrective feedback from critic module.

6.4.4 RQ4 – End-to-End RAG Evaluation

We modify HybGRAG to adapt to CRAG. We use default evaluation metrics, where an LLM

evaluator is used to determine if the predicted answers are accurate, incorrect (hallucination),

or missing, and Scorea with 1, -1, and 0 for these respective categories. We compare HybGRAG

with CoT LLM, text-only RAG, graph-only RAG, and RAG that concatenates text and graph

references. We include two self-reflective LLMs (ReAct, Corrective RAG) that share the same

retriever bank but use different critics.

In Table 6.10, HybGRAG outperforms all baselines in CRAG. RAGs with a single retrieval

module cannot handle both types of questions. RAGwith a concatenated reference also distracts

by irrelevant content in the long reference. Although the same retriever bank is provided,

self-reflective baselines still find it difficult to refine their action. Since ReAct relies on the

LLM’s ability to think and provide natural language feedback, it often lacks clear guidance

for improving its actions. Without a fine-tuned retrieval evaluator, Corrective RAG cannot

effectively identify the usefulness of a reference.
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Table 6.10: End-to-End RAG Evaluation on CRAG: HybGRAG wins. All baselines (except

CoT LLM) share our retriever bank, but use different critics to provide feedback. Green ( , )

marks the top two.

Method

Llama 3.1 70B Claude 3 Sonnet

Accuracy ↑ Halluc. ↓ Missing Scorea ↑ Accuracy ↑ Halluc. ↓ Missing Scorea ↑

CoT LLM 0.4607 0.5026 0.0367 -0.0419 0.3910 0.4052 0.2038 -0.0142

Text-Only RAG 0.4105 0.3685 0.2210 0.0420 0.5034 0.3955 0.1011 0.1079

Graph-Only RAG 0.4861 0.4442 0.0697 0.0419 0.5303 0.2974 0.1723 0.2329

Text & Graph RAG 0.4120 0.3790 0.2090 0.0330 0.5820 0.3416 0.0764 0.2404

ReAct 0.1745 0.2360 0.5895 -0.0615 0.4352 0.4075 0.1573 0.0277

Corrective RAG 0.4509 0.4652 0.0839 -0.0143 0.4674 0.3333 0.1993 0.1341

HybGRAG (Ours) 0.5206 0.3588 0.1206 0.1618 0.6322 0.2959 0.0719 0.3363

Table 6.11: Number of API calls and tokens used by HybGRAG for STaRK.

HybGRAG API Call # Token # for Token # for Token # for

Component per for Examples Examples

Iteration Prompts in MAG in Prime

Router 2 159 2709 3018

Validator 1 39 1383 2107

Commenter 1 52 1215 1583

6.4.5 RQ5 – Model Cost Analysis

We report the number of API calls and token consumption (excluding references) for each step

in an iteration of HybGRAG in Table 6.11 for STaRK. While most token consumption arises

from the examples used for ICL, the prompts themselves require very few tokens. Moreover,

since HybGRAG uses chat LLM as the router, the examples for ICL only need to be given once.

Compared to the state-of-the-art baseline AvaTaR, which requires at least 500 API calls during

training, our hybrid retrieval module achieves a relative improvement 24% in Hit@1 with only

2 API calls, while HybGRAG achieves 51% with at most 14 API calls, both without training.

6.5 Related Work

6.5.1 Graph Retrieval-Augmented Generation

Various settings have been explored for GRAG [PZL
+
24], and can be roughly divided into three

directions. The first focuses on Knowledge Base QuestionAnswering (KBQA), taking advantage

of the LLM capability [YRB
+
21, SXT

+
24, JXZ

+
24, MK24]. The second focuses on Open-Domain

Question Answering (ODQA), building relationships between documents to improve retrieval

[LHG
+
24, DFP

+
24, ETC

+
24]. The last assumes that a subgraph is given when answering a

question [HTS
+
24, HLZ

+
24]. In contrast, we focus on solving Hybrid Question Answering

(HQA) in SKB, and previous GRAG methods are not easily generalized to HQA.
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6.5.2 Agentic and Self-Reflective LLMs

LLM agents [YZY
+
23, WZH

+
24] facilitate planning in complex reasoning tasks. Among them,

AvaTaR is the most recent, proposing iterative prompt optimization via contrastive reason-

ing. However, they may still struggle to generate the correct output on the first attempt. Self-

reflection addresses this limitation by iteratively optimizing the output based on feedback, typ-

ically provided by a critic implemented using various approaches: pre-trained LLMs [SCG
+
23,

MTG
+
23], external tools [GSG

+
24, QZF

+
24], or fine-tuned LLMs [PIP

+
24, AWW

+
24, YGZL24].

Nevertheless, they do not generalize to HQA for two reasons. First, they lack appropriate re-

trieval tools and guidance on how to refine retrieval effectively. Second, in the absence of

external tools or labels for fine-tuning, using pre-trained LLMs as critics without careful design

results in suboptimal self-evaluation and overly implicit feedback.

6.6 Conclusion

To solve hybrid question answering (HQA), we proposeHybGRAG, driven by insights from our

empirical analysis, which has following advantages:

1. Agentic: it refines question routing with self-reflection by our critic module;

2. Adaptive: it solves textual, relational and hybrid questions by our retriever bank;

3. Interpretable: it justifies the decision making with intuitive refinement path; and

4. Effective: it significantly outperforms all the baselines on HQA benchmarks.

Applied on STaRK, HybGRAG achieves an average relative improvement 51% in Hit@1.

88



Part II

Graph-Level Graph Mining
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Overview

Given a graph database, how can we find substructures frequently shared by graphs?

How can we leverage these substructures to solve the given graph-level tasks?

In a graph database, graphs share substructure patterns, some of which occur more fre-

quently than others. These frequent substructures provide clear explanations and useful in-

formation for identifying graph properties or detecting anomalies. In this chapter, we aim to

detect frequent substructures and leverage them to solve downstream graph-level tasks, such

as graph anomaly detection and graph regression.

We address this problem in two different settings of increasing difficulty and propose two cor-

responding algorithms:

• § 7: Graph anomaly detection – GAWD identifies frequent substructures that best com-

press the graphs and assigns higher anomaly scores to those that are less compressible.

• § 8: Various graph-level tasks – RWK
+
is an improved random walk graph kernel used

to learn frequent substructures and extract features across graphs for downstream tasks.

We further extend this problem to a real-world graph application:

• § 9: In human trafficking detection, DeltaShield represents millions of escort advertise-

ments as graphs and identifies common templates shared among them.
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Chapter 7

GAWD: Graph Anomaly

Detection in Weighted Graph

Databases

Chapter based on work that appeared at ASONAM 2021 [LNB
+
21] [PDF].

Given a set of node-labeled directed weighted graphs, how to find the most anomalous

ones? How can we summarize the normal behavior in the database without losing infor-

mation? The idea of the existing work is to (1) iteratively identify the “best” substructure

(i.e., subgraph or motif) that yields the largest compression when each of its occurrences

is replaced by a super-node, and (2) score each graph by how much it compresses over

iterations – the more the compression, the lower the anomaly score.

In this chapter, we proposeGAWD, for detecting anomalous graphs in directedweighted

graph databases. Different from existing work, our GAWD exhibits: (i) a lossless graph en-

coding scheme, (ii) ability to handle numeric edgeweights, (iii) interpretability by common

patterns, and (iv) scalability with running time linear in input size.

Experiments on four datasets injected with anomalies show that GAWD achieves sig-

nificantly better results than state-of-the-art baselines.
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Figure 7.1: GAWD wins on both effectiveness and scalability: We evaluate four datasets

and show the big gap between it and competitors w.r.t. average precision and run time.

7.1 Introduction

Given a large graph database containing directed weighted node-labeled graphs, how can we

detect the anomalous graphs? Many studies succeed in detecting anomalies but fail to give

satisfying interpretations. This raises another prominent problem—how canwe spot anomalies

and summarize the normal behavior without simultaneously losing information?

In recent years, graph [HYL17, NCV
+
17] and node embedding [GL16] have attracted a lot

of attention. These methods have been used in anomaly detection in conjunction with off-the-

shelf anomaly detectors. Embedding-based models, however, lack interpretability. In contrast,

structure-based methods enable domain experts to conduct post-analysis to reveal root causes

of anomalies. Several structure-based methods [NC03, EH07] detect anomalies by compressing

graphs with a substructure that yields the largest compression. The selected substructure is

replaced by a super-node and the process continues in iterations. As a result, graphs with more

common substructures (and hence compress more) are deemed less anomalous than those with

fewer substructures.

However, neither embedding- nor structure-based methods are perfect: (1) both of these

methods cannot totally avoid information loss, which causes difficulty in interpreting results,

and (2) none of the structure-based methods can handle weighted graphs, which prevents them

from detecting anomalies caused by edge weights.
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We propose GAWD to address the aforementioned problems, with following advantages:

• Lossless Encoding: GAWD builds on Noble and Cook [NC03] in terms of identifying

frequent subgraphs and compressing the graphs in the input database by replacing each

of its occurrences by a super-node. This results in a loss of connectivity information for

nodes outside the substructure that are connected to nodes within. We address this issue

by incorporating “rewiring” information into our encoding, such that the compressed

graph can be reconstructed into the original graph losslessly.

• Handling Weighted Graphs: We propose a novel encoding scheme for handling nu-

meric edge weights. Given a substructure we estimate a “representative” weight for its

edges, as well as extend the encoding of a compressed graph to incorporate corrections

for true weights such that decompression can be done losslessly.

• Interpretability and Scalability: The (lack of) frequent subgraphs common in the

database provide a means to explain anomalousness. Moreover, GAWD exhibits linear

scalability in the input size.

As shown in Figure 7.1, experimental results on four real-world datasets with injected anomalies

show that GAWD provides better trade-off between detection performance and running time

compared to both existing graph embedding- and structure-based methods. Moreover, GAWD

is lossless in contrast with lossy compression of existing methods [CH94, NC03, EH07] and,

therefore, able to backtrack the process after compression, while other lossy methods lose those

information after compression.

Reproducibility: Our code and injected datasets along with labels (except for Accounting

Dataset due to privacy issues) are made publicly available at https://github.com/m
engchillee/GAWD.

7.2 Related Work

Being one of the closest real-world applications, anomaly detection has drawn a lot of attention

from academics [MMA16, BJR17, SDS17, CYL
+
18, LZW

+
20]. Many anomaly detectors have

been developed, such as LOF [BKNS00], Isolation Forest [LTZ08] and LODA [Pev16]. Some

traditional machine learning methods such as kNN [RRS00] and PCA [SCSC03] can be used

as an anomaly detector as well. To this reason, a useful toolkit for this field is also developed

[ZNL19]. These detectors can be easily used with feature-based or embedding-based methods

to achieve effective results. Our work introduces an anomaly detection for graphs approach,

while using popular graph embedding methods (with anomaly detectors) as baselines. We will

discuss them both in this section.

Nevertheless, none of the above methods fulfills all the specs of GAWD. Table 7.1 contrasts

GAWD against the existing state-of-the-art.

7.2.1 Indirect Anomaly Detection via Graph Embedding

Graph embedding has been widely studied in the last decade. One reason for its popularity

is its flexibility concerning downstream applications. Graph embedding can be used to de-
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Table 7.1: GAWD matches all specs, while competitors miss one or more of the desired prop-
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tect anomalous graphs in conjunction with off-the-shelf anomaly detectors. One of the most

famous branches is node embedding, where each node in the graph is mapped to low dimen-

sional space. node2vec [GL16] could highly identify graph structures with biased randomwalks

using BFS and DFS. GraphSAGE [HYL17] increases the generalizability to the unseen nodes by

training the aggregator function by node features. A simple way to extend node embedding

to graph embedding is to sum all node vectors up, which has been widely used as a baseline

in graph embedding approaches. Unlike node embedding, graph embedding aims to directly

map each graph in the graph database into a vector. graph2vec [NCV
+
17] uses document em-

bedding neural networks to embed node-labeled graphs. Node embedding methods could also

be used in graph embedding by averaging the embedding of nodes. Variational graph autoen-

coder [KW16] encodes the graph by a two-layer graph convolutional network and decodes by

an inner-product decoder. However, few graph embedding methods could handle node labels

and edge weights at the same time. An additional drawback of graph embedding is the low

interpretability of the representations, and as a result, anomalousness.

7.2.2 Direct Anomaly Detection for Graphs

To seek higher interpretability, we turned to graph-based anomaly detection. Anomaly detec-

tion has been studied extensively for its applicability to real-world scenarios. Careful scrutiny

of these studies can be found in [ATK15]. On the one hand, some studies try to spot the graph

anomalies by mining graphs’ structural features. OddBall [AMF10] detects anomalous nodes in

a single weighted graph, but does not extend to graph databases. ReFeX [HGL
+
11] includes re-

cursive features to extract information even beyond direct neighbors. To increase interpretabil-

ity, features are analyzed in pairs in [KLKF14], which can be easily visualized and point out the

outliers. LookOut [GES
+
18] further turns the anomaly detection into a 2-dimension plots se-

lection problem, and picks up the most explainable plots to the anomalies. SpotLight [EFGM18]
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Table 7.2: Table of Symbols and Definitions.

Symbol Definition

G Graph database

Gi i-th graph in the database

I Number of graphs in database

J Total number of iterations in our algorithm

Vi Node set of i-th graph

Ei Edge set of i-th graph

T Set of unique node labels

t(v) Label of node v
w(u, v) Edge weight of edge (u, v)

Pj Substructure found in iteration j
vbits Encoding length for nodes

rbits Encoding length for adjacency matrix

ebits Encoding length for edges

mbits Encoding length for edge weight corrections

wbits Encoding length for rewiring

Table 7.3: Table of Acronyms.

Acronym Definition

MDL Minimum Description Length

AUC Area Under Curve

AP Average Precision

aims to detect the anomalies in the streaming graphs. On the other hand, some researchers seek

to explain the graph anomalousness by frequent patterns among graphs. Cook et al. [CH94]

proposed a graph substructure discovery framework, which Noble and Cook [NC03] leverage

in anomaly detection by using compression rates in each iteration. Eberle et al. [EH07] de-

tect unexpected structural deviations, defined as frequent patterns with slight changes. These

structure-based methods do not take edge weights into consideration. For numerical weights,

Yagada [DLMR11] uses discretization to assign edges with discrete labels. However, discretiza-

tion loses information and underperforms as we demonstrate in our experiments.

7.3 Problem Definition and General Framework

We consider that a graph database is given, which consists of I node-labeled directed weighted

graphs G = {G1(V1, E1), . . . , GI(VI , EI)}, where each graph Gi(Vi, Ei) has a set of labeled

nodes Vi and a set of weighted edges Ei. For each node v ∈ Vi, t(v) ∈ T denotes the label

of node v, where T represents the set of unique node labels, e.g., types of company accounts.

Each edge (u, v) ∈ Ei has a weight w(u, v), e.g., number of transactions between two accounts.

An overview of symbols and acronyms is provided in Table 7.2 and Table 7.3, respectively.

7.3.1 Problem Definition

Our anomaly detection problem is defined as follows:
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Algorithm 7.1: General Framework for Graph Anomaly Detection (followed by

[CH94, NC03], blue text points out the differences with GAWD)

Data: A graph database

Result: Anomaly scores for all graphs

1 while True do

2 Detect frequent patterns in graph database;

3 if No pattern is found then

4 Break;

5 end

6 Identify the pattern which can compress the graphs in database the most;

7 Compress the graphs by this pattern;

8 end

9 Compute the anomaly scores by compression rate;

Problem 7.1: Anomaly Detection in Graph Database

Given a node-labeled directed weighted graph database G = {G1(V1, E1), ..., GI(VI , EI)},
compute anomaly scores ai for each graph Gi ∈ G, such that a higher score indicates a

higher abnormality.

7.3.2 General Framework

Ourmethod follows a general information-theoretic framework depicted in Algorithm 7.1. This

framework generalizes previous graph anomaly detection methods, i.e., [CH94, NC03]. Given a

graph database, the idea is to iteratively identify the “best” substructure that yields the largest

compression, replacing each of its occurrences with a super-node. Each graph in the database is

then scored by how much it compresses over iterations — the more the compression, the lower

the anomaly score. In Algorithm 7.1, blue texts pinpoints the differences in GAWD compared

to those in [CH94, NC03].

In particular, the existing method in [NC03] detects the frequent patterns in Line 2 by beam

search. To identify the best pattern, they use the one that can minimize the total description

length of graphs in the database in Line 6. However, they only take the compressed node and

edge information into consideration (lossy encoding). They then compress the graphs by that

pattern in Line 7. This process will keep running until no more pattern is found. The heart

of their approach is the encoding scheme of graphs by Minimum Description Length (MDL)

principle, which includes encoding the structure of graphs, i.e., nodes and edges.

The total encoding length for nodes is:

vbits(Gi) = log∗ |Vi|+ |Vi| log2 |T | (7.1)

where |T | denotes the number of unique node labels in Gi. log
∗
is the universal code length

used to encode the numeric value. We first need log∗ |Vi| bits to encode the number of nodes,

and then need log2 |T | bits to encode the label for each node.
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The total encoding length for the adjacency matrix is:

rbits(Gi) = log∗ b+

|Vi|∑
p=1

log2 (b+ 1) + log2

(
|Vi|
kp

)
(7.2)

where b denotes the highest out-degree in Gi, and kp denotes the particular out-degree of p
th

node. log∗ b bits are needed to encode the highest out-degree. For each row of adjacency ma-

trix, log2 (b+ 1) bits are needed to encode the degree of node. Given kp as the number of 1(s)

occurring in pth row, we know that there are only

(
|Vi|
kp

)
possible permutations, so we need

log2

(
|Vi|
kp

)
bits to encode the positions of 1(s) in the pth row.

The total encoding length for edges is:

ebits(Gi) = log∗m+ |Ei| log2m (7.3)

where m denotes the largest edge weight. We first need log∗m bits to encode the largest edge

weight, and then log2m bits to encode the weight for each edge.

Thus, the total encoding length for Gi in j-th iteration is:

DL(Gi(j)) = vbits(Gi(j)) + rbits(Gi(j)) + ebits(Gi(j)) (7.4)

Different from [NC03], in GAWD, we replace the beam search in Line 2 by gSpan [YH02],

which is a much faster subgraph mining technique; we design a novel graph encoding scheme,

being used in Line 6, which accepts edge weight (described in Section 7.4.1) and is lossless

(described in Section 7.4.2).

7.4 Proposed Method: GAWD

Next we provide the details of GAWD. Given a substructure Pj = (Vj, Ej) at iteration j, which
is a node-labeled simple graph, the first task is to identify a “representative” weight for edge

(u, v) ∈ Ej , denoted w∗
Pj
(u, v). Given the edge-weighted Pj , our encoding scheme involves:

1. Encoding Pj ,

2. Encoding each compressed graph Gi = (V i, E i) resulted from replacing each occur-

rence/instance of Pj (ignoring edge weights) in Gi with a super-node, and

3. Encoding auxiliary information for lossless reconstruction of Gi, given Pj and Gi.

Steps (1) and (2) use the encoding scheme in Subdue [CH94], the details of which we omit due

to space limit. Our novel designs are in Step (3), specifically:

D1. Weight Encoding: for handling edge weights, and

D2. Rewiring Encoding: for enabling lossless reconstruction.

Total compression cost (or description length) of the graph database is the sum of bits used for

encoding (1)–(3).
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7.4.1 Design 1: Weight Encoding

7.4.1.1 Representative Weight Discovery

Given a substructurePj , the representative edgeweightw
∗
Pj
(u, v) for each edge (u, v) ∈ Ej need

to be identified before evaluating the substructures toward compression. Let Ej,(u,v) denote all
the edges in the instances of substructure Pj in the database corresponding to (u, v) ∈ Ej .
We turn this into an optimization problem based on the Minimum Description Length (MDL)

encoding. Given a candidate weight w, we denote the bits needed to correct with respect to the

true weight of an edge instance (s, t) ∈ Ej,(u,v) by L(w,wPj
(s, t)) (details in Section 7.4.1.2).

The optimization problem is then formulated as:

w∗
Pj

= min
w

∑
(s,t)∈Ej,(u,v)

L(w,wPj
(s, t)) (7.5)

While not convex, the optimization in Equation (7.5) is 1-dimensional and hence easy to solve.

We employ Dichotomous Search [CZ04], which returns the optimal solution in most cases. It

efficiently takes only O(|Ej,(u,v)| log2R), where R is the numeric search range of weights.

7.4.1.2 Weight Corrections

After discovering w∗
Pj
, we encode the weights in each instance. For each super-node s ∈ V i

of Gi, we denote by gs = (Vs, Es) the substructure instance in Gi corresponding to s, which is

isomorphic to Pj in structure. For each edge (u, v) ∈ Es, we encode its weight correction using:

L(w,w′) =

{
1 bit if w − w′ = 0

2 log2(|w − w′|) + 3 bits otherwise

(7.6)

wherew = w∗
Pj
(u, v) andw′ = wgs(u, v). 1 bit is used to identify whether the weight correction

is needed. If so, an extra 1 bit is used to record the sign of the error. 2 log2(|w−w′|) + 1 bits is
used to encode the numeric value by universal code.

We remark that instead of discretizing edge weights into labels, our encoding scheme han-

dles the numeric value and is lossless. Thus, the total encoding length of weight corrections is

as follows:

mbits(Gi) =
∑
s∈V i

∑
(u,v)∈Es

L(w,w
′
) (7.7)

7.4.2 Design 2: Rewiring Encoding

After replacing Pj with a super-node, all the edges connected to Pj merge into super-edges.

Weight of a super-edge e = (x, y) ∈ E i, denotedwGi
(x, y), is the sum of the weights of all edges

that it represents. For lossless reconstruction, the edge (re)connectivity information needs to be

encoded. As shown in Figure 7.2, there are two possible cases: (1) both x and y are super-nodes
corresponding to non-overlapping instances of Pj , and (2) only one of them is a super-node.
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Figure 7.2: Rewiring Encoding: Two cases that the edge (re)connectivity information are dif-

ferent. (a) Case 1: A super-edge is created between two super-nodes after compression. (b) Case

2: A super-edge is created between one super-node and one regular node after compression.

For the former case, we first encode the cardinality of e, denoted ce, depicting how many

edges it represents, using:

L(ce) = log2(|Vj|2) = 2 log2(|Vj|) bits (7.8)

For each edge, we encode substructure node IDs of its source and destination using 2 log2(|Vj|)
bits total, and then encode its weight using log2(wGi

(x, y)) bits.
For the latter case, w.l.o.g. let x be the super-node. We encode how many edges e branches

to, denoted by, using:
L(by) = log2(|Vj|) bits (7.9)

In other words, by denotes how many distinct nodes within gx that y connects to. For each

edge we encode the substructure node ID of y’s neighbor n ∈ Vx using log2(|Vj|) bits. We then

encode the weight of each edge the same as in the former case.

The total encoding length for rewiring is:

wbits(Gi) =
∑

e=(x,y)∈Ei
(|e| − 1) log2(wGi

(x, y))

+

{
(|e|+ 1)L(ce) if x, y are both super nodes

(|e|+ 1)L(by) if x is super node

(7.10)

where e = (x, y) denotes the super-edge connecting from node x to node y in compressed

graph Gi, and |e| denotes the multiplicity of the super-edge.

7.4.3 Overall Algorithm

The total encoding length of graph Gi in j-th iteration is given as the following:

DL∗(Gi(j)) = DL(Gi(j)) +mbits(Gi(j)) +wbits(Gi(j)) (7.11)

Algorithm 7.2 gives the steps of GAWD. We use gSpan [YH02] for frequent substructure min-

ing in Line 3. In Lines 4-6, we search for the best weighted substructure yielding the largest
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Algorithm 7.2: GAWD-Anomaly Scoring

Data: A database G = {G1, ..., GI}, min support range (msmax,msmin), decay rate d
(i.e., 0.9 by default).

Result: Anomaly scores a = {a1, ..., aI} for all graphs in G
1 Initialization: ms = msmax; j = 0;
2 whilems ≥ msmin do

3 Pj = gSpan(G,ms);
4 Discover w∗

Pj
(u, v) for all Pj ∈ Pj (See Section 7.4.1.1);

5 Identify P ∗
j ∈ Pj yielding largest (positive) compression;

6 if no P ∗
j is found then

7 ms := ms ∗ d;
8 Continue;

9 end

10 Compress G by P ∗
j and save cji in (7.12) for all Gi ∈ G;

11 j := j + 1;

12 end

13 ai = 1− 1
j

∑j
k=1

[
(j − k + 1) ∗ cki

]
for all Gi ∈ G;

14 Return: a;

compression. To improve the efficiency, we gradually decrease minimum support from maxi-

mum value to minimum in Lines 7-9, if there is no substructure found. Once we identify the

best substructure Pj in iteration j, we compress the graphs in the database by Pj and save the

compression rate cji , for each graph i, defined as:

cji =
DL∗

j−1(Gi)−DL∗
j(Gi)

DL∗
0(G)

(7.12)

where DLj(Gi) is the description length of Gi after j iterations. Finally, we compute the

anomaly scores in Line 13. The anomaly score ranges from 0 to 1, where 1 means the most

anomalous and 0 means the least anomalous. The compression rates are linearly weighted by

the term j− k+1, where it means that the earlier we identify the substructure as the best one,

the less anomalous that the graphs containing it are.

Complexity Analysis The time complexity of GAWD is as follows:

Lemma 7.1

GAWD has linear time complexity, O(nI|E| log |V|), where n denotes the number of fre-

quent substructures, I denotes the number of graphs, and |V| and |E| denote the average
numbers of nodes and edges.
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Proof. In the worst case, n frequent substructures are detected by gSpan and used for com-

pression with no conflict, then GAWD at most will iterate n times. Moreover, O(I|E| log |V|)
is the time complexity of gSpan, where I denotes the number of graphs in graph database, |E|
denotes the average edge number of graphs, and |V| denotes the average node number. The

Dichotomous Search is also efficient, taking O(|Ej,(u,v)| log2R), where Ej,(u,v) denotes all the
edges in the instances of substructure Pj , and R denotes the numeric search range of weights.

For compression, it takesO(I|E|) to redirect edges for each graph. The complexity of GAWD is

O(n(|Ej,(u,v)| log2R+ I|E|+ I|E| log |V|)). Empirically, |Ej,(u,v)| and log2R are small constant

values which are negligible. Therefore, the complexity is O(nI|E| log |V|). ■

7.5 Experiments

We design experiments to answer the following questions:

RQ1. Effectiveness: How well does GAWD work on anomaly detection?

RQ2. Scalability: How does GAWD’s running time grow with input size?

Experiments are run on a machine with 3.2 GHz CPU and 256 GB RAM.

Datasets We use four datasets illustrated in Table 7.4. The detailed description of all datasets

are shown as follows:

• UCI Message Dataset [OP09]: This recorded the communications between students at

UCI where nodes and edges denote students and messages respectively. To capture the

role information, we adopt role2vec [ARL
+
18] to embed nodes in the complete graph,

and use the 10 groups clustered by Agglomerative Clustering as the node labels. The data

is split into hours to form a graph database.

• Enron Email Dataset [KY04]: This contains the emails passing between colleagues in

Enron Company from 2000 to 2002. We assign the job positions to each employee as node

labels. The data is split into day communication graphs to form a graph database.

• Accounting Dataset: This is from an anonymous accounting institution, containing

accounts (nodes) and transactions (edges) that reflect the money flow between company

accounts. Each graph captures a set of transactions within a unique expense report.

• Synthetic Accounting Dataset: Since the accounting dataset is proprietary, we gener-

ate a synthetic database with generated graphs following the same statistical character-

istics as in the accounting graphs.

We treat edge multiplicities as weights for all four graph databases. There are no ground truth

anomalies in all the databases. To evaluate effectiveness, we inject anomalies into randomly

sampled 3% of the graphs in each database as [ATK15] suggested, which had also been done

by several other studies [YCA
+
18, ZLL

+
19]. For each sampled graph, we (i) randomly select an

edge (u, v) ∈ Ei, and (ii) multiply its weight w(u, v) by 10d, where d denotes the digit count of

the upper fence in the boxplot of weights for (t(u), t(v)) edges. This aims to simulate unusual

behaviors between the users or accounts.
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Table 7.4: Statistics of graph databases.

Name Graphs Nodes [min, max] Edges [min, max]

UCI Message Dataset [OP09] 3320 [2, 159] [1, 193]

Enron Email Dataset [KY04] 843 [2, 87] [1, 127]

Accounting Dataset 16,026 [2, 13] [1, 20]

Synthetic Accounting Dataset 15,935 [2, 13] [1, 18]
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Figure 7.3: Anomaly score of each graph before (original) vs. after (injection): Database origi-

nally contains many graphs with high scores. Red dots depict the graphs being injected.

Evaluation Metric Datasets may originally contain anomalies, but we do not have ground

truth. As shown in Figure 7.3, there originally exist multiple graphs with high anomaly scores

along the horizontal axis, which strongly disturb the quality of evaluation. To solve this, rather

than comparing all graphs in absolute terms, we look at the relative change in anomaly scores

before and after injection. We quantify the relative change as:

RCi =
ainjectedi − a

original

i

a
original

i

. (7.13)

To evaluate the performance of anomaly detection, we use precision@k, recall@k, Area Un-

der Curve (AUC) and Average Precision (AP) as our evaluation metrics. The choices of k are

dependent on the database size since k cannot exceed the number of injected graphs.

Baselines We compare GAWD with four baselines:

• Noble et al.: [NC03] iteratively finds the substructure generating the largest compres-

sion, and then assigns anomaly scores based on the compression rate in each iteration.

• Subdue-W: follows [NC03] but additionally discretizes edge weights into labels by ten

bins with equal size.

• node2vec: [GL16] embeds each node into a vector, then inputs sum of node vectors in

each graph to Isolation Forest [LTZ08].

• graph2vec: [NCV
+
17] embeds each graph into a vector and inputs it to Isolation Forest.
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Method

Precision Recall

AUC AP Time

@45 @90 @45 @90

node2vec 6.7 5.6 3.0 5.1 47.6 3.1 59

graph2vec 2.2 1.1 1.0 1.0 48.7 3.1 3

Noble et al. 0.0 0.0 0.0 0.0 47.6 3.1 43988

Subdue-W 100.0 60.0 45.5 54.5 94.8 68.6 32621

GAWD 100.0 92.2 45.5 83.8 93.8 90.3 760

(a) UCI Message Dataset

Method

Precision Recall

AUC AP Time

@10 @20 @10 @20

node2vec 10.0 5.0 4.0 4.0 58.7 4.6 25

graph2vec 10.0 5.0 4.0 4.0 59.0 6.1 1

Noble et al. 0.0 0.0 0.0 0.0 51.7 3.2 7768

Subdue-W 10.0 5.0 4.0 4.0 48.2 4.9 8443

GAWD 90.0 85.0 36.0 68.0 82.1 73.8 207

(b) Enron Email Dataset

Method

Precision Recall

AUC AP Time

@200 @400 @200 @400

node2vec 5.0 3.0 2.1 2.5 47.0 30.0 31

graph2vec 3.5 4.5 1.5 3.8 54.0 3.7 13

Noble et al. 3.0 3.1 1.2 2.6 50.6 3.1 460

Subdue-W 82.0 74.0 34.2 61.7 76.0 59.8 477

GAWD 100.0 81.5 41.7 67.9 88.0 71.0 75

(c) Accounting Dataset

Method

Precision Recall

AUC AP Time

@200 @400 @200 @400

node2vec 2.5 3.3 1.0 0.8 48.3 2.8 26

graph2vec 0.0 2.0 1.7 3.1 49.6 3.0 14

Noble et al. 3.0 3.0 1.3 2.5 50.0 3.0 1426

Subdue-W 63.5 35.0 26.6 29.3 71.5 36.8 6584

GAWD 100.0 89.0 41.8 74.5 95.3 90.2 176

(d) Synthetic Accounting Dataset

Table 7.5: GAWD significantly outperforms all the baselines: We show the performance

of GAWD and structure-based and embedding-based baselines on three real-world and one

synthetic graph datasets. Green ( ) marks the winner.

7.5.1 RQ1 – Effectiveness

In Table 7.5, GAWD outperforms most of the baselines significantly on all the datasets. Noble et

al. and graph2vec fail as it cannot handle edge weights. GAWD shows 31.6%, 1365%, 18.7% and

145% improvement over Subdue-W in average precision on four datasets respectively, high-

lighting the insufficiency of discretization to handle edge weights. Even if node2vec accepts

edge weights, it is not sensitive enough to detect the anomalies on weights.

The effectiveness of GAWD shows the necessity of handling numerical values instead of

discretizing them into labels. In addition to improving performance on anomaly detection, we

simultaneously maintain interpretability, where the common substructures identified in the

course of iteratively compressing the database provide a peek into the expected structural pat-

terns in the database, and the lack thereof in anomalous graphs.

7.5.2 RQ2 – Scalability

To quantify the scalability, we empirically vary the number of (i) total edges and (ii) graphs in

the database, both of which highly correlate with running time. In Table 7.4, the total number

of graphs in the first experiment is 12,617, and the total edge number in the second experiment

is 24,137. In Figure 7.4, GAWD scales linearly w.r.t. both variables, with R2
scores of linear-fit

models higher than 0.97.

In Figure 7.1, GAWD achieves the best trade-off between performance and running time

compared to the state-of-the-art approaches. In type injection, GAWD is 3.7× faster than Noble

et al. and the average precision is 1.3× higher than node2vec; in path injection, GAWD is 3.9×
faster thanNoble et al. and the average precision is also 1.1× higher; in weight injection,GAWD

is 4.1× faster than Subdue-W and the average precision is also 1.5× higher.
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Figure 7.4: GAWD is scalable: linear on the number of total edges (left) and the number of

graphs (right).

7.6 Conclusion

We present GAWD, addressing the graph anomaly detection problem in a directed weighted

graph database. Using an MDL-based approach for encoding, GAWD iteratively identifies

the “best” substructure yielding the largest compression of the database. Our novel encoding

scheme includes lossless encoding as well as ability to handle weighted graphs.

• Lossless encoding scheme for graph compression;

• Handling edge weights, through discovering and encoding a representative weight fol-

lowed by delta-corrections to maintain lossless encoding;

• Interpretability through structural patterns (i.e., substructures) and linear scalability

with the input size.

Experiments on four data sets with injected anomalies show that GAWD achieves superior

results among state-of-the-art baselines.
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Chapter 8

RWK
+
: Descriptive Kernel

Convolution Network with

Improved RandomWalk Kernel

Chapter based on work that appeared at WWW 2024 [LZA24] [PDF].

Graph kernels used to be the dominant approach to feature engineering for structured data,

which are superseded by modern graph neural networks (GNNs) as the former lacks learn-

ability. Recently, a suite of Kernel Convolution Networks (KCNs) successfully revitalized

graph kernels by introducing learnability, which convolves input with learnable hidden

graphs using a certain graph kernel. The random walk kernel (RWK) has been used as the

default kernel in many KCNs, gaining increasing attention.

In this chapter, we first revisit the RWK and its current usage in KCNs, revealing several

shortcomings of the existing designs, and propose an improved graph kernel RWK
+
, by

introducing color-matching random walks and deriving its efficient computation. We then

propose RWK
+
CN, a KCN that uses RWK

+
as the core kernel to learn descriptive graph

features with an unsupervised objective, which cannot be achieved by GNNs. Furthermore,

by unrolling RWK
+
, we discover its connection with GNNs, and propose our novel GNN

layer RWK
+
Conv.

In the first part of experiments, we demonstrate the descriptive learning ability of

RWK
+
CN with the improved random walk kernel RWK

+
on unsupervised pattern min-

ing tasks; in the second part, we show the effectiveness of RWK
+
for a variety of KCN

architectures and supervised graph learning tasks, and demonstrate the expressiveness of

RWK
+
Conv layer, especially on graph-level tasks. Ourmethods adapt to various real-world

applications, including web applications such as bot detection in a web-scale Twitter social

network, and community classification in Reddit social interaction networks.
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8.1 Introduction

Graph kernels are functions that measure the similarity between pairs of graphs. They have

historically been a popular approach to “flatten” graphs explicitly or implicitly into vector form

that many downstream algorithms can more easily handle. While graph kernels exhibit math-

ematical expressions that lend themselves to theoretical analysis [GFW03], their handcrafted

features may not be expressive enough to capture the complexities of various learning tasks

on graphs [RG03]. More recently, graph kernels are superseded by modern graph neural net-

works (GNNs) which leverage multi-layer architecture and nonlinear transformations to learn

task-adaptive graph representations [ZCH
+
20b].

Interestingly, GNNs bear a close connection to the Weisfeiler-Leman (WL) graph kernels

[SSvL
+
11], as well as the related WL graph isomorphism test [LW68]. In fact, most recent

work on the expressive power of GNNs heavily use the k-WL hierarchy [XHLJ19, Sat20], and

others have derived inspiration from it to design novel GNN architectures [MRF
+
19, MBSL19,

BFZB23, ZSA22]. The WL kernel, which is quite popular thanks to its attractive linear-time

complexity [HK09], derives its simplicity from iterative neighborhood aggregation, akin to the

convolution scheme of message-passing GNNs [GSR
+
17]. This type of connection has been

recognized and leveraged in the recent few years to derive a series of “GNNs meet graph kernels”

style models that bridge these two worlds [Mai16, LJBJ17, CJM20, DHS
+
19, NV20, CMB

+
21,

FYWT22, APZ19, LJWS21], named as Kernel Convolutional Networks (KCNs).

RWKs, based on the number of (node label sequences along) walks that two graphs have in

common, have been the starting point in the history of graph kernels [GFW03, KTI03]. A recent

study by [Kri22] demonstrated that classical randomwalk kernels with minor modifications are

as expressive as the Weisfeiler-Leman kernels and even surpass their accuracy on classification

tasks. Inspired by this, our work extends from randomwalk neural network (RWNN) of [NV20],

where each input graph is represented by its RWK similarity to a set of small graphlets (called

hidden graphs) that are learned end-to-end by optimizing a classification objective.

We deepen the synergy between GNNs and graph kernels, and improve the RWK as utilized

within GNNs in a number of fronts. First, toward capturing more representative patterns, we

introduce several improvements to the RWK in both effectiveness and efficiency and propose an

improved graph kernel RWK
+
. Second, we propose a descriptive KCN RWK

+
CN by flipping the

objective from a discriminative one to a descriptive one that helps us capture relational patterns

in the graph database. What is more, we derive the mathematical connection of RWK
+
to layer-

wise neural network operators for the first time, which inspires us to propose a novel GNN layer

RWK
+
Conv. Finally, we employ our RWK

+
and RWK

+
Conv on a suite of real-world tasks for

graph data and achieve significant gains. A summary of our contributions is as follows:

• RWK
+
with efficient color-matching: We identify that the RWK originally developed

in RWNN only enforces the same label at the start and the end of two walks while ignoring

the intermediates. We reformulate it to count a walk as shared only if all corresponding node

pairs exhibit the same node label (i.e. color) at all steps along the walk. While more reflective

of graph similarity, RWK with color-matching incurs a memory and computational overhead.

Therefore, we propose the improved graph kernel RWK
+
through transforming its formulation

for efficient computation. In addition, we propose a learnable solution StepNorm to address

the nontrivial task of combining similarity scores across steps with drastically different scales.
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• RWK
+
CN learning descriptive hidden graphs: The original RWNN is trained su-

pervised for graph classification and thus learns discriminative hidden graphs. We propose

RWK
+
CN with an unsupervised objective, that uses RWK

+
as the core kernel and maximizes

the total RWK similarity between the input graphs and hidden graphs. The learned hidden

graphs are reflective of the frequent walks (i.e. patterns) in the database. To further enhance

the descriptive ability, we use additional “structural colors” to help better capture structural

similarity between graphs, and enforce a diversity regularization among the hidden graphs to

capture non-overlapping subgraphs. Finally, we demonstrate the descriptive learning ability of

RWK
+
CN with our carefully designed testbeds.

• RWK
+
Conv, a novel GNN layer: By unrolling RWK

+
, we discover that the derivation

can be re-written as a sequence (i.e. multiple layers) of graph convolutional operations, con-

necting with regular graph convolutional networks (GCN) layers. By viewing hidden graphs

as learnable parameters, we transform the RWK
+
algorithm into a novel GNN layer called

RWK
+
Conv. The RWK

+
Conv layer extracts graph features by using additional element-wise

product operations that can potentially bring better expressiveness than the GCN layer.

• Broad applications of RWK
+
and RWK

+
Conv: We employ RWK

+
as the core kernel

inside different KCN architectures and evaluate it on four graph-level tasks: one discriminative

(graph classification), and three descriptive (graph pattern mining, graph-level anomaly detec-

tion, and substructure counting). It is shown to be improved over the vanilla RWK especially

on descriptive tasks. Moreover, we compare our proposed RWK
+
Conv layer with the GCN

layer on node- and graph-level tasks. RWK
+
Conv outperforms GCN in both tasks, notably by

a large margin in graph-level tasks, empirically demonstrating its better expressiveness. It is

worth noting that our experiments contain a broad-range of real-world applications, including

web applications such as bot detection in a web-scale Twitter social network with a million

nodes, and community classification in Reddit social interaction networks.

Reproducibility: Our code is available at https://github.com/mengchillee
/RWK_plus.

8.2 Related Work

8.2.1 Graph Kernels

In Section 4.2.4, we introduced graph kernels that generate node-to-node similarity and are used

to transform node features; here, we introduce a broader set of graph kernels, including those

that compute a single similarity score between two graphs. The literature on graph kernels is ex-

tensive and well established, thanks to the prevalence of learning problems on graph-structured

data and the empirical success of kernel-based methods [NSV21, KJM20]. A large variety of

graph kernels have been developed motivated either by their theoretical properties, or special-

ization or relevance to certain application domains like biology [Prz07, JLJZ16] or chemistry

[RS10]. Those include graph kernels based on shortest paths [BK05], subtrees [RG03, MV09],

graphlets [Prz07, SVP
+
09], structural features [BKEF12], randomwalks [GFW03, KTI03, KTS12,

KVF13], as well as variants such as randomwalk return probabilities [ZWX
+
18], to name a few.

A long line of work focused on designing computationally tractable kernels for large graphs
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with discrete as well as continuous node attributes [SVP
+
09, CG10, FKP

+
13, MKKM16], while

those such as the Weisfeiler-Leman (WL) kernel [SSvL
+
11] and others [HK09] gained popular-

ity thanks to linear-time efficiency.

A key challenge with classical graph kernels is lack of learnability; today’s graph neural net-

works (GNNs) are able to learn feature representations that clearly supersede the fixed feature

representations used by graph kernels. At the same time, several connections can be drawn be-

tween graph kernels and GNNs, such as the similarity between the neighborhood aggregation

of the WL kernel (a.k.a. color refinement) and the scheme of message-passing GNNs [GSR
+
17].

We discuss below recent line of work that tap into the synergy between graph kernels and

GNNs to harvest the best of both worlds.

8.2.2 Synergizing Graph Kernels and GNNs

While many works bridge graph kernels with graph neural networks (GNNs), they have clear

distinctions. Coined as Convolutional Kernel Networks [MKHS14], and others in similar lines

[Mai16, CJM20], introduce neural network architectures that learn graph representations that

lie in the reproducing kernel Hilbert space (RKHS) of graph kernels. Others design new classes

of graph kernels using GNNs [DHS
+
19, HJ15]. In contrast, and closest to our work, coined

very similarly as Graph Kernel Convolution Networks (KCNs) [CMB
+
21] and various others

[LJBJ17, NV20, FYWT22] integrate a graph kernel into GNN architectures. In other words, they

show how to realize a given graph kernel with a GNN module, which in effect unlocks end-to-

end learnability for the graph kernel. We provide further background on KCNs in Section 8.3.1.

Finally, while different in focus, there is also noteworthy work exploiting graph kernels for pre-

training GNNs [NTS18], or to extract preliminary features that are passed onto a convolutional

neural networks (CNNs) [NMT
+
18].

8.3 Kernel Convolution Networks with RWK: Issues

Kernel Convolution Network (KCN) [CMB
+
21, NV20, FYWT22] that convolves the input graph

with learnable hidden graphs using a certain graph kernel has gained increasing attention, as it

offers learnability to graph kernels. Given the simplicity of random walk kernel (RWK) and its

differentiability, it has been used as the default graph kernel in many KCNs [NV20, FYWT22].

We first introduce the notation and background of KCN (Section 8.3.1). Then we revisit the

RWK (Section 8.3.2), and discuss the issues of its current usage in KCNs (Section 8.3.3).

Notation An overview of symbols and acronyms is provided in Table 8.1 and Table 8.2, re-

spectively. Let G = (V (G), E(G), lG) denote an undirected, node-attributed graph with n
nodes in V (G), e edges in E(G), and an attribute or labeling function lG : V (G) → C where

C can be Rd
for continuous attributes or {c1, ..., cd} for distinct discrete labels. Let AG denote

the adjacency matrix, and AG⊗H := AG ⊗AH depict the Kronecker product of the adjacency

matrices for graphsG andH , as introduced in Definition 2.7. LetXG := [xv1 , . . . ,xvn ]
⊺ ∈ Rn×d

be the node attributes in G.
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Table 8.1: Table of Symbols and Definitions.

Symbol Definition

G Undirected and attributed graph

V (G) Node set of G
E(G) Edge set of G
l(v) Label of node v

n Number of nodes in G
e Number of edges in G
d Number of features in G

AG Adjacency matrix of G
XG Node feature matrix of G
W Learnable hidden graph

AW Learnable adjacency matrix ofW
XW Learnable node feature matrix ofW
m Number of nodes in hidden graphW
K Graph kernel for graph similarity computation

t Number of steps for random walk kernel

Table 8.2: Table of Acronyms.

Acronym Definition

RWK Random Walk Kernel

KCN Kernel Convolution Network

GNN Graph Neural Network

GCN Graph Convolutional Networks

AP Average Precision

AUC Area Under Curve

MAE Mean Absolute Error

8.3.1 Kernel Convolution Networks

Graph kernels are designed to measure similarity on a pair of graphs. However, they produce

fixed handcrafted features. [LJBJ17] derived the first neural network that outputs the RWK sim-

ilarity scores between input graph and hidden learnable path-like graphs. [NV20] generalized

[LJBJ17] such that the hidden graphs can have any structure without the path constraints. The

designed model is claimed to be interpretable as the learned hidden graphs “summarize” the

input graphs. Later, [CMB
+
21] and [FYWT22] extended RWNN [NV20] to a multi-layer archi-

tecture, in which each layer compares subgraphs around each node of the input with learnable

hidden graphs. We refer to these models as Kernel Convolution Networks (KCNs) as they gen-

eralize the Convolutional Neural Network (CNN) from the image domain to the graph domain,

with the help of a graph kernel. Each layer of the KCN has a number of learnable hidden graphs.

Formally, let G be the input graph with node v ∈ V (G); let ht(v) ∈ Rkt
be the representa-

tion of node v at the t-th layer where kt is the number of learnable kernels in KCN’s t-th layer

for t > 0, and k0 be the dimension of original node attributes with h0(v) = xv. LetW
t
1, ...,W

t
kt

denote the series of learnable hidden graphs in the t-th layer, and Sub
t
G[v] be the subgraph

around node v on G with attributes {ht(u)|u ∈ SubG[v]}, we have:

ht+1(v) = [K(SubtG[v],W t+1
1 ), . . . ,K(SubtG[v],W t+1

kt+1
)] , (8.1)

where K is the graph kernel used to compute graph similarity. Multi-layer KCNs stack graph

kernel computations with layers, and output node representations at each layer which can be

used for any downstream task. They exhibit strong representation ability however the output

is not interpretable or descriptive. The single-layer KCN, while less expressive, can output

meaningful similarity scores for descriptive unsupervised feature learning, which computes

graph-level representation directly by:

h(G) = [K(G,W1), . . . ,K(G,Wk)] (8.2)
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8.3.2 Revisiting RandomWalk Kernel

RWK has been used in KCNs as the default kernel. It has been originally proposed to compare

two labeled graphs by counting the number of common walks on both graphs [GFW03, KTI03].

Formally, consider a labeled (discrete attribute) graph G such that l(v) represents the label of
node v ∈ V (G). Let Rt(G) be the set of all t-step random walks on G. For a random walk

p = (v1, v2, .., vt) ∈ Rt(G), let l(p) = (l(v1), ..., l(vt)) denote the labels along the walk. Then

the t-step RWKKt
rw(G,H) computes the similarity ofG andH by counting the common walks

as follows:

Kt
rw(G,H) =

t∑
i=1

λi

∑
p∈Ri(G)

∑
q∈Ri(H)

I

(
l(p), l(q)

)
(8.3)

where I(x, y) is the Dirac kernel where I(x, y) = 1 if x = y, and 0 otherwise; and λi ∈ R
denotes the weight of the i-th step’s score.

Definition 8.1: Direct Graph Product

Given two labeled graphs G and H with labeling function l, their direct product is a new
graph G × H with adjacency matrix AG×H , vertices V (G × H) = {(u, v) ∈ V (G) ×
V (H) | l(u) = l(v)} and edgesE(G×H) = {

(
(u1, v1), (u2, v2)

)
∈ V 2(G×H) | (u1, u2) ∈

E(G) and (v1, v2) ∈ E(H)}.

[GFW03] has shown that for any length twalk, there is a bijective mapping betweenRt(G×H)
and {(p,q) ∈ Rt(G)×Rt(H) | l(p) = l(q)}. Therefore, Equation (8.3) can be rewritten as:

Kt
rw(G,H) =

t∑
i=1

λi(1
⊺Ai

G×H1) (8.4)

where 1 denotes the all-ones vector of length |V (G×H)|. Note thatAG×H is not AG⊗H , where

the latter is the Kronecker product ofAG andAH without label-matching along the walk.

8.3.3 Issues of Adapting RWK to KCN

The original RWK is designed for labeled graphs and cannot handle graphs with continuous

node attributes KCNs are often used for. To that end, [NV20] proposed an extension of the

RWK in their RWNN. Let XG ∈ R|V (G)|×d
depict the d-dimensional continuous attributes for

all nodes, andXH ∈ R|V (H)|×d
andAH ∈ R|V (H)|×|V (H)|

depict the learnable node features and

the learnable adjacency matrix of the hidden graph H , respectively. For two graphs G and H ,

let S = XHX
⊺
G ∈ R|V (H)|×|V (G)|

encode the dot product similarity between the attributes of

the vertices from two graphs, where s := vec(S) is the 1-d vectorized representation of S. The
authors of RWNN proposed to compute the revised RWK as:

Kt
rw−(G,H) = 1⊺(ss⊺ ⊙At

G⊗H)1 , (8.5)
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where ⊙ denotes the element-wise (Hadamard) product in Definition 2.5. The revised kernel

computes walks with length exactly t only. Mathematically, the term ss⊺ applies reweighting
toAt

G⊗H such that the (i, j)-th element becomes sisj(A
t
G⊗H)ij , where (A

t
G⊗H)ij is the number

of length-twalks from pair of nodes i to pair of nodes j in the Kronecker product graphG⊗H .

Although the proposed adaptation of RWK can handle continuous node attributes, we iden-

tify two critical issues with Equation (8.5) that we outline below and later address in Sec-

tions 8.4.1 and 8.4.2, respectively.

Issue 1: Color Mismatch Let p = (u1, ..., ut) be a walk on G and q = (v1, ..., vt) be a

walk on H . Equation (8.5) only considers reweighting the number of walks from (u1, v1) to
(ut, vt), where (u1, v1) is the starting pair and (ut, vt) the ending pair, without comparing the

intermediary nodes along the walk. In essence, their formulation of the RWK is limited to only

partially shared walks.

Issue 2: Inefficient Parameterization Since s = vec(S) = vec(XHX
⊺
G) =

∑d
i=1(X

[i]
G ⊗

X
[i]
H), whereX

[i]
G is the i-th column of XG, we can rewrite Equation (8.5) as:

Kt
rw−(G,H) = 1⊺(ss⊺ ⊙At

G⊗H)1 = s⊺At
G⊗Hs

= (
d∑

i=1

(X
[i]
G ⊗X

[i]
H))

⊺(At
G ⊗At

H)(
d∑

i=1

(X
[i]
G ⊗X

[i]
H))

=
d∑

i=1

d∑
j=1

(X
[i]⊺
G At

GX
[j]
G )⊗ (X

[i]⊺
H At

HX
[j]
H )

= 1⊺(X⊺
GA

t
GXG)⊙ (X⊺

HA
t
HXH)1 (8.6)

If H is a learnable hidden graph with parameters AH ∈ Rm×m
and XH ∈ Rm×d

, the effective

parameters are merely X⊺
HA

t
HXH ∈ Rd×d

. That is, dimension d is an important degree of

freedom for learnability, which can be small for certain real-world graphs.

8.4 Proposed Method

We first propose RWK
+
(Section 8.4.1), a color-matching based RWK along with an efficient

computation method, which addresses the issues discussed earlier. Next, we propose RWK
+
CN

(Section 8.4.2), to increase the descriptive ability of the learned hidden graphs in the unsuper-

vised setting. Finally, we propose RWK
+
Conv (Section 8.4.3), a GNN layer inspired by the

connections between RWK
+
and GNNs, to extract expressive graph features.

8.4.1 RWK
+
: Proposed Efficient Color-Matching RandomWalks

To address Issue 1, we propose an improved random walk kernel RWK
+
by deriving an ef-

fective formulation. First, notice that the original RWK for labeled graphs can be rewritten

using the Kronecker product AG⊗H and one-hot encoded representation of the node labels.
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We slightly change the G × H notation by introducing a set of “empty” nodes

{
(u, v) ∈

V (G)× V (H)|l(u) ̸= l(v)
}
to the direct product graph G×H . “Empty” nodes do not connect

to any node hence this does not change the graph, rather they enlarge the size of AG×H to

be the same as AG⊗H . Given XG and XH as one-hot encoding of labels, the similarity matrix

S = XHX
⊺
G is a binary valued matrix. Then, the following relation can be easily established:

AG×H = diag(s)AG⊗Hdiag(s) = ss⊺ ⊙AG⊗H , (8.7)

where diag(s) denotes a diagonal matrix with s being the diagonal. Thanks to Equation (8.7),

we can rewrite the original RWK in Equation (8.4) as:

Kt
rw+(G,H) =

t∑
i=1

λi[1
⊺(ss⊺ ⊙AG⊗H)

i1] , (8.8)

which is slightly different from Equation (8.5) with ss⊺ moving inside the power iteration. Al-

though the derivation starts from labeled graphs, Equation (8.8) can be directly used for con-

tinuous attributed graphs without modification. Notice that this new formulation now takes all

intermediary node attributes into consideration when comparing walks as intended.

Reformulation toward Efficient Computation The formulation in Equation (8.8) needs

to compute the product graph betweenG andH which is inefficient in both memory and time.

We establish an efficient computation by the mixed-product property of Kronecker product

[Loa00] introduced in Definition 2.8, (A⊗B)vec(S) = vec(BSA⊺), and rewrite the main part

of Equation (8.8) step by step as follows:

1⊺(ss⊺ ⊙AG⊗H)
i1

= 1⊺(diag(s)AG⊗Hdiag(s))
i1

= 1⊺
diag(s−1)(diag(s2)AG⊗H)

i
vec(S)

= 1⊺
diag(s−1)(diag(s2)AG⊗H)

i−1
diag(s2)vec(AHSA

⊺
G)

= 1⊺
diag(s−1)(diag(s2)AG⊗H)

i−1
vec(S⊙ S⊙(AHSA

⊺
G)) (8.9)

The LHS thus can be computed iteratively by applying colored operations on the RHS repeat-

edly, using the procedure outlined in Algorithm 8.1 (where transpose is applied to all variables).

Algorithm 8.1: Fast Color-Matching RWK {and RWK
+
Conv }

Data: G = (AG ∈ Rn×n
, XG ∈ Rn×d); H = (AH ∈ Rm×m

, XH ∈ Rm×d); max step t;
{H ← W are parameters in RWK

+
Conv }

1 Init: Y0 ← XGX
⊺
H , Y ← Y0; {Y0← σ(XGX

⊺
H) in RWK

+
Conv }

2 for i = 1, . . . , t do
3 Y ← AGYA⊺

H ;

4 Y(i) ←Y0 ⊙Y;

5 Y ←Y0 ⊙Y(i)
;

6 end

7 Return:

∑
i,j Y

(t)
i,j or

∑
i,j(

∑
l λl ·Y(l))i,j ;
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Complexity Analysis The complexities of Equations (8.8) and (8.9) are as follows:

Lemma 8.1: Time and Memory Complexity

The time and memory complexities of the original color-matching random walk in Equa-

tion (8.8) areO(em2) andO(em2), respectively. The time and memory complexities of our

efficient computation in Equation (8.9) areO(em+nm2) andO(nm+m2+e), respectively.

Proof. LetG be the sparse input graph with n nodes and e edges, and letH be the dense hidden

graphW withm nodes. The original color-matching randomwalk in Equation (8.8) requires the

explicit computation of Kronecker product, requiring runtime complexityO(em2) and memory

complexity O(em2). In contrast, our efficient computation in Equation (8.9) requires runtime

complexity O(em+ nm2) and memory complexity O(nm+m2 + e). ■

Learnable Similarity Normalization In Equation (8.8) we compute the random walk sim-

ilarity score for each step i iteratively. As each step counts the number of shared walks with

length i, the scale of the similarity score across different steps can be considerably different, un-

derscoring shorter walks. To combine these scores across different steps, we need to normalize

the scores, which is nontrivial. To avoid hand-crafted normalization that needs hyperparame-

ter tuning for different input, we introduce StepNorm that normalizes the score in a learnable

way. StepNorm combines Batch Normalization [IS15] with the sigmoid function, where Batch-

Norm first standardizes the score to a Normal distribution and then shifts and rescales the score

with learnable parameters. Sigmoid further normalizes the score to the range [0, 1]. We place

StepNorm between lines 4 and 5 in Algorithm 8.1 to normalize the score step by step, and set

λl = 1 for all l ∈ [1, t].

8.4.2 RWK
+
CN: Proposed Unsupervised Substructure Learning

KCNs were originally proposed for supervised learning, as such, the learned hidden graphs are

discriminative for classification tasks. We claim that the KCN model can be paired with an

unsupervised loss and used to learn descriptive hidden graphs instead, which is not achieved by

existing GNNs. Given the output of a single-layer KCN model is the similarity scores to each

hidden graph, one can train the KCN by maximizing the total similarity score. Specifically, the

unsupervised objective is given as:

max
W1,...,Wk

k∑
i=1

Kt
rw+(G,Wi) (8.10)

With this new objective, the learnable hidden graphs are to reflect or summarize the common

patterns of the graph database. Put differently, similarities are maximized when the learned

graphs capture frequent structural patterns that the kernel is designed to capture. Thanks to this

unsupervised objective in Equation (8.10) and our RWK
+
, KCNs can be used to learn descriptive

hidden graphs. To further enhance the descriptive ability of the hidden graphs learned by KCN,

we propose RWK
+
CN, with two more important solutions:
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Solution 1: Additional “Structural Colors” As discussed under Issue 2 in Section 8.3.3,

the input feature dimension d (i.e. number of node attributes) is an important degree of free-

dom for learnability for the original RWK in [NV20]. For RWK with color-matching, input

features also play an important role as the similarity matrix S = XHX
⊺
G would be sparser

with features that better characterize the nodes. Features that characterize structurally simi-

lar nodes also enable stronger feature matching at each step of a pair of walks between two

graphs. Therefore, we propose to enrich the original node features with additional structural

features in unsupervised learning of descriptive hidden graphs. As randomly initialized GNN

can produce reasonable features for evaluating similarity in graph generation [TKG
+
22], we

generate additional structural features through a fixed randomly initialized GNN to augment

the original features.

Solution 2: Diversity Regularization When learning with more than one hidden graph

without any constraint, the optimizationmay end up learning either themost frequent or other-

wise very similar patterns. Therefore, we introduce diversity regularizationR toward learning

non-overlapping hidden graphs, defined as follows:

R(W1, . . . ,Wk) =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

Kt
rw+(Wi,Wj) (8.11)

Overall unsupervised objective becomes maximizing the input graph to hidden graph similari-

ties, while alsominimizing the pairwise RWK similarities among hidden graphsR(W1, . . . ,Wk).

8.4.3 RWK
+
Conv: Proposed Graph Feature Extractor

Moreover, RWK
+
shares connections with Graph Convolutional Networks (GCN) [KW17]. If

we view the hidden graph inside RWK
+
as learnable parameters, Line 4 of Algorithm 8.1 is given

as Y ← AGYA⊺
W , which shares the same formulation as the graph convolutional operation

in GCN, ignoring the activation function. Besides convolution-like computation, RWK
+
with

learnable hidden graph also has a gated element-wise product as in Line 5 of Algorithm 8.1.

To demonstrate the connections with GNNs, we propose a novel GNN layer RWK
+
Conv

to extract graph features, based on Algorithm 8.1 (see the gray part). The major differences

between RWK
+
Conv and a normal GCNConv are: (1) element-wise product operation withY0

motivated from node color matching; and (2) multi-step within a single convolution layer that

shares the same parameter AW and XW . Additionally, we make following changes to turn it

into a neural network layer: (1) adding a sigmoid to Y0 to normalize the scale of similarity

between 0 and 1; and (2) parameterizing AW with a fully-connected layer. With the learn-

able hidden graphs and the additional element-wise product operation, we expect RWK
+
Conv

to bring better expressiveness than the GCN layer. We empirically demonstrate this point in

Section 8.6.2, across many applications.
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(a) Bipartite (b) Butterfly (c) Star

Figure 8.1: Task 1-1: Simple Subgraph Matching in Bipartite Graphs

8.5 Experiments I: Pattern Mining with RWK
+
CN

Through a series of experiments, we show that RWK
+
CN can be used for several unsupervised

pattern mining tasks, and that each of our proposed solutions contribute to improved perfor-

mance and descriptive ability. Pattern mining, which is typically a graph algorithm subject

matter, is a very difficult task to achieve via machine learning. Since our major purpose is

to demonstrate the advantages of RWK
+
CN over RWNN, they are evaluated on a controlled

testbed with ground truth, wherein we understand the nature of the graphs.

8.5.1 Task 1: Simple Subgraph Matching

We design two tasks where the subgraphs are easy to learn. The first task aims to show that

RWK
+
CN handles color-matching of every node pair along walks, while RWNN does not. The

second task demonstrates that diversity regularization aids with learning non-overlapping hid-

den graphs. We report the matching accuracy for each experiment, where it is considered as a

correct match when the model learns the desired subgraph pattern(s).

Task 1-1 We generate a database of 100 bipartite graphs with heterophily, where nodes on

two sides of the graph have different colors/labels (e.g. Figure 8.1a). We use one hidden graph,

and the task is to learn a bipartite core; “butterfly” (Figure 8.1b), or a 3-star with core and periph-

erals with different colors (Figure 8.1c). Two different objectives are used; one is to maximize

the total similarities from all steps, and another one is to maximize the similarity only from the

last step.

Table 8.3 reports the matching accuracies. Our RWK
+
CNworks well even if the similarity is

only from the last step, regardless of the number of steps. Since RWK
+
CNmatches the labels of

every node pair in each walk, maximizing the similarity from the last step needs to ensure the

correctness of matching from previous steps at the same time. Although RWNN works when

the similarity is from all steps, it fails when the similarity is from the last step when the number

of steps equals 2. This is because the even-step neighbors in a bipartite heterophily graph have

the same color.

However, this task is a special case, where the method only needs to realize that the neigh-

bors should have the other color in the learned pattern. That is to say, RWNN still can not solve

complicated cases just by summing up the similarity from all steps. As we will see later in this
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Table 8.3: Task 1-1: Simple subgraph matching in bipartite graphs. Thanks to color-

matching, RWK
+
CN performs well even when the objective is based only on the last step.

Method Objective # of Steps Acc.

RWNN Sum of All Steps

2 26%

3 100%

RWNN Only Last Step

2 0%

3 100%

RWK
+
CN Only Last Step

2 100%

3 100%

(a) Chain (b) Pattern 1 (P1) (c) Pattern 2 (P2)

Figure 8.2: Task 1-2: Simple Subgraph Matching in Triangle Chain

section, while RWNN always learns rudimentary patterns because of ignoring the intermediate

nodes in the walks, RWK
+
CN learns more sophisticated ones by taking it into account.

In the rest of this section, we use “Sum of All Steps” as the objective for RWNN, and “Only

Last Step” for RWK
+
CN, which performs well and simplifies the optimization.

Task 1-2 To test diversity regularization, we generate a database with 100 node-labeled tri-

angle chains, containing two frequent patterns (e.g. Figure 8.2a). Each triangle is either pattern

P1 (Figure 8.2b) with probability 60% or otherwise P2 (Figure 8.2c) with lower frequency. The

number of steps is set to 3, which is efficient and sufficient to capture both homophily (1-step)

and heterophily (2-step) neighbors.

Table 8.4 reports the results, where accuracy depicts if both P1 and P2 are learned by the

hidden graphs. Even without diversity regularization, RWK
+
CN learns the most frequent pat-

tern P1 with high accuracy. When diversity regularization is applied, accuracies for the second

frequent pattern P2 and both patterns increase. The increase is larger when RWK
+
CN is trained

more flexibly with a larger number of hidden graphs to be learned. Notably, RWNNwith vanilla

RWK fails to learn either of the patterns. As it prefers the more frequent colors, it often learns

all the node colors to be the same.
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Table 8.4: Task 1-2: Simple subgraph matching in triangle chains. Diversity regulariza-

tion helps RWK
+
CN learn non-overlapping hidden graphs. Green ( ) marks the winner.

# of Hidden Graphs Method Diversity P1 Acc. P2 Acc. Both Acc.

2

RWNN No 0% 0% 0%

RWK
+
CN

No 82% 24% 12%

Yes 72% 66% 44%

3

RWNN No 0% 0% 0%

RWK
+
CN

No 88% 44% 32%

Yes 76% 80% 62%

4

RWNN No 0% 0% 0%

RWK
+
CN

No 98% 68% 66%

Yes 84% 86% 74%

8.5.2 Task 2: GED-Based Evaluation

To further show the advantages of RWK
+
CN, we design twomore tasks each with two different

testbeds. For evaluation, these experiments consider a database containing 100 identical graphs,

which is used as the ground truth, i.e. only one hidden graph is used in both tasks. As the ground

truth is more complex than the ones in Task 1, and it is difficult to learn the exact graph, we

use graph edit distance (GED) [SF83] to measure how close the learned hidden graph is to the

ground truth (the lower the better). While GED with node labels induces a penalty for editing

the labels, GEDwithout node labels purely focuses on the graph structure. The first task studies

labeled graphs with different number of steps, and shows that RWK
+
CN outperforms RWNN

thanks to color-matching. The second task demonstrates the effectiveness of adding “structural

colors”, which improves both the learned structure and labels. We report p-values based on the

paired t-test that quantify differences between two GED values statistically.

Task 2-1 We design two testbeds using node-labeled tailed triangles and rings, as shown in

Figure 8.3a and 8.4a, respectively (best in color). We learn the hidden graph with the same

number of nodes as the ground truth graph. Tables 8.3d and 8.4d report the GED comparison.

RWK
+
CN achieves consistently lower GED than RWNN, demonstrating the importance of

incorporating color-matching into the RWK. Experiments on both testbeds show that there is

no clear choice for the number of steps, i.e., higher is not always better, where the p-values

are high within RWK
+
CN. We visualize the learned hidden graphs by removing the edges with

the smallest edge weights. Figure 8.3b shows that RWK
+
CN successfully assigns the green

node with degree 3 in the correct position. Since the blue node only has degree 1, RWK
+
CN

reasonably learns to maximize the objective by adding one more red node in the hidden graph,

which is the most frequent color; in Figure 8.3c, RWNN fails to handle the intermediate nodes,

and hence includes only the most frequent color in the learned hidden graph. We observe a

similar behavior in Figure 8.4b and 8.4c. While RWK
+
CN pays much attention to learning the

correct node labels, RWNN gives a rudimentary result, where all the nodes have the same labels.
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(a) Colored Tailed Trian-

gle: Ground Truth

0.
68

1.0

0.7
7

0.89

(b) Hidden Graph Learned

by RWK
+
CN

1.
0

0.46

0.6
4

0.86
(c) Hidden Graph Learned

by RWNN

Method # of Steps GED w/ Node Labels p-value

RWNN 2 3.35 ± 0.41 3.1e-05
∗∗∗

RWNN 4 3.15 ± 0.34 3.2e-03
∗∗

RWNN 6 3.25 ± 0.39 4.7e-04
∗∗∗

RWK
+
CN 2 2.87 ± 0.58 0.20

RWK
+
CN 4 2.82 ± 0.64 0.33

RWK
+
CN 6 2.76 ± 0.86 -

(d) Table of results. Lower GED is better.

Figure 8.3: Task 2-1: GED-based evaluation on tail-triangles. Green ( ) marks the winner.

Task 2-2 Two more testbeds are designed to evaluate structural colors. The number of steps

is set to 3, which is effective and efficient. The first database contains 3-regular unlabeled

graphs (Figure 8.5a). We evaluate RWK
+
CN and RWNN by GED without node labels, focusing

on the quality of the learned structure. Our assumption is, if the structural identifiers (node

labels) are more unique, then the hidden graph can learn better graph structure. Therefore, we

assume identity matrix as the best features in the evaluation, though it is not generalizable to

the real datasets. We create the structural colors by a fixed and randomized Graph Attention

Networks (GAT) [VCC
+
18]. The results are reported in Table 8.5. Our proposed RWK

+
CN

using identity matrix as features receives the lowest GED without node labels, as expected.

RWK
+
CN using structural colors has competitive GED compared with using identity matrix,

while being more generalizable. These results also empirically prove our assumption that using

more unique identifiers as node features helps the hidden graph to learn better structure. In

contrast, RWNN fails to utilize the features even if they are extremely informative.

In the second testbed, we study a database containing 2-regular node-labeled graphs (i.e.

6-ring, Figure 8.5b), and report the results in Table 8.6. Only by replacing RWNN with our

proposed RWK
+
CN, the quality of learned hidden graph improves not only on labels, but also

on the structure. In addition to the node labels, we further incorporate structural colors into

RWK
+
CN, and find the learned hidden graph improves even better, demonstrating the effec-
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(a) Colored Ring: Ground

Truth

0.72

0.
17

0.26
0.

78 1.0

0.11

0.1
1

(b) Hidden Graph Learned

by RWK
+
CN

0.85

0.87

0.
76 0.88

1.0

0.9

0.6

(c) Hidden Graph Learned

by RWNN

Method # of Steps GED w/ Node Labels p-value

RWNN 2 7.08 ± 0.64 8.4e-14
∗∗∗

RWNN 4 7.16 ± 0.58 2.7e-14
∗∗∗

RWNN 6 6.92 ± 0.75 2.1e-11
∗∗∗

RWK
+
CN 2 5.58 ± 0.65 0.21

RWK
+
CN 4 5.59 ± 0.73 0.21

RWK
+
CN 6 5.46 ± 0.86 -

(d) Table of results. Lower GED is better.

Figure 8.4: Task 2-1: GED-based evaluation on rings. Green ( ) marks the winner.

tiveness of structural colors. Notably, using identity matrix as features results in only slightly

lower GED than using structural colors.

8.6 Experiments II: Adapting to Various Applications

In this section, the experiments is composed of two parts. In the first part, we demonstrate

that different KCN architectures can perform better by employing our proposed RWK
+
. In the

second part, we compare our proposed RWK
+
Conv with GCNConv, and empirically show that

it has better expressiveness by extracting better graph features.

8.6.1 RWK
+
: Employed to Different Architectures

We conduct three graph learning tasks for evaluating RWK
+
. Since we focus on improving

RWK across many tasks, rather than outperforming task-specific state-of-the-art methods, the

experiments concentrate on comparing models using RWK versus RWK
+
.
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(a) 3-Regular Graph

w/o Colors

(b) 2-Regular

Graph w/ Colors

Figure 8.5: Task 2-2: Ground Truth Graphs in GED-Based Evaluation

Table 8.5: Task 2-2: GED-based evaluation on 3-regular unlabeled graph. Being used as

unique identifiers of nodes, structural colors are shown to be as effective as identity matrix.

Green ( ) marks the winner.

Method Additional Features GED w/o Node Labels p-value

RWNN None 4.38 ± 0.65 -

RWNN Identity 4.41 ± 0.56 0.57

RWK
+
CN Identity 3.89 ± 0.48 4.4e-05

∗∗∗

RWNN SC 4.45 ± 0.70 0.72

RWK
+
CN SC 4.10 ± 0.50 0.010

∗

8.6.1.1 iGAD on Graph Anomaly Detection

Datasets We evaluate RWK
+
on supervised graph anomaly detection with 10 real-world

datasets from PubChem [YCHY08], as in [ZYW
+
22]. Each graph is a chemical compound and

labeled by its outcome from anti-cancer screen tests (active or inactive). The classes are highly

imbalanced, where the ratio of the active samples is at most 12%, which are treated as the

anomalous cases. We perform 5-fold cross-validation and split 10% of the training set as the

validation set.

Settings iGAD [ZYW
+
22] incorporates RWK as a structural feature extractor to identify

graph-level anomalies. For comparison we replace it with RWK
+
using StepNorm, with one-

hot node degrees as the node features. Recall is used for both evaluation and model selection,

as in the iGAD paper.

Results We report the average performance and standard deviation (stdev) in Table 8.7. iGAD

with our proposed RWK
+
outperforms the original model on all datasets (p-val <0.001). This

suggests that the hidden graphs learned through RWK
+
are consistently better than the ones

extracted by RWK, assisting iGAD in better pointing out the anomalous graphs that deviate

from these patterns.
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Table 8.6: Task 2-2: GED-based evaluation on 2-regular labeled graph. Both techniques,

color-matching and structural colors, improve the quality of structure and label learned by the

hidden graph. Green ( ) marks the winner.

Method Additional Features GED w/o Node Labels p-value w/ Row 1 p-value w/ Row 2

RWNN None 5.25 ± 0.64 - -

RWK
+
CN None 5.02 ± 0.63 0.049

∗
-

RWK
+
CN Identity 4.81 ± 0.70 1.0e-03

∗∗
0.043

∗

RWK
+
CN SC 4.82 ± 0.70 1.1e-03

∗∗
0.043

∗

Method Additional Features GED w/ Node Labels p-value w/ Row 1 p-value w/ Row 2

RWNN None 7.25 ± 0.64 - -

RWK
+
CN None 6.60 ± 0.93 1.8e-04

∗∗∗
-

RWK
+
CN Identity 6.12 ± 1.01 2.9e-08

∗∗∗
1.8e-03

∗∗

RWK
+
CN SC 6.25 ± 1.01 7.2e-07

∗∗∗
0.015

∗

Table 8.7: Graph anomaly detection on 10 real-world datasets. Recall is reported. iGAD

using our RWK
+
as structural feature extractor outperforms original iGAD on all datasets.

Green ( ) marks the winner.

Dataset MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC-257

iGAD + RWK 75.1±1.1 74.1±0.8 77.9±1.2 78.6±0.9 78.7±1.3 78.8±0.3 83.1±1.7 78.3±1.1 79.4±0.6 78.0±1.0
iGAD + RWK

+
76.4±0.6 74.3±1.0 78.8±1.1 79.2±0.5 79.5±2.2 79.2±0.9 84.0±1.4 78.5±0.9 79.5±1.6 79.5±0.7

8.6.1.2 KerGNN on Substructure Counting

Datasets We evaluate RWK
+
on substructure counting with a simulated dataset [CCVB20]

following the same setting in [ZJAS22], and the task is to predict the normalized count of sub-

structures. This dataset includes four tasks, and the evaluation for different tasks are run sep-

arately. The dataset provides the training, validation, and testing sets with 1,500/1,000/2,500

graphs, respectively. One-hot node degrees are used as the node features.

Settings KerGNN [FYWT22] uses RWK to compare the similarity between the learnable hid-

den graphs and the egonets of nodes in a graph. The similarity from different learnable hidden

graphs are used as the features for message passing. In this experiment, we replace RWK inside

KerGNN with RWK
+
. Mean absolute error (MAE) is used to measure the accuracy of counts.

Results As shown in Table 8.8, KerGNN with RWK
+
outperforms KerGNN with RWK in 3

out of 4 tasks. StepNorm is shown to effectively improve the performance of both methods by

normalizing the similarity in each step. Without it, the similarity explodes after a number of

steps, and is always dominated by the latest step. Although RWK performs better in counting
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Table 8.8: Substructure counting on a simulated dataset. MAE is reported. RWK
+
wins in 3

out of 4 tasks, and StepNorm is shown to be effective. Green ( ) marks the winner.

Task Triangle Tailed Tri. Star 4-Cycle

KerGNN + RWK 0.1170 0.1346 0.1333 0.2153

KerGNN + RWK + StepNorm 0.1065 0.1251 0.0999 0.2140

KerGNN + RWK
+

0.1206 0.1246 0.1750 0.2078

KerGNN + RWK
+
+ StepNorm 0.0802 0.1240 0.1312 0.1884

Table 8.9: Graph classification on 10 real-world datasets. Accuracy is reported. Although

RWK
+
is built to capture descriptive features, it is competitive on most datasets. Green ( )

marks the winner.

Dataset MUTAG D&D NCI1 PROTEINS MUTAGEN TOX21 ENZYMES IMBD-B IMDB-M REDDIT

KerGNN + RWK 81.9±5.3 75.2±1.5 71.6±2.6 75.3±1.2 74.4±2.4 89.1±0.3 47.3±3.9 71.2±2.1 48.1±2.9 77.2±0.5
KerGNN + RWK

+
83.0±6.4 74.8±2.4 72.3±1.3 76.2±1.2 75.1±1.0 89.2±0.3 44.0±2.7 71.6±1.0 49.2±0.6 77.5±0.6

stars, there are few paths to walk within a star, which decreases the necessity of adopting a

kernel that is more accurate on similarity.

8.6.1.3 KerGNN on Graph Classification

Datasets We evaluate RWK
+
on graph classification with 10 real-world datasets from TU-

Dataset [MKB
+
20], as in [FYWT22]. We use the node labels given by bio-informatics datasets

(first 7), and the one-hot node degrees for the social interaction datasets (last 3). We perform

5-fold cross-validation and split 10% of training set as the validation set.

Settings Similar to substructure counting, KerGNN is used with RWK versus RWK
+
. For fair

comparison, StepNorm is employed for both models. We report average accuracy and stdev.

Results. Table 8.9 shows that although RWK
+
is designed with descriptive, structural graph

features in mind, it offers competitive performance on most classification tasks (p-val < 0.1).

Scalability We verify RWK
+
’s scalability by varying (1) the number of hidden graphs and (2)

the number of steps on the NCI1 dataset, and report the runtime per epoch during training. In

(1), the number of steps is 2, and in (2), the number of hidden graphs is 8. In Figure 8.6, KerGNN

with RWK
+
is slightly slower than with RWK, though the overhead is negligible (< 1 second),

and scales linearly, with significant speedup over regular color-matching computation.
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Figure 8.6: Runtime of KerGNN with RWK
+

computed by regular Equation (8.8) versus ef-

ficient Equation (8.9), also compared to vanilla RWK.

Table 8.10: Node classification on 6 real-world datasets. RWK
+
Conv wins and ties in most

tasks on accuracy. Green ( ) marks the winner.

Dataset Cora CiteSeer PubMed Cham. Squirrel Actor

GCNConv 85.8±0.7 73.4±0.5 88.0±0.2 69.7±0.9 55.7±0.4 28.3±0.6
RWK

+
Conv 88.3±0.5 76.7±0.2 88.1±0.2 69.3±1.9 49.7±1.3 36.0±0.2

8.6.2 RWK
+
Conv: Connections with GNNs

To show that RWK
+
Conv is more expressive than GCNConv, a GCN message-passing layer

[KW17], we compare them across both node- and graph-level tasks. In all experiments, we

rigorously ensure that both kinds of layers share exactly the same message-passing backbone.

8.6.2.1 Node Classification

Datasets Weevaluate RWK
+
Conv on node classificationwith 6 datasets, including homophily

graphs (first 3) [YCS16] and heterophily graphs (last 3) [RAS21, PWC
+
20]. Each dataset is split

into 60%/20%/20% for training, validation, and testing, respectively.

Results In Table 8.10, although expressiveness does not necessarily play a key role in achiev-

ing better accuracy on node-level tasks, RWK
+
Conv still has competitive or better performance

than GCNConv in most datasets.

Scalability We report the run time per epoch on the largest dataset PubMed in Table 8.11,

where RWK
+
Conv only creates negligible computational overhead (less than 0.05 second).
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Table 8.11: Runtime of RWK
+
Conv , with negligible overhead.

Step Length 2 3 4 5

GCNConv 0.0269 - - -

RWK
+
Conv 0.0371 0.0464 0.0522 0.0619

Table 8.12: Twitter bot detection on a real-world web-scale social network. RWK
+
Conv wins

on F1-score. Green ( ) marks the winner.

Dataset TwiBot-22

GCNConv 53.7±0.2
RWK

+
Conv 55.0±0.2

8.6.2.2 Twitter Bot Detection

Datasets We evaluate RWK
+
Conv on a web application, namely bot detection in the TwiBot-

22 dataset [FTW
+
22]. This dataset contains a web-scale Twitter social networkwith onemillion

users, where 86% of them are human, and the rest 14% are bots. We keep only the edges with

types “followed” and “following”, and make it undirected. The node features are embeddings

of user descriptions, transformed by BERT [DCLT19]. The dataset provides the training, vali-

dation, and testing sets with 70%/20%/10% nodes, respectively.

Results In Table 8.12, RWK
+
Conv outperforms GCNConv on F1-score. This suggests that

RWK
+
Conv has better ability to detect the bots by better utilizing the graph structure.

8.6.2.3 Graph Regression and Classification

Datasets We evaluate RWK
+
Conv on graph regression and classification with three real-

world datasets, ZINC [DJL
+
23], ogbg-molhiv and ogbg-molpcba [HFZ

+
20].

Results We include an additional baseline GINConv from GIN [XHLJ19]. In Table 8.13, we

find that RWK
+
Conv outperforms both baselines significantly across all datasets and tasks.

This empirically demonstrates the better expressiveness of RWK
+
Conv than GCNConv. It is

also worth noting that, unlike other baselines, RWK
+
Conv does not use edge features.

8.6.2.4 Summary and Future Work

All results strongly suggest the better expressiveness of our proposed RWK
+
Conv, especially

on graph-level tasks, and its connection to GCNmotivates novel convolutional layers for better

model design. This offers a direction with large potential to investigate further in the future.

We also want to point out that the current design of the RWK
+
Conv does not take edge features

into consideration. Extending it to handle edge features by matching edge colors at every step

of random walk could be a potential future work.
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Table 8.13: Graph regression and classification on 3 real-world datasets. RWK
+
Conv wins

in all tasks. Green ( ) marks the winner.

Dataset ZINC ogbg-molhiv ogbg-molpcba

Metric MAE ↓ ROC-AUC ↑ AP ↑

GCNConv 0.3258±0.0067 76.06±0.97 20.20±0.24
GINConv 0.2429±0.0033 77.78±1.30 22.66±0.28
RWK

+
Conv 0.2082±0.0025 78.61±0.61 24.90±0.12

8.7 Conclusion

We first presented RWK
+
, an improved random walk kernel with end-to-end learnable hidden

graphs that can be used by various KCNs. RWK
+
incorporates color-matching along the walks

that we showed can be efficiently computed in iterations, and combines similarities across steps

in a learnable fashion. We then proposed RWK
+
CN, a KCN that learns descriptive hidden

graphs with an unsupervised objective and RWK
+
. Thanks to additional “structural colors”

and diversity regularization, it learns hidden graphs that better reflect the frequent and distinct

graph patterns. Moreover, based on the mathematical connection of RWK
+
with GNNs, we

propose a novel GNN layer RWK
+
Conv, that extracts expressive graph features.

Experiments showed RWK
+
’s descriptive learning ability on various unsupervised graph

pattern mining tasks, as well as its advantages when employed within various KCN architec-

tures on several supervised graph learning tasks. Furthermore, we showed that our proposed

RWK
+
Conv layer outperforms GCN, especially in the graph-level tasks by a large margin.
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Chapter 9

DeltaShield: Information

Theory for Human-Trafficking

Detection

Chapter based on works that appeared at ICDE 2021 [LVK
+
21][PDF] and TKDD 2023

[VLK
+
23][PDF]

∗
.

Given a million escort advertisements, how can we spot near-duplicates? Such micro-

clusters of ads are usually signals of human trafficking. How can we summarize them

to convince law enforcement to act? Spotting micro-clusters of near-duplicate documents

is useful in multiple, additional settings, including spam-bot detection in Twitter ads, pla-

giarism, and more.

We present InfoShield, which makes the following contributions: (a) Practical, being

scalable and effective on real data, (b) Parameter-free and Principled, requiring no user-

defined parameters, (c) Interpretable, finding a document to be the cluster representative,

highlighting all the common phrases, and automatically detecting “slots”, i.e. phrases that

differ in every document; and (d)Generalizable, beating or matching domain-specific meth-

ods in Twitter bot detection and human trafficking detection respectively, as well as be-

ing language-independent. Interpretability is particularly important for the anti human-

trafficking domain, where law enforcement must visually inspect ads.

Our experiments on real data show that InfoShield correctly identifies Twitter bots

with an F1 score over 90% and detects human-trafficking ads with 84% precision. Moreover,

it is scalable, requiring only 8 hours for 4 million documents on a laptop. Our incremental

version, DeltaShield, allows for fast, incremental updates, with minor loss of accuracy.

∗
These are joint works with Catalina Vajiac, who performed Sections 9.4.1 and 9.5.1, included here for clarity.
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Figure 9.1: InfoShield is effective, scalable, and interpretable: (left) precision@k on

Twitter data is close to ideal, (middle) shows the scalability of InfoShield over different data

sizes, and (right) shows the interpretability of InfoShield, detecting and visualizing slots (in

red), i.e. portions of tweets that highly differ between otherwise duplicate documents.

9.1 Introduction

Given many documents, the majority of which do not belong to any cluster, how can we find

small clusters of related documents? The driving application is human trafficking detection,

where escort ads that are very similar are usually a sign of trafficking. Finding related docu-

ments is a problem with numerous applications, such as search engines, plagiarism detection,

mailing-address de-dupliclation, and more.

We propose InfoShield, a general, information-theory based method, and we illustrate its

generality, effectiveness and scalability on two settings: escort advertisements, and Twitter data

(both English as well as Spanish).

Application to the Human Trafficking Domain While InfoShield is general, our main

motivation is near-duplicate detection and summarization in escort advertisements. Human

trafficking (HT) is a dangerous societal problem which is difficult to tackle. It is estimated

that there are 24.9 million people trapped in forced labor, 55% of which are women and girls

accounting for 99% of victims in the commercial sex industry [Off]. The majority of victims are

advertised online and 56% of victims have no input on ad content [NAb]. The average pimp

has 4-6 victims [NAa]. Thus, the majority of ads suspected of HT are written by one person,

who is controlling ads for 4-6 different victims at a time. By looking for small clusters of ads

that contain similar phrasing, rather than analyzing standalone ads, we are finding the groups

of ads that are most likely to be organized activity, which is a strong signal of HT.

Currently, law enforcement looks for HT cases manually, often one at a time. Our proposed

InfoShieldwill help them save time by detecting micro-clusters of similar ads, grouping them,

and summarizing the common parts, as shown in Figure 9.1, which depicts Twitter data – we

refrain from showing escort ad results for the victims’ safety.

Application to Twitter Bot Detection Detection of organized activity also has a clear appli-

cation to bot detection; givenmillions of tweets, most of which come from legitimate users, how

can we find tweets that exhibit bot-like behavior? The simplest kind of bot behavior is spam-
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ming, i.e. posting tweets that are almost or exactly identical in text, to increase visibility. Bot

detection has been well-studied, but the majority of algorithms use manually crafted features

that are specific to certain platforms, for example, the number of retweets [DVF
+
16, CPP

+
16].

Our goal is to find near-duplicates in any application, which includes social media platforms

containing text, such as Twitter. This particular application benefits from a vast amount of

publicly available data.

Our Method Our first insight is to formalize the problem with information theory, and use

theMinimumDescription Length (MDL) principle to find good templates, which represent clus-

ter text, with “slots”, i.e. parts of the template that differ for each document. We mark slots with

red highlights in Figure 9.1-bottom. We then use this summary to visualize the cluster. InfoS-

hield is parameter-free, since MDL can automatically pick the best choice of parameter values

for any algorithm by choosing the combination with the shortest compression length. This is

the InfoShield-fine part of our method. The second insight is a novel preprocessing method,

InfoShield-coarse, that dramatically improves scalability to be quasi-linear, by (a) eliminat-

ing single-copy documents/ads and (b) grouping the rest in coarse, but mainly homogeneous,

clusters. Our algorithms, InfoShield and DeltaShield, have following desirable properties:

• Practical, being scalable and requiring no user-defined parameters thanks to the Mini-

mum Description Language principle,

• Interpretable, providing a clear visualization and intuitive summarization of the discov-

ered micro-clusters.

• Generalizable and domain independent – we show results on two diverse areas, namely,

Twitter data, and HT data; as well as on multiple languages, i.e. Spanish, Italian, English.

• Incremental, processing new batches of documents on-the-fly without recomputing on

historical documents.

A system diagram explaining the pipelines of InfoShield and DeltaShield is in Figure 9.2.

Reproducibility: Code available at https://github.com/mengchillee/InfoS
hield and https://github.com/catvajiac/InfoShield-Incremental.

9.2 Background and Related Work

There is a lot of work on HT detection, document clustering, and multiple sequence alignment,

and we group it in the following sub-sections. In summary, while these methods have provided

unique contributions, none have all of the same features as InfoShield and DeltaShield. Ta-

ble 9.1 contrasts our proposed methods against the state of the art competitors.

9.2.1 Human Trafficking Detection

Some previous works try to classify whether or not a particular advertisement is suspected of

HT [KDS
+
17, ASS17, TZJM17, ECP

+
19]. For instance, HTDN [TZJM17] proposes a supervised

deep multimodal model trained on 10K manually labeled ads. Unfortunately, due to the adver-

sarial nature of escort advertisements, these predefined or learned features do not stay relevant
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Figure 9.2: A system diagram of InfoShield and DeltaShield, showing the input, output, and

intermediate steps.

over time. These labeled ads are also expensive to obtain (requiring the precious time of do-

main experts) and are error-prone (Section 9.6). Moreover, inspecting ads individually, wemight

overlook ads that are part of an organized activity but do not stand out on their own. There-

fore, unsupervised algorithms that find connections between ads [NMBD17, PHD
+
17, RBD18]

and groups of organized activity are preferred in this domain [LSL
+
18]. In particular, Template

Matching [LSL
+
18] proposes the first anti-HT method to our knowledge to perform clustering.

However, the interpretability of clusters is limited, and the algorithm is not scalable.

9.2.2 Social Media Bot Detection

Most efforts in detecting bots in social media platforms are formulated as supervised classifi-

cation based on features from users and the content they post [SQJ
+
19, ZZ21]. Fewer works

look for anomalies or fraud in networks, rather than in text, for instance [SLBF17]. A notable

method, Botometer [DVF
+
16], formerly called BotOrNot, is an online service that provides a

score of likelihood that a particular user is a bot. Since it is the only state-of-the-art method

with public access to the implementation, we will use it as a baseline for our experiments in

Section 9.6. [CPP
+
17] gives a more comprehensive overview of Twitter bot detection methods,

and also provides the dataset we will use in Section 9.6. Very few works focus on detecting

organized activity - groups working together to mislead people about who they are and what
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Table 9.1: DeltaShieldmatches all specs, while competitors miss one or more features. “?”

indicates dependence on the clustering method or ambiguity in the original paper.

they are doing, which is a rising issue [Gle19]. ND-Sync [GCS
+
15] finds a related but different

type of behavior, i.e. “retweet spam”, where groups of multiple users exhibit organized behavior

by consistently upvoting a particular user’s tweets.

9.2.3 Document Embedding and Clustering

Much work has been done to represent documents in a machine-understandable format. The

most widely-used approaches to represent documents include bag of words [Har54] and term

frequency-inverse document frequency (tf-idf) [Jon04]. These methods are commonly used

for plagiarism detection [KG16, MFHdC14, EK13, BDG95], which is a similar setting to near-

duplicate detection. However, none of these methods do visualization or ranking, and some

assumptions do not work in our case, i.e. [BDG95] assumes documents consist of multiple

lines, which is not the case for tweets or the majority of escort advertisements.

Unsupervisedword vectormodels such asWord2Vec [MCCD13], Doc2Vec [LM14], and Fast-

Text [BGJM17] assume that words occurring in the same context tend to have similar meaning,

with much success. However, these methods require large amounts of time and data to train.

Even when trained using large datasets from Twitter data and the HT domain, we find that

these generic embedding methods do not perform as well (Section 9.6). Moreover, language

model like BERT [DCLT19] does not perform well on escort ad text [Kul21], due to the sheer
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number of misspellings, shortenings, and specific escort keywords not found in normal text.

Instead, we take the approach of developing a lighter-weight solution that naturally handles

the small amount of labeled data.

Given any document embedding, we can choose frommany clustering algorithms. Density-

based clustering techniques are most relevant to finding small dense text clusters, such as DB-

SCAN [EKSX96], HDBSCAN [MHA17], OPTICS [ABKS99], or k-means [DH04]. However, none

of them do slot-detection. We compare InfoShield to HDBSCAN as part of our curated baseline

for HT detection, see Section 9.6 for more details. In Table 9.1, we give several question-marks

for clustering methods because some of the methods are scalable (k-means), while others are

almost quadratic; some methods are parameter-free (G-means), but most are not.

Finding pairs of nearby points (or intersecting rectangles) is an old problem, under the name

of “spatial joins” [LR94, BKS93]. However, these methods are best for low-dimensional spaces,

since they use the R-tree [Gut84] spatial access method.

9.2.4 Multiple-Sequence Alignment

Multiple-Sequence Alignment (MSA) is a well-studied area with an application to biology, for

comparing DNA sequences. The Barton-Sternberg algorithm [BS87] is an early profile-based

approach which aligns sequences by updating a profile sequence iteratively. To resolve ambi-

guities among sequences caused by profile-based approaches, [LGS02] uses partial order graphs

instead of profile sequences, which enables a base in dynamic programming to have multiple

predecessors and successors. However, MSA focuses on finding the best alignment, which of-

ten requires arbitrary thresholds to determine the conserved regions within the sequences and

ignores template complexity. In contrast, our goal is to automatically identify the best trade-off

between template complexity and its ability to summarize the data.

Nature Language Processing (NLP) is another area benefiting from MSA. [BL03] applies

MSA to learn the patterns of given word sequences by word lattices and rewrite the sentences.

[SRPE06] focuses on aligning sentences by syntactic features to create the description for a

particular fact. However, most of these methods highly rely on parameter tuning and English

syntactical rules, assuming that all sentences are grammatically correct. This assumption does

not hold for data on any social network or for escort advertisements, where misspellings and

grammatical errors are common. Thus, these methods are not generalizable.

9.2.5 Minimum Description Length

TheMinimumDescription Length principle (MDL) [Ris78] assumes that the best modelM ∈M
for dataD minimizes C(M) +C(D|M), where C(x) is defined as the cost, i.e. number of bits,

needed to describe x losslessly. The main insight is that it penalizes both the model cost C(M),
as well as the encoding of errors/deviations from the model C(D|M) – while several other

methods ignore the model complexity. MDL has been extremely successful in several data

mining tasks [Grü07], including decision trees [MAR96], graph mining [CPMF04], time series

segmentation and mining [MSF14], string similarity [KLR04], and many more applications. It

formalizes the very intuitive “Occam’s razor” idea: the simplest explanation for a phenomenon

or dataset is the best explanation.
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Doc# Text

#1 Hi gentlemen, Korea super model just arrived...Alma and Joan specially selected...

#2 Hi gentlemen, Korea super model just arrived...Paula and Miya specially selected...

#3 Hi gentlemen, Korean super model just arrived...Paula specially selected...

Table 9.2: Simple Toy Example.

Doc# Text

#4 Gentlemen, Korea super model just arrived...Miya is specially selected...

#5 I made 30K working on this job - call 123-456.7890 or visit scam.com

#6 I made 30K working from home - call 123-456.7890 or visit fraud.com

#7 Hello, Anna here! My hours are...

Table 9.3: Full Toy Example.

9.3 Proposed Method: Theory

In this section we present the theory behind our proposed method.

9.3.1 Intuition and Theory

Our problem is split into the following parts: GivenN documents, where we suspect that there

are small clusters of organized activity:

1. Theory: how do we measure the goodness of a set of clusters, and

2. Algorithms: how do we quickly find clusters that describe patterns in the data concisely

(InfoShield-coarse – Section 9.4.1) and then how do we refine and visualize these clus-

ters (InfoShield-fine – Section 9.4.2).

Suppose we have the documents of Table 9.2 in a particular cluster, which are a shortened

version of escort ads InfoShield clustered into one template, how could we summarize them

in a human-explainable form? One part of our proposed InfoShield is to use templates, which

consist of constant strings and variable strings, called slots. We depict slots with ‘*’, following

the Unix convention. We also allow the usual string-editing operations (insertions, deletions,

and substitutions). Thus, for the above 3-ad example, a human (and our InfoShield) would

produce the template: “This is a great *, and the * dollar price is great”, as shown in Table 9.4.

In addition to the documents in Table 9.2, suppose that we also have the documents in

Table 9.3. Doc # 4 belongs in T1, but with one deletion (omitting “a”), one insertion (adding

“so”) and one substitution (replacing “great” by “good”). However, Docs #5-7 clearly do not

belong to the same template. We now would expect to see two templates T1 and T2, with T1

representing Doc #1-4, T2 representing Doc #5-6, and Doc #7 does not belong to any template.

Furthermore, we would like to visualize the templates that we do find as in Table 9.4.

In more detail, but still informal, InfoShield should achieve lossless compression, with the

cost being as follows:
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Constant Slot Insertion Deletion Substitution

T1 Hi gentlemen, Korea super model just arrived... * specially selected...

#1 Hi gentlemen, Korea super model just arrived... Alma and Joan specially selected...

#2 Hi gentlemen, Korea super model just arrived... Paula and Miya specially selected...

#3 Hi gentlemen, Korean super model just arrived... Paula specially selected...

#4 Gentlemen, Korea super model just arrived... Miya specially selected...

T2 I made 30k working * - call * or visit *

#5 I made 30k working on this job - call 123-456.7890 or visit scam.com

#6 I made 30k working from home - call 123-456.7890 or visit fraud.com

Table 9.4: Templates for Full Toy Example.

Doc Temp. Slots Ins. Del. Sub.

#1 T1 {“Alma and Joan”}

#2 T1 {“Paula and Miya”}

#3 T1 {“Paula”} 3: “Korean”

#4 T1 {“Miya”} 1

#5 T2 {“on this job", “scam.com"}

#6 T2 {“from home", “fraud.com"}

#7 N/A "Happy birthday to my dear friend Mike"

Table 9.5: Example Encoding for C(D|M).

1. Model complexity C(M): the cost to encode the t templates we discover. In our working

example, this would be the coding cost (roughly, the number of characters, below), for

T1: “Hi gentlemen, Korea super model just arrived... * specially selected...”

T2: “I made 30K working * - call * or visit *”

2. Data compression C(D|M): the cost to encode slot-values, insertions, and deletions, for

each of the documents, with respect to its best template (or just the listing of the words

in the document, if no template matches). Thus, for each document, we must store (a) the

tokens in slots, (b) position and token for insertions, (c) position for deletions, (d) posi-

tion and token for substitutions, and (e) the template-id that best matches the document.

Table 9.5 shows the information we include in C(D|M) for our running example.

Notice that Docs #1-4 are compressed with much fewer characters when we use template T1,

since they have so many phrases in common. The coding cost is roughly proportional to the

number of characters we need to describe (1) and (2) above. More formally, it is defined as:
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Table 9.6: Table of Symbols and Definitions.

Symbol Definition

N Total number of documents in D
t Total number of templates

V Number of words in vocabulary

Ti i-th template

li Length of template Ti

si Number of slots in Ti

l̂d Alignment length of data d
wd,j Number of words in j-th slot in aligned data d
ed Number of unmatched words in aligned data d
ud Number of substituted/inserted words in aligned data d
⟨n⟩ ≈ 2 lg n+ 1: universal code length for a non-negative integer

lg(L) = log2(L): code length for integer i (1 ≤ i ≤ L)

Table 9.7: Table of Acronyms.

Acronym Definition

HT Human Trafficking

MDL Minimum Description Length

MSA Multiple Sequence Alignment

POA Partial Order Alignment

ES Early-Stopping

ARI Adjusted Rand Index

Definition 9.1: Total Encoding Cost

The total coding cost for a set of n documents with t templates is given by:

C = C(M) + C(D|M) (9.1)

In Section 9.3.2, we explain the exact cost for N documents and t templates more precisely.

Then, in Section 9.4, we propose algorithms on how to discover such a good set of templates.

We want to highlight that the separation of the cost function in Equation (9.1) from the

algorithms makes InfoShield extensible: we can use any and every optimization algorithm we

want. The oneswe propose in Section 9.4 are carefully thought-out, and givemeaningful results,

but any other set of algorithms is fine to include – we can pick the solution with the best coding

cost. Furthermore, InfoShield is parameter-free: any optimization algorithm minimizing total

cost does not need user-defined parameters —we can try as many parameter values as we want,

and pick the solution with the lowest cost.

9.3.2 Data Compression and Summarization

In this subsection, we give the details of the encoding cost in InfoShield. An overview of

symbols and acronyms is provided in Table 9.6 and Table 9.7, respectively.

9.3.2.1 Template Encoding

We use the notation ⟨n⟩ for the coding cost of integer n, using the universal code length [Ris83],
that is ⟨n⟩ = log∗ n ≈ 2× lg n+1. We also assume that we have V vocabulary words total and

that each is encoded as an index, requiring ⌈lg V ⌉ bits. For a length-l document, we need ⟨l⟩
bits to encode the number of words and lg V for each word, resulting the total cost ⟨l⟩+ l∗ lg V .
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Definition 9.2: Model Encoding Cost

The coding cost for t templates is given by

C(M) = ⟨t⟩+
t∑

i=1

⟨li⟩+ li lg V + (1 + si) lg li (9.2)

Let’s describe every term of the above definition:

• ⟨t⟩ - universal coding, for the number of templates T
• For each template Ti, we need:

⟨li⟩ to encode the number of words in the i-th template

lg V for each word in Ti

lg li for the number of slots si in the template, and

lg li for the location of each slot.

9.3.2.2 Alignment Encoding

Given a template and a document that it describes, what is the best way to encode the docu-

ment? The intuition is to encode insertions, deletions, and substitutions in the template, and

the tokens in slots. For the templates, we need only encode the word-location of a mismatch,

its type, and, for insertion/substitution, we encode the relevant word.

Definition 9.3: Data Encoding Cost

The coding cost for N documents encoded with t templates is given by

C(D|M) = N + ld × lg V

+
t∑

i=1

∑
d∈Di

(lg t+
〈
l̂d

〉
+ l̂d

+ ed lg l̂d + ud lg V +

si∑
j=1

S(wd,j)),

(9.3)

where Di denotes the data encoded by template Ti. In more detail, let DU denotes the docu-

ments that do not match any template. The encoding cost for data d ∈ DU which is not encoded

by template is simply computed by ld × lg V . For the rest, the reasoning is as follows: Given a

template Ti and a document d ∈ Di, the alignment coding cost is:

• 1 bit for template flag yes/no

• lg t for template-id (if the flag is ‘yes’):

•

〈
l̂d

〉
for length of the alignment

• 1 bit for each word in alignment if matched/unmatched
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• lg l̂d for the location of each unmatched word

• ⌈lg 3⌉ = 2 bits for the operation type of each unmatched word (insertion, deletion, or

substitution)

• lg V for word index in vocabulary if insertion/substitution

• S(wd,j) for the number of words wd,j in j-th slot:

S(wd,j) = 1 +

{
⟨wd,j⟩+ wd,j lg V , if wd,j > 0

0 , otherwise

(9.4)

• Repeat, for all other editing operations.

9.3.2.3 Overall Encoding

Notice that we ignored the cost of encoding the vocabulary, since it would be the same for

all sets of templates, and roughly the number of bytes to spell out all the vocabulary words,

separated by a word-delimiter, such as a newline character. More accurately, this would be:

⟨V ⟩+ V × (l+1)× 8 where l is the average word length, 8 bits per character, and 1 bit for the
delimiter between words.

9.4 Proposed Method: Algorithms

How can we find templates that minimize our cost function in a scalable way? While the intu-

ition described in Section 9.3 is correct, finding such templates is an expensive operation, being

quadratic in the worst case. Thus, we first create reasonable clusters of related documents in

a scalable way, using InfoShield-coarse, then work to find templates within each cluster us-

ing InfoShield-fine. If the average cluster size remains small, in comparison to N , then we

process N documents in sub-quadratic time.

9.4.1 InfoShield-coarse

How do we quickly create coarse-grained clusters of documents with high text similarity? We

start with document embedding, then perform clustering.

9.4.1.1 Document Embeddings

How do we generate a meaningful document embedding? We wish to capture similarity be-

tween documents that contain similar phrasing, but may have small variations (insertions,

deletions, misspellings, etc). To this end, we first calculate the tf-idf weights for each phrase

(n-gram)-document pair in the corpus. When calculating tf-idf, we consider phrases up to n-

grams, with n = 5†.
Then, for each document, we extract the top phrases with the highest tf-idf scores. By

using tf-idf and limiting the number of phrases used, we only keep the most important phrases

†
Phrase length has little impact on results past n = 5: see Section 9.6.3.
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in the document that are unique to only a few advertisements, while ignoring commonly-used

phrases. By making the number of phrases selected a function of input size, we reduce the

risk of our results being heavily impacted by document length. Since some documents have a

maximum length (i.e. tweets) but many do not, this helps to prevent InfoShield-coarse from

being domain-specific.

9.4.1.2 Clustering

How do we quickly create meaningful candidate clusters? We construct a bi-partite graph of

documents and phrases. For any document i and phrase j, we construct an edge i, j if j is a top
phrase in i. Once all documents are processed, we consider all connected components in G to

be our coarse-grained clusters.

In the case that these clusters end up too large (due to an “unimportant” phrase that com-

bined documents that ideally should not be combined), we rely on InfoShield-fine to refine

these clusters and split them if necessary. This is why InfoShield-coarse is very permissive,

only requiring ads to share one important phrase to be connected. Algorithm 9.1 shows more

formally how to construct a document graph using InfoShield-coarse.

Algorithm 9.1: InfoShield-coarse

Data: N documents

Result: candidate clusters generated from N
1 initialize empty document-phrase graph G = (V1, V2, E);
2 forall documents d do

3 forall phrase p in FindTfidfPhrase(d) do
4 E ← E ∪ (d, p);
5 end

6 end

7 clusters← FindConnectedComponents(G) ;

9.4.2 InfoShield-fine

Once we have coarse-grained clusters, how do we find templates and visualize the resulting

clusters? Given data D containing multiple documents, split into coarse-grained clusters, the

goal is to automatically find a template setM containing zero or more templates. Each template

is expected to encode at least two documents. Within each coarse-grained cluster, the first task

is to generate non-singleton candidate sets of documents and find potential templates. Next,

we search for the best consensus document, i.e. the document that most represents the cluster,

and detect possible slots by optimizing our cost function in Equation (9.3). We continue finding

templates until we have processed all documents in a coarse-grained cluster, then move to the

next cluster. We divide our algorithm into three major steps as follows:

1. Candidate Alignment: Identify the candidate set for a template and align all the docu-

ments in the set, using multiple sequence alignment (MSA).
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2. Consensus Search: Search for the best consensus document in the alignment.

3. Slot Detection: Detect slots in the consensus document to generate a template.

Let’s take the first template from Table 9.4 as an example. We show a visual representation

of what each step does in Figure 9.3.

(a) Step 1: Candidate Alignment

(b) Step 2: Consensus Search

(c) Step 3: Slot Detection

Figure 9.3: Example pipeline of InfoShield-fine:Herewe show the output after each step

of InfoShield-fine.

To compute the MSA, we carefully choose to use Partial Order Alignment (POA) [LGS02] as

our alignment method for its effectiveness and efficiency. It is worth noting that InfoShield-

fine can co-work with any off-the-shelf MSA approaches.

9.4.2.1 Candidate Alignment

Given data D from one cluster generated by InfoShield-coarse, containing multiple docu-

ments at iteration i, the candidate set for the template needs to be identified first. We first align

all the documents d ∈ D with the first document d1 individually and then compute the cost

C(d|d1) and C(d) for every d ∈ D; if C(d|d1) is smaller than C(d), meaning that d and d1 have
high similarity and can possibly be encoded by the same template, we add d into the set Di

containing all similar documents found in iteration i. Finally, we generate the alignment Ai by

the POA method with all documents in Di.
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Algorithm 9.2: Consensus-Search

Data: An alignment Ai and a candidate set Di

Result: A consensus document T
′
i

1 Initialize hL = 0, hR = |Di| − 1;
2 while hL < hR do

3 hM ← (hL + hR)/2;
4 if C(Di|Sel(Ai, hM − 1)) ≤ C(Di|Sel(Ai, hM + 1)) then
5 hR ← hM − 1;
6 else

7 hL ← hM + 1;
8 end

9 end

10 T
′
i ← Sel(Ai, hM);

11 Return T
′
i ;

9.4.2.2 Consensus Search

After generating alignment Ai, how do we decide which tokens are part of the template, and

which are insertions/deletions/substitutions? Keeping too many words in the template causes

more unmatched operations (insertion/deletion/substitution); while keeping too few words

hurts interpretability.

To solve this problem automatically, we turn it into an optimization problem byMDL. Func-

tion Sel(Ai, h) is used to select the sub-alignment from the POA graph, where we only keep

edges between words that occur more than h times in Ai. We aim to search for the best thresh-

old h∗
i to generate the consensus of alignment with the lowest cost. The optimization problem

can then be formed as follows:

h∗
i = min

h
C(Di|Sel(Ai, h)) (9.5)

Although our cost function is not convex, the optimization problem is only 1-dimensional, being

relatively easy to solve. Hence we employ the Dichotomous Search algorithm [CZ04] as our

optimization method, where it returns the optimal solutions in most cases. The optimization

algorithm is shown in Algorithm 9.2, where we iteratively shrink the search space to half. The

consensus document T
′
i only contains one sequence and no slot.

9.4.2.3 Slot Detection

Once we have a template, how do we find slots? Slots contain parts of documents which we

expect to differ, either in length or content, in the same location of each document. Slots in-

herently differ from unmatched words; instead of storing the location of each unmatched word

per document as we would for unmatched words, we only store the location once, as part of

the template.

Algorithm 9.3 shows how we do slot detection. We first recognize the operation types of

words by each alignment a ∈ Ai, which are either insertions or substitutions. We identify
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which words each potential slot p contains in the given consensus document T
′
i . With this

information, the computation of total cost with or without the slot p can easily be done. We

only keep slots that decrease the total cost and store them in Ti.

9.4.2.4 Relative Length

To study the quality of compression by InfoShield-fine, we use relative length:

Relative Length =
Cost after compression

Cost before compression

(9.6)

When relative length is close to 1, it means that the quality of compression is low; when it

is close to lower bound, it means that the quality of compression is high, and the compressed

documents are near-duplicate. For that reason, we derive the lower bound encoding cost of a

cluster to study whether it is close to near-duplicate or not.

Lemma 9.1: Lower Bound of Encoding Cost

The lower bound encoding cost of a cluster by InfoShield-fine is:

t

n
+

1

lg V
(9.7)

where t denotes the number of templates in the cluster, n denotes the number of documents

in the cluster, and V denotes the number of words in vocabulary.

Proof. The encoding cost of n documents without a template is nl lg V . In Equation (9.2), the

encoding cost of t templates is ⟨t⟩ + t(⟨l⟩ + l lg V + lg l); and in Equation (9.3), the encoding

cost for each document with no unmatched words is (1 + ⟨l⟩+ l). We can then derive:

⟨t⟩+ t(⟨l⟩+ l lg V + lg l) + n(1 + ⟨l⟩+ l)

nl lg V

≈ t lg V + nl

n lg V
≈ t

n
+

1

lg V
(9.8)

where l is a small constant value that is negligible. The total encoding cost for n near-duplicate

documents by t templates is approximately
t
n
+ 1

lg V
. ■

9.4.2.5 Overall Algorithm

The overall algorithm of InfoShield-fine is shown in Algorithm 9.4. Given dataD containing

multiple documents from one cluster by InfoShield-coarse, we first initialize the template set

T and the number of detected template i. At iteration i, we initialize alignment by the first
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Algorithm 9.3: Slot-Detection

Data: A consensus document T
′
i , an alignment Ai, and a candidate set Di

Result: A template graph Ti with slot(s)

1 Initialize P as a dictionary, Ti = T
′
i ;

2 for a ∈ Ai do

3 x = 0;
4 for j = 1, .., la do
5 if aj is an insert or substitution word then

6 P [x]← P [x] + 1;
7 else

8 /* aj is a matched or deleted word */

9 x← x+ 1;

10 end

11 end

12 end

13 for p ∈ P do

14 if C(Di|T
′
i (p.slot← True)) < C(Di|T

′
i ) then

15 Ti ← Ti(p.slot← True);
16 end

17 end

18 Return Ti;

document d0 ∈ D. We compare with all other documents d ∈ D to identify whether they

should be encoded by the same template. After generating the alignment Ai and the data Di

that it encodes, we search for the best consensus sequence T
′
i by optimizing the cost function.

Then we detect the slots on the consensus sequence T
′
i to generate template Ti. We include the

Ti into our template set T , and compute the total cost for both templates and data encoded by

templates. If the total cost decreases by including Ti, we include it into T and update the total

cost; otherwise, we treat Di as noise. We run InfoShield-fine on every cluster generated by

InfoShield-coarse, thus our final model M is T1 ∪ T2 ∪ · · · ∪ Tm, where m is the number of

coarse clusters. It is worth noting again that InfoShield-fine is parameter-free, needing no

human-defined parameters and optimizing for each template automatically.

9.4.3 Complexity Analysis
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Algorithm 9.4: InfoShield-fine

Data: Data D consisting of multiple documents

Result: A template set T
1 Initialize T , c∗ = C(D), i = 1;
2 while |D| > 0 do
3 Initialize Ai = d1 by the first document in D;

4 Initialize candidate set Di;

5 for d ∈ D[2 :] do
6 if C(d|d1) < C(d) then
7 Di ← Di ∪ {d};
8 Ai ←MSA(Ai, d);

9 end

10 end

11 T
′
i ← ConsensusSearch(Ai, Di);

12 Ti ← SlotDetection(T
′
i , Ai, Di);

13 c← C(T ∪ {Ti}) + C(D|T ∪ {Ti});
14 if c < c∗ then
15 T ← T ∪ {Ti};
16 c∗ ← c, i← i+ 1;

17 else

18 Treat Di as noise(s);

19 end

20 D ← D\Di

21 end

22 Return T ;

Lemma 9.2

InfoShield is quasi-linear on the input size, taking time

O(Ncl) +O(kmaxNlog(N)l2) (9.9)

where N is the number of documents, l is the (maximum) length of a document, m is the

number of coarse clusters, c is the maximum number of non-duplicate documents in a

cluster, and kmax is the maximum number of templates in a coarse-grained cluster.

Proof. We analyze the runtimes of InfoShield-coarse and InfoShield-fine separately. For

InfoShield-coarse, we iterate through N documents, picking the top 10% of phrases in N ,

and adding edges between these documents and phrases. Thus the runtime of InfoShield-

coarse is O(Nl), where l is the average length of the documents.

In InfoShield-fine, there are a total of k iterations, where k is the maximum number of

templates generated from the given data. With the help of vectorization, MSA can be done
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in O(l2). For each iteration, Consensus-Search requires O(logS
′ × S

′
l2) time, where S

′
is the

average number of documents being aligned in each template; and Slot-Detection requires S
′
l2

time. The time complexity of Candidate-Alignment in each iteration isO(Sl2), where S ≥ S
′
is

the average number of documents in the each cluster. Thus the time complexity of InfoShield-

fine is O(
∑m

i=1 kiSi log(Si)l
2), which is upper-bounded by O(kmaxN log(N)l2), and where

m is the number of coarse clusters generated by InfoShield-coarse, kmax is the maximum

number of templates generated by a cluster.

In total, the algorithm takes time O(Nl) + O(kmaxNlog(N)l2) time. In practice, kmax ≤ 2
in the Twitter datasets. Furthermore, the value of c will be quite low, since Twitter spambots

post many duplicate tweets, which will make the runtime fast. Empirical evidence of this can

be found in Figure 9.4, where we see that InfoShield-coarse scales linearly with input size.

For the use cases presented in this paper, i.e. escort advertisements and tweets, we also note

that l is bounded (280 for Tweets). ■

9.5 Proposed Method: Incremental

In order to do HT detection in practice, we must develop an algorithm that can process doc-

uments incrementally. Domain experts have hundreds of millions of ads and keep crawling

additional ones each day. If we have already grouped historical ads into t clusters, we want

to process a batch of newly-crawled documents without recomputing on historical documents.

Here wewill discuss the necessarymodifications to InfoShield and presentDeltaShield, with

relevant experiments in Section 9.6.

9.5.1 DeltaShield-coarse

How can we modify InfoShield-coarse to be conducive to an online setting? We consider

a setting where batches of documents come in during an aggregated time period, i.e. daily

or weekly. Most of the algorithm can be adopted with minimal changes; since InfoShield-

coarse incrementally adds to the document-term graph, we can process an entire batch, send

the results to InfoShield-fine, and then continue processing documents as they arrive. The

biggest challengewe have is in computing the tf-idf score of n-grams in a given document before

seeing the entire corpus. To this end, we approximate the tf-idf score by computing the idf only

on the documents seen so far, rather than the entire corpus. This approach is advantageous for

two reasons: (1) as we process more and more documents, the approximate tf-idf score of a

given n-gram will approach its actual tf-idf score, as verified empirically in Section 9.6.4, and

(2) for the HT application, domain experts have a lot of historical, in-actionable data that can

be processed first to improve the approximate tf-idf score.

9.5.2 DeltaShield-fine

In an online setting, we still need to generate new templates if needed, so Algorithm 9.4 will

be performed in every batch. Moreover, a preprocessing step and an updating step must be

included to keep DeltaShield efficient and effective.
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Algorithm 9.5: Preprocess-Naive

Data: An incoming document d1, and a template set T
Result: An updated template set T or False if no appropriate template

// Examine all the templates
1 i∗ = argminTi∈T C(d1|Ti);
2 if C(d1|Ti∗) < C(d1) then
3 Di∗ ← Di∗ ∪ di;
4 Ti∗ .added← True;

// Find appropriate template
// -> Continue with the next incoming document

5 Return T ;
6 end

// No appropriate template
// -> Used as an initial document to generate the new template

7 Return False;

9.5.2.1 Preprocessing

We propose Algorithm 9.5 as a preprocessing step before generating a new template in Al-

gorithm 9.4. If we were able to process all documents at once, the intuitive solution is to go

through all the documents and generate templates. However, in an online setting, we often

see documents from any one template span over multiple batches. To this end, the preprocess-

ing step tries to encode an incoming document by all existing templates in its coarse cluster

and select the template with the lowest encoding cost. If the cost by the selected template is

lower than the encoding cost of the document itself, we consider the document to belong to

that template.

Unfortunately, the time complexity of examining all the existing templates isO(kmaxl
2). If a

coarse cluster has a large number of templates, we will incur a large overhead. To address this,

we adopt an early-stopping (ES) mechanism in Algorithm 9.6. Instead of sequentially investi-

gating all templates in a coarse cluster, we order the templates by the lengths of intersection

between unigrams in the incoming document and each template. Then, we select the first tem-

plate that lowers the encoding cost of the document.

Lemma 9.3

The time complexity of naive preprocessing step is O(kmaxl
2), but can be reduced by ES

mechanism to O(l2 + kmaxl), where l is the (maximum) length of a document, and kmax is

the maximum number of templates in a coarse-grained cluster.
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Algorithm 9.6: Preprocess-ES

Data: An incoming document d1, and a template set T
Result: An updated template set T or False if no appropriate template

1 Ii ← |Intersection(d1, Ti)| for all Ti ∈ T ;
2 T ∗ ← T ordered by I ;
3 for Ti∗ ∈ T ∗

do

// Early stopping
4 if C(d1|Ti∗) < C(d1) then
5 Di∗ ← Di∗ ∪ di;
6 Ti∗ .added← True;

// Find appropriate template
// -> Continue with the next incoming document

7 Return T ;
8 end

9 end

// No appropriate template
// -> Used as an initial document to generate the new template

10 Return False;

Proof. To compute the cost after compression, we calculate the alignment, which takes O(l2).
To search for the template with lowest encoding length, we examine O(kmax) templates. In

total, the naive preprocessing step takes O(kmaxl
2) to find the template with lowest cost.

Next, we analyze the ES mechanism. The time complexity of computing the lengths of in-

tersection for one template isO(l). It takesO(kmaxl) to compute all the lengths for all templates

in the coarse cluster. The total time complexity is then reduced to cl2 + kmaxl, where c denotes
the number of templates examined. However, c is a small number in most cases (close to 1),

which is negligible, so the final time complexity is l2 + kmaxl. ■

Later in Section 9.6.4.2, we will demonstrate that the ES mechanism largely improves the

efficiency while achieving comparable effectiveness.

9.5.2.2 Template Update

Once the new documents are added into a template, its representation will be slightly changed.

It is also important to update the template to represent new documents. Hence, we perform an

updating step, Algorithm 9.7, right after Algorithm 9.4. It is worth noting that we only update

templates that now represent any new documents. Furthermore, since changes in templates

tend to be gradual over time, it is not necessary to process the updating step in every batch. We

can set either a threshold (e.g. two hundred more documents) or an interval (e.g. one month) to

trigger this step in order to improve the efficiency. We will demonstrate the trade-off between

effectiveness and scalability using interval and threshold setting in Section 9.6.4.2.
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Algorithm 9.7: Template-Update

Data: A template set T and data D
Result: An updated template set T

1 for Ti ∈ T do

2 if Ti.added then

3 Ai ←MSA(Ai, Di);

4 T
′
i ← ConsensusSearch(Ai, Di);

5 T ∗
i ← SlotDetection(T

′
i , Ai, Di);

6 if C(Di|T ∗
i ) < C(Di|Ti) then

7 Ti ← T ∗
i ;

8 end

9 end

10 end

11 Return T ;

9.6 Experiments

We report experiments to answer the following questions:

RQ1. Practical: How fast is InfoShield, and how well does InfoShield work?

RQ2. Interpretable: How well does InfoShield visualize clusters? Are there any interesting

results with respect to the relative length metric?

RQ3. Robust: How much does InfoShield-coarse change as we consider longer n-grams?

RQ4. Incremental: How does DeltaShield compare with InfoShield in terms of efficiency

and effectiveness?

Dataset Accounts Tweets

genuine accounts 3,474 8,377,522

social spambots #1 991 1,610,176

social spambots #3 464 1,418,626

Test set #1 (spambots #1) 1,982 4,061,598

Test set #2 (spambots #3) 928 2,628,181

Table 9.8: Statistics for Twitter Bot Data.

Twitter Bot Data We use data from [CPP
+
17]. This data includes the tweet text and user id.

The data is split into the following categories in Table 9.8. To create each test set, [CPP
+
17]

sampled all tweets from 50% genuine accounts, and 50% from either social spambots #1 or social

spambots #3. We use the provided test sets, which focus on social spambots only, so we can

easily compare results to the best performingmethods in [CPP
+
17]. This data not only contains

binary labels as to whether particular tweets were posted from bots or legitimate users, but
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also inherent clusters; i.e. user IDs that correspond to legitimate users or bots. We expect

InfoShield to cluster most tweets from bots in clusters, ideally in one cluster per bot, and

to have few clusters with legitimate users in them. With this intuition, we can create ground

truth cluster labels in Twitter data as follows: (1) all legitimate users get labeled -1, since we

assume their tweets are different enough that they shouldn’t be clustered together; (2) all bots

get labeled with their user ID.

Human Trafficking Data – Trafficking10k Dataset The Trafficking 10k dataset is created

in [TZJM17], where expert annotators manually labeled 10,265 ads from 0-6. 0 represents “Not

Trafficking”, 3 represents “Unsure”, and 6 represents “Trafficking”.There are 6,551 ads labeled as

not HT, 354 labeled as “Unsure”, and 3,360 labeled as HT. Since the likelihood of an ad being HT

is subjective, labeling is a difficult task. In fact, our analysis shows that 40% of exact duplicate

ads (without any preprocessing) had label disagreement – i.e. multiple labels for the same exact

text. Ads that are exact duplicates account for 12% of the dataset. We expect this labeling issue to

occur for near duplicates as well. Therefore, we argue that looking at ads individually, whether

manually or algorithmically, is a non-ideal way to find or to label HT cases. Despite the noisy

labels, this is the only HT dataset to our knowledge with labeled data by human investigators.

Thus, we use this dataset in our experiments, while being aware that noisy labels may impact

results. This data does not have ground truth clusters. However, to create binary labels, we can

call scores 0-3 as not HT, and 4-6 as HT.

Human Trafficking Data – Cluster Trafficking Cluster Trafficking is a new dataset pro-

vided by Marinus Analytics. This data contains cluster labels, provided by domain experts, for

both HT, as well as for a strange behavior, that we will call ‘escort spam’:

Definition 9.4: Escort Spam

Script-generated advertisements that do not actually advertise real escort workers. The

purpose of escort spam is not known, but it serves to confuse law enforcement.

We are given 6 spam clusters as well as ads from 96 massage parlors around the US. Cluster

Trafficking consists of 157,258 ads, with 6,283 spam ads, 50,985 HT ads, and 99,990 normal ads.

Baselines Most state-of-the-art methods for HT detection are not open-sourced. Instead,

we compare against HTDN [TZJM17], which uses the same Trafficking10k dataset, and de-

velop three baselines using state-of-the art text embedding methods Word2Vec [MCCD13],

FastText[BGJM17], and Doc2Vec [LM14]. We train all models using 1 million escort adver-

tisements from the web. Then, we cluster using HDBSCAN [MHA17] with a minimum cluster

size of 3. We call these methods Word2Vec-cl, Doc2Vec-cl, and FastText-cl.

On Twitter data, we compare to three supervised methods [YHG13, DVF
+
16, AA13] and

one unsupervised method [CPP
+
16]. These methods all use Twitter-specific features that our

domain-independent InfoShield does not use, such as number of mentions, favorites, retweets,

posting time, etc. The unsupervisedmethod is also not fully automatic, as amanually set thresh-
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Figure 9.4: InfoShield is scalable: Linear on the input size; ≈ 8 hours for 4M tweets, on a

stock laptop.

old discerns spam from legitimate tweets, which they change for each dataset. Regardless, In-

foShield provides comparable results to these baselines.

Metrics For Twitter data, we have both binary labels and ground truth cluster labels. To

compare binary labels, we can report precision, recall, and F1 score. For cluster labels, we use

Adjusted Rand Index (ARI) [HA85]. We calculate precision, recall and F1 by calling all docu-

ments that ended up in templates to be suspicious, and all other documents as not suspicious.

9.6.1 RQ1 – Practical

How scalable is InfoShield? By using InfoShield-coarse to create coarse-grained clusters,

and using the more expensive InfoShield-fine on smaller input sizes, we save time. We design

an experiment on Twitter data by sampling Tweets the same way [CPP
+
17] did to create the

test sets, and report the average runtime for each dataset out of five trials. The result is shown

in Figure 9.4. Error bars were too small to be visible, so they were omitted.

How effective is InfoShield? We run InfoShield, as well as our developed baselines on

both the Twitter data and Trafficking10k datasets. We report our results in Table 9.9, comparing

against the two highest performing methods from [CPP
+
17].

OnTwitter data, InfoShield always performswithin ten points of the top contender, despite

using no features specific to Twitter such as retweets, favorites, or posting times.

For HT data, we see that InfoShield reports the highest precision; this is crucial since we

want to avoid giving false positives to law enforcement at all costs. Law enforcement would

rather know that they receive a real HT case (precision) than for all HT cases to be returned (re-

call) since they likely won’t have time to pursue all cases. False positives cause law enforcement

to lose trust in the algorithm and abandon it – as happened with previous applied solutions.
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Twitter Data

Dataset Test Set #1 Test Set #2

Metric ARI Prec. Rec. F1 ARI Prec. Rec. F1

InfoShield 83.2 93.0 91.2 92.1 75.7 96.7 88.9 92.6

Cresci [CPP
+
16] n/a 98.2 97.2 97.7 n/a 100 85.8 92.3

BotOrNot [DVF
+
16] n/a 47.1 20.8 28.9 n/a 63.5 95.0 76.1

Yang [YHG13] n/a 56.3 17.0 26.1 n/a 72.7 40.9 52.4

Ahmed [AA13] n/a 94.5 94.4 94.4 n/a 91.3 93.5 92.3

Human Trafficking Data

Dataset Trafficking10k Cluster Trafficking

Metric Prec. Rec. F1 Prec. Rec. F1 ARI

InfoShield 84.8 50.7 63.5 85.4 99.8 92.0 43.1

Word2Vec-cl 19.4 10.7 13.8 71.7 99.5 83.1 9.6

Doc2Vec-cl 25.6 10.9 15.3 74.2 98.8 84.7 16.2

FastText-cl 28.4 2 2.4 25.1 69.6 99.6 81.9 06.8

HTDN [TZJM17] 71.4 62.2 66.5 — — — n/a

Table 9.9: InfoShield performs well: InfoShield beats or ties the best domain-specific

method in both settings. Methods in red are supervised, while InfoShield is unsupervised.

Green ( , ) marks the top two and red ( ) denotes not applicable.
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Figure 9.5: Perpetrators seem separable, thanks to our features: (a) shows all clusters (circles)

and the lower bounds (black lines) – points are above the lower bound, as expected. (b) heatmap

of the same: most points are close to the lower bound. (c) emphasizes the spam clusters as red

stars, and (d) emphasizes the HT clusters as blue stars. Note that the majority of spam and HT

clusters (red and blue stars) sit apart from the benign clusters.
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Constant Slot Insertion Deletion Substitution

T1 sismo richter km al sureste de puerto escondido oax lat lon pf km

#1 sismo richter km al sureste de puerto escondido oax lat lon pf km

Omit 21 Identical Tweets as #1 ...

#23 sismologicomx sismo magnitud loc km al sureste de puerto escondido oax lat lon pf km

Table 9.10: InfoShield is language-independent: Spanish template from Twitter dataset.

Constant Slot Insertion Deletion Substitution

T1 the mostpopular most popular stories on pr daily this week from * are *

#1 the most popular stories on pr daily this week from instagram to mr t and perhaps even your grocers produce httptcokbfwdfts

...

#14 the most popular stories on pr daily this week from new cover photo rules on facebook and a battle of the soci httptcoeuetyugbku

#15 the mostpopular stories on pr daily this week from whimsical words to hillarys texts here are this weeks mos httptcoymwflapn

...

#27 the mostpopular stories on pr daily this week from understanding sopa to dating a pr professional here are the httptcoploce

Table 9.11: InfoShield detects slots: template from Twitter dataset.

9.6.2 RQ2 – Interpretable

Howwell does InfoShield visually interpret the clusters and templates we find? We show a few

results of templates for Twitter data, and a censored version for the HT data, with discussion.

9.6.2.1 Twitter Data

As shown in Table 9.10, we find that 23 Spanish tweets are encoded by the given template. The

first 22 ones are exact duplicates, but the last one contains three different words. InfoShield-

fine automatically determines that representing those different terms as unmatched results,

rather than as a slot, gives a smaller total cost. We can easily spot anomalies within clusters by

using the template; the last tweet will have a lower compression rate than all other tweets.

In Table 9.11, we find that all the tweets are talking about the most popular weekly stories.

While the first half of all tweets are almost identical, with minor syntax differences, the second

half describes the particular stories, which all differ. InfoShield-fine then detects the second

half of each sentence as a slot, which we expect to have different content in each tweet. This

will help researchers pay attention to the most worth-studying parts.

9.6.2.2 HT Data

In Table 9.12, we show an example template from the HT domain. Unfortunately, we must

censor the text to protect potential HT victims, so we only provide the highlighting from the

template. For the slots, we give a description of the type of text they represent.

Notice that slots tend to include consistent user-specific information. For example, the sec-

ond slot, if not empty, always discusses time. With a quick glance, a domain expert can easily

find this data, rather than looking at a longer wall of text. For the HT domain, interpretability

is key: law enforcement will only have to read one template, rather than each cluster member

individually, to determine if this cluster is suspicious. The slots also contain messy data: i.e.

while each slot has a specific purpose in Table 9.12, the text can be in multiple formats, i.e. “until
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Constant Slot Insertion Deletion Substitution

T1 not shown for victim’s safety

#1 (empty) (content) time (content) (empty) (content) (empty) (content)

#2 personal description (content) time (content) (empty) (content) cost (content)

#3 (empty) (content) time (content) (empty) (content) cost (content)

#4 personal description (content) (empty) (content) preferences (content) cost (content)

...18 similar ads

Table 9.12: Slots contain user-specific information: template from HT dataset.

Figure 9.6: 5-grams are enough: Precision stabilizes after n = 4.

9pm” vs. “9 P.M”, etc. Work could be done to automatically extract and process the information

within each slot, but this is beyond the scope of this paper.

9.6.2.3 Relative Length

Next, we consider the relative length, to further investigate the clusters detected by InfoS-

hield. How does the relative length of a micro-cluster change as a function of the number

of documents? Do we notice any differences between the relative lengths of spam clusters vs.

HT clusters? Using the Cluster Trafficking dataset, we illustrate the lower bound of relative

length versus number of documents per cluster in Figure 9.5a, where the black lines from left

to right denote the lower bound of clusters with one to four templates. For example, the clusters

with two templates (orange dots) cannot be on the left side of the second black line. As shown

in Figure 9.5b, most clusters are concentrated by the lower bound, meaning that they do not

have high numbers of documents. Further analysis surprisingly finds that spam and HT clus-

ters follow patterns in this space. As shown in Figure 9.5c, most spam clusters (red stars) have

small relative length with a high number of documents; in Figure 9.5d, there are two patterns of

HT clusters (blue stars): (1) the near-duplicate clusters with a high number of documents (but

slightly lower than spam clusters), (2) the outlier clusters that lie far from the lower bounds.
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Twitter Data

Dataset Test Set #1 Test Set #2

ARI 99.1 99.9

HOM 99.9 99.9

Trafficking Data

Dataset Trafficking10k Cluster Trafficking

ARI 97.1 99.2

HOM 96.1 96.5

Table 9.13: DeltaShield-coarse is near-perfect:we get almost exactly the same clustering

for all datasets when processing ads incrementally.

9.6.3 RQ3 – Robust

How sensitive is InfoShield-coarse to the length of n-grams we use to calculate tfidf scores?

We run an experiment on one of the datasets we used for our timing experiments, which con-

tains 100,000 tweets by sampling all tweets from 50% legitimate accounts and 25% social spam-

bot #1 accounts, and 25% social spambot #3 accounts. We detail the results in Figure 9.6.

9.6.4 RQ4 – Incremental

How doesDeltaShield compare to InfoShield? We run experiments comparing the effective-

ness and efficiency of these methods.

9.6.4.1 DeltaShield-coarse

How do the document-term graphs generated by DeltaShield-coarse compare to the ones

generated by InfoShield-coarse? The main difference between these algorithms is the ap-

proximation of tf-idf scores in DeltaShield-coarse. To measure the impact of this approxi-

mation, we compute the ARI and Homogeneity score (HOM) [RH07] between the cluster labels

produced by DeltaShield-coarse and InfoShield-coarse. A high score signifies that the

coarse clusters generated by DeltaShield-coarse are very close to the original coarse clus-

ters generated by InfoShield-coarse. We run this experiment for both HT and both Twitter

datasets, as shown in Table 9.13.

We see that all metrics are high, meaning that we do not lose much information by using

DeltaShield-coarse and proccessing ads incrementally.

9.6.4.2 DeltaShield-fine

Here we compare the effectiveness and efficiency of DeltaShield-fine. We first compare Al-

gorithm 9.5 (Naive) and Algorithm 9.6 (ES) to demonstrate that the ES method not only outper-

forms Naive one, but also dramatically decreases the running time. We then study the choice

of update frequency, which results in a trade-off between effectiveness and efficiency.

We test an extreme case with the Cluster Trafficking dataset to truly reflect the difference

between methods. The dataset is considered as a one big cluster and separated into 18 batches

where each batch contains about 2000 advertisements. Note that InfoShield-coarse is not

used in this experiment so that we can stress test DeltaShield-fine with a large number of
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Figure 9.7: DeltaShield-fine Preprocess-ES wins: (a) shows the ARI score of Preprocess-

ES remains higher compared to Preprocess-Naive over time. (b) demonstrates that run time is

highly correlated with the number of templates, and shows Preprocess-ES is much faster. (c)

and (d) show that Preprocess-ES outperforms Preprocess-Naive in terms of ARI score and run

time respectively, where each data point denotes the result from one batch.

templates. Since our goal of incremental version is to output as close to the non-incremental

one, ARI score is used as the effectiveness metric here, where the ground truth is clustering

labels generated by InfoShield-fine. It is worth noting that this extreme case will not hap-

pen if InfoShield-coarse is still implemented, meaning the ARI score is expected to be low.

Our empirical result shows that the average number of templates in one cluster generated by

InfoShield-coarse is about 3, which is largely smaller than the number in our experiment (as

shown in Figure 9.7b, it is already more than 200 after batch number 4).

ES vs. Naive The ARI scores over time are shown in Figure 9.7a, where we can find the ARI

score of the ES method is always higher than the Naive method after the second batch. As

depicted in Figure 9.7b, as the number of templates (green line) grows over time, the running

time of fitting the templates increases linearly as well. If we compute the slope by the number

of templates and running time, the slope of the Naive method is 18, while the one of the ES

method is 3, which is 6 times smaller than the Naive method. In Figure 9.7c, the ES method
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Figure 9.8: DeltaShield-fine offers strong trade-off: Even with large update frequency,

the accuracy of DeltaShield-fine remains high. (a) shows large update frequency loses ef-

fectiveness increasingly over time. (b) shows increasing the update frequency leads to a much

lower run time.

achieves a result with only 10% difference comparing to the Naive method, which is more less

a tie. In Figure 9.7d, we find that the ES method always outperforms the Naive method more

clearly in terms of run time.

Update Frequency Next, we study the trade-off between effectiveness and efficiency. We

mainly compareDeltaShield-finewith update frequency every batch and every three batches.

In Figure 9.8a, we find that as the number of incoming batches increases, the gap between two

methods increases as well. Nevertheless, the running time of updating every three batches

shown in Figure 9.8b is 1.4 times and 2.8 times faster than the one of updating every batch and

InfoShield-fine, respectively. It will substantially mitigate the expensive overhead when the

number of clusters and templates are large, which is especially important to the law enforce-

ment where every second counts for them.

We notice that the low update frequency will slightly hurt the performance. However, we

keep inmind that this experiment stress testsDeltaShield-fine, since the number of templates

in one coarse cluster is much larger than it will be if we first use DeltaShield-coarse. Alter-

natively, an end user can consider doing the recomputation of all data periodically, depending

on their idle time.

9.7 Discussion and Discoveries: InfoShield at Work

We note that InfoShield has the following advantages:
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Advantage 9.1

InfoShield is general, using no language-specific or domain specific features.

In fact, the Twitter data includes tweets in Spanish, Italian, English, and Japanese, and we use

no language-specific features in our methodology. In InfoShield-coarse, we automatically let

tf-idf penalize common words, so there is no need to include stop-words in our algorithm. Note

that the template in Table 9.10 is in Spanish, while the template in Table 9.11 is in English. This

makes our method very powerful; it can be run on text in almost any language, or on other text

data such as DNA strings.

Advantage 9.2

InfoShield is extensible: the goal of minimizing the total cost is separate from the algo-

rithms we propose to do so.

In fact, one could replace InfoShield-coarse and InfoShield-fine with similar algorithms

achieving the same end goal of pre-clustering and minimizing the total cost. We propose the

algorithms above because they are scalable, and effective on real data.

Advantage 9.3

InfoShield does not require any user-defined parameters.

By using Consensus-Search to find the optimal algorithm, we remove the need for user-defined

parameters in InfoShield-fine.

9.8 Conclusion

We presented InfoShield, which finds small clusters of near-duplicates in a collection of doc-

uments like escort ads for human trafficking detection, and visualizes the micro-clusters in a

clear manner. The main contributions of the method are that it is:

• Practical, through scalability and using the MDL principle to be parameter-free,

• Interpretable, providing a clear visualization and summarization of clusters, and

• Generalizable and independent of domain (Twitter, HT), as well as of language (English,

Spanish etc), and

• Incremental, by processing new documents on-the-fly, without having to recompute on

historical documents.
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Part III

Time Series Mining
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Overview

Given time series data, how can we detect anomalous time periods?

How can we explain why they are anomalous by their group behavior in time series?

A time series data may contain anomalies that are not entirely random. For example, in

an EEG recording, the signals during abnormal periods within a single seizure are similar to

each other, but differ from those during normal periods. This suggests that, in addition to

independent single-point outliers, anomalies can also exhibit group behavior. In this chapter,

we aim to detect anomalous periods in time series data, as well as their group behavior, in order

to explain why they are identified as anomalies.

We propose an algorithm to address this problem:

• § 10: TSAP detect sequence-level time series anomalies by optimizing hyperparameters to

generate pseudo anomalies that capture the group behavior exhibited by true anomalies.

We extend this problem to a real-world time series application:

• § 11: In seizure detection, gen
2
Out detects point-level time series anomalies by distin-

guishing groups of abnormal periods (seizures) from single-point outliers (noises).
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Chapter 10

TSAP: Self-tuning Self-supervised

Time Series Anomaly Detection

Chapter based on work that appeared at SDM 2025 [DLB
+
25] [PDF].

Time series anomaly detection (TSAD) finds many applications such as monitoring envi-

ronmental sensors, industry KPIs, patient biomarkers, etc. A two-fold challenge for TSAD

is a versatile and unsupervised model that can detect various different types of time series

anomalies (spikes, discontinuities, trend shifts, etc.) without any labeled data. Modern neu-

ral networks have outstanding ability in modeling complex time series. Self-supervised

models in particular tackle unsupervised TSAD by transforming the input via various aug-

mentations to create pseudo anomalies for training. However, their performance is sensi-

tive to the choice of augmentation, which is hard to choose in practice, while there exists

no effort in the literature on data augmentation tuning for TSAD without labels.

In this chapter, we introduce TSAP for time series anomaly “on autoPilot”, which can

(self-)tune augmentation hyperparameters end-to-end. It stands on two key components: a

differentiable augmentation architecture and an unsupervised validation loss to effectively

assess the alignment between augmentation type and anomaly type.

Case studies show TSAP’s ability to effectively select the (discrete) augmentation type

and associated (continuous) hyperparameters. In turn, it outperforms established baselines,

including the state-of-the-art self-supervised models, on diverse TSAD tasks exhibiting

different anomaly types.
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10.1 Introduction

Time series are commonly observed in the real world, such as motion sensor signals [LP11,

LHY
+
19, HLT

+
19], network traffic data [LPF10], and air quality measurements [CWL

+
18]. As

one of the most important applications of time series, anomaly detection plays a key role in

ensuring system safety and reliability, for example, by facilitating early warning [EFMN19].

Thus, there exists a large body of work on time series anomaly detection (TSAD) as presented

in various surveys [BCML22, GGAH14].

Recent progress on self-supervised learning (SSL) offers significant improvements over tra-

ditional unsupervised (or one-class) learning approaches. The main advantage of SSL lies in

its ability to self-generate labeled samples, i.e., pseudo anomalies, within the input space. This

enables a focused exploration of a plausible subspace based on the semantics reflected in the

pseudo anomalies, rather than an exhaustive, impractical search of the entire space. In SSL-

based anomaly detection, data augmentation functions are used to create pseudo labels for the

(self-)supervised training of an anomaly detector, such as by predicting whether the input is

augmented or not [LSYP21], which augmentation function is used [GE18], or using contrastive

learning [TMJS20]. In all these approaches, the success of SSL-based anomaly detection highly

depends on the degree to which the augmented data mimics the true anomalies [YZA23b].

There exist few approaches for tuning data augmentation functions without labels, however,

they have limitations. Some rely on non-differentiable validation losses [YZZA23], which are

unsuitable for end-to-end learning frameworks. Others only address continuous hyperparame-

ters, neglecting discrete ones, which are left for manual adjustment [YZA23a]. For instance, in

the image domain, the CutOut augmentation cannot mimic semantic class anomalies (e.g. cats

vs. cars), no matter how one tunes its (continuous) hyperparameters, mainly due to the mis-

match in the discrete choice (i.e., augmentation type). Moreover, none of these efforts addresses

anomaly detection for time series data, which is the focus of our work.

We introduce TSAP, a novel approach for SSL-based time series anomaly detection (TSAD)

“on autoPilot” equipped with end-to-end hyperparameter tuning. Effectively tuning both dis-

crete and continuous hyperparameters of augmentation enables TSAP to be an automated

anomaly detector that is most suitable for a given task. TSAP stands on two main components:

(i) a differentiable parameterized augmentation model and (ii) an unsupervised validation loss

that measures the alignment between the augmented data and the unlabeled test data, quanti-

fying the extent to which the former mimics the true anomalies.

We summarize our main contributions as follows:

1. Problem: Our work is the first attempt to tune both discrete and continuous hyperpa-

rameters of data augmentation in SSL-based TSAD, without labels at training time.

2. Novel TSAD Method: We propose TSAP, which accommodates various types of time

series anomaly and enables automatic tuning of related hyperparameters (magnitude,

duration, etc.) with a differentiable validation loss quantifying alignment of augmented

and unlabeled test data.

3. Effectiveness: By carefully selecting augmentation type and its hyperparameters, our

self-tuning TSAP outperforms existing unsupervised and self-supervised approaches, in-

cluding the state-of-the-art baseline which also employs learnable augmentations, across

diverse TSAD tasks.
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Figure 10.1: Our TSAP framework for end-to-end self-tuning TSAD. Left: Offline trained, dif-

ferentiable augmentation model faug(·;ϕ) takes as input the normal data and augmentation

hyperparameter(s) a, and outputs pseudo-anomalies x̃aug. Right: Self-tuning engine incor-

porates the pre-trained faug (with parameters ϕ frozen), alternating between two phases: (i)
detection phase – given a(t)

at iteration t, estimate parameters θ(t)
of detector fdet (consisting

of Encoderθ and discriminator MLPθ), by optimizing Ltrn (classification loss); (ii) alignment

phase – given f enc
det (·;θ(t)), update augmentation (governed by a) to better align the embedded

time series ztrn ∪ zaug with zval in the learned discriminative space. xval contains both normal

and anomalous time series, but labels are not known or used at any point during training time.

Reproducibility: All code and datasets used in this work are available at the following repos-

itory: https://github.com/B-Deforce/TSA-on-autoPilot.

10.2 Background

An overview of symbols and acronyms is provided in Table 10.1 and Table 10.2, respectively.

10.2.1 Time Series Anomaly Detection

This work focuses on time series anomaly detection (TSAD). Consider a univariate time series

x = {x1, x2, . . . , xK}, where x is a sequentially ordered collection of K data points. Each

xk ∈ R corresponds to a scalar observation at each time step. Then, letDtrn be a set of training

data containing only normal time series, and Dtest be a set of unlabeled test data containing

both normal and anomalous time series. The problem is defined as follows:

• Given Dtrn containing only normal time series, and Dtest containing both normal and

anomalous time series without labels.

• Predict the label yi ∈ {−1,+1} for each time series xi ∈ Dtest, where yi = +1 denotes

there is at least one anomaly in xi.
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Table 10.1: Table of Symbols and Definitions.

Symbol Definition

x Univariate time series

Dtrn Training data with only normal time series

Daug Augmented data with time series with pseudo anomalies

Dtest Testing data with both normal and anomalous time series

Dval Part of unlabeled Dtest for validation

a Set of hyperparameters for augmentation

AP
Domain of possible hyperparameter value

g(x, a) Anomaly generation scheme based on a (no parameters)

faug(x, a;ϕ) Differential data augmentation function with parameters ϕ
fdet(x;θ) Time series anomaly detector with parameters θ

Z Set of time series embeddings

Table 10.2: Table of Acronyms.

Acronym Definition

TSAD Time Series Anomaly Detection

SSL Self-Supervised Learning

AUC Area Under Curve

IF Isolation Forest

10.2.2 Self-Supervised Anomaly Detectors

Let faug(·;ϕ) be a data augmentation function, such as rotation or cut-out in the image domain

(a discrete choice), that outputs pseudo anomalies. A given faug also exhibits continuous hy-

perparameter(s), such as angle (for rotation) or width and height (for cutout). Then, a popular

approach [LSYP21] is to train a detector model fdet(·;θ) to classify between normal data Dtrn

and augmented data Daug = {faug(x) | x ∈ Dtrn}. The working assumption is for fdet to
predict the (unknown) anomalies in test data as augmented. As such, performance relies on

how well the choice of augmentation type (discrete) as well as the choice(s) of its (continuous)

hyperparameter(s) mimic the anomalies in Dtest. There are various other ways of using SSL

for anomaly detection, based on the specific objective function and how the pseudo labels are

generated [GE18, TMJS20], which are similar to each other in principle.

10.2.3 Data Augmentation on Time Series

To apply SSL to time series data, we need an augmentation function specifically designed for

time series. For a given time series x ∈ Dtrn, faug(x; a) transforms x based on hyperparameters

a ∈ AP
, P ≥ 1, where AP

represents the domain of possible hyperparameter values. For time

series data, augmentations could involve mean shifts, trend injections, or other transformations

relevant to the time-series domain, withAP
enclosing the respective hyperparameter space for

a given transformation. We describe augmentation in more detail in Section 10.3.1.

10.2.4 Wasserstein Distance

The Wasserstein distance [ACB17], a distance measure between probability distributions, of

order p between any two marginal distributions µ and ν is given as:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,y)∼γ[d(x, y)

p]

)1/p

, (10.1)

where Γ(µ, ν) is the set of joint distributions µ and ν, and d is the distance function. That

is, γ satisfies two conditions:

∫
γ(x, y)dy = µ(x) and

∫
γ(x, y)dx = ν(y). When p = 1, it
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is also known as the earth mover’s distance. We use it to measure the distance between two

distributions of embeddings, since it can effectively handle distributions that are not overlapped,

unlike KL divergence. We employ the Sinkhorn algorithm to feasibly apply the Wasserstein

distance, which approximates it efficiently via entropy regularization [Cut13].

10.3 Proposed Method: TSAP

Our problem is defined as follows:

Problem 10.1: Self-Supervised Based Time Series Anomaly Detection

GivenDtrn andDtest, find augmentation hyperparameters a∗
that generate pseudo anoma-

lies Daug such that Dtrn ∪ Daug is best aligned with Dtest, and train the anomaly detector

θ∗
using Dtrn and Daug.

There are two notable challenges that need to be addressed for automatic selection of both

discrete and continuous hyperparameters for SSL-based TSAD:

C1. Differentiable Augmentation: Developing an augmentation function that is differen-

tiable with respect to its hyperparameters, enabling gradient-based optimization.

C2. Comparable Validation Loss: Formulating a validation loss that effectively quantifies

alignment between Dtrn ∪Daug and Dtest while being comparable across different hyper-

parameter initializations.

Our framework tackles C1 and C2 with two key modules:

M1. Differentiable Augmentation Module: TSAP implements the augmentation function

as an Encoder-Decoder neural network, faug parameterized by ϕ, capable of approxi-

mating the anomaly-generating mechanism conditioned on a ∈ AP
. Importantly, this

module is pre-trained independently and prior to the initiation of M2, establishing it as

an offline component of the framework.

M2. Self-Tuning Module: At test time online, TSAP iteratively refines the detector fdet’s
parameters θ as well as augmentation hyperparameters a, through alternating detection

and alignment phases. Alignment is performed on part of the unlabeledDtest, referred to

as Dval.

Based onM1 andM2, we proposeTSAP, a self-tuning self-supervised TSAD framework demon-

strated in Figure 10.1.

10.3.1 Module 1: Differentiable Augmentation Module

Anomaly Injection Scheme We accommodate six types of anomalies that are common in

real-world time series; namely, trend, extremum, amplitude, mean shift, frequency shift, and

platform. For brevity, we illustrate them by examples in Figure 10.2 with red lines. Each

anomaly type has three hyperparameters; including its starting position (location), du-
ration (length), and severity (level) as shown in Figure 10.2. Extremum captures a spike

and only has two hyperparameters as its duration is always 1.
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Figure 10.2: Examples of six different types of time series anomalies; (black) original real-world

time series, (red) pseudo anomalies generated by g.

Based on Dtrn, the anomaly generation scheme g creates an augmented dataset Daug =
{g(xtrn; a) | xtrn ∈ Dtrn, a ∼ AP}, where a is the vector of augmentation hyperparameters,

uniformly randomly sampled from the domain AP
.

Model Design To build an augmentation model faug for time series, we use a convolutional

neural network (CNN) to encode the input time series xtrn into the feature map ztrn. We then

encode the augmentation hyperparameters a into za, which has the same shape as ztrn, with a

multilayer perceptron (MLP). Since the feature map ztrn generated by the CNN encoder keeps

the positional information of the original time series, adding za to ztrn ensures that only the

part with the desired location and length in zaug is manipulated. To ensure that the

feature maps zaug and ztrn are in the same embedding space, they share the same decoder to

reconstruct back to the time series xaug = g(xtrn; a) and xtrn, respectively. As such, the loss

function of faug is based on the reconstruction of both Dtrn and Daug:

Laug =
∑

xtrn∈Dtrn

a∼AP

(
(xtrn − x̃trn)

2 + (g(xtrn, a)− x̃aug)
2)

(10.2)

where x̃aug is the output of faug(xtrn; a) for the hyperparameters sampled by g (Figure 10.1 left).

10.3.2 Module 2: Self-Tuning Module

Central to TSAP is the self-tuning module, which operates by iteratively refining the detec-

tor’s parameters, θ, and the augmentation hyperparameters, a. The process is structured into

two phases: detection and alignment (see Figure 10.1 right). The overall algorithm is given in

Algorithm 10.1.
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Algorithm 10.1: Self-Tuning Module of TSAP

Data: Train & val. data Dtrn& Dval, pre-trained augmentation model faug(·;ϕ),
detector fdet(·;θ), max epoch T , #inner-loops L, and step sizes α and β

Result: Optimized augmentation hyperparameters a∗
and optimized parameters θ∗

1 a(0) ∼ Uniform(AP );
2 for t = 0, 1, . . . , T − 1 do

/* Phase (i) */
3 for l = 0, 1, . . . , L− 1 do
4 θ′ ← θ − α∇θLtrn(θ, a

(t));
5 end

6 Ztrn ← {f enc
det (x) | x ∈ Dtrn} ; // Phase (ii) starts

7 Zaug ← {f enc
det (faug(x, a

(t))) | x ∈ Dtrn};
8 Zval ← {f enc

det (x) | x ∈ Dval};
9 Ztrn,Zaug,Zval ← norm.(Ztrn,Zaug,Zval);

10 a(t+1) ← a(t) − β∇aLval(Ztrn,Zaug,Zval);
11 θ ← θ′

; // Phase (ii) ends

12 if L(t)
val < L∗

val then

13 a∗ ← a(t+1)
; θ∗ ← θ;

14 end

15 end

16 Return a∗
and θ∗

;

Phase (i): Detection This phase focuses on estimating the parameters θ(t)
of the detector

fdet (comprising of an encoder f enc
det and a discriminator fmlp

det ) by minimizing the cross-entropy

loss Ltrn. This aims to classify between the normal samples xtrn and the augmented pseudo

anomalies x̃aug by their embeddings Ztrn and Zaug, where Ztrn = {f enc
det (x) | x ∈ Dtrn} and

Zaug = {f enc
det (faug(x; a

(t))) | x ∈ Dtrn} denote the embeddings of the training data and aug-

mented data, respectively, given the current fixed a(t)
at iteration t. Note that the parameters

ϕ of the augmentation model faug are frozen throughout this phase.

Phase (ii): Alignment Subsequently, the alignment phase adjusts a to optimize the unsu-

pervised differentiable validation loss Lval, computed based on the embeddings from the now-

updated f enc
det . Lval’s objective is to measure the degree of alignment between Dtrn ∪ Daug and

Dval in the embedding space, as expressed by the Wasserstein distance in Equation (10.1). This

metric is chosen for its effectiveness in capturing the overall distributional discrepancies be-

tween datasets, offering a more complete comparison than mere point-wise metrics [ACB17],

which is especially important in TSAD given the often subtle nature of time series anomalies.

The embeddings are normalized to ensure scale invariance before being passed to Lval, so as to

avoid the trivial solution of achieving alignment by setting all embeddings to the zero vector

[YZA23a]. Lastly, as the embeddings {Ztrn,Zaug,Zval} in Lval are obtained through the up-

dated f enc
det , the optimization process needs to track the change in θ caused by the update of a.

As such, TSAP uses a second-order optimization process, similar to [YZA23a].
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Augmentation Type Selection While Algorithm 10.1 describes continuous hyperparame-

ter tuning, the discrete hyperparameter (i.e. augmentation type) selection, corresponding to a

specific anomaly type, is done through grid search as the number of anomaly types is finite.

Hence, we initialize TSAP for different augmentation types and compare Lval across types to

select the one that yields the best alignment. The idea is that the wrong augmentation type

will have poor alignment, while one that reflects the true anomalies inDtest will result in better

alignment, granted proper tuning of the continuous hyperparameters through Algorithm 10.1.

10.4 Experiments

In this section, we aim to answer the following questions:

RQ1. Quantitative Comparison: How well does TSAP perform on TSAD against baselines?

RQ2. Qualitative Analysis: How well does TSAP tune the augmentation hyperparameters?

RQ3. Ablation Studies: Which design decisions in TSAP drive its effectiveness?

Datasets We evaluate TSAP on six distinct TSAD tasks. Four of these are conducted in a

controlled environment, while the remaining two are natural. In the controlled setting, the

anomaly types are manually injected in Dtest based on the types discussed in Section 10.3.1.

The controlled environment allows for a thorough assessment of TSAP’s ability to perform

continuous hyperparameter tuning. For the natural environment, the anomaly types in Dtest

are a priori unknown and it is the goal of TSAP to find the type that yields best alignment

between Dtrn ∪ Daug and Dval (part of Dtest), expressed by Lval.

For controlled tasks, we use the 2017 PhysioNet Challenge dataset [CLM
+
17], which com-

prises real-world ECG recordings. Table 10.3 shows a selection of four different controlled

TSAD tasks, constructed by manually injecting different anomaly profiles into the PhysioNet

dataset. For PhysioNet A and B, given the anomaly type (Platform), the task is to infer or

tune, respectively, the hyperparameter(s) level only and both level and length, while
anomaly location is random (hence not tuned). For PhysioNet C and D, the respective tuning

tasks are the same but for a different anomaly type (Trend). We choose Platform and Trend

anomalies to represent, respectively, range-bound and range-exceeding anomalies.

The natural TSAD tasks are derived from the CMU Motion Capture (MoCap) dataset
∗
. We

consider the walking signal as normal data, and the signals of jumping and running as anoma-

lies. To generate normal signals, we stitch the walking signals by identifying the start and end

points of each gait phase and add random noise; whereas to generate anomalous ones, we stitch

walking or running signals at a random location in the normal signal. This yields two distinct

TSAD tasks as shown in Table 10.3. Different from PhysioNet A–D where we only tune the

continuous hyperparameter(s) for the given (discrete) anomaly type, here for MoCap A and

B, we aim to tune both the unknown anomaly type that corresponds to Jump and Run behav-

ior, respectively, as well as the (continuous) hyperparameter level while location and

length take random values.

∗
http://mocap.cs.cmu.edu/
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Table 10.3: Anomaly profile of different TSAD tasks.

Dataset Type Level Location Length

P
h
y
s
i
o
N
e
t PhysioNet A Platform Fixed Random Random

PhysioNet B Platform Fixed Random Fixed

PhysioNet C Trend Fixed Random Random

PhysioNet D Trend Fixed Random Fixed

M
o
C
a
p

MoCap A Jump Fixed Random Random

MoCap B Run Fixed Random Random

Baselines We compare TSAP with a selection of established baselines, including traditional

and deep learning-based methods with demonstrated efficacy in TSAD [SWP22]. The tradi-

tional methods consist of different modeling approaches; namely, One-Class Support Vector

Machines (OC-SVM) [SWS
+
99]; Local Outlier Factor (LOF)[BKNS00]; (ARIMA) [BJRL15]; Iso-

lation Forest (IF) [LTZ08]; and the Matrix Profile (MP) [YZU
+
16]. On the deep learning side,

we benchmark against the Encoder-Decoder LSTM (EncDec-LSTM) [MRA
+
16]; the Spectral

Residual Convolutional Neural Network (SR-CNN) [RXW
+
19]; the UnsupervisedAnomalyDe-

tection (USAD) for TSAD [AMG
+
20]; and a recent time series foundation model (TimeGPT)

[GC23]. Lastly, we include a state-of-the-art competing method which learns augmentations

in the embedding space, called Neural Transformation Learning for (TS)AD (NeuTraL-AD)

[QPK
+
21]. This diverse set of baselines allows for a comprehensive analysis across different

approaches within the TSAD domain.

Model Configurations The Encoderϕ in faug and Encoderθ in fdet are constructed using 1D
CNN blocks [BKK18] (transposed 1D CNN for Decoderϕ) for efficient temporal feature extrac-

tion. W e choose the number of epochs T to allow sufficient time for the convergence of a, with
empirical evidence suggesting that T = 100 typically suffices. For the number of inner-loops

L, we set L = 5, aligned with [YZA23a], such that fdet has adequate time to learn effective

discriminative embeddings for Daug and Dtrn.

Evaluation Metrics Our method calculates anomaly scores on an entire sequence level x,
similar to [QPK

+
21]. This is a different set-up compared to novelty detection in time series

which typically operates on a point level. Detection on a sequence level can be especially im-

portant to spot long-term patterns (e.g. Trend anomalies). As such, we use the F1 score and the

Area Under the Receiver Operating Characteristic Curve (AUROC) as key performance metrics

to quantify detection capability of anomalous sequences. All results are reported on the unseen

Dtest. We determine the optimal F1 score, by enumerating all possible thresholds, given by

the anomaly scores for a given segment x. We then compute the corresponding precision and

recall for each threshold and select those that yield the highest F1. As such, AUROC provides

a balanced view whereas F1 shows the optimal scenario. Both metrics range from 0 to 1, with

higher values indicating superior performance.
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Table 10.4: TSAP outperforms most baselines and has the best (lowest) average rank w.r.t.

both F1 and AUROC, with low standard deviation (in parentheses). Detection peformance of

baselines w.r.t. F1 and AUROC on test data across six TSAD tasks. Four tasks are performed in a

controlled setting (manually injected anomaly type, cf. Section 10.3.1), based on the PhysioNet

ECG data. Remaining two TSAD tasks exhibit natural anomalies (unknown real-world anomaly

type), based on the MoCap data. Green ( , ) marks the top two.

Methods

PhysioNet A PhysioNet B PhysioNet C PhysioNet D MoCap A MoCap B Avg. Rank

F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC

OC-SVM 0.182 0.468 0.182 0.472 0.373 0.803 0.393 0.806 1.000 1.000 0.546 0.806 7.2 (3.7) 6.8 (3.3)

LOF 0.999 1.000 0.999 1.000 0.354 0.738 0.358 0.725 0.196 0.506 0.221 0.577 6.8 (3.9) 6.5 (4.4)

ARIMA 0.885 0.960 0.829 0.965 0.991 0.999 0.999 0.999 0.870 0.955 0.225 0.537 4.3 (3.2) 4.7 (3.7)

IF 0.255 0.587 0.232 0.576 0.183 0.402 0.182 0.356 0.864 0.965 0.342 0.758 8.8 (1.7) 8.7 (1.9)

MP 0.812 0.743 0.812 0.744 0.280 0.712 0.284 0.734 1.000 1.000 1.000 1.000 5.0 (3.6) 4.8 (3.4)

EncDec-LSTM 0.190 0.508 0.190 0.508 0.415 0.812 0.442 0.819 0.980 0.999 0.909 0.996 6.5 (2.0) 6.7 (1.9)

SR-CNN 0.965 0.990 0.964 0.998 0.983 0.999 0.991 0.999 0.302 0.700 0.214 0.512 5.2 (4.2) 4.8 (4.5)

USAD 0.183 0.425 0.184 0.428 0.430 0.822 0.409 0.828 1.000 1.000 1.000 1.000 5.5 (4.0) 5.7 (4.5)

NeuTraL-AD 0.211 0.732 0.263 0.679 0.561 0.868 0.526 0.862 1.000 1.000 1.000 1.000 4.2 (2.9) 3.8 (2.5)

TimeGPT 0.327 0.714 0.318 0.711 0.218 0.580 0.217 0.525 0.348 0.743 0.385 0.683 8.0 (1.9) 8.3 (1.6)

TSAP (ours) 1.000 1.000 1.000 1.000 0.973 0.999 0.991 0.998 0.889 0.969 1.000 1.000 2.3 (2.0) 2.2 (2.0)

10.4.1 RQ1 – Quantitative Results

Table 10.4 provides the detection results for all six TSAD tasks. TSAP ranks the best overall in

terms of both F1 and AUROC. This shows that detector fdet(·;θ∗), trained through the alter-

nating mechanism of TSAP, is able to generalize to unseen and unlabeled anomalies in Dtest.

While some competingmethods perform strongly on a subset of tasks, they lack consistency

across all TSAD tasks. Among the traditional baselines, which perform subpar as compared to

deep TSAD approaches, LOF performs very well in PhysioNet A and B, relatively poorly on C

and D, but exhibits near-random performance on MoCap. This discrepancy can be attributed to

the nature of the anomalies in the PhysioNet data, which are manually injected and often char-

acterized by pronounced and abrupt changes as shown in Figure 10.2. These abrupt changes

lead to large differences in local density, which makes LOF thrive. In contrast, the MoCap

dataset contains anomalies that emerge more subtly, as one gradually transitions from walking

to running or jumping, reflectingmore natural variations in the datawhich, in turn, lead tomore

subtle differences in local density. Similarly, SR-CNN and ARIMA perform strongly on the Phy-

sioNet TSAD tasks, yet their effectiveness diminishes on MoCap tasks. Both methods exploit

the abrupt changes present in the PhysioNet data but fail to detect the more subtle anomalies

in MoCap B. This suggests that, while these methods work well for certain types of anomalies,

their utility may be limited in scenarios where anomalies are more subtle. On the contrary,

reconstruction-based baselines such as EncDec-LSTM and USAD face challenges on PhysioNet

due to its high variability among inliers, which complicates the task of accurate data recon-

struction. Yet, these methods excel with the MoCap dataset, where its consistent near-periodic

pattern (Figure 10.2, bottom) lends itself to more reliable reconstruction, thereby enhancing

anomaly detection performance. Similarly, MP struggles with the noisy PhysioNet data but

excels at discord discovery in MoCap. Finally, NeuTraL-AD, a state-of-the-art augmentation-

based baseline, demonstrates proficiency in properly augmenting the inlier data within MoCap.

However, its performance on the PhysioNet variations reveals some weaknesses. NeuTraL-AD
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Figure 10.3: TSAP find true continuous augmentation hyperparameter(s). Top: Given

Platform anomalies at truelevel (red dashed line), various initializations converge accurately

near the true value (left), following the minimized values of val. loss (center), and leading to

high detection performance (right). Bottom: Multiple continuous hyperparameters, here both

level and length, are accurately tuned to near true values (left), as guided by minimizing

the val. loss (center), achieving high AUROC (right). Notice that the diverged results in both

cases associate with high (or hard-to-optimize) val. loss, which help us effectively reject low

performance models.

struggles with the high variability in the PhysioNet inliers, inherent to real-world ECG sig-

nals. This suggests that the augmentation functions considered in NeuTraL-AD lack robustness

when inliers are inherently noisy. We remark that only TSAP provides robust and consistent

performance across all TSAD tasks, showcasing the effectiveness and generalizability of TSAP.

10.4.2 RQ2 – Qualitative Results

A key contributor to TSAP’s consistent performance is the validation loss through which TSAP

automatically learns the augmentation hyperparameters a. Once a is determined, the task es-

sentially reduces to a supervised learning problem. Next, we show that TSAP not only effec-

tively tunes the continuous augmentation hyperparameters a, but also that its validation loss

guides the accurate selection of the discrete hyperparameter (i.e. anomaly type).

Controlled Environment Consider PhysioNet A, where we aim to tune the continuous hy-

perparameter a, i.e. level, of the Platform anomalies present in Dtest. That is, the level in

Dtest is fixed and tuning aims to estimate its value using TSAPwhile the other hyperparameters

(location, length) are randomized. Figure 10.3 (top) shows TSAP’s estimation process

for different initializations of a. We observe that the initialization for a ∈ {−0.4, 0.6} leads
to the true a=0.2 (left). Simultaneously, the validation loss drops substantially once TSAP has

arrived at the true a (center). This is also reflected in the performance of fdet on Dval which

soars upon estimation of the true a (right). Conversely, the initialization for a ∈ {0.8,−0.8}
leads to a high validation loss, indicating poor alignment betweenDtrn∪Daug andDval. Indeed,

the performance of fdet on Dval now suffers from poor alignment.
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Figure 10.4: TSAP finds true discrete hyperparameter (anomaly type). Left: Given true

Trend anomaly (black), val. loss favors both Trend (green) and Mean shift (blue) type, both

with high AUROC (center) and high resemblance (right), and effectively rejects type Platform

(orange) with poor performance. Right: For Jump anomalies in MoCap A with unknown type

(black), val. loss favors type Platform (purple) that leads to high AUROC (center) and mimics

well the true anomaly (right), and rejects type Frequency (red) with poor performance.

For PhysioNet B, we estimate both level and length while location is random-

ized. Figure 10.3 (bottom) demonstrates TSAP’s ability to accurately estimate the level and

length. While this is a by-product of our method, there are several real-world use-cases

that can directly benefit from accurately learning the anomaly profile, from industrial equip-

ment monitoring, to network security, and healthcare monitoring. This demonstrates TSAP’s

versatility given its capability of estimating continuous hyperparameters.

Figure 10.4 (left) showcases TSAP’s ability to perform discrete hyperparameter selection.

TSAP has been initialized and trained with three different anomaly types (Mean shift, Platform,

Trend) on PhysioNet C (true anomaly type is Trend). The validation loss clearly showcases a

misalignment between the Platform and Trend types (top), also reflected in the AUROC of fdet
on Dval (center). Note how the Mean shift anomaly type has a low Lval towards the end of the

training epochs, which is also reflected in the AUROC on Dval. Indeed, comparing TSAP tuned
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Figure 10.5: Overview of ablation studies. Top: TSAP’s Lval is replaced by a point-wise val. loss

leading to an erroneous estimation of a (left) and poor performance (right). Bottom: TSAP’s

self-tuning module is disabled, a is now randomized. Val. loss indicates poor alignment, re-

flected in poor performance.

for Mean shift anomalies and for Trend anomalies show strong resemblances with the true

underlying anomaly type (bottom). This shows that the true underlying anomaly type is not

necessarily the only type that yields high alignment, and in turn a high-performing detector.

Natural Environment InMoCap datasets, the anomaly types are a priori unknown. As such,

we initialize TSAPwith different augmentation types (Frequency and Platform) to perform dis-

crete hyperparameter selection. Figure 10.4 (right) highlights its effectiveness as the validation

loss clearly prefers one type over the other. Indeed, the natural anomalies defined by jumping

signals in MoCap A have close resemblance to platform anomalies.

10.4.3 RQ3 – Ablation Studies

Validation Loss In Figure 10.5 (top), we illustrate the level estimation for PhysioNet C

under the condition where our Wasserstein-based Lval is substituted with a point-wise metric,

as used in [YZA23a]. This comparison shows that a point-wise validation loss tends to favor

solutions where thelevel of the Trend anomaly approximates zero, neutralizing the anomaly.

Although this might produce high alignment, it leads to poor fdet performance in Dval (right).

This shows that the distributional characteristics captured by our Lval are a key contributing

factor to the success of TSAP.

175



Randomization vs. Tuning In Figure 10.5 (bottom), the self-tuning module is disabled for

PhysioNet C, wherelevel is instead randomized (alongwithlocation, andlength). We

observe substantially higherLval, indicating poor alignment. In turn, fdet struggles to detect the
unlabeled anomalies in Dval. This showcases the utility of TSAP’s systematic hyperparameter

(self-) tuning over random choice.

10.5 Related Work

10.5.1 SSL for Anomaly Detection

SSL has emerged as a significant approach in machine learning. Foundation models [BHA
+
21]

like large language models (LLMs) [Ope23, RPG
+
21], whose training heavily relies on SSL, have

shaken up the world with outstanding performance. Time series tasks such as forecasting can

also benefit from pre-trained LLMs [AST
+
24]. SSL has also transformed representation learn-

ing and significantly boosted several tasks in NLP, computer vision, recommender systems and

medicine [SDS
+
21, BHX

+
22, KRT22]. SSL is especially attractive for unsupervised problems

like anomaly detection [HHA24], because of its nature to create proxy tasks and loss func-

tions without any labels. There are various types of SSL-based methods on anomaly detection

[LZH
+
23], but the core idea is to use data augmentation functions [CSL21, GE18, LSYP21] on

inliers to create pseudo anomalies, and learn a classifier that can detect the pseudo anomalies.

10.5.2 Time Series Anomaly Detection

There exists a large body of work on TSAD, for which we refer to surveys [BCML22, GGAH14].

SSL has been studied as the main approach to address TSAD problems [WSY
+
21, ZWZ

+
24].

BeatGAN [ZLH
+
19] and RobustTAD [GSW

+
20] use data augmentation to enrich training data.

COUTA [XWJ
+
24] proposes three different augmentations, respectively mimicking local, con-

textual and collective anomalies. NeuTraL-AD [QPK
+
21] propose several augmentation func-

tions that are an integral part of the learning process. AMSL [ZWC
+
23] also uses signal trans-

formations as data augmentation. TimeAutoAD [JYST22] employs three different strategies

to augment the training data for generating pseudo anomalies. Motivated by masked lan-

guage models [DCLT19], MAD [FX22] investigated various masking procedures for multivari-

ate TSAD based on a predictive pretext task. Note that only [JYST22, QPK
+
21] parameterize

the augmentation procedures, but they tune those using labeled validation data.

10.5.3 Unsupervised Model Selection

Unsupervised hyperparameter tuning (i.e. model selection) is non-trivial in anomaly detection

due to the absence of labeled data [MZZA23], and the literature is slim with quite recent efforts

[ZA22, DZA24, ZRA21, ZZA22]. Specifically on SSL-based anomaly detection, a recent study

[YZA23b] has revealed the impact of the choice of augmentation on SSL-based AD, leading to

several works that aim to automatically search for the optimal choice [YZA23a, YZZA23]. How-

ever, none of the existing works addressed the model selection problem of SSL-based anomaly

detection for time series data.
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10.6 Conclusion

We introduced TSAP for self-supervised time series anomaly detection, which is the first at-

tempt that automatically (self-)tunes the augmentation hyperparameters on time series data in

an unsupervisedmanner. TSAP includes a differentiable model to augment the input time series

data with various anomaly types, and an unsupervised validation loss that assists in aligning

the augmented and test data.

Experiments show TSAP’s ability in effectively selecting the augmentation type along with

its continuous hyperparameters. Across various datasets with different types of time series

anomalies, TSAP outperformed a diverse list of baselines, including modern neural and self-

supervised approaches. While being the first self-tuning SSL solution to TSAD, our work opens

new research directions. For instance, future extensions of TSAP could include an expanded

catalog of supported anomaly types, broadening its applicability. Additionally, TSAP could be

enhanced to deal withmultiple different anomaly types within a given dataset, further strength-

ening its robustness. There is also potential to test the framework on various other datasets from

different domains. Moreover, these ideas could be expanded to multivariate time series data,

allowing TSAP to tackle more complex temporal relationships and dependencies effectively.
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Chapter 11

gen
2
Out: Detecting and Ranking

Generalized Anomalies – Seizure

Detection in EEG Recordings

Chapter based on work that appeared at Big Data 2021 [LSF
+
21] [PDF].

In a cloud of m-dimensional data points, how would we spot, as well as rank, both single-

point- as well as group- anomalies? We are the first to generalize anomaly detection in

two dimensions: The first dimension is that we handle both point-anomalies, as well as

group-anomalies, under a unified view – we shall refer to them as generalized anomalies.

The second dimension is that gen
2
Out not only detects, but also ranks, anomalies in sus-

piciousness order. Detection, and ranking, of anomalies has numerous applications: For

example, in EEG recordings of an epileptic patient, an anomaly may indicate a seizure; in

computer network traffic data, it may signify a power failure, or a DoS/DDoS attack.

We start by setting some reasonable axioms; surprisingly, none of the earlier methods

pass all the axioms. Ourmain contribution is the gen
2
Out algorithm, that has the following

desirable properties: (a) Principled and Sound anomaly scoring that obeys the axioms for

detectors, (b) Doubly-General in that it detects, as well as ranks generalized anomal – both

point- and group-anomalies, (c) Scalable, it is fast and scalable, linear on input size. (d)

Effective, experiments on real-world epileptic recordings (200 GB) demonstrate effectiveness

of gen
2
Out as confirmed by clinicians.

Experiments on 27 real-world benchmark datasets show that gen
2
Out detects ground

truth groups, matches or outperforms point-anomaly baseline algorithms on accuracy, with

no competition for group-anomalies and requires about 2 minutes for 1 million data point

on a stock machine.
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11.1 Introduction

How would we spot and rank single-point- as well as group-anomalies? How can we draw at-

tention of the clinician to strange brain activities in multivariate EEG recordings of an epileptic

patient? How could we design an anomaly score function, so that it assigns intuitive scores to

both point-, as well as group-anomalies? Our goal is to design a principled and fast anomaly

detection algorithm for a given cloud ofm-dimensional point-cloud data that provides a unified

view as well as a scoring function for each generalized anomaly. This has numerous applica-

tions (intrusion detection in computer networks, automobile traffic analysis, outlier
∗
detection

in a collection of feature vectors from, say, medical images, or twitter users, or DNA strings,

and more).

Ourmotivating application is seizure detection in EEG recordings [KLF
+
17, PSLF24]. Specif-

ically, we want to spot those parts of the brain, and those time-ticks, that a seizure happened.

Epilepsy is a neurodegenerative disease that affects 1-2% of the world’s population and is char-

acterized by recurrent seizures that intermittently disrupt the normal function of the brain

through paroxysmal electrical discharges [Sho09]. At least 30% of patients with medically re-

fractory epilepsy are resistant to the mainstay treatment by anti-epileptic drugs (AEDs). These

patients may benefit from surgical therapy. A significant challenge of this therapy is identifi-

cation of the region of the brain where seizures are originating, that is, the epileptogenic focus

[KVW
+
15, VKT

+
17]. This region is then surgically either resected or electrically stimulated

over time to control upcoming seizures long prior to their occurrence [TI06, CSTI09, HPPI18].

Accurate identification of the epileptogenic focus, as well as providing explanations to clini-

cians [NMN
+
23], is therefore crucial for effective epilepsy treatment.

As suggested by the application domain, to achieve better outcomes for patients, it is critical

to direct attention of the clinician to the anomalous time periods in the brain activity in order of

their suspiciousness. The problem is two-fold: (a) detection, as well as (b) ranking of generalized

anomalies. Wewant a scoring function for generalized anomalies, such that in the EEG/epilepsy

setting it would score the groups which may correspond to anomalous periods e.g. seizure

and draw attention to most anomalous time periods; thus aiding a domain expert in decision

making. As we show in Section 11.3.1, we propose some intuitive axioms, that a generalized

anomaly detector should obey.

Informal Problem 11.1: Doubly-General Anomaly Problem

• Given a point-cloud dataset from an application setting,

• Find the point-anomalies and group anomalies, and

• Rank them in suspiciousness order.

Generality of Approach In most machine learning (ML) algorithms, we operate on clouds

of points (after embedding, after auto-encoding etc). For example, time series is transformed

∗
We use outlier and anomaly interchangeably in this work.
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Correctly detected seizures

(a) EEG data

(b) Heatmap of http data (c) Detected group anomalies

Figure 11.1: gen
2
Out is effective. (a) gen

2
Outmatches ground truth. Brain scan of the

patient with electrode positions (left), and detected groups shown in color red (right), that

matches the ground truth seizure locations. (b) Heatmap of http intrusion detection dataset. (c)

gen
2
Out correctly spots group (DDoS) attacks in the intrusion detection dataset, marked

GA1, GA2 and GA3.

into some form of m−dimensional cloud [BCML22] for further analysis; in images, numerical

features are generated for learning tasks e.g. Imagenet [KSH12]. Thus, the proposed approach

can be applied to diverse real data including point cloud, time-series and image data.

We propose gen
2
Out, which has the following properties:

• Principled and Sound: We identify five axioms (Section 11.3.1) and show that the pro-

posed gen
2
Out obeys them, in contrast to top competitors.

• Doubly-General: gen
2
Out is doubly general. First dimension of generalization is size of

anomalies – detecting point- and group-anomalies. Second dimension of generalization

is scoring and ranking of generalized anomalies – both point- and group-anomalies.

• Scalable: Linear on the input size (Figure 11.9).

• Effective: Applied on real-world data (Figure 11.1 and 11.7), gen
2
Outwins in most cases

over benchmark datasets for point anomaly detection. For group anomaly detection,

gen
2
Out has no competitors as they need group structure information, and it agrees

with ground truth on seizure detection.

Figure 11.1 illustrates the effectiveness of gen
2
Out, which detects group anomalies that corre-

spond to seizure period in the patient; and, detects DoS/DDoS attack as group anomalies.
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Table 11.1: gen
2
Outmatches all the specs. Qualitative comparison of gen

2
Out against top

competitors showing that every competitor misses one or more features.

Property

Method

L
O
D
A
[
P
e
v
1
6
]

R
R
C
F
[
G
M
R
S
1
6
]

I
F
[
L
T
Z
0
8
]

O
C
S
M
M

[
M
S
1
3
]

A
A
E
-
V
A
E
[
C
T
C
1
8
]

M
G
M

[
X
P
S
+
1
1
]

G
L
A
D
[
Y
H
L
1
5
]

g
e
n
2
O
u
t

Obey Axioms (Section 11.3.1) ? ? ? ? "

Discover Point Anomalies " " " "

Rank Point Anomalies " " " "

Discover Group Anomalies ? "

Rank Group Anomalies " " " " "

Jointly Rank Point- and Group- Anomalies "

Scalable " ? " ? " ? ? "

Reproducibility: Our source code and public datasets are at https://github.com/m
engchillee/gen2Out.

11.2 Background and Related Work

Anomaly detection is a well-studied problem. Recent works [CBK09, GGAH14, Agg13, TC18,

BZA21] provide a detailed review of many methods for anomaly and outlier detection. As

shown in Table 11.1, gen
2
Out is the only method that matches the specs. Here, we review

anomaly detection methods for point- and group-anomalies.

11.2.1 Point Anomaly Detection

Model-based and density-based methods for outlier detection are quite popular for point cloud

data. Principal component analysis (PCA) based detectors [SCSC03] assume that the data fol-

lows a multi-variate normal distribution. Local outlier factor (LOF) [BKNS00] flags instances

that lie in low-density regions. Clustering based methods [HXD03] score instances or small

clusters by their distance to large clusters. However, these methods suffer from too many false

positives as they are not optimized for detection [LTZ12]. Recently, a surge of focus has been

on ensemble-based detectors that have been shown to outperform base detectors and are con-

sidered state-of-the-art for outlier detection [EDD
+
15]. Isolation forest [LTZ08] (IF), a state-

of-the-art ensemble technique, builds a set of randomized trees that allows approximating the

density of instances in a random feature subspace. [EDD
+
15] show that IF significantly out-

performs other detectors such as LOF. IF shows that LOF has a high computation complexity

(quadratic) and does not scale for large datasets. After that two more methods LODA [Pev16]
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Figure 11.2: Illustration of Axioms

and Random Cut Forests (RRCF) [GMRS16] have been proposed as state-of-the-art methods.

LODA is projection-based histogram ensemble that works well in many real settings. RRCF

improves upon IF and use a data sketch that preserves pairwise distances.

11.2.2 Group Anomaly Detection

Numerous methods have been proposed for group anomaly detection [XPS
+
11, MS13, YHL15,

CTC18]. Earlier approaches [MS13, CTC18, XPS
+
11] require the group memberships of the

points known apriori, while Yu et al. [YHL15] requires information on pairwise relations among

data points. Moreover, these methods focus only on scoring group-anomalies, and ignore point-

anomalies unlike our method. gen
2
Out detects and ranks anomalous points and groups, with-

out requiring additional information on group structure of the dataset. Asmentioned above, Ta-

ble 11.1 summarizes comparison of gen
2
Out against state-of-the-art point and group anomaly

detection methods. As such none of the methods has all the features of Table 11.1 .

11.2.3 Fractals and Multifractals

In order to stress test our method, we use self-similar (fractals) clouds of points. We created

the fractal images (Sierpinski triangle, biased line and ‘fern’ etc.), using the method and the

code from Barnsley and Sloan [BS88]. We used the ‘uniform’ version (that is, for the Sierpinski

triangle, all the miniature versions have the same weight of 1/3), also generated the ‘biased’

version of triangle using weights (0.6, 0.3, 0.1), and ‘biased line’ with bias b = 0.8 using weights
(0.8, 0.2) that is b of the data points go to the first half of the line, and in this half, b of the data
points go to first quarter of the line, and so on recursively (this, informally, is the 80-20 law).

11.3 Proposed Axioms and Insights

In this section, we explain our proposed axioms in detail and provide insights. An overview of

symbols and acronyms is provided in Table 11.2 and Table 11.3, respectively. It is worth noting

that these axioms are proposed to examine whether an anomaly detector is provided with the

ability to compare the scores across datasets. The assumption is that, there are two different

datasets with the same application setting. Although some of the axioms seem to be popular in

single dataset setting, they are not considered and even ever mentioned by other studies when
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there is more than one dataset. The observed insights are critical and penetrate this research.

These greatly inspire us on selecting the core part of our anomaly detector.

11.3.1 Proposed Axioms

We propose five axioms an ideal anomaly detector should follow: producing higher anomaly

scores when an instance is farther away from data kernel (distance aware), or lies in low den-

sity locality (density, radius and group aware), and not aligned with majority of data (angle

aware [KSZ08]). In the following, let a ∈ Rm
and b ∈ Rm

be m-dimensional anomalies in

point cloud datasets Sa and Sb respectively. Additionally, suppose that normal observations are

distributed uniformly in a disc in the datasets as shown in Figure 11.2 and s(.) is the generalized
anomaly score function.

Axiom 11.1: Distance Aware

All else being equal, the farther point from the normal observations is more anomalous.

Sa − {a} = Sb − {b},
dist(a, Sa) > dist(b, Sb)

}
=⇒ s(a) > s(b) (11.1)

Axiom 11.2: Density Aware

All else being equal, denser the cluster of points, more anomalous the outlier.

dist(a, Sa) = dist(b, Sb),
density(Sa) > density(Sb)

}
=⇒ s(a) > s(b) (11.2)

Axiom 11.3: Radius Aware

All else being equal, for a given number of observations, smaller the radius of the cluster of

points, more anomalous the outlier.

|Sa| = |Sb|,
dist(a, Sa) = dist(b, Sb),
radius(Sa) < radius(Sb)

 =⇒ s(a) > s(b) (11.3)

184



Axiom 11.4: Angle Aware

All else being equal, smaller the angle of a point with respect to cluster of observation, more

anomalous the outlier.

|Sa| = |Sb|,
density(Sa) = density(Sb),
radius(Sa) = radius(Sb),
angle(a, Sa) < angle(b, Sb)

 =⇒ s(a) > s(b) (11.4)

Axiom 11.5: Group-Size Aware

All else being equal, the least populous group, the more anomalous it is. Let ga ⊂ Sa, gb ⊂ Sb

are the groups.

|ga| < |gb|,
|Sa − ga| = |Sb − gb|,
density(Sa) = density(Sb),
radius(Sa) = radius(Sb)

 =⇒ s(ga) > s(gb) (11.5)

Justification for Axioms AxiomA1 is self explanatory as shown in Figure 11.2a. The outlier

point (shown in color red) in the left dataset (Figure 11.2a) being farther from the normal obser-

vations should be more anomalous. Consider the case of social networks. A node reachable via

k hops from a close friends group should be more anomalous compared to reachable via k hops

from a colleagues group. Figure 11.2b illustrates Axiom A2 where the outlier in the left dataset

should be more anomalous. As shown in Figure 11.2c, for the same number of observations,

the larger radius cluster would have a larger distance among points. Therefore, the outlier in

the left dataset with smaller radius should be more anomalous. The farther points would tend

to form a smaller angle with the cluster of observations (see Figure 11.2d) and should be more

anomalous in the left dataset. The group ga = {a} consisting of one point Figure 11.2e is in-

tuitively more anomalous compared to group gb = {b, b′} containing more data points. For

example, if gb has 1000 points, it is not an anomaly anymore.

11.3.2 Insights

In this section, we are given the observations X = {x1, . . . ,xn} where xi ∈ Rm
for the

anomaly detection. Our goal is to design an anomaly detector that obeys the axioms proposed

in Section 11.3.1. The intuition for the selection of basic model is that, according to the five

axioms in Figure 11.2, point ‘a’ in the first dataset should always have higher probability to be

separated out comparing the point ‘b’ in the second dataset. atomicTree has the properties

which are very close to our demand. Here, we consider a randomized tree atomicTree data
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Ideal

Figure 11.3: gen
2
Out wins (in color blue) as the estimated depth is close to 45o line. IF esti-

mates the same depth for each dataset with #samples=1M.

structure with the following properties – (i) Each node in the tree is either leaf node, or an

internal node with two children, (ii) internal nodes store an attribute-value pair and dictate

tree traversal. Given X = {x1, . . . ,xn}, atomicTree is grown through recursive division of

X by randomly selecting an attribute and a split value until all the leaf nodes contain exactly

one instance (hence the name atomicTree) of observations assuming that observations are

distinct. We randomly generate more than one tree to build a forest, to reduce the variance and

detect outliers in subspaces.

We make a number of interesting observations while empirically investigating the pro-

cess of tree growth for a variety of data distributions including multi-fractals. In Figure 11.4,

we report depth (height) distribution of randomized trees averaged over 100 trees. We sam-

ple a number of points (|X| ∈ {210, 211, 212, 220};m = 2) from each data distribution (left)

and plot their corresponding depth (height) distribution (right). Notice that the number of

points (2x; x ∈ {6, 7, . . . }) in the tree grows linearly with the average depth for any given

dataset. In Figure 11.3, we plot the predicted depth for each of the distributions against the

actual depth of the tree for the distributions shown in Figure 11.4 by fitting this linear trend.

We present the following lemma based on the observations and draw the following insights.

Insight 11.1: Power Depth Property (PDP)

The growth of the tree depth with the logarithm counts of observations is linear irrespec-

tive of the data distribution.

Justification for PDP property In our attempt to explain PDP property, we study the ex-

pected depth computation for datasets with known distributions. However, in general, it is

difficult. Let us consider biased line dataset with a bias factor b. Here we study a related setting:
random points, but with fixed cuts. We refer to this model as ‘fixed-cut’ tree fixedCutTree.

For this case, we can show that the PDP property holds, and the slope grows as the ‘bias’ factor

b grows. Then, the depth of fixedCutTree for a biased fractal line (data in Figure 11.4d) obeys

the following lemma.
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Figure 11.4: Illustrating depth distribution for several diverse datasets (including Gaussian, Uni-

form, multifractals).
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Table 11.2: Table of Symbols and Definitions.

Symbol Definition

X = {xi} Point cloud dataset where xi ∈ Rm
for i ∈ 1, 2, . . . n

s(.) Anomaly score function for an outlier detector

h(q) Path length estimate for instance q in a depth-limited atomicTree

E[h(q)] Path length averaged over the ensemble

H(n) Depth estimation function for an atomicTree with n observations

dlimit Depth limit of a atomicTree

Table 11.3: Table of Acronyms.

Acronym Definition

IF Isolation Forest

AP Average Precision

ROC Receiver Operating Characteristic

Lemma 11.1: Expected Depth of fixedCutTree

The expected tree depth H(n, b) for a biased line with a bias factor b containing n ≥ 2
data points is given as:

H(n, b) =
n∑

k=0

[(n
k

)
bk(1− b)n−k× (11.6)

(k
n
H(k, b) +

n− k

n
H(n− k, b) + 1

)]
(11.7)

Proof. LetH(k, b) be the depth of fixedCutTree with k observations constructed usingXk ⊆
X . Since fixedCutTree is grown via recursive partitioning on a randomly chosen attribute-

value, therefore, for a biased line, b = probability of a point going to left node i.e. the point less

than chosen attribute-value. Let k be the number of points partitioned onto the left node, then

n− k points go to right node. Define B(n, k, b) =
(
n
k

)
bn(1− b)n−k

the Binomial probability for

a fixed k. Let f(n, k, b) be the estimate of the depth when k observations are in left node, then

f(n, k, b) =
(
k
n
H(k, b) + n−k

n
H(n− k, b) + 1

)
as each random partition increases depth by 1.

Therefore, the expected depth of the tree is given as H(n, b) =
∑n

k=0 f(n, k, b)B(n, k, b). ■

We denote H(n, b) = H(n) for b = 1/2. A tree with one data point would have a depth

of one i.e. H(1, b) = 1 = H(1); and H(0, b) = 0 = H(0). In Figure 11.5, we show the effect

of bias on the the (analytical) depth computed using H(n, b). Notice that increase in bias –

indicating deviation from uniformity – increases depth which matches intuition. For bias 1− b,
H(n, 1− b) follows the results for H(n, b).

Following the PDP property, the depth estimation function is given as

H(n) ≈ w0 + w1log2(n) (11.8)

wherew0 andw1 are parameters that we estimate for each data distribution, and n is the number

of instances in the dataset.

Insight 11.2

The slope of the linear fit varies significantly depending on the dataset distribution.
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Figure 11.5: Depth (H(n, b)) vs. Dataset Size: slope increases with increase in bias for a biased

line data.

Table 11.4: gen
2
Out0 obeys all the axioms a generalized anomaly detector should follow.

We compare themethods statistically, by conducting two-sample t-test based on scores obtained

for points a, b. A positive difference in score indicates that the detector follows that axiom (see

Figure 11.2). indicates that the detector follows the axiom, indicates that the detector does

not obey the axiom.

Method LODA RRCF IF gen
2
Out0

Metric Statistic p-value Statistic p-value Statistic p-value Statistic p-value

A1: Distance Axiom 0 1 3.6 0.002** 2.1 0.054 11.4 1.2e-9***

A2: Density Axiom 7e15 2e-275*** -0.14 0.89 -10 8.6e-9*** 25.2 1.7e-15***

A3: Radius Axiom 0 1 6.4 4.8e-6*** 11.9 5.9e-10*** 21.3 3.4e-14***

A4: Angle Axiom 6.6 3.2e-6*** 17.5 9.6e-13*** -0.2 0.83 53.7 2.5e-21***

A5: Group Axiom -14.7 1.8e-11*** 1.1 0.27 0.95 0.35 28.2 2.6e-16***

For example, the slope for Uniform Line (see Figure 11.4c) is 1.38, while for a Uniform Square

(see Figure 11.4g) is 1.66. These insights lead to the following lemma.

Lemma 11.2

gen
2
Out includes IF as a special case.

Proof. In Equation (11.8), setting w0 = 2×0.57− (2(n−1)/n) and w1 = 2× loge(2) yields the
average path length function used in IF. Here, 0.57 is the Euler’s constant, and loge(2) accounts
for the difference in log bases. ■

Drawing from these insights, next we present the details of our anomaly detection algorithm.
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Algorithm 11.1: gen
2
Out0-Fit

Data: A data matrix X , number of atomicTree estimators numTrees, atomicTree
depth limit dlimit

Result: w0, w1 of depth estimation function H(·) and atomicTree ensemble

1 Initialize Y and Z ;
/* Estimating the function H(·) */

2 for i = n1, n1 + 1, . . . ; // a small n1 e.g. 10
3 do

4 Draw Xs ⊂ X s.t. |Xs| = 2i ;
5 Fs ← Construct-atomicTree (Xs,∞);

6 Z ← Z∪ average depth of Fs containing observations Xs;

7 Y ← Y ∪ i;

8 end

9 H(.)← Fit linear regression Y and Z ;
10 w0, w1 ← coefficients(H(.));

/* Construct the ensemble */
11 for t = 1 to numTrees do

12 ensemble← ensemble ∪ Construct-atomicTree (X , dlimit);

13 end

14 Return w0, w1, ensemble;

11.4 Proposed Method

For ease of exposition, we describe the algorithm in two steps – gen
2
Out0 for point anomalies,

and then gen
2
Out for generalized anomalies.

11.4.1 Point Anomalies: gen
2
Out0

Given the observations X = {x1, . . . ,xM} where xi ∈ Rm
, gen

2
Out0’s goal is to detect and

assign anomaly score to outlier points. gen
2
Out0 uses an ensemble of depth-limited random-

ized tree atomicTree (Section 11.3.2) that recursively partition instances in X .

Definition 11.1: Depth Limited atomicTree

An atomicTree that is constructed by recursively partitioning the given set of observa-

tionsX until a depth limit dlimit is reached or the leaf nodes contain exactly one instance.

As evidenced in prior works, the random trees induce shorter path lengths (number of steps

from root node to leaf node while traversing the tree) for anomalous observations since the

instances that deviate from other observations are likely to be partitioned early. Therefore, a

shorter average path length from the ensemble would likely indicate an anomalous observation.

Anomaly detection is essentially a ranking task where the rank of an instance indicates its
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Algorithm 11.2: Construct-atomicTree

Data: A data matrix X ,dlimit, currDepth:0
Result: atomicTree

1 Initialize atomicTree;

2 if dlimit ≤ currDepth or |X| ≤ 1 then
3 Return a leaf node of size |X|;
4 else

5 Pick an attribute at random from X ;

6 Pick an attribute value at random;

7 Xl ← set of points on the left (<) of the chosen attribute-value pair;

8 Xr ← set of points on the right (≥) of the chosen attribute-value pair;

9 left← Construct-atomicTree (Xl,dlimit, currDepth + 1);
10 right← Construct-atomicTree (Xr,dlimit, currDepth + 1);
11 Return an internal node with {left, right, {chosen attribute-value pair}};

12 end

relative degree of anomalousness. We next design anomaly score function for our algorithm to

facilitate ranking of observations.

Proposed Anomaly Score We construct anomaly score using the path length h(q) for each
instance q ∈ Rm

as it traverses a depth limited atomicTree. The path length for q is h(q) =
h0 + H(lbusy) if lbusy > 1; otherwise h(q) = h0 where h0 is the number of edges q traverses

from root node to leaf node that contains lbusy points in a depth limited atomicTree. When

lbusy > 1, we estimate the expected depth from the leaf node using H(lbusy) (uses Equa-

tion (11.8)). We normalize h(q) by the average tree height H(n) (height of atomicTree con-

taining n observations) for the depth limited atomicTree ensemble to produce an anomaly

score s(q, n) for a given observation q. Referring to the PDP insights we presented in Sec-

tion Section 11.3.2, we estimate the data dependent H(·) using Equation (11.8) since the tree

depth grows linearly with the number of observations (in log2) in the tree (see Figure 11.4). The

slope of the linearity is characterized by underlying data distribution; each distribution follows

a linear growth. The score function is

s(q, n) = 2−
E[h(q)]
H(n)

(11.9)

where E[h(q)] is the average path length of observation q in the atomicTree ensemble, n
is number of data points used to construct each atomicTree, and H(n) is the function for

estimating depth of the tree given in Equation (11.8).

gen
2
Out0 Parameter Fitting gen

2
Out0 is a depth limited atomicTree ensemble. The al-

gorithm for fitting gen
2
Out0 parameters is provided in Algorithms 11.1 and 11.2.

gen
2
Out0 Scoring To assign anomaly scores to the instances in a data matrix X , the ex-

pected path length E(h(q)) for each instance q ∈ X . E(h(q)) is estimated by averaging the
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Algorithm 11.3: gen
2
Out0-Scoring

Data: A data matrix X , atomicTree ensemble

Result: Anomaly scores scores for observations in X
1 Initialize depths, scores, and lbusy;
2 n← numSamplesInatomicTree;
3 for x ∈ X do

4 depths← depths ∪ compute path-lengths for x (Section 11.4.1);

5 lbusy ← lbusy∪ compute number of samples in leaf where traversal of x
terminated;

6 end

7 for depth ∈ depths, l ∈ lbusy do
8 h =depth+H(l);

9 s = 2
−h

H(n)
;

10 scores← scores ∪ s;

11 end

12 Return scores;

path length after tree traversal through each atomicTree in gen
2
Out ensemble. We outline

the steps to assign anomaly score to a data point using gen
2
Out0 in Algorithm 11.3. As shown

in Table 11.4, gen
2
Out0 is the only anomaly detector that obeys all our proposed axioms, and

thus can be used for group anomaly detection.

11.4.2 Full Algorithm: gen
2
Out

How can we design an algorithm that can spot both point- as well as group-anomalies, simulta-

neously? The main insight is to exploit the less-appreciated ability of sampling to drop outliers,

with high probability. How can we use this property to spot group-anomalies, of size, say ng (in

a population of n data points)? The idea is that, with a sampling rate of ng/n, a point a of the

group will probably be stripped of its cohorts, and thus behave like a point-anomaly, exhibiting

a high anomaly score. For disambiguation versus the sampling of gen
2
Out0, we will refer to

this sampling process as ‘qualification’, and to the corresponding rate as qr= qualification rate.

In more detail, to determine whether point a belongs to a group-anomaly, we compute its

(gen
2
Out0) score s(a, qr) for several qualification rates qr; when the score peaks (say, at rate

ng/n) then ng is roughly the size of the group-anomaly (= micro-cluster) that a belongs to.

Some definitions:

Definition 11.2: X-ray Line

For a given data point a, the X-ray line is the function (score(a, qr) versus qr).
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Algorithm 11.4: gen
2
Out

1 Initialize n← |X|;
/* Step 0: Fit a sequence of gen2Out0 */

2 for qr ∈ {1, 1/2, 1/4, · · · } do
3 Draw Xs ⊂ X s.t. |Xs| = n× qr;
4 gen

2
Out0-ensembles← gen

2
Out0-ensembles ∪ gen

2
Out0-Fit (Xs, ., .);

5 end

/* Step 1: create X-ray plot */
6 for e ∈ gen

2
Out0-ensembles do

/* generate score for specific qualification rate */
7 scores← scores ∪ gen

2
Out0-Scoring(X, e);

8 end

/* Step 2: Apex extraction */
/* max score and rate for each point across qualified datasets */

9 max_scores, max_qr← argmax(scores) ;
10 candidate-points← X[max_scores ≥ threshold];

/* Step 3: Outlier grouping */
11 for r ∈ unique(max_qr) do
12 candidate-points_r ; // candidate points at this rate

/* identify more than one group per qualification rate */
13 clusters← cluster candidate-points_r;
14 end

/* Step 4: Compute iso-curves */
15 for cl ∈ clusters do

/* points closer to (score=1, qr=1) is more anomalous */

16 iso_scores← 2−ManhattanDistance([
log2 max_qr(a)

10
+1,max_score(a)],[1,1])

2
∀a ∈ cl;

17 end

/* Step 5: Scoring micro-clusters */
18 Assign scores← median(iso_scores(cl)) ∀cl ∈ clusters

Definition 11.3: X-ray Plot

For a cloud of n points, the X-ray plot is the 2-d plot of all the n X-ray-lines (one for each

data point)

See Figure 11.6b for an example.

Definition 11.4: Apex

Apex of point a is the point (score, qr) with the highest anomaly score.

See Figure 11.6c for an example.
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(a) Synthetic data heatmap (b) Step 1: X-ray plot (c) Step 2: Apex extraction

(d) Step 3: Outlier grouping (e) Step 4: Anomaly iso-curves (f) Step 5: Scoring

Figure 11.6: gen
2
Out correctly detects group anomalies. Illustration of gen

2
Out on syn-

thetic dataset.

Algorithm 11.4 describes the steps of the proposed gen
2
Out. In summary, we find the X-

ray plot (Step 1) and then find the apex point for every data point a (Step 2); keep the ones

with high apex and then cluster the corresponding data points (Step 3); and then assign scores

to the each group (Step 4 and Step 5).

Figure 11.6 illustrates the steps in gen
2
Out on a synthetic dataset that has two anomalous

groups along with several point anomalies. Figure 11.6b finds the X-ray plot and Figure 11.6c

shows the apex with the red threshold line. We find two groups after applying clustering (DB-

SCAN [SSE
+
17] in our implementation) shown in color red, and blue in Figure 11.6d. Then we

compute the similarity of points in X-ray plot representation in each cluster to the theoreti-

cally most anomalous point at score=1, qr=1 (see iso curves in Figure 11.6e), and then assign

generalized anomaly score using the median of the similarity scores as shown in Figure 11.6f.

gen
2
Out correctly assigns higher score to GA1 (blue cluster in Figure 11.6f) which contains

1000 points as compared to GA2 (red cluster in Figure 11.6f) containing 2000 points (also see

Axiom A5). For ease of visualization, we do not show point-anomalies in this plot.
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Figure 11.7: gen
2
Out0 wins in point anomaly detection. We plot average precision (AP)

and area under the ROC curve for gen
2
Out0 against the same metric of the competitors (none

of which obey all our axioms). Points representing benchmark datasets are below the line for

the majority of datasets. RRCF does not scale to datasets with size greater than 3000.

11.5 Experiments

We evaluate our method through extensive experiments on a set of real-world datasets. We

provide dataset details and the experimental setup, followed by the experimental results. We

aim to answer following research questions (RQ):

RQ1. Point Anomalies: How well does gen
2
Out detect point anomalies?

RQ2. Group Anomalies: How well does gen
2
Out detect group anomalies?

RQ3. Scalability: How scalable is gen
2
Out to large point-cloud datasets?

Epilepsy Dataset We analyzed intracranial electroencephalographic (EEG) signals recorded

at the Epilepsy Monitoring Unit of a large public university from one patient with refractory

epilepsy. Electrodes were placed in the brain and EEG signals were then recorded across 122

electrode contacts at a sampling rate of 2 KHz with focal region in the right temporal lobe.

Benchmark Datasets Our benchmark set consist of 26 real-world outlier detection datasets

from ODDS repository [Ray16]. The datasets cover diverse application domains and have di-

verse range dimensionality and outlier percentage. The ODDS datasets provide ground truth

outliers that we use for the quantitative evaluation of the methods.
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(a) Data heatmap (b) X-ray plot (c) Apex extraction

(d) Outlier grouping (e) Anomaly iso-curves (f) Scoring

Figure 11.8: gen
2
Out detects DDoS attacks on intrusion detection http dataset.

11.5.1 RQ1 – Point Anomalies

We compare gen
2
Out0 to the following state-of-the-art ensemble baselines:

1. IF: Isolation Forest [LTZ08] uses an ensemble of randomized trees to flag anomalies.

2. LODA: Lightweight on-line detector of anomalies [Pev16] is a projection based histogram

ensemble of weak estimators.

3. RRCF: Robust Random Cut Forest [GMRS16] are tree ensembles that use sketch based

anomaly detector.

To evaluate effectiveness, we compare gen
2
Out0 to state-of-the-art ensemble baselines on a set

of real-world point-cloud benchmark outlier detection datasets. We use average precision (AP)

and receiver operating characteristic (ROC) scores as our evaluation metrics. We plot the scores

(AP and ROC score) for each competing method on all the benchmark datasets in Figure 11.7.

If the points are below the 45 degree line where each point represents a dataset, then it in-

dicates that gen
2
Out0 outperforms the competition in those datasets. As shown in Figure 11.7,

for both the evaluation metrics, gen
2
Out0 beats or at least ties with all baselines on majority

of the datasets (see Figure 11.1c). The quantitative evaluation demonstrates that gen
2
Out0 is

superior to its competitors in terms of evaluation performance as well as obeys all the proposed

axioms while none of the competition obeys the axioms.
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Figure 11.9: (a) gen
2
Out0 is fast and scalable: Evaluation on benchmark datasets show that

gen
2
Out0 (in red) scales linearly (eventual slope=1 in log-log scales). Note that none of the

competitors obeys the axioms, and RRCF is much slower. (b) gen
2
Out is fast and scalable,

linear in size of input.

11.5.2 RQ2 – Group Anomalies

We evaluate the effectiveness of gen
2
Out on real-world intrusion dataset that has attributes

describing duration of attack, source and destination bytes. Note that we do not include group

anomaly detection methods for comparison as they require group structure information, hence

do not apply to our setting. Figure 11.8a shows source bytes plotted against destination bytes

for the points. Figures 11.8b – 11.8f shows theX-ray plot with scores trajectory, Apexwith can-

didate points above the threshold (set at mean + 3 standard deviation of scores in full dataset),

identified groups and the generalized anomaly score for each detected group. gen
2
Outmatches

ground truth as it detects the three anomalous groups as shown in Figure 11.8d. In short,

gen
2
Out is able to detect groups that correspond to distributed-denial-of-service attack.

11.5.3 RQ3 – Scalability

To quantify the scalability, we empirically vary the number of observations in the chosen

dataset and plot against the wall-clock running time (on 3.2 GHz 36 core CPU with 256 GB

RAM) for the methods. First we compare gen
2
Out0 against the competitors in Figure 11.9a for

point-anomalies. The running time curve of gen
2
Out0 is parallel to the running time curve

of IF, which shows that gen
2
Out0 does not increase time complexity except adding a small

constant overhead for estimating the depth function H(.). The running time of RRCF is much

higher than others even after implementing the trees in parallel. Note that only gen
2
Out0

obeys the axioms. For generalized anomalies, Figure 11.9b reports the wall-clock running time

of gen
2
Out as we vary the data size. Notice that gen

2
Out scales linearly with input size.

Importantly, competitors do not apply as they require additional information.
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11.6 gen
2
Out at Work

11.6.1 No False Alarms

When applied to datasets containing only normal groups that are relatively equal in size, gen
2
Out

correctly identifies them as normal groups i.e. does not flag any set of points as anomalous

group. To illustrate this phenomenon, we apply gen
2
Out to optdigits dataset which con-

tains the feature representation of numerical digits.

(a) Data heatmap (b) X-Ray plot

Figure 11.10: gen
2
Out raises no false alarms. It correctly flags no anomalies in the

optdigits dataset.

To visualize the dataset, we embed the points in two dimensional space using tSNE [dMH08]

as shown in Figure 11.10a. It is a balanced dataset, where we have equal number of points

for each digit, hence no group is present. X-ray plot (Figure 11.10b) shows that all the score

trajectories are below 0.5 (scores close to 1 are anomalous) withmean score at 0.36 in full dataset.

Hence, we do not find group and correctly so.

11.6.2 Attention Routing in Medicine

We apply gen
2
Out on EEG recordings for the epileptic patient (PT1) – PT1 suffered through

onset of two seizures in our recording clips; our motivating application. We extract four sim-

ple statistical measures from the subsequences of the time series features, namely mean, vari-

ance, skewness and kurtosis, by sliding a thirty minute window with two minutes overlap.

Figure 11.11a shows 2-dimensional tSNE representation of the data.

We then compute the generalized anomaly scores over time (within each window) for each

detected group. Since the scores generated by gen
2
Out are comparable, we draw attention

to the most anomalous time point, where the seizures occurred as the detected groups corre-

spond to seizure time period. The steps of gen
2
Out are illustrated in Figure 11.11 when applied

to multi-variate EEG data. Note that we find, several groups as shown in Figure 11.11. Of the

detected groups, the group receiving highest score (GA2) is plotted over the raw voltage record-

ings over time for the patient. The group corresponds to the ground truth seizure duration (see

Figure 11.1a). These time points that we direct attention to would assist the domain expert in

decision making by alleviating cognitive load of examining all time points.
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(a) Heatmap of tSNE representa-

tion of data

(b) X-ray plot (c) Apex extraction

(d) Outlier grouping (e) Anomaly iso-curves (f) Scoring

Figure 11.11: gen
2
Out detects seizures in real-world EEG data. It assigns highest anomaly

score to group anomaly GA2 that corresponds to seizures as we show in Figure 11.1a.

11.7 Conclusion

We presented gen
2
Out, a principled anomaly detection algorithm with following properties:

• Principled and Sound: We propose five axioms that gen
2
Out obeys them, in contrast

to top competitors.

• Doubly-General: Propose doubly general – simultaneously detects point and group

anomalies – gen
2
Out. It does not require information on group structure, and ranks

detected groups of varying sizes in order of their anomalousness.

• Scalable: Linear on the input size; requires minutes on 1M dataset on a stock machine.

• Effective: Applied on real-world data (Figure 11.1 and 11.7), gen
2
Outwins in most cases

over 27 benchmark datasets for point anomaly detection, and agrees with ground truth

on seizure detection as well as group detection tasks.
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Chapter 12

Conclusion and Future Work

In this thesis, we propose various explainable methods to address the limitations of black-box

machine learning methods. These methods are either inherently explainable, or provide expla-

nations of the data or decision-making process to users. Specifically, we focus on developing

algorithms and solving applications related to graph and time series data. The algorithms we

developed aim to address fundamental ML problems, and the applications we solved leverage

domain-specific insights. We summarize the contributions of our work below.

12.1 Contributions

Part I: Node-Level Graph Mining

In Part I, we focus on the problem where only a single graph is given and solve node-level

graph tasks such as node classification and link prediction. Our proposed methods perform

well, and explain their performance by identifying which information (e.g., graph structure or

node features) is useful to the task.

We propose three algorithms:

• Network Effects Detection (Chapter 3): NetEffect identifies whether network ef-

fects exist in the given graph (i.e., homophily, heterophily, both, or none) and precisely

estimates the underlying compatibility matrix. In node classification, NetEffect is 12.9%

more accurate and 3.4× faster than its competitors.

• Robust and Interpretable Node Classification (Chapter 4): SlimG is a linear graph

neural network (GNN) that addresses pain points of existing GNNs and is robust across

all scenarios in attributed graphs (e.g. no network effects and useless features). SlimG is

10.3% more accurate and 2.5× faster than its competitors.

• Network Usable Information (Chapter 5): NetInfoF quantitatively measures usable

information in attributed graphs for both node classification and link prediction. Net-

InfoF is the first linear GNN that generalizes to link prediction and achieves an average

rank 1.1 among its competitors.
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We solve an application:

• “Hybrid” Question Answering (Chapter 6): HybGRAG is a retrieval-augmented gen-

eration (RAG) method designed to handle questions that require hybrid information, i.e.

both relational and textual. HybGRAG achieves an average relative improvement of 51%

over the best competitor.

Part II: Graph-Level Graph Mining

In Part II, we focus on the problem where a graph database with multiple graphs is given and

solve graph-level graph tasks such as graph anomaly detection and graph regression. Our pro-

posed methods detect explainable substructures that are frequently shared among graphs in the

database and leverage them to solve the downstream task.

We propose two algorithms:

• Anomaly Detection with Frequent Substructures (Chapter 7): GAWD identifies

anomalies in a graph database by compressing the graphs with frequent substructures

using the minimum description length (MDL) principle. GAWD is up to 58× faster, while

being 1.3× better in average precision.

• Learnable Graph Kernel for Descriptive Features (Chapter 8): RWK
+
enhances the

random walk graph kernel and extracts descriptive substructure features from the graph

database. A model using the features extracted by RWK
+
outperforms the baseline by

14.3% in mean absolute error on a large graph regression benchmark.

We solve an application:

• Human Trafficking Detection (Chapter 9): DeltaShield incrementally detects tem-

plates among text documents by representing them as graphs and applying the MDL

principle. DeltaShield detects human-trafficking advertisements with 84% precision,

while requiring only 8 hours for 4 million documents.

Part III: Time Series Mining

In Part III, we focus on the problem of detecting sequence-level and point-level anomalies in

time series data. Our proposed methods not only detect anomalies in the time series, but also

explain them by identifying the group behavior shared among the anomalies.

We propose an algorithm:

• Self-SupervisedAnomalyDetection (Chapter 10): TSAP automatically fine-tunes the

best hyperparameters for creating pseudo-time-series anomalies, to learn the anomaly

detector in a self-supervised manner. TSAP achieves an average rank 2.2 in F1 score and

identifies the true hyperparameters of anomalies.

We solve an application:

• Seizure Detection in EEG Recordings (Chapter 11): gen
2
Out detects group anoma-

lies (such as seizures) and point anomalies (such as noise) in time series EEG recordings.

gen
2
Out is the first to detect both group and point anomalies and takes only 2 minutes

to run on 1 million data points.
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12.2 Future Work

Explainable Graph Algorithms for Temporal Graphs

While linear GNNs have shown great effectiveness and explainability in solving node-level

graph tasks such as node classification and link prediction, none of them focus on graphs that

evolve over time. While tensor decomposition [PFS17, dARF17] is able to address the time-

evolving graph structure, it is not yet clear how to handle temporal node features. Moreover, as

the behavior of the nodes changes over time, some of their features may shift from being useful

to becoming useless. Although many nonlinear GNNs have been proposed for temporal graphs

[RCF
+
20, ZZN

+
22], they generally lack the explainability offered by linear GNNs. Extending

linear GNNs to handle temporal graphs is thus an important direction for future research.

Learnable Graph Kernels with Edge Features

While learnable graph kernels are powerful feature extractors for graph databases, most of

them do not take edge features into account. However, edge features can be crucial for graph-

level graph tasks. For example, in a database containing protein-protein association graphs

[SGL
+
19], edge features contain meaningful association information between proteins. Al-

though some graph kernels support edge features [KJM20], incorporating learnability into them

has not yet been studied. We believe that addressing this limitation can further improve the

performance and interpretability of learnable graph kernels.

Multi-Modal Explainable Anomaly Detection in Time Series

While explaining anomalies in time series using abnormal patterns is straightforward, explain-

ing them using text is even simpler. For example, in the real world, an EEG signal can be

paired with a physician report [OP16]. The physician describes the normal or abnormal peri-

ods observed in the signal in the report. In this case, an algorithm capable of pairing physician

descriptions with specific time periods in the signal is desired. This algorithm has the potential

to significantly reduce the time required for physicians to diagnose patients. Although multi-

modal data has been utilized to improve downstream performance [QHZ
+
23], how it can be

leveraged to enhance explainability has not been well explored. Therefore, leveraging text to

explain detected anomalies in time series is an impactful future direction.

12.3 Closing Thoughts

In this thesis, we focus on developing explainable algorithms, as well as solving applications

while providing insightful explanations, for graph and time series data. While developing ma-

chine learning algorithms lays the foundation for explainable artificial intelligence (XAI), solv-

ing real-world applications through multidisciplinary collaboration with domain experts has

the potential to directly advance human well-being. Although this thesis focuses on graph and

time series data, the significance of these directions can be generalized to other data types, such

as text and images. We believe that these directions will drive impactful future research.
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