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Abstract
Large Language Models (LLMs) are deep learning models trained to understand

and generate natural language. Over the course of my PhD, LLMs have profoundly
transformed the field of machine learning. They are being actively deployed into
numerous commercial products, such as ChatGPT. Moreover, the principles and
experiences learned from developing LLMs are still shaping the landscape of ma-
chine learning research through paradigms like scaling laws and self-supervised
representation learning. However, these rapid advancements may also obscure many
fundamental questions about their internal mechanisms and behaviors. As LLM
capabilities grow, rigorous scientific investigation beyond conventional training and
evaluation workflow is crucial for deeper understanding and continued improvement.

This thesis investigates previously overlooked ’hidden properties’ of LLMs. These
hidden properties span the internal weight and activation spaces, as well as their output
behaviors. First, we show that LLMs are intrinsically sparse in their weight space.
To demonstrate this hidden property, we develop a principled pruning approach
that is able to extract effective, sparse sub-networks from pretrained models. Next,
we explore the activation space and reveal the existence of structured outliers in
LLMs. These activations are extremely few in numbers but exceptionally high in
their absolute magnitudes. We call them massive activations. We show that these
activations are closely tied to the self-attention mechanism, and propose an alternative
attention formulation that is free from such outliers. Finally, we turn to the output
space and design a conceptually simple framework to evaluate and study the existence
of idiosyncrasies in LLM-generated text. We show that outputs from different models
can be distinguished with remarkably high accuracies, and further characterize the
specific signatures that underlie these differences. Overall, we hope this thesis can
provide an alternative perspective on modern foundation models.
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Chapter 1

Introduction

Large Language Models (LLMs) are a class of machine learning models trained with self-
supervision on enormous amounts of text. The origin of LLMs began with the Transformer [1]
model introduced in 2017. This model removed recurrence, used purely self-attention, and
was originally designed for neural machine translation. In 2019, GPT-2 [2] was released by
OpenAI, which brought widespread attention to LLMs. By design, GPT-2 is a decoder-only
Transformer and trained with an auto-regressive objective on large corpora. Although small in
size compared to today’s models, GPT-2 showed strong performance on various tasks, such as
translation, summarization and simple question answering. More importantly, its simple design
made it easy to scale and to perform inference with prompt-based natural language inputs. Since
then, the development of LLMs has followed scaling laws, where larger models trained on more
data generally perform better. Later models, such as GPT-3 [3] in 2020 and GPT-4 [4] in 2023,
continue to showcase amazing capabilities achievable by LLMs.

To date, LLMs have made a substantial impact on our daily lives. Chatbots based on LLMs,
like ChatGPT [5] and DeepSeek [6], are now being widely used all around the world. They
have also spurred various applications, such as Cursor and Manus, that are aimed to significantly
improve the human workflow. Even more, the goal of achieving Artificial General Intelligence
(AGI) feels closer than ever, thanks to ever-increasing performance of LLMs. For researchers in
machine learning and deep learning, the success of LLMs has led to a paradigm shift - from training
supervised models to large-scale self-supervised representation learning. Another important lesson
learnt from the development of LLMs is the importance of scaling laws - simple and scalable
methods coupled with more compute and data, which continue to shape progress in AI beyond
language domain, e.g., Sora [7] and Whisper [8].

While the impact of LLMs is undeniable, our primary mode of interaction and even much
academic research on these models remain frustratingly superficial. In most real-world applica-
tions, users interact with these models through black-box APIs – providing a question as input and
receiving an answer from APIs or chatbots in return. While this interface is convenient, there is
little visibility into the internal processes behind generating these responses. In academic research,
much of the focus on LLMs remains at the black-box level, examples include fine-tuning models
for better performance [24, 134], developing new prompting strategies [9, 11, 33], and building
evaluation benchmarks for new tasks [12, 35]. While these efforts are necessary and important,
they offer limited insight into how LLMs actually function. Beyond performance, a scientific
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understanding of their inner workings and emergent properties is essential for responsible de-
ployment. Yet there still exist many important unanswered questions: Are Transformers truly
the right architecture for intelligence? How do LLMs make predictions internally? What feature
representations are formed during inference? How do LLMs internally represent concepts, facts,
or reasoning chains? As LLMs are increasingly adopted and used in practice, gaining a deeper
understanding of their behaviors and inner mechanisms is crucial for long-term progress. Without
such understanding, we risk deploying systems with unpredictable failure modes and may struggle
to optimize them efficiently, and may lack the principled foundations needed for innovations
beyond scaling.

The purpose of this thesis is to conduct a rigorous and scientific investigation into LLMs by un-
covering underexplored but critical properties of these models. While most existing studies focus
on improving model capabilities, our work seeks to uncover the hidden and complex mechanisms
beneath their impressive performance. We show that such investigations can reveal intriguing
and unexpected phenomena inherent to LLMs, which we refer to as the hidden properties. We
begin by demonstrating, for the first time, that the weight space of LLMs is intrinsically sparse:
a significant portion of weight parameters can be removed directly without degrading model
performance. Next, we reveal the intriguing presence of structured outliers in the hidden states of
large Transformer models, as well as their fundamental connection to the self-attention mechanism.
Finally, we analyze the output behaviors of LLMs and identify idiosyncrasies in their generations.
Through characterizing these hidden properties, we develop principled tools and methodologies
for empirical analysis of LLMs, which we hope can benefit and support future research. We also
show that our findings extend beyond the language domain and have practical implications for
improving model efficiency and reliability. Altogether, the insights presented in this thesis not
only deepen our understanding of LLMs but also help motivate concrete strategies for building
next-generation capable models.

1.1 Thesis Organization

In this thesis, we investigate the hidden properties of LLMs from multiple perspectives. Chapter 3
and Chapter 4 focus on the internal representations of LLMs, covering both weights and activations,
while Chapter 5 examines distinctive properties of model outputs. Although each chapter targets a
different aspect of LLMs, together they aim to provide practical insights for model development
and reveal deeper understanding of the models’ underlying mechanisms.

The structure of the thesis follows the key building blocks of LLMs, progressing from model
parameters (weights), to internal states (activations), and finally to outputs. Below, we briefly
summarize the main contributions of each chapter:

Chapter 2 In this chapter, we provide an overview of the background information necessary to
understand the subsequent chapters of the thesis. We introduce the definition of Large Language
Models (LLMs), then describe the architecture of LLMs, and finally discuss their training and
inference procedures.
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Chapter 3 This chapter highlights the first hidden property we uncover in LLMs – their weight
space is significantly sparser than previously believed. Model pruning is a popular approach for
reducing the computation requirements for neural networks, where magnitude pruning has become
a well-established popular pruning method. However, prior work has found that the widely used
magnitude pruning approach fails catastrophically on pruning LLMs. By carefully designing
experiments analyzing the internal representation of LLMs, we identify a key limitation of
magnitude pruning: it fails to take into account the emergent outlier features that occur frequently
in the activation space of LLMs.

Based on this key insight, we develop a novel, straightforward yet effective pruning method,
termed Wanda (Pruning by Weights and Activations), designed to induce sparsity directly in
pretrained LLMs. Our method prunes weights based on the product of their magnitudes and the
corresponding input activations, applied on a per-output basis. We show that Wanda significantly
outperforms the established baseline of magnitude pruning and performs competitively against
prior state-of-the-art method involving intensive weight update. Our results demonstrate, for
the first time, that effective sparse sub-networks can be obtained directly from pretrained LLMs,
revealing that their weight space is inherently sparse.

Chapter 4 This chapter presents our study on a unique type of structured outliers we observe
in LLMs’ activation space. We show that in the residual hidden states of large Transformers,
very few activations exhibit significantly larger values than others (e.g., 100,000 times larger).
We call these structured outlier activations massive activations. We examine a wide range of
popular LLMs and find the widespread existence of massive activations, suggesting that they are
an inherent property of LLMs. We answer several important questions on massive activations.
First, we show that they appear as constants across most intermediate models, and can be found
mostly in fixed feature dimensions, first token and mostly delimiter tokens. Next, we conduct
intervention analysis and find that their values largely stay constant regardless of the inputs, and
they function as indispensable bias terms in these models.

Furthermore, we find that massive activations are closely connected to an intriguing attention
concentration pattern. Specifically, massive activations in the residual hidden states cause attention
probabilities in subsequent layers to concentrate heavily on the corresponding tokens. When
computing the self-attention output, this leads to the formation of an implicit bias term, created by
aggregating value updates from these highly attended tokens. Building on this key insight, we
show that several previously proposed fixes for Transformers—such as adding extra learnable
tokens (e.g., registers)—can be unified under an alternative attention formulation. Notably, we
demonstrate that this alternative formulation is outlier-free: massive activations no longer emerge
during pretraining. This is extremely beneficial for low-precision training and inference, which is
a widely popular approach for reducing the costs of developing frontier AI models.

Chapter 5 In this chapter, we shift our focus to the output-level behaviors of LLMs, where we
aim to characterize differences between models in a novel and principled way. While most recent
LLM releases place a heavy emphasis on improvements in benchmark scores, benchmarks alone
are not sufficient to capture the nuanced distinctions between models—especially as benchmarks
become saturated over time. Our study is driven by the fundamental question: How can we

3



effectively characterize and understand differences in the outputs of various LLMs?
To address this, we design a conceptually simple classification framework in which a neural

network is trained to predict the source model of a given generated text, with each LLM treated
as a separate class. We use the accuracy of the classifier as the quantitative indicator of how
distinguishable the models’ outputs are.

Based on our novel framework, we demonstrate the existence of clear idiosyncrasies in LLMs.
We achieve remarkably high classification accuracies by fine-tuning a strong sentence embedding
models, revealing that LLM outputs contain strong model-specific signatures. To further analyze
these differences, we propose a principled approach that isolates contributing factors through
text transformations. Our findings show that these idiosyncrasies are rooted at various levels,
including word distributions, formatting styles, and high-level semantics. We conclude the chapter
by discussing the broader implications of our findings for the reliable development and evaluation
of LLMs.
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Chapter 2

Background

In this chapter of the thesis, we will provide an overview of the background information necessary
to understand the content of this thesis. We will introduce the basic concepts of what constitutes a
Large Language Model (LLM). We will then discuss the process and key elements of building
these models, including their architecture, training, and inference procedures.

2.1 Definition
A Large Language Model (LLM) is a machine learning model trained to understand and generate
natural language. By its definition, these models are able to take text sequences as inputs and
generate natural language outputs. It is worth noting that many of the frontier LLMs [13, 14] are
now extended to take multimodal inputs, such as images and audios and also generate multimodal
outputs. In this thesis, we will focus on the text-in and text-out LLMs.

LLMs are statistical models that assign a probability distribution to a sequence of input tokens.
Tokens represent the basic text units, for example, words and sub-words. We use x1, x2, . . . , xT

to denote a sequence of tokens. The LLM predicts the next token by outputing a probability
distribution

P (xt|x1, x2, . . . , xt−1) (2.1)

over the vocabulary of tokens. Due to the chain rule of probability, the joint probability of a
sequence of tokens can be expressed as:

P (x1, x2, . . . , xT ) = P (x1)P (x2|x1)P (x3|x1, x2) · · ·P (xT |x1, x2, . . . , xT−1) (2.2)

Note that each term here can be treated as a classification task. This probability is obtained via
the Transformer model. In practice, training LLMs is done by maximizing the log-likelihood over
a large corpus of the text data. Through this autoregressive training process, the model learns to
understand natural language and generate coherent text.

2.2 Architecture
LLMs are based on the Transformer architecture [1], which has driven most of the progress in AI
over the past decades. While there are recent advances in language modeling architecture, for

5



instance state-space models [17, 19] and diffusion language models [20, 21], they remain largely
at research stage and have not been widely adopted in practice. Therefore, in this thesis, we
will focus on the Transformer architecture, which has been a dominant architecture in language
modeling ever since its introduction in 2017 [18, 36, 37].

The Transformer architecture is a deep learning architecture based on the self-attention
mechanism [38, 39, 40]. The initially proposed Transformer architecture consists of an encoder
and a decoder, where the encoder processes the input texts and the decoder generates the output
texts. The encoder and decoder are both composed of multiple Transformer blocks, where each
block consists of a multi-head self-attention layer and a feed-forward neural network. Due to their
autoregressive nature, LLMs discard the encoder part and only keep the decoder part, making it a
decoder-only Transformer.

We will now describe the core components of a decoder-only Transformer. First, the input text
sequence is turned into a numerical sequence via a tokenizer. These numbers are then encoded
via an embedding layer, thus becoming a continuous-number vector embedding. Next, these
embedding vectors go through a stack of N Transformer blocks and finally, a linear layer turns
the feature embeddings at the last layer into a prediction of the next token.

Tokenizer and Embedding The first layer that the input text passes through is the tokenizer.
The tokenizer is responsible for converting the input text into a sequence of tokens, which are
then fed into the model. LLMs typically use a sub-word tokenizer, which breaks down words into
smaller units, with each unit being a token. Each token is represented by a unique integer. The
most commonly used tokenizers in LLMs are based on the Byte Pair Encoding (BPE) [41]. In
BPE tokenizer, the vocabulary is built by iteratively merging the most frequent pairs of sub-words
in the training corpus. The embedding layer is responsible for converting the tokenized input into
a continuous vector embedding. Each token is mapped to a unique vector in a high-dimensional
space. One can also view the embedding layer as a look-up table. After the input texts go through
the tokenizer and the embedding layer, we have a tensor of shape B × T ×D, where B is the
batch size, T is the sequence length and D is the embedding dimension. For now, we will assume
that each sequence in the batch has the same length for simplicity. In practice, we can use padding
to address imbalanced sequence lengths within a batch.

Multi-Head Self-Attention Multi-Head Self-Attention (MHSA) is a fundamental component
of the Transformer architecture. It enables the model to attend to different parts of the input
sequence simultaneously, therefore allowing it to efficiently capture long-range dependencies and
complex relationships between input tokens.

A Self-Attention Head is based on the scaled dot-product attention mechanism, which com-
putes a weighted sum of the input feature embeddings based on their similarity. Specifically, in
a self-attention layer, linear projection layers are first used to transform the input embeddings
X ∈ RB×T×D from the previous layers into three vector embeddings Q,K, V ∈ RB×T×Dh jointly,
where Dh is the head dimension. Then the scaled dot-product attention uses the query and key
embeddings to compute the attention scores via the inner product of Q and KT . A softmax
operator is then applied to the dot product to form the attention scores, which are then used to
combine the value embeddings into the output. Formally, the scaled dot-product attention is
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defined as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.3)

Here the output of the attention head is a tensor of the same shape as the query, key and value
representations, Q, K and V, which is B × T ×Dh.

It is important to note that in decoder-only Transformers, each token is restricted to attending
only to itself and all preceding tokens in the sequence. A causal mask is applied to the attention
scores (i.e., the inner product of query and key states), to prevent the model from attending to
future tokens. In practice, this can be achieved by masking out the attention scores of the future
tokens (e.g., setting them to −∞) before applying the softmax operation.

As the name suggests, multi-head self-attention involves multiple self-attention heads. Each
head uses a different linear projection layers to obtain the query, key and value representations. In
practice, the outputs of all the self-attention heads are then concatenated together into a single
tensor of shape B × T × D. Then the concatenated embeddings are transformed via a output
linear projection. Formally, the multi-head self-attention block is defined as follows: (suppose we
have h heads)

headi = Attention(XWQ
i , XWK

i , XW V
i ) (2.4)

where WQ
i ,WK

i ,W V
i ∈ RD×Dh are the linear projection matrices for the i-th head.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.5)

where WO ∈ RhDh×D is the output linear projection matrix. The output of the multi-head self-
attention block is a tensor of shape B × T ×D, where D is the embedding dimension. This is the
same as the input hidden states X coming from the previous layer.

Feed-Forward Network (FFN) Besides the multi-head self-attention block, each Transformer
block also contains a sub-block consisting of a feed-forward network (FFN). Different from
self-attention blocks, FFN blocks are applied to each token position separately in parallel. The
FFN consists of fully-connected layers with a non-linear activation function, such as GeLU [42].

FFN(x) = GeLU(XW up)W down (2.6)

where W up ∈ RD×DFFN is a up projection layer that projects the feature embedding vectors to a
larger dimension DFFN from D. W down is a down projection layer that projects the intermediate
FFN hidden states back to the same dimensions as the input tensor X .

It is worth noting that recent LLMs (e.g., Llama [22, 23, 25]) use a variant of the FFN [27],
which is defined as follows:

FFN(x) =
(
SiLU(XW gate) ·XW up)W down (2.7)

where W gate,W up ∈ RD×Dgate are two linear projection layers of the same shape. The output of
these two linear projection layers are then multiplied in a point-wise manner. Here SiLU is a
non-linear activation function proposed in [43]. Mathematically, this activation function is defined
as SiLU(x) = x · sigmoid(x).
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Transformer Layer A transformer layer consists of a multi-head self-attention block and a feed-
forward network (FFN). In each sub-blocks, residual connections [30] are layer normalization [31]
are applied. Residual connections are the key for building deep neural networks, and layer
normalization is used to improve the training performance and stability. Formally, the transformer
layer is defined as follows:

X ′ = X + MHSA(LayerNorm(X)) (2.8)

TransformerLayer(X) = X ′ + FFN(LayerNorm(X ′)) (2.9)

where X ′ is the intermediate hidden state produced by the self-attention block. Since the layer
normalization is applied to the input of each block (self-attention and FFN), this is also called a
pre-norm Transformer layer.

Linear Head The final layer of the LLM is a linear classification head, which is used to predict
the next token in the input sequence. The linear head takes the output of the last transformer block
and applies a linear transformation to project it onto the vocabulary space. Therefore, the weight
matrix of the linear head has the shape of D × V , where V is the size of the vocabulary in the
tokenizer. Then the predicted probabilities over the entire vocabulary are obtained via the softmax
operation, from which we can sample the next token.

2.3 Training
We describe the training procedure of LLMs. The training process consists of two main steps:
pretraining and post-training.

Pretraining Pretraining is the process of training the LLM model on a large corpus of text
data. The goal of pretraining is to make the model understand natural language. This process
is often unsupervised, meaning that there is no need for labeled data of any forms. Through
unsupervised pretraining, the model is able to learn meaningful representations from the pre-
training datasets. Popular pretraining paradigms include masked language modeling [18] and
autoregressive language modeling [2].

LLMs as decoder-only Transformers use autoregressive pretraining, where the model is trained
to predict the next token in a sequence given the preceding tokens. Specifically, at each token
position, the model computes a probability distribution of the next token, which is a vector of
the vocabulary size. Then the cross-entropy loss is computed between the predicted probability
distribution and the ground truth next token. This loss is averaged over all the tokens in the training
corpus. During pretraining, the weight parameters of LLMs are updated via back-propagation to
minimize this average cross-entropy loss. Formally, the autoregressive pretraining objective is
defined as follows:

Lpretrain = − 1

T

T∑
t=1

logP (xt|x1, x2, . . . , xt−1) (2.10)

for a sequence of tokens x1, x2, . . . , xT in the training corpus.
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Post-Training Post-training is the process of refining and optimizing the pretrained LLMs.
While pretraining LLMs learn general language representations, pretrained LLMs are not able to
follow human instructions and produce coherent texts. Therefore, in order for these models to
be useful in practice, post-training is a critical process that aligns these pretrained models with
human preferences.

There are two popular post-training paradigms: supervised fine-tuning and the alignment
stage. Supervised fine-tuning (SFT) is the process of adapting pretrained LLMs to specific tasks
or domains by training them on curated datasets of interest. For instance, one can fine-tune a
pretrained LLM on dialogue data for it to become a helpful assistant. SFT is typically done via
supervised learning, meaning that the training data consists of input-output pairs. However, in
many cases, labeled data is resource intensive to collect. What’s more, supervised fine-tuning
is not able to generalize well outside the training domain. In practice, SFT is often used in
conjunction with alignment approaches.

The alignment stage aims to adapt LLMs to better match human preferences. Typically,
this is done via reinforcement learning (RL) fine-tuning to learn from feedback data, such as
reinforcement learning from human feedbacks (RLHF) [26] and reinforcement learning from AI
feedbacks (RLAIF) [29]. The model is optimized via reward signals that reflect the quality of
their own generations. This reinforcement learning process encourages the model to produce
outputs that are more helpful and aligned with human values.

2.4 Inference
We describe the inference procedure of LLMs. It typically consists of two main steps: pre-filling
and decoding.

Pre-filling This is the stage where the model processes the entire input prompt before autore-
gressive decoding. In the pre-fill stage, the model receives the full prompt and passes all the
input tokens through the network in a single forward pass. No prediction is performed in this
stage. During pre-filling, the key and value states of the input tokens at each Transformer layer
are cached for the decoding stage. These key and value states are also known as KV cache,
which allows the model to reuse key and value states of existing processed tokens in the sequence
without recomputation.

Decoding Decoding is the process of generating the output sequence token by token in an
autoregressive fashion. At each token prediction, the model predicts the next token by sampling
from the predicted probability distribution over the entire vocabulary. There can be various
sampling strategies. One common strategy is greedy decoding, a deterministic process where
the token with the highest probability is always selected as the next token. Another popular
method is temperature sampling, which uses a temperature parameter to control the randomness
of the probability distribution: a higher temperature means more random outputs, while a lower
temperature makes the output more deterministic.
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Chapter 3

A Simple and Effective Pruning Approach
for Large Language Models

3.1 Overview
As their size increases, Large Languages Models (LLMs) are natural candidates for network
pruning methods: approaches that drop a subset of network weights while striving to preserve
performance. Existing methods, however, require either retraining, which is rarely affordable
for billion-scale LLMs, or solving a weight reconstruction problem reliant on second-order
information, which may also be computationally expensive. In this paper, we introduce a novel,
straightforward yet effective pruning method, termed Wanda (Pruning by Weights and activations),
designed to induce sparsity in pretrained LLMs. Motivated by the recent observation of emergent
large magnitude features in LLMs, our approach prunes weights with the smallest magnitudes
multiplied by the corresponding input activations, on a per-output basis. Notably, Wanda requires
no retraining or weight update, and the pruned LLM can be used as is. We conduct a thorough
evaluation of our method Wanda on LLaMA and LLaMA-2 across various language benchmarks.
Wanda significantly outperforms the established baseline of magnitude pruning and performs
competitively against recent method involving intensive weight update. Code is available at
https://github.com/locuslab/wanda.

3.2 Introduction
Large language models [3, 4] have recently reshaped the field of NLP with their remarkable
performance across a range of complex language benchmarks [86, 105, 107]. However, these
models, with their billions of parameters, usually require significant computational resources. To
democratize LLMs, considerable efforts have been taken to mitigate their high computational cost.
Many of the notable advancements to date have centered on model quantization, a process where
parameters are quantized into lower bit-level representations. The fast pace of LLM quantization
research [57, 58, 87, 154] has led to substantial resource savings for these models [111, 150].

Network pruning [66, 77, 78], on the other hand, shrinks network sizes by removing specific
weights from the model – essentially setting them to zero. Along with quantization, it is often
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Figure 3.1: Illustration of our proposed method Wanda (Pruning by Weights and activations),
compared with the magnitude pruning approach. Given a weight matrix W and input feature
activations X, we compute the weight importance as the elementwise product between the weight
magnitude and the norm of input activations (|W| · ∥X∥2). Weight importance scores are
compared on a per-output basis (within each row in W), rather than globally across the entire
matrix.

considered another popular approach for compressing neural networks. However, it has received
relatively little focus in compressing LLMs. This seems to contradict the trend of model com-
pression in the pre-LLM era, where both approaches have received large amounts of research
effort. A quick review of existing pruning methods reveals a possible reason: they typically
require retraining [74, 95], training from random initializations [67, 70, 79] or even an extensive
iterative process [69, 80]. The sheer amount of computational resources required by LLMs limits
these methods. A recent LLM pruning approach, SparseGPT [59], does not require traditional
retraining, but still demands a computationally intensive weight update process.

The argument concerning the need for retraining and weight update does not fully capture the
challenges of pruning LLMs. One might reasonably expect to obtain a fairly high-performing
initialization point for retraining using existing popular pruning methods. However, a recent
study [59] finds that magnitude pruning [66], a well-established pruning approach, fails dra-
matically on LLMs even with relatively low levels of sparsity. Considering the past success of
magnitude pruning on smaller networks, this result suggests that LLMs, despite having 100 to
1000 times more parameters, are substantially more difficult to prune directly.

In this work, we address this challenge by introducing a straightforward and effective approach,
termed Wanda (Pruning by Weights and activations). This technique successfully prunes LLMs to
high degrees of sparsity without any need for modifying the remaining weights. We are motivated
by an observation from a recent study [58], where a small subset of hidden state features are
exceptionally large in magnitude, a property unique to LLMs. We find that augmenting the
standard weight magnitude pruning metric with the input activations, is surprisingly effective as a
measure for evaluating the weight importance. Specifically, we introduce a novel pruning metric,
where each weight is evaluated by the product of its magnitude and the norm of the corresponding
input activations, estimated using a small set of calibration data. Our method uses this metric to
induce sparsity in pretrained LLMs by comparing weights locally within each output of linear
layers and removing lower priority weights. Our approach is computationally efficient, able to be
executed in a single forward pass, and requires minimal memory overhead.

We empirically evaluate Wanda on the widely adopted LLaMA [22] and LLaMA-2 [23]
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model families. Our results demonstrate Wanda can find efficient sparse networks from pretrained
LLMs, without any retraining or weight update. Our approach Wanda outperforms the standard
magnitude pruning by a large margin and also competes favorably with the prior best LLM
pruning method [59], while requiring a lower computational cost. We hope our work serves as a
baseline for future work in this area, and encourages further exploration in understanding sparsity
in LLMs.

3.3 Preliminaries
Magnitude Pruning [66] is a standard pruning technique to induce sparsity in neural networks.
It removes individual weights based on their magnitudes, where weights with magnitudes below a
certain threshold are removed. In practice, this threshold is typically determined by comparing
weights locally within each layer or globally across the whole network. Despite its simplicity,
magnitude pruning has been used to find extremely sparse networks [69] and now stands out as a
strong baseline approach [95] for neural network sparsification.

Emergent Large Magnitude Features have been observed in Transformer-based large language
models. [58] discover that once LLMs reach a certain scale (in practice, around 6B parameters), a
small set of hidden state features emerges with significantly larger magnitudes than the remaining
ones. These outlier features exhibit several intriguing characteristics. First, they have very large
magnitudes, about 100 times larger than typical hidden state values. Second, they are usually
sparse and exist in certain feature dimensions. Finally, these outlier features are essential for the
predictive capability of LLMs: zeroing out these features at inference time results in significant
degradation of language modeling performance.

3.4 Approach
In this section, we motivate and describe our pruning method, Wanda (Pruning by Weights and
activations), which consists of two simple but essential components. First, we propose a novel
pruning metric that incorporates both weights and input activations into the computation of weight
importance. Second, we compare weights on a per-output basis instead of across the whole
layer, which we find is crucial for pruning LLMs effectively. An overview of Wanda is shown in
Figure 3.1.

A Motivating Example. Consider a neuron with two inputs and corresponding weights: y =
w1x1 + w2x2, where |w1| ≤ |w2|. Now suppose the goal is to select one weight for removal
while incurring less change on the output. The standard approach of magnitude pruning would
always remove weight w1, which may be a good strategy if input features x1 and x2 have similar
magnitudes. However, as recently observed in LLMs [58], the two input features can differ
significantly in scale. For instance, it is possible that |x1| ≫ |x2|, and as a result, |w1x1| ≫
|w2x2|. In this case, we should remove weight w2 instead, because this removal clearly exerts a
smaller influence on the neuron output y than removing weight w1.
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This motivating example with the simplest linear layer hints at a major limitation of magnitude
pruning: it does not take into account input activations, which could play an equally important
role as weight magnitudes in determining the neuron output. For pruning LLMs, this is especially
critical considering the emergent large magnitude features found within them. Thus, as the first
part of our method, we propose a pruning metric designed explicitly for LLMs to handle such a
limitation, while also maintaining the simplicity of magnitude pruning.

Pruning Metric. Consider a linear layer with weight W of shape (Cout, Cin). For language
models, this linear layer takes in input activations X with a shape of (N × L,Cin), where N and
L are batch and sequence dimensions respectively. For each individual weight, we propose to
evaluate its importance by the product of its magnitude and the corresponding input feature norm.
Specifically, the score for the current weight Wij is defined by:

Sij = |Wij| · ∥Xj∥2 (3.1)

where | · | represents the absolute value operator, ∥Xj∥2 evaluates the ℓ2 norm of jth features
aggregated across N × L different tokens, and the final score is computed by the product of these
two scalar values. We find that ℓ2 norm tends to work better than other norm functions (e.g., ℓ1
and ℓ∞) in measuring activation magnitudes. This is possibly because ℓ2 norm is generally a
smoother metric.

This metric is interesting in several aspects. First, when the input channel of the considered
weight has large magnitude features, the weight itself tends to be assigned a larger importance
score even if it has a low magnitude. This tackles the problem we encounter in the motivating
example. The effect can be seen in Figure 3.1, where weights corresponding to the large magnitude
feature are more likely to be preserved with Wanda. Second, its computation is straightforward.
Once we obtain the norm vector of input feature activations, the weight importance can be
calculated using an element-wise dot product. Last, we find empirically that this metric is robust
and can be easily estimated using a modest number of calibration samples, without access to the
original training data.

Comparison Group. Generally, in a pruning method, each weight is first assigned an importance
score, such as the pruning metric we discussed above. These weights are then grouped into
comparison groups where weights within each group are compared against one another. Within
each comparison group, weights with lower importance scores are pruned. Most previous pruning
methods default to comparing weights locally within each layer or globally across the whole
network.

While layer-wise and whole-network comparisons have been the popular options, we find that
pruning LLMs could benefit from a more localized grouping. In our method, we compare and
remove weights on a per-output basis (per row in Figure 3.1), where weight importance scores are
compared locally within each output neuron. Specifically, for a weight Wij that connects input j
to output i inside the linear layer, we define the comparison group for this weight as all weights
connecting to output i:

Gij = {Wuv |u = i} (3.2)
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Algorithm 1 PyTorch code for Wanda

# W: weight matrix (C_out, C_in);
# X: input matrix (N * L, C_in);
# s: desired sparsity, between 0 and 1;

def prune(W, X, s):
metric = W.abs() * X.norm(p=2, dim=0)

_, sorted_idx = torch.sort(metric, dim=1)
pruned_idx = sorted_idx[:,:int(C_in * s)]
W.scatter_(dim=1, index=pruned_idx, src=0)
return W

Under this comparison group, for a pre-defined sparsity ratio s%, we eliminate s% of the weights
connected to each output. This practice may seem counter-intuitive, since we are basically pruning
under a stricter sparsity pattern. However, we find that it is consistently better than layer-wise
pruning for LLMs. Notably, this holds true not only for our proposed pruning metric (Equation 3.1)
but also the standard magnitude metric. This shows that maintaining a balanced pruning ratio
across output features is important for pruning LLMs effectively.

To see if the superiority of pruning per output over per layer holds true in general, we conduct
additional experiments on pruning image classifiers. However, we do not observe similar trend
in image classification models, suggesting that our observations regarding pruning per output
might be unique to LLMs. We hope this intriguing observation encourages practitioners to be
more cautious in choosing the comparison group.

Procedure. Wanda can be implemented and integrated seamlessly within a single forward pass
of the LLM model, where feature norm statistics ∥Xj∥2 are estimated with a set of calibration
data. We provide the PyTorch code of our approach in Algorithm 1. Given a pretrained LLM, we
compute our pruning metric from the initial to the final layers of the network. After pruning a
preceding layer, the subsequent layer receives updated input activations, obtained on the pruned
weights of the previous layer. Then the pruning metrics are computed. A recent method for
pruning LLMs, SparseGPT [59], requires a sophisticated weight update procedure in an iterative
pruning process, while Wanda does not induce any additional weight update.

Structured N:M Sparsity. While Wanda so far has been developed for unstructured sparsity, it
can be easily extended to structured N:M sparsity [139]. Structured N:M sparsity requires that
at most N out of every M contiguous weights to be non-zero. It can leverage NVIDIA’s sparse
tensor cores to accelerate matrix multiplication in practice. Wanda can be naturally extended
to structured N:M sparsity, where we compare weights using the same metric among every M
consecutive weights, for all weights connected to an output.
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Method Weight Update Calibration Data Pruning Metric Sij Complexity
Magnitude ✗ ✗ |Wij| O(1)

SparseGPT ✓ ✓
[
|W|2/diag

[
(XXT + λI)−1

]]
ij

O(d3hidden)

Wanda ✗ ✓ |Wij| · ∥Xj∥2 O(d2hidden)

Table 3.1: Comparison of Wanda with existing pruning algorithms on LLMs.

Remark. We discuss the connection between Wanda and a few existing works. SparseGPT
formalizes the problem of pruning LLMs by solving a local layer-wise reconstruction problem,
where their pruning metric and weight update procedure is inspired from Optimal Brain Surgeon
(OBS) [78]. The pruning metric in SparseGPT is:

Sij =
[
|W|2/diag

(
(XTX+ λI)−1

)]
ij

(3.3)

Here XTX+ λI in the denominator is the Hessian H for the layer-wise reconstruction problem
and λ is the Hessian dampening factor to avoid the collapse of inverse computation. With careful
inspection, we observe that our metric in Equation 3.1 is similar to the above when λ is 0 and only
the diagonal elements of the Hessian matrix XTX+ λI are retained. Starting from the pruning
metric in Equation 3.3, we show the exact reduction steps and corresponding reduction conditions
as follows:

Sij

λ=0
=

[
|W|2/diag

(
(XTX)−1

)]
ij

diagonal
=

approx.

[
|W|2/

(
diag(XTX)

)−1]
ij

=
(
|Wij| · ∥Xj∥2

)2
(3.4)

In the last reduction step, the diagonal of XTX is diag(∥Xj∥22), and thus the denominator can
be simplified to (∥Xj∥22)−1. The resulting metric in Equation 3.4 is the square of our proposed
metric. This simplification substantially reduces the required computation of weight importance,
eliminating the need for computing any matrix inverses.

In the 1980s, [77] have set up a pioneering framework for neural network pruning named
Optimal Brain Damage (OBD). It uses second-order information without off-diagonal elements
in Hessians for faster approximation. Later, Optimal Brain Surgeon (OBS) develops upon OBD
partly by taking into account the off-diagonal elements. Wanda can be seen as a renaissance
of OBD – it may be viewed as applying a process similar to OBD to each neuron, with local
output reconstruction as the objective function, whereas the original OBD uses the global training
objective. This is analogous to the relationship between SparseGPT and OBS.

A comparison of LLM pruning methods can be found in Table 3.1. Computing the pruning
metric of Wanda has a reduced time complexity compared to SparseGPT, because it does not
involve inverse computation. Overall, our method Wanda (Pruning by Weights and activations)
has several attractive properties as an approach for pruning LLMs:

1. It maintains the simplicity of magnitude pruning in the pre-LLM era, requiring no gradient
computation via back-propagation or any second-order Hessian inverses, but is also highly
effective in discovering sparse networks in pretrained LLMs.
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2. Wanda can be done with a single forward pass of the LLM. At each layer, the pruned
weights can be decided in one shot without an iterative procedure. In practice, computing
the pruning metric of Wanda can be 300 times faster in pruning LLMs compared with
SparseGPT.

3. Unlike SparseGPT, our approach entails no weight update on pruned networks, suggesting
that LLMs have effective sparse sub-networks that are exact, instead of them merely existing
in the neighborhood of the original weights.

3.5 Experiments
Models and Evaluation. We evaluate Wanda on the two most widely adopted LLM model
families: LLaMA 7B/13B/30B/65B [22] and LLaMA-2 7B/13B/70B [23] (LLaMA-2 34B is
not released). Results for prior LLM families can be found in Chapter 3.8.2. We measure
the performance of pruned models on zero-shot tasks and language modeling. For zero-shot
evaluation, we use seven tasks from EleutherAI LM Harness [52]. Following previous works on
LLM compression [57, 59], we evaluate the perplexity on the held-out WikiText [63] validation
set.

Baselines. We compare Wanda with two prior pruning approaches. Magnitude pruning [66]
is a simple and strong baseline in which weights are discarded based on their magnitudes.
SparseGPT [59] is a second-order pruning method for LLMs, based on solving a layer-wise
reconstruction problem. In Chapter 3.8.3, we compare with additional pruning methods.

Both Wanda and SparseGPT require calibration data to estimate input statistics (see Table 3.1).
To control this variable factor, we use the exact same set of calibration data as SparseGPT,
which consists of 128 sequences with context length size sampled from C4 training set [36]. In
Chapter 3.8.4, we provide additional analysis on the number of calibration samples.

Sparsity. For all pruning methods, we focus on pruning the linear layers (skipping the first
embedding layer and the final classification head), which account for around 99% of the total
LLM parameters. We impose a uniform sparsity for all linear layers. We evaluate three types of
sparsity: unstructured sparsity, structured 4:8 and 2:4 sparsities. The magnitude pruning baseline
is extended to structured N:M sparsity in a similar spirit to our method, as described in the
previous section.

3.5.1 Zero-Shot Tasks
Comparison with Baselines. In Table 3.2, we show the mean zero-shot accuracies on 7 zero-
shot tasks of pruned LLaMA and LLaMA-2 models. We refer the reader to Chapter 3.8 for
task-wise performance. Across both unstructured and structured sparsities, Wanda outperforms
the well-established magnitude pruning approach by a large margin, while also rivaling the
previous best approach SparseGPT. Given that no fine-tuning takes place, there is a noticeable
gap between sparse pruned LLMs and the original dense LLMs. However, as the model size
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LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 59.99 62.59 65.38 66.97 59.71 63.03 67.08

Magnitude ✗ 50% 46.94 47.61 53.83 62.74 51.14 52.85 60.93
SparseGPT ✓ 50% 54.94 58.61 63.09 66.30 56.24 60.72 67.28
Wanda ✗ 50% 54.21 59.33 63.60 66.67 56.24 60.83 67.03

Magnitude ✗ 4:8 46.03 50.53 53.53 62.17 50.64 52.81 60.28
SparseGPT ✓ 4:8 52.80 55.99 60.79 64.87 53.80 59.15 65.84
Wanda ✗ 4:8 52.76 56.09 61.00 64.97 52.49 58.75 66.06
Magnitude ✗ 2:4 44.73 48.00 53.16 61.28 45.58 49.89 59.95
SparseGPT ✓ 2:4 50.60 53.22 58.91 62.57 50.94 54.86 63.89
Wanda ✗ 2:4 48.53 52.30 59.21 62.84 48.75 55.03 64.14

Table 3.2: Mean zero-shot accuracies (%) of pruned LLaMA and LLaMA-2 models. Wanda
performs competitively against prior best method SparseGPT, without introducing any weight
update.

increases, this accuracy gap diminishes. Remarkably, unstructured 50% sparse LLaMA-65B and
LLaMA-2-70B is able to match the zero-shot accuracies of their dense counterparts.

Large Sparse vs. Small Dense. It might be of interest to some readers on the comparison
between large sparse LLMs and small dense LLMs with similar parameter counts. For zero-shot
performance, we find the trend differs across the types of sparsity. For unstructured sparsity, large
sparse LLMs are often better than small dense LLMs on zero-shot performance: unstructured
50% sparse LLaMA-65B (66.67%) outperforms dense LLaMA-30B (65.38%); unstructured 50%
sparse LLaMA-2-13B (60.83%) outperforms dense LLaMA-7B (59.71%). Intriguingly, this gap
is much larger for few-shot tasks (see Chapter 3.8). For structured sparsity, the trend is reversed:
without any fine-tuning, large sparse LLMs have worse zero-shot performance than small dense
LLMs in general.

3.5.2 Language Modeling
In Table 3.3, we report the perplexity of pruned LLaMA and LLaMA-2 models. For robustness
analysis under random sampling of the calibration data, see Chapter 3.8.

Without any weight update, Wanda outperforms the established pruning approach of magnitude
pruning by a large margin. For instance, for LLaMA-7B, Wanda is able to find sparse networks
with a perplexity of 7.26, significantly better than the magnitude pruning baseline 17.29. This
result suggests that exact and effective sparse sub-networks exist for LLMs. For unstructured
50% sparsity, Wanda performs on par with the prior best approach SparseGPT. We provide results
for higher sparsity levels (60% and 80%) in Chapter 3.8. The comparison between Wanda and
SparseGPT is mixed for structured sparsity. On smaller models (e.g., 7B), SparseGPT outperforms

18



LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12

Magnitude ✗ 50% 17.29 20.21 7.54 5.90 14.89 6.37 4.98
SparseGPT ✓ 50% 7.22 6.21 5.31 4.57 6.51 5.63 3.98
Wanda ✗ 50% 7.26 6.15 5.24 4.57 6.42 5.56 3.98
Magnitude ✗ 4:8 16.84 13.84 7.62 6.36 16.48 6.76 5.54
SparseGPT ✓ 4:8 8.61 7.40 6.17 5.38 8.12 6.60 4.59
Wanda ✗ 4:8 8.57 7.40 5.97 5.30 7.97 6.55 4.47
Magnitude ✗ 2:4 42.13 18.37 9.10 7.11 54.59 8.33 6.33
SparseGPT ✓ 2:4 11.00 9.11 7.16 6.28 10.17 8.32 5.40
Wanda ✗ 2:4 11.53 9.58 6.90 6.25 11.02 8.27 5.16

Table 3.3: WikiText perplexity of pruned LLaMA and LLaMA-2 models. Wanda performs
competitively against prior best method SparseGPT, without introducing any weight update.

Wanda on 2:4 sparsity. Wanda is more favorable for larger models, e.g., LLaMA-30B (2:4 and
4:8) and LLaMA-2-70B (2:4).

3.5.3 Speedup Evaluation

Pruning Speed. The theoretical computational complexity of Wanda is lower than SparseGPT
(Table 3.1). Here we compare their empirical pruning speed. Specifically, we measure the
accumulated time for computing the pruning metric at each layer (excluding the forward pass
process shared by both methods) on NVIDIA A6000 GPUs. Results are shown in Table 3.4. Wanda
incurs negligible time overhead relative to SparseGPT. The fast speed of Wanda is particularly
useful when pruning needs to be performed on a real-time basis, e.g., training sparse models from
scratch [153] and finding the optimal sparsity [124].

Inference Speed. We evaluate the inference speedup for structured 2:4 sparsity on NVIDIA
A6000 GPUs. Following the evaluation setup of [59], we measure the latency of matrix multiplica-
tion in linear layers. We perform simulation analysis using the high-performance GEMM kernel in
NVIDIA CUTLASS library. Results for LLaMA-65B (batch size of 1) can be found in Table 3.5.
Structured 2:4 sparsity is able to bring notable inference speedup (around 1.6×) for linear layers
in LLMs. For end to end latency, we observe a speedup of 1.24× on LLaMA-7B (251ms as
compared to 312ms). Last, we emphasize that the inference speedup is not unique to our pruning
method but is delivered by the inherent power of sparsity for speeding up computation.
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LLaMA

Method 7B 13B 30B 65B

SparseGPT 203.1 339.0 810.3 1353.4
Wanda 0.54 0.91 2.9 5.6

Table 3.4: Computing the pruning metric of Wanda can be much faster (seconds) than SparseGPT.

LLaMA Layer Dense 2:4 Speedup

q/k/v/o proj 3.49 2.14 1.63×
up/gate proj 9.82 6.10 1.61×
down proj 9.92 6.45 1.54×

Table 3.5: Speedup of matrix multiplication (ms) in LLaMA-65B, for structured 2:4 sparsity.

3.6 Analysis
We study several aspects of Wanda to better understand its effectiveness in pruning LLMs. We
use the LLaMA-7B model and prune to unstructured 50% sparsity, unless otherwise specified.

Fine-tuning. We study how fine-tuning could recover the performance drop of pruned LLMs, as
observed in the previous section. We investigate two strategies for fine-tuning LLMs: LoRA [134]
fine-tuning and full parameter dense fine-tuning. Fine-tuning is conducted on C4 training dataset
and the objective is the pre-training auto-regressive loss. The pruned mask is kept fixed during
fine-tuning. We fine-tune pruned LLaMA-7B with all three types of sparsities: unstructured
50%, structured 4:8 and 2:4. Table 3.6 summarizes the results for mean zero-shot accuracies and
perplexity after fine-tuning Wanda pruned LLaMA-7B models. See Chapter 3.8 for task-wise
performance.

LoRA Fine-tuning. We enforce a limited computational budget (1 GPU and 12 hours). The low
rank (r = 8) adapter is applied on the query and value projection matrices in attention layers. For
LLaMA-7B, LoRA introduces only around 0.06% additional parameters, leaving the total sparsity

Evaluation Dense Fine-tuning 50% 4:8 2:4

Zero-Shot 59.99
✗ 54.21 52.76 48.53

LoRA 56.53 54.87 54.46
Full 58.15 56.65 56.19

Perplexity 5.68
✗ 7.26 8.57 11.53

LoRA 6.84 7.29 8.24
Full 5.98 6.63 7.02

Table 3.6: Fine-tuning can mitigate the gap to dense LLM.
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level still around 50%. With LoRA fine-tuning, we are able to restore the performance of pruned
LLMs by a non-trivial amount. One notable instance is that LoRA fine-tuning improves the zero-
shot performance of structured 2:4 sparse LLaMA-7B from 48.53% to 54.46%, outperforming
the original unstrucutred 50% sparse LLaMA-7B (54.21%).

Full Parameter Fine-tuning. We conduct full parameter dense fine-tuning. We enforce a
limited computational budget (4 GPU and 3 days). Compared to LoRA fine-tuning, full parameter
dense fine-tuning is able to mitigate the gap between pruned LLMs and dense LLMs even further.
For unstructured 50% sparsity, full parameter fine-tuning could improve pruned LLaMA-7B from
54.21% to 58.15% in terms of zero-shot accuracy, close to that of dense LLaMA-7B (59.99%).

Pruning Configuration. Wanda differs from previous methods in both the pruning metric and
the comparison group. We conduct ablation experiments to better understand their impact. The
three pruning metrics can be found in Table 3.1. SparseGPT adopts a local comparison group
inside a layer, where weights connected to 128 consecutive input channels form a group. Wanda
groups weights connected with a single output channel. Therefore, we ablate two blocksize
options (128 and 1) and the input/output choice. For simplicity, we use (input/output, blocksize)
to denote each local comparison group, e.g., (input, 1). For this experiment, we do not perform
the weight update procedure in SparseGPT to focus on the pruning configuration.

Comparison Group

Pruning Metric layer (input, 1) (input, 128) (output, 1) (output, 128)

Magnitude: |Wij | 17.29 8.86 16.82 13.41 17.47
SparseGPT:

[
|W|2/diag(H−1)

]
ij

7.91 8.86 8.02 7.41 7.74

Wanda: |Wij | · ∥Xj∥ 7.95 8.86 8.12 7.26 7.71

Table 3.7: Ablation on the pruning configuration. Bold results denote the best comparison group
for each pruning metric. Underscored results indicate the default pruning configuration of each
method.

The results are shown in Table 3.7. We refer the reader to Chapter 3.8.1 for analysis on image
classifiers and Chapter 3.8 for analysis on previous LLMs. The default pruning configuration of
Wanda delivers the best pruned model (perplexity 7.26). Interestingly, for the magnitude metric,
comparing weights of the same input neuron (input, 1) yields a perplexity of 8.86, significantly
better than other grouping options. Three methods also produce equivalent pruning results as
under this comparison group – the input is the same, thus weight ranking only depends on weight
magnitude. This finding further highlights the importance of using a proper comparison group for
pruning LLMs, even for the classical magnitude pruning approach.

Robustness to Calibration Samples. We vary the number of calibration samples by selecting
different sample sizes ranging between 1 and 256. Results are summarized in Figure 3.2. We
see a clear difference in trend as the size of calibration data changes, where Wanda is much
more robust when there are few calibration samples. Notably, even with a single sample, pruned
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Figure 3.2: Wanda is more robust with less data.

networks obtained by Wanda have a perplexity of 7.66. This may be because input norm statistics
∥Xj∥ could be much easier to estimate than the full inverse hessian H−1 of the local layer-wise
reconstruction problem.

Weight Update. We characterize the conditions under which the weight update process in
SparseGPT can improve the effectiveness of pruning LLMs. We experiment with two ways of
applying weight update: sequential and iterative. A sequential update means that at each layer, the
full pruned mask is first computed and weight update is performed on the remaining weights. An
iterative update means that the pruning and weight update steps proceed iteratively within each
layer. SparseGPT adopts an iterative update procedure every 128 input channels, as it was found
to give more accurate results.

Pruning Configuration
Weight Update

Sparsity

Pruning Metric Comparison Group 50% 4:8 2:4

Magnitude: |Wij |
layer ✗ 17.59 16.84 42.13
layer Sequential 12.56 13.37 21.36

(input, 128) Iterative 26.77 36.98 47.61

Wanda : |Wij | · ∥Xj∥
(output, 1) ✗ 7.26 8.57 11.53
(output, 1) Sequential 7.32 8.59 10.89
(input, 128) Iterative 7.26 8.68 11.43

Table 3.8: Effects of the weight update. It offers little or negligible improvement to Wanda.

Effects of the weight update on magnitude pruning and Wanda are summarized in Table 3.8.
We study these two pruning methods because they do not involve any weight update by default.
An iterative update changes the comparison group for unstructured pruning, which we denote in
the table as (input, 128). We make several interesting observations:
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• For all considered sparsities, weight update can improve magnitude pruning by a large
margin.

• For unstructured 50% and 4:8 sparsities, weight update does not bring any improvement to
Wanda.

• For 2:4 sparsity, the improvement (from 11.53 to 10.89) is marginal. Note that the best 2:4
sparse model (10.89) we obtained here is better than that obtained by SparseGPT (11.00 in
Table 3.3).

Last, we examine an extreme sparsity level (70%), where weight update can improve Wanda
from 84.50 to 29.65. However, the best pruned model (29.65) lags far behind the dense LLaMA-7B
(5.68).

3.7 Related Work
Network Pruning and Sparsity. Pruning is a popular technique for compressing neural networks
through the elimination of weights, yielding sparse networks [77, 78]. It can be broadly categorized
into structured and unstructured approaches.

Structured pruning methods [50, 51, 55, 93, 94, 125, 142], sometimes referred to as activation
pruning [49, 67], remove entire structured components of a network, facilitating efficient GPU
speedups. Some existing methods [46, 47] have explored structured pruning based on activation
statistics of neuron/filter output, e.g. percentage of zero activations [48] and activation mean [119].
Recently, [112] have studied structured pruning of LLMs. [56, 91] and [60] have demonstrated the
existence of prompt-dependent and task-specific sparsity in the structural components of LLMs,
e.g., attention heads and MLP neurons.

Unstructured methods [66, 81, 116, 117, 118, 123] like magnitude pruning operate at the
individual weight level, maintaining performance even at higher sparsity levels. Existing pruning
methods usually require either modifications to the training procedure [68, 85], retraining the
pruned networks to regain accuracy [54, 74], or an even more computationally intensive iterative
retraining process [80, 82]. However, scaling these methods to LLMs with billions of param-
eters presents a challenge, as the required training process demands substantial computational
resources [64, 106].

Pruning with Limited Data. Most related to our approach is a recent line of work on pruning
with limited data [73, 75, 76, 83]. Such methods require no modification to the original training
procedure and also no retraining of the pruned networks on the full training dataset. The primary
aim of these methods is to preserve performance during the pruning procedure, assuming access
to a limited and small amount of data, also referred to as the calibration data. In order to mitigate
the accuracy drop, a layer-wise reconstruction problem [73] is solved to minimize the change of
output evaluated on the calibration data. Existing solvers [75, 84] for the layer-wise reconstruction
problem rely on heavy computation of second-order Hessian inverses, which do not scale to the
large hidden state size of LLMs. SparseGPT [59] develops an efficient weight update procedure
for LLMs via synchronized second-order Hessian updates.

Emergent Properties of LLMs. Our work is also related to recent studies on the existence
of large magnitude outlier features in large language models [90, 120, 135, 136, 137, 138]. [58]
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demonstrate that when LLMs exceed a certain parameter scale (e.g., 6B), large magnitude features
start to emerge and strongly affect all layers, which can be seen as an emergent property of
LLMs [58, 86, 89]. They also pinpoint these emerging features as the reason why existing
quantization methods fail. This observation has spurred the development of various quantization
schemes [57, 58, 147, 150, 155] tailored specifically for LLMs to handle outlier features. Our
work extends this understanding, demonstrating that outlier features should also serve as pivotal
indicators of which weights to prune in LLMs.

3.8 Additional Results

3.8.1 Image Classifiers
We study how Wanda would perform against magnitude pruning on tasks where the latter has
been widely used. We conduct a study on ImageNet-1K [127], a standard image classification
task where magnitude pruning has been extensively studied [67, 95]. We consider two modern
vision architectures: ConvNeXt [128] and Vision Transformer (ViT) [130]. We choose these two
architectures mainly for two reasons: first, as LLMs are based on Transformers, we would like
to test if our observations on LLMs still hold on Transformers for other tasks; second, as we are
evaluating on image classification, we are interested in examining how these pruning methods
work on ConvNet models, with ConvNeXt being a representative architecture.

We use two ImageNet-1K pretrained models: ConvNeXt-B and DeiT-B, with a top-1 accuracy
of 83.8% and 81.8% respectively. We prune the linear layers only (for ConvNeXt, this includes
equivalent 1×1 convolution layers). For calibration data, we sample 4096 images from ImageNet
training set. We observe that 4096 samples lead to a stable result for our pruning metric, beyond
which we notice only a marginal effect. We report the accuracy of one-shot pruned models without
any subsequent retraining.

We first study whether pruning per output is superior over pruning per layer for pruning image
classifiers. In Figure 3.3, we show comparison results for both the magnitude metric and the
pruning metric of Wanda. We can see that for both ConvNeXt-B and DeiT-B, layer-wise pruning
is slightly better than pruning per output. We then compare the pruning metric of Wanda and the
magnitude metric on layer-wise pruning. Results are shown in Figure 3.4. Our novel pruning
metric leads to better results than magnitude pruning, especially at high sparsities (e.g., 70% and
80%).

3.8.2 Previous LLMs
In addition to LLaMA and LLaMA-2, we experiment with three previous LLM model families:
namely OPT [64], BLOOM [65] and Pythia [141].

Comparison with Baselines. For OPT and Pythia, we experiment with varying sparsity levels
(10% to 50%). We conduct additional evaluation on OPT and BLOOM models with various sizes.
Results are shown in Table 3.9, Table 3.10 and Table 3.11 respectively. Our observations are as
follows:
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Figure 3.3: Analysis of comparison groups on pruning image classifiers.

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

ConvNeXt

Magnitude
Wanda

0.0 0.4 0.5 0.6 0.7 0.8
Sparsity

0

20

40

60

80

A
cc

ur
ac

y

DeiT

Magnitude
Wanda

Figure 3.4: Our pruning metric outperforms the magnitude metric on pruning image classifiers.

• Unlike LLaMA and LLaMA-2, the well-established magnitude pruning approach fails
catastropically on OPT-13B and Pythia-12B, even for low sparsity levels (e.g., 20%). This
result further highlights the limitations of magnitude pruning for LLMs, as discussed in
Section 3.4.

• Unlike magnitude pruning, Wanda successfully prunes these LLMs to much higher sparsities
across various LLM model families, without any weight update on the kept weights. This
result shows that LLMs have effective sub-networks that are exact. We hope this observation
could contribute to a better understanding of sparsity in LLMs.

• There are cases where Wanda slightly underperforms SparseGPT, especially for OPT models
(see Table 3.10), suggesting that for OPT, there may be a tradeoff between pruning speed
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and pruning accuracy. However, the gap between SparseGPT and Wanda tends to get
smaller as model sizes increase. This can be seen in Table 3.10 and Table 3.11.

• At lower sparsities (e.g., 20%), Table 3.9 indicates that the computationally intensive weight
update process may be unnecessary, as Wanda yields comparable or slightly superior results.

Sparsity

Model Dense Pruning Method Weight Update 10% 20% 30% 40% 50%

OPT-13B 10.13
Magnitude ✗ 14.45 9e3 1e4 1e4 1e4
SparseGPT ✓ 10.11 10.10 10.12 10.35 11.19

Wanda ✗ 10.09 10.07 10.09 10.63 11.42

Pythia-12B 8.59
Magnitude ✗ 127.76 2e5 7e5 2e5 3e5
SparseGPT ✓ 8.59 8.65 8.86 9.39 11.02

Wanda ✗ 8.59 8.60 8.85 9.31 11.27

Table 3.9: Pruning Pythia-13B and OPT-13B with various sparsity levels.

OPT

Method Weight Update Sparsity 125m 350m 1.3B 2.7B 6.7B 13B

Dense - 50% 27.66 22.00 14.62 12.47 10.86 10.13

Magnitude ✗ 50% 7e3 6e3 1e4 9e3 9e4 2e4
SparseGPT ✓ 50% 37.07 34.76 17.44 13.48 11.57 11.19
Wanda ✗ 50% 38.96 35.92 19.12 14.28 11.94 11.42

Table 3.10: Pruning OPT family models with various sizes.

BLOOM

Method Weight Update Sparsity 560m 1.1B 1.7B 3B 7.1B

Dense - 50% 22.42 17.68 15.39 13.48 11.37

Magnitude ✗ 50% 2e10 1e6 2e5 8e6 2e6
SparseGPT ✓ 50% 28.92 21.35 18.88 16.76 13.96
Wanda ✗ 50% 30.74 22.72 19.79 16.45 13.55

Table 3.11: Pruning BLOOM family models with various sizes.
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Comparison Group We test if our observation regarding pruning per output holds true for
other LLM model families. We experiment on OPT [64] and BLOOM [65]. In Table 3.12 and
Table 3.13, we provide results comparing pruning per layer and pruning per output for these two
LLM model families. The pruning metric is fixed to be our proposed metric: |Wij| · ∥Xj∥. We
can see that our findings regarding the comparison group are not limited to LLaMA. For OPT and
BLOOM model families, pruning per output consistently outperforms pruning per layer.

OPT

Comparison Group Sparsity 125m 350m 1.3B 2.7B 6.7B 13B

per layer 50% 46.95 38.97 22.20 22.66 15.35 13.54
per output 50% 38.96 36.19 19.42 14.22 11.97 11.42

Table 3.12: Comparison of pruning per layer versus per output for OPT models.

BLOOM

Comparison Group Sparsity 560m 1.1B 1.7B 3B 7.1B

per layer 50% 34.57 26.26 22.55 18.22 15.31
per output 50% 30.74 22.72 19.79 16.45 13.55

Table 3.13: Comparison of pruning per layer versus per output for BLOOM models.

3.8.3 Additional Baselines
We compare with several prior activation pruning methods. These approaches remove entire
neurons in the network based on certain statistics of the neuron output: mean and standard
deviation [119], correlation [47] and mean squared norm [46]. We show the results of pruning
LLaMA-7B in Table 3.14. We compute these output statistics using the calibration set and remove
neurons with smaller values. We observe that these activation pruning methods are unable to
prune LLMs effectively.

We also compare with several prior methods on pruning BERT [18]: SNIP [129], BERT-
LTH [144], Movement [68], Platon [131] and PINS [92]. In Table 3.15, we provide a summary of
existing pruning methods, mostly for pruning BERT. A key distinction of these methods and our
work is that they interleave pruning heavily with the fine-tuning process. Another difference is
that BERT pruning methods focus on performance on a downstream task, rather than preserving
the general performance of pretrained language models.

We adopt these prior methods for pruning LLMs, where the goal is to preserve the language
modeling ability. Thus we use the pre-training auto-regressive loss to compute their pruning
metrics. We evaluate two settings: one-shot pruning and one-shot pruning followed by fine-tuning.
For one-shot pruning, we use the pruning metrics listed in Table 3.15 to prune LLMs. We fine-tune
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the pruned LLMs within a limited computational budget, i.e., one day. Results are summarized in
Table 3.16. We observe that these pruning methods are not effective when adapted for pruning
LLMs.

Sparsity

Model Dense Activation Statistics 10% 20% 30% 40% 50%

LLaMA-7B 5.68

Mean 1e5 2e5 3e5 3e5 3e5
Standard Deviation 161 649 7e3 1e5 2e5

Correlation 1e4 7e4 2e5 2e5 2e5
Mean Squared Norm 16.43 98.13 9e2 1e5 4e5

Table 3.14: Results for activation pruning methods.

Pruning Method Pruning Type Pruning Metric Training Procedure

SNIP Unstructured Loss Sensitivity Pruning at Initialization
BERT-LTH Unstructured Magnitude Fine-tuning BERT
Movement Unstructured Loss Sensitivity Fine-tuning BERT
Platon Unstructured Loss Sensitivity Fine-tuning BERT
PINS Unstructured Loss Sensitivity Fine-tuning BERT

Table 3.15: Summary of prior pruning methods on BERT.

Pruning method

Model Dense Fine-tuning SNIP BERT-LTH Movement Platon PINS Wanda

LLaMA-7B 5.68
✗ 231.48 17.29 349.33 124.91 89.12 7.26
✓ 102.32 12.43 168.17 102.34 72.13 6.28

Table 3.16: Comparisons with prior pruning methods on BERT (unstructured 50% sparsity).

3.8.4 Number of Calibration Samples
In the main paper, the default number of calibration samples is 128. This choice is adopted
from [59], which was selected on the OPT model family [64]. Here we conduct a detailed analysis
on the effect of the number of calibration samples for LLaMA and LLaMA-2 model families. We
show the results for pruning LLaMA-7B and LLaMA-2-7B with unstructured 50% sparsity in
Table 3.17. We find that there is a slight improvement in performance of pruned LLMs when the
size of calibration set goes beyond 128.
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Model Method 1 16 32 64 128 256 512 1024 2048

LLaMA-7B
SparseGPT 10.22 7.61 7.36 7.29 7.26 7.20 7.19 7.23 7.20

Wanda 7.46 7.27 7.28 7.28 7.26 7.30 7.26 7.25 7.26

LLaMA-2-7B
SparseGPT 8.63 6.67 6.62 6.61 6.53 6.52 6.50 6.49 6.49

Wanda 6.53 6.45 6.46 6.45 6.45 6.45 6.45 6.45 6.45

Table 3.17: WikiText validation perplexity of pruned LLaMA and LLaMA-2 under various
number of calibration samples, with 50% sparsity.

3.8.5 Robustness Analysis

In this part, we perform a robustness analysis of our results in Section 3.5.2. The result in Table 3.3
is evaluated under a fixed calibration set. Since both SparseGPT and Wanda require calibration
data to estimate input statistics, we sample different calibration sets under 5 random seeds and
evaluate these two pruning methods. In Table 3.18, we report the perplexity (mean and standard
deviation) of pruned LLaMA models under 5 random seeds. In many cases, the variance across
random seeds is lower for Wanda, suggesting that Wanda is more stable with variations in the
calibration sets.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 7B 13B

Dense - 0% 5.68 5.09 5.12 4.57

Magnitude ✗ 50% 17.29 20.21 14.89 6.37
SparseGPT ✓ 50% 7.25 (±0.03) 6.24 (±0.02) 6.52 (±0.02) 5.63 (±0.01)
Wanda ✗ 50% 7.25 (±0.01) 6.18 (±0.01) 6.44 (±0.01) 5.59 (±0.01)

Magnitude ✗ 4:8 16.84 13.84 16.48 6.76
SparseGPT ✓ 4:8 8.67 (±0.08) 7.43 (±0.03) 8.05 (±0.03) 6.59 (±0.04)
Wanda ✗ 4:8 8.65 (±0.01) 7.43 (±0.03) 7.98 (±0.01) 6.56 (±0.01)

Magnitude ✗ 2:4 42.13 18.37 54.59 8.33
SparseGPT ✓ 2:4 10.94 (±0.23) 9.08 (±0.04) 10.44 (±0.42) 8.28 (±0.05)
Wanda ✗ 2:4 11.48 (±0.05) 9.60 (±0.04) 11.10 (±0.09) 8.28 (±0.02)

Table 3.18: WikiText validation perplexity of pruned LLaMA and LLaMA-2 models. We report
the mean and standard deviation under 5 random seeds.

3.8.6 Higher Sparsity

In Section 3.5, we have evaluated unstructured pruning with a sparsity level of 50%. This is to
follow the evaluation setup of [59]. In this part, we evaluate on higher sparsity levels, i.e., 60%
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and 80%. Results for these two sparsity levels are shown Table 3.19 and Table 3.20 respectively.
At 60% sparsity, Wanda remains competitive with SparseGPT. At 80% sparsity, SparseGPT is able
to outperform Wanda, but the performance drop compared to the dense counterpart is significant.
The best 80% sparse model (25.86) underperforms the smallest dense LLaMA-7B model (5.68)
by a large gap. This suggests that at extreme sparsity levels, it may be better to use a small dense
model trained to convergence instead.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12

Magnitude ✗ 60% 6e2 2e2 27.67 9.34 4e3 11.23 8.21
SparseGPT ✓ 60% 10.51 8.56 6.66 5.82 9.58 7.80 4.98
Wanda ✗ 60% 10.66 8.56 6.49 5.83 9.71 7.75 4.98

Table 3.19: WikiText validation perplexity of pruned LLaMA and LLaMA-2 models with unstruc-
tured 60% sparsity.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12

Magnitude ✗ 80% 1e5 3e4 1e5 2e4 nan 5e4 3e4
SparseGPT ✓ 80% 2e2 1e2 54.98 32.80 1e2 1e2 25.86
Wanda ✗ 80% 5e3 4e3 2e3 2e3 5e3 2e3 1e2

Table 3.20: WikiText validation perplexity of pruned LLaMA and LLaMA-2 models with unstruc-
tured 80% sparsity.

3.8.7 Few-shot Results on MMLU

Our experiments in Section 3.5.1 focus on zero-shot evaluation. However, LLMs are also known
for their ability to learn in context. In this part, we conduct additional evaluation on few-shot tasks.
Specifically, we choose the Massive Multitask Language Understanding benchmark (MMLU) [88].
In alignment with the evaluation methodology of [22], we perform 5-shot evaluation. In Table 3.21,
we report the mean accuracies for both dense LLMs and sparse LLMs with unstructured 50%
sparsity. In the few-shot setting, Wanda performs competitively with SparseGPT. Notably, large
sparse LLMs surpass smaller dense counterparts, e.g., sparse LLaMA-13B/LLaMA-2-13B versus
dense LLaMA-7B/LLaMA-2-7B. This trend can not be observed from the standard magnitude
pruning approach.
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LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 7B 13B

Dense - 0% 39.85 52.92 52.08 61.69

Magnitude ✗ 50% 30.69 30.69 32.14 48.76
SparseGPT ✓ 50% 34.43 45.08 38.68 54.83
Wanda ✗ 50% 33.49 46.04 39.27 55.01

Table 3.21: 5-shot results (mean accuracies %) on MMLU for unstructured 50% sparsity.

3.8.8 Fine-tuning
In Table 3.6 of Section 3.6, we report the mean zero-shot accuracies after fine-tuning Wanda
pruned LLaMA-7B models. In this part, we report the task-wise performance of these fine-tuned
models. Results are summarized in Table 3.22. For per-task accuracies, most of the performance
drop during pruning can be recovered through fine-tuning. Note that here we are performing
limited fine-tuning with a computational budget (12 hours for LoRA fine-tuning and 3 days for
full parameter fine-tuning). It remains to be seen if the gap between sparse pruned LLMs and the
dense counterparts can be fully recovered given more computational budget.

Sparsity Fine-tuning BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

Dense - 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

50%
✗ 71.22 55.60 51.85 66.06 69.11 36.86 28.80 54.21

LoRA 72.90 60.79 55.36 67.48 71.42 37.97 29.80 56.53
Full 74.50 62.84 55.83 69.02 73.49 39.20 32.20 58.15

4:8
✗ 70.97 58.24 46.81 65.83 65.53 33.97 28.00 52.76

LoRA 71.24 60.04 54.47 66.14 67.68 35.32 29.20 54.87
Full 73.32 60.99 55.21 66.80 71.76 36.46 32.00 56.65

2:4
✗ 69.30 51.99 42.06 62.75 60.94 28.07 24.60 48.53

LoRA 70.32 64.98 52.53 65.04 67.00 33.53 27.80 54.46
Full 73.21 61.34 54.86 66.18 70.24 35.68 31.80 56.19

Table 3.22: The gap between pruned LLMs and dense LLMs can be largely mitigated via fine-
tuning.

3.8.9 Zero-Shot Tasks
For zero-shot results in Section 3.5.1, the 7 evaluated zero-shot tasks are: BoolQ [98], RTE [99],
HellaSwag [100], WinoGrande [101], ARC Easy and Challenge [102], and OpenbookQA [103].
For reproducibility, we used commit df3da98 on the main branch. All tasks were evaluated
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on task version 0 except for BoolQ, where the evaluated version was 1. We show the task-wise
performance in Table 3.23,3.24,3.25,3.26,3.27 and 3.28.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 54.59 54.51 45.49 59.19 58.84 33.53 22.40 46.94
SparseGPT 72.05 54.15 51.43 67.88 71.38 37.71 30.00 54.94

Wanda 71.22 55.60 51.85 66.06 69.11 36.86 28.80 54.21

13B

Dense 77.89 70.4 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 54.89 51.26 44.16 63.14 58.80 33.79 27.20 47.61
SparseGPT 76.97 61.01 54.95 71.67 72.47 41.98 31.20 58.61

Wanda 75.90 62.82 55.71 71.98 73.19 43.52 32.20 59.33

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 64.34 50.18 50.59 66.54 72.39 43.77 29.00 53.83
SparseGPT 82.32 62.45 59.15 75.22 78.96 48.56 35.00 63.09

Wanda 81.90 65.34 60.93 73.48 79.29 49.66 34.60 63.60

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 79.15 62.45 61.90 74.74 76.40 49.57 35.00 62.74
SparseGPT 84.60 70.76 63.90 77.43 79.35 50.85 37.20 66.30

Wanda 84.70 71.48 64.55 76.87 79.75 50.51 38.80 66.67

Table 3.23: Accuracies (%) of LLaMA for 7 zero-shot tasks with unstructured 50% sparsity.
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Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 51.19 50.54 46.73 60.69 58.96 30.89 23.20 46.03
SparseGPT 73.06 58.12 47.88 65.98 66.75 32.42 25.40 52.80

Wanda 70.97 58.24 46.81 65.83 65.53 33.97 28.00 52.76

13B

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 61.07 51.26 48.91 65.11 63.26 35.67 28.40 50.53
SparseGPT 76.61 57.76 51.24 70.17 71.17 37.20 27.80 55.99

Wanda 74.89 57.89 51.26 70.56 70.29 37.97 29.80 56.09

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 63.55 50.18 49.45 65.75 73.36 42.83 29.60 53.53
SparseGPT 78.69 61.73 56.15 74.35 76.94 46.08 31.60 60.79

Wanda 77.38 58.80 58.79 74.28 77.34 46.46 34.00 61.00

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 74.95 68.23 60.85 74.27 76.45 47.61 32.80 62.17
SparseGPT 84.35 68.95 61.00 77.19 78.75 48.46 35.40 64.87

Wanda 84.29 70.92 59.54 76.64 79.00 48.83 35.60 64.97

Table 3.24: Accuracies (%) of LLaMA for 7 zero-shot tasks with 4:8 sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 53.09 55.60 42.30 59.91 53.28 27.13 21.80 44.73
SparseGPT 70.46 60.65 42.99 64.88 61.49 30.12 23.60 50.60

Wanda 69.30 51.99 42.06 62.75 60.94 28.07 24.60 48.53

13B

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 60.95 49.10 45.81 62.75 58.75 31.06 27.60 48.00
SparseGPT 72.14 55.23 48.11 68.98 66.71 34.98 26.40 53.22

Wanda 70.21 53.43 46.74 68.82 65.82 33.87 27.20 52.30

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 65.11 52.35 51.72 66.22 70.88 38.23 27.60 53.16
SparseGPT 75.60 62.13 53.10 72.61 75.13 41.98 31.80 58.91

Wanda 74.68 63.80 54.41 72.93 74.41 42.06 32.20 59.21

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 77.9 64.98 58.65 72.85 75.15 45.05 34.40 61.28
SparseGPT 83.15 65.34 57.20 76.72 78.20 45.18 32.20 62.57

Wanda 83.58 66.79 56.36 75.82 78.23 45.56 33.60 62.84

Table 3.25: Accuracies (%) of LLaMA for 7 zero-shot tasks with 2:4 sparsity.
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Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 63.00 57.04 49.13 63.30 64.10 34.64 26.80 51.14
SparseGPT 75.02 54.15 52.37 69.85 73.27 39.85 29.20 56.24

Wanda 75.99 53.43 52.49 68.19 72.77 39.59 31.20 56.24

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 57.61 55.96 54.40 65.27 70.54 38.40 27.80 52.85
SparseGPT 81.44 65.34 55.83 72.77 74.83 42.24 32.60 60.72

Wanda 81.84 64.02 56.90 71.35 76.18 43.52 32.00 60.83

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 70.55 60.65 61.50 73.48 75.70 49.23 35.40 60.93
SparseGPT 83.55 70.40 63.80 78.85 82.40 53.75 38.20 67.28

Wanda 82.50 73.65 64.10 78.14 80.80 52.65 37.40 67.03

Table 3.26: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with unstructured 50% sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 63.00 52.35 50.08 62.43 64.73 35.92 26.00 50.64
SparseGPT 72.69 55.23 48.20 68.11 69.15 35.84 27.40 53.80

Wanda 73.91 53.79 46.45 66.61 66.71 34.13 25.80 52.49

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 63.33 57.76 53.96 64.40 68.48 35.75 26.00 52.81
SparseGPT 79.97 66.79 52.01 70.64 73.61 41.04 30.00 59.15

Wanda 80.26 65.62 52.05 69.48 73.88 41.54 28.40 58.75

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 70.95 59.21 60.05 74.11 76.25 46.76 34.60 60.28
SparseGPT 82.20 72.20 61.45 77.82 80.85 51.19 35.20 65.84

Wanda 84.30 71.80 61.90 76.24 80.40 51.80 36.00 66.06

Table 3.27: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with 4:8 sparsity.
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Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 56.23 51.35 42.27 60.93 59.18 27.31 21.80 45.58
SparseGPT 70.52 58.84 43.26 66.69 64.10 29.97 23.20 50.94

Wanda 67.65 53.07 40.92 62.43 61.78 31.20 24.20 48.75

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 65.69 54.15 50.13 62.04 62.46 31.74 23.00 49.89
SparseGPT 76.79 59.38 46.58 68.67 70.62 36.60 25.40 54.86

Wanda 76.80 61.22 47.82 66.90 69.24 36.82 26.40 55.03

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 73.20 57.04 58.40 74.27 76.15 45.22 35.40 59.95
SparseGPT 79.50 70.76 59.00 76.64 78.95 48.55 33.80 63.89

Wanda 82.20 69.85 59.34 76.23 79.30 47.26 34.80 64.14

Table 3.28: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with 2:4 sparsity.
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3.9 Conclusion
In this work, we propose a simple and effective method for pruning Large Language Models
(LLMs). Inspired by the recent discovery of emergent large magnitude features in LLMs, our
approach, termed Wanda (Pruning by Weights and activations), removes weights with the smallest
magnitudes multiplied by the corresponding input activation norms, on a per-output basis. Without
the need for any retraining or weight update procedures, Wanda is able to identify effective sparse
networks within pretrained LLMs. We hope our work contributes to a better understanding of
sparsity in LLMs. Last, considering the fast speed of pruning with Wanda, it would be interesting to
investigate whether Wanda can be useful in the setting of sparse training [148, 149, 151, 152, 153],
where pruning has to be conducted repeatedly and thus the pruning efficiency is critical.
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Chapter 4

Massive Activations in Large Language
Models

4.1 Overview

We observe an empirical phenomenon in Large Language Models (LLMs)—very few acti-
vations exhibit significantly larger values than others (e.g., 100,000 times larger). We call
them massive activations. First, we demonstrate the widespread existence of massive acti-
vations across various LLMs and characterize their locations. Second, we find their values
largely stay constant regardless of the input, and they function as indispensable bias terms
in LLMs. Third, these massive activations lead to the concentration of attention probabili-
ties to their corresponding tokens, and further, implicit bias terms in the self-attention out-
put. Last, we also study massive activations in Vision Transformers. Code is available at
https://github.com/locuslab/massive-activations.
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Figure 4.1: Activation Magnitudes (z-axis) in LLaMA2-7B. x and y axes are sequence and feature
dimensions. For this specific model, we observe that activations with massive magnitudes appear in two
fixed feature dimensions (1415, 2533), and two types of tokens—the starting token, and the first period (.)
or newline token (\n).

37

https://github.com/locuslab/massive-activations


4.2 Introduction
Large Language Models (LLMs) [3, 4] have demonstrated remarkable capabilities. The majority
of existing studies conducted on these models are focused on their external behaviors, e.g.,
evaluating their performance on various tasks [105, 107], developing prompts to elicit accurate
responses [9, 169]. While these studies are encouraging and highlight the potential of these
models, it is also important to gain insights into their internal mechanisms, especially as they
are being increasingly integrated into many real-world applications. However, research on the
internal workings of these models remains relatively limited.

In this work, we discover and study a surprising phenomenon in the internal representations
of LLMs. Examining the hidden states in these models, we find that certain activations exhibit
huge magnitudes, e.g., more than 4 orders of magnitude larger than the median, and could take on
absolute values larger than 15,000 in LLaMA2-70B [23], despite the presence of normalization
layers. These activations are also extremely rare, often numbering fewer than 10 among tens
of millions of total activations. Figure 4.1 illustrates this phenomenon in LLaMA2-7B. As
these activations are so much larger in magnitudes compared to others, we name them massive
activations. We demonstrate their presence in a wide range of LLMs, spanning different model
sizes and families.

We explore where massive activations are located in LLMs. Regarding the depth dimension of
LLMs, the appearance of massive activations is mostly abrupt: they emerge suddenly after a single
layer of computation, and diminish at the last few layers. Further, we find massive activations
occur in a small number of feature dimensions that are input agnostic. Many of these activations
are found within the starting word token and delimiter tokens. Additionally, we show that massive
activations are not the same as outlier features [58], a previously known phenomenon in LLMs.

We show that massive activations act as fixed but crucial bias terms in LLMs. Here by
bias terms, we mean certain internal states of the models that are independent from the inputs,
analogous to the bias term b in a linear layer y = Wx+ b. First, we show that massive activations
play a critical role in LLMs’ capabilities. For instance, in LLaMA2-7B, setting merely four
massive activations (out of millions of activations) to zero would result in catastrophic collapse in
model performance. Further, setting them to their mean values does not hurt the model, suggesting
their role is equivalent to simple constant biases. Our analysis reveals that after the initial layers,
LLMs repurpose the tokens linked with massive activations to store these important biases.

Intriguingly, massive activations are closely connected with self-attention. In particular, we
show massive activations cause attention to be attracted to the tokens associated with them.
Our findings extend the observations from “attention sinks” [190]—we demonstrate that LLMs
allocate excessive attention to more than just the first token, and provide an in-depth analysis on
how such attention concentration patterns arise. Our analysis suggests that LLMs try to learn
implicit bias components in self-attention via massive activations, during their pretraining phase.
We thus experiment with augmenting self-attention with additional key and value embeddings that
are explicitly designed as biases. Remarkably, we demonstrate that training with them eliminates
the need for LLMs to learn massive activations.

Finally, we also observe massive activations in Vision Transformers (ViTs). They appear less
frequently than those in LLMs but are still in many of the ViTs we have examined. In these ViTs,
they tend to appear at fixed feature dimensions, but notably at varying patch tokens. Moreover,
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we find that these activations act similarly as fixed biases. Notably, we discuss the connections
between massive activations and the recently proposed “register tokens” in ViTs [191]. We show
they both learn values independent of input images, functioning as fixed biases. This offers an
alternative interpretation for register tokens than that in the original work [191], where they were
hypothesized to aggregate global image information.

4.3 Massive Activations: What are They?
We study autoregressive Transformers, which are built by a stack of L decoding layers. Each layer
ℓ takes the previous hidden state hℓ−1 ∈ RT×d as input and outputs a hidden state hℓ ∈ RT×d. T is
the number of tokens and d is the number of features. Transformer layers use residual connections
[30], and the computation can be formulated as:

hℓ = hℓ−1 + Fℓ(hℓ−1) (4.1)

where Fℓ is the residual transformation. Note that this includes both attention and MLP blocks.
An activation denotes a specific scalar value in a hidden state. Unless otherwise specified, our
study of activations is on the hidden state hℓ, i.e., the output of residual summations, not any
intermediate states inside Fℓ.

Existence in LLMs. We start with an illustrative example on LLaMA2-7B. In Figure 4.1,
we visualize the intermediate features hℓ of interest. We feed this model with short sentences
and visualize the activation magnitudes (z-axis) of the hidden states at a middle layer. x and y
axes correspond to sequence and feature dimensions respectively. Each blue row corresponds to
the feature embedding of one token. We observe up to four activations with significantly large
magnitudes. The largest activation (about 2,000) is approximately 10,000 times larger than the
median magnitude (about 0.2). The sheer scale of these activations makes them stand out from
others. We thus refer to these special activations as massive activations.

Massive activations are not unique to this specific model LLaMA2-7B, but are widely observed
in LLMs. In Figure 4.2 and Figure 4.3, we demonstrate the existence of massive activations in
both LLaMA2-13B and Mixtral-8x7B [172]. Notably for Mixtral-8x7B, the largest activation
magnitude can reach an absolute value of 7,000, around 4 orders of magnitude larger than the
median feature magnitude (around 0.3). We refer the reader to Chapter 4.8 for results on more
pretrained and fine-tuned LLMs.

Properties. We summarize two main properties of massive activations. The most notable
property is that these activations possess massive values and their magnitudes are significantly
larger than other activations, often several orders of magnitude larger than the median value.
Another property is that they are exceptionally few in number. For LLaMA2-7B in Figure 4.1,
there are approximately 40,000 total activations in each presented hidden state but at most four
massive activations can be identified.

Quantitatively, we present the values of the top activation magnitudes in Table 4.1. We also
provide a loose but broad definition: an activation qualifies as a massive activation if its magnitude
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LLaMA2-13B

Figure 4.2: Massive activations in LLaMA2-13B. In this model, they appear in two fixed feature
dimensions (2100, 4743), and are limited to the starting token.

Mixtral-8x7B

Figure 4.3: Massive activations in Mixtral-8x7B. In this model, they lie in two feature dimensions
(2070, 3398), and are found within the starting token, delimiter tokens and certain word tokens
(“and” and “of”).

surpasses 100 and is at least or around 1,000 times larger than the median magnitude of its hidden
state. We find this criterion to effectively identify these activations of interest across various
LLMs, which are emphasized in bold in Table 4.1.

Next, we identify the locations of massive activations within LLMs. For a comprehensive
analysis, rather than using short sentences as inputs, we collect 100 sequences (each with 4,096
tokens) from RedPajama [45]. We run LLMs on these 100 sequences and collect the hidden states
from each layer.

Model Top 1 Top 2 Top 3 Top 4 Top 5 Top-10 Top-100 Top 1% Top 10% median

LLaMA2-7B 2622.0 1547.0 802.0 477.3 156.9 45.7 10.6 1.1 0.6 0.2
LLaMA2-13B 1264.0 781.0 51.0 50.5 47.1 43.5 16.6 1.9 1.1 0.4
Mixtral-8x7B 7100.0 5296.0 1014.5 467.8 302.8 182.8 90.8 3.0 1.0 0.3

Table 4.1: Five largest, top 1% and 10%, and the median activation magnitudes at a hidden state
of three LLMs. The activations that are considered as massive activations are highlighted in bold.
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Figure 4.4: Three largest activation magnitudes and the median magnitude at each layer in LLMs.

4.3.1 Which Layers?

We determine the layers whose output hidden states exhibit massive activations. In Figure 4.4, we
visualize the three largest activation magnitudes and the median of the hidden state output of each
layer, with results averaged over 100 sequences. We examine three models: LLaMA2-7B, 13B
and Phi-2 [161] (see Chapter 4.8.4 for more LLMs). In all cases, each of the top three activations
comes from the same position in the hidden state across most of the middle layers. Generally, we
observe the following:

Massive activations exist and remain as largely constant values throughout most of the
intermediate layers. They emerge in the initial layers and start to diminish in the last few layers.

In LLaMA2-7B, massive activations first appear in layer 2 and remain nearly constant values
until layer 30. Intriguingly, for LLaMA2-7B and 13B, massive activations emerge very rapidly
from one layer of computation, e.g., layer 2 and layer 4 respectively. This means that they do
not emerge as a result of gradual accumulation through many layers, and are caused by a rather
different mechanism.

4.3.2 Which Feature and Sequence Dimensions?

We determine the locations of massive activations within hidden states, i.e., their feature and
sequence dimensions. Since we have shown that their values largely stay constant in middle
layers, we take on any such layer for this analysis.

LLaMA2-7B. In this model, massive activations are identified in two feature dimensions (1415
and 2533). Regarding sequence dimensions, we find that massive activations appear at: 1. the
starting word token, 2. the token representing the first period (.) or newline token (\n) in the
sequence. Figure 4.1 illustrates these findings for LLaMA2-7B. This is also consistent on long
sequences. In cases where the input contains a “.” or “\n” token, four massive activations are
observed. For the less common scenario where neither “.” nor “\n” is present, we can see two
massive activations, both of which are associated with the initial token.

LLaMA2-13B. We find that massive activations in this model consistently appear in two feature
dimensions, 2100 and 4743. These activations are exclusively located within the starting token of
the sequence, regardless of its semantics. Figure 4.2 illustrates these behaviors within LLaMA2-
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13B. For any given input sequence, only two massive activations are present, corresponding to
features 2100 and 4743 of the first word token.

Mixtral-8x7B. For this model, massive activations lie in two feature dimensions, i.e., 2070 and
3398. For sequence dimensions, we find that they are associated with the starting token, delimiter
tokens and also certain word tokens, e.g., token “and” and token “of”. These word tokens tend
to be conjunctions and prepositions, representing relatively few semantics. Figure 4.3 showcases
these patterns in Mixtral-8x7B. Generally, for inputs of 4096 tokens in length, these tokens are
predominantly located in the early part of sequence.

Summary. We summarize our findings for LLMs beyond the three models discussed above. We
also put other models into categories based on empirical observations.

• For feature dimensions, massive activations are consistently present in very few fixed
dimensions.

• For sequence dimensions, we classify LLMs into three categories based on massive activa-
tions’ locations:

a) Starting token only.
Models include LLaMA2-13B, MPT and GPT-2.

b) Starting token and the first “strong” delimiter token (i.e., “.” or “\n”)
Models include LLaMA2-7B and LLaMA2-7B-Chat.

c) Starting token, delimiter tokens (such as “.”, “\n”, “’” or “,”), and certain word
tokens with weak semantics (such as “and”, “from”, “of” or “2” (Such numeric
tokens exhibit massive activations only in certain contexts, e.g., dates and years. Refer
to Figure 4.17 for an illustration on LLaMA2-70B.).
Models include LLaMA2-70B, Mistral-7B, Mixtral-8x7B, Falcon-40B and Phi-2.

4.3.3 Difference from Outlier Features

With an understanding of the nature and locations of massive activations, we now discuss the
differences between them and outlier features, a seemingly similar phenomenon in LLMs. [58]
have identified the existence of outlier features characterized by large magnitudes within LLMs.

Conceptually, a massive activation is a scalar value, determined jointly by the sequence and
feature dimensions; in contrast, an outlier feature is a vector, corresponding to activations at all
tokens. Further, massive activations are present at extremely few tokens, while outlier features
expect most activations in them to be large.

In practice, we find that massive activations do not overlap with outlier feature dimensions.
We identify outlier features in LLaMA2-7B and 13B using the definition in [58]: a feature is
deemed as an outlier feature if activation magnitudes exceed 6.0 at more than 25% of layers and
6% of tokens, on more than 90 out of 100 sequences. We discover 10 and 25 outlier features in
these two models respectively. However, none of them correspond to the feature dimensions of
massive activations.
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4.4 The Role of Massive Activations in LLMs
While we have demonstrated the existence of massive activations and identified their locations,
their functional role within LLMs is not yet clear. Are they important for internal computation?
Or are they simply redundant activations with no effect? This section will delve deeper into LLMs
to answer these questions. Different from the previous passive observations, we take a more
proactive approach by inspecting how modifying massive activations affects the external behavior
of LLMs.

We first measure the variances of massive activations across input sequences. Besides massive
activations, we choose three other positions based on their average magnitudes, corresponding
to the top 1%/10%, and the median within the hidden state. In Table 4.2, we show the mean and
standard deviation of the activation values at these positions across 100 sequences, for LLaMA2-
7B and 13B. We find that the variances of massive activations are considerably smaller relative to
their mean values when compared to other activations.

We then modify the inference of LLMs by intervening massive activations at one layer—for
a hidden state exhibiting massive activations, we manually set these activations to chosen fixed
values. Then the altered hidden state is fed into the next layer, and the computation afterwards
continues as normal. We modify massive activations in LLaMA2-7B and 13B. We evaluate
the perplexity on WikiText, C4 and PG-19 and the mean zero-shot accuracy on BoolQ, PIQA,
WinoGrande, Arc-Easy and Arc-Challenge. For each model, we perform the intervention once on
the hidden state where massive activations first appear. This corresponds to layer 2 and layer 4 in
LLaMA2-7B and 13B respectively.

Model Top 1 Top 2 Top 1% Top 10% Median

LLaMA2-7B 2556.8 ± 141.0 -1507.0 ± 83.0 -0.14 ± 0.6 0.0 ± 0.5 0.2 ± 0.3
LLaMA2-13B -1277.5 ± 14.6 -787.8 ± 8.0 0.9 ± 0.7 -0.3 ± 0.8 -0.3 ± 0.6

Table 4.2: The mean and variance of activation values at several positions, corresponding to the 2
largest, top 1% and 10%, and the median magnitudes within the hidden state. We find that the
variation in massive activations is significantly lower in comparison to other activations.

Setting massive activations to zero. We evaluate the performance of LLMs without massive
activations. We set their values to zero in the hidden state when they first appear, i.e., removing
massive activations from intervened LLMs. The results (denoted by Set to zero) are shown in
Table 4.3. Intriguingly, there is a significant degradation in model performance, e.g., exploding
perplexity numbers. For comparative analysis, an equal number of activations—those with average
magnitudes close to the median magnitude—are similarly set to zero. We find this leads to no
performance drop. These results highlight the crucial role that massive activations play in the
internal computation of LLMs.

Setting massive activations to mean values. We remove the small variances in the values of
massive activations. Specifically, we adjust the values of massive activations to their empirical
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LLaMA2-7B LLaMA2-13B

Intervention WikiText C4 PG-19 Mean Zero-Shot WikiText C4 PG-19 Mean Zero-Shot

Original 5.47 7.85 8.57 68.95% 4.88 7.22 7.16 71.94%
Set to zero inf inf inf 36.75% 5729 5526 4759 37.50%
Set to mean 5.47 7.86 8.59 68.94% 4.88 7.22 7.16 71.92%

Table 4.3: Intervention analysis of massive activations in LLaMA2-7B and 13B. We set massive
activations to fixed values and evaluate the perplexity (↓) and zero-shot accuracy (%, ↑) of
intervened models.

mean values. The means are computed on 100 sequences from RedPajama. The results of this
intervention (denoted by Set to mean) are shown in Table 4.3. We find that there are negligible
changes in perplexity and zero-shot accuracy. This shows that their values are constants and input
agnostic, i.e., functioning similarly to bias terms.

To summarize our findings:
Massive activations act as fixed but important biases in LLMs.

Why these layers and tokens? The fact that these activations act as biases may explain why
LLMs store them at certain layers and tokens:

• The tendency of these activations to appear at the starting token could be attributed to the
fact that every autoregressive training instance contains an initial token. Since LLMs are
based on next word prediction, the starting token is the only token used in all forward passes
within a sequence.

• The existence of these activations in delimiter tokens might be due to the relatively low
semantic value of these tokens, rendering them a low-cost option for storing such biases.
Conversely, tokens with rich semantics would risk significant loss of input information, if
they are repurposed to store biases.

• The fact that massive activations emerge only after a few initial layers may be because
LLMs would require some initial layers to process the meaning of the tokens associated
with massive activations. At these layers, their semantics may be transferred to other token
positions via self-attention, and preserved moving forward.

4.5 Effects on Attention
In this section, we explore and study the internal mechanism of massive activations in LLMs,
particularly in relation to self-attention.

4.5.1 Attention is Concentrated on Massive Activations
We observe a stark contrast in attention patterns when comparing layers before and after the
appearance of massive activations in LLMs. Figure 4.5 shows the attention logits (before softmax),
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Figure 4.5: Attention patterns before and after massive activations appear in LLaMA2-7B. For
each layer, we visualize average attention logits (unnormalized scores before softmax) over all
heads, for an input sequence.
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Figure 4.6: Attention patterns after massive activations emerge in LLaMA2-13B

averaged over all heads per layer in LLaMA2-7B. The input is a prompt from MMLU [88]: “The
following are multiple choice questions (with answers) about machine learning.\n\n ...”. Recall
that in LLaMA2-7B, massive activations first appear in the output of layer 2 (see Figure 4.4).
We find that in layer 3 and deeper layers (e.g., layer 31), attention is mostly concentrated on
the two tokens associated with massive activations. Our observations are also consistent across
various LLMs. Figure 4.6 and Figure 4.7 demonstrate such attention concentration patterns in
LLaMA2-13B and Phi-2, on the same input. See Chapter 4.8.5 for results on more LLMs.

We notice that there is a consistent pattern across models on the distribution of attention
logit values. In Figure 4.5, Figure 4.6 and Figure 4.7, many attention logits tend to be negative
following massive activations. They are mostly computed by the inner product between query and
key states of tokens without massive activations. However, when the key states belong to tokens
associated with massive activations, the resulting attention logits are slightly positive. Thus in the
attention softmax (computed along each row), these special attention logits will attract most of
the attention probability.

Recently, [190] showed that LLMs attend heavily to the starting token. Our findings on
LLaMA2-13B in Figure 4.6 align with their results. Empirically, we find it is true for LLMs
where massive activations are only found within the starting token. However, our results on
LLaMA2-7B and Phi-2 indicate that LLMs also allocate substantial attention to other tokens and
they are associated with massive activations. Furthermore, our results reveal a deeper cause for
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Figure 4.8: Attention LayerNorm and QKV linear projections.

the emergence of these attention concentration patterns.

4.5.2 Massive Activations Impose Implicit Attention Biases
In this part, we delve into the computation within the attention block and demonstrate that LLMs
use massive activations to enforce an implicit bias term in self-attention.

Attention LayerNorm and QKV projections. We study the impact of massive activations on
the query, key and value states (Q/K/V) in self-attention. In LLMs, at each layer, input features
are processed by layer normalization1 [31] and then transformed into query, key and value states
via linear projections, as illustrated in Figure 4.8. This design choice is introduced in GPT-2 [2]
and widely adopted in modern LLMs.

Figure 4.9 visualizes all hidden states computed in this schematic (LLaMA2-7B, layer 3). We
find that at all stages, features of the two tokens associated with massive activations are drastically

1LLaMA2 uses a variant of layer normalization: RMSNorm [176].
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Figure 4.9: Layer 3, LLaMA2-7B. We highlight the embeddings of the two tokens where massive
activations appear: the starting token and the period token.

different from other tokens. Specifically, after the first “normalize” step, the embeddings of these
two tokens appear as a sparse vector with two distinct non-zero elements. Notably, the subsequent
QKV states exhibit considerably smaller variations within each embedding. We hypothesize that
the attention LayerNorm may play a pivotal role in this process (see Chapter 4.8.6 for further
discussion).

Attention output decomposition. Given that attention is also concentrated on the tokens
associated with massive activations (Section 4.5.1), we thus isolate these tokens and study their
effects on the attention output (the layer of attention matrix multiplying value vectors). In

Attention OutputValue Updates Value Updates

Same across all tokens

Figure 4.10: Value updates from tokens associated with massive activations are essentially the
same.
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Equation 4.2, we decompose the attention output at each token k into two parts: value updates
from the tokens C where attention is concentrated; and value updates aggregated from other
tokens.

Attention(Q,K, V )k =
∑
i≤k

pki vi =
∑
i∈C

pki vi +
∑
i/∈C

pki vi (4.2)

where pki is the attention distribution of query token k to token i, and vi is the value state of token
i.

Figure 4.10 visualizes the decomposed value updates and the attention output in LLaMA2-7B,
with the input prompt “Summer is warm. Winter is cold.”. In this case, the set C consists of
token Summer and the first period token. We can see that the value updates from C are nearly
identical across tokens, i.e., they serve as additive bias terms, although not explicitly imposed.
Furthermore, we note that this pattern of value update is strikingly similar across various inputs.
We refer the reader to Chapter 4.8.7 for additional analysis. Overall, our results indicate that
LLMs use massive activations to allocate substantial attention at certain tokens. These tokens are
then utilized to form a constant bias term when computing the attention output.

4.5.3 Explicit Attention Biases Eliminate Massive Activations
Given the strong need of LLMs to learn implicit attention biases during pretraining, we thus
experiment with directly augmenting self-attention with additional bias terms. Intriguingly, we
find that models augmented with explicit attention biases do not exhibit massive activations.

Formulation. The idea is to model such attention biases explicitly, except not through repur-
posing existing tokens in the input sequence. Thus we introduce additional learnable parameters
k′,v′ ∈ Rd for each head. Specifically, given input query, key and value matrices Q,K, V ∈ RT×d,
the augmented attention with explicit attention biases is computed as:

Attention(Q,K, V ; k′,v′) = softmax

(
Q
[
KT k′]
√
d

)[
V

v′T

]
(4.3)

where k′ and v′ are each concatenated with the key and value matrices K/V. The proposed attention
can be used as a drop-in replacement of standard attention, without modifying other parts of
Transformers, e.g., positional embeddings and MLP blocks.

Results. We train three GPT-2 models: the standard model, GPT-2 prepended with a sink
token [190] and GPT-2 with explicit attention biases. See Chapter 4.8.8 for training setups. We
find that the three models have the same performance at convergence but differ significantly in the
status of massive activations, as demonstrated in Figure 4.11. Notably, in GPT-2 with explicit
attention biases, massive activations disappear, as compared to the default GPT-2 and one with a
sink token.

Figure 4.12 shows the three largest activation magnitudes at each layer. Notably, with explicit
attention biases, top activation magnitudes in GPT-2 are increasing gradually as layers go deeper.
These results indicate that explicit attention biases negate the necessity for LLMs to develop
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Figure 4.11: Massive activations disappear when training GPT-2 with explicit attention bias
(Equation 4.3).
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Figure 4.12: Three largest activation magnitudes in the output feature of each layer for three
GPT-2 models.

massive activations during the pretraining phase. We leave it as future work to investigate other
aspects of our alternative attention formulation, e.g. training stability [167].

To summarize our findings in this section:
Massive activations are connected to self-attention. LLMs use massive activations to con-

centrate substantial attention on very few tokens, injecting implicit bias terms in the attention
computation. Further, massive activations can be eliminated by augmenting LLMs with explicit
attention biases.

4.6 Massive Activations in Vision Transformers
In this section, we study if Vision Transformers (ViTs) [130] exhibit massive activations. We note
that while ViTs and LLMs are both based on self-attention, ViTs employ global token mixing,
which contrasts with the autoregressive nature of LLMs.

Massive activations in ViTs. We explore several model families based on ViTs: CLIP [197],
MAE [193] and DINOv2 [192]. We examine the ViT-L models from these families. The activation
magnitudes in the penultimate layer for an input image are illustrated in Figure 4.13. We find
that massive activations exist in CLIP and DINOv2 ViT-L, where we highlight the corresponding
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Figure 4.13: Massive activations are present in ViT-L from CLIP and DINOv2, but not MAE.

sequence dimensions. In these two models, there are extremely few activations (fewer than four)
with significantly larger magnitudes than others. In addition, these activations are located in
specific feature dimensions and appear in random patch tokens. However, we do not observe
massive activations in MAE ViT-L. In this model, a feature dimension (927) exhibits uniformly
large values across all tokens.

Massive activations are biases in ViTs. Figure 4.14 shows the three largest activation magni-
tudes and the median per layer in CLIP and DINOv2 ViT-L, averaged over 1k images. We find
that massive activations are consistently present across images and their values remain largely the
same around the mean values. It is worth noting that unlike LLMs, massive activations start to
appear only in the later stages of ViTs.
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Figure 4.14: Three largest activation magnitudes and the median magnitude at each layer in CLIP
and DINOv2 ViT-L.

Following our methodology in Section 4.4, we perform intervention analysis on CLIP ViT-
L. We modify the two largest massive activations to zero and mean values respectively. The
intervention is conducted on layer 13, where massive activations first appear within this model.
Results are shown in Table 4.4, where we evaluate the zero-shot accuracy on ImageNet. We can
see that setting massive activations to zero leads to significant drop in accuracy while setting to
their means results in negligible accuracy drop. These results indicate that massive activations
function as fixed but crucial biases in ViTs, aligned with our observations in Section 4.4.
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CLIP ViT-L, layer 13

Intervention ImageNet acc (%)
Original 75.5
Set to zero 59.8
Set to mean 75.5

Table 4.4: Intervention analysis of massive activations in CLIP ViT-L.

Registers are biases in ViTs. Recently [191] propose to augment standard ViTs with additional
learnable tokens, which they name as register tokens. They show that training ViTs with register
tokens leads to smooth attention maps, and the resulting model family, namely DINOv2-reg,
achieves superior downstream performance over DINOv2. Examining the largest ViT-G model in
DINOv2-reg, we observe the existence of massive activations, as shown in Figure 4.15. However,
different from standard ViTs, massive activations do not appear in patch tokens but exclusively
within a fixed register token, i.e., register 3. This suggests that this model uses register 3 to store
these activations. Figure 4.16 visualizes the attention distribution of the [CLS] token in the last
layer. We find that most of the attention is allocated to register 3, echoing our previous findings in
attention patterns (Section 4.5.1).

Patch Tokens

Figure 4.15: Massive activations in DINOv2-reg ViT-G.

DINOv2-reg with 4 registers

ImageNet acc (%) ViT-S ViT-B ViT-L ViT-G
Original 81.9 84.8 86.3 87.0
Fix-Reg-Mean 81.7 85.0 86.2 87.0

Table 4.5: We fix all register features at every layer to their means and
evaluate the intervened ViTs.
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Figure 4.16: Average attention of the [CLS] token.

Further, we conduct intervention analysis to analyze the role of registers. We replace all
register features at the output of every layer with their means, averaged over 10k ImageNet training
images. This intervention removes the intended purpose of registers to aggregate global input
information [191]. Table 4.5 shows the results. We find that ViTs with fixed register features
achieve accuracy comparable to original models, suggesting that registers act as learned biases in
ViTs. This leads to constant key and value states at register tokens, effectively introducing bias
terms to self-attention (extra k′ and v′ in Equation 4.3). Thus a ViT with register tokens function
equivalently to a standard ViT augmented with explicit attention biases.

To summarize our findings:
Massive activations exist in many but not all ViTs. Similar to those in LLMs, these activations

act as constant biases. We also show the recently proposed register tokens have a similar function.

4.7 Related Work
Intriguing properties of autoregressive Transformers. [135] observed that in GPT-2’s penulti-
mate layer, there are feature dimensions containing activations with magnitudes up to 3,000. They
found that these few dimensions dominate several standard measures for evaluating representation
similarity. [163] found that the feature norm of the initial token in GPT-2 grows much faster than
other tokens. [90] and [189] demonstrated the existence of outlier weights in the LayerNorm
of GPT-2 and LLaMA2-13B and showed that setting them to zero leads to catastrophic drop in
model performance. Notably, the feature dimension of this weight in LLaMA2-13B (i.e., 2100)
corresponds to that of a massive activation (Figure 4.2).

Outlier features. Various existing works in quantization [57, 58, 150, 154, 184] have studied
the existence of outlier features in LLMs. [58] showed that outlier features have large activation
values in most of their sequence dimensions. While massive activations can be seemingly similar
to outlier features, we discussed their fundamental differences in Section 4.3.3. More importantly,
we show that massive activations can not be attributed to the existence of outlier features.

Attention concentration patterns. [195], [196] and [136] discovered that attention in BERT [18]
tends to focus on the “separate” token [SEP]. [190] showed that LLMs assign most of the at-
tention to the starting word token. [191] revealed the existence of attention artifacts in ViTs.
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[183] found sparse activation patterns in ViTs that attract attention to certain tokens. Our work
provides an in-depth analysis as to why these patterns emerge, specifically in relation to massive
activations.

Biases in self-attention. There can be various notion of biases in the self-attention mechanism.
First, simple additive bias terms can be used in linear layers for computing the query, key and
value states [182]. Second, position biases can be inserted in self-attention to encode positional
information of each token [180, 181]. There are also variants of biases with manually designed
softmax operator [164, 187, 194]. Our work reveals that LLMs, even with standard self-attention
formulation, would impose implicit bias components in the attention computation through massive
activations.

4.8 Additional Results

4.8.1 Pretrained LLMs
In Section 4.3, we have demonstrated massive activations in LLaMA2-7B, LLaMA2-13B and
Mixtral-8x7B. In this section, we evaluate more pretrained LLMs which cover a wide range
of model families. We illustrate massive activations in LLaMA2-70B, LLaMA3 [25], Phi-2,
Mistral-7B [173], MPT-7B [160] and Falcon-7B [159]. The results are presented in Figure 4.17,
4.18, 4.19, 4.20, 4.21, 4.22 and 4.23.

We make several observations. First, massive activations are consistently present in these
models and they exhibit similar characteristics to those described in Section 4.3. Intriguingly, for
LLaMA2-70B, we find that massive activations are found within tokens representing numerical
values, e.g., token “0” and token “2”, as depicted in Figure 4.17. However, they do not appear in
all numerical tokens (see the rightmost example in Figure 4.17). Another interesting finding is that
the feature dimension of massive activations in both Mistral-7B (Figure 4.21) and Mixtral-8x7B
(Figure 4.3) is identical (i.e., 2070), implying that the latter model may have been fine-tuned from
the former.

LLaMA2-70B

Figure 4.17: Massive activations in LLaMA2-70B.
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LLaMA3-8B

Figure 4.18: Massive activations in LLaMA3-8B.

LLaMA3-70B

Figure 4.19: Massive activations in LLaMA3-70B.

Phi-2

Figure 4.20: Massive activations in Phi-2.

Mistral-7B

Figure 4.21: Massive activations in Mistral-7B.

54



MPT-7B

Figure 4.22: Massive activations in MPT-7B.

Falcon-7B

Figure 4.23: Massive activations in Falcon-7B.
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4.8.2 Fine-tuned LLMs
Our results so far are focused on pretrained LLMs. However, a significant application of LLMs
lies in their use for chat purposes. Instruction fine-tuning [26] is essential for developing models
capable of generating coherent responses to questions. In this part, we demonstrate massive
activations in these fine-tuned models. We evaluate fine-tuned models from models in LLaMA2
and Mistral. The results are shown in Figure 4.24, 4.25, 4.26 and 4.27.

We can see that massive activations persist after instruction fine-tuning. Moreover, the values
and positions of massive activations remain largely the same as the original pretrained LLMs. For
LLaMA2-7B, this can be seen by comparing Figure 4.24 and Figure 4.1. However, one exception
is Mixtral-8x7B. We find that massive activations disappear from the newline token “\n” after
fine-tuning, as shown by comparing Figure 4.27 and Figure 4.3. We leave the study on how
instruction fine-tuning affects massive activations for future work.

LLaMA2-7B-Chat

Figure 4.24: Massive activations in LLaMA2-7B-Chat.

LLaMA2-13B-Chat

Figure 4.25: Massive activations in LLaMA2-13B-Chat.
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Mistral-7B-Instruct

Figure 4.26: Massive activations in Mistral-7B-Instruct.

Mixtral-8x7B-Instruct

Figure 4.27: Massive activations in Mixtral-8x7B-Instruct.
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4.8.3 BOS Token <s>
In some tokenizers, e.g., LLaMA2, the BOS token <s>, also known as the beginning of sequence
token, can be prepended to the input sequence. For the experiments presented in other parts of the
paper, we turn off this option, where all sequences do not start with the BOS token.

In Figure 4.28, 4.29 and 4.30, we show massive activations in LLaMA2-7B, LLaMA2-13B and
Mixtral-8x7B, with the same input sequences as in Section 4.3. We find that massive activations
persist with a prepended BOS token. In LLaMA2-7B and LLaMA2-13B, the locations of massive
activations, i.e., sequence and feature dimensions, are not altered. However, for Mixtral-8x7B,
some massive activations shift to the BOS token <s>. We leave the study on how the BOS token
<s> affects the positions of massive activations for future work.

LLaMA2-7B

Figure 4.28: Massive activations in LLaMA2-7B when the input is prepended with a BOS token
<s>.

LLaMA2-13B

Figure 4.29: Massive activations in LLaMA2-13B when the input sequence is prepended with a
BOS token <s>.

58



Mixtral-8x7B

Figure 4.30: Massive activations in Mixtral-8x7B when the input sequence is prepended with a
BOS token <s>.

59



4.8.4 Layer-Level Analysis
In Section 4.3.1, we have presented the layer-level analysis results for LLaMA2-7B, LLaMA2-
13B and Phi-2. In Figure 4.31, we provide the comprehensive results for all LLMs examined in
this paper (listed in Table 4.7). This includes LLMs from LLaMA2, Mistral, MPT, Falcon, OPT
and GPT-2 model families. For each model, we show the three largest activation magnitudes as
well as the median at each layer.

We can see that the trend of massive activations we observe in Section 4.3.1 holds true for
LLMs in general. Massive activations tend to remain constant in most of the intermediate layers.
They emerge in the early layers and disappear in the last layer.
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Figure 4.31: Layer-level analysis of LLMs. For each model, we show the three largest activation
magnitudes as well as the median per layer.
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4.8.5 Attention Concentration on Massive Activations

In Section 4.5, we have demonstrated the attention concentration pattern in LLaMA2-7B,
LLaMA2-13B and Phi-2. We now illustrate this phenomenon for more LLMs. Figure 4.32
and Figure 4.33 show the results for LLaMA2-70B and Mistral-7B. For these two models, massive
activations are formed in the output feature of layer 9 and layer 2 respectively.

We can see that attention is predominantly focused on the sequence dimensions of massive
activations. In the case of LLaMA2-70B, as depicted in Figure 4.32, massive activations are found
in the starting word token and also token 2. These two tokens receive substantial attention logits.
Additionally, we visualize the attention probability in Figure 4.34, 4.35 and 4.36. The attention
softmax is computed along each row, thus resulting in these special tokens being allocated a much
higher attention probability.
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Figure 4.32: Average attention logits over all heads in layers 10, 40 and 60 of LLaMA2-70B.
The input sequence is “This book, including all illustrations and text, is protected under Copy-
right©2024 and may not be reproduced or transmitted in any form without the prior written
permission of the copyright owner.”.
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Figure 4.33: Average attention logits over all heads in layers 3, 10 and 20 of Mistral-7B. The
input sequence is “William Shakespeare was a famous writer from England who wrote plays and
poems. He is considered one of the best writers ever.\n His works include famous plays like

’Romeo and Juliet’ and ’Hamlet’.”.
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Figure 4.34: Average attention probability over all heads in intermediate layers of Llama2-7B.
The input prompt is “William Shakespeare was a famous writer from England who wrote plays
and poems. He is considered one of the best writers ever.\n His works include famous plays like

’Romeo and Juliet’ and ’Hamlet’.”.
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Figure 4.35: Average attention probability over all heads in intermediate layers of Mistral-7B.
The input prompt is “William Shakespeare was a famous writer from England who wrote plays
and poems. He is considered one of the best writers ever.\n His works include famous plays like

’Romeo and Juliet’ and ’Hamlet’.”.

4.8.6 Attention LayerNorm

Our analysis in Section 4.5.2 indicates that tokens associated with massive activations have
drastically different key and value states. In this part, we investigate how attention layernorm
plays a crucial role in this process.

Preliminaries. There are two specific types of layer normalization commonly used in LLMs.
One is the standard layer normalization [31]. Suppose we have a feature vector x ∈ Rd, Layer-
Norm will normalize this feature to fix the mean and variance and then re-scale with element-wise
affine transformation:

x̄i =
xi − µ

σ
∗ gi + bi, where µ =

1

d

d∑
i=1

xi, σ =

√√√√1

d

d∑
i=1

(xi − µ)2. (4.4)

where g, b ∈ Rd are parameters of the affine transform, also called the gain and bias.
In addition to the original LayerNorm, a variant of layer normalization has also been used in

LLaMA2 and Mistral models. Specifically, Root Mean Square Normalization (RMSNorm) [176]
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Figure 4.36: Average attention probability over all heads in intermediate layers of Phi-2. The
input prompt is “William Shakespeare was a famous writer from England who wrote plays and
poems. He is considered one of the best writers ever.\n His works include famous plays like

’Romeo and Juliet’ and ’Hamlet’.”.
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Figure 4.37: Activation trajectory in the attention LayerNorm of LLaMA2-7B and Phi-2, where
the LayerNorm input contains massive activations. Note that LLaMA2-7B uses a variant of layer
normalization: RMSNorm [176] and Phi-2 uses the default LayerNorm [31].

normalizes the feature x ∈ Rd with the root mean square (RMS) statistic:.

x̄i =
xi

RMS(a)
∗ gi, where RMS(x) =

√√√√1

d

d∑
i=1

x2
i . (4.5)

where g ∈ Rd is the gain parameter.
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For both LayerNorm and RMSNorm, when there are a few activations in x ∈ Rd that have
significantly large magnitudes, the denominator in the normalization step, i.e., σ in Equation 4.4
and RMS(x) in Equation 4.5, becomes large as a result. In fact, the denominator is almost
determined by these few massive activations. The large denominator will push all normal values
to zero while preserving the outlier nature of massive activations. This will effectively create a
drastically different normalized feature, determined by the few massive activations. Figure 4.37
shows two activation trajectory in both RMSNorm and LayerNorm. We can see that how the
normalization step (middle) preserves the outlier activations in tokens Who and \n and the
normalized features at these two tokens become extremely similar.

4.8.7 Implicit Attention Biases
In Section 4.5.2, we have shown how the value updates from the tokens associated with massive
activations tend to be largely identical. Here we extend those findings by examining additional
input prompts and layers within the LLaMA2-7B model. We use four input prompts: “Are you
cold?\n Grab a jacket.”, “Will it snow?\n Check the forecast.”, “Did she call?\n I missed it.”
and “”I am doing well. Thank you for asking.””. We visualize the value updates in layer 3, layer
15 and layer 30 in Figure 4.38, Figure 4.39 and Figure 4.40 respectively. We focus on the latter
half of the input sequence, following the two tokens associated with massive activations. We can
see that in the same layer, the value updates

∑
i∈C p

k
i vi display remarkable similarity across the

different input sequences.
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Figure 4.38: Value updates
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i vi at layer 3 of LLaMA2-7B, with four input sequences.
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4.8.8 Explicit Attention Biases
Experimental setup. We use the open-source reproduction of GPT-2 from the NanoGPT
repository [165]. We use the default recommended training setup and optimizer setting. For each
of the three GPT-2 models, we train for 50,000 iterations, with a total of approximately 2B tokens.
For the GPT-2 with a sink token, we follow [190], where we prepend each training sequence
with a learnable sink token [SINK]. When computing the training loss, we do not include the
cross-entropy loss computed on the prepended sink token. For GPT-2 with explicit attention
biases, we initialize each k′ and v′ with N (0, 0.02I).

Results. Regarding the performance of the three GPT-2 models we evaluate in Section 4.5.3,
we find that after 50,000 training iterations, they have the same perplexity on the validation split
constructed from OpenWebText2 [44]: 3.04.
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Figure 4.41: Attention distribution in default GPT-2 and GPT-2 with explicit attention bias.

In Figure 4.41, we visualize the attention distribution in both default GPT-2 and GPT-2 with
explicit attention biases, where we plot the average attention probability over 50 sentences each
with 30 tokens. First, we find that our observations on the relationship between massive activations
and attention concentration hold for the default GPT-2 model. Second, for the GPT-2 model with
explicit attention bias, most of the attention probability is assigned to the extra k′ and v′ vectors
we inserted. Intriguingly, this also holds for initial layers as well (e.g., layer 1), suggesting the
strong need for LLMs to form this attention concentration pattern during pretraining.

We also experiment with other ways of injecting biases in the self-attention computation:
1. The first one is a special case of our proposed formulation in Equation 4.3, where both k′

and v′ are zero vectors. Equation 4.6 shows the computation of this variant of self-attention.
This is also equivalent to the previous proposed Softmax-off-by-one [164].

Attention(Q,K, V ) = softmax

(
Q
[
KT 0

]
√
dk

)[
V
0T

]
(4.6)

2. Since Equation 4.3 can be viewed as inserting a sequence dimension, we also experiment
with inserting one extra feature dimension. Specifically, we add learnable parameters
q′,k′ ∈ RT and concatenate them with the query and key states respectively. This variant
of self-attention is as follows:

Attention(Q,K, V ;q′,k′) = softmax

([
Q q′] [K k′]T

√
dk

)
V (4.7)
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Figure 4.42: Ten largest activation magnitudes at each layer in three GPT-2 models.

3. We also experiment with a simple way to enforce constant value updates by injecting an
extra value parameter v′ ∈ Rdk . This variant of self-attention is as follows:

Attention(Q,K, V ;v′) = softmax
(
QKT

√
dk

)
V + v′ (4.8)

Figure 4.42 visualizes the ten largest activation magnitudes in three GPT-2 models, corresponding
to the three formulations of biases in Equation 4.6, 4.7 and 4.8. We find that these alternatives are
not able to eliminate massive activations during pretraining.

4.8.9 Massive Activations in ViTs
We present results of massive activations in ViTs on 4 images from Figure 4.43. Results of
CLIP ViT-L, DINOv2 ViT-L and DINOv2-reg ViT-G are shown in Figure 4.44, Figure 4.45 and
Figure 4.46. We highlight the patch tokens exhibiting massive activations. For standard ViTs
like CLIP ViT-L and DINOv2 ViT-L, massive activations appear in random patch tokens, i.e. the
sequence dimensions of massive activations vary across input images. For DINOv2-reg ViT-G,
they exist in a fixed register token, i.e., register 3.

Figure 4.43: Example images.
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Figure 4.44: Illustration of massive activations in CLIP ViT-L for the 4 images shown in Fig-
ure 4.43.
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Figure 4.45: Illustration of massive activations in DINOv2 ViT-L for the 4 images shown in
Figure 4.43.
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Figure 4.46: Illustration of massive activations in DINOv2 ViT-G for the 4 images shown in
Figure 4.43.
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4.8.10 Registers are Biases in Masked Autoencoders
In Masked Autoencoders (MAEs) [193], a dummy token is added to ViTs during pretraining. In
one fine-tuning pipeline of MAEs, fine-tuning is done based on the average pooled features of all
patch tokens. In these MAE models, this dummy token is equivalent to a register token. Here we
maintain the register token features as constant across the output features of all layers in ViTs,
which we denote as Fix-Reg-Mean. These fixed values are computed as the average register
features over 10k ImageNet training images. Table 4.6 shows the results. We can see that setting
register features to fixed values does not affect model performance. This result further supports
our argument that registers function as biases within ViTs.

MAE with 1 register

ImageNet acc ViT-B ViT-L ViT-H
Original 82.6 85.5 86.7
Fix-Reg-Mean 82.6 85.5 86.7

Table 4.6: Registers are biases in Masked Autoencoders (MAEs).

4.8.11 Layer-Level Analysis
Figure 4.47, 4.48 and 4.49 detail the layer-level analysis results for all ViTs examined in this
paper (also summarized in Table 4.8). Different from LLMs, some ViTs do not exhibit massive
activations, e.g., MAE ViT-B/L and DINOv2 ViT-S. For ViTs where we observe massive acti-
vations, e.g., CLIP ViT-L and DINOv2 ViT-L, the trend across layers differs from LLMs. For
instance, in the case of DINOv2 ViT-L, massive activations are observed in the later stages of this
model but are absent in the output of the final layer.
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Figure 4.47: Layer-level analysis for ViTs in MAE and CLIP.
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Figure 4.48: Layer-level analysis for ViTs in DINOv2.
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4.8.12 Models and Datasets
Table 4.7 and Table 4.8 list the information of the LLM and ViT models used in this paper.

Model family Model name Layers Dimensions Heads Huggingface model id

LLaMA2

LLaMA2-7B 32 4096 32 meta-llama/Llama-2-7b-hf
LLaMA2-13B 40 5120 40 meta-llama/Llama-2-13b-hf
LLaMA2-70B 60 6656 52 meta-llama/Llama-2-70b-hf

LLaMA2-7B-Chat 32 4096 32 meta-llama/Llama-7b-chat-hf
LLaMA2-13B-Chat 40 5120 40 meta-llama/Llama-2-13b-chat-hf
LLaMA2-70B-Chat 60 6656 52 meta-llama/Llama-2-70b-chat-hf

LLaMA3
LLaMA3-8B 32 4096 32 meta-llama/Meta-Llama-3-8B

LLaMA3-70B 80 8192 64 meta-llama/Meta-Llama-3-70B

Mistral

Mistral-7B 32 4096 32 mistralai/Mistral-7B-v0.1
Mistral-8x7B 32 4096 32 mistralai/Mistral-8x7B-v0.1

Mistral-7B-Instruct 32 4096 32 mistralai/Mistral-7B-Instruct-v0.2
Mistral-8x7B-Instruct 32 4096 32 mistralai/Mistral-8x7B-Instruct-v0.1

Phi Phi-2 32 2560 32 microsoft/phi-2

MPT
MPT-7B 32 4096 32 mosaicml/mpt-7b
MPT-30B 48 7168 64 mosaicml/mpt-30b

Falcon
Falcon-7B 32 4544 71 tiiuae/falcon-7b

Falcon-40B 60 8192 128 tiiuae/falcon-40b

OPT

OPT-7B 32 4096 32 facebook/opt-6.7b
OPT-13B 40 5120 40 facebook/opt-13b
OPT-30B 48 7168 56 facebook/opt-30b
OPT-66B 64 9216 72 facebook/opt-66b

GPT-2

GPT-2 12 768 12 gpt2
GPT-2-Medium 24 1024 16 gpt2-medium

GPT-2-Large 36 1280 20 gpt2-large
GPT-2-XL 48 1600 25 gpt2-xl

Table 4.7: Relevant information of LLM models we experimented with in this work.

Model family Model size Layers Dimensions Heads Huggingface model id

DINOv2

ViT-S 12 384 6 timm/vit small patch14 dinov2.lvd142m
ViT-B 12 768 12 timm/vit base patch14 dinov2.lvd142m
ViT-L 24 1024 16 timm/vit large patch14 dinov2.lvd142m
ViT-G 40 1536 24 timm/vit giant patch14 dinov2.lvd142m

DINOv2-reg

ViT-S 12 384 6 timm/vit small patch14 reg4 dinov2.lvd142m
ViT-B 12 768 12 timm/vit base patch14 reg4 dinov2.lvd142m
ViT-L 24 1024 16 timm/vit large patch14 reg4 dinov2.lvd142m
ViT-G 40 1536 24 timm/vit giant patch14 reg4 dinov2.lvd142m

MAE
ViT-B 12 768 12 timm/vit base patch16 224.mae
ViT-L 24 1024 16 timm/vit large patch16 224.mae
ViT-H 32 1280 16 timm/vit huge patch16 224.mae

CLIP
ViT-B 12 768 12 timm/vit base patch16 clip 224.openai
ViT-L 24 1024 16 timm/vit large patch14 clip 224.openai

Table 4.8: Relevant information of ViT models we experimented with in this work.

We list the datasets used in this work and relevant license information:
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• RedPajama [45]: Apache License, Version 2.0
• OpenWebText2 [44]: MIT License
• C4 [36]: Open Data Commons Attribution License 1.0

license
• PG-19 [185]: Apache License, Version 2.0
• WikiText [63]: Creative Commons BY-SA 3.0 license
• MMLU [88]: MIT License
• BoolQ [98]: Creative Commons BY-SA 3.0 license
• PIQA [188]: The license status is unclear
• WinoGrande [101]: Apache License, Version 2.0
• ARC easy and challenge [102]: Creative Commons BY 4.0 license
• ImageNet [127]: The license status is unclear
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4.9 Conclusion and Discussion
Autoregressive training of large Transformers has brought significant advances in natural language
processing. This study reveals the widespread existence of massive activations in these Large
Language Models (LLMs). The values of these activations are input agnostic but crucial for model
performance, despite their extremely rare quantity. We establish a close connection between
massive activations and the self-attention mechanism. We show that LLMs use them to implement
an implicit form of biases for attention computation. Our findings also generalize well to Vision
Transformers (ViTs). We hope the new results presented in this work contribute to a deeper
understanding of today’s large-scale foundation models.

We discuss some practical implications and future directions of this work. First, the presence
of activations with large magnitudes has been widely known as a major challenge in effectively
quantizing LLMs [57, 58]. This paper identifies a new type of outlier activations in LLMs, and we
hope our findings will be of value to research on LLM compression. Second, attention maps that
allocate excessive attention probabilities to a few fixed tokens may be undesirable for mechanistic
interpretability [186]. Our proposed attention formulation could make the resulting attention maps
in LLMs more interpretable, and potentially benefit downstream applications [191]. Finally, our
investigation of the new attention formulation is focused on its effects on massive activations, and
our experiments were limited to a small GPT-2 model due to computational resource constraints.
It would be interesting to see how our results generalize to models at larger scales, and how our
attention formulation could affect the training stability [167] of modern LLMs.
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Chapter 5

Idiosyncrasies in Large Language Models

5.1 Overview
In this work, we unveil and study idiosyncrasies in Large Language Models (LLMs) – unique
patterns in their outputs that can be used to distinguish the models. To do so, we consider a
simple classification task: given a particular text output, the objective is to predict the source LLM
that generates the text. We evaluate this synthetic task across various groups of LLMs and find
that simply fine-tuning existing text embedding models on LLM-generated texts yields excellent
classification accuracy. Notably, we achieve 97.1% accuracy on held-out validation data in the
five-way classification problem involving ChatGPT, Claude, Grok, Gemini, and DeepSeek. Our
further investigation reveals that these idiosyncrasies are rooted in word-level distributions. These
patterns persist even when the texts are rewritten, translated, or summarized by an external LLM,
suggesting that they are also encoded in the semantic content. Additionally, we leverage LLM as
judges to generate detailed, open-ended descriptions of each model’s idiosyncrasies. Finally, we
discuss the broader implications of our findings, including training on synthetic data, inferring
model similarity, and robust evaluation of LLMs. Code is available at github.com/locuslab/llm-
idiosyncrasies.

5.2 Introduction
As the adoption of generative models such as LLMs accelerates, it becomes increasingly important
to understand the origin and provenance of such generated content. While a great deal of past work
has focused on the classification of human-written and AI-written content [228, 243, 244, 245],
there has been little work on classifying between content generated by different LLMs, either
between the outputs of entirely different models or between those of different variants of the same
model family. If possible, the ability to distinguish between source models in this manner would
be valuable for a number of applications: it could shed light on the relative uptake of different
LLMs, beyond what is reported by individual companies, and on the nature of data used to build
different models. Additionally, it could offer insights into what features the output generation are
most “unique” to each LLM.

In this paper, we investigate whether LLMs exhibit idiosyncrasies that enable their outputs to
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Prompt: Now everyone in a room is silent and working on their own thing, and you need to break the silence with a three-sentence joke. What would you say?

Hey everyone, want to hear 

what happened when the two 

satellites started dating? 

They had a great first date, 

but things fell apart after 

that... Turns out they had too 

much space between them!

Neural Network Classifier

Hey, did you know I just got a

new job at the calendar

factory? The hours are great,

but the days are really hard

to get off. And the worst part?

Every time I try to take a

break, I get a month behind!

A snail went to buy a car. The 

salesman told him, "We have 

a great deal on this one, but it 

doesn't come with a shell."  

The snail looked surprised 

and asked, "Well, how am I 

supposed to drive it?"

ChatGPT, Claude, Grok, Gemini, or DeepSeek?

Why did the scarecrow win 

an award?  

Because he was outstanding 

in his field!  

...Or maybe he just knows 

how to keep people silent 

with his straw-ng presence.

Claude Grok Gemini DeepSeek

Why don't scientists trust 

atoms? Because they make 

up everything! And speaking 

of making things up, I told my 

computer I needed a break, 

and it said, "No problem, I'll 

go on a byte-sized vacation!"

ChatGPT

Figure 5.1: Our framework for studying idiosyncrasies in Large Language Models (LLMs).
We show that each LLM is unique in its expression. In the example shown here on ChatGPT,
Claude, Grok, Gemini, and DeepSeek, a neural network classifier is able to distinguish them with
a near-perfect 97.1% accuracy.

be reliably differentiated. Drawing inspirations from recent studies on dataset bias in computer
vision [236, 265], which demonstrated that images from different large-scale vision datasets
can be accurately distinguished by a standard neural network classifier, we consider a similar
synthetic classification task to assess the separability of responses generated between different
LLMs. Specifically, we sample a large number of text outputs from each LLM using the same set
of prompts and then train a classifier to recognize which model generates a specific text. Figure 5.1
provides an overview of our framework. The illustrated example on ChatGPT, Claude, Grok,
Gemini, and DeepSeek presents a five-way classification problem.

We find that a classifier based upon simple fine-tuning text embedding models on LLM
outputs is able to achieve remarkably high accuracy on this task. This indicates the clear presence
of idiosyncrasies in LLMs. The observation is highly robust over a large variety of LLM
combinations. For instance, trained on the combined set of texts from ChatGPT, Claude, Grok,
Gemini, and DeepSeek, a model can achieve 97.1% classification accuracy on the held-out
validation data, compared to a 20.0% chance-level guess. Within the same model family, we
obtain a non-trivial 59.8% accuracy across 4 model sizes in Qwen-2.5 series [261]. Further, we
observe strong out-of-distribution generalization of these classifiers when tested on responses
from prompts outside the training distribution.

We observe several interesting properties of this task. When controlling the length and format
of outputs through prompt instructions, we still obtain high classification accuracy. Furthermore,
for post-trained LLMs, the classifier demonstrates non-trivial accuracy even with only the first
few tokens of the generated text. However, when classifying generations from the same LLM
but using different sampling strategies, we achieve accuracy only slightly above the chance
level. In addition, we observe certain behaviors of this task that resemble those of standard text
classification, where improvements in text embeddings and availability of larger training datasets
lead to better classification performance.

We analyze the contributing factors to the idiosyncratic behaviors in LLMs. Our analysis
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is based on isolating different levels of information through text transformations. We find that
after randomly shuffling words in the LLM-generated responses, we observe a minimal decline in
classification accuracy. This suggests that a substantial portion of distinctive features is encoded
in the word-level distribution. We then highlight distinct sets of characteristic phrases that are
consistently associated with each LLM. We also find that markdown formatting contributes to a
moderate degree of idiosyncrasies in LLMs following post-training.

At the same time, we obtain over 90% accuracy when the word distribution is disrupted
through transformations that preserve semantics, such as rephrasing or translating. Even with the
most aggressive transformation – summarizing, classification accuracy remains well above chance-
level guess. This finding implies that semantic information also shapes the idiosyncrasies in LLMs.
Through open-ended language analysis, we provide further insights into these characteristics. For
instance, ChatGPT has a preference for detailed, in-depth explanations, whereas Claude produces
more concise and direct responses, prioritizing clarity.

Last, we discuss the broader implications of our findings. One should be cautious when using
synthetic data to train LLMs, as we show that many of these idiosyncrasies can be inherited
in such a process. Our framework also serves as a tool for assessing model similarities among
frontier models, either open-source or proprietary. In addition, we discuss how the idiosyncrasies
in LLMs can be used maliciously to manipulate voting-based leaderboards, therefore highlighting
the need for more robust evaluation methodologies.

5.3 Evaluating Idiosyncrasies in LLMs
Large Language Models (LLMs) share several core characteristics. The majority of them are based
on the Transformer architecture [1], which we consider in this paper. Second, they are trained
using an auto-regressive objective [2], where they predict the next token in a sequence based on
preceding context. Lastly, their training datasets significantly overlap, often incorporating vast and
diverse sources such as Common Crawl, Wikipedia and Stack Overflow. Given these similarities,
it is natural to ask: do LLMs speak in the same way? If not, how can we effectively measure the
degree of their differences?

To address these questions, we construct a synthetic task focused on classifying outputs from
different LLMs. Consider N LLMs, denoted as f1, . . . , fN , where each fi takes an input prompt
p and outputs a text completion o. For a given dataset D of prompts, the outputs produced by
each LLM fi are denoted as Oi. We approach this problem with a straightforward setup. For N
output sets Oi, we formulate a N -way classification task, where the objective is to predict which
LLM produced each output. If outputs of different LLMs were drawn from the same distribution,
classification accuracy would not be better than random chance. Thus, we use the classification
performance of this synthetic task as a measure of idiosyncrasies in LLMs.

Our task is formulated as a sequence classification problem, for which fine-tuning BERT-style
models is a common approach [251]. In this work, we fine-tune a more recent and competitive
sequence embedding model based on decoder-only Transformers: LLM2vec [207]. We attach a
N -way classification head to the extracted embeddings and use LoRA-based fine-tuning to both
the model weights and the linear head. Input sequences are truncated to a maximum length of
512 tokens. We evaluate the model’s performance on a held-out validation set and report the
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ChatGPT Claude Grok Gemini DeepSeek acc. (chat)
✓ ✓ 99.3
✓ ✓ 97.7
✓ ✓ 98.7
✓ ✓ 97.2

✓ ✓ 99.7
✓ ✓ 99.6
✓ ✓ 99.6

✓ ✓ 99.4
✓ ✓ 98.7

✓ ✓ 99.9

✓ ✓ ✓ ✓ ✓ 97.1

Llama Gemma Qwen Mistral acc.
(instruct)

acc. (base)

✓ ✓ 99.9 98.3
✓ ✓ 97.8 81.7
✓ ✓ 97.0 96.3

✓ ✓ 99.9 98.3
✓ ✓ 99.9 98.4

✓ ✓ 96.1 95.7

✓ ✓ ✓ ✓ 96.3 87.3

(a) chat APIs

(b) instruct and base LLMs

Table 5.1: Classification accuracies for various LLM combinations. Top: results for chat
APIs. Bottom: results for instruct and base LLMs. Check marks (✓) denote the models included
in each combination. We observe high classification accuracies consistently across all model
combinations, indicating the presence of distinct idiosyncrasies in LLMs.
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classification accuracy. Additional training details are provided in Appendix 5.7.1.

5.3.1 Main Observations

We observe surprisingly high accuracies by neural networks to classify LLM outputs. This
observation is robust across different settings, e.g., across model families and sizes.

We describe the LLMs we use to generate the output datasets O1,··· ,N . For a comprehensive
and fair comparison across model families, we categorize three groups of LLMs:

1. Chat APIs (“chat”): This category includes state-of-the-art LLMs that are primarily acces-
sible via APIs. We consider GPT-4o [13], Claude-3.5-Sonnet [15], Grok-2 [16], Gemini-
1.5-Pro [263], and DeepSeek-V3 [6]. For simplicity, we refer to them as ChatGPT, Claude,
Grok, Gemini and DeepSeek. Their architectures and weights remain proprietary and
undisclosed, with the exception of DeepSeek.

2. Instruct LLMs (“instruct”): These models are trained to generate high-quality responses
from human instructions. We consider four LLMs of similar sizes across different families:
Llama3.1-8b [25], Gemma2-9b [198], Qwen2.5-7b [261] and Mistral-v3-7b [173]. We will
refer to them as Llama, Gemma, Qwen and Mistral.

3. Base LLMs (“base”): These are base versions of instruct LLMs. They are obtained by
pretraining on extensive text corpora without any post-training stage.

Throughout the paper, we refer to these three categories as “chat”, “instruct”, and “base”
respectively. For a given prompt dataset, we collect 11K text sequences, splitting them into
10K for training and 1K for held-out validation. The same split is used across all LLMs. For
chat APIs and instruct LLMs, we generate outputs from UltraChat [225], a diverse dialogue and
instruction dataset. For base LLMs, we synthesize new texts using prompts from FineWeb [223], a
high-quality LLM pretraining dataset. More details on response generation are in Appendix 5.7.2.

Across model families. In Table 5.1, we report the results for classifying outputs from various
combinations of chat APIs (Table 5.1a) and instruct / base LLMs (Table 5.1b). In each of the three
LLM groups, we enumerate all (C2

N ) possible pairwise combinations when choosing 2 out of N
models in the top panel of each table, as well as the case including N models in the bottom row.
For the binary classification task, the neural network consistently achieves over 90% accuracy,
with only one exception. Notably, for chat APIs and instruct LLMs, many combinations reach
as high as 99% accuracy. In the more challenging N -way classification tasks, our classifiers
maintain strong performance, achieving at least 87.3% accuracy across three groups. These results
highlight the idiosyncrasies across different LLMs. We refer readers to Chapter 5.7.5 for the
confusion matrices of our classifiers.

Within the same model family. We evaluate sequence classification performance when distin-
guishing responses from LLMs within the same model family. Note that models from the same
family typically share common training procedures, e.g., pretraining datasets and optimization
schedule. First, we analyze the impact of model size by considering four Qwen2.5 instruct LLMs
with 7B, 14B, 32B, and 72B parameters. As shown in Table 5.2, the classification task becomes
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7b 14b 32b 72b instruct
✓ ✓ 77.0
✓ ✓ 81.2
✓ ✓ 83.4

✓ ✓ 63.1
✓ ✓ 85.5

✓ ✓ 84.8
✓ ✓ ✓ ✓ 59.8

Table 5.2: Classification within Qwen2.5 model family. The classifier can differentiate responses
between LLMs within the same model family with reasonably well accuracies.

train / test UltraChat Cosmopedia LmsysChat WildChat
UltraChat 96.3 98.9 89.9 92.4
Cosmopedia 95.7 99.8 88.3 94.9
LmsysChat 94.7 97.2 91.8 92.0
WildChat 95.1 99.1 90.2 95.7

Table 5.3: Robust generalization to out-of-distribution responses. We train classifiers on LLM
outputs from one prompt dataset and tested on those from another.

more difficult, but our classifiers remain reasonably well above chance accuracy when distin-
guishing LLMs within the same family. In the binary classification setup, the highest accuracy
reaches 85.5%, whereas in the full combination setup, the accuracy becomes 59.8%. In addition,
we observe high accuracies when classifying responses from base and instruct versions of the
same model. For example, our classifiers achieve 96.8% accuracy when distinguishing outputs
from Qwen2.5-7b base and instruct models.

Generalization to out-of-distribution responses. We find that our classifiers generalize robustly
to responses beyond their training distribution. To evaluate this, we collect responses from instruct
LLMs across four diverse datasets: i.e., UltraChat, Cosmopedia [274], LmsysChat [275], and
WildChat [278]. These datasets originate from different sources and are designed for various
purposes – Cosmopedia is designed for synthetic data generation, LmsysChat and WildChat
capture real-world user interactions, while UltraChat consists primarily of synthetic responses.
For each dataset, we train a classifier on a group of model responses and evaluate the classifier
across all four datasets. We use instruct LLMs for this experiment. As shown in Table 5.3, our
classifiers generalize well across different datasets, indicating that they learn very robust and
transferable patterns.

5.3.2 Controlled Experiments
We analyze the behaviors of the synthetic classification task in several controlled settings. From
now on, we only report the accuracy of the N -way classification task in each group.
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original length control format control
instruct LLMs 96.3 93.0 91.4

Table 5.4: Controlling LLM outputs with prompts. An instruction is added to the original
prompt to specify the output length and format. Length control limits responses to one paragraph.
Format control ensures that responses are in plain text without any format.

Prompt-level interventions. We assess the degree of idiosyncrasies in LLM outputs with
explicit prompt-level interventions. Specifically, we modify the original prompt by incorporating
additional instructions to constrain response length and format. We then perform sequence
classification on the resulting outputs. Our interventions are:

• Length control: Please provide a concise response in a single paragraph, limited to a
maximum of 100 words.

• Format control: Please provide your response in plain text only, avoiding the use of italicized
or bold text, lists, markdown, or HTML formatting.

LLM outputs after these interventions are presented in Chapter 5.7.10. We find that LLMs can
follow the additional instructions in generating responses.

Table 5.4 presents the results for this analysis. We can see that neural networks still perform
excellently for classifying LLM outputs applied with length and format control prompts. These
findings suggest that LLM characteristics are deeply embedded in the generated text, persisting
despite surface-level constraints on length and formatting.
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Figure 5.2: Ablations on input length of text embedding models. Classification accuracies
improve as the text embedding models capture more context. Performance begins to saturate
beyond an input sequence length of 256. Note that the three lines represent different groups of
LLMs and are not directly comparable.

Input length of text embedding models. We control the number of input tokens to the text
embedding models. Specifically, we truncate each response to a fixed number of tokens in a left-
to-right fashion. Figure 5.2 presents the results. Across three groups of LLMs, the classification
task benefits from seeing an increased number of tokens. Intriguingly, for chat APIs and instruct
LLMs, we observe around 50% accuracy with just a single text token. This suggests that the
initial token in a response contains certain distinctive signals for the classification problem. In
Section 5.4.1, we provide further evidence supporting this observation.
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greedy softmax top-k top-p
greedy - - - -
softmax 59.6 - - -
top-k 58.2 50.0 - -
top-p 52.9 51.0 52.1 -

Table 5.5: Classifications with different sampling methods. Distinguishing responses generated
by the same model using different sampling strategies is only marginally better than chance
accuracy. The results are on Llama3.1-8b instruct model’s responses.

Sampling methods. We consider outputs when sampled using different decoding strategies.
Specifically, we use four widely used sampling methods: greedy decoding, temperature softmax,
top-k, and top-p sampling. For each method, we generate a set of responses from the LLM. We
then fine-tune the LLM2vec embedding model to predict the sampling method responsible for
each response.

Table 5.5 presents the results for all pairs of sampling methods. Notably, the accuracy of
distinguishing between responses generated by the same LLM remains relatively low, with the
highest accuracy across all configurations being 59%. Furthermore, in a more fine-grained 5-way
classification task distinguishing softmax sampling at five different temperatures (T = 0, 0.25,
0.5, 0.75, 1), we obtain an accuracy of 37.9%, only marginally better than the random chance
level of 20%. These results suggest that outputs from the same LLM are not easily separable
based on decoding strategies.

Text embedding models. We vary the underlying pretrained embedding models for sequence
classification. The default setting we used in previous parts is fine-tuning the LLM2vec embedding
models. We consider various generations of embeddings models spanning across architectures and
training methods: ELMo [269], BERT [18], T5 [208], GPT-2 [2], and LLM2vec [207]. Details on
the fine-tuning setting can be found in Chapter 5.7.3.

method chat instruct base
ELMo 90.8 91.0 69.8
BERT 91.1 91.5 66.0
T5 90.5 89.8 67.9
GPT-2 92.1 92.3 80.2
LLM2vec 97.1 96.3 87.3

Table 5.6: Different sequence embedding models. LLM2vec achieves the best performance in
classifying outputs from various LLMs among the five embedding models we study.

Table 5.6 shows the results. All sequence embedding models can achieve very high accuracies.
The classification performance improves with more advanced sequence embedding models.
Among all methods, LLM2vec demonstrates the best performance, achieving 97.1% on chat APIs,
96.3% on instruct LLMs, and 87.3% on base LLMs.
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Training data size. We vary the number of training samples generated by LLMs and train the
classifier with the same total number of iterations. We present the results in Figure 5.3. The
performance of the classifier increases as it is trained with more training samples. This trend is
consistently observed across chat APIs, instruct LLMs, and base LLMs. Furthermore, as few as
10 training samples, the classifier achieves non-trivial accuracy (e.g., 40.3% on instruct LLMs),
surpassing 20% chance-level guess.
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Figure 5.3: Different numbers of training samples. Our sequence classifiers benefit from
more training samples. The classification performance converges when using about 10K training
samples.

5.4 Concrete Idiosyncrasies in LLMs
We have shown that modern neural networks can achieve excellent accuracies in classifying which
LLM generates a given response. Here we leverage classical text similarity metrics – ROUGE-
1 [266], ROUGE-L [266], and BERTScore [18] – to quantify lexical differences between LLM
outputs. We compute the mean F1-score for each metric across all response pairs generated by
any two different chat API models given the same prompt. For comparison, we also measure the
similarity between responses sampled within the same model. As shown in Table 5.7, responses
from different LLMs exhibit lower text similarities than those from the same model.

across LLMs within an LLM
ROUGE-1 0.499 0.660
ROUGE-L 0.256 0.414
BERTScore∗ 0.220 0.482

Table 5.7: Text similarity scores. We evaluate the text similarity of LLM outputs using ROUGE-1,
ROUGE-L, and BERTScore. * We follow [267] to rescale BERTScore with respect to the human
baseline. The results indicate that responses from different LLMs exhibit low lexical similarity.

In the following, we identify concrete idiosyncrasies in LLMs across three dimensions: words
and letters, markdown formatting elements, and semantic meaning. For each dimension, we apply
text transformations to isolate potential idiosyncrasies and assess their impacts on classification
performance. We then highlight specific patterns within each dimension that distinguish LLMs.
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Our products feature innovative 

sustainable materials, such as …

ChatGPT Claude

Based on the text provided, here are 

the key details about Armon Binns’ …

While many winter sports in the 

Pyrenees are similar to those found …

This appears to be a fragment of 

poetry that creates a pastoral …

Certainly! If you're looking for cheese 

alternatives to replace Brie in your …

Overall, while there are challenges, 

Tanzania is making progress …

Sure! Here's a simple guide to cooking 

a juicy salmon fillet: …

According to the text, Kai Fusser 

believes that traditional cardio …

(a) characteristic phrases

1. Deliver Exceptional Service: The     

foundation of word-of-mouth 

marketing is consistent excellence. 

Providing top-notch services or …

ChatGPT Claude

Ingredients:

     •  2 boxes orange-flavored Jello

     •  1 can evaporated milk

     •  Tonic water …

Ingredients:
      •  2 (3 oz) packages of orange-

         flavored Jello 

      •  1 cup tonic water (this is what …

1. Deliver Exceptional Service

 •  Consistently exceed customer     

 •  expectations

 •  Focus on quality and attention …

(b) unique markdown formatting

Figure 5.4: Example responses from ChatGPT and Claude, showcasing their idiosyncrasies:
characteristic phrases (left) and unique markdown formatting (right). For clarity, we highlight
each characteristic phrase with underline and model-specific color.

5.4.1 Words and Letters

Text shuffling. To decouple the effects of words and letters from other factors, we remove
special characters in LLM-generated responses, such as punctuations, markdown elements, and
excessive white spaces. This ensures that each response consists solely of words separated by a
white space. Additionally, we apply two shuffling strategies to the preprocessed text: word-level
and letter-level shuffling. These transformations disrupt the natural order and force the classifier
to learn patterns from raw text statistics. Table 5.8 presents the classification results.

Classifiers trained on responses without special characters achieve accuracies close to those
using the original responses, i.e., 95.1% for chat APIs, 93.8% for instruct LLMs, and 75.4% for
base LLMs. Likewise, using word-shuffled responses yields high accuracies comparable to the
original ones. Further, we plot the frequencies of several commonly used words from five chat
APIs in Figure 5.5 (left). We observe distinct patterns among models, even for frequent English
words: Claude has much lower frequencies for words like “the”, “and”, “to”, and “of” than other
chat APIs. These results suggest that special characters and word order are not essential for
distinguishing LLMs; word choices reflect substantial idiosyncrasies across models.

In contrast, shuffling at the letter level results in a substantial drop in accuracy (49%-56%),
approaching chance-level performance. This indicates that letter-level statistics alone are not
sufficient for predicting LLM identities. To qualitatively visualize distinctions in letter distributions
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chat instruct base
original 97.1 96.3 87.3
removing special characters 95.1 93.8 75.4
shuffling words 88.9 88.9 68.3
shuffling letters 39.1 38.6 38.9

Table 5.8: Classifications with only words and letters. While removing special characters and
shuffling words have little impact on accuracies, shuffling letters greatly reduces the performance.
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Figure 5.5: Frequencies of words and letters. The top 20 most frequently used words of LLMs
(left) exhibit distinct patterns for each model, but their letter frequencies (right) are very similar.
Results are on the chat API models.

across models, Figure 5.5 (right) shows the frequency distribution of letters in responses generated
by chat APIs. Different LLMs share almost identical letter distributions, indicating that letters
contribute minimally to idiosyncrasies in LLMs.

Characteristic phrases. We use Term Frequency-Inverse Document Frequency (TF-IDF) to
highlight characteristic phrases inside LLM-generated responses that reflect each model’s word
choices. Formally, we treat each LLM response as a document and then extract TF-IDF features
on all uni-gram and bi-gram words. We then train a N -way logistic regression model to predict
the origin of responses on the extracted features. This simple linear classifier achieves 85.5% /
83.7% accuracy on chat APIs / instruct LLMs, close to 95.1% / 93.8% achieved with fine-tuning
embedding models on responses without special characters (Table 5.8).

Since the coefficients of a logistic regression model provide a natural ranking for its features,
we leverage these coefficients to highlight important phrases in the classification task. Figure 5.6
presents the top 10 phrases with the largest logistic regression coefficients for each of the five
chat API models. Notably, these phrases often serve as transitions or emphasis in sentences. For
example, ChatGPT likes to generate “such as”, “certainly”, and “overall”, whereas Claude prefers
“here”, “according to”, and “based on”.

Figure 5.4a illustrates these characteristic phrases with example responses from ChatGPT
and Claude. While ChatGPT begins responses with “certainly” and “below is”, Claude usually
references the original prompt using the phrases like “according to the text” and “based on the
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such
such as
enhance
involves
certainly
overall
sure

utilize
various
typically

here
according to
according
the text
while

based on
here’s a summary

appears to
both
when

ClaudeGPT-4o

which
where

not
here

here is
remember

might
but also
not only
helps in

Grok Gemini

below is
in summary
for example

below
certainly
summary

may
certainly! below

know if
example

DeepSeek

crucial
other
even

here’s a breakdown
key improvements

doesn’t
within

essentially
also
etc

Figure 5.6: Characteristic phrases. We train a logistic regression model on TF-IDF features of
chat APIs’ outputs and extract the top 10 phrases for each LLM based on the coefficients of these
features. We remove common words shared across these LLMs.

text”. Moreover, Figure 5.7 reveals noticeable differences in the distribution of first word choices
among chat APIs. Chapter 5.7.7 provides characteristic phrases for other LLMs.

5.4.2 Markdown Formatting

We seek to understand how each LLM formats their responses, particularly in markdown. To
this end, we focus on common markdown elements used by LLMs: (1) bold text, (2) italic text,
(3) header, (4) enumeration, (5) bullet point, (6) code block. We transform the LLM outputs by
retaining only these formatting components while replacing other text with the marker “xxx”.
Chapter 5.7.10 provides examples of the transformed outputs. Table 5.9 shows the classification
results after this transformation.

chat instruct base
original 97.1 96.3 87.3
markdown elements only 73.1 77.7 38.5

Table 5.9: Classifications with only markdown elements. Using markdown elements can
achieve high accuracies for chat APIs and instruct LLMs, but marginally better results for base
LLMs.

Surprisingly, we observe our classifiers achieve high accuracies of 73.1% for chat APIs and
77.7% for instruct LLMs. However, the classification accuracies with base LLMs’ responses are
near chance-level guess (25%). This is likely because base LLMs tend to generate responses in
plain text.
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Figure 5.7: First word. We analyze the distribution of the first word in chat APIs’ responses, with
the top 10 most frequent words for each model. These differences in first-word usage explain the
non-trivial accuracy with only the first word in Figure 5.2.

We count the occurrence of a markdown formatting element in each response. We then plot
the distribution of these counts over all responses in Figure 5.8. Each model exhibits a unique
way to format its responses. For instance, Claude (yellow) has a high density at zero in the bold
text and header count distributions, indicating that it generates many responses without bold texts
or headers. On the contrary, other LLMs exhibit lower values at zero and thus decorate text with
these formatting elements more often.

Figure 5.4b visualizes how ChatGPT and Claude structure their responses in markdown.
Interestingly, ChatGPT tends to emphasize each key point within enumerations in bold and
highlight a title with markdown headers, but Claude formats text with simple enumeration and
bullet points. More analysis on these markdown formatting elements for other models can be
found in Chapter 5.7.8.

5.4.3 Semantics
Rewriting. One potential reason for the high classification accuracy is the unique writing style
(e.g., word choice, sentence structure) of each LLM. To isolate this factor, we leverage another
LLM (e.g., GPT-4o mini) to rewrite LLM responses. Our rewriting approaches include (see
Chapter 5.7.10 for example responses after rewriting):

• Paraphrasing: Paraphrase the above text while maintaining the semantic meaning of the
original text.

• Translating: Translate the above text into Chinese.
• Summarizing: Summarize the above text in one paragraph.
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Figure 5.8: Markdown formatting elements. Each LLM has a distinctive distribution of
markdown formatting elements.

We show the results in Table 5.10. The classifiers trained on paraphrased LLM responses
maintain similar accuracy levels to those using original responses. Likewise, when using translated
text, the classifiers are also able to differentiate between LLMs. These findings suggest that the
semantic meanings of words play a more significant role in predicting LLM origins than the exact
word choice.

chat instruct base
original 97.8 96.3 87.3
paraphrasing 91.4 92.2 71.7
translating 91.8 92.7 74.0
summarizing 58.1 57.5 44.7

Table 5.10: Classifications on rewritten responses. Paraphrasing or translating LLM outputs
achieves an accuracy comparable to that using original counterparts. However, summarizing these
texts makes the model less capable of predicting LLM identities.

Moreover, despite a noticeable accuracy drop (i.e., >38%) with the summarized text, the
resulting performance remains well above chance-level guess. This remarkable ability to classify
the summarized texts shows the high-level semantic difference in LLM-generated responses.
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1. Descriptive and Detailed Tone: Often uses narrative styles with an 

informative, engaging, or vivid tone.

2. Specific and Technical Word: Employs descriptive and technical 

vocabulary, enhancing depth and specificity.

3. Structured and Contextual Opening Lines: Typically begins with 

context-setting or narrative introductions.

4. Markdown Formatting for Organization: Utilizes various markdown 

elements like headings, lists, and bold text for clarity.

5. Comprehensive and In-Depth Content: Offers rich detail, focusing on 

explanations, background, and broader topics.

ChatGPT

1. Concise and Straightforward Tone: Generally adopts a more direct, 

factual, or succinct tone.

2. Functional and Clear Word Choices: Prefers simple or action-oriented 

language prioritizing clarity and practicality.

3. Immediate and Direct Opening Lines: Often starts with a 

straightforward statement or summary without extended context.

4. Minimal Markdown or List Use: Relies on plain lists or simple

formatting for quick reference.

5. Focused and Summarized Content: Concentrates on essential points 

and specific phenomena, avoiding extensive detail.

Claude

Figure 5.9: Results of our open-ended language analysis on ChatGPT and Claude. ChatGPT
features descriptive language, sophisticated markdown formatting, and in-depth details, while
Claude highlights straightforward tone, minimal structure, and summarized content.

Open-ended language analysis. In this part, we focus on studying the semantic difference in
responses generated by LLMs. We employ another LLM (e.g., ChatGPT) as a judge to provide
open-ended, descriptive characterizations for each LLM’s outputs. The results with other LLM
judges for our language analysis are available in Chapter 5.7.9.

Specifically, we present an LLM judge with two responses – generated by different models
based on the same prompt – and ask it to analyze these responses from different angles (e.g., tone
and content). This process is repeated multiple times to gather a comprehensive collection of
analyses. Finally, we query the LLM judge to summarize these analyses into bullet points that
capture the characteristics of each model. The prompts are detailed in Chapter 5.7.4.

The results of open-ended language analysis on ChatGPT vs. Claude are shown in Figure 5.9.
For a detailed pairwise comparison of the responses, see Figure 5.16 in Chapter 5.7.10. ChatGPT
is characterized by descriptive and detailed responses in an engaging tone. In contrast, Claude
prioritizes simplicity with only key points and straightforward language. Additional results on
chat API models and instruct LLMs are provided in Chapter 5.7.9.
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5.5 Implications
In this section, we explore the broader implications of our framework, regarding synthetic data
and model similarity.

Idiosyncrasies via synthetic data. Using synthetic data has become a common practice when
training frontier LLMs [242, 258, 273]. We conduct supervised fine-tuning (SFT) on two base
LLMs (Llama3.1-8b and Gemma2-9b) using Ultrachat, i.e., dialogues generated by ChatGPT.
After the SFT stage, we train a classifier to distinguish between responses from two fine-tuned
models. We find that SFT on the same synthetic dataset significantly reduces the classification
accuracy from 96.5% to 59.8%, narrowing down the differences between these two models.

In addition, we generate responses from Llama3.1-8B and Gemma2-9B in instruct LLMs
using UltraChat prompts. Then we fine-tune Qwen2.5-7B base LLM on each set of responses
respectively. Interestingly, responses from the two resulting fine-tuned models can be classified
with 98.9% accuracy, suggesting that each fine-tuned model retains the unique characteristics in its
SFT data. These findings suggest that training with synthetic data can propagate the idiosyncrasies
in the source model.

Inferring model similarity. Our framework offers a quantitative approach for assessing similar-
ities between proprietary and open-weight LLMs. Given a set of N LLMs, we omit one model
and train a classifier on responses from the remaining N − 1 models. We then evaluate which
LLM the classifier associates the responses of the excluded model with. The model that is most
frequently predicted as the source is considered the closest match to the excluded LLM. This
process is repeated for each of the N models. For this analysis, we include the open-weight
Phi-4 [242] alongside 5 chat API models. Notably, Phi-4 uses a substantial amount of synthetic
data in its training.

Results are shown in Figure 5.10. Intriguingly, for Claude, Grok, and Gemini, we observe
a strong tendency for their outputs to be classified as ChatGPT. For instance, when Grok is the
excluded model, 82.8% of its responses are classified as ChatGPT. In addition, responses from
ChatGPT and DeepSeek are frequently identified as coming from Phi-4, with 55.9% and 76.0%
of their responses respectively. In turn, most of Phi-4’s outputs are classified as originating from
ChatGPT or DeepSeek.

Robust evaluation of LLMs. Our findings reveal a potential vulnerability in widely used LLM
evaluation methodologies. It has become a common strategy to incorporate human judgement
in evaluating LLMs, for instance, Chatbot Arena [276]. It is a voting-based leaderboard where
users submit preferences of the responses from two random models. This benchmark has gained
significant traction and is now a key reference point for frontier model development. However,
exploiting the idiosyncratic property of LLM outputs, a malicious attacker can identify the model
behind the candidate responses and consistently vote for the target model, thereby manipulating
the leaderboard rankings. Concurrent work by [277] has demonstrated the feasibility of this attack
in simulation. We hope our work brings attention to potential weaknesses in current evaluation
pipelines, as they can misguide model development and optimization efforts [28].
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Figure 5.10: Inferring model similarity. We consider 6 LLMs, including 5 chat API models and
Phi-4. In each subfigure, we evaluate a five-way classifier on outputs from the excluded LLM and
present the distribution of predicted model origins. There is a strong tendency for LLM outputs to
be predicted as ChatGPT.

5.6 Related Work
Dataset classification. [238] introduced the “Name That Dataset” experiment a decade ago to
highlight the bias present in visual datasets of that time. Recently, [265] revisited this problem
(termed dataset classification) and found that current large-scale, supposedly more diverse visual
datasets are still very biased. [236] further identified structural and semantic components in
images as key contributors to these biases. [232] and [237] applied the dataset classification
framework to study bias in synthetic images and LLM pretraining datasets respectively. While the
synthetic task shown in Figure 5.1 is conceptually similar to dataset classification, we focus not
on training datasets but on the distinctive characteristics inherent to LLMs.

Human vs. machine-generated texts. Many prior works have studied the problem of determin-
ing if a text is authored by a human or an AI system [228, 229]. Model-free approaches typically
use linguistic properties such as n-gram frequencies [230, 240], entropy [241, 246] or negative
probability curvature [228, 247]. Other works leverage neural network features to perform this
task, such as fine-tuning BERT models [248, 249]. Neural authorship attribution [253, 254] seeks
not only to identify machine-generated text but also to attribute it to specific text generators. In
this work, we focus on the distinguishability between LLMs rather than between AI vs. human.

Understanding differences between distributions. A line of research [224, 231] has used
foundation models to describe qualitative differences between pairs of data distributions (e.g.,
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image datasets). [234] conducted hypothesis testing on sets of model outputs to check whether
the underlying LLMs were identical. The most relevant work to us is [235], which proposed
VibeCheck to understand user-aligned traits in LLM outputs. They found that LLMs often vary
in styles, such as being more formal or friendly. In contrast, our work aims to identify broader
generalizable patterns to interpret the high classification performance.

5.7 Additional Results

5.7.1 Implementation Details

5.7.2 Response Generation
We report our procedure for generating responses from chat APIs, instruct LLMs, and base
LLMs. For chat APIs, we access a stable version of each model, including GPT-4o-2024-08-06,
Claude-3.5-Sonnet-20241022, Grok-Beta, Gemini-1.5-Pro-002, and DeepSeek-Chat, through its
official API between November 28, 2024, and February 6, 2025, generating responses with their
default sampling setting. For instruct LLMs, we use greedy decoding to sample outputs. For base
LLMs, we set the temperature to T = 0.6 and apply a repetition penalty of 1.1 to avoid repetitive
completions.

5.7.3 Training Setup
In this part, we describe our fine-tuning process using the text embedding models on LLM
responses. We use the first 512 tokens of each generated response for training and evaluation. To
perform sequence classification, we add a linear layer as the classification head on top of each text
embedding model. For ELMo, BERT, LLM2vec, this layer is applied to the average embeddings
over all tokens in a sequence. For T5 and GPT-2, we follow the original setups [2, 208] and apply
the head on the output of the last token.

For smaller text embedding models, such as ELMo, BERT, T5, and GPT-2, we fine-tune the
entire model along with the classification head, searching over base learning rates {3e-3, 1e-3,
3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6}. For the largest LLM2vec model, we employ the parameter-
efficient LoRA [134] fine-tuning method with a rank of 16, LoRA α of 32, a dropout rate of 0.05,
and a base learning rate of 5e-5. Table 5.11 details our basic training recipe.

5.7.4 Prompts for Open-ended Language Analysis
We detail the procedures of our open-ended language analysis in Section 5.4.3. Given the same
input, we sample a pair of responses from two LLMs and present them, along with an analysis
prompt (see Figure 5.11a), to an LLM judge for comparison. To avoid the LLM judge exploiting
any prior knowledge of the models, we anonymize model identities using an index distribution.
This process is repeated for 35 response pairs, yielding a set of detailed analyses. Finally, we
use the summarization prompt (see Figure 5.11b) to distill these analyses into 5 bullet points that
characterize the idiosyncrasies of each model.
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config value

optimizer AdamW
weight decay 0.001
optimizer momentum β1, β2 = 0.9, 0.999

training epochs 3
batch size 8
learning rate schedule cosine decay
warmup schedule linear
warmup ratio 10%
gradient clip 0.3

Table 5.11: Our fine-tuning recipe.

Here are some samples from 2 different distributions of text.

Sample from distribution {1, 2}: {text sample 1}

Sample from distribution {1, 2}: {text sample 2}
 

Determine the unique characteristics of the 2 distributions, and 

summarize them with five bullet points for each. Each bullet point 

should analyze the response from the same angle and can be easily 

compared by a human. Focus on key aspects that differentiate the 

distributions. Focus on the overall tone, specific word choices, opening 

lines, markdown formatting, and content. Output only 5 bullet points 

per distribution, no additional text.

(a) analysis prompt

Below are 35 summaries that compare the unique features in 2 text 

distributions point by point.

{Analysis 1}

{Analysis 2}

…

{Analysis 35}

Condense all 35 summaries into a single summary. Focus on how 

each summary evaluates the overall tone, specific word choices, 

opening lines, markdown formatting, and content. Provide exactly 

five bullet points for each distribution, one for each feature. Each 

bullet point should consist of a descriptive title characterizing the 

feature and a short sentence explaining it concisely. Emphasize 

recurring and significant features, remove the redundant ones, and 

ensure the titles and sentences clearly differentiate the distributions 

for easy human comparison. Output only 5 bullet points per 

distribution, no additional text.

(b) summarization prompt

Figure 5.11: Prompts in our open-ended language analysis.

5.7.5 Confusion Matrix

In Figure 5.12, we present the confusion matrix for the N -way classifiers that are trained on
responses generated by chat APIs, instruct LLMs, and base LLMs, respectively. The results
demonstrate that our classifiers can accurately predict the origin of LLM-generated responses,
with minimal confusion between different LLMs.
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Figure 5.12: Confusion matrices for N -way classifiers on three groups of LLMs: chat APIs,
instruct LLMs, and base LLMs.

5.7.6 Words and Letters
Figure 5.13 presents the frequencies of the 20 most commonly used words (left) and all English
letters (right) across instruct and base LLMs. Consistent with our observations in Section 5.4.1,
we find notable differences in the distribution of commonly used words between these models,
such as “the”, “and”, “to”. In contrast, the letter distributions are nearly identical.
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Figure 5.13: Word and letter frequencies in instruct and base LLMs.

5.7.7 Characteristic Phrases
We provide additional results for characteristic phrases as presented in Section 5.4.1. We follow
the same methodology in Figure 5.6 to extract characteristic phrases of instruct and base LLMs.
Specifically, we train a four-way logistic regression classifier on the TF-IDF features of their
responses and use the coefficients to select important phrases of each model.

As shown in Figure 5.14, each instruct LLM contains quite distinct characteristic phrases.
For example, Llama frequently employs terms “including” and “such as” to introduce specific
examples in the output, whereas Gemma tends to engage with users using phrases “let me” and
“know if”. In contrast, the extracted phrases from base LLMs are less distinctive, primarily
consisting of common words such as “the”, “to”, and “you”.

Figure 5.15 illustrates the distribution of first word choices in instruct and base LLMs. Similar
to chat APIs (Figure 5.7), instruct LLMs display varied distributions. However, base LLMs exhibit
substantial overlap in their most frequent first words, e.g., “the”, “and”, “of”, “to”, and “in”.

94



including

the following

example use

such as

use case

which

explanation the

that

2020

summary

essentially

know if

me know

let me

here’s a breakdown

breakdown

states that

specific

remember

states

certainly

below is

certainly! here

certainly! below

enhance

detailed

these

can

broader

certainly! the

title

absolutely

as

also

help

title comprehensive

for

an

however

during

Gemma Qwen MistralLlama

(a) instruct LLMs

and

re

ve

ll

the

In

11

to

for

they re

strong

h2

em

h3

blockquote

as

there

here

after

which

the

re

ll

or

you re

answer

specific

might

throughout

like

is

the

and

are

to

in

in the

you

your

it

Gemma Qwen MistralLlama

(b) base LLMs

Figure 5.14: Characteristic phrases for instruct1and base LLMs.
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Figure 5.15: Distribution of first word choices in instruct and base LLMs.

5.7.8 Unique Markdown Formatting
In this part, we provide additional results for the analysis of markdown formatting as presented
in Section 5.4.2. Figure 5.16 illustrates the distribution counts of six markdown formatting
elements across different models. For both chat API models (Figure 5.16a) and instruct LLMs
(Figure 5.16b), we observe distinct differences in the usage of bold texts, headers, enumerations,
and bullet points, while italic texts show less variation. Intriguingly, Gemini uses much more italic
texts (a lower density at zero in the italic text) than other chat APIs, where similar observations
can be found on Gemma2.

5.7.9 Open-ended Language Analysis
Ablation on LLM judges. Here we demonstrate our findings in Figure 5.9 of Section 5.4.3
remains consistent under several LLM judges. Specifically, we change the LLM judge from
ChatGPT to Claude, Grok, and Gemini. We show the results in Figure 5.17. Regardless of
the choice of LLM judges, our language analysis reveals that ChatGPT often uses detailed

1In LLama of instruct LLMs, the phrase “explanation the” corresponds to a markdown header or bold text for
“explanation” followed by a new sentence starting with “the”.
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Figure 5.16: Markdown formatting elements for chat APIs (top) and instruct LLMs (bottom).

explanations and complex formatting structures, whereas Claude emphasizes key contents without
extensive elaboration.

Open-ended language analysis results on other LLMs. In Section 5.4.3, we presented the
results of open-ended language analysis for ChatGPT and Claude. Here, we extend our analysis
to other chat API models and instruct LLMs. The full results are shown in Figure 5.18, where we
use ChatGPT as the LLM judge to compare responses generated by two models within the same
category (chat APIs / instruct LLMs). Our analysis highlights several interesting characteristics
of each model. For example, Grok’s responses tend to feature rich language and comprehensive
content, whereas Gemini’s outputs are more concise with direct openings.
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• Tone: Authoritative and formal, using academic language with detailed 

explanations and complex sentence structures

• Word Choice: Rich descriptive vocabulary with technical terms, metaphors, 

and evaluative language ("renowned," "instrumental," "exquisite")

• Opening Style: Direct statements or enthusiastic "Certainly!" responses 

that establish context and preview content

• Markdown Usage: Extensive formatting with bold headers, nested bullet 

points, and hierarchical section markers

• Content Structure: Comprehensive paragraphs with detailed explanations, 

examples, and flowing transitions between ideas

ChatGPT

• Tone: Analytical and cautious, frequently referencing source material and 

acknowledging limitations

• Word Choice: Simpler, more practical vocabulary focused on clarity and 

accessibility rather than style

• Opening Style: Meta-references like "According to the text" or explicit 

disclaimers about content limitations

• Markdown Usage: Minimal formatting with basic bullet points or simple 

numbered lists

• Content Structure: Concise bullet points and brief statements organized in 

categorical lists without extensive elaboration

Claude

(a) Claude as the LLM judge.

- Tone: Warm and Informative - Uses an inviting, educational tone to 

engage and inform the reader.

- Word Choices: Descriptive and Detailed - Employs rich, technical, or 

emotive language to enhance understanding or evoke emotion.

- Opening Lines: Contextual and Engaging - Provides context or a 

narrative hook to draw readers in.

- Markdown Formatting: Structured and Emphasized - Extensive use of 

headings, lists, and bold text for clarity and organization.

- Content: Comprehensive and Insightful - Focuses on in-depth 

explanations, examples, and broad implications.

ChatGPT

- Tone: Direct and Practical - Often concise, focusing on actionable insights or 

straightforward information.

- Word Choices: Simple and Functional - Prefers straightforward language,

emphasizing utility over emotional or detailed descriptions.

- Opening Lines: Immediate and Focused - Jumps directly into the topic or lists 

key points without much preamble.

- Markdown Formatting: Minimalist - Uses basic markdown elements like bullet 

points or simple lists for clarity.

- Content: Succinct and Focused - Provides essential information with less depth, 

often aiming for quick readability or practicality.

Claude

(b) Grok as the LLM judge.

• Formal Tone: Often adopts a formal, academic, or instructional tone, 

prioritizing clarity and detail.

• Precise Diction: Employs specific, descriptive, and sometimes technical 

vocabulary relevant to the subject matter.

• Contextual Openings: Typically begins with introductory statements, 

context-setting, or clear purpose statements.

• Structured Formatting: Frequently utilizes headings, lists, bolding, and 

other markdown features for organization and emphasis.

• Comprehensive Content: Provides detailed explanations, examples, and 

in-depth information, often covering a broader scope.

ChatGPT

• Informal Tone: Generally uses a more informal, conversational, or concise 

tone, prioritizing brevity and accessibility.

• Simplified Language: Favors simpler, more direct vocabulary, avoiding 

jargon and focusing on key information.

• Direct Openings: Often starts directly with the main point or a summary of 

key information.

• Minimal Formatting: Uses less markdown formatting, relying primarily on 

basic lists, bullet points, or plain text.

• Concise Content: Focuses on summarizing key points, offering practical 

advice, or providing concise overviews. 

Claude

(c) Gemini as the LLM judge.

Figure 5.17: Results of our open-ended language analysis on ChatGPT and Claude with different
LLM judges.

5.7.10 Response Demonstrations
In this part, we present examples of LLM responses. Table 5.12 and 5.13 illustrate responses
before and after our prompt-level interventions (Section 5.3.2). Table 5.14 shows the transformed
responses when only markdown elements are retained (Section 5.4.2). Table 5.15 presents the
rewritten responses (Section 5.4.3). Additionally, Table 5.16 provides a pairwise comparison
of responses, supporting our findings in Table 5.9. Table 5.17, 5.18, 5.19, 5.20, 5.21, 5.22,
5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29 contain example responses from each LLM considered
in Section 5.3, including ChatGPT, Claude, Grok, Gemini, DeepSeek, LLama3.1-8b (instruct),
Gemma2-9b (instruct), Qwen2.5-7b (instruct), Mistral-v3-7b (instruct), LLama3.1-8b (base),
Gemma2-9b (base), Qwen2.5-7b (base), and Mistral-v3-7b (base).
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Can you suggest any other cheese alternatives that I can use instead of Brie for this recipe? Generate according to: Add one or two
slices Brie o the beef and let it melt. Cut the green apple in thin slices. Top with the mixed salad and finish with the apple slices.

If you’re looking for cheese alternatives to Brie for your recipe, consider the following options:
1. Camembert: This cheese is quite similar to Brie in texture and flavor, offering a creamy consistency and a mild, earthy taste

that will complement the beef and apple.
2. Taleggio: An Italian cheese with a soft texture and a tangy, fruity flavor. It melts well and can add a unique twist to your dish.
3. Fontina: Known for its smooth melting properties, Fontina has a nutty and slightly sweet flavor that pairs nicely with beef

and apples.
4. Goat Cheese: If you prefer a tangier option, goat cheese can provide a creamy texture and a distinct flavor that contrasts well

with the sweetness of the apple.
5. Havarti: A semi-soft cheese with a buttery and slightly sweet taste, Havarti melts beautifully and can be a great substitute for

Brie.
These alternatives should work well in your recipe, providing a delicious and melty addition to your beef and apple combination.

(a) original

Can you suggest any other cheese alternatives that I can use instead of Brie for this recipe? Generate according to: Add one or two
slices Brie o the beef and let it melt. Cut the green apple in thin slices. Top with the mixed salad and finish with the apple slices.

Please provide a concise response in a single paragraph, limited to a maximum of 100 words.

For a delicious alternative to Brie, consider using Camembert or triple cream cheese, both of which offer a similar creamy texture
and rich flavor. If you prefer a slightly tangier option, goat cheese can provide a delightful contrast to the beef and apple. For a
milder taste, Havarti or Fontina can melt beautifully and complement the dish’s flavors. Each of these cheeses will add a unique
twist while maintaining the creamy, melt-in-your-mouth experience that Brie provides.

(b) length control

Can you suggest any other cheese alternatives that I can use instead of Brie for this recipe? Generate according to: Add one or two
slices Brie o the beef and let it melt. Cut the green apple in thin slices. Top with the mixed salad and finish with the apple slices.

Please provide your response in plain text only, avoiding the use of italicized or bold text, lists, markdown, or HTML formatting.

You can use Camembert or triple cream cheese as alternatives to Brie in your recipe. Both have a similar creamy texture and rich
flavor that will complement the beef and other ingredients.

(c) format control

Table 5.12: Examples of prompt-level interventions on ChatGPT.
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Can you suggest any other cheese alternatives that I can use instead of Brie for this recipe? Generate according to: Add one or two slices
Brie o the beef and let it melt. Cut the green apple in thin slices. Top with the mixed salad and finish with the apple slices.

If you’re looking for alternatives to Brie cheese in your recipe, here are some options you can consider:

1. Goat Cheese: A soft and creamy cheese with a tangy flavor that pairs well with the sweetness of the apple and the savory flavor of
the beef.

2. Feta Cheese: A salty and crumbly cheese that adds a nice contrast to the softness of the beef and the crunch of the apple.
3. Camembert: A French cheese with a creamy texture and a mild, earthy flavor that complements the beef and apple nicely.
4. Blue Cheese: A strong and pungent cheese that adds a bold flavor to the dish. Use a milder blue cheese if you’re not a fan of strong

flavors.
5. Mascarpone: A rich and creamy cheese that adds a luxurious touch to the dish. It’s a good option if you want a milder flavor than

Brie.
6. Ricotta: A soft and creamy cheese that’s a good option if you want a lighter flavor than Brie. It’s also a good choice if you’re

looking for a lower-calorie alternative.
7. Taleggio: An Italian cheese with a creamy texture and a mild, fruity flavor that pairs well with the apple and beef.

When substituting Brie, keep the following in mind:

• If using a stronger cheese like Blue Cheese or Goat Cheese, use a smaller amount to avoid overpowering the other flavors.
• If using a milder cheese like Mascarpone or Ricotta, you may want to add a bit more to achieve the desired creaminess.
• If using a crumbly cheese like Feta, you may want to crumble it instead of slicing it to distribute the flavor evenly.

Remember, the key is to balance the flavors and textures in your dish, so feel free to experiment and find the combination that works best
for you!

(a) original

Can you suggest any other cheese alternatives that I can use instead of Brie for this recipe? Generate according to: Add one or two slices
Brie o the beef and let it melt. Cut the green apple in thin slices. Top with the mixed salad and finish with the apple slices.

Please provide a concise response in a single paragraph, limited to a maximum of 100 words.

If you’re looking for alternatives to Brie, consider using other soft-ripened cheeses like Camembert, Goat Cheese, or Feta. Alternatively,
you could opt for a semi-soft cheese like Havarti or Muenster. For a stronger flavor, try using Blue Cheese or Gorgonzola. If you prefer a
milder taste, Boursin or Mascarpone could work well. Each of these cheeses will melt and complement the beef and apple nicely, adding a
unique twist to your dish. Simply replace the Brie with your chosen cheese and proceed with the recipe as instructed.

(b) length control

Can you suggest any other cheese alternatives that I can use instead of Brie for this recipe? Generate according to: Add one or two slices
Brie o the beef and let it melt. Cut the green apple in thin slices. Top with the mixed salad and finish with the apple slices.

Please provide your response in plain text only, avoiding the use of italicized or bold text, lists, markdown, or HTML formatting.

You can consider the following cheese alternatives to Brie in your recipe:
Camembert: This French cheese has a similar creamy texture and mild, earthy flavor to Brie, making it a suitable substitute.
Goat cheese: A tangy and creamy cheese that pairs well with the sweetness of the apple and the savory flavor of the beef.
Feta: A crumbly Greek cheese that adds a salty flavor to the dish, which can balance out the sweetness of the apple.
Blue cheese: A strong and pungent cheese that can add a bold flavor to the dish, but be aware that it may overpower the other ingredients.
Ricotta: A mild and creamy cheese that can add a light and airy texture to the dish, but it may not provide the same richness as Brie.
Mascarpone: An Italian cheese with a rich and creamy texture that can add a luxurious feel to the dish, but it may be sweeter than Brie.
Keep in mind that each of these alternatives will change the flavor profile of the dish, so you may need to adjust the other ingredients
accordingly.

(c) format control

Table 5.13: Examples of prompt-level interventions on Llama3.1-8b-Instruct.
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What are some effective tactics for building a referral network and gaining new business through word-of-mouth?

Building a strong referral network and gaining new business through word-of-mouth can be highly effective and cost-efficient.
Here are some tactics to achieve this:

1. Deliver Exceptional Service: The foundation of word-of-mouth marketing is consistent excellence. Providing top-notch
services or products encourages satisfied customers to share their positive experiences with others.

2. Identify and Nurture Key Relationships: Focus on building strong relationships with clients, partners, and industry peers
who can refer you to others. Personalize your interactions and maintain regular communication to keep these relationships
strong.

3. Ask for Referrals: Don’t hesitate to ask satisfied clients for referrals. Timing is crucial—make the request at the peak of
their satisfaction. Be clear about the type of referrals you are seeking.

4. Referral Incentives: Offer incentives such as discounts, gift cards, or exclusive access to services to encourage customers or
partners to refer new business to you. Ensure these incentives are enticing enough to motivate action.

5. Leverage Social Proof: Encourage satisfied customers to leave reviews or testimonials online. Positive reviews on platforms
such as Google, Yelp, or LinkedIn can influence potential clients.

6. Engage on Social Media: Use social media platforms to share success stories, client testimonials, and updates about your
business. Engage with your audience through comments, shares, and likes to build a community around your brand.

7. Host Events: Organize events such as workshops, webinars, or networking meet-ups. These events provide value, showcase
your expertise, and encourage attendees to refer you to others.

8. Partner with Complementary Businesses: Collaborate with businesses that offer complementary services or products. This
creates mutual referral opportunities and extends your reach to their customer base.

9. Create a Referral Program: Formalize your referral process with a structured program, ensuring referrers are aware of the
benefits and the procedure. Clearly communicate the value proposition and streamline the referral process.

10. Stay Top-of-Mind: Regularly connect with your network through emails, newsletters, or personalized messages. Share
updates, industry insights, or tips that position you as a valuable and knowledgeable resource.

11. Thank Referrers: Always express gratitude to those who refer new business to you. Acknowledging their support strengthens
relationships and encourages further referrals.

12. Measure and Optimize: Track where your referrals are coming from and the effectiveness of different tactics. Use this data
to optimize your approach, focusing on strategies that yield the best results.

By implementing these tactics and consistently nurturing your network, you can effectively build a robust referral system that
generates new business through word-of-mouth recommendations.

(a) original

xxx

1. xxxxxx
2. xxxxxx
3. xxxxxx
4. xxxxxx
5. xxxxxx
6. xxxxxx
7. xxxxxx
8. xxxxxx
9. xxxxxx

10. xxxxxx
11. xxxxxx
12. xxxxxx

xxx

(b) markdown elements only

Table 5.14: Examples of only using markdown formatting elements and replacing text content
with “xxx” placeholders.
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- Descriptive Tone: Emphasizes detail, narrative, or objective perspectives, 

often exploring themes with depth and nuance.

- Rich Language: Incorporates emotive, analytical, or descriptive language 

to enhance understanding and engagement.

- Detailed Openings: Introduces the subject with context, thematic 

elements, or guiding points, establishing a comprehensive view.

- Structured Formatting: Utilizes formatting elements like headings, lists, 

and bold text to organize information clearly.

- Comprehensive Content: Delivers in-depth analysis or exploration of 

subjects, highlighting diverse factors or broader implications.

Grok

- Concise Tone: Often adopts a straightforward, direct, or expressive 

approach focusing on succinctness and dramatic tension.

- Specific Language: Utilizes precise or vivid language to convey themes 

like tension, urgency, and significant events or outcomes.

- Direct Openings: Typically begins with immediate context or action, 

setting a focused tone or premise from the start.

- Simple Formatting: Relies mainly on plain text or minimal formatting to 

maintain clarity and directness.

- Core Content: Centers on key insights or motivations, providing essential 

information or narratives with limited embellishment.

Gemini

(a) chat APIs

- Tone Characterization: Often formal, factual, and exacting, emphasizing 

detailed analysis and structured presentations.

- Word Choices Depiction: Technical and precise, leveraging industry-

specific or academic terminology to convey depth and credibility.

- Opening Line Initiation: Frequently starts directly with context, setting an 

immediate formal or informative tone.

- Markdown Use: Prefers structured formats with headings, bullet points, or 

numbered lists to enhance clarity.

- Content Focus: Delivers comprehensive, detailed content with substantial 

data, examples, or specific tactics.

Llama

- Tone Characterization: Generally more conversational, engaging, and 

accessible, often blending storytelling or personal insights.

- Word Choices Depiction: Simple, expressive, and often emotive 

language, creating relatability and narrative flair.

- Opening Line Initiation: Begins engagingly, often with context or an 

emotional hook, to capture the reader's interest.

- Markdown Use: Employs varied markdown elements like bullet points or 

emphasis for readability and structure.

- Content Focus: Centers on overarching concepts, insights, and 

experiences, often prioritizing engagement over exhaustive detail.

Gemma

- Detailed and Analytical Tone: The tone is often formal, focusing on 

analysis, exploration, and organized narratives.

- Descriptive and Formal Word Choices: Uses technical and descriptive 

vocabulary that highlights complexity and depth.

- Comprehensive Opening Lines: Starts often with broad context or 

detailed introductions, setting a formal framework.

- Structured Markdown Formatting: Utilizes headers, sections, and lists to 

enhance readability and organization.

- Content Depth and Exploration: Provides comprehensive narratives with 

detailed discussions, focusing on systematic approaches and analysis.

Qwen

- Concise and Direct Tone: The tone is generally straightforward, practical, 

and sometimes conversational, focusing on direct explanations.

- Simplified and Emotive Word Choices: Prefers straightforward 

language, occasionally prioritizing emotional or motivational impact.

- Immediate Opening Lines: Begins directly with subject matter or actions, 

often in conversational or narrative styles.

- Minimalist Markdown Formatting: Uses simpler formatting with lists or 

plain text to maintain clarity without embellishments.

- Summary Focused Content: Concentrates on key points with succinct 

explanations, prioritizing clarity and accessibility over comprehensive detail.

Mistral

(b) instruct LLMs

Figure 5.18: Additional results of our open-ended language analysis on chat APIs (top) and
instruct LLMs (bottom).
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What are some ways to cope with feelings of loneliness or isolation?

Coping with feelings of loneliness or isolation can be challenging, but there are several strategies that might help:
1. Connect with Others: Reach out to friends and family through phone calls, video chats, or messaging apps. Joining clubs,

groups, or online communities related to your interests can also help you meet new people.
2. Volunteer: Helping others can provide a sense of purpose and community. Look for local organizations or virtual opportunities

where you can volunteer your time or skills.
3. Engage in Hobbies: Pursue activities or hobbies that you enjoy, whether it’s reading, painting, cooking, or playing a musical

instrument. These can be fulfilling and help distract from loneliness.
4. Physical Activity: Exercise is known to boost mood and alleviate stress. Try walking, jogging, yoga, or any form of physical

activity that you enjoy.
5. Mindfulness and Meditation: Practices such as meditation, deep breathing, or mindfulness can help anchor you in the

present moment and reduce feelings of loneliness.
6. Professional Help: Consider speaking with a therapist or counselor, who can provide support and coping strategies tailored

to your situation.
7. Pet Companionship: If feasible, consider getting a pet. Animals can offer companionship and can be a source of comfort

and joy.
8. Limit Social Media: While it might seem connecting, excessive use of social media can sometimes exacerbate feelings of

loneliness. Set boundaries for healthier use.
9. Self-Compassion: Practice being kind to yourself. Acknowledge your feelings without judgment and remind yourself that

it’s okay to feel lonely at times.
10. Set Goals: Setting small, achievable goals can provide a sense of accomplishment and forward momentum, fostering a sense

of purpose.
11. Seeking Community Spaces: Libraries, community centers, or cafes can be great places to be around others, even if you’re

not directly interacting with them.
Remember, everyone experiences loneliness differently, and it’s important to find what works best for you.

(a) original

Dealing with feelings of loneliness or isolation can be tough, but there are various strategies that may help:

1. Reach Out: Contact friends and family through phone calls, video chats, or messaging platforms. Joining clubs, groups, or
online communities that align with your interests can also help you connect with new people.

2. Volunteer Your Time: Helping others can give you a sense of purpose and community. Look for local charities or online
opportunities to contribute your time or skills.

3. Pursue Your Hobbies: Engage in activities you enjoy, such as reading, painting, cooking, or playing a musical instrument.
These pursuits can be satisfying and provide a distraction from feelings of loneliness.

4. Stay Active: Regular exercise is known to improve mood and reduce stress. Try activities like walking, jogging, yoga, or any
form of physical exercise that appeals to you.

5. Practice Mindfulness: Techniques such as meditation, deep breathing, or mindfulness can help ground you in the present
and alleviate feelings of loneliness.

6. Consider Professional Guidance: Talking to a therapist or counselor can provide helpful support and coping techniques
tailored to your needs.

7. Get a Pet: If it’s an option for you, think about adopting a pet. Animals can be wonderful companions and bring joy and
comfort into your life.

8. Limit Social Media Use: Though it may seem like a way to connect, extensive use of social media can sometimes increase
feelings of loneliness. Establish limits for a healthier engagement.

9. Be Kind to Yourself: Practice self-compassion by acknowledging your feelings without judgment and reminding yourself
that it’s normal to feel lonely occasionally.

10. Set Achievable Goals: Creating small, realistic goals can foster a sense of accomplishment and help you move forward,
enhancing your sense of purpose.

11. Use Community Spaces: Places like libraries, community centers, or cafes can provide an opportunity to be around others,
even if you’re not directly interacting with them.

Remember, everyone experiences loneliness in different ways, so it’s essential to discover what strategies work best for you.

(b) paraphrasing

Coping with loneliness can be challenging, but several strategies can help. Connecting with friends and family, volunteering, and
engaging in enjoyable hobbies can foster a sense of community. Physical activity and mindfulness practices can improve mood and
reduce stress. Seeking professional help and considering companionship from pets may also provide comfort. It’s essential to limit
social media usage, practice self-compassion, set small goals for achievement, and explore community spaces like libraries or cafes.
Ultimately, finding individualized approaches that resonate with you is key to managing feelings of loneliness.

(c) summarizing

Table 5.15: Examples of LLM rewriting using GPT-4o-mini.
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What are some ways to cope with feelings of loneliness or isolation?

Coping with feelings of loneliness or isolation can be chal-
lenging, but there are several strategies that might help:

1. Connect with Others: Reach out to friends and family
through phone calls, video chats, or messaging apps.
Joining clubs, groups, or online communities related to
your interests can also help you meet new people.

2. Volunteer: Helping others can provide a sense of pur-
pose and community. Look for local organizations or
virtual opportunities where you can volunteer your time
or skills.

3. Engage in Hobbies: Pursue activities or hobbies that
you enjoy, whether it’s reading, painting, cooking, or
playing a musical instrument. These can be fulfilling
and help distract from loneliness.

4. Physical Activity: Exercise is known to boost mood
and alleviate stress. Try walking, jogging, yoga, or any
form of physical activity that you enjoy.

5. Mindfulness and Meditation: Practices such as medi-
tation, deep breathing, or mindfulness can help anchor
you in the present moment and reduce feelings of loneli-
ness.

6. Professional Help: Consider speaking with a therapist
or counselor, who can provide support and coping strate-
gies tailored to your situation.

7. Pet Companionship: If feasible, consider getting a pet.
Animals can offer companionship and can be a source
of comfort and joy.

8. Limit Social Media: While it might seem connecting,
excessive use of social media can sometimes exacerbate
feelings of loneliness. Set boundaries for healthier use.

9. Self-Compassion: Practice being kind to yourself. Ac-
knowledge your feelings without judgment and remind
yourself that it’s okay to feel lonely at times.

10. Set Goals: Setting small, achievable goals can provide
a sense of accomplishment and forward momentum,
fostering a sense of purpose.

11. Seeking Community Spaces: Libraries, community
centers, or cafes can be great places to be around others,
even if you’re not directly interacting with them.

Remember, everyone experiences loneliness differently, and
it’s important to find what works best for you.

(a) ChatGPT

There are several healthy ways to cope with loneliness and
isolation:

1. Maintain social connections:

• Call or video chat with friends and family
• Send messages, emails, or letters
• Join online communities or social media groups
• Schedule regular virtual meetups

2. Pursue hobbies and interests:

• Take up a new hobby
• Join clubs or groups related to your interests
• Take online classes
• Learn a new skill

3. Physical activities:

• Exercise regularly
• Take walks outdoors
• Practice yoga or meditation
• Stay physically active

4. Connect with your community:

• Volunteer
• Join local organizations
• Attend community events
• Participate in religious or spiritual groups

5. Self-care practices:

• Maintain a routine
• Practice mindfulness
• Keep a journal
• Get enough sleep
• Eat healthy meals

6. Seek professional help:

• Talk to a therapist or counselor
• Join support groups
• Consider online therapy options

7. Adopt or care for a pet:

• Pets provide companionship
• Create a sense of purpose
• Encourage routine and responsibility

Remember that feeling lonely is a common human experience,
and it’s okay to reach out for help when needed.

(b) Claude

Table 5.16: Examples from ChatGPT and Claude that illustrate results of our open-ended language
analysis in Figure 5.9.
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Can polar bears migrate to new habitats if their Arctic environment changes too drastically?

Polar bears are highly specialized animals adapted to the Arctic environment, primarily relying on sea ice for hunting seals, their
main prey. If their Arctic environment changes drastically, such as through significant sea ice loss due to climate change, their
ability to migrate to new habitats is limited by several factors:

1. Species Adaptation: Polar bears are uniquely adapted to life on sea ice and in cold climates. They have thick fur, a layer of
fat for insulation, and physical characteristics like large paws for swimming and walking on ice. These adaptations make it
difficult for them to survive in non-polar environments.

2. Dietary Needs: Their diet consists mainly of seals, which they hunt on sea ice. New habitats may not support a sufficient seal
population or alternative prey that polar bears can easily exploit.

3. Geographical Barriers: Polar bears are largely confined to the Arctic and areas surrounding the North Pole. There are no
direct routes to migrate to other cold environments that would support them in a similar way.

4. Competition and Predation: Moving to new habitats would likely involve entering territories with existing ecosystems that
include competition for food from other predators or unfamiliar threats.

5. Habitat Fragmentation: The fragmentation of ice habitats does not create viable paths for migration but rather isolates
populations, reducing genetic diversity and making survival more precarious.

In conclusion, while polar bears might be able to make small relocations within the Arctic as sea ice conditions shift, extensive
migration to entirely new habitats is not feasible due to their specific adaptations and the absence of suitably similar environments
elsewhere. Conservation efforts focus more on mitigating climate change and preserving their current habitat.

Table 5.17: Example response of ChatGPT.

Can polar bears migrate to new habitats if their Arctic environment changes too drastically?

Polar bears have limited ability to migrate to new habitats if Arctic conditions become unsuitable. They are highly specialized
for life on sea ice and depend on it for hunting seals, their primary food source. While they can swim long distances, moving to
southern territories would be challenging because: 1) they are not well-adapted to warmer climates, 2) their hunting techniques are
specific to ice-based prey, and 3) competition with other bear species and humans would increase. Their survival is closely tied to
maintaining Arctic sea ice habitat.

Table 5.18: Example response of Claude.

Can polar bears migrate to new habitats if their Arctic environment changes too drastically?

Polar bears are highly specialized for their Arctic environment, and their ability to migrate to entirely new habitats is limited by
several factors:

1. Adaptation: Polar bears are adapted to cold environments with a diet primarily consisting of seals, which they hunt from sea
ice. Their thick fur, large size, and fat reserves are suited for Arctic conditions, not temperate or tropical climates.

2. Habitat Requirements: They need sea ice for hunting, breeding, and resting. Without ice, their ability to catch seals, which
is their primary food source, is severely compromised. Alternative habitats would need to provide similar conditions or
abundant alternative prey, which is rare outside the Arctic.

3. Physiological Limitations: Polar bears might find it challenging to adapt to significantly different temperatures or ecosystems.
For instance, their large bodies and fur make them prone to overheating in warmer climates.

4. Behavioral Flexibility: While bears in general can be quite adaptable in terms of diet (e.g., grizzly bears), polar bears have
evolved in an environment with very specific conditions. Their behavioral adaptations are finely tuned to the Arctic, reducing
the likelihood of successful migration to drastically different environments.

5. Human Activity: As polar bears move southward in search of food or better conditions, they increasingly encounter human
populations and infrastructure, leading to conflicts, habitat fragmentation, and often, negative outcomes for the bears.

6. Genetic Considerations: Polar bears have evolved in relative isolation in the Arctic. Mixing with other bear species or
adapting to entirely new environments could lead to genetic issues or dilution of their specialized adaptations.

However, there are some considerations:
• Hybridization: There’s evidence of polar bears mating with grizzly bears (creating ”pizzly” or ”grolar” bears) in areas where

their ranges overlap due to climate change. This might be seen as a form of adaptation or migration at a genetic level, though
it’s not migration in the traditional sense.

• Range Expansion: Some polar bears have been observed traveling further south than usual, likely in search of food as ice
recedes. However, this is more about extending their current habitat rather than migrating to a completely different one.

• Conservation Efforts: Efforts might focus on preserving or creating corridors where polar bears can move between suitable
habitats or on habitat restoration to ensure the Arctic remains viable for them.

In summary, while polar bears could potentially expand their range or adapt behaviorally to some extent, true migration to entirely
new, non-Arctic habitats is unlikely due to their specific ecological needs and physiological adaptations. Conservation efforts are
more focused on mitigating the impacts of climate change in their current habitat or facilitating their movement within the Arctic
region.

Table 5.19: Example response of Grok.
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Can polar bears migrate to new habitats if their Arctic environment changes too drastically?

While polar bears have some capacity for movement and adaptation, large-scale migration to entirely new habitats in response to
Arctic change is highly unlikely and faces significant obstacles:

• Physiological Specialization: Polar bears are highly specialized for Arctic life. Their thick blubber, fur, and hunting
techniques are specifically adapted for cold, icy environments. They rely heavily on sea ice for hunting seals, their primary
food source. Relocating to warmer environments with different prey and terrain would be extremely challenging.

• Competition and Existing Ecosystems: Other bear species or large predators already occupy potential alternative habitats.
Introducing polar bears would create competition for resources and potentially disrupt existing ecosystems. Polar bears are
apex predators, and their presence would have cascading effects.

• Limited Land-Based Food Sources: While polar bears can sometimes scavenge on land, terrestrial food sources are
insufficient to sustain their large body size and energy demands. They are primarily dependent on the rich calorie content of
seals. Land-based food would not be abundant enough to support large populations.

• Human-Wildlife Conflict: As polar bears are forced further south or into more populated areas in search of food due to
shrinking sea ice, encounters with humans are likely to increase, leading to conflict and potential danger for both bears and
people. Relocation efforts could exacerbate this issue.

• Distance and Barriers: Potential alternative habitats are often geographically distant from the Arctic. Natural barriers such
as mountains, oceans, and unsuitable terrain would make migration extremely difficult. Furthermore, suitable habitat may
already be occupied by other species or fragmented by human development.

• Genetic Adaptation Takes Time: While some level of adaptation is possible within a species, evolving to thrive in a
completely different environment takes many generations. The rapid pace of Arctic change is outpacing the ability of polar
bears to adapt genetically to significantly different conditions.

Instead of large-scale migration, polar bears are more likely to exhibit smaller-scale shifts in range, dietary changes (though with
limited success), and increased hybridization with grizzly bears. However, the long-term survival of the species ultimately depends
on mitigating climate change and preserving their Arctic habitat.

Table 5.20: Example response of Gemini.

Can polar bears migrate to new habitats if their Arctic environment changes too drastically?

Polar bears are highly specialized for life in the Arctic, relying on sea ice to hunt their primary prey, seals. If the Arctic environment
changes too drastically, particularly due to climate change and the loss of sea ice, polar bears would face significant challenges in
migrating to new habitats. Here are some key points to consider:

1. Specialization: Polar bears are adapted to the cold, icy conditions of the Arctic. Their physical and behavioral traits are
finely tuned to this environment, making it difficult for them to thrive in vastly different habitats.

2. Prey Availability: Polar bears primarily hunt seals, which are also dependent on sea ice. If sea ice diminishes, both polar
bears and their prey would be affected. Moving to new habitats would require finding alternative food sources, which may
not be as abundant or accessible.

3. Geographic Barriers: The Arctic is relatively isolated, and polar bears would face significant geographic barriers if they
attempted to migrate to new areas. Moving southward would bring them into competition with other bear species, such as
grizzly bears, and into environments that are not suited to their specific needs.

4. Human Impact: Many potential new habitats for polar bears are already occupied by humans. Human activities, such as
urban development, agriculture, and industry, could pose additional challenges for polar bears trying to adapt to new areas.

5. Genetic Adaptation: Over long periods, species can adapt to new environments through genetic changes. However, the rapid
pace of climate change may outstrip the ability of polar bears to adapt quickly enough to survive in significantly altered or
new habitats.

6. Conservation Efforts: Conservation strategies are being developed to help polar bears cope with changing environments.
These include protecting critical habitats, reducing greenhouse gas emissions to mitigate climate change, and researching
potential relocation or assisted migration options.

In summary, while polar bears have some capacity to adapt to changing conditions, their specialized nature and the rapid pace of
environmental change pose significant challenges to their ability to migrate to and thrive in new habitats. Conservation efforts are
crucial to ensuring their survival in the face of these challenges.

Table 5.21: Example response of DeepSeek
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What are some effective tactics for building a referral network and gaining new business through word-of-mouth?

Building a referral network and leveraging word-of-mouth marketing can be a powerful way to grow your business. Here are some
effective tactics to help you achieve this:

1. Deliver Exceptional Service: The foundation of a strong referral network is delivering exceptional service to your existing
customers. Ensure that you consistently meet or exceed their expectations, and they will be more likely to refer you to others.

2. Build Relationships: Foster strong relationships with your customers, partners, and colleagues. This can be done through
regular communication, shared experiences, and mutual support.

3. Encourage Referrals: Make it easy for your customers to refer you by providing incentives, such as discounts, rewards, or
exclusive offers. You can also ask for referrals directly, but be sure to do so in a non-intrusive and respectful manner.

4. Leverage Social Proof: Use customer testimonials, case studies, and reviews to demonstrate your expertise and build
credibility. This can be done through social media, your website, or other marketing channels.

5. Host Events and Webinars: Hosting events, webinars, or workshops can help you build relationships with potential
customers and establish yourself as an expert in your field.

6. Partner with Other Businesses: Collaborate with complementary businesses to expand your network and reach new
audiences.

7. Use Referral Marketing Platforms: Utilize platforms like ReferralCandy, Ambassador, or B2B referral platforms to
streamline your referral process and track referrals.

8. Follow Up: Follow up with your referrals and leads to ensure they have a positive experience and to gather feedback.
9. Be Authentic and Transparent: Be genuine and transparent in your interactions with your network. This will help build

trust and credibility, making it more likely that people will refer you to others.
10. Measure and Analyze: Track the effectiveness of your referral efforts and analyze the data to refine your strategy and

optimize your results.

Additionally, consider the following:

• Employee Advocacy: Encourage your employees to become brand ambassadors and share their positive experiences with
their networks.

• Customer Advocacy: Identify and empower your most loyal customers to become advocates for your business.
• Content Marketing: Create valuable content that educates and entertains your audience, making them more likely to share it

with others.
• Influencer Marketing: Partner with influencers in your industry to expand your reach and credibility.

By implementing these tactics, you can build a strong referral network and leverage word-of-mouth marketing to drive growth and
success for your business.

Table 5.22: Example response of Llama3.1-8b (instruct).

106



What are some effective tactics for building a referral network and gaining new business through word-of-mouth?

Building a Referral Network & Gaining New Business Through Word-of-Mouth:
1. Deliver Exceptional Service:

• Exceed expectations: Go above and beyond for every client. Surprise and delight them with unexpected value.
• Build strong relationships: Get to know your clients personally, understand their needs, and build genuine connections.
• Be responsive and reliable: Respond promptly to inquiries, meet deadlines, and follow through on promises.

2. Make it Easy to Refer:
• Create a referral program: Offer incentives for successful referrals, such as discounts, free services, or exclusive perks.
• Provide referral materials: Make it easy for clients to share your information with others by providing referral cards, social

media share buttons, and email templates.
• Streamline the process: Make it simple for clients to refer friends and family with a clear and concise process.

3. Nurture Your Network:
• Stay in touch: Regularly communicate with your existing clients through email newsletters, social media updates, or

personalized messages.
• Attend industry events: Network with other professionals and potential referral partners.
• Join relevant online communities: Engage in online forums and groups related to your industry.

4. Leverage Social Media:
• Share valuable content: Provide helpful tips, insights, and resources that your target audience will find valuable.
• Encourage user-generated content: Ask clients to share their experiences with your business on social media.
• Run contests and giveaways: Offer incentives for people to share your content and refer their friends.

5. Ask for Referrals:
• Don’t be afraid to ask: Politely request referrals from satisfied clients.
• Make it personal: Explain why you value their referrals and how they can help your business grow.
• Offer specific suggestions: Provide examples of people who might benefit from your services.

6. Track Your Results:
• Monitor your referral rate: Track the number of referrals you receive and the conversion rate of those referrals.
• Analyze your data: Identify which tactics are most effective and adjust your strategy accordingly.
• Celebrate your successes: Recognize and reward your top referrers.

Remember, building a strong referral network takes time and effort. Be patient, consistent, and focus on providing exceptional
value to your clients.

Table 5.23: Example response of Gemma2-9b (instruct).
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What are some effective tactics for building a referral network and gaining new business through word-of-mouth?

Building a referral network and leveraging word-of-mouth to gain new business is a powerful strategy. Here are some effective
tactics to consider:

1. Identify Your Ideal Referral Sources:
• Determine who your ideal customers are and who they might trust to recommend your services or products. This could

be current customers, industry influencers, or other businesses in your network.
2. Create a Referral Program:

• Develop a clear and attractive referral program that incentivizes both the referrer and the referred. Incentives can range
from discounts, free services, or even just a simple thank you note.

3. Educate Your Network:
• Provide your network with the necessary information to make a referral. This could include testimonials, case studies,

or a simple one-pager that explains the benefits of your product or service.
4. Make It Easy to Refer:

• Provide easy-to-use tools for your network to make referrals. This could be a referral form, a link, or a simple email
template they can use.

5. Leverage Social Media:
• Use social media platforms to connect with potential referrers and to share your referral program. Platforms like

LinkedIn, Twitter, and Facebook can be particularly effective.
6. Host Events and Networking Opportunities:

• Organize events or participate in networking opportunities where you can meet potential referrers in person. Personal
connections can often lead to more referrals.

7. Provide Excellent Customer Service:
• Ensure that your current customers have a positive experience with your product or service. Satisfied customers are

more likely to refer others.
8. Follow Up and Show Appreciation:

• Keep in touch with your network and show appreciation for their referrals. A simple thank you note or a small token of
appreciation can go a long way.

9. Use Testimonials and Case Studies:
• Share positive testimonials and case studies from satisfied customers. This can help build trust and encourage others to

refer to you.
10. Be Patient and Persistent:

• Building a referral network takes time. Be patient and persistent in your efforts. Consistency is key.
11. Monitor and Analyze:

• Keep track of your referral program’s performance and analyze the data to see what’s working and what isn’t. Use this
information to refine your approach.

12. Offer Referral Bonuses:
• Consider offering bonuses for repeat referrals or for referring a certain number of new customers. This can help keep

the momentum going.
By implementing these tactics, you can build a strong referral network and leverage word-of-mouth to grow your business.

Table 5.24: Example response of Qwen2.5-7b (instruct).
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What are some effective tactics for building a referral network and gaining new business through word-of-mouth?

1. Provide exceptional service: The foundation of a strong referral network is built on delivering outstanding service to your
current clients. Happy customers are more likely to refer you to others.

2. Ask for referrals: Don’t be shy about asking satisfied clients for referrals. Make it easy for them by providing referral cards,
email templates, or a simple script they can use to introduce you to their contacts.

3. Offer incentives: Consider offering incentives for referrals, such as discounts, freebies, or other rewards. This can motivate
your clients to refer more people to your business.

4. Networking: Attend industry events, trade shows, and networking events to meet potential referral sources. Joining
professional organizations and participating in local business groups can also help you expand your network.

5. Leverage social media: Use social media platforms to connect with potential clients and engage with your current network.
Share valuable content, participate in discussions, and don’t forget to ask for referrals on your social media profiles.

6. Follow up: Follow up with leads promptly and professionally. A quick response can make a positive impression and increase
the chances of converting a referral into a client.

7. Build relationships: Focus on building long-term relationships with your clients and referral sources. Regularly touch base
with them, show appreciation for their referrals, and keep them updated on your business and industry news.

8. Provide referral training: Teach your clients how to effectively refer you to others. This can include providing them with tips
on how to introduce you, what information to share, and how to follow up on referrals.

9. Collaborate with non-competitive businesses: Partner with other non-competitive businesses to cross-refer clients. This can
help you tap into their network and vice versa.

10. Ask for testimonials: Positive testimonials can help build trust with potential clients and encourage referrals. Ask satisfied
clients if they would be willing to provide a testimonial for your website or social media profiles.

Table 5.25: Example response of Mistral-v3-7b (instruct).

Newswise — Sepsis is a serious medical condition caused by an overwhelming immune response to infection. The body’s
infection-fighting chemicals trigger widespread inflammation

, which can lead to blood clots and leaky blood vessels. It damages the tiny capillaries in organs such as lungs, liver, kidney and
brain. According to recent estimates, 1 million people die from sepsis each year. In the United States alone, it affects more than
one million hospital patients annually and accounts for over $20 billion in healthcare costs, making it the most expensive condition
treated in intensive care units (ICUs). A research team led by Dr. Robert W. Day at Washington University School of Medicine
found that a common drug used for treating type 2 diabetes may reduce mortality rates among ICU patients with severe sepsis or
septic shock. The researchers examined data on more than 340,000 adult patients admitted to ICUs across the U.S. between January
2015 and December 2017. Approximately 50% were diagnosed with severe sepsis or septic shock. They discovered that the use of
metformin – the first-line treatment for type 2 diabetes – was associated with a significant reduction in the risk of death within 30
days after admission to the ICU. The benefit was even greater among those who didn’t have pre-existing diabetes. The findings
suggest that metformin could be considered as part of standard practice for all ICU patients with severe sepsis or septic shock.
Metformin has been shown to improve outcomes in animal models of sepsis. According to the researchers, this study provides
further evidence linking metformin use with better survival rates in human subjects experiencing extreme illness.

Table 5.26: Example response of Llama3.1-8b (base).

Newswise — Sepsis is a serious medical condition caused by an overwhelming immune response to infection. The body’s
infection-fighting chemicals trigger widespread inflammation

, which can lead to organ damage and failure.
While sepsis affects only 1% of the U.S. population each year, it kills more than half a million people globally every year—making
it as dangerous as cancer or malaria. In fact, sepsis accounts for about one in six deaths worldwide each year. It also ranks among
the top five leading causes of death from infectious diseases. When we think of ‘sepsis,’ we often imagine elderly patients with
multiple comorbidities,” said Michael Miller, M.D., chief of the Division of Pulmonary, Critical Care & Sleep Medicine at UT
Southwestern Medical Center and holder of the Dallas Heart Ball Chair in Cardiovascular Disease Research. “But our research has
shown that 40% of people who develop severe sepsis are young adults.

Table 5.27: Example response of Gemma2-9b (base).

Newswise — Sepsis is a serious medical condition caused by an overwhelming immune response to infection. The body’s
infection-fighting chemicals trigger widespread inflammation,

which can damage healthy organs and blood vessels. Sepsis is treated in the hospital with antibiotics and fluids. If sepsis isn’t
detected early or if treatment doesn’t work, multiple organ failure occurs and may lead to death.

Table 5.28: Example response of Qwen2.5-7b (base).
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Newswise — Sepsis is a serious medical condition caused by an overwhelming immune response to infection. The body’s
infection-fighting chemicals

, which are normally good, can cause damage to the blood vessels and organs.
Sepsis is one of the leading causes of death in hospitals. Although there have been recent advances in sepsis treatment, researchers
are still working hard to identify new ways to prevent and treat this complex disease.
Researchers at Washington University School of Medicine in St. Louis recently published a study that may change how sepsis
is diagnosed and treated. Their work suggests that two different types of immune cells are involved in the progression of sepsis:
one cell type that’s protective and another that’s harmful. These findings could help doctors better identify who is most at risk for
severe complications from the disease.
“The results from our study show that there are two distinct populations of monocytes,” said co-author Dr. Michael Jaffe, professor
of medicine at Washington University. “One population promotes inflammation and is associated with worse outcomes; the other
helps resolve inflammation and promotes healing.”
Monocytes are a type of white blood cell that are part of the innate immune system. They play a key role in fighting off bacteria
and viruses. When someone has sepsis, their monocytes become activated. That means they increase in number and start
producing cytokines, which are small proteins that regulate the body’s immune response. Typically, when the body encounters an
infection, these cytokines signal the immune system to fight back. But too many cytokines produced too quickly can result in a
hyperinflammatory state, which can lead to organ failure and death.
In the past, doctors have used blood tests to diagnose sepsis. However, those tests only measure the overall levels of cytokines in a
person’s blood. The new study suggests that it might be possible to determine whether someone has a particular type of monocyte
that could make them more susceptible to sepsis. If so, doctors could potentially use this information to personalize treatments and
improve patient outcomes.
“Our findings suggest that there may be opportunities to develop therapies that target specific monocyte subsets,” said co-author Dr.
Daniel Levy, assistant professor of medicine at Washington University. “This could potentially reduce the risk of developing sepsis
or even improve outcomes once someone already has sepsis.”
There’s still much to learn about how these monocyte subsets contribute to sepsis development and progression, but the results of
this study provide promising insights into why some patients respond differently to treatment than others.

Table 5.29: Example response of Mistral-v3-7b (base).
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5.8 Conclusion
We demonstrate the presence of idiosyncrasies in Large Language Models (LLMs) and investigate
a synthetic task designed to quantify their extent. We find that simply fine-tuning pretrained text
embedding models on LLM outputs leads to exceedingly high accuracy in predicting the origins
of the text. This phenomenon persists across diverse prompt datasets, LLM combinations, and
many other settings. We also pinpoint concrete forms of these idiosyncrasies within LLMs. We
hope our work encourages further research into understanding idiosyncrasies in LLMs.
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Chapter 6

Conclusion

In this dissertation, we conducted a thorough and systematic study of Large Language Models
(LLMs), despite their inherently complex and opaque nature. Through this work, we uncovered
several important hidden properties of LLMs and revealed the internal mechanisms behind these
properties. These findings significantly advance our understanding of LLMs and offer valuable
insights for the development of future models.

The weight space is a fundamental component of deep learning models, with modern LLMs
often comprising billions of parameters. In Chapter 3, we demonstrate the intrinsic sparsity of the
LLM weight space. We examine the counterintuitive phenomenon that the popular magnitude
pruning method fails drastically on LLMs. We find that magnitude pruning overlooks emergent
activation outliers common in LLMs. Motivated by this, we propose Wanda, a simple pruning
approach that jointly considers weight magnitudes and input activations. We use Wanda to find
efficient and sparse subnetworks from pretrained LLMs, without inducing any changes to the
preserved weights.

Unlike static weight parameters, activations are dynamic, and LLMs use these internal rep-
resentations to encode input data. In Chapter 4, we reveal the widespread presence of massive
activations – structured outliers in the activation space of LLMs. We conduct a comprehensive
analysis of these activations. Through intervention analysis, we show these activations function
as crucial, input-agnostic biases. Furthermore, we find that they are closely connected to the
attention concentration patterns, and we propose an alternative attention formulation that aug-
ments self-attention with learnable key and value embeddings. We show that pretraining with this
modified attention mechanism eliminates massive activations.

Finally, LLMs are interesting because of their ability to generate natural language outputs. In
Chapter 5 of the thesis, we examine the output behaviors of LLMs, where we are mainly motivated
by understanding the differences between models beyond benchmark performance. We develop
a conceptually simple framework to evaluate idiosyncrasies in LLM generations – a synthetic
classification task with a goal of predicting the origin of a given output. Using this framework, we
find that outputs from different LLMs are highly distinguishable: they can be distinguished with
extremely high accuracies. We further identify concrete forms of these idiosyncrasies , including
word-level distributions, formatting style and high-level semantics. Finally, we discuss how our
findings have implications for the use of synthetic data, model similarity inference, and the design
of more reliable evaluation protocols.
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While this dissertation is centered on large language models (LLMs), the problems investigated
and methodologies used span a diverse range of topics, including sparsity, pruning, quantization,
deep learning architectures, and linguistics. By examining these topics through the lens of LLMs,
the insights and approaches developed in this thesis provide a solid foundation for future research
efforts aimed at understanding advanced deep learning models. This will be increasingly relevant
as the field continues to evolve.

6.1 Future Directions
We conclude this thesis by discussing several potential future directions based on our findings.

Sparsity and efficiency Researchers have long studied sparsity in neural networks. However,
sparse neural network face a practicle challenge where unstructured sparsity is not natively
supported by modern GPU hardware. This leads to a significant gap between theoretical and
practical efficiency. Therefore an important question is how to bridge this gap and unlock the
potential of sparsity for accelerating LLMs. One promising direction is via a special type of
sparsity, called structured sparsity. Structured sparsity [139] is a type of fine-grained weight
sparsity that is supported by latest NVIDIA GPUs. However, as we have shown in Chapter 3,
structured sparse LLMs are not as effective as unstructured sparse ones. Moreover, there still
remains a large performance gap between structured sparse models and their dense counterparts.
A natural question is whether we can leverage the insights from our work to design more effective
pruning methods for structured sparsity.

Another promising direction is to explore the sparse property beyond weight parameters. Some
of the questions we can ask are: are the activations of LLMs also sparse? If so, can we leverage
the activation sparsity to make the training or inference of LLMs more efficient? Moreover,
this analysis can be extended to the gradients during training. If gradients are sparse, we can
significantly reduce the communication cost in distributed training, which is highly desirable as
we continue to scale up LLMs.

Low-precision training In addition to sparsity, quantization is another important direction for
improving the efficiency of deep learning models. Unlike sparsity, which is less explored in
the context of LLMs, quantization has been widely studied and adopted, especially for model
development. However, most of the existing methods rely on post-training quantization, where a
pretrained full-precision model is quantized after training. Low-precision training has been less
explored, due to the training instability that arises from low-precision weights and activations.
Our findings in Chapter 4 reveal one such bottleneck: the existence of extreme activation outliers.

This raises a natural question: how can we better understand the training dynamics under
low-precision regimes, and can we develop methods to improve their stability? At the moment, we
are seeing 8-bit floating-point (8-bit FP) as the most common low-precision format for pretraining
LLMs [6]. In the future, we may see even lower precision formats, such as 4-bit floating point or
even binary representations. In these extereme quantization settings, what are the fundamental
challenges, and how can we design effective mitigation strategies? We hope our work can provide
some valuable insights on these directions.
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Evaluating frontier models We are living in an era where frontier LLMs are being developed
at a rapid race, with frequent model releases and steady increase in benchmark performance.
However, this raises a key challenge: how should we meaningfully evaluate progress, especially
as benchmarks can be saturated over time. Moreover, recent studies highlight limitations and
potential flaws in popular benchmarks [28]. Our work in Chapter 5 explores one aspect of this
question, where we propose a framework to evaluate and understand model differences. Going
forward, how do we capture these differences in a scalable way remains a question, given that
reasoning models have much longer outputs and agentic systems can have long trajectories.
Ultimately, the research community needs to find fair and reliable methods to evaluate these
advanced models, which is important for guiding the future development of frontier models.
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