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Abstract

Although the pure functional semantics of computer programs has been well-studied since
at least the seminal work of Scott and Strachey, it has remained challenging to integrate
cost structure and the ability to speak about cost-sensitive properties of programs without
compromising pure functional reasoning. This thesis contributes an approach to coherently
integrating cost and functional verification in the setting of dependent type theory. Inspired by
the method of synthetic phase distinctions of Sterling and Harper, I explain how the internal
modal type theory of (pre)sheaf categories evinces a phase distinction between a cost-sensitive
phase and a function phase suitable for such an integration. At the level of programming
and verification, I demonstrate the ability of the internal type theory to mediate between
cost-sensitive and purely functional verification. At the level of semantics, I prove an internal,
cost-sensitive version of a classical result of Plotkin’s — computational adequacy for PCF.
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Prelude

(0∗1) This monograph is organized into “nodes” such as (0∗1). Some of them are annotated
with icons to help distinguish at a glance the nature of the node:

; definitions.
□ propositions, lemma, theorems.
□ proofs.
 corollaries.
� constructions.
x examples.
� exercises.
 remarks that serve to build intuition.
� insights.
2 references.
ñ auxiliary facts.
. caution advised.

0.1. COMPUTER PROGRAMS AND MATHEMATICAL SEMANTICS

(0.1∗1) Ostensibly this dissertation is about program verification and cost analysis. But what
does this mean? Often there is a significant gap between the kind of problems considered by
researchers of programming languages and the perception of the situation from outside the clique
of PL researchers. The purpose of this first chapter is to give a sense of the context and scope of
the theory of programming languages as it pertains to program verification and cost analysis.

(0.1∗2) When confronted with skepticism about the purported behavior of a program or
procedure (often as a component of a larger piece of software), intuitively one might begin
justification with “well, because this part of the program does this,. . . ”. At this point both the
questioning and answer stand on shaky ground; until one unambiguously determines what it means
for a program to “do”, it is very easy to trick oneself into believing properties about programs
that are easily falsifiable.

(0.1∗3) To take a simple example, consider the following program snippets in a context
equipped with two memory cells x,y containing integer values:

x = y + y x = 2 * y

It seems reasonable to conclude that the value of the cell x remains unchanged in all contexts if
we replace the first snippet with the second. But this is not true in a concurrent or multi-threaded

1
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program because the value of y is read twice in the first snippet while it is only read once in
the second. A distinction between the effects of the two may be observed when the value of y is
mutated between the two read actions in the first snippet.

(0.1∗4) The example in (0.1∗3) illustrates that even the simplest programs can introduce
“bugs”, in other words unintended program behaviors. In this particular case, the source of the
problem is the confusion between program variables that may be manipulated using familiar
algebraic equations and names of memory cells, which may not. However, interactions amongst
memory cells can also be manipulated algebraically using the equations of a different algebraic
theory.

(0.1∗5) Thus a primary source of questions in programming languages is furnished by the
search for natural semantics of programs in terms of existing mathematical structures or the
inventions of new structures (in the case of the theory of memory cells). The informal description of
what a program “does” is rationalized as the meaning or denotation of a program in a mathematical
model. The benefit of this arrangement is that questions about program behavior may be phrased
as mathematical propositions for which one has a definitive method for determining what counts
as proof. Therefore we may reduce the problem of giving a rigorous specification of programs and
verifying such a specification to that of mathematical proof. This reduction not only puts the study
of programming languages on firm logical footing but also brings to bear extant mathematical
theories and techniques on specific PL problems of interest.

(0.1∗6) The primordial and most important mathematical model of a program is the function.
If we know that a program e is assigned a function f : A → B as its meaning1, then we know
that e “computes” f in the following sense: for all inputs x whose meaning is a ∈ A, the meaning
of the composite program e supplied with input x is f(a) ∈ B. One can think of the domain
and codomain of f as representing the sets of allowable program behaviors and the meaning of a
program as a mapping between allowable behaviors.

To illustrate by way of example, let us consider one of the earliest known programs, Euclid’s
algorithm euclid for computing the greatest common divisor; euclid denotes the function
gcd : N× N→ N:

gcd(n,m) =
{
n if m = 0
gcd(m,nmodm) o.w.

(0.1∗6∗1)

We may call the declaration gcd : N × N → N a function signature, which when viewed as the
meaning of a program describes a behavioral specification of the program. In this case, it tells
us that given an input whose meaning is a natural number, euclid applied to that input is a
program whose denotation is a natural number as well. Not only this, we also know that if n,m
represents natural numbers n,m, then the instance of euclid on the inputs n,m will denote the
natural number gcd(n,m). Thus one may reasonably say that euclid implements the function
that sends two numbers to their greatest common divisor.

(0.1∗7) Functions are useful as a concept because they may be composed: functions f : A→ B

and g : B → C with matching codomain and domain compose to a function f ; g : A → C that
effects the constituent functions in sequence. It is difficult to overstate the utility of function
composition in programming. It enables program components to be developed modularly and

1We defer the question of how one can come to know about such an assignment to a later time.
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independently, which are essential characteristics of the development of large-scale software
requiring the cooperation of people. The overall desired behavior of a system may be carefully
broken down into smaller function signatures that can be implemented in isolation from each other
and eventually composed along the specified boundaries. The notion of functions not only fulfills
the demand for modularity in practice but also reduces the “highwater-mark” of the mental load
required of a single programmer.

0.2. NATURE OF PROGRAMS

(0.2∗1) So far I have said suspiciously little about what programs actually are and instead
relied on the reader’s experience and intuition to contextualize what phrases such as “supplied
with input” and “instance” must mean when referring to computer programs. This is not an
accident. Considering the development of the subject, it is quite expected that generally speaking,
it is easier to explain what a program means than to explain what a program is2. We shall try to
arrive at what a program ought to be, under the current circumstances.

(0.2∗2) A clue comes from Eq. (0.1∗6∗1). Although reasonable at first glance, the definition
of gcd appears suspect upon further inspection: how come one is allowed to invoke the definition
of the very function one is in the process of defining? For instance, we may consider a similar use
of self-reference in the following:

f(x) = f(x+ 1) (0.2∗2∗1)

What is f? In particular, we observe that the “definition” above does not uniquely characterize a
function N→ N. For instance, any constant function g will have the property that g(x) = (x+ 1).
Mathematically we may say f is under-specified or ill-defined, which calls alarm to the legitimacy
of self-reference as a tool for defining functions.

(0.2∗3) What makes Eq. (0.1∗6∗1) a well-defined function and Eq. (0.2∗2∗1) ill-defined?
Calling for the moment a candidate to a function an “expression”, one can show by mathematical
induction that the former expression defines a valid function; no such method is available for the
latter. A programming language is a collection of rules that systematizes such justifications of
validity. A program is an expression that denotes a function. The purpose of rules is to make
routine3 the problem of verifying when an expression defines a function, which paves the way for
thinking about problems at a higher level of abstraction.

(0.2∗4) When defining a programming language, one not only delineates programs by stipulat-
ing which expressions are valid but also specifies when two programs are equal, i.e. denote the
same function. The equational theory of programs furnishes an abstract notion of computation
through which one can exhibit deductions like 2+2 = 4. (Remember, 2+2 and 4 are programs that
are written in a semantically-inspired notation. I could have written “green(apple, apple) = orange”
and you would probably question why that should be the case. The point is that the equational
theory should be true in the intended mathematical model.)

2I will concede that a computer programmer who has had no conception of the notion of a function (however
unlikely) may well believe the opposite.

3One can say that a programming language is a syntactic discipline for enforcing semantic invariants; in terms
of implementations of programming languages, one can think about these rules as the rules followed by a “type
checker”.



CONTENTS 4

0.3. BREAKDOWN OF THE FUNCTIONAL SEMANTICS

(0.3∗1) Insofar as we believe in the model of programs as denoting functions, program
specification and verification are no different from proving any other mathematical theorem. But
this model also validates properties of programs that seem bewildering when we take into account
the idiosyncratic tendency for programs to consume resources when executed, an observation that
serves as the foundation of the field of computational complexity and cost analysis.

(0.3∗2) The actual resource consumption of programs is too noisy and complicated; the basic
approach of cost analysis is to tie a predetermined, constant unit of resource to the execution of
certain program components and to gain an approximate bound on the overall resource usage
(such as time or memory) by tracking the movement of the basic instances of resource usage. A
typical example would be to attach one unit of abstract resource to the comparison operation
in sorting procedures. Under this cost model, one may prove a bound for insertion sort that is
quadratic in the length of the input n and a k · n log(n) bound for mergesort, where k is some
constant independent of n. The justification and utility of these bounds is that the number of
comparisons is a good predictor of the asymptotic runtime of the sorting procedure.

(0.3∗3) Taking the conjunction of (0.1∗6) and (0.3∗2), we quickly arrive at the point of
tension: if both insertion sort and mergesort are to denote some function f : N∗ → N∗ sending a
list of numbers n1, . . . nk to m1, . . . ,mk such that the mi’s are in order and forms a permutation
of the ni’s, then they must denote the same function because the requirements above uniquely
determine f . But this means that we have no way of distinguishing between insertion sort and
mergesort in the model!

(0.3∗4) There are at least two approaches one may take. One can forgo the interpretation of
programs as functions and instead exhibit dynamic behavior by means of relations of the form
e 7→ e’, which represents the passage of an atomic step or the exhaustion of a basic unit of resource.
In this model, we may define the cost of a program to be the maximal number of atomic steps.
The downside is that ordinary program equivalences must be tracked by extra data witnessing
the relation e 7→ e′; moreover, atomic steps are only defined for closed programs (an expression
with no free variables), and it is quite involved to make the theory of atomic steps to work with
programs with inputs. Although this operational model of programs is not so useful from our
current perspective, we will have more to say about its role in the overall vision of the work and
relation to the functional model in Section 0.5.

(0.3∗5) A different approach would be to adjust the functional semantics of (0.1∗6) so that
the meaning of a program is a function of the form f : A → C × B, or equivalently a pair of
functions fval : A→ B and fcost : A→ C. The idea is that fval is the original functional semantics
and fcost is a function that sends an input to the cost of executing the program on that input. This
model can correctly distinguish between the resource usage of insertion sort and mergesort, but
the equational theory is now too stringent — sometimes we want to be able to equate insertion
sort and mergesort on the basis that their fval components are equal! This desire is not only useful
for validating the pure functional correctness of programs but also critical for establishing cost
bounds.

(0.3∗6) A main contribution of this dissertation is to rectify the semantics outlined in (0.3∗5)
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so that one can selectively and safely ignore the fcost component of the interpretation. We will
describe this in more detail in Section 3.3.

0.4. HIGHER-ORDER COMPUTATION AND RECURSION

(0.4∗1) The modern understanding of computation emerged in the 1930s through a machine
model known as Turing machines. Very roughly, a TM is a mathematical structure consisting of a
finite set of states and a finite collection of rules that interacts with an infinite array of binary
memory cells4 equipped with an index called the head position. A rule takes as input the current
state of the machine, the head position, and the content of the cell at that position and outputs
an updated value to the cell along with a new state and head position. A computation is initiated
by placing the input as a binary string at the beginning of the memory array and setting the head
position to the first cell. The computation evolves according to the collection of rules, starting
with a special rule governing a distinguished initial state and terminates when a distinguished
stop state is reached. The output of the computation is whatever is left on the memory array.

An intuitive selling point of Turing machines as a model of computation is that an extremely
dedicated and tireless person can carry out the rules of the machine, at least in principle. Perhaps
due to this intuitive mechanical appeal, despite postceding several other notions of a computable
function (miraculously, all of these turned out to be equivalent5, including Turing machines),
Turing machines persisted and became the now widely accepted foundation for the subject.

(0.4∗2) The classically trained computer scientist may question whether Turing machines
furnish a reasonable notion of programs. Unfortunately, Turing machines are the wrong level of
abstraction for the purpose of programming and verification. Setting aside common data structures
such as lists and trees, even the notion of a number is clunkily encoded as a bit string when
working with Turing machines. It is simply hopeless to try to formalize the complexities and
requirements of modern software in terms of a machine model of computation.

To take as an example (which is also the real point of the current section), we can look at the
pathological treatment of higher-order functions in the setting of Turing machines. A higher-order
function or a functional is a function of functions, e.g. a function whose signature is (N→ N)→ N.
In this context, one can cope with such higher-order data by encoding the input function as a
Turing machine, which can be further encoded as a bit string that can be operated on as usual.
But such an arrangement can hardly be said to compute a functional because the abstraction
provided by the framework of Turing machines does not strictly enforce the interface of a function,
namely, that of applying one with an input. To wit, one can define an exotic “higher-order”
Turing machine whose output can differ between two encoded Turing machinesM1 andM2 even
when they encode the same N → N function. Therefore Turing machines support higher-order
machines (that is, a Turing machine whose input is supposed to be the bit encoding of another
Turing machine) rather than higher-order functions. Although the notion of Turing machines is
inappropriate as a (user-facing) programming language, its influence becomes relevant again when
we consider the physical semantics of programs in Section 0.5.

4It might be more accurate to say that the cells are ternary because blank cells are semantically significant.
5At least in the case of first-order functions; the notions diverge for higher-order computations, as we will soon

see.



CONTENTS 6

(0.4∗3) A main contribution of this dissertation is a compositional cost semantics of PCF, a
programming language for higher-order recursive functions. In particular, we review the classic
mathematical semantics of recursion and show how it may be extended in a cost-sensitive manner
that is compatible with (0.3∗5).

0.5. TOWARDS A PHYSICAL SEMANTICS OF PROGRAMS

(0.5∗1) The conception of programs and their semantics in Section 0.1 may be attractive and
motivated from a mathematical perspective, but one may develop a gnawing feeling that this isn’t
what programs actually do. After all, real computers interpret analog electrical signals as binary
bits and operate on them using a fixed set of arithmetic circuits. They certainly do not execute
a program by computing its meaning in the sense of Section 0.1. How can we be sure that our
idealized mathematical semantics predicts anything about the physical reality of computing?

(0.5∗2) One way to bridge the conceptual distance between the mathematical semantics and
physical semantics of programs is to trace the various transformations a program undertakes when
it is executed on a computer. Taking an extremely simplified view, there are three distinct phases
in this transformation: 1) programs as “source code”, which is what I have been developing so far;
2) programs as “target code” or the result of compilation, a process that translates source code
into programs of another programming language; 3) programs as physical processes and signals
that are interpreted and enacted upon according to the predetermined function of the hardware.

Logically these transformations can be modeled by stratifying both the programming language
and its semantics into multiple layers reflecting the different levels of abstraction relevant to each
stage of the transformation. For instance, we might refine the functional semantics in which we
only consider function signatures of the form f : {0, 1}∗ → {0, 1}∗, i.e. mappings between finite
bit sequences. The idea is that semantic objects in the functional semantics can be encoded as
finite binary sequences, which might correspond to arrays of physical memory addressable by
the hardware. Morally this is similar to the Turing machine model of computation discussed in
(0.4∗1).

(0.5∗3) The theory of programming languages is somewhat agnostic to the material nature of
the stages of this transformation; I picked three representative stages in (0.5∗2) to give a “feel” in
terms of familiar structures, but in principle there are no limitations to the kind of language and
semantics one could consider. What is important is to connect the semantics between successive
stages by means of an adequacy theorem. Roughly speaking adequacy is the agreement of different
models of computations with respect to observable properties; the justification for this relaxation
is that differences between models can only be detected in the real world by means of observations.
Usually adequacy is proved relative to the canonical observation — termination.

(0.5∗4) In Chapter 8, I unfold the first “stage” of the kind of transformation discussed in
(0.5∗2) for the programming language PCF (0.4∗3) by introducing a trivial kind of compilation
process that leaves the program text unchanged but changes the interpretation from the functional
kind described in (0.1∗6) to the one operational one described in (0.3∗4). The main result of
Chapter 8 is the proof of an adequacy property in the sense of (0.5∗3) that is cost-sensitive,
which means that not only do the semantics agree on termination, they agree on the amount of
resources incurred during computation.
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The utility of such a theorem is to connect the functional semantical approach taken in this
dissertation to extant research on cost analysis and verification, a large part of which is understood
in operational terms. Although the naive operational models considered here are still highly
unrealistic as models of real-world computers, this connection nonetheless brings us a step closer
to validating the cost specifications of computer programs qua physical processes by means of
high-level mathematical models.



Part I

Programming and verification

1
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Introduction

(1∗1) This thesis is an investigation into the semantics and verification of both functional
and cost-sensitive properties of computer programs. A functional or correctness property is
a specification about what a program is supposed to do, while a cost-sensitive property is a
specification about how much computational resource a program requires to complete a task.
Concretely the specification and verification of cost-sensitive properties can vary in several (mostly)
orthogonal axes: the computational resource in question, the resource metric, and the notion of
the cost bound.

A computational resource could refer to concrete measures like time or space usage, but could
also refer to abstract measures like the number of critical operations incurred during program
execution. A resource metric or figure of merit is the determination of what counts as incurring
cost in a particular analysis. For example in the analysis of sorting algorithms it is common to
take the number of comparisons used as the figure of merit. Such resource metrics may be called
nonuniform or algorithm-specific because the metric only applies to the program under analysis.
In contrast, one may take the figure of merit to be some general construct of the programming
language (the number of β-reductions is often used in this scenario); such resource metrics may be
called uniform to reflect the fact the metric applies uniformly at the language level.

Although the resource metric is often determined by the computational resource, technically
speaking there is no reason that any computational resource must be accompanied by a particular
metric or vice versa. For instance, when analyzing a sorting algorithm, wall time and the number
of comparisons can be both used as proxies of the computational resource of time. Thus we can
view a computational resource as an informal resource metric.

Lastly, one’s approach to cost analysis can differ in the amount of precision required on the
form of cost bounds: they can either be concrete (the cost can be bounded by a specific function
of the inputs to the program) or asymptotic (there exists some unspecified bounding function in a
class of functions). Observe that a concrete cost bound can always be immediately abstracted into
an asymptotic bound but the converse requires additional work involving a careful quantitative
refinement of the original proof of the asymptotic bound and is not necessarily possible depending
on the way the original bound is derived.

(1∗2) In this thesis I develop a program verification framework for functional programs
supporting all the variations on cost analysis discussed in (1∗1). In particular I focus on the
derivation of concrete cost bounds because 1) a concrete bound is (nearly) an asymptotic bound 2)
the sort of simplifications afforded by asymptotic analysis of algorithms on paper do not translate

2
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well into a setting in which concrete bounds are often necessary (as is in the setting of formalized
cost analysis).

(1∗3) As far as pure functional semantics and verification is concerned, both the computer
science and mathematics community have been converging towards the use of type-theoretic proof
assistants [26, 86, 91] to formally verify the properties of computer programs [23, 70, 128, 124] on
the one hand and mathematical theorems [20, 48, 40] on the other.

(1∗4) Type theory is not a monolith. However one unifying perspective on type theories is put
pithily in Reynolds [101].

Type structure is a syntactic discipline for maintaining levels of abstraction.

One way to interpret Reynold’s definition is that type theory is a mathematical language for
describing a semantic domain such that the evidence for the validity of a judgment or property
of an entity in the language is easily discernible. In this way type theories furnish a syntactic
discipline for constructing correct observations about a potentially complicated semantic domain —
an abstraction. The primary mechanism in type theories supporting this syntactic discipline is
composition, which allows one to break down judgments and propositions into their constituent
parts, each amenable to independent verification.

(1∗5) As a codification of both mathematical structures and computer programs, type theory
has been a wildly successful vehicle for specifying and verifying functional/correctness properties.
On the computer science side, proof assistants based on type theory have been used to verify
critical components in the modern software stack including compilers [71], operating systems
kernels [133], web servers [68], and concurrent-imperative programs [65]. On the mathematical
side, type-theoretic proof assistants have also been used to push the boundary of mechanized
mathematics, as demonstrated in the formalization of the four color theorem [40] and the liquid
Tensor project [104].

(1∗6) The story for cost-sensitive properties is considerably less developed. In fact, the notion
of computational cost is explicitly excluded in the CompCert project on verified compilers (emphasis
added) [71].

“What are observable behaviors?...They include everything the user of the program[...]can
“see” about the actions of the program, with the notable exception of execution time
and memory consumption.”

Moreover, extant frameworks for defining and analyzing the cost structure of programs, type-
theoretic or otherwise, suffer from various semantic deficiencies that compromise either the
faithfulness of the representation of cost structure or ergonomics, i.e. the practical usability of the
framework. In particular, most of the standard approaches to formalized cost analysis take one of
three routes:

1. Operational cost semantics [7, 83]. In the operational setting programs are equipped with a
system of transition relations 7→c annotated with some resource c. Usually one develops a
program logic around the operational cost semantics to facilitate verification.
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2. Denotational cost semantics [30, 49]. Alternatively one can model cost structure as an
auxiliary output/input of programs, leading to the profiling semantics of cost structure.
In this scenario it is common to think about cost as an abstract computational effect in
the sense of Moggi [85], but it is also possible to represent cost structure concretely as in
Handley, Vazou, and Hutton [49].

3. Type systems for cost analysis [57, 132, 97]. A category more distant to the approach taken
in this thesis is that of specially designed type systems for syntactically deriving cost bounds
of a certain class (usually polynomial), often in a completely automated manner.

(1∗7) Each of the three perspectives outlined in (1∗5) evinces problems that are not isolated
to a particular framework but characteristic of the approach in general. In the operational setting
it is typical to view programs as purely syntactic objects, which means one must reason about
programs indirectly in terms of a conceptually intuitive but ultimately arbitrary system of rules
about execution behavior. Despite the low technical barrier to providing a rigorous semantics
for a variety of programming languages equipped with sophisticated static and dynamic features,
operational semantics obfuscates what programs are — functions. An emblematic problem is that
because operational (cost) semantics is only defined over closed terms, it takes considerable effort
to extend the global equational theory of complete programs to a local theory on open terms.

(1∗8) On the other hand, denotational cost semantics directly refines the functional semantics
of programs by making cost structure (either concretely or abstractly) part of the input/output
behavior. However integrating cost structure naively in terms of profiling/instrumentation can
undermine the intended semantics of programs. For instance, we may define the following program
badList, whose input and output are extended with a parameter N that represents resource usage.

badList : N× list(N)→ N× list(N)
badList(c, l) = (c, c :: l)

Observe that because the input cost parameter c is used to compute the output functional
behavior c :: l, the program badList cannot have a coherent functional semantics independent of
the cost profiling. Furthermore, because nothing about the specification N× list(N)→ N× list(N)
distinguishes cost parameters from actual inputs, basic properties about the denotational cost
semantics (such as increasing the amount of starting resource does not change the output) may be
violated.

The situation improves when the profiling/instrumentation is treated abstractly in terms of a
computational effect — for instance we may postulate a new type FA equipped with an operation
step : FA→ FA that records the occurrence of a cost effect. Under the hood we may implement
the instrumentation by defining FA = N×A and step(c, a) = (c+ 1, a), but this is not revealed to
the programmer. In other words, we think about cost structure as an abstract interface, which
allows us to prove stronger safety properties since the programmer is disallowed from defining
pathological programs such as badList.

However, in either the concrete or abstract approach to cost profiling one still faces the challenge
of stripping away the profiling to obtain the purely functional semantics of programs. The ability
to reason about programs up to purely functional behavior is not only inherently desirable but also
critical to proving cost-sensitive properties; for instance, often times a cost bound will depend on
some data structure invariant such as a tree being balanced, which is a purely functional property.
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(1∗9) Lastly there is the approach to cost analysis by means of a type system that is specially
designed to derive cost bounds by purely syntactic considerations. Type systems are compositional
by design and rule out badly behaved programs such as badList, but they cannot serve as general-
purpose verification frameworks since the equational theory of programs is often neglected in
return for greater degrees of automation.

(1∗10) In this dissertation I contribute a type theory dubbed cost-aware logical framework
(calf) for both defining and verifying functional and cost-sensitive properties that addresses the
deficiencies of the extant approaches to cost-sensitive verification outlined in (1∗7) through (1∗9).
I aim to support the following thesis.

The internal modal type theory of (pre)sheaf topoi furnishes an ergonomic language
for both functional and cost-sensitive programming, verification, and semantics.

1.1. PROVENANCE

(1.1∗1) The content of this dissertation is derived from the following published works.

1. Yue Niu et al. “A Cost-Aware Logical Framework”. In: Proceedings of the ACM on
Programming Languages 6.POPL (Jan. 2022). doi: 10.1145/3498670. arXiv: 2107.04663
[cs.PL].

2. Yue Niu and Robert Harper. “A Metalanguage for Cost-Aware Denotational Semantics”.
In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2023,
pp. 1–14. doi: 10.1109/LICS56636.2023.10175777.

3. Yue Niu, Jonathan Sterling, and Robert Harper. Cost-sensitive computational adequacy
of higher-order recursion in synthetic domain theory. 40th Conference on Mathematical
Foundations of Programming Semantics (MFPS XXXX). 2024. arXiv: 2404.00212 [cs.PL].
url: https://arxiv.org/abs/2404.00212.

1.2. OVERVIEW

1.2.1. Part I: programming and verification.

(1.2.1∗1) In the first part of the thesis I discuss and explain the technical tools used in this
thesis. Chapters 2 and 3 consist of a review of existing work, while Chapter 4 is original work
derived from the works cited in (1.1∗1). In Chapter 2, I review the basics of dependent type
theory, the syntactic discipline used to integrate cost-sensitive and functional program verification
in this thesis. In Section 2.1 I recall the rules of this syntactic discipline and in Section 2.6 I
outline a model construction of dependent type theory in sets.

(1.2.1∗2) Chapter 3 provides the necessary mathematical background used in later chapters,
namely that of categories of (pre)sheaves over a small base category, which are the main source of
semantic models of type theories used in this thesis. In Section 3.2 I explain how every presheaf
category supports an internal type theory, simultaneously furnishing a functional programming
language and an expressive, constructive logic that is suitable for both developing general mathe-
matics and program specifications and verification. In Section 3.3 this internal language is enriched

https://doi.org/10.1145/3498670
https://arxiv.org/abs/2107.04663
https://arxiv.org/abs/2107.04663
https://doi.org/10.1109/LICS56636.2023.10175777
https://arxiv.org/abs/2404.00212
https://arxiv.org/abs/2404.00212
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with the notion of a phase distinction in certain categories of presheaves that delineates the
cost-sensitive and purely functional aspect of the associated internal type theory. Sections 3.4
and 3.5 contain material of a more technical flavor that becomes essential in the second half of the
thesis on the (cost) semantics of programming languages.

(1.2.1∗3) The preceding chapters on dependent type theory and the phase distinction culminate
in a type theory for integrating cost-sensitive and functional program verification in Chapter 4,
dubbed calf for a cost-aware logical framework. I outline the syntactic aspect of this theory in
Section 4.2 and demonstrate how calf is used in practice in Section 4.3. In Section 4.4, I justify
the logical consistency of calf by constructing a model in any category of presheaves equipped
with a phase distinction.

1.2.2. Part II: semantics.

(1.2.2∗1) The second part of this thesis concerns the internal denotational cost semantics of
general recursion in type theory. In addition to possessing intrinsic mathematical value, internal
denotational cost semantics provides a way to connect the denotational and operational approaches
to cost analysis discussed in (1∗7) and (1∗8). In contrast to prior work on denotational cost
semantics in traditional categories of domains [66, 95], I develop the denotational cost semantics
of general recursion inside synthetic domain theory, an approach to domain theory that seamlessly
integrates into dependent type theory. The main result of this development is the axiomatization
and model construction of a synthetic domain theory equipped with a phase distinction and the
proof of an internal, cost-sensitive version of Plotkin’s seminal computational adequacy property
for PCF [96].

(1.2.2∗2) In Chapter 6, I review classic domain theory and highlight some constructive and
topological considerations relevant to synthetic domain theory. In Chapter 7 the notion of axiomatic
domain theory is broached to pave the way toward synthetic domain theory; the general structure of
the situation is explicated in Section 7.1 in terms of the simpler theory of preorders. In Section 7.3,
I study the order-theoretic and closure properties of (pre)domains in synthetic domain theory. In
Section 7.4, I validate the axioms introduced by means of a sheaf-theoretic model construction.

(1.2.2∗3) The synthetic domain theory developed in Chapter 7 is deployed in Chapter 8 to
define the internal denotational cost semantics of PCFcost, a version of PCF equipped with
an abstract cost effect. I prove that PCFcost satisfies a cost-sensitive computational adequacy
theorem relative to a dynamic semantics of PCFcost dubbed the computational semantics; the
relationship between this new computational semantics and traditional operational cost semantics
is discussed in Section 8.5.

(1.2.2∗4) In Chapter 9, I end with a discussion of related work and speculations of future
work.



chapter 2

Dependent type theory

(2∗1) The technical contributions of this dissertation are rooted in a particular scientific
discipline involving the study of dependent type theory, usually shortened to just type theory. The
purpose of this chapter is to give the reader an idea of the features of type theory and a feel for
what is it like to use type theory. For a more principled approach we refer the reader to Martin-Löf
[81] for the origins of type theory (in the modern sense) and Univalent Foundations Program [129]
for a textbook introduction.

(2∗2) From a certain technical point of view, type theory is about the mathematics of indexing,
or more precisely, it is the formal language for describing and manipulating structures that vary
over some context. For instance, consider the following definition of a group:

A group is a set G equipped with a distinguished element e ∈ G and functions
· : G×G→ G and −−1 : G→ G such that . . .

Where in the above I have elided the well-known group axioms. Thus the structure of a group is
captured by the family (G× (G×G→ G)× (G→ G)× . . . )G∈U whose index of variation U is
a given universe of discourse for the carrier sets. Dependency refers to the fact that the “shape”
or type of the group operations depends on the carrier set. Dependent type theory allows one to
rigorously specify and work with structures of this kind.

(2∗3) This technical reason motivating the notion of dependent types hides a wealth of deep
and rich mathematics and obfuscates much of the history of the subject, but this monograph is
not the right place to explain them. Instead, a more impressionistic account of type theory will be
given, which reflects the author’s personal opinion and scientific requirements. In the following,
I will outline three perspectives or attitudes one might possess towards type theory: algebraic,
computational, and synthetic.

2.1. THE ALGEBRAIC PERSPECTIVE

(2.1∗1) Just as there is more than one group, there is more than one type theory. Thus the
question “What is a type theory?” is not answered by pointing to a particular instance but by
giving a general characterization of the structure akin to the group axioms. The proposed responses
typically involve mathematical structures of algebraic character; examples include contextual
categories [21], categories with families [32], comprehension categories [63], locally Cartesian closed

7
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categories [108], etc. At a high level these models aim to capture the essential structures that must
exist to make sense of the following judgments of type theory:

Γ ctx
Γ ⊢ A type
Γ ⊢M : A
Γ ⊢ A = A′

Γ ⊢M =M ′ : A

Roughly one can think of type judgments as nodes in an exceedingly complex (but well-founded)
tree called a derivation; the branching of the tree is controlled by the inference rules of the type
theory, which controls the branching of the derivation. Concretely, an inference rule takes the
following form:

J1 . . . Jn
J

where J and every Ji is one of the judgments outlined above. The judgments Ji are called
premises and J is called the conclusion of the inference. Finite applications of inference rules
generate a derivation tree by the following procedure: take as root the conclusion of some inference;
the premises of that rule are added as children, and repeat the procedure by taking some children
as the conclusion of another inference. A derivation is closed when its leaves are labeled by
judgments that are conclusions of axioms, e.g. inference rules with no premises. A judgment is
derivable when it is the root of a closed derivation. For the purpose of discussion, we will call a
type theory defined in terms of such inference rules an algebraic type theory.

(2.1∗2) The mathematical content of type theory is evinced by a certain perspective called
propositions-as-types, under which one can give the following translations for judgments:

Γ ⊢ A type
Γ ⊢M : A
Γ ⊢ A = A′

Γ ⊢M =M ′ : A

“A is a proposition.”
“M is a proof of A.”
“A and A′ are equal propositions.”
“M and M ′ are equal proofs of propositions.”

To emphasize this mathematical interpretation of type theory we will sometimes refer to
judgments as constructions.

(2.1∗3) The notation Γ ⊢ . . . signifies the fact that judgments must be stated with respect
to a context Γ, and Γ ctx can be read as Γ is a well-formed context (according to the inference
rules). A context can be thought of as the list1 of assumptions or premises to a proposition or
proof. From the empty context, we may iteratively construct larger contexts by means of context
comprehension. This is captured by the following inference rules:

· ctx
Γ ctx Γ ⊢ A type

Γ, a : A ctx
1Not an unordered collection because assumptions may depend on one another.
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The point of contexts is to record under what circumstances a construction was carried out. Put
another way, contexts reflect the dependency structure of constructions in the sense of (2∗2). The
raison d’être of type theory is to provide a rigorous account of constructions that is compatible
with variations in the context. This variation is also called a substitution, which is a judgment of
the form σ : Γ→ ∆, inductively generated by the following rules:

· : Γ→ ·
σ : Γ→ ∆ Γ ⊢M : A[σ]

σ,M/a : Γ→ ∆, a : A

In the above we write E[σ] for the operation induced by a substitution on a term or type E in
which all occurrences of the indicated variables M/a in σ are replaced by M in E.2 Contexts and
substitutions can be organized into a category. This means that there is an identity substitution
id : Γ→ Γ and one can compose compatible substitutions σ : Γ→ ∆ and δ : Ω→ Γ as a single
substitution δ ◦ σ : Ω → ∆. Often we will regard a single term Γ ⊢ M : A as the substitution
id,M/a : Γ→ Γ, a : A and write E[M ] for E[id,M/a].

(2.1∗4) The inference rules regarding specific type connectives come in groups of four:
formation, introduction, elimination, and computation, which taken together govern how a type
is constructed and used. As an example, the dependent sum type is governed by the following
inference rules:

Σ-formation
Γ ⊢ A type Γ, a : A ⊢ B type

Γ ⊢ Σa:A.B(a) type

Σ-introduction
Γ ⊢M : A Γ ⊢ N : B[M ]

Γ ⊢ (M,N) : Σa:A.B(a)

Σ-elimination-1
Γ ⊢ P : Σa:A.B(a)
Γ ⊢ fst(P ) : A

Σ-elimination-2
Γ ⊢ P : Σa:A.B(a)

Γ ⊢ snd(P ) : B[fst(x)]

Σ-computation-1
Γ ⊢ (M,N) : Σa:A.B(a)
Γ ⊢ fst(M,N) =M : A

Σ-computation-2
Γ ⊢ (M,N) : Σa:A.B(a)

Γ ⊢ snd(M,N) = N : B[M ]

The dependent sum is similar to the Cartesian product A × B, except that B is a type family
that may depend on A. Thus dependent sums subsume the notion of products and we can define
A×B to be Σa:A.B.

x (2.1∗5) The inference rules (2.1∗4) may seem overwhelming at first, but they simply codify
the form of dependency discussed in (2∗2). Explicitly, the structure of groups is rendered as the
following dependent sum type:

Γ ⊢ ΣG:U .(G×G→ G)×G× (G→ G)× . . . type

We may as well abbreviate this type as Group. Moreover, one may formalize group-theoretic
formulas/sentences in type theory:

Γ, G : Group, g : |G| ⊢ g · g−1 · g = g : |G|,
2In general the judgment Γ ⊢ a : A presupposes that Γ ⊢ A type holds; in other words, the former is a sensible

statement only in case that the latter is known. Although A[σ] cannot be seen a priori to be a well-formed type,
we may prove after the fact that the operation substitution always induces well-formed types and terms. In such
presentations of type theory substitution is called admissible. One may also define a version of type theory in which
the well-formedness of the substitution operation is derivable. For a discussion on the notions of derivability and
admissibility, see Harper [52, chp 3].
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where we write |G| : U , · : |G| × |G| → |G|, and −−1 : |G| → |G| for the evident components of G.

(2.1∗6) Considering the reading of (2.1∗2), type theory can be thought of as a structure
that mathematizes the notion of proof. But because propositions are merely a particular kind of
type, this can lead one to consider uninspired “propositions” such as the proposition of being a
group (2.1∗5). Since a proposition is just a particular kind of collection (namely a set consisting
of at most one element, i.e. a subsingleton), a better intuition is to think about types as an
axiomatization of the notion of a collection; we will discuss this perspective in Section 2.4.

(2.1∗7) The most important aspect of the algebraic viewpoint is as a tool for studying the
metatheory of type theories. The idea is that a type theory is defined to be the free structure
of a specified kind (for instance, one of the structures referenced in (2.1∗1)), often referred to
as the free model. The free model of a type theory is a construction analogous to other free
algebraic structures such as the free group over a set of generators. Crucially, the free model is
also equipped with an analogous universal property3 that allows one to prove properties about the
global properties of the system of inference rules of a type theory.

The practical consequence of free models and their metatheoretic properties is that they
enable us to implement the system of inference rules of type theory as a computer program that
mechanically decides whether a certain judgment is derivable (i.e. reachable as a node in the
derivation). Taken in conjunction with the propositions-as-types perspective, this fact has enabled
the development of computer programs called proof assistants that allow users to construct formal
mathematical proofs that are mechanically verified by the computer. In fact, type theory underlies
many state of the art proof assistants that are not only used for formalized mathematics but
also program verification (recall that program specifications are just specific kinds of theorems by
(0.3∗1)).

2.2. THE COMPUTATIONAL PERSPECTIVE

(2.2∗1) The computational perspective in the sense of Martin-Löf [81] can be characterized
by the stance that types emerge from (untyped) computation; this latter, more primitive notion is
often an operational semantics of the form described in (0.3∗4). In this setting, a type is (almost
literally) a collection of programs, grouped so together on the basis of their computational behavior.
The specifics of how a type describes computational behavior is called a meaning explanation.
A computational type theory is the application of the meaning explanation to a base system of
untyped computation.

(2.2∗2) A computational type theory also consists of type judgments similar to the ones of
(2.1∗1), except instead of inference rules, type judgments are made evident by appeal to a meaning
explanation. To give a meaning explanation of a type A is to give the following information:
what is a canonical program of A, and when are two such canonical programs are equal.4 In this
context a canonical program is just a terminal or complete computation. The evidence of type
judgments consists of mutual interleaving of the meaning explanation for canonical programs and
the underlying operational semantics for non-canonical programs.

3One can think about this as a (highly sophisticated) induction principle.
4Thus a type in computational type theory can be thought of as a kind of Bishop set in which elements range

over a given universe of untyped programs.
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(2.2∗3) The most significant difference in comparison to the algebraic perspective stems from
the semantic and open-ended character of meaning explanations. While a system of rules of the
form in (2.1∗1) constitutes an inductive definition that fixes the entirety of a type theory from
the beginning and the means by which judgments are seen to be derivable, a meaning explanation
does not restrict how types and type judgments are established and is compatible with additions
to the underlying computation system. The difference is quite stark: a judgment in the algebraic
perspective expresses the mechanical derivability, whereas a judgment in the context of the meaning
explanation expresses actual knowledge about the real world.5

One can reconcile the two perspectives by recognizing computational type theory as a particular
kind of model of a type theory in the algebraic sense. In this arrangement the mechanical derivation
of judgments afforded by an algebraic type theory is guaranteed to be validated by the meaning
explanation but is by no means the only way to establish properties about the underlying
computational model. For a concrete example, consider the following program

f(n) = if hasOne(collatz(n)) then 0 else “bar′′,

where collatz(n) denotes the Collatz sequence and hasOne(s) is true if and only if s : N → N
contains the number one. In a computational type theory one can assign the type N→ N to f (if
one finds a proof of the Collatz conjecture), but it would be nearly impossible to account for such
judgments in the algebraic setting because evidence for their validity may be arbitrarily complex
and any attempt to account for them would undermine the mechanical decision of judgments that
is critical for building computerized proof assistants.

(2.2∗4) However, the extreme flexibility of the meaning explanation also poses obstacles when
trying to design proof assistants based on computational type theories. One can prove lemmas
about judgments in a computational type theory analogous to the inference rules of an algebraic
type theory to organize routine reasoning and derivations, but often much more engineering is
required to make the resulting proof assistant ergonomic for day-to-day use. This and other various
theoretical problems with computational type theories has led to a situation in which although
proof assistants based on computational type theories such as NuPRL [3] pioneered the concept of
type-theoretic proof assistants and many ideas still used today, their usage is somewhat localized
in the theorem-proving community in comparison to proof assistants based on algebraic type
theories.

2.3. THE SYNTHETIC PERSPECTIVE

(2.3∗1) In this monograph I will mainly use and interact with type theory from a synthetic
perspective. In contrast to the perspectives outlined in Sections 2.1 and 2.2, the synthetic
perspective is not an ontological or philosophical stance about the nature of type theory but rather
a position arrived at from the pragmatics of using type theory. Like the computational perspective,
one tends to think of types under the synthetic perspective as describing a real phenomenon (in a
semantic model). From a model-centric point of view, a type theory is best understood as the
internal language of the model, that is to say a linguistic way to describe the underyling structures.
The benefit of a type-theoretic internal language is composition, i.e. modularity of construction
and reasoning of the kind discussed in (0.1∗7). Compared to the computational perspective, the

5In this case untyped computation serves as a notion of reality.
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difference is that the models under consideration are not always made up of untyped computation
and operational semantics as in (2.2∗1); I outline some examples in Section 2.6.

(2.3∗2) Perhaps the best way to describe the situation is that the objects we require to exist
in a type theory can all be given explicit constructions complying with intuitionistic logic; the
difference is that the computational character of constructions are not made explicit in terms of
operational semantics as in the case of the computational perspective.

This is not to say that we will abandon the computational perspective. To the contrary, we will
see that the synthetic perspective gives us the methods to study the layers of computation in the
sense of Section 0.5. In particular I show how one can define and study programming languages
and their operational semantics inside type theory, thence giving us the means to selectively bring
out the operational character of programs internally, a fact that will become relevant in Chapter 8.

(2.3∗3) The relationship between the synthetic perspective and the algebraic perspective is
analogous to one between proof and formalized proof (in some given deductive system). Just
as one can carry out informal (but rigorous) mathematical arguments with the understanding
that they may be formalized in e.g. ZFC, I will carry out the developments in this monograph
with the understanding that they may be suitably formalized in a logical framework of the kind
discussed in (2.1∗1). Thus the real difference when working in type theory compared to “ordinary
mathematics” is the acute awareness of the underlying semantic model, which gives rise to different
kinds of internal languages that are suitable for the kind of reasoning required by the given domain
of programming and verification. For instance, the domain could be cost-senstive programming
and verification in the sense of Section 0.3, which would necessitate a different internal language
compared to programming and verifying only input-output behaviors.

(2.3∗4) Lastly, a word on metatheory. All of the type theories considered in this monograph
are justified by model constructions, i.e. they are logically consistent.6 I do not establish any
global metatheoretic properties in the sense of (2.1∗7), which means I have not proven that one
can actually build a proof assistant that mechanically checks the validity of the proofs given in
terms of these theories. However, this lack of a formal justification does not impede us from
developing real mechanized case studies by encoding them in existing proof assistants, which is
discussed in Chapter 4.

2.4. TYPE THEORY AS A MATHEMATICAL UNIVERSE

(2.4∗1) I have hinted at the view of type theory as a framework for developing general
mathematics in (2.1∗2) and (2.1∗5). To give a sense of the difference between this type-theoretic
rendering of mathematics and “ordinary mathematics”, I will concentrate on two points that
distinguish type theory: the idea that collections are constructions and its treatment of dependency.

2.4.1. Collections as constructions.

(2.4.1∗1) Set theory and type theory both aim to give a rigorous account of the pre-
mathematical notion of a collection. In type theory a collection is thought of as a protocol 7 of

6Technically, consistent to the relative to the assumed metatheory.
7My thanks to Jon for suggesting “protocol” in place of “method”, which more accurately describes what I

wanted to convey.
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construction. For instance, one way to interpret the rule “Σ-introduction” of (2.1∗4) as a protocol
of construction is as follows. to give a member of the collection Σx : A.B(a) is to give a member
a : A of the collection A and a member b : B(a) of the collection B(a). Thus a system of typing
rules such as (2.1∗4) can be thought of as simultaneously defining a collection and how one is
to exhibit elements of the collection. Importantly, to speak of an element one presupposes the
collection to which it belongs. Put another way, one can not speak of elements without first
identifying its protocol of construction. Notationally, this corresponds to the fact that we always
introduce an element a : A along with the way it has been constructed or its associated collection
A. Also observe that (up to the equational theory of types) there is a unique type associated
to an element, corresponding to the fact that an element can be thought of as the record of an
instantiation of the associated protocol of construction.

(2.4.1∗2) In contrast elements in set theory exist independently of their provenance, i.e. the
protocol by which they were constructed. Whereas elements are constructed following a protocol
in type theory, elements are selected or collected by means of predicates. Consequently elements
may belong to multiple sets/collections. The set-theoretic counterpart to a : A is often written as
a ∈ A.8 Practically the difference between a : A and a ∈ A is that the former is usually completely
mechanical, while the latter is a statement of mathematical knowledge that must be justified by
proof.

(2.4.1∗3) Set theory is commonly accepted as the foundational basis of modern mathematics,
but the use of collections in mathematical practice straddles that of sets and types. While sets are
in some ways more flexible than types, they also allow somewhat inane statements such as “N ∈ 5”
that are perfectly sensible according to the canons of set theory. In reality mathematicians often
work with the understanding that N is an abstract interface (for instance, as the initial successor
algebra or an preordered monoid) that supports operations relevant to their work. Rarely does
one rely on the concrete definition of N so that questions such as “N ∈ 5” become relevant. The
role of type theory is to codify and systematize such uses of abstractions in mathematics.

2.4.2. Dependency in mathematics.

(2.4.2∗1) In contrast to the direct treatment of dependency in type theory, dependency in
mathematics is often represented in a more implicit manner that we may well call the “fibred”
approach, which counterposes the indexed approach embodied by type theory. To illustrate, take
the prototypical dependent type of length-indexed lists of natural numbers x : N ⊢ vec(x) type.
The elements of this type are sequences of the specified length, i.e. we have [] : vec(0) and
[1, 0, 3, 2] : vec(4). The explict dependency of vec on the length n : N may be represented by a
non-dependent family as displayed below:

list

N

l

|l|

{l ∈ list | |l| = n}

n

8There seems to be no persistent and commonly agreed-upon notation that meaningfully distinguishes between
the two notions.



chapter 2. DEPENDENT TYPE THEORY 14

The idea is that the types vec(n) is represented as the fibres of the family
list
↓
N
. For every n : N,

the inverse image or fibre over n is the set {l ∈ list | |l| = n}, which contains exactly the elements
corresponding to those that are classified by the type vec(n). In the fibred view, a dependent

element x : N ⊢ v : vec(x) corresponds to a section of the family
list
↓
N
, i.e. a function v : N→ list

such that |v(n)| = n.

(2.4.2∗2) The force of the contexts of type theory is implemented by substitution or change
of base: constructions may be transported along a change of contexts. For example, that vec(0)
is a well-formed type corresponds to the fact we may transport the type vec(n) in the context
with one free variable n : N to the type vec(0) with no variables along the closing substitution
0 : 1→ N in which 1 represents the empty context and N represents the singleton context n : N.
In the fibred perspective substitution is represented by pullback along the given change of base.9
For example, we may susbtitute the closing substitution 5 : 1→ N to obtain the fibre vec(5):

len∗5

1

list

N

len

5

Evidently the only fibre of the (trivially indexed) family
len∗5
↓
1

is the set of lists of length 5; (global)

sections of this family then correspond exactly to the elements of vec(5).

(2.4.2∗3) It may seem awkward to express dependency in terms of the fibres of a family at
first, but this is common practice in mathematics. For example, one often prefers10 to work with

fibrations or fibred categories
E

B
instead of indexed categories Bop → Cat, which both represent

the notion of a family of categories EB indexed in a base category B, the former from a fibred
perspective and the latter from an indexed perspective. Another example would be a topological
vector bundle π : E → B, which formalizes the idea of a family of vector spaces E varying
continuously in some base topological space B. Here the fibred perspective is crucial because it
is much more natural to state the relationship amongst the fibre vector spaces Ex = π−1(x) as
fibres of some total space E than to somehow relate disparate spaces as would be required in the
indexed perspective.

9This is not completely accurate because pullbacks are only defined up to unique isomorphism, but substitutions
in type theory are defined up to equality. This well-known problem in the naive semantics of susbtitution as
pullbacks can be resolved in many ways (see for instance Hofmann [58]), but this simple picture suffices for our
discussion.

10See Jacobs [63, sec. 1.10.4] for a deeper discussion.
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(2.4.2∗4) Dependent type theory can be thought of as a language that works implicitly with
respect to variation/substitution/change of base. If the role of a fibration is to explain the semantics
of dependency (of categories), then type theory is the language that makes such dependencies
routine and easy to reason about.

(2.4.2∗5) Why not just use type theory to reason about every indexed situation? A type
theory is a very powerful structure: type connectives and operations of the theory always commute
with substitutions. From a semantic point of view, this is rarely the case because operations

that exist the on total space of a fibred category
E

B
are often not well-behaved with respect to

the fibre categories EB. An example that becomes relevant in Chapter 8 is that of categories of
predomains, which are almost always Cartesian closed but not fibre-wise Cartesian closed (in other
words, locally Cartesian closed).

2.5. TYPE THEORY AS A PROGRAMMING LANGUAGE

(2.5∗1) In addition to its mathematical applications, type theory can also be viewed as a
programming language, or better yet, as a language for defining semantic models of programs
of the kind discussed in Section 0.1. Expanding on the (simply-typed) function signatures of
(0.1∗6), type theory brings dependently-typed function signatures and functions that enable one
to give extremely precise specifications. For example, recalling the example of Euclid’s algorithm
in (0.1∗6), we may assign the following function signature to gcd:

gcd : Πn,m : N.Σd : N.GCD(d, n,m) (2.5∗1∗1)

Let me defer explaining the meaning of GCD(d, n,m) for the moment. We have already seen
the dependent sum type in (2.1∗4); in this case the type Σd : N.GCD(d, n,m) classifies pairs
d : N and p : GCD(d, n,m). We have also used the dual dependent function type Πa : A.B(a) in
the above, which classifies functions f : Πa : A.B(a) such that f(a) : B(a) for all a : A. As for
dependent sum types, we may recover ordinary function types A → B as Πa : A.B. Let’s now
consider GCD(d, n,m), which is the following type:

((d | n)× (d | m))× (Πd′ : N.((d′ | n)× (d′ | m))→ d ≥ d′)

The symbol | refers to the “divides” relation, so d | n means d divides n. What GCD(d, n,m)
classifies are tuples p : (d | n), q : (d | n), and r : Πd′ : N.((d′ | n)× (d′ | m))→ d ≥ d′, which can
be read as (under the propositions as types view) “p is a proof that d divides n”, “q is a proof
that d divides m”, and “r is a dependent function such that for all d′ : N dividing both n,m, r(d′)
is a proof that d ≥ d′”. Thus we have that the property of being a greatest common divisor is
expressed as the dependent type GCD(d, n,m). Taken together, this means that Eq. (2.5∗1∗1)
expresses exactly the desired specification of Euclid’s algorithm, namely to compute the greatest
common divisor of two natural numbers.

(2.5∗2) There is a slight problem with the example as sketched, which is that the definition
given for gcd cannot be readily seen as a valid function definition in type theory. The reason
was already broached in (0.2∗2): we must scrutinize self-referential or recursive definitions to
make sure they denote well-defined functions. In (0.2∗3) this was used to illustrate the essence
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of programming languages, which is that programming languages are mechanical disciplines
for defining functions. There is nothing wrong with this view, but in practice the situation
is more nuanced. Realistic programming languages allow one to write down functions such as
f(x) = f(x+ 1) whose meaning is divergence. We call these functions partial functions because
they are partially defined. Similarly, functions as we have assumed so far can be qualified as
total functions because they are totally defined. Under these circumstances, it may seem overly
stringent to disallow f(x) = f(x+ 1) as a valid function.

(2.5∗3) We will eventually discuss the theory of partial functions in Chapter 8; for now we
take for granted that a function is a total function. Part of the reason is that type theory is a
theory of total functions and partial functions are somewhat of a second-class citizen. The other is
that we can get pretty far sans partial functions or divergence. After all, partial functions are not
so informative as models of programs — what good is a divergent program in the real world?11

(2.5∗4) To enforce the totality of functions, a type theory has rules about how functions are to
be defined. In the case of N→ N functions, one is typically allowed the discipline of definition by
primitive recursion: given b : N and r : N→ N, there exists a unique function rec(b, r) : N→ N12

satisfying the following:

rec(b, r)(0) = b

rec(b, r)(n+ 1) = r(rec(b, r)(n))

More generally, we may present the above in terms of the collection formation, introduction,
elimination, and computation rules for the natural numbers N as we did for dependent sums. The
restriction placed on self-reference is that we may only refer to the recursive result associated to
the immedaite predecessor of the input. The reason for this restriction is that we may prove (by
mathematical induction) that every primitive recursive function is well-defined.

Because the definition of gcd refers to recursive results associated to numbers other than the
immediate predecessor, it cannot be seen as a primitive recursive function in its current form.

(2.5∗5) There are multiple ways to rectify the definition of gcd so that it complies with the
discipline of primitive recursion. Following the so-called Bove-Capretta method [18], one may
associate to every candidate function f : A→ B (such as gcd) an accessibility predicate φ : A→ U
that can intuitively be thought of as the proof that an argument to the function is well-founded.
We can then define a function f ′ : Πa : A.φ(a)→ B by structural induction on the accessibility
predicate φ(a), a discipline of function definition analogous to primitive recursion. We may obtain
the original function f : A→ B by proving that all arguments are accessible.

(2.5∗6) In contrast to the Bove-Capretta method, which makes use of inductive families,
there is also another more “low-powered” method that has been used in Niu et al. [90] to tame
natural patterns of recursion in the context of cost analysis. The idea is that we may abstract
the accessibility predicate into an accessibility bound that represents the number of recursive calls
the function is allowed to make. In the case of gcd, we obtain a “truncated” version of Euclid’s
algorithm as follows.

11There are in fact things partiality is good for; for instance self-interpreters [53, Chp 19].
12For full generality one should work with parameterized functions; here it seemed appropriate to suppress extra

parameters for clarity.
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gcdÂ : N→ (N× N)→ N
gcdÂ(0, n,m) = 0
gcdÂ(k + 1, n, 0) = n

gcdÂ(k + 1, n,m) = gcdÂ(k,m, nmodm)

The expression gcdÂ denotes a primitive recursive function because recursive calls always refer
to the immediate predecessor of a fixed number in the input (in this case the abstract accessibility
bound k). To get back to the original function, we simply need to find a large enough value for k
so that gcdÂ does not “run out” of recursive calls — when k = 0, we have that gcdÂ(k, n,m) = 0
for any inputs n,m; since zero cannot be said to divide any number, this signals a kind of failure
state. In this case, the sum n +m of the inputs suffices to ensure that gcdÂ never fails. More
precisely we have the following theorem in type theory:

Πn,m : N.gcd(n,m) = gcdÂ(n+m,n,m)

Recalling the meaning of the dependent function type, to inhabit the above is to define a function
h such that for all n,m : N, h(n,m) is the proof that gcd(n,m) is equal to gcdÂ(n+m,n,m).

∗ ∗ ∗

(2.5∗7) Aside from the insistence on totality, type theory is also unique in its treatment of
computational effects in comparison to most commercially prevalent programming languages. In
the case of the latter, a programming language is invariably introduced by means of a “hello world”
program:

print("hello world")

The operational behavior of executing this program involves writing the string “hello world”
to a standard output buffer that the user may observe.

What is the semantics of “hello world”? Most programming languages treat the operation of
writing to a buffer a computational effect; in the absence of further inputs or outputs, “hello world”
is then assigned the function signature 1→ 1. Thus computational effects are often also referred
to as side effects to reflect the fact that the effect is not tracked by the program specification, i.e.
it is something done “off the books”. Crucially, a side effect is distinguished from the output of
a program, which is done “by the books”; in the case of “hello world” the output is trivial, as
indicated by the singleton type 1.

(2.5∗8) But something done “off the books” is still semantically significant. This is most
salient in the case of storage effects in which both reads and writes to the standard output buffer
(or other memory buffers) are allowed: a program may read the contents of a buffer and branch on
this information to produce different outputs. Consider a program f with both read and write
access to a memory cell l storing a natural number:

f(n) = n + l

This program takes an input number n and adds to it the value stored at l. Observe that it is
semantically unsound to assign the function signature N→ N to f : we have not accounted for the
contribution of the memory cell l to the output!
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(2.5∗9) The fact that side effects are not tracked by function signatures in most programming
languages has led to and continues to be an endless source of bugs in sufficiently complex software.
Mathematically, side effects are an oxymoron — what is the purpose of an “effect” that can be
cleanly kept off the books? More objectively, computational effects ought to be thought of as rules
codifying a particular pattern of programming. For instance, the pattern of programming with a
single storage cell of type S is encoded by extending an ordinary function signature f : A→ B to
take into account its presence:

f : S ×A→ S ×B

The meaning of the “hello world” program can be expressed by suitably modifying the input
store:

hello : string × 1→ string × 1
hello(s, u) = (s ^ “hello world”, u)

(2.5∗10) Part of the work of the PL community has been to objectify in a similar fashion all
manners of semantically dubious notions in extant programming languages that were previously
only understood from an ad hoc perspective. In this vein, a goal of this dissertation is to produce
a semantically sound model of cost-sensitive programming as discussed in Section 0.3; as I will
show in Chapter 4, usual conceptions of the cost structure of programs suffer from the problem
outlined in (2.5∗8): cost is construed as a side effect that is not quite kept off the books.

2.6. MODELS OF TYPES

(2.6∗1) Confronted with a new mathematical structure or theory, one obtains understanding
by relating the new to the old, or something that one already understands. This is called a model
construction, a process in which one builds a model of a new structure in terms of known concepts.
The direction of a model construction is relative — what is known to one may not be known to
another, and vice versa. In this monograph I take as known the notion of sets and functions and
show how one can understand types in terms of these more primitive concepts.

(2.6∗2) I already introduced the idea of modeling dependency in terms of sets and families in
Section 2.4.2. Here I will give a more systematic picture of the process by means of a particular
type theory and its model in sets. This means that I will not explain what it means to be (a
model of) a type theory in general; the interested reader may find the relevant references in the
discussion of (2.1∗1).

(2.6∗3) Recall from (2.1∗1) that our goal is to explain the meaning of the following system of
inductive definitions:

Γ ctx
Γ ⊢ A type
Γ ⊢M : A
Γ ⊢ A = A′

Γ ⊢M =M ′ : A
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We outline the interpretation of type dependency introduced in Seely [108]. We will associate
to every well-formed context Γ ctx a set JΓK, to every type-in-context Γ ⊢ A type a family JΓ ⊢ AK

whose base is JΓK — which we will write as
JAK
↓

JΓK
, and every term-in-context Γ ⊢ a : A a section of

the family
JAK
↓

JΓK
. Equations between types and terms are interpreted as real equalities in the model,

i.e. if we derive Γ ⊢ a = a′ : A then JΓ ⊢ a : AK and JΓ ⊢ a′ : AK are equal sections of
JAK
↓

JΓK
.

. (2.6∗4) As mentioned in (2.4.2∗2), there is a well-known subtle coherence problem with
naively interpreting substitution as pullback that obstructs us from validating equations of the
form Γ ⊢ A = A′ in the model as strict equalities; nonetheless I will present the naive model to
provide useful intuition. Various solutions to this coherence problem have been found. On the
one hand, Hofmann [58] shows how to strictify the semantics to recover the equational theory
of substitutions in types, and on the other hand, Curien [28] provides an alternative solution by
introducing explicit substitutions. The connection between these two solutions is discussed in
Curien, Garner, and Hofmann [29].

(2.6∗5) In (2.1∗2) we saw that contexts are generated from the empty context by repeated
applications of context comprehension. Semantically we may set the empty context to be the
singleton set: J·K = 1. Context comprehension corresponds to taking the total space of a family. In
the situation of a context comprehension Γ, a : A, we have by the inductive process of the model

construction a set JΓK and family
JAK
↓

JΓK
; we then set JΓ, a : AK = JAK.

� (2.6∗6) A substitution σ : Γ → ∆ is interpreted as a function JσK : JΓK → J∆K, and given

∆ ⊢ A type, the type Γ ⊢ A[σ] is given by pulling back the family
JAK
↓

J∆K
along JσK, resulting in a

family
JA[σ]K
↓

JΓK
. The empty substitution · : Γ→ · is sent to the unique map into a singleton JΓK→ 1.

In the situation of an extended substitution σ,M/a : Γ→ ∆, a : A, we may construct inductively
the following pullback.

JA[σ]K

JΓK

JAK

J∆K

f

JσK

JΓ ⊢M : A[σ]K

We may then take the composite f ◦ JΓ ⊢ a : A[σ]K as the interpretation of σ,M/a : Γ→ ∆, a : A.



chapter 2. DEPENDENT TYPE THEORY 20

A similar construction also tells us how to interpret the action of substitution on terms. Given
∆ ⊢M : A and σ : Γ→ ∆, we construct again a pullback diagram:

JA[σ]K

JΓK

JAK

J∆K

f

JσK

? J∆ ⊢M : AK

It is a general property of pullback diagrams that the sections indicated are in bijective corre-
spondence to the indicated diagonals factoring the bottom map through the other leg of the

pullback. Because J∆ ⊢ M : AK is a section of the family
JAK
↓

J∆K
, we may take the diagonal to be

J∆ ⊢M : AK ◦ JσK.

(2.6∗7) For the type connectives, we can organize our model construction according to the kind
of dependency exhibited. There are three cases: dependency is trivial, dependency is propagated,
and dependency is basic and nontrivial. We will explain these in turn.

� (2.6∗8) First, a type such as N or 1 are trivially dependent because their semantics are not
dependent on the context. We may interpret Γ ⊢ N type as the following family:

JΓK× N

JΓK

π1

By an abuse of notation, in the above we also write N for the set of natural numbers in the model.

Observe that sections of
JΓK× N
↓

JΓK
are in bijective correspondence with the set N. Similarly, the

singleton type Γ ⊢ 1 type is interpreted as the identity family
JΓK× 1
↓

JΓK

∼=
JΓK
↓

JΓK
.

� (2.6∗9) In the second case a compound type connective may simply “pass along” the source
of dependency arising from its constituent types. Consider the dependent sum type

Σ-formation
Γ ⊢ A type Γ, a : A ⊢ B type

Γ ⊢ Σa:A.B(a) type

In this situation, we have inductively constructed the families
JAK
↓

JΓK
and

JBK
↓

JAK
. We need to construct
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a family whose base is JΓK: this is given by postcomposing
JBK
↓

JAK
with

JAK
↓

JΓK
. For example, we can

compute the meaning of the type Γ ⊢ Σn:N.vec(n) in which Γ, n : N ⊢ vec type is interpreted by
the family given in (2.4.2∗1):

JΓK× list

JΓK× N

JΓK

id× | − |

π1

Sections of this family are in bijective correspondence with the lists of natural numbers, reflecting
the isomorphism (Σn : N.vec(n)) ∼= list.

� (2.6∗10) Consider now the introduction rule:
Σ-introduction
Γ ⊢ a : A Γ ⊢ b : B(a)
Γ ⊢ (a, b) : Σa:A.B(a)

Semantically we have the following situation:

JB(a)K

JΓK

JBK

JAK

f

JΓ ⊢ a : AK

JΓK

JΓ ⊢ a : AK

?

JΓ ⊢ b : B(a)K

We are to find a section of
JBK
↓

JΓK
as indicated above. By an argument similar to the one in (2.6∗6),

Because JΓ ⊢ a : AK is a section of
JAK
↓

JΓK
, it suffices to find a map JΓK→ JBK factoring JΓ ⊢ a : AK

through
JBK
↓

JAK
, as indicated by the dotted diagonal. By an argument similar to the one in (2.6∗6),

we may take this to be f ◦ JΓ ⊢ b : B(a)K since JΓ ⊢ b : B(a)K is a section.
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By similar arguments we may also interpret the elimination and computation rules of the
dependent sum type.

(2.6∗11) Another example of a type connective exhibiting basic nontrivial dependency is the
(extensional) equality type, typically characterized by the following rules:

eq-formation
Γ ⊢ a : A Γ ⊢ b : A

Γ ⊢ eqA(a, b) type

eq-introduction
Γ ⊢ a = b : A

Γ ⊢ refl : eqA(a, b)

eq-elimination
Γ ⊢ u : eqA(a, b)
Γ ⊢ a = b : A

eq-uniqueness
Γ ⊢ u : eqA(a, b) Γ ⊢ v : eqA(a, b)

Γ ⊢ u = v : eqA(a, b)

The purpose of the equality type is to internalize equality of terms at the judgment level so that
one may use equalities as premises to constructions.

� (2.6∗12) The equality type Γ ⊢ eqA(a, b) type is interpreted as the equalizer of the interpreta-
tion of the terms Γ ⊢ a, b : A, displayed horizontally below:

JAK

JΓK JeqA(a, b)K = {x ∈ JΓK | JΓ ⊢ a : AK(x) = JΓ ⊢ b : AK(x)}

JΓ ⊢ a : AK JΓ ⊢ b : AK

Observe that when a and b are equal terms we have that JΓ ⊢ a : AK and JΓ ⊢ b : AK are equal

sections of
JAK
↓

JΓK
and so

JeqA(a, b)K
↓

JΓK
is just the identity family

JΓK
↓

JΓK
, which as we noted in (2.6∗8) is

the interpretation of the singleton type Γ ⊢ 1 type.

(2.6∗13) The construction outlined here extends to structures other than sets and functions;
what is needed in general is a locally Cartesian closed category or lccc. The interested reader may
refer to Jacobs [63, chp. 1] for an introduction to lccc’s and Seely [108] and Hofmann [58] for the
interpretation of type theory in lccc’s.

∗ ∗ ∗

(2.6∗14) Once we have established the type-theoretic structure of sets, we can use type theory
as the “internal language” of sets, i.e. a convenient way to reason about sets and functions. This
theory-model relationship is mutually beneficial: the model gives mathematical justification for
the theory, and conversely, the theory gives us a good way to reason about the model. In this
way, we can be sure that we can use type theory to prove something real: for instance, we can
unfold a type-theoretic proof of the correctness of Euclid’s algorithm as defined in (2.5∗1) into an
ordinary mathematical proof about Euclid’s algorithm on the “real” natural numbers.
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Variable sets

3.1. PRESHEAVES

(3.1∗1) The primary source of models of types we will consider come from categories of
presheaves. This section serves as an overview of some important properties of presheaves.

(3.1∗2) Given a small category C , a presheaf on C is a contravariant functor C op → Set. We
write Ĉ for the category of presheaves on C and natural transformations.

(3.1∗3) It is common to think about presheaves as variable sets. For instance, a presheaf F
on the lattice of open sets of a topological space X (considered as a posetal category) assigns
to every open set U a set F (U) that is compatible with the poset structure of open sets: for
every inclusion U ⊆ V , we have an induced restriction F (V )→ F (U) such that the restrictions
F (W )→ F (V )→ F (U) and F (W )→ F (U) induced by U ⊆ V ⊆W and U ⊆W are equal. For
example, we can define the following presheaf C:

C(U) = {f : U → R | f continuous}

Restrictions C(V )→ C(U) in this case are given by function restrictions.

(3.1∗4) An example that is central to this dissertation are the category of presheaves on the

interval poset I = [1] = {0 ⊑ 1}. A presheaf F on I is a family
F (1)
↓

F (0)
. We sometimes write Set→

for this presheaf category.

(3.1∗5) If the model of types in Set (as sketched in Section 2.6) is meant to capture “ordinary
mathematics” in type theory, then a model of types in a category of presheaves Ĉ can be thought
of as a mathematical universe that is variable in an abstract world structure given by the base
category C . One way to think about the situation is that a presheaf is a mathematical structure
to attach data to each “world” in C in a way that is compatible with the world structure, which is
encoded by the restriction action and its associated laws.

3.1.1. Representing cost structure in presheaves.

(3.1.1∗1) Recall from Section 0.3 that our goal is to integrate the cost structure of programs
with ordinary functional semantics so that we can both make sense of cost-sensitive properties

23
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(such as resource usage characteristics) and pure functional properties (such as input-output
specifications) in a single theory. The relevance of presheaves is made clear by observing that
we can represent these two viewpoints by means of the world structure I in which the point “0”
represents the “functional world” and the point “1” represents the cost-sensitive world, and the
relation 0 ⊑ 1 represents the fact that we have a way to redact or seal away cost information
(remember that the restriction goes in the other direction). Thus we can think of Î as a mathematical
setting in which to speak coherently about the cost structure of programs while retaining the
ability to reason about them qua functions when needed.

 (3.1.1∗2) Concretely, one should think about a presheaf
X(1)
↓

X(0)
as encoding a family of cost-

sensitive functions that projects the underlying pure function. For instance, given a monoid

C representing program cost, we have a family
list× C
↓
list

defined by the projection map π1. As

mentioned in (0.3∗5), the total space list × C represents the set of cost-sensitive programs of
type list that are sent to their functional component by the projection. Naturally, a cost-sensitive
function is a map of presheaves X → Y , i.e. a natural transformation.

� (3.1.1∗3) The category of presheaves over I integrates the purely functional semantics and
cost-sensitive semantics that are independently represented in terms of the base and total space of
families of the form in (3.1.1∗2). Moreover, this integration is coherent in the following sense:
cost structure cannot interfere with functional semantics. This immediately follows by unfolding
the definition of a cost-sensitive function f :

X(1)

X(0)

X

Y (1)

Y (0)

f1

Y

f0

Thinking of the families X and Y as defined by projections sending a cost-sensitive element to its
functional component, we see that given a fixed functional component x ∈ X(0), any cost-sensitive
inputs u, v in the fibre over x must be sent to cost-sensitive outputs whose functional component
is completely determined by x. In other words, f1(u) and f1(v) must have the same functional
component.

2 (3.1.1∗4) Besides cost structure, presheaves are used to give mathematical semantics to a
wide range of programming features and type theories. Applications include concurrency/higher-
dimensional automata [33], guarded recursion/guarded type theory [13, 16, 120], cubical type
theory [12, 61, 5], and normalization proofs [27, 118].
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3.1.2. The Yoneda lemma.

(3.1.2∗1) Another perspective on presheaves is that they provide an a rich internal language
that one can use to reason about external structures that otherwise do not support an “intrinsic”
logical language. Concretely, the process of taking presheaves on a small category C yields a
functor yC : C → Ĉ sending an object C to the representable presheaf yC : Ĉ , whose action on
objects is defined as follows.

yC : C op → Set
(yC)D = HomC (D,C)

Given f : D′ → D, the restriction action of the representable presheaf (yC)f : Hom(D,C)→
Hom(D′, C) is given by precomposition. On morphisms, y sends g : C → C ′ to the natural
transformation yC → yC ′ whose component at D is given by postcomposition. In other words we
have the following naturality square for every D′ → D,

Hom(D,C)

Hom(D′, C)

− ◦ f

Hom(D,C ′)

Hom(D′, C ′)

g ◦ −

− ◦ f

g ◦ −

The naturality square above follows because function composition is associative.

(3.1.2∗2) Presheaves in the image of y are called representable presheaves because an arbitrary
presheaf F can be reconstructed (up to natural isomorphism) in terms of maps out of representable
presheaves, in the sense that the following isomorphism holds:

Hom
Ĉ
(yC,F ) ∼= F (C)

naturally in both F and C. This means that for every natural transformation F → G we have a
naturality square:

Hom(yC,F )

Hom(yC,G)

F (C)

G(C) (3.1.2∗2∗1)

and a similar square for every morphism C → D. This property is known as the Yoneda lemma; it
is a somewhat “obvious” property about presheaf categories that has profound implications when
studying the semantics of type theories.

(3.1.2∗3) A simple corollary of the Yoneda lemma is that the functor y : C → Ĉ is fully
faithful; consequently we often refer to y as the Yoneda embedding. This fact enables a common
technique by which one studies a poorly structured category C (from a logical perspective) through
its yoneda embedding Ĉ , which supports a very expressive internal type theory. One can then
transport theorems about representable objects in the presheaf category back to the original
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category via the embedding. For example, this kind of reasoning has been used to establish
metatheorems about the syntax of type theory [118, 116].

(3.1.2∗4) The Yoneda embedding has also been used to construct models of synthetic domain
theory [62], which is a way of incorporating general recursion and partiality into type theory (recall
from our discussion in Section 2.5 that type theory only supports total functions by default). In
Chapter 7 we use (internal) presheaf categories to provide a cost-sensitive model of synthetic
domain theory.

x (3.1.2∗5) As a concrete application of the Yoneda lemma, we may prove a characterization
of monomorphisms in presheaf categories. Recall that a monomorphism is a left cancellable map,
i.e. a map m : F ↣ G such that for all f, g : X → F with mf = mg, we have f = g. We may
give a concrete description of a monomorphism m : F ↣ G in a presheaf category Ĉ in terms of
monomorphisms in Set, i.e. injective functions: a map of presheaves m : F → G is mono if and
only if mC : F (C)→ G(C) is injective for all C : C .

□ (3.1.2∗6) Suppose that m : F → G is mono in Ĉ . To show that mC : F (C) → G(C) is
injective, fix x, y ∈ F (C) with mC(x) = mC(y). We want to show that x = y. Writing x : yC → F

for the map of presheaves induced by an element x ∈ F (c), we have the following configuration of
maps in Ĉ :

yC F G

x

y

m

By (3.1.2∗2), we have that − : F (C) ∼= Hom(yC,F ) is a bijection, so it suffices to show that x = y.
Moreover, because m is mono, we just need to show that mx = my. Observing by assumption
that mC(x) = mC(y) induces equal maps mC(x) = mC(y) : yC → G, it suffices to show that
mx = mC(x) and my = mC(y), i.e. − commutes with m. But this is exactly the naturality square
Eq. (3.1.2∗2∗1). The reader is invited to check the other direction of the claim.

3.1.3. Types in presheaves.

(3.1.3∗1) One can also give an interpretation of types in terms of presheaves much like the
model of types in sets outlined in Section 2.6. The main intuition is that compound types are
defined in a pointwise fashion. In this section we show that presheaf categories are Cartesian closed;
proofs of local Cartesian closure can be found in Awodey [8, p. 236], and models of dependent
types in presheaves can be found in Jacobs [63, S 10.5.9] and Awodey and Rabe [10].

(3.1.3∗2) In the following, fix a small category C . As a simple example, we have that the unit
type/terminal object of Ĉ is the constant presheaf 1

Ĉ
: C op → Set determined (up to unique

isomorphism) by the terminal object 1Set = {∗} of the category of sets.

(3.1.3∗3) The Cartesian product of two presheaves F,G is defined componentwise in terms of
products in Set: (F ×G)(C) = F (C)×G(C). The fact that this defines a product follows because
F (C)×G(C) is a product in Set. In fact, Ĉ is closed under all small1 limits and colimits, which

1A categorical gadget is called small when it can be seen as an object of Set, i.e. a small category has a set of
objects and hom-sets. A small (co)limit is one in which the associated diagram is indexed by a small category.
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are computed in a similar pointwise fashion. For example, we have that the natural numbers type
N

Ĉ
in Ĉ is the constant presheaf determined by the actual natural numbers N in Set, since we

may compute that N
Ĉ
(C) = (⨿n∈N1Ĉ

)(C) = ⨿n∈N((1Ĉ
)(C)) = ⨿n∈N1Set = N.

(3.1.3∗4) As another application of the Yoneda lemma, we will give a formula for exponential
objects in presheaf categories. Recall that the exponential object in a category is determined as
the right adjoint in the product-hom adjunction (−×B) ⊣ −B , giving rise to the following natural
isomorphism:

Hom(A×B,C) ∼= Hom(A,CB) (3.1.3∗4∗1)

Using Eq. (3.1.3∗4∗1), we may derive what the exponential object in Ĉ must be, if it exists:

GF (C) ∼= Hom(yC,GF ) Yoneda
∼= Hom(yC × F,G) ((−×B) ⊣ −B)

In the case that C is a linear order with relations of the form Cn ⊑ Cn+1, we may visualize
presheaves F,G as sets varying over a horizontal axis and identify the component of the exponential
GF at C as the following natural family of vertical maps for every Cn ⊑ C:

F (Cn+1)

G(Cn+1)

F (Cn)

G(Cn)

. . .

. . .

. . .

. . .

(3.1.3∗4∗2)

Thus one can think of GF (C) as the set of C-“bounded” natural transformations F → G. The
restriction action of GF is given by postcomposition. In this example, given D ⊑ C, the family
displayed in Eq. (3.1.3∗4∗2) is restricted to consist of the vertical maps F (Di) → G(Di) for
Di ⊑ D ⊑ C.

(3.1.3∗5) A useful fact we will often rely on is that the Yoneda embedding preserves any limit
that exists in the base category. In particular, this implies that C → Ĉ is a Cartesian closed
functor, i.e. exponential objects are preserved:

y(Y X)(C) = HomC (C, Y X)
∼= HomC (C ×X,Y ) (adjointness)
∼= Hom

Ĉ
(y(C ×X), yY ) (y full and faithful)

∼= Hom
Ĉ
(yC × yX, yY ) (y preserves limits)

∼= Hom
Ĉ
(yC, yY yX) (adjointness)

= yY yX (definition)

Naturality follows because all isomorphisms in the above are natural.

3.1.4. Density.

(3.1.4∗1) The fact that the Yoneda embedding C → Ĉ is full and faithful can also be
understood geometrically. In particular we have that every presheaf X : Ĉ is given by a canonical
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colimit of representable presheaves, a property more generally referred to as density and equivalent
to the full and faithfulness of Yoneda. This alternative characterization will be a useful technical
device when constructing models of type theories based on the Yoneda embedding (for instance
we employ this fact when constructing models of synthetic domain theory in Chapter 7; see in
particular (7.4∗8)).

; (3.1.4∗2) Given functors F : D → C and G : E → C , define the comma category F ↓ G as
follows. The objects of F ↓ G consist of triples (D : D , E : E , F (D) α−→ G(E)) and the arrows are
morphisms f : D → D′ and g : E → E′ such that the following diagram in C commutes:

F (D)

F (D′)

Ff

G(E)

G(E′)

α

Gg

α′

When either F or G is a constant functor we use the determining object to denote the corresponding
functor. For instance, we write F ↓ C when G : C → C is the constant functor determined by
C : C . There are two evident projection functors πD : F ↓ G→ D and πE : F ↓ G→ E .

(3.1.4∗3) Fix a presheaf F : C op → Set. We seek to reconstruct F as a canonical colimit of
representables. More precisely, let Elts(F ) by the category of elements of F , defined to be the
comma category yC ↓ F . Explicitly, the objects of Elts(F ) consists of pairs (C, p) with C : C and
p ∈ F (C), and a morphism (C, p)→ (C ′, p′) is a map f : C → C ′ in C such that the restriction
of p′ along f is p. We have a small diagram J → C given by the forgetful functor Elts(F )→ C .
Then the density of Yoneda is the statement that F is naturally isomorphic to the colimit of the
diagram J → C ↪→ Ĉ .

; (3.1.4∗4) More generally, we may consider the the situation in which a functor i : D → C

(usually a subcategory inclusion) is dense in the following sense: every C ∈ C is isomorphic to the
colimit Colim(i ↓ C πD−−→ D

i−→ C ). Observe that the density of Yoneda is a special case in which i
is y : C → Ĉ .

(3.1.4∗5) There is also a corresponding generalization of the Yoneda embedding for dense
functors: a functor D → C is dense if and only if the nerve/restricted Yoneda embedding
N : C → [Dop,Set] is full and faithful.

3.2. INTERNAL LANGUAGE OF PRESHEAF CATEGORIES

(3.2∗1) Every presheaf category supports a rich internal language that one can use to develop
mathematics that “varies” over the base category. The relevant variation for this dissertation
is the variation between the cost-sensitive and functional world as discussed in (3.1.1∗1). In
this section we outline the logical aspect of this internal language by means of the Kripke-Joyal
semantics of presheaf categories [78].
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3.2.1. Propositions in presheaf categories.

(3.2.1∗1) In ordinary mathematics (i.e. mathematics in the internal language of Set), a
predicate over a set X may be identified as either a subset S ⊆ X or a characteristic function
X → 2, where 2 is any two element set; conventionally we write 2 = {⊥,⊤}. We may refer to the
function ⊤ : 1 → 2 determined by the element ⊤ as the subset classifier of Set, because every
subset S ⊆ X fits into a pullback diagram for a unique characteristic map X → 2 as follows.

S

X

1

2

⊤

(3.2.1∗1∗1)

Namely, X → 2 sends x ∈ X to ⊤ if and only if x ∈ S.

(3.2.1∗2) In an arbitrary category subsets may be replaced by subobjects, and a category with
finite limits is said to have a subobject classifiers when there is an object Ω and a map ⊤ : 1→ Ω
such that every monomorphism S ↣ X fits into a pullback diagram as in Eq. (3.1.3∗4∗2).

(3.2.1∗3) To gain some intuition about mathematics in the language of a presheaf category Ĉ ,
it is instructive to look at how the subobject classifier is defined in Ĉ .

; (3.2.1∗4) A sieve on an object C : C is a collection of arrows S with codomain C closed
under precomposition. Equivalently, a sieve on C is a monomorphism S ↣ yC in Ĉ . We write
Sieve(C) for the set of sieves on C. The total sieve on C is defined as yC itself, which we write as
tC .

; (3.2.1∗5) Define the presheaf Ω by sending C to Sieve(C). Given f : C → D, the restriction
action Sieve(D)→ Sieve(C) is given by precomposition: given a sieve T on D, define a sieve on S
on C by g ∈ S if and only if fg ∈ T . The subobject classifier of Ĉ is the map ⊤ : 1→ Ω whose
components ⊤C ∈ Ω(C) are defined as the corresponding total sieves.

3.2.1.1. Propositions in the interval presheaf category.

x (3.2.1.1∗1) Unfolding (3.2.1∗5) in the presheaf category Î = ̂{0 ⊑ 1} = Set→, we have a
family Ω as displayed below:

{∅, I, t}

{∅, t} (3.2.1.1∗1∗1)

In the above, ∅ and t are the empty sieve and total sieves, respectively, and I is the sieve on 1
consisting of just the arrow 0 ⊑ 1. the action of the presheaf Ω sends the empty and total sieves
to themselves and I to the total sieve.

 (3.2.1.1∗2) Thinking of a sieve on C as a truth value at the world C, the family Eq. (3.2.1.1∗1∗1)
gives a visual representation of the variable logical structure of Î. On the one hand, the world at
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C = 0 corresponding to the base {∅, t} is the world of ordinary propositions in which there are
only two truth values. On the other hand, the world at C = 1 corresponding to the total space
{∅, I, t} contains an “intermediate” or indeterminate truth value that becomes true in the world at
C = 0. As I will show in Chapter 4, this configuration of logical worlds is precisely the structure
needed to capture the variation between the cost-sensitive (= 1) and functional (= 0) worlds in
which the intermediate truth value is used to classify cost-sensitive data that becomes stripped
away in the functional world.

(3.2.1.1∗3) Consequently, there are three global elements 1→ Ω in Î: the constantly true
proposition ⊤, the constantly false proposition ⊥, and the variable/intermediate proposition u
determined by the intermediate truth value I.

(3.2.1.1∗4) Likewise, a subobject S ↣ X is determined by a square as follows.

X(1)

X(0)

{∅, I, t}

{∅, t}

Recalling from (3.1.1∗2) the example of encoding cost structure as a presheaf X over I, the
existence of an intermediate truth value allows us to define cost-sensitive properties that restricts
to ordinary functional predicates. For instance, we may define the proposition of cost-sensitive
equality x =X y that restricts to ordinary equality on the functional components of x and y:

X(1)×X(1)

X(0)×X(0)

{∅, I, t}

{∅, t}

The bottom map is the characteristic map of ordinary equality, and the top map is defined as
follows.

(x, y) 7→ { t if x = y

I if (x ̸= y) ∧ ∃[z] x, y ∈ (X ×X)z,z
∅ o.w.

The idea is that if x and y are not equal but are both in the fibre (X × X)z,z of a single
functional component z then the proposition x = y is in an “intermediate” state and only becomes
true in the functional world.

3.2.2. Kripke-Joyal semantics.

(3.2.2∗1) So far we have the logical structure of presheaf categories from an external perspective
typical of ordinary mathematical developments. In contrast, one may also work in the internal
mathematics of presheaf categories, which is in general higher-order intuitionistic logic that may
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be extended based on the structure of the base category. The connection between the internal
mathematics of presheaf categories and external mathematics may be explicated by means of
the associated Kripke-Joyal semantics [78]. While traditionally presented in the language of
higher-order logic, one can also work relative to an analogous internal type theory whose connection
to external mathematics is explained by a proof-relevant Kripke-Joyal semantics [9].

(3.2.2∗2) Internal mathematics is type-theoretic in the sense that context management is
kept implicit. However, because external mathematics keeps track of contexts explicitly, we shall
mediate between internal and external mathematics via the notion of generalized elements: a
generalized element of type A is just a map Γ→ A (cf . a term in context Γ ⊢ a : A). One may
systematically construct internal propositions and predicates over generalized elements by using
the structure of the subobject classifier Ω, resulting in the so-called Mitchell-Bénabou language.
We elide the details of the definition of this language — it consists of the usual propositional
connectives ∨,∧,→,¬, construed as binary functions Ω× Ω→ Ω, and existential and universal
quantification; more details can be found in Mac Lane and Moerdijk [78, Section VI.5].

. (3.2.2∗3) It is important to distinguish between internal and external mathematics. For
instance, by (3.2.1.1∗3), we observe that the statement “there are three propositions.” is externally
valid, the corresponding internal proposition is not, since Ω from an internal perspective simply
classifies subsets, and by extension, subsingletons — there is no additional structure aside from
those used to construct logical formulas.

(3.2.2∗4) The connection between the internal and external is elucidated via the Kripke-Joyal
semantics of presheaf categories [78, p. VI.7], which is a series of theorems that unfolds a statement
in the internal language of a presheaf category into a statement in external mathematics. By
definition, we say that a predicate φ : A → Ω on a generalized element Γ → A holds when the
latter factors through the subobject {φ}↣ A determined by φ, as depicted below:

Γ

{φ}

A

By (3.1.4∗3) we have that every Γ is canonically a colimit of representables, so in fact it suffices
to consider the cases Γ = yC. Since the dotted map is necessarily unique, we write C ⊩ φ for the
relation that holds when such a map exists; we sometimes also call C ⊩ φ the forcing relation and
say that C forces φ.

(3.2.2∗5) The Kripke-Joyal semantics systematically explains the meaning of C ⊩ φ by
structural recursion on formulas φ. Here we just give the rules for the case where the base category
is a poset, which corresponds to the Kripke semantics of intuitionistic logic [69]. We may unravel
the meaning of a predicate φ(α) over a generalized element α : yC → A by recursion on φ:

C ⊩ ⊤ always.
C ⊩ ⊥ never.
C ⊩ α iff α : yC → Ω factors through ⊤ : 1→ Ω.



chapter 3. VARIABLE SETS 32

C ⊩ α =A β iff α = β : yC → A.
C ⊩ φ(α) ∨ ψ(α) iff C ⊩ φ(α) or C ⊩ ψ(α).
C ⊩ φ(α) ∧ ψ(α) iff C ⊩ φ(α) and C ⊩ ψ(α).
C ⊩ φ(α)→ ψ(α) iff for all D ⊑ C, D ⊩ φ(αD) implies D ⊩ ψ(αD).
C ⊩ ∃[b : B] φ(α, b) iff there exists β : yC → B such that C ⊩ φ(α, β).
C ⊩ ∀[b : B] φ(α, b) iff for all D ⊑ C and β : yD → B, D ⊩ φ(αD, β).

In the above, given C ⊑ D and α : yC → A, we write αD for the generalized element
yD → yC → A.

(3.2.2∗6) The forcing semantics C ⊩ φ is monotone in the sense that if C ⊩ φ(α) and D ⊑ C,
then D ⊩ φ(αD). From an epistemic perspective, this means that knowledge is monotone with
respect to passage to future worlds.

x (3.2.2∗7) As a simple application of the Kripke-Joyal semantics, we show that the Law of
excluded middle (LEM) is not intuitionistically valid, i.e. not a theorem in the internal language of
presheaf categories. To do so, we exhibit a countermodel for the statement ∀[φ : Ω] (φ ∨ (φ→ ⊥))
given by the presheaf category Î.

□ (3.2.2∗8) Suppose that LEM holds universally, i.e. we have that C ⊩ ∀[φ : Ω] φ ∨ (φ→ ⊥) for
all C ∈ I. Unfolding the forcing semantics, this means that for all D ⊑ C and α ∈ Ω(D), we have
that D ⊩ α or D ⊩ α→ ⊥. To derive a contradiction, it suffices to show that neither 1 ⊩ I nor
1 ⊩ I → ⊥, where I ∈ Ω(1) is the intermediate truth value (3.2.1.1∗1).

For the former, by the forcing semantics, we need to show that I : y1→ Ω factors as follows.

y1

1

ΩI

⊤

In other words, we need to show that the restriction of I along C ⊑ 1 for all C is the total sieve
tC on C. But this is not true since I itself is not a total sieve.

For the latter, 1 ⊩ I → ⊥ unfolds to the statement that for no C ⊑ 1 is it the case that C ⊩ IC.
But this is a contradiction because we have that 0 ⊑ 1 in I and 0 ⊩ I0: since the restriction of I
along 0 ⊑ 1 is the total sieve on 0, we have that I0 : y0→ Ω factors through ⊤ : 1→ Ω, which, by
definition, means that 0 ⊩ I0 holds.

 (3.2.2∗9) This example can also be understood in terms of the semantics of intuitionistic
logic in topological spaces in which propositions are valued in the frame2 of open sets of a space
O(X), and a proposition is “true” when its interpretation is the entire space. In addition to being
a frame, the open sets of a space also form a Heyting Algebra, i.e. a Cartesian closed poset. The
exponential of opens U → V is defined as {x ∈ X | x ∈ U → x ∈ V }◦, where S◦ is the interior of
a subset S ⊆ X.

The relevant space in this case is given by the specialization/upset/Alexandroff topology on the
poset I = {0 ⊑ 1} in which the opens are given by the upwards-closed subsets of I. In other words,

2A frame is a lattice with all small joins that satisfies distributivity of meets over joins.
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we consider a model in which truth values are open sets of the Sierpińksi space Σ = {∅, {1}, I}.
The reason LEM fails in this model can be traced to the asymmetric nature of the topology on
I: propositions cannot be valued in the subset {0}, from which a simple calculation shows that
I ∨ (I → ⊥) holds only on {1} and not the total space I.

(3.2.2∗10) In Section 3.4 the connection between the presheaf model and the topological
model in the preceding discussions is evinced by the equivalence Î ∼= Sh(Σ) where Sh(X) is the
category of sheaves on a space X.

3.2.3. Presheaves of algebras.

(3.2.3∗1) As long as the intuitionistic strictures of the internal language are observed, one
can carry out a great deal of mathematics internal to presheaf categories. We already explained
in (3.1.3∗3) that there is a natural numbers object (nno) N in every presheaf category, and one
may work with N and develop properties of natural numbers in the internal language just as in
external mathematics.

(3.2.3∗2) The nno of presheaf categories is given by the constant presheaf on the nno N in
Set. One may also ask what are the external meanings of internal mathematical structures that
are not necessarily defined by a universal construction. It turns out there is a pleasing explanation
for a large class of structures, including all algebraic theories. Given a presheaf category Ĉ and a
theory T, a T-algebra internal to Ĉ or an internal T-object is a T-algebra in the internal language
of T. For instance, an internal preorder-object is a presheaf P equipped with a monomorphism
⊑ : P × P → Ω such that the following statements hold in the internal language of Ĉ :

1. ∀[x : P ] x ⊑ x.

2. ∀[x, y, z : P ] x ⊑ y → y ⊑ z → x ⊑ z.

In conjunction with (3.1.2∗5), one can use the Kripke-Joyal forcing semantics to compute that
externally one obtains a preordered set P (C) for every C : C . Moreover, because ⊑ : P × P → Ω
is a natural transformation, we have the following diagram for every map f : C → D in C :

P 2(D) = (P (D))2

P 2(C) = (P (C))2

P 2(f)

P (D)

P (C)

⊑D

P (f)

⊑C

Thus every restriction map P (D)→ P (C) is also a morphism of preorders (i.e. a monotone map).

(3.2.3∗3) The general correspondence is that given some algebraic theory T, a T-object
internal to a presheaf category Ĉ is just a presheaf of T-algebras in Set, i.e. we have the following
equivalence:

Alg(T, Ĉ ) ≃ [C op,Alg(T,Set)]

Where we write Alg(T,C ) for the category of T-algebras in C and homomorphisms.
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(3.2.3∗4) Actually the above holds for all geometric theories [64, p. D1.2.14], but this general-
ization is not so interesting for our purposes since the objects we will be dealing with in Chapter 7
are internal domains, and these structures are not algebras for geometric theories.

3.2.4. Monads and algebras.

(3.2.4∗1) In Chapters 4 and 7 we will use algebras (not necessarily of algebraic theories)
formulated in the internal language of a (pre)sheaf category as a semantic basis for defining and
reasoning about programs. In this section we outline a generalization from algebraic theories and
their algebras to monads and monad algebras (also known as Eilenberg-Moore algebras). In this
section we work inside an ambient type theory/internal language of a topos.

; (3.2.4∗2) Given a monad T = (T, η, µ), a T-algebra is a set A equipped with a map α : TA→ A

satisfying the following coherence conditions.

A TA

A

ηA

α

T2A

TA

µA

TA

X

Tα

α

α

 (3.2.4∗3) Thinking of TA as an effectful computation of A (for instance a cost effect, as we
will see in Section 4.1.3) a T-algebra is a type A that comes with an operation TA → A that
“absorbs”/implements the effect. The coherence laws then state that the provided operation
commutes with the existing monad structure in an expected way.

; (3.2.4∗4) A T-algebra morphism X → Y is a function f : |X| → |Y | of the underlying sets
satisfying the following:

T|X|

|X|

T|Y |

|Y |

Tf

f

; (3.2.4∗5) The collection of T-algebras and T-algebra morphisms organize into a category
Alg(T) often referred to as the Eilenberg-Moore category of T.

; (3.2.4∗6) The free T-algebra on a set A is defined to be freeT(A) = (TA,µA). This construction
extends to the free-forgetful adjunction T-Alg

←−
⊥
−→

Set between the category of T-algebras and the
category of plain sets in which the left adjoint sends A to the free T-algebra on A and the right
adjoint sends a T-algebra X to the carrier set |X|.

(3.2.4∗7) The hom-set bijection HomAlg(T)(freeT(A), X) ∼= HomSet(A, |X|) may be charac-
terized as follows. In the forward direction, an algebra morphism h : freeT(A) → X is sent to
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the composite A ηA−−→ TA f−→ |X|. In the backward direction, a function f : A → |X| is sent to
TA Tf−−→ T |X| αX−−→ |X|.

3.3. THE PHASE DISTINCTION

(3.3∗1) The discussion in Section 3.2.1.1 about propositions in the presheaf category over I
inspires an internalization of the intermediate proposition u : Ω that will serve as the linchpin
for mediating the interaction between the cost-sensitive and functional world as discussed in
Section 3.1.1. Ultimately the idea is to organize cost-sensitive data by means of the open and
closed modalities [102] associated to the proposition u, but we will define these modalities relative
to an arbitrary proposition in this section.

ñ (3.3∗2) We will use the terms “modality” and “modal” to describe a type-theoretic formulation
of cost-sensitive and functional verification (to come in Chapter 4), but a modality in this
dissertation interacts with contexts of type theory in a completely standard way (since they are
defined in terms of existing constructions, namely function types and (a kind of) quotient types),
and thus should be distinguished from “proper” modal type theories in which there exist constructs
that are not stable under all substitutions; Gratzer [42] is a recent but excellent reference on such
modalities in type theory.

; (3.3∗3) The open modality associated to a proposition φ is the function space monad/read
monad φ→ − on φ. We also call the open modality the restriction modality.

; (3.3∗4) The closed modality associated to a proposition φ is defined as the following quotient
inductive type (QIT) [37]:

inductive u ∨A : Set where
ηφ∨− : A→ φ ∨A
∗A : φ→ φ ∨A
_ : (a : A)→ (u : φ)→ ηφ∨−(a) = ∗(u)

This definition can be understood as an inductive type equipped with two constructors ηφ∨−
and ∗A that are equated for all u : φ and a : A: ηφ∨−(a) = ∗A(u). It is also equivalently defined
as the following pushout:

A× φ

A

π1

φ

φ ∨A

π2

∗A

ηφ∨−

When it is clear from the context we will often omit the type subscript to the constructor ∗A. We
also call the closed modality the sealing modality.

(3.3∗5) Both the restriction and sealing modalities are monads; the monadic structure associ-
ated to the restriction modality is just the usual reader monad, while the monadic structure of the
sealing modality is defined as follows (observe that ηφ∨− used in the position of arguments and on
the right hand side refer to the constructor to the QIT of the sealing modality):
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ηφ∨− : A→ φ ∨A
ηφ∨− = ηφ∨−

µφ∨− : φ ∨ (φ ∨A)→ φ ∨A
µφ∨−(∗φ∨A(p)) = ∗A(p)
µφ∨−(ηφ∨−(∗A(p))) = ∗A(p)
µφ∨−(ηφ∨−(ηφ∨−(a))) = ηφ∨−(a)

□ (3.3∗6) Both the restriction and sealing modality interact well with many type constructors.
A monad M = (M, ηM, µM) is idempotent when the unit map ηM : A → MA is an isomorphism,
lex when M(A × B) ∼= MA × MB and M(a =A b) ∼= (ηM(a) =MA ηM(b)), and commutes with
exponentials when M(A→ B) ∼= (MA→ MB). We have that the restriction and sealing modality
satisfy the following properties.

1. Both the restriction and sealing modality are lex idempotent monads.

2. The restriction modality moreover commutes with exponentials.

; (3.3∗7) Given an idempotent modality M , we say a type A is M-modal when M(A) ∼= A

and M -connected when M(A) ∼= 1. Observe that M(A) is always M -modal.

(3.3∗8) By the characterization of exponentials in presheaf categories Eq. (3.1.3∗4∗1) we

see that in Î the restriction modality sends a family
X(1)
↓

X(0)
to the family

X(0)
↓

X(0)
determined by the

identity function. A similar calculation shows that the closed modality sends X to the family
X(1)
↓
1

determined by the unique map into 1. Thus we have the following description of M -modal

and M -connected types in Î:

modal connected
restriction X(1) ∼= X(0) X(0) ∼= 1
sealing X(0) ∼= 1 X(1) ∼= 1

In particular, we observe that a sealing-modal (which we may as well shorten to sealed) type is
always restriction-connected.

� (3.3∗9) Combining Section 3.1.1 and (3.3∗8), we observe that from an internal perspective, a
cost-sensitive computation of type A corresponds exactly to the product type C×A for a sealed
cost monoid C, i.e. a type C such that C ∼= (φ ∨ C).

(3.3∗10) The benefit of this modal decomposition is that one may now describe a cost-sensitive
function (in the language of presheaves over I) in terms of a single function instead of a square in
Î.

(3.3∗11) Another crucial benefit is the ability to strip away cost structure when we need to
reason about programs in a purely functional capacity, i.e. correctness specifications. This is
achieved by means of the restriction modality. By (3.3∗8), we have that any sealed type is trivial
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in the presence of the proposition u, which in particular includes the type of costs C. Thinking
about cost structure as encoded in the total space of a family X, the restriction modality can be
understood literally as the restriction action of X as a presheaf: one is restricted to the world at
the base in which cost structure is trivialized.

(3.3∗12) We may call any context in which one has assumed the proposition u as the functional
phase, in contradistinction to the cost-sensitive phase. By definition, we have that cost structure
is trivial in the functional phase.

(3.3∗13) The observation about noninterference of cost and functional semantics in (3.1.1∗3)
can also be phrased in terms of the restriction and sealing modalities: every function A→ B from
a sealed type to a restriction-modal type is constant. In other words, one cannot branch on cost
information to produce distinct functional semantics.

□ (3.3∗14) The proof of (3.3∗13) follows from purely formal properties of the open and closed
modalities associated to a proposition. By definition of modal types, every f : A→ B determines
a function (φ ∨ A) → (φ → B); by a tranpose of arguments, this is equivalent to a function
φ→ (φ ∨A)→ B, which is determined by a single point b : B since φ ∨A is sealed.

(3.3∗15) In Chapter 4 we show how these observations give rise to a modal3 type theory for
doing cost-sensitive programming and verification.

3.4. SHEAVES

(3.4∗1) The Yoneda embedding presents presheaf categories as the free cocompletion of their
base categories, in the sense that every functor C → E into a cocomplete category E extends to
an essentially unique colimit-preserving functor Ĉ → E , as shown below:

C

E

Ĉ
y (3.4∗1∗1)

(3.4∗2) Similar to the situation of the free monoid or a free group on a set, the free cocompletion
of a category can be thought of as adjoining to the base category C all formal colimits. Consequently,
this means that existing colimits of C need not be preserved by the embedding yC : C → Ĉ .
For instance, the initial object 0 of interval category I is sent to yI(0), which is the intermediate
proposition u in Ĉ and not the initial object 0

Ĉ
(which is defined as the constant presheaf valued

in 0Set).

(3.4∗3) The failure to preserve colimits will pose an obstacle to us in Chapter 7, where we will
use the Yoneda embedding to construct models of synthetic domain theory, which provides a way
to integrate general recursion in dependent type theory. The short of it is that we would like the

3As discussed in (3.3∗2), the type theories we work with in this dissertation are all structural, i.e. the rules
governing the modalities do not restrict or modify the context in any way.
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Yoneda embedding to preserve finite coproducts (so in particular the initial object), and the way
to accomplish this is by means of sheaves.

(3.4∗4) We will mostly understand sheaves as a way to control the behavior of colimits under
the Yoneda embedding. For an introduction to the (truly vast) theory and applications of sheaves
(especially pertaining to logic and type theory) we refer the reader to the standard reference [78].

3.4.1. Sheaves on spaces.

(3.4.1∗1) In this section we fix a category C with finite limits.

 (3.4.1∗2) A sheaf on C is a just presheaf on C satisfying some (seemingly) bizarre conditions,
which are organized into a structure called a site consisting of the base category C and a coverage
K (though in prose we will often just refer to the base category as the site when the coverage is
evident). The category of sheaves on a site (C ,K) is then a full subcategory of the category of
presheaves on C .

How do sheaves (more precisely, the coverage) control the behavior of colimits? Later in this
section I will outline the technical details of how this is achieved, but at this point it may help to
have some rough pictures in mind. To be specific, we are interested in preserving colimits that
are stable under pullbacks in the sense that when {Ci → C}i is a colimit diagram then we may
pull back along any f : D → C to obtain another colimit diagram {f∗Ci → D}i.4 The role of the
coverage is to isolate a class of pullback-stable diagrams that are designated to be sent to colimits
in the resulting sheaf category, which is ensured by the sheaf condition.

For simplicity, suppose that the base category C has a class of well-behaved colimits J in the
sense just described. Roughly, a coverage K is an assignment of C to a set of covers of C (a
set of morphisms {Ci → C}i with codomain C). The preservation of colimits {Ci → C}i ∈ J is
specified by the coverage K in which K(C) includes {Ci → C}i when C is a colimit in J (but is
otherwise free to include/exclude other covers, subject to pullback stability). The sheaf condition
relative to K then ensures that every sheaf “thinks” the image of a specified colimit {Ci → C}i
under the Yoneda embedding is a colimit diagram; by think I mean that {yCi → yC}i has the
universal mapping property for all sheaves. Thus a coverage is essentially a declaration of the class
of colimits to be preserved, and the sheaf condition is just the property needed to execute this
declaration.

ñ (3.4.1∗3) Note that in general a coverage may be used to isolate certain pullback-stable families
in the base category that are not necessarily colimit diagrams. Thus one can say that a coverage
sends diagrams that look like they should be colimits to actual colimits.

; (3.4.1∗4) A sink on an object C : C is a collection of arrows into C. Given a sink C = {Ci →
C}i and f : D → C, we write f∗C for the sink {Ci ×C D → D}i defined by pulling back each
Ci → C along f .

; (3.4.1∗5) A (Cartesian) coverage is an assignment K of objects C to collections of sinks on C
called covers that is stable under pullback, in the sense that given C ∈ K(C) and f : D → C we
have f∗C ∈ K(D).

4The type-theoretic significance of this requirement is that we want to consider colimits that are well-behaved
with respect to substitutions.
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(3.4.1∗6) Observe that a coverage defines a contravariant functor C op → Set.

; (3.4.1∗7) Given a presheaf X : C op → Set, a matching family for a cover C = {Ci → C}i
is an assignment xi ∈ X(Ci) of elements to each Ci → C such that for every pair of generalized
elements f : Γ→ Ci and g : Γ→ Cj configured as below

Γ

Cj

g

Ci

C

f

we have that the restriction of xi along f is equal to the restriction of xj along g.

; (3.4.1∗8) A sheaf with respect to a coverage K is a presheaf X : C op → Set such that every
for matching family {xi}i for a cover C extends to a unique element x ∈ X(C), i.e. we have that
x restricts to xi along Ci → C.

; (3.4.1∗9) A site (C ,K) is a small category equippped with a coverage K. We write Sh(C,K)
for the full subcategory of Ĉ consisting of K-sheaves.

; (3.4.1∗10) A sheaf topos is a category equivalent to a category of sheaves on a site.

(3.4.1∗11) Recall from (3.2.1∗4) that a sieve on C is a subobject of the representable presheaf
yC, i.e. a sink on C closed under precomposition. Every sink generates a sieve by precomposition;
we write (C) for the sieve generated by a sink C.

(3.4.1∗12) Observe that every matching family for a cover C on a presheaf X extends to a
natural transformation (C)→ X. Since an element in X(C) is in one-to-one correspondence with
natural transformations yC → X, we have that a presheaf X is a sheaf just when for all covers C,
a map (C)→ X extends uniquely along (C)→ yC:

(C)

X

yC

; (3.4.1∗13) A coverage is subcanonical when every representable presheaf is a sheaf.

x (3.4.1∗14) A presheaf is a sheaf with respect to the trivial coverage, in which a sink C covers
C if and only if (C) = yC, i.e. if and only if C contains the identity 1 : C → C.

x (3.4.1∗15) The frame of opens of a topological space can be equipped with the open cover
coverage whose covers are covers in the topological sense, i.e. {Ui → U}i is a cover when Ui

are open subspaces of U and
∨

i Ui = U . We write Sh(X) for the category of sheaves on O(X)
equipped with the open cover coverage.

x (3.4.1∗16) Consider the category of sheaves Sh(Σ) on the Sierpiński space Σ, defined as the
space of up-sets on the interval I. As claimed in (3.2.2∗10), we have that Sh(Σ) ∼= Î.
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□ (3.4.1∗17) Because the empty cover ∅ is an open cover of the open ∅, we have that a sheaf X
in Sh(Σ) satisfies the following unique extension property:

∅

X

y∅

α

(3.4.1∗17∗1)

Since ∅ → ∅ is the only map into the empty set, we have that α : y∅ → X is determined by a
single point x ∈ X(∅), which must be unique by Eq. (3.4.1∗17∗1). This means that X(∅) ∼= 1.
Thus the data of a sheaf on Σ is completely determined by the poset {{1} ⊑ Σ} ∼= I. In other
words, a sheaf on Σ is equivalent to a presheaf on I.

3.4.2. Sheaves as conservative cocompletions.

(3.4.2∗1) In light of (3.4∗2), sheaves become relevant as a way to specify conservative
cocompletions.

; (3.4.2∗2) A diagram scheme is a small category I serving as the indexing category of a
diagram.

; (3.4.2∗3) Given a set of diagram schemes Φ and categories C , D with all Φ-colimits, a functor
C → D is Φ-cocontinuous when it preserves all Φ-colimits.

; (3.4.2∗4) Given a set of diagram schemes Φ and a category C , an Φ-conservative cocompletion
is a Φ-cocontinuous functor C → C̃ into a cocomplete category C̃ satisfying the following unique
extension property for every Φ-cocontinuous C → E :

C

E

C̃

□ (3.4.2∗5) For every set of diagram schemes Φ, the Yoneda embedding C → Ĉ restricts to a
Φ-conservative cocompletion C → C̃ [67].

(3.4.2∗6) To see the connection to sheaves, let us derive the necessary consequences of
y : C → Ĉ restricting to a Φ-conservative cocompletion. Let D : I → C be a Φ-diagram, and write
Ċ for a cocone whose vertex is C. We must have that any colimiting cocone Ċ ∈ Cocone(D) is
sent to a colimiting cocone ˙yC ∈ Cone(yD). By the universal property of colimits, this means that
for every cocone X ∈ Cocone(yD), there is a unique natural transformation yC → X. Viewing a
cocone with vertex C as a sink on C, this is equivalent to the following unique extension property
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for every presheaf X:
(Ċ)

X

yC

By (3.4.1∗12), this is just saying that X is sheaf with respect to the coverage in which every
colimiting cocone is a cover.

(3.4.2∗7) More explicitly, we may observe that a cocone X ∈ Cocone(yD) corresponds to a
family {yDi → X(i)}i∈I such that for all i→ j ∈ I, we have that the following diagram commutes:

yDi

X

yDj

By the Yoneda lemma, this is equivalent to a family {xi ∈ X(Di)}i∈I such that xi is the restriction
of xj for every i → j, which is just the limit of the diagram XDop : Iop → Set. Moreover, we
observed in (3.4.2∗6) that cocones X ∈ Cocone(yD) are in bijective correspondence with elements
of X(C), where C is the colimiting cocone of D. In other words, we have that a presheaf in the
Φ-conservative cocompletion C̃ must send Φ-colimits in C to Φop-limits in Set.

(3.4.2∗8) By (3.4.2∗5), every coverage arising from a conservative cocompletion is subcanon-
ical.

. (3.4.2∗9) In general conservative cocompletions need not give rise to a sheaf topos; for instance
there is no way to obtain a coverage when the colimit in the base category is not pullback stable
(as is the case for the joins of a poset, which are not even disjoint!) On the other hand, not every
category of sheaves on a site necessarily comes from a conservative cocompletion either, since by
(3.4.2∗8) we know that the latter (when it comes from a coverage) must be subcanonical.

x (3.4.2∗10) By (3.4.1∗17), we have that a sheaf X on the Sierpiński space sends the empty
open to the one-point set, so we may view the embedding y : O(Σ)→ Sh(Σ) as the initial-object-
conservative cocompletion of O(Σ).

(3.4.2∗11) Most interesting cases of conservative cocompletion come not from “petit” toposes
coming from a single space, but from “gros” toposes whose sites are thought of as categories of
spaces. For instance, in Chapter 7 we consider a site of domains equipped with a “gros” version of
the open cover topology called the extensive topology.

; (3.4.2∗12) A category with finite coproducts is extensive when the following the canonical
functor C /A× C /B → C /(A+B) sending C → A,D → B to C +D → A+B is an equivalence.

 (3.4.2∗13) Intuitive, extensivity says that sums are well-behaved. For instance, every extensive
category with finite products, products distribute over sums.
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(3.4.2∗14) Finite coproducts are extensive just when coproduct injections are stable under
pullbacks. This means that given a pullback situation as follows.

Y

X

A

A+B

Z B

we have that Y → X ← Z is a coproduct diagram.

; (3.4.2∗15) Observe that by (3.4.2∗14), every small extensive category C is equipped with a
coverage defined by all coproduct injections. We call this the extensive coverage.

(3.4.2∗16) By (3.4.2∗5) and (3.4.2∗6), we have that the restricted Yoneda embedding
C → Sh(C ) on the extensive site on C preserves finite coproducts.

3.5. LOCALIZATIONS AND REFLECTIVE SUBUNIVERSES

(3.5∗1) Much of the technical development in Chapter 7 about synthetic domain theory is
best understood in terms of (internal) localizations, which in turn generate reflective subuniverses
of (pre)domains that smooth integrates partiality into dependent type theory. In this section we
define and build some intuitions about these notions.

; (3.5∗2) An object X is orthogonal to a morphism f : A → B when the following unique
extension property holds:

A

X

B
f

In other words, we have that the precomposition map Xf : Hom(B,X) → Hom(A,X) is an
isomorphism.

; (3.5∗3) In a Cartesian closed category, an object X is internally orthogonal to a morphism
f : A→ B when it is orthogonal to every Z × f : Z ×A→ Z ×B.

(3.5∗4) In a topos E , an object X is internally orthogonal to f : A → B when the unique
extension property holds in an internal sense, i.e. when the following is true in the internal language
of E :

∀[g : A→ X] ∃![g : B → X] g = gf
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x (3.5∗5) A proposition φ : Ω can be equivalently defined as an object that is internally
orthogonal to the unique map 2→ 1.

x (3.5∗6) Recalling the idea ofM -modal types from Section 3.3, we have that a type is restriction-
modal if and only if it is internally orthogonal to u→ 1 and sealing-modal or sealed if and only
if it is internally orthogonal to 0 → u. Intuitively, we might say that a restriction-modal type
“thinks” u is true and a sealed type thinks u is false.

(3.5∗7) Given X (internally) orthogonal to f , we also say that it is (internally) f -local.

; (3.5∗8) Given a set of maps S in a category C , the (internal) localization of C at S is defined
as the full subcategory of (internal) S-local objects.

x (3.5∗9) Observe that by (3.4.1∗12), the category of sheaves Sh(C ,K) on a site K is just the
localization of Ĉ at the collection of sieves induced by the coverage K.

3.5.1. Reflective subcategories.

; (3.5.1∗1) A reflective subcategory of a category C is a full subcategory D ↪→ C equipped with
a left adjoint L : C → D to the inclusion functor called the reflector.

; (3.5.1∗2) An exponential ideal of a Cartesian closed category C is a full subcategory D ↪→ C

such that for every D ∈ D and C ∈ C , we have that DC ∈ D .

□ (3.5.1∗3) Every internal localization of a (pre)sheaf category5 is a reflective exponential
ideal [111].

(3.5.1∗4) Reflective exponential ideals D
←−
⊥
↪→

C are very well-behaved: since the inclusion
is a right adjoint (to the reflector), the subcategory D is closed under limits, and by definition,
exponentials. Moreover, D has all colimits that exist in C (though they are not usually preserved
by the inclusion D ↪→ C ). In particular, this means that every reflective exponential ideal of a
(pre)sheaf topos is cocomplete.

; (3.5.1∗5) Rijke, Shulman, and Spitters [102, Theorem A.18] shows that every reflective
exponential ideal induces a reflective subfibration [102, Definition A.3], which is a system of

reflective subcategories DX

LX←−
⊥
↪→

C /X satisfying the following properties.

1. Stability under pullback: the pullback functors f∗ : C /Y → C /X restrict to functors
DY → DX .

2. Reflectors commute with pullback: for any Z : C /Y the map LX(f∗Z)→ f∗(LY Z) induced
from the unit η : Z → LY Z is an isomorphism.

(3.5.1∗6) In the internal language of a (pre)sheaf topos, a reflective subfibration may be
presented as a reflective subuniverse, which corresponds to a notion of an internal reflective
subcategory [109]; the data of this structure can be presented in type-theoretic language as follows
(assuming there is a type-theoretic universe U in the sense of Hofmann and Streicher [60]).

5This result extends to more general categories, but (pre)sheaf categories suffice for our purposes.
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X : U ⊢ inRsc(X) : Ω
X : U ⊢ L(X) : U
X : U ⊢ inRsc(L(X)) = ⊤
X : U ⊢ ηX : X → L(X)
X,Y : U , u : inRsc(X) ⊢ ∀[g : Y → X] ∃![g : L(Y )→ X] g = gηY

In essence a reflective subuniverse is a reflective subcategory that makes sense in every context,
which is a crucial property for developing mathematics in an internal style; we shall exploit
reflective subuniverses in both Chapter 4 and Chapter 7 to integrate different classes of types
(in the sense of different M -modal types) into a single theory. Although we do not rely on this
fact, one may also define both the proposition of being in the reflective subcategory inRsc and the
reflection of a type X by means of quotient inductive types [110].

x (3.5.1∗7) Sheafification Sh(C )
←−
⊥
↪→

Ĉ induces a reflective exponential ideal, and thus Sh(C)

is a reflective subuniverse in Ĉ .

; (3.5.1∗8) A reflective subuniverse U of a topos E is Σ-closed when it is closed under the
dependent sum types of E .

x (3.5.1∗9) Both restriction-modal and sealing-modal types form Σ-closed reflective subuniverses
UR and US in a topos. One may think of UR and US as classifying purely functional and purely
cost-sensitive data, respectively.



chapter 4

A cost-aware logical framework

4.1. RECONCILING COST-SENSITIVE AND FUNCTIONAL SEMANTICS

(4.1∗1) We are now finally equipped to explain the solution to the problem in Section 0.3
in a mathematically rigorous manner. Recall that the challenge is to study programs both in
a cost-sensitive manner and qua functions in a unified theory. The tension between the two
perspectives is resolved by means of the functional vs. cost-sensitive phase distinction (FC-phase
distinction for short) in the sense of Section 3.3.

; (4.1∗2) A model of the FC-phase distinction is a category C with a subterminal object ¶.

(4.1∗3) In the following, we work internally to a topos model (E ,¶) of the FC-phase distinction.

 (4.1∗4) For generality, we work axiomatically, but for intuition one should think in terms of
the canonical topos model of the FC-phase distinction (̂I, u).

(4.1∗5) The cost structure of programs is tracked by a sealed monoid. In the following we fix
such a monoid (C, 0,+).

x (4.1∗6) Given any monoid (M, 0,+), the sealing modality induces a monoid ( M,η −(0), +);
the monoid action is defined using the functorial action of  −, and has the following explicit
description:

+ :  M × M →  M
η −(m) + η −(n) = η −(m+ n)
∗u+ − = ∗u
−+ ∗u = ∗u

In other words,  + acts accordingly on elements of the underlying monoid M and restricts
to the identity map 1 ∼= 1× 1→ 1 in the functional phase. Note that there is a similar lifting of
any algebraic structure to a corresponding sealed structure by virtue of the fact that the sealing
modality preserves finite products (3.3∗6).

 (4.1∗7) Recalling Section 3.2.3, a monoid internal to a presheaf topos is a presheaf of monoids
in Set. Combined with the characterization in (3.3∗8), a sealed monoid in Î corresponds externally

to a family
M

↓
1

in which the total space M is a monoid in Set.

45
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; (4.1∗8) A cost-sensitive function is a function of the form A→ C×B.

(4.1∗9) One may reason about cost-sensitive functions as usual. For instance, we may define
a version of insertion sort that tracks the number of the comparison operations lt : N→ N→ 2:

insert : N× list→  N× list
insert(x, nil) = (η −(0), [x])
insert(x, y :: l) = if(lt(x, y), (η −(1), x :: y :: l), let (c, l′) = (insert(x, l)) in (η −(1) ( +) c, y ::
l′))

insertSort : list→  N× list
insertSort(nil) = (η −(0), nil)
insertSort(x :: l) = let (c, l′) = insertSort(l) in let (c′, l′′) = insert(x, l′) in (c  + c′, l′′)

Because we are simply recording a discrete natural number value in this example, we instantiate
the cost monoid C with the concrete sealed monoid  N. Observe that the cost of sequential
composition of functions is tracked by the monoid operation  +. In a similar vein, we may
define1 a cost-sensitive function mergeSort : list→  N× list that tracks the number of uses of the
comparison operator in the merge sort algorithm.

4.1.1. Cost bounds.

; (4.1.1∗1) A monoid (M, 0,+) is left cancellative when + : M ×M → M is injective in the
first component.

; (4.1.1∗2) To define cost bounds we need a notion of preorder that is compatible with the
monoid operation. A preordered monoid is a monoid (M, 0,+) equipped with a preorder relation
⊑ such that + :M ×M →M is monotone with respect to ⊑.

(4.1.1∗3) Observe that every left cancellative monoid is equipped with the prefix preorder in
which x ⊑ y def= Σk:M .x+ k = y.2 As in (4.1∗6), this means the sealing modality also induces a
sealed preorder on every monoid:

⊑ :  M →  M →  Ω
η −(m) ⊑ η −(n) = η −(m ⊑ n)
∗u ⊑ − = ∗u
− ⊑ ∗u = ∗u

Like for the sealed monoid operation, we have that ⊑ restricts to the total relation on 1× 1
in the functional phase.

(4.1.1∗4) Using the fact that the sealing monad commutes with dependent sums, we may
compute that  (m ⊑ n) holds if and only if Σk•: M .k

• + η −(n) = η −(m), which by definition
is η (m) ⊑ η (n).

1This is not immediately straightforward at the moment because the natural way to write merge sort requires
non-structural recursion. We will explain how to deal with such functions in Section 4.2.3.

2Technically every monoid M is equipped with a prefix relation, but x ⊑ y is not subterminal unless M is left
cancellative.
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x (4.1.1∗5) The prefix preorder on N equipped with its usual monoid structure is the usual
preorder on N.

; (4.1.1∗6) Given a sealed preordered monoid C, a cost (upper) bound of a cost-sensitive function
f : A→ C×B is a function Φ : A→ C satisfying the proposition ∀[a : A] (f(a) · 1) ⊑ Φ(a).

x (4.1.1∗7) One may establish cost bounds on cost-sensitive functions by ordinary (in)equational
reasoning. For instance, we may check that the function η −| − |2 : list→  N sending a list to
the (sealed) square of its length is a cost bound for insertSort.

4.1.2. Functional reasoning.

(4.1.2∗1) More interestingly, the fact that the cost monoid C is sealed enables us to smoothly
transition to pure functional reasoning as well. For instance, the following equation holds in the
functional phase:

insertSort = mergeSort (4.1.2∗1∗1)

In other words, we have that #(insertSort = mergeSort) holds, writing #A for the restriction
modality ¶ → − associated to ¶ : Ω. The reason is that the functional component of a sealed
monoid is trivial, and accordingly the monoid operation restricts to the identity map (4.1∗6). In
the canonical model, we may visualize this as insertion sort and merge sort projecting to the same
underlying function list→ list.

(4.1.2∗2) The fact that insertSort and mergeSort are actually equal (and not just equivalent
up to some relation) has important consequences for reasoning about programs as functions. For
instance, every sorting procedure should satisfy the following properties:

1. The output list should be a permutation of the input.

2. The length of the output list should equal the length of the input list (this is implied by the
previous property).

3. The output list should be in ascending order.

Because the above properties are entirely about the functional aspect of programs, we may
defined them as functional properties on functions of the form list → C × list, i.e. predicates
(list→ C× list)→ ΩR, where ΩR is the universe of restriction-modal propositions.

(4.1.2∗3) By defining functional properties to be valued in restriction-modal propositions, we
may immediately translate functional properties across functional equalities such as Eq. (4.1.2∗1∗1).
For instance, letting isSort : (list → C × list) → ΩR be the conjunction of (4.1.2∗2), we have
that isSort(insertSort) if and only if isSort(mergeSort) holds: by the definition of a restriction-
modal proposition, we have that isSort(l) = (¶ → isSort(l)), from which the result follows since
¶ → (insertSort = mergeSort).

4.1.3. Cost as an abstract effect.

(4.1.3∗1) So far we have integrated both functional and cost-sensitive reasoning in a unified
language. But there is still a problem: by treating cost as a concrete cost effect (in the form
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of a writer monad), the notion of cost-sensitive functions as defined in (4.1∗8) allows for some
unexpected behaviors when used as a programming language.

(4.1.3∗2) For instance, in the definition of insertSort, we could have accidentally neglected to
propogate the cumulative cost from the recursive call:

. . .

insertSort(x :: l) = let (c, l′) = insertSort(l) in let (c′, l′′) = insert(x, l′) in (c′, l′′)

This would enable one to unintentionally derive an unexpectedly low cost bound for insertion
sort (with respect to the comparison cost metric).

(4.1.3∗3) To prevent such programming errors, one puts the mechanism of cost aggregation
behind an abstraction that furnishes only the essential operations (and not accidental properties
such as the fact that cost structure is represented by means of tuples).

(4.1.3∗4) There are multiple different abstractions one may choose for the concrete effect of
incurring cost. Here we will choose to represent cost as a call-by-push-value effect [73], for the
reason that they are more natural in dependent type theories (as compared to the somewhat more
well-known monadic effects [85]).

(4.1.3∗5) The idea behind call-by-push-value is to stratify types into value types and computa-
tion types, representing the fact that one may either classify programs as pure functions or classify
programs as cost-effectful/cost-sensitive functions. Consequently, from a semantic point of view, a
value type corresponds to a plain set A, and a computation type corresponds to a cost algebra X,
i.e. a set equipped with a structure map C×X → X satisfying some coherence conditions with
respect to the monoid structure on C. Intuitively one may think about a cost algebra as a type X
that supports a cost effect operation C×X → X. For instance, the free cost algebra is just the set
C×A equipped with the structure map C× (C×A)→ C×A sending (c1, (c2, a)) to (c1 + c2, a).

(4.1.3∗6) The type structure of the call-by-push-value language(s) used in this thesis is
generated from the adjunction Alg

←−
⊥
−→

Set in which the left adjoint F : Set → Alg sends a set
A to the free cost algebra on A and the right adjoint U : Alg → Set sends an algebra X to the
underlying set of points |X|. Product and function types bifurcate into the following four types:

1. Pure functions A→ B.

2. Pure products A×B.

3. Cost-sensitive functions A→ X.

4. Cost-sensitive products X × Y .

Thus in addition to ordinary products and functions, in a call-by-push-value language cost structure
may be manipulated compositionally in terms of their cost-sensitive counterparts.

2 (4.1.3∗7) Whenever the semantic domain C has coproducts (e.g. Set), we also have sums as
a value type in a call-by-push-value language. Computational sums X + Y do not play a role in
this dissertation, but one may choose to include them under some mild assumptions about the
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monad T = UF : C → C associated with a computational effect (such as if T preserves filtered
colimits [76]).

x (4.1.3∗8) The call-by-push-value decomposition of the programming language PCF for
higher-order recursion can be defined as the following inductive family:

Γ, x : A ⊢ x : A Γ ⊢ zero : nat
Γ ⊢ v : nat

Γ ⊢ suc(v) : nat

Γ ⊢ e : nat Γ ⊢ e0 : X Γ, z : nat ⊢ e1 : X
Γ ⊢ ifz(e, e0, z.e1) : X

Γ, x : A ⊢ e : X
Γ ⊢ λx.e : A→ X

Γ ⊢ e : A→ X Γ ⊢ e1 : A
Γ ⊢ e e1 : X

Γ, x : UX ⊢ e : X
Γ ⊢ fix(x.e) : X

Γ ⊢ a : A
Γ ⊢ ret(a) : FA

Γ ⊢ e : FA Γ, a : A ⊢ e1 : X
Γ ⊢ bind(e, a.e1) : X

(4.1.3∗9) To extend the basic call-by-push-value language of (4.1.3∗8) with an abstract cost
effect, we may add the following computation form:

Γ ⊢ e : X
Γ ⊢ stepc(e) : X

The intuition is that stepc(e) will incur c units of cost and behave like the computation e.

4.2. CALF: A COST-AWARE LOGICAL FRAMEWORK

(4.2∗1) In this section we will consolidate the discussion so far into a single dependent type
theory dubbed calf (a cost-aware logical framework) for integrating functional and cost-sensitive
reasoning in which cost is treated as an abstract effect.

4.2.1. Defining type theories using logical frameworks.

(4.2.1∗1) A type theory such as calf is a complex mathematical object to fully specify — the
discussion in Section 2.1 illustrates only a small fraction of the rules typically required to give a
rigorous definition of a type theory. To simplify the process of defining new type theories, we take
advantage of the fact that everything difficult about defining the syntax of dependent type theory
can be “factored out” once and for all into a meta-type theory called a logical framework [54, 50]
that can be used to define object-type theories (such as calf).

 (4.2.1∗2) The process of defining type theories in logical frameworks is analogous to that of
defining algebraic theories in a doctrine; for example, the theory of a group is an object theory of
the doctrine of finite product theories.

(4.2.1∗3) Concretely, we work in a logical framework (LF) with a universe of judgments Jdg
closed under dependent product, dependent sum, and extensional equality; the reader may find
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C : Jdg
0 : C
+ : C→ C→ C
⊑ : C→ C→ Jdg

costMon : isOrderedMonoid(C, 0,+,⊑)
step : {X : tp−} C→ tm⊖(X)→ tm⊖(X)
step0 : {X, e} step0(e) = e

step+ : {X, e, c1, c2}
stepc1(stepc2(e)) = stepc1+c2(e)

tp+, tp− : Jdg
tm : tp+ → Jdg
U : tp− → tp+

F : tp+ → tp−

tm⊖(X) := tm(UX)
ret : (A : tp+, a : tm(A))→ tm⊖(FA)

bind : {A : tp+, X : tp−} tm⊖(FA)→
(tm(A)→ tm⊖(X))→ tm⊖(X)

¶ : Jdg
¶/uni : {u, v : ¶} u = v

step/¶ : {X, e, c} ¶ → (stepc(e) = e)
eq : (A : tp+)→ tm(A)→ tm(A)→ tp+

self : {A, a, b} tm(eqA(a, b)) ∼= (a =tm(A) b)

nat : tp+

zero : tm(nat)
suc : tm(nat)→ tm(nat)
rec : (n : tm(nat))→

(X : tm(nat)→ tp−)→ tm⊖(X(zero))→
((n : tm(nat))→ tm⊖(X(n))→
tm⊖(X(suc(n))))→ tm⊖(X(n))

Figure 4.1: Equational presentation of calf as a signature Σcalf in the logical framework. Here
the type isOrderedMonoid encodes all the structure of an preordered monoid. We write A ∼= B for
a framework-level isomorphism between judgments.

the theoretical justifications for this logical framework in Gratzer and Sterling [43] and Harper
[50] and examples of object theories defined in the LF in Niu et al. [90], Sterling and Harper [122],
and Grodin et al. [46]. An object theory in the LF is specified as follows.

1. Judgments are declared as constants ending in Jdg.

2. Binding and scope is handled by the framework-level dependent product (x : X)→ Y (x).

3. Equations between object-level terms are specified by constants ending in the framework-level
equality type x1 =X x2.

The core constructs of calf are displayed in Fig. 4.1.
In addition to the call-by-push-value structure presented in Fig. 4.1, calf is also equipped

with ordinary dependent product and sum types, which means that we may carry out ordinary
mathematical arguements as outlined in Section 2.4. In contrast to the more general situation
described in Section 4.1, we impose the order relation on the cost monoid (C, 0,+) explicitly
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as part of the parameterization of calf . The reason is that in practice one is not necessarily
only interested in derived prefix relation on a monoid; for instance when considering the parallel
complexity of programs (Section 4.3) it would be sensible to consider both the order relation
tracking both the parallel and sequential cost and another order relation tracking only the parallel
cost.

x (4.2.1∗4) To illustrate programming in calf , we may port the insertion sort algorithm from
(4.1∗9) to the call-by-push-value setting:

insert : tm(A)→ tm(list(nat))→ tm⊖(F(list(nat)))
insert(x, nil) = ret([x])
insert(x, y :: l) = bind(lt(x, y), λb.if(b, bind(insert(x, l), λr.ret(y :: r)), ret(x :: y :: l)))

insertionSort : tm(list(nat))→ tm⊖(Flist(nat))
insertionSort(nil) = nil
insertionSort(x :: l) = bind(insertionSort(l), λl′. insert(x, l′))

Observe that because the type of computations FA does not expose the implementation of
cost profiling, the only way to sequence computations is by using bind, which ensures that cost is
correctly aggregated.

4.2.2. Interactive cost refinement in calf .

(4.2.2∗1) Using the structure of a preordered monoid, we may conjecture that a computation
e : tm⊖(FA) is bounded by c : C if e = stepc′(ret(a)) for some c′ ⊑ c and a : tm(A). While this is a
perfectly sensible definition, experience suggests it is more natural to replace ordinary inequality ⊑
with the restricted inequality #(c′ ⊑ c). Observe that this does not trivialize cost bounds because
C is not necessarily sealed (the axioms only ensure that the cost effect stepc is trivialized in the
functional phase). Thus the cost bound predicate in calf is defined as follows.

IsBounded (A; e; c) = Σa:A.Σd:C(e = stepd(ret(a)))×#(d ⊑ c)

The use of the restricted inequality in the IsBounded refinement reflects the intuition that “costs
don’t have cost”. More importantly, this arrangement grants one access to the functional phase
and the purely functional properties therein when proving cost refinements, which is essential
for analyses of algorithms that depend on behavioral invariants of data structures. For instance,
the cost analysis of insertion sort outlined in (4.1.1∗7) depends on knowing the invariant that
sorting preserves length, a fact that follows from the correctness of sorting, which as we explained
in (4.1.2∗2) and (4.1.2∗3), is most naturally stated in the functional phase.

2 (4.2.2∗2) There have been significant improvements to the original theory of cost bounds
in calf presented in this dissertation. In particular, Grodin et al. has posited that the idea of
abstracting a numerical cost bound from a program should be understood as a misguided relic of
classical cost analysis that becomes nearly intractible in the setting of higher-order functions and
computational effects other than cost. The central thesis of op. cit. is that a cost bound is just
another program and that cost bound analysis should be recast in terms of program inequalities
e ⊑ e′ (as opposed to mere numerical inequalities). The resulting theory, dubbed decalf , supports
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Return

IsBounded (A; ret(a); 0)

Step
IsBounded (A; e; c)

IsBounded
(
A; stepd(e); d+ c

)
Bind
IsBounded (A; e; c) ∀a : A. IsBounded (B; f(a); d(a))

IsBounded (B; bind(e; f); bind(e;λa. c+ d(a)))

Relax
IsBounded (A; e; c) c ⊑ c′

IsBounded (A; e; c′)

Figure 4.2: Cost refinement lemmas in calf displayed in inference rule style.

a more refined and streamlined workflow for existing algorithm analyses in calf and extends the
story developed in this dissertation to nontrivial computational effects.

(4.2.2∗3) In Section 4.4.5 we prove that “restricted cost bounds” #(c ⊑ c′) are equivalent to
ordinary cost bounds c ⊑ c′ for a large class of cost monoids in the intended model of calf . The
purpose of such a theorem is to interpret the meaning of cost bounds derived in calf : when we
have a proof of the refinement IsBounded (A; e; c), we know that e = stepc′(ret(a)) for some c′ : C
and a : tm(A) such that #(c′ ⊑ c) holds. For this bound to be meaningful one needs to be able to
conclude from the restricted inequality #(c′ ⊑ c) that the expected ordinary inequality c′ ⊑ c also
holds.

(4.2.2∗4) Cost refinement lemmas. calf admits many expected principles for reasoning about
the isBounded refinement, and we present three representative cases in Fig. 4.2.

4.2.3. Analyzing general recursive algorithms in calf .

(4.2.3∗1) As we have discussed in (2.5∗3), as a type theory calf is naturally a theory of total
functions. In contrast, many common algorithms exhibit nontrivial patterns of recursion that do
not conform to the simplistic syntactic checks set out in (2.5∗4). Thus a major obstacle we need
to overcome is the representation of (total) general recursive programs in calf that preserves the
cost structure of the original program.

(4.2.3∗2) To this end, in (2.5∗6) we introduced a version of the Bove–Capretta method [18]
for encoding general recursive programs in which accessibility predicates are abstracted into
accessibility bounds that tracks the allowable number of recursive calls. In this section we provide
a general recipe for analyzing such clocked programs in calf .

2 (4.2.3∗3) The notion of clocked programming as described here emerged from the work of
Niu and Harper where it was observed (in a general recursive setting) that the cost bound of a
program can be used as an induction principle for establishing type judgments of computational
type theories (2.2∗1). The benefit of this approach is that in the setting of cost analysis, cost
bounds are essentially always assumed to exist, which means that as a general principle, “induction
on cost bounds” does not impose any additional verification overhead.

(4.2.3∗4) To explain the general workflow of algorithm analysis in calf , suppose one is given
an algorithm f : A ⇀ B, conceived of as a partial function, along with its cost model. Thus one
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should think of f as a description/definition of an algorithm external to calf .

1. Define a clocked version of the algorithm fÂ : N→ A→ B in which the clock input of type
N represents the number of available recursive calls; when the clock is nonzero, fÂ follows
the recursion pattern exhibited by f by decrementing the clock, and when the clock is zero,
fÂ terminates by returning a default value or raising an exception. In the body of fÂ step’s
should be placed in accordance with the given cost model.

2. Define the the associated clocked cost recurrence for the clocked algorithm f/boundÂ : N→
A→ B.

3. Define the recursion depth fdepth : A→ N that bounds the number of recursive calls made
by f on a given input a : A.

4. Obtain the complete algorithm and cost recurrence by instantiating the clocked program
and cost recurrence respectively with the recursion depth: f(a) = fÂ(fdepth(a))(a) and
f/bound(a) = f/boundÂ(fdepth(a))(a).

5. Prove that the resulting algorithm f is bounded by the cost recurrence f/bound. This
process is mostly mechanical: one repeatedly applies the lemmas in (4.2.2∗4) to break down
isBounded goals.

6. Characterize the recurrence f/bound by (e.g.) computing a closed-form solution. Usually
this step represents the bulk of the work in pen-and-paper algorithm analysis.

4.3. CASE STUDIES IN CALF

(4.3∗1) The examples we have studied in calf do not represent the state-of-the-art in the
algorithms literature but include many common algorithms found in an introductory textbook:
Euclid’s algorithm, sequential and parallel insertion and merge sort, and amortized analysis
of batched queues. For many algorithms we have verified the best known asymptotic bound,
a feat that relies crucially on the ability to express functional specifications and use ordinary
mathematical reasoning in calf . This small collection of case studies suggests an auspicious
beginning to a growing library of formally verified algorithms; in fact, calf has been used to
rigorously develop the functional correctness and cost bounds of red black trees [75], amortized
(coinductive) algorithms [45], and effectful higher-order programs [46].

4.3.1. Implementation of calf .

(4.3.1∗1) As discussed in (2.1∗7), one of the strengths of type theories is their amenability to
computerization. Indeed the ability to implement type theories as (part of) a computer program
(called a proof assistant) so that its logical assertions may be mechanically verified is a major
motivation behind the type-theoretic roots of calf . However, instead of a stand-alone proof
assistant, calf has been implemented in the Agda proof assistant as a domain specific language
(DSL). The benefit of this approach is that one may immediately reuse the existing library of
mathematical facts of Agda.
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(4.3.1∗2) The implementation of calf in Agda consists of a series of constants and equations,
a fragment of which was presented in Fig. 4.1. For instance, the basic judgmental structure of
calf may be specified by the following Agda postulates:

postulate
mode : Set
pos : mode
neg : mode

postulate
tp : mode→ Set
tm+ : tp pos→ Set

postulate
F : tp pos→ tp neg
U : tp neg→ tp pos

We can think of the Agda implementation of calf constitutes an algebra of the LF signature
of calf in which the Agda universe Set plays the role of the universe of judgments Jdg.

(4.3.1∗3) The equational theory of calf is encoded by means of rewrite rules [25]. For instance
we may implement the computation rule for bind as follows.

postulate
bind/ret : {A,X} {v : tm(A)} {f : (x : tm(A))→ tm⊖(X)} bind(ret(v); f) ≡ f(v)

{-# REWRITE bind/ret #-}

Here the REWRITE pragma tells Agda to treat bind/ret as an actual Agda equality; in
particular bind/ret is treated as a rewrite rule that always replaces the expression to the left of ≡
with the expression to the right.

(4.3.1∗4) Following the description of (4.2.2∗1), the data associated with cost bounds is
naturally captured by a record type in the Agda encoding of calf :

record IsBounded(A : tp+)(e : tm⊖(FA))(c : C) : Set where
result : tm(A)
c′ : C
hyp/bounded : #(c′ ⊑ c)
hyp/eq : e ≡ stepc′(ret(result))

4.3.2. Example: Euclid’s algorithm in calf .

(4.3.2∗1) In this section we put everything developed so far into practice by outlining how
one may verify a tight cost bound for Euclid’s algorithm.

(4.3.2∗2) As indicated in the recipe from (4.2.3∗4), the analysis of every algorithm begins
with the definition of the cost model. In Euclid’s algorithm the cost model is the number modulus
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operations. In calf is this specified by an instrumented version of the modulus operation that
incurs unit cost:

modinst : tm(nat)→ tm(nat)→ tm⊖(F nat)
modinst(x, y) = step1(ret(mod (x, y)))

x (4.3.2∗3) One may also specify the cost model for abstract data types. As an example, in
the analysis of sorting algorithms, it is customary to consider the comparison cost model in which
the only operation that incurs cost is the comparison operation. In calf we may parameterize the
analyses of sorting algorithms by the following comparable type:

record Comparable : Set1 where

A : tp+
⊑: tm(A)→ tm(A)→ Set
⊑dec: tm(A)→ tm(A)→ tm⊖(Fbool)
⊑dec / ⊑: {x, y, b} → #((x ⊑dec y) ≡ ret(b)→ Reflects (x ⊑ y) b)
⊑ /ord : isTotalOder ⊑
⊑dec /cost : (x, y : tm(A))→ IsBounded bool (x ⊑dec y) 1

In other words a comparable type is a type A equipped with a total ordering relation ⊑. To
program with comparable types we also need the ordering to be decidable, which is encoded above
as ⊑dec. Because the comparison cost model dictates that the comparison operation is unit cost, we
require a field ⊑dec /cost to record this fact using the IsBounded type defined in (4.3.1∗4). Lastly,
the field ⊑dec / ⊑ indicates that ⊑dec is a decision procedure for ⊑, i.e. the x ⊑dec y computes the
value tt : bool if and only if x ⊑ y holds. Here we observe another use of the restriction modality
#: because the decision procedure ⊑dec is a computation with nontrivial cost, we descend to the
functional phase to state its correctness specification.

(4.3.2∗4) Similar to the approach taken in (2.5∗6), we may define a clocked version of
Euclid’s algorithm in calf :

gcdÂ : tm(nat)→ tm(nat2)→ tm⊖(F nat)
gcdÂ(zero, x, y) = ret(x)
gcdÂ(suc(k), x, zero) = ret(x)
gcdÂ(suc(k), x, suc(y)) = bind(modinst(x, suc(y)), λr.gcdÂ(k, suc(y), r))

Recall that modinst is the instrumented modulus that encodes the cost model for Euclid’s
algorithm. Here the first argument to gcdÂ is a clock parameter that ticks down at each recursive
call of Euclid’s algorithm; when the clock parameter is zero gcdÂ simply returns the first real
argument. In other words gcdÂ(k, x, y) is the k-approximation of gcd(x, y) in which Euclid’s
algorithm is only allowed to make k recursive calls.

(4.3.2∗5) Does the clocked program gcdÂ satisfies the behavioral specification of Euclid’s
algorithm, i.e. does gcdÂ compute the gcd? We already observed that gcdÂ(k, x, y) only computes
k-approximations of gcd(x, y). However, if the approximation level k (i.e. number of recursive
calls) is sufficient, then it should be the case that gcdÂ(k, x, y) actually computes gcd(x, y). To
this end, we define the recursion depth of Euclid’s algorithm, which is a function that computes
the necessary approximation level for any input to Euclid’s algorithm:
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gcddepth : tm(nat2)→ tm(nat)

gcddepth(x, y) = { zero if y = zero
suc(gcddepth(y,mod (x, y))) o.w.

Note that gcddepth is a specification of a function by cases: because we do not need to track the
cost of computing the recursion depth, gcddepth may be defined however convenient.3

(4.3.2∗6) We may now instantiate the clocked algorithm gcdÂ by the recursion depth gcddepth:
define gcd(x, y) := gcdÂ((gcddepth(x, y), x, y). We may prove that gcd computes the gcd, a behavioral
specification that is naturally expressed as the following equations by means of the restriction
modality:

#(gcd x zero = ret(x)) (1)
#(gcd x (suc(y)) = gcd (suc(y)) (mod x suc(y))) (2)

(4.3.2∗7) The method of recurrence relations in traditional presentations of algorithm analysis
is divided into the two expected stages in calf : we extract a cost recurrence f/bound from the
algorithm and compute a closed-form formula φ for the cost recurrence. Each of these steps has
an associated proof obligation: we have to show that f/bound is indeed a cost bound for the
algorithm and that φ is an upper bound for f/bound. Recall from (4.2.3∗4) that a cost recurrence
is a function that assigns a cost to each clock and input of the algorithm. In the case of Euclid’s
algorithm we have the following cost recurrence associated to gcdÂ:

gcd/boundÂ : tm(nat)→ tm(nat2)→ tm(nat)
gcd/boundÂ(zero, x, y) = zero

gcd/boundÂ(suc(k), x, y) = { zero if y = zero
suc(gcd/boundÂ(k, y,mod (x, y))) o.w.

Similar to the case for the recursion depth (4.3.2∗5), we do not track the cost computing the
cost recurrence, which is indicated by the fact that the codomain of gcd/boundÂ is the value type
nat as opposed to the computation type F nat.

(4.3.2∗8) We may prove that gcd/boundÂ is a cost bound for gcdÂ, which is expressed by
the following theorem:

gcdÂ/bound : (k, x, y : tm(nat))→ IsBounded nat (gcdÂ k x y) (gcd/boundÂ k x y)

The proof of gcdÂ/bound is entirely mechanical: the user simply breaks down the overall IsBounded
proof goal and fulfills the generated sub-goals using the syntax-directed cost refinement lemmas
(depicted in Fig. 4.2). In fact this step is taken to be so obvious that often no proof is given in
textbook presentations of algorithm analysis.

(4.3.2∗9) The last and usually most difficult step in algorithm analysis is to compute a closed-
form solution or otherwise informative bound to the cost recurrence. This step is also the place
where calf shines as a mathematical domain for reasoning about cost bounds. For instance, we may
prove a very precise bound on the cost recurrence gcd/bound x y := gcd/boundÂ (gcddepth x y) x y

3In Agda we define gcddepth using well-founded induction on the last argument.
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that is known to be asymptotically tight.4 Let Fib : N → N be the fibonacci sequence, and let
Fib−1 : N→ N be the function characterized by the equation Fib−1(x) = max {i | Fib(i) ⊑ x}. We
have the following calf theorem:

gcd/bound/bound/isBound : (x, y : tm(nat))→ (x > y)→ gcd/bound x y ⊑ 1 + Fib−1(x)

In conjunction with (4.3.2∗8), we obtain the following cost bound for gcd:

gcd/isBounded : (x, y : tm(nat))→ (x > y)→ IsBounded nat (gcd x y) (1 + Fib−1(x))

Thus the number of modulus operations used in Euclid’s algorithm never exceeds the quantity
1 + Fib−1(x), where x is the larger of the two inputs. This means that asymptotically the
computational cost of gcd is logarithmic in the input (i.e. proportional to the size of the input).

∗ ∗ ∗

(4.3.2∗10) As mentioned in (4.2.2∗1), it is often necessary to access the functional phase of
calf when proving bounds on cost recurrences. For instance, when computing the closed-form
solution to the cost recurrence of insertionSort from (4.2.1∗4), we would like to have access
to the theorem insertionSort/correct : IsSort insertionSort stating that insertionSort is a sorting
algorithm, where IsSort is the following family.

IsSort : (tm(list(A))→ tm⊖(F(list(A))))→ Set
IsSort f = (l : tm(list(A)))→ #(Σl′:tm(list(A)).f l ≡ l′ × SortedOf l l′)

In the above SortedOf l l′ is the restriction-modal proposition characterizing the correctness of
sorting as discussed in (4.1.2∗2). In particular, one relies on the fact that every map f satisfying
IsSort(f) is a length-preserving function (either by definition or via another restriction-modal
proposition), which is used in the inductive case of proof for the closed form characterization of
the cost recurrence of insertionSort. Observe that the predicate IsSort is also restriction-modal
because the cost incurred by the candidate sorting program is irrelevant from the perspective of
pure functional correctness. Consequently we may relate insertionSort/bound (the cost recurrence
associated to insertionSort) to its closed-form solution in the functional phase, as indicated in the
following theorem.

insertionSort/bound/isBound : (l : tm(list(A)))→ #(insertionSort/bound l ⊑ |l|2)

4.3.3. Parallelism in calf .

(4.3.3∗1) Parallelism arises naturally in the setting of calf via an equational presentation
of the profiling semantics of Blelloch and Greiner [17]. Here we present a version adapted from
Harper [51] in which it is observed that the source of parallelism can be isolated to the treatment
of pairs of computations: a parallel computation of A×B is furnished by a new computation form
& called joins that conjoins two independent computations of A and B:

& : {A,B : tp+} tm⊖(FA)→ tm⊖(FB)→ tm⊖(F(A×B))

4We have not verified in Agda/calf that it is indeed the tightest bound possible. But calf allows the user to
prove these results if desired.
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One may think of a term e & f as a computation in which e and f are evaluated simultaneously.

(4.3.3∗2) Blelloch and Greiner [17] characterizes the complexity of a program in terms of pairs
(w, s) in which w represents the work or sequential cost and s represents span or parallel cost of
a computation. We call pairs (w, s) the cost graph of a computation. The cost graph semantics
of parallel programs associates to a program e a cost graph. For instance, suppose that we have
computations e1 and e2 with cost graphs (w1, s1) and (w2, s2) respectively. Then we have that the
sequential composition of e1 and e2 is assigned the cost graph (w1 + w2, s1 + s2) and the parallel
composition of e1 and e2 is assigned the cost graph (w1 + w2,max (s1, s2)). Thus the work of a
computation is the total resource usage and the span is the resource usage along the critical path,
defined to be the thread within a computation with the highest resource usage. In the particular
case of the resource of time, we may think of work as the total number of CPU cycles and span as
the actual time elapsed during computation.

(4.3.3∗3) Accordingly, in calf the cost graph is encoded by the following structure called the
parallel cost monoid:

C := (N2,⊕, (0, 0),⊑N2)

In the above ⊕ and ⊑N2 are component-wise extensions of addition and ⊑. Parallel cost composition
is then implemented by the operation (w1, s1)⊗ (w2, s2) := (w1 + w2,max (s1, s2)) that takes the
sum of the works and max of the spans. This provides the required structure to assemble the cost
of a completed parallel pair:

&join : {A,B, c1, c2, a, b} (stepc1(ret(a))) & (stepc2(ret(b))) = stepc1⊗c2(ret((a, b)))

x (4.3.3∗4) Using the parallel cost monoid, we may derive the cost bound for parallel merge sort
in calf . Assume as in (4.3.2∗3) that we work relative to the comparison cost model for sorting:

record Comparable : Set1 where
A : tp+
⊑: tm(A)→ tm(A)→ Set
⊑dec: tm(A)→ tm(A)→ tm⊖(Fbool)
⊑dec / ⊑: {x, y, b} → #((x ⊑dec y) ≡ ret(b)→ Reflects (x ⊑ y) b)
⊑ /ord : isTotalOder ⊑
⊑dec /cost : (x, y : tm(A))→ IsBounded bool (x ⊑dec y) (1, 1)

The only difference from the model in (4.3.2∗3) is that the cost of the comparison operator is
given by a cost graph.

(4.3.3∗5) Similar to insertion sort, we may define a version of merge sort msortPar : list(A)→
F(list(A)) for a comparable type A in which both the sorting and merging step are computed
in parallel by means of the join operator. The definition of msortPar may be found in the calf
library.5

□ (4.3.3∗6) For all l : list(A), we have that the following proposition holds in calf :

IsBounded
(
list(A);msortPar(l);

(
⌈log2 (|l|+ 1)⌉2 · |l|, ⌈log2 (|l|+ 1)⌉3

))
.

5https://github.com/jonsterling/agda-calf/blob/v1.0.0/src/Examples/Sorting/Parallel/
MergeSortPar.agda.

https://github.com/jonsterling/agda-calf/blob/v1.0.0/src/Examples/Sorting/Parallel/MergeSortPar.agda
https://github.com/jonsterling/agda-calf/blob/v1.0.0/src/Examples/Sorting/Parallel/MergeSortPar.agda
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4.4. MODEL OF CALF

(4.4∗1) In this section we explicate the semantics of calf in a topos model of the FC-phase
distinction in the sense of (4.1∗2).

; (4.4∗2) Fix a topos E and universe U in E . A U -small model of a LF signature Σ is defined to
be a Σ-algebra in which the type of judgments Jdg is defined to be U . Viewing an LF signature
as a theory in the doctrine of locally Cartesian closed categories (lcccs), such an algebra extends
uniquely to a lccc functor from the free lccc on Σ to E .

(4.4∗3) In this section we fix a topos model (E , φ) of the FC-phase distinction and an internal
preordered monoid (C, 0,+,⊑) in E such that C is restriction-modal, i.e. #C ∼= C.

4.4.1. Judgmental structure.

; (4.4.1∗1) Recall from Section 3.2.4 the notion of an algebra over a monad. A cost algebra is
an algebra for the writer monad C×−. As mentioned in (4.1.3∗5), the coherence conditions on
a cost algebra ensures that the structure map commutes with the monoid structure.

(4.4.1∗2) Fixing universe levels α < β, we may define a Uβ-small model of calf based on the
discussion of the cost algebra semantics of the cost effect. The judgments of calf are defined as
follows.

tp+ = Uα
tp− = AlgUα( C×−)
C = C
¶ = φ

tm(A) = A

In other words, we interpret a value type A to be a type in E and a computation type X as a
Uα-small cost algebra. The proposition ¶ representing the functional phase is interpreted by the
distinguished proposition φ in E . Observe that we seal the cost monoid C in the interpretation of
computation types but not the interpretation of the judgment C; this is because although the cost
structure of programs is trivialized in the functional phase, C itself should be a restriction modal
type because we employ functional inequalities #(c ⊑ d) in the IsBounded refinement (4.2.2∗1).

(4.4.1∗3) The basic call-by-push-value structure is interpreted by the free-forgetful adjunction
between cost algebras and sets:

FA = free C×−(A)
UX = |X|

4.4.2. Type structure.

(4.4.2∗1) Value types are interpreted as the corresponding types in E . For computation types,
we need to verify that they exhibit cost algebra structures.

x (4.4.2∗2) For example, given a family of cost algebras (X(a), αX(a)) over any set A, the
dependent product Πa:A.X(a) of the family is a cost algebra, with the algebra map defined
pointwise.



chapter 4. A COST-AWARE LOGICAL FRAMEWORK 60

□ (4.4.2∗3) To show that Πa:A.X(a) is a cost algebra, we need to define an algebra map
α :  C×Πa:A.X(a)→ Πa:A.X(a). We define α(c, f, a) = αX(c, a). The coherence conditions of
(3.2.4∗2) follow because each set X(a) is assumed to be a cost algebra.

� (4.4.2∗4) Show that given a family of cost algebras (X(a), αX(a)) over any set A, the
dependent sum Σa:A.X(a) is also a cost algebra.

4.4.3. Sequential composition on the free algebra.

(4.4.3∗1) Sequential composition in a call-by-push-value language can be defined uniformly
for any monad T. In this section we fix such a monad.

� (4.4.3∗2) For the unit of sequential composition, we need to define a map ret : A→ |FA|. By
definition of free algebras (3.2.4∗6), we have that |FA| = |free C| = T(A), so we may take this
map to be the component of the monad unit ηT at A.

� (4.4.3∗3) For sequential composition, we need to define a map of the following type for every
set A and T-algebra X:

bind : T(A)→ (A→ |X|)→ |X|

By (3.2.4∗7), we have that f : A → |X| corresponds to the cost algebra morphism f :
free C×−(A)→ X determined by the function αXTf : TA→ |X|. Therefore we just implement
bind by function application.

□ (4.4.3∗4) For every f : A→ X and a : A, we have that bind(ret(a), f) = f(a).

□ (4.4.3∗5) Since ret is interpreted by the monad unit, this is a direct consequence of the
naturality of the unit ηT.

□ (4.4.3∗6) For every e : |FA|, f : A→ |FB|, and g : B → |X|, we have that bind(bind(e, f), g) =
bind(e, λa.bind(f(a), g)).

□ (4.4.3∗7) Unfolding definitions, we have that bind(bind(−, f), g) is interpreted as gf , where
we write f for the backward direction of the bijection HomAlg(T)(freeT(A), X) ∼= HomSet(A, |X|).
On the other hand, bind(bind(−, f), g) is interpreted as gf , and so the result follows by considering
the naturality of the hom-set bijection at the algebra morphism g : TB → X:

HomSet(A,TB)

HomSet(A, |X|)

HomAlg(T)(freeT(A), freeT(B))

HomAlg(T)(freeT(A), X)

4.4.4. Cost effect.

� (4.4.4∗1) The cost effect stepX : C×X → X is defined by first sealing the input cost and
applying the algebra map of X:

step(c, x) = αX(η −(c), x)
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We can easily verify that step becomes the identity map whenever φ holds:

step(c, x) = αX(η −(c), x)
= αX(∗, x)
= αX(η −(0), x)
= αX(η C×−, x)
= x

Where the last equation follows from the first coherence law of cost algebras (3.2.4∗2).

4.4.5. Restricted cost bounds.

□ (4.4.5∗1) Any restriction-modal monoid C has the property that the functional prefix order
relation #(x ⊑ y) is equivalent to the prefix order x ⊑ y.

□ (4.4.5∗2) The direction x ⊑ y =⇒ #(x ⊑ y) is evident. For the reverse direction, because C is
restriction-modal and # preserves dependent sums and equality, we have the following equivalence:

#(Σk:C.x+ k = y) ∼= (Σk:C.η (x+ k) =#C η (y))

Since η : C→ #C is an isomorphism, we have x+ k = y for some k : C, which by definition means
x ⊑ y.

(4.4.5∗3) Proposition 4.4.5∗1 shows that the restricted inequalities #(x ⊑ y) used in the
definition of the IsBounded predicate of (4.2.2∗1) do not produce any additional cost bounds
that one would not ordinarily expect (and despite the name, restricted inequalities clearly do not
restrict the class of cost bounds defined using ordinary inequality). The result also extends beyond
just the canonically-defined prefix order on a monoid, as long as the order relation is definable
using dependent sum and equality types.

4.4.6. Main result.

□ (4.4.6∗1) In every topos model of the FC-phase distinction, there is a model of calf .

□ (4.4.6∗2) By Sections 4.4.1 to 4.4.4.

 (4.4.6∗3) The category of presheaves on I and the intermediate proposition u furnishes a
nontrivial model of calf .

(4.4.6∗4) The model of (4.4.6∗3) corresponds to the canonical way of modeling cost structure
in presheaves, which we have discussed in Section 3.1.1. In Î a calf type is interpreted as a family
X(1)
↓

X(0)
in which X(1) can be thought of a cost-sensitive set that restricts to its functional component

X(0). For example, we may compute the meaning of the cost effect for the cost monoid N̂I:

FA =  N̂I ×A =
N
↓
1
×
A(1)
↓

A(0)
=

N×A(1)
↓

A(0)
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A cost sensitive function f then corresponds to a square configured as follows.

N×A(1)

A(0)

N×B(1)

B(0)

f1

f0
(4.4.6∗4∗1)

Thus a cost-sensitive function is composed of a cost-sensitive component f1 that lies over its
purely functional component. From a global perspective, one can understand the dependence of a

cost-sensitive function on its functional component as the codomain fibration
Set→

Set
.

(4.4.6∗5) Eq. (4.4.6∗4∗1) is an instance of the noninterference property discussed in (3.1.1∗3).
In this case, we have that the cost-sensitive component f1 : N×A(1)→ N×B(1) can never use
the input cost component to compute (in a nontrivial way) the output B(1). Conversely, if A
and B are restriction-modal types (so that A(1) ∼= A(0)), every f : N×A(1)→ N×B(1) that is
functionally constant (in the sense that (π1f)(−, a) : N→ B(1) is constant) restrict to a purely
functional component A(0)→ B(0).

(4.4.6∗6) Noninterference is an important property because we want to be able to carry out
purely functional reasoning in the absence of cost, which is not possible if the functional semantics
of programs depend on cost structure.

∗ ∗ ∗

2 (4.4.6∗7) The formulation of a phase distinction in the sense used in this dissertation first
appeared in the work of Sterling and Harper on the type-theoretic semantics of program modules
and logical relations. Since then phase distinctions have been used in cost-sensitive programming
and verification [90, 87, 46], metatheory of type theories [118, 116], information flow security [122],
and interactive proof assistants [44].
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chapter 5

Relating calf and operational cost semantics

(5∗1) We have developed the equational theory of cost structure and cost analysis in Chapter 4.
In this chapter we develop a general method for relating this equational theory to operational
cost semantics. As outlined in Section 0.5, a series of connections of this kind can be composed
together to explain and ground the high-level mathematical semantics of programs in terms of
their low-level implementations.

5.1. INTERNAL DENOTATIONAL SEMANTICS

; (5.1∗1) To illustrate the key ideas of this section we work with a simple programming language,
namely a version of STLC equipped with a base type 2 of observations. The STLC terms are
defined by the following inductive family:

Γ, x : A ⊢ x : A
Γ, x : A ⊢ e : B

Γ ⊢ λx.e : A→ B

Γ ⊢ e : A→ B Γ ⊢ e1 : A
Γ ⊢ e e1 : B Γ ⊢ yes : 2

Γ ⊢ no : 2

We have a type tp of STLC types and a type family tm of STLC terms indexed in an STLC
type. In the case of a call-by-push-value language such as (4.1.3∗8), this generalizes to a pair of
types tp± to distinguish between value and computation types.

(5.1∗2) Note that to avoid excessive layers of abstractions from polluting the semantic picture,
we will work directly in the internal type theory of a topos model (E , φ) of the FC-distinction;
this is a reasonable approach because by (4.4.6∗1) the results we prove can always be factored
through the model of calf in E .

(5.1∗3) Fix a sealed cost monoid C. The internal operational cost semantics of L is given
by a family of relations ⇓A ⊆ tm(A)× C× tm(A). The proposition e ⇓c v should be read as “e
evaluates to a terminal value v using c units of resource”.

(5.1∗4) Commonly the operational cost semantics of a language is defined in terms of more
primitive (low-level) relations 7→A ⊆ tm(A)×C× tm(A) and valA ⊆ tm(A) specifying the one-step
transition relation on programs and the terminal programs, respectively. In this arrangement, a
program e can be thought of as representing the state of an abstract machine, and the relation
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e
c−→ e′ can be understood as a transition of states that additionally consumes c units of resource.

A program e ∈ val is a terminal state, i.e. does not transition to any further states.

; (5.1∗5) Define the reflexive-transitive closure of 7→A as the smallest family −−→
∗
⊆ tm(A) ×

C× tm(A) closed under the following rules:

e
0−→
∗
e

e
c1−→ e1 e1

c2−→
∗
e2

e
c1+c2−−−−→

∗
e2

(5.1∗6) The “small-step” semantics of (5.1∗4) determines a “big-step” semantics as in (5.1∗3)
by taking the reflexive-transitive closure of 7→. More precisely, we may define e ⇓c v = (e c−→

∗

v) ∧ (v val). We may also define a cost-insensitive or functional big step semantics by forgetting
the cost of evaluation: e ⇓ v = ∃c.e ⇓c v.

(5.1∗7) The source of cost in a one-step transition e c−→ e′ is usually taken to be a single unit
of resource, i.e. c = 1. For a call-by-value language, this results in the β-reduction cost model that
is comparable to cost models commonly considered in (parallel) computational complexity [17].
We (implicitly) build this cost model into the programming language in Section 5.2, but more
generally one may parameterize a language with an arbitrary cost model by means of a cost effect
as in Section 4.1.3.

� (5.1∗8) One may also define a big-step semantics from a small-step semantics by means of a
recursive function that iterates the one-step transition relation until a terminal value is reached.
We exploit this fact in Chapter 8 to define the operational cost semantics of PCF in a setting in
which the reflexive-transition closure is not available.

. (5.1∗9) Since the notion of operational cost semantics as discussed in (5.1∗3) and (5.1∗6)
only makes sense for raw terms, we are explicitly not equipping STLC with an equational theory.
Nonetheless, one may define a standard denotational semantics of STLC in any topos by means
of the Cartesian closed structure and the type of booleans.1 We write J−K for both the map
tp → U interpreting STLC types as types of the ambient type theory and the family of maps
(tm(A)→ JAK)A:tp sending STLC terms to elements of the specified semantic domain; the specifics
of (a generalization of) this standard interpretation is elaborated in Section 5.2.1.

; (5.1∗10) We say that the STLC satisfies computational adequacy in the sense of Plotkin [96]
when for all closed programs e, v : tm(bool), we have that JeK = JvK if and only if e ⇓ v.

; (5.1∗11) In a cost-sensitive setting, the denotational semantics JeK of a term at base type
consists not only of its functional meaning but also the induced cost. We say that a language
satisfies cost-sensitive computational adequacy in the sense of Plotkin [96] when for all closed
programs e of a base type, we have that JeK = (c, JvK) if and only if e ⇓c v. In other words, we
have that the denotational and operational cost semantics agree on both the functional meaning
and cost structure of programs.

(5.1∗12) Although (5.1∗11) only gives the adequacy criterion for a total language, the
techniques explained in this chapter are generalized in Chapter 8 to a more realistic programming

1Though as pointed out to me by Jon, one should not say the interpretation is canonical since without an
equational theory one is not forced to e.g. send the function types of the STLC to exponentials in the semantic
category.
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language admiting partial functions. To illustrate the main ideas we work with the simply-typed
lambda calculus (STLC) admitting only total functions.

(5.1∗13) As a meta-remark, in this chapter we will be somewhat more explicit about the mun-
dane (in the context of this dissertation) aspects of programming languages such as substitutions
and the lifting of certain constructions to substitutions/terms-in-contexts. In Chapter 8 we will
work in a more relaxed manner to better focus on the semantically interesting problems and trust
the reader to fill in the routine definitions.

5.2. COST-SENSITIVE COMPUTATIONAL ADEQUACY FOR THE STLC

(5.2∗1) In the following sections we fix the cost monoid C =  N.

5.2.1. Denotational cost semantics.

(5.2.1∗1) To incorporate cost structure into the ordinary model of STLC (5.1∗9), we
further refine this interpretation by means of the call-by-push-value decomposition of call-by-value
semantics [74, 66].

� (5.2.1∗2) The types of STLC are interpreted as follows.

J2K = 2
JA→ BK = JAK→ C× JBK

This interpretation extends in the evident way to an interpretation of contexts JΓK.

(5.2.1∗3) We write a← e; f(a) for the monadic bind operation and stepc : C×A→ C×A for
the map (c′, a) 7→ (c+ c′ + c, a). We also define inc = step1• , where 1• is the sealed cost η (1).

� (5.2.1∗4) We define the interpretation of terms as follows.

J−K : {Γ, A} JΓK→ C× JAK
JxK(γ) = (0, π(γ))
JyesK(−) = (0, inl · ∗)
JnoK(−) = (0, inr · ∗)
Jλ.eK(γ) = (0, λa.JeK(γ, a))
Je e1K(γ) = f ← JeK(γ); a← Je1K(γ); stepη (1)(f a)

In the above, we write π : JΓK→ JAK for the projection map induced by a variable in context
x : A ∈ Γ.

(5.2.1∗5) Define the (open) values to be the following family:

x ∈ Γ
Γ ⊢ x val(2) Γ ⊢ yes val(2) Γ ⊢ no val(2)

Γ, x : A ⊢ e : B
Γ ⊢ (λx.e) val(A→ B)

Observe that closed open values correspond to ordinary values.

□ (5.2.1∗6) The interpretation of general terms restricts to an interpretation of values J−K :
{Γ, A} val(A)→ JΓK→ JAK.
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; (5.2.1∗7) A substitution s : ∆→ Γ is a family of open values ∆ ⊢ v : A for every x : A ∈ Γ.
Given a substitution s : ∆→ Γ and a term Γ ⊢ e : A, we write e[s] for the result of substituting e
along s.2 We write Sub(∆,Γ) for the collection of substitutions from Γ to ∆.

� (5.2.1∗8) The interpretation of substitutions is given in a pointwise manner:

J−K : {Γ,∆} Sub(∆,Γ)→ J∆K→ JΓK
J·K(δ) = ∗
Js, v/xK(δ) = (JsK, JvK)

□ (5.2.1∗9) The denotational semantics is compositional, in the sense that J−K commutes with
substitution: Je[s]K = JeKJsK.

□ (5.2.1∗10) By induction on the derivation of terms.

5.2.2. Operational cost semantics.

(5.2.2∗1) The one-step transition relation for call-by-value STLC is defined as the following
family:

e 7→ e′

e e1 7→ e′ e1

e val e1 7→ e′1

e e1 7→ e e′1

e1 val
(λx.e) e1 7→ e[e1/x]

Along with the restriction of (5.2.1∗5) to closed terms, we obtain a small-step operational cost
semantics of STLC in which every transition step has unit cost (in the sealed cost monoid
C =  N).

□ (5.2.2∗2) The big-step cost semantics induced by Definition 5.2.2∗1 has an alternative
characterization as the following inductive family:

yes ⇓0 yes no ⇓0 no
e ⇓c λx.e′ e1 ⇓c1 v1 e′[v1/x] ⇓c2 v

e e1 ⇓c+c1+1•+c2 v

5.2.3. Soundness.

□ (5.2.3∗1) We have that the denotational cost semantics is sound for the operational cost
semantics in the following sense: if e ⇓c v, then JeK = (c, JvK).

□ (5.2.3∗2) By induction on the derivation of the premise by the characterization in (5.2.2∗2).
We illustrate the case for function application. By the induction hypothesis, we have the following
equations:

1. JeK = (c, λx.Je′K).

2. Je1K = (c1, Jv1K).

3. Je[v1/x]K = (c2, JvK).
2Observe that the direction of substitutions is reversed because contexts occur in a contravariant position

relative to terms.
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On the other hand, we may compute the denotational semantics, recalling from (5.2.1∗3) that
inc = stepη (1).

Je e1K = f ← JeK(γ); a← Je1K(γ); inc(f a)
= f ← (c, λx.Je′K); a← (c1, Jv1K); inc(f a) (By Items 1 and 2)
= stepc(stepc1(inc((λx.Je′K) Jv1K)))

= stepc+c1+1•(Je′K(Jv1K))

= stepc+c1+1•(Je′[v1/x]K) (By (5.2.1∗9))

= stepc+c1+1•(c2, JvK) (By Item 3)
= (c+ c1 + 1• + c2, JvK) (By definition of step)

But this is what we needed to show.

5.2.4. Computational adequacy.

(5.2.4∗1) Theorem 5.2.3∗1 states that ground operational equivalences are denotational
equalities, which we proved by exploiting the fact that operational equivalences (i.e. propositions of
the form e ⇓c v) can be characterized inductively. On the other hand, it is not as straightforward
to establish adequacy in the converse direction since an equation JeK = (c, JvK) has no analogous
mapping-out property; induction on the derivation of terms also fails.

� (5.2.4∗2) Explain the problem one encounters when trying to prove the statement “for all
e, v : 2, if JeK = (c, JvK), then e ⇓c v.” directly by induction on the derivation of e : 2.

(5.2.4∗3) One of the first lessons a PL student learns is that almost all nontrivial properties
about higher-order languages (programming language with function types) cannot be proved
by induction on the derivation of terms. A major breakthrough was made by Tait, who had
the profound insight that nontrivial semantic properties may be established by generalizing the
property to a family of type-indexed properties PA, defined so that property at the function
type A→ B is the preservation of the property at A and B. This construction/proof strategy is
commonly called a logical relations or Tait computability argument.

(5.2.4∗4) In our current context, it was Plotkin who used a binary logical relations between
syntax and semantics to establish computational adequacy in the sense of (5.1∗10). We follow
op. cit. and prove cost-sensitive generalizations of the classic computational adequacy property by
means of a logical relations construction.

; (5.2.4∗5) The formal approximation relations are a family of relations ◁A ⊆ JAK× tm(A)
defined by recursion on the structure of types:

e◁2 e
′ ⇐⇒ e val ∧ Je′K = e

e◁A→B e′ ⇐⇒ ∃[x : A ⊢ e2 : B] (e′ = λx.e′2) ∧ (∀[e1 ◁A e
′
1] e e1 ◁

⇓
B e′2[e′1/x])

In the above we write R⇓ for the lift of a relation R ⊆ JAK × tm(A) to a relation R⇓ ⊆
JAK× C× tm(A):

e R⇓ e′ = ∀[v : JAK, c : C] e = (c, v)→ ∃[v′ : tm(A)] (e′ ⇓c v′) ∧ (v ◁A v
′)
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(5.2.4∗6) Unfolding definition, we have that the proposition JeK ◁2 e is just the cost-sensitive
adequacy property we want to establish. Thus it suffices to show that all terms e : A have the
property that JeK◁A e holds. To state this precisely, we first lift the formal approximation relations
to contexts.

; (5.2.4∗7) We may define a family of relations ◁Γ ⊆ JΓK × Sub(·,Γ) indexed in a context Γ
between the corresponding semantic contexts and closing substitutions:

·◁· ∗ ⇐⇒ ⊤
(γ, v)◁Γ,x:A s, v

′/x ⇐⇒ (γ ◁Γ s) ∧ (v ◁A v
′)

□ (5.2.4∗8) Formal approximation relations are closed under head expansion: if e◁⇓A e
′′ and

e′ 7→ e′′, then inc(e)◁⇓A e′.

□ (5.2.4∗9) This follows from the fact that e′′ ⇓c v and e′ 7→ e′′ implies e′ ⇓1•+c v.

□ (5.2.4∗10) If e◁⇓A e
′′ and e′ c−→

∗
e′′, then stepc(e)◁⇓A e′.

□ (5.2.4∗11) By induction on the derivation of e′ c−→
∗
e′′ and (5.2.4∗8).

5.2.5. Fundamental lemma of logical relations.

(5.2.5∗1) We write Γ ⊢ e◁A e
′ when for all γ ◁Γ s, we have that e(γ)◁⇓A e

′[s].

(5.2.5∗2) We aim to prove the fundamental lemma of logical relations: Γ ⊢ JeK ◁A e for all
terms Γ ⊢ e : A.

□ (5.2.5∗3) We have that JyesK ◁2 yes and JnoK ◁2 no.

□ (5.2.5∗4) By definition of values (5.2.1∗5) and formal approximation at 2 (5.2.4∗5).

(5.2.5∗5) Given a map f : A×B → C, we write f̃ : A→ CB for its exponential transpose.

(5.2.5∗6) Given maps f : G→ C×BA and g : G→ C×A, we write ev(f, g) : G→ C×B for
the monadic evaluation map:

ev(f, g)(x) = f ′ ← f(x); a← g(x); inc(f ′(a))

□ (5.2.5∗7) If Γ, x : A ⊢ e◁B e′, then Γ ⊢ ẽ◁A→B λx.e′.

□ (5.2.5∗8) Fixing a compatible pair γ ◁Γ s, we need to show that ẽ(γ) ◁A→B (λx.e′)[s].
Unfolding the definition of formal approximations, we further suppose v ◁A v′ and aim to
to show ẽ(γ)(v) ◁⇓B e′[s][v′/x], which is equivalent to showing v ◁A v′ and aim to to show
e(γ, v)◁⇓Be

′[s, v′/x]. Observing that (γ, v)◁Γ,x:As, v
′/x, the result then follows from the assumption

that Γ, x : A ⊢ e◁B e′ holds.

□ (5.2.5∗9) If Γ ⊢ e◁A→B e′ and Γ ⊢ e1 ◁A e
′
1, then Γ ⊢ ev(e, e1)◁B e′ e′1.

□ (5.2.5∗10) Fixing γ ◁Γ s, we must show ev(e, e1)(γ) ◁⇓B (e′ e′1)[s], which means to show
ev(e, e1)(γ)◁⇓B e′[s] e′1[s]. By the premises we have the following:

1. e(γ)◁⇓A→B e′[s].

2. e1(γ)◁⇓A e
′
1[s].
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Writing (c1, f) = e(γ) and (c2, a) = e1(γ), this means we have e′[s] ⇓c1 f ′ and e′1[s] ⇓c2 a′ for
some f ′ and a′ such that f ◁A→B f ′ and a◁A a

′. Because f ′ is a value, it must take the form
λx.e′ for some e′. By the definition of formal approximation, we then have that f(a)◁⇓B e′[a′/x].
Since we have e′[s] e′1[s]

c1−→
∗
(λx.e′) (e′1[s])

c2−→
∗
(λx.e′) a′ 7→ e′[a′/x], the result then follows by

(5.2.4∗10) and computing in the denotational semantics:

ev(e, e1)(γ) = f ← e(γ); a← e1(γ); inc(f a)
= f ← (c1, f); a← (c2, a); inc(f a)
= stepc1+c2(inc(f a))

= stepc1+c2+1•(f a)

□ (5.2.5∗11) The fundamental lemma of logical relations (5.2.5∗2) holds.

□ (5.2.5∗12) By (5.2.5∗3), (5.2.5∗7) and (5.2.5∗9).

 (5.2.5∗13) Given a closed program e : 2, we have that JeK = (c, JvK) if and only if e ⇓c v.

□ (5.2.5∗14) By Theorem 5.2.3∗1 and (5.2.5∗11).

□ (5.2.5∗15) Cost-sensitive computational adequacy restricts to a classic computational adequacy
theorem in the functional phase: given a closed program e : 2, we have that JeK = (− : 1, JvK) if
and only if e ⇓ v.

□ (5.2.5∗16) In the functional phase, the cost monoid C restricts to a point, and so the proposition
e ⇓c v is equivalent to ∃[c : C] e ⇓c v.

5.3. COST MODELS

(5.3∗1) Orthogonal to the distinction between denotational and operational cost semantics,
cost analysis of programs may be conducted relative to different cost models. Generally speaking
cost models are divided into whether they operate at a language level or at an algorithmic/problem
level. For instance (4.3.2∗2) and (4.3.2∗3) exhibits denotational cost analyses in which the
cost model varies with respect to different problems. On the other hand, Sections 5.2.1 and 5.2.2
illustrate language-level cost models in the denotational and operational style, respectively, in
which the cost of programs are given uniformly in a predetermined fashion. Thus we have the
following classification of approaches to cost analysis in calf :

Algorithmic-level cost model language-level cost model
Denotational Euclid’s algorithm (4.3.2∗2), Sorting (4.3.2∗3) STLC Section 5.2.1
Operational STLC Section 5.2.2

(5.3∗2) The role of cost-sensitive computational adequacy is to relate the first row of (5.3∗1) to
the second row. For example, a calf cost bound on any function f in the image of the denotational
cost semantics of the STLC is also an operational cost bound for some STLC program f by
appealing to cost-sensitive computational adequacy.



chapter 6

Domain theory

(6∗1) The last few chapters of this dissertation aim to generalize the results of Chapter 5 to
Plotkin’s PCF, a language that features general recursion. Recall that the call-by-push-value
decomposition of PCF is defined as the following inductive family of terms:

Γ, x : A ⊢ x : A Γ ⊢ zero : nat
Γ ⊢ v : nat

Γ ⊢ suc(v) : nat

Γ ⊢ e : nat Γ ⊢ e0 : X Γ, z : nat ⊢ e1 : X
Γ ⊢ ifz(e, e0, z.e1) : X

Γ, x : A ⊢ e : X
Γ ⊢ λx.e : A→ X

Γ ⊢ e : A→ X Γ ⊢ e1 : A
Γ ⊢ e e1 : X

Γ, x : UX ⊢ e : X
Γ ⊢ fix(x.e) : X

Γ ⊢ a : A
Γ ⊢ ret(a) : FA

Γ ⊢ e : FA Γ, a : A ⊢ e1 : X
Γ ⊢ bind(e, a.e1) : X

There are two purposes of considering the call-by-push-value version of PCF. First, as observed
in (4.1.3∗9), separating values and computations at the level of types allows us to smoothly
integrate cost structure as an abstract computational effect. Second, since both call-by-value and
call-by-name PCF have canonical decompositions in call-by-push-value PCF, by framing our
work around the general case we easily obtain the corresponding results for call-by-value and
call-by-name by composing with the respective decompositions.

(6∗2) A general recursive function in PCF permits function definitions such as the following:

f : Fnat→ Fnat
f = fix(λf, x.bind(f x;λn.ret(n+ 1)))

which satisfies the following equation:

f(x) = bind(f x;λn.ret(n+ 1)))

The function f cannot shown to be well-defined by means of structural recursion. Instead,
functions of PCF are defined by means of a fixed-point semantics in which recursive definitions
are interpreted as (least) fixed-points.
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(6∗3) Construed as a function N → N in Set, f clearly cannot possess any fixed-points.
Intuitively one should think about the meaning of f(x) as a divergent or undefined value that
infects every subsequent computation, rendering f(x) and bind(f x;λn.ret(n+ 1))) to be equally
undefined values. Mathematically we accomplish this by an operation called lifting that adjoins a
new value ⊥ to N and assigning the meaning of f to be the totally undefined map determined by
⊥, rendering ⊥ a fixed-point of f .

(6∗4) In general merely extending sets with a distinguished element ⊥ is not enough to give a
proper account of the fixed-point semantics of programs. The semantic picture is that one also
needs to enrich sets with an order relation called the information order encoding the amount of
definite information is conveyed by any element. This suggests that our semantic domain is a
category of posets in which functions are monotone with respect to the information order. In
fact when working with posets with strong enough completeness properties, monotonicity alone is
enough to guarantee the existence of fixed-points [92]. However, to obtain a tight correspondence
between the fixed-point and the operational semantics, one commonly works with continuous
maps that in addition preserve the existing joins in a chosen class of posets. From an information-
theoretic perspective, this can be understood as requiring that the output of a function f on a
consistent gluing of elements

∨
D can be determined as a consistent gluing of pieces of the output∨

f(D).

2 (6∗5) The study of the order-theoretic structure of recursive functions and recursive types is
called domain theory. In Section 6.1 we outline the relevant domain theory needed for our results;
the reader is referred to Scott and Strachey’s seminal work for the origins of domain theory and
denotational semantics [107, 105, 106] and Abramsky and Jung [2] and Streicher [123] for textbook
accounts.

6.1. DOMAIN THEORY

; (6.1∗1) A poset D is closed under ω-joins when for all ascending chains N→ D is equipped
with a least upper bound. An ω-cpo is a poset closed under all ω-joins.

(6.1∗2) Observe that a poset that is orthogonal (3.5∗2) to the figure shape {0 ⊑ 1 . . .} ↪→
{0 ⊑ 1 ⊑ . . . ⊑ ∞} is equipped with an upper bound for every ω-directed set:

{0 ⊑ 1 . . .}

D

{0 ⊑ 1 ⊑ . . . ⊑ ∞}

Thus a such poset D is an ω-cpo if and only if every down set ↓(d) is also orthogonal to
{0 ⊑ 1 . . .} ↪→ {0 ⊑ 1 ⊑ . . . ⊑ ∞}.

; (6.1∗3) A function D → E between ω-cpo’s continuous when it preserves ω-joins. We write
ωCPO for the category of ω-cpo’s and monotone and continuous functions.

; (6.1∗4) A pointed ω-cpo or ω-cppo is an ω-cpo equipped with a least element, usually denoted
as ⊥.
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; (6.1∗5) A continuous function D → E is strict when it preserves least elements. We write
ωCPPO for the category of pointed ω-cpo’s and strict maps.

� (6.1∗6) The Kleene chain klf : N → D associated to an endomap f : D → D of pointed
ω-cpo’s is defined to be the finite n-fold self-composition of f applied to the least element:
klf (n) = f (n)⊥.

□ (6.1∗7) The main purpose of considering posets closed under ω-joins is Kleene’s fixed-point
theorem: every endomap f : D → D of pointed ω-cpo’s possesses a least fixed-point, defined as
the ω-directed join of its associated Kleene chain.

6.1.1. Constructions on domains.

� (6.1.1∗1) The free ω-cpo on a set X equips X with the discrete or flat ordering in which
x ⊑ y if and only if x = y. We sometimes write Disc(X) for the free ω-cpo on X; it has the
following universal property with respect to every ω-cpo D:

X

D

Disc(X)

In other words, every (not necessarily continuous) function f : X → D extends to a unique
continuous function f : Disc(X)→ D. This construction extends to an adjunction ωCPO

←−
⊥
−→

Set
in which the left adjoint Disc sends a set X to the discrete ω-cpo X and the right adjoint sends
an ω-cpo to it underlying set.

� (6.1.1∗2) The free ω-cppo on an ω-cppo has the underlying set D⊥ = {⊥} ⊔D extending D
with a new distinguished element ⊥. The order relation on D⊥ is defined by x ⊑ y if and only if
x = ⊥ or x ⊑ y in D. This construction has the following universal property:

X

D

X⊥

in which a continuous map out of X extends to a strict (bottom-preserving) continuous map on
X⊥. The free ω-cppo construction extends to a functor ⊥ : ωCPO→ ωCPPO left adjoint to the
forgeful functor ωCPPO→ ωCPO.

□ (6.1.1∗3) A domain may be equivalently defined as an algebra (see Section 3.2.4) for the lift
monad L determined by the free-forgetful adjunction ωCPPO

←−
⊥
−→
ωCPO .

 (6.1.1∗4) The category of pointed ω-cppo’s ωCPPO is equivalent to the category of lift
algebras on ωCPO.
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(6.1.1∗5) The category of ω-cpo’s is Cartesian closed, with products and exponential defined
pointwise. The adjunction ωCPPO

←−
⊥
−→
ωCPO furnishes a model of call-by-push-value PCF in

which value types are interpreted as ω-cpo’s and computation types are interpreted as lift algebras.
The fixed-point operator fix : (X → X)→ X is interpreted as the least fixed-point operator by
means of (6.1∗7).

6.2. CONSTRUCTIVE DOMAIN THEORY

(6.2∗1) The domain theory outlined Section 6.1 is sufficient to give a denotational semantics
of ordinary PCF. To account for cost structure, we would like to work in a topos model of the FC
phase distinction. In other words, instead of defining ω-cpos relative to Set, we work internally to
some topos E equipped with a phase distinction φ.

(6.2∗2) As explained in Section 3.2, the internal language of a topos is an intuitionistic type
theory. On the other hand, the definition of the free ω-cpo on a set given in (6.1.1∗2) necessitates
the use of classical principles that are not constructively valid. In particular, the proposition that
X⊥ is closed under ω-joins is equivalent to the limited principle of omniscience [31, Proposition
3.4.1]:

(LPO) Every binary sequence N→ 2 either contains a 1 or not.

For the maximum applicable of results, when working axiomatically in the internal language of a
topos it is crucial that we do not rely on non-constructive principles such as LPO.

(6.2∗3) In a topos, the counterpart to the lifting operation of (6.1.1∗2) is given by the partial
map classifier (defined in (6.2.1∗6)), giving rise to a constructive version of the theory outlined in
Section 6.1. In Section 6.2.1 we present the necessary notions of this constructive domain theory
from de Jong [31]. Although we will follow op. cit. and work in terms of directed complete partial
orders (dcpos), the results of this thesis do not rely on the full generality of dcpos.

6.2.1. Constructive domains.

(6.2.1∗1) This section should be understood in the internal language of a topos. The external
meaning of internal definitions and theorems may be unfolded by means of the Kripke-Joyal
semantics as explained in Section 3.2.2.

; (6.2.1∗2) A directed family in a poset D is a family α : I → D such that every pair of elements
αi, αj : D has an upper bound.

; (6.2.1∗3) A dcpo is a poset closed under all directed joins. A pointed dcpo or dcppo is a dcpo
equipped with a least element. A morphism of dcpos is a function D → D preserving all directed
joins.

□ (6.2.1∗4) Every dcpo is an ω-cpo.

 (6.2.1∗5) Every pointed dcpo endomap X → X possesses a unique fixed-point.

; (6.2.1∗6) In contrast to ω-cpos, lifting of dcpos is defined in terms of the partial element
classifier. The action of lifting on points is defined as follows. L(A) = Σφ:Ω.φ → A. Partial
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elements u, v : LA are ordered in a pointwise fashion. Writing u↓ : Ω for the termination support
of u, we define u ⊑ v to hold if and only if u↓ implies v↓ and whenever u↓ holds, u ⊑ v in the
dcpo A.

� (6.2.1∗7) The lifting functor L has the structure of a monad L = (L, η, µ):

ηA : A→ LA
ηA(a) = (⊤, λ− .a)

µA : L(LA)→ LA
µA(φ, f) = (∃[u : φ] ψ(u), a)

In the above, we write ψ : φ→ Ω for the map ↓ ◦f and a : ∃[u : φ] ψ(u)→ A for the partial
element determined by π2f .

(6.2.1∗8) Observe that the subobject classifier Ω = L1 is always an internal dcpo, with
directed-joins computed by means of the ambient topos join ∃.

6.2.2. Closure properties of domains.

(6.2.2∗1) For any universe U in E we have internal categories of U -small dcpos and pointed
dcpos. However since internal categories are somewhat unwieldy, we will work with ordinary
categories of domains (i.e. a category internal to Set) given by externalizing internal categories.
Fixing E = Î to be a presheaf topos, we have a category D of internal dcpos fibred over Î. The
fibre category over the terminal object of Î obtains us an ordinary category C consisting of (small1)
internal dcpos.

□ (6.2.2∗2) C is Cartesian closed with products and exponentials computed pointwise [31].

(6.2.2∗3) To get a category of internal dcppos, we observe that the internal lifting monad
restricts to an ordinary monad C → C . Define C L to be category of dcppos, i.e. the category of
lift algebras over C .

(6.2.2∗4) Thus similar to the situation of ω-cpos, we again have an adjunction C L
←−
⊥
−→

C

suitable to give the denotational semantics of PCF. Moreover, by instantiating the construction
at the presheaf topos Î, we obtain an account of the denotational cost semantics of PCF.

□ (6.2.2∗5) The intermediate proposition u : Î is a dcpo.

□ (6.2.2∗6) Because every directed family in a proposition φ determines a proof u : φ, from
which the result follows since φ = 1 is clearly a dcpo.

□ (6.2.2∗7) For every dcpo A,  A is a dcpo.

□ (6.2.2∗8) This follows from the cocompleteness of dcpos.

(6.2.2∗9) Thus we may interpret the (partial) cost effect FA by lifting the interpretation
of A paired with a sealed discrete dcpo C serving as the cost monoid. The idea is that such a

1Externally, a type-theoretic universe U in E is given by the Hofmann-Streicher lifting [60] of an ambient
Grothendiekc universe U . A U-small internal category then externalizes to an ordinary U -small category.
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cost-sensitive model restricts to an ordinary model of the pure functional semantics of PCF in
the slice category C /u.

(6.2.2∗10) Currently the observations of (6.2.2∗9) are of limited utility because they are
external statements about C . To fully reap the benefits of the phase distinction as a tool for
reasoning about cost-sensitive programs, we will embed C in a model of synthetic domain theory
(see Chapter 7), integrating domain-theoretic maps with the full logical facilities provided by the
internal type theory of a topos.

6.3. TOPOLOGICAL VIEW OF DOMAINS

(6.3∗1) Although the order-theoretic presentation of domains may seem somewhat esoteric
from the point of view of mainstream mathematics, a domain (more precisely a dcpo) can be also
seen as a kind of space, and many concepts of domain theory may be motivated from a topological
point of view. We will outline this view of domains as spaces, which will serve to provide some
geometric intuition when we move on to synthetic domain theory in Chapter 7.

� (6.3∗2) Every dcpo D may be equipped with a topology called the Scott topology. The
open sets of this topology are given by subsets of D that are both upwards-closed (up sets) and
inaccessible by directed join. This latter condition means that for every directed subset S ⊆ X, if∨
S is contained in an open set U , we have that there exists s ∈ S such that already s ∈ U . In

other words, one cannot start with a directed set disjoint from U and reach U via directed joins.

x (6.3∗3) The Scott topology on a discrete dcpo is the discrete topology.

 (6.3∗4) Computationally, we think of an open subset as an observable or computational
predicate. The fact that observations are required to be upwards-closed corresponds to the
following property: computationally speaking, once an element has been apprehended, i.e. deemed
to belong to an observation class, any further (consistent) information about the element should
not negate its apprehension. For example, any observation that apprehends the undefined element
⊥ must also apprehend every element (of the domain).

 (6.3∗5) Moreover, the inaccessibility of open sets by directed joins evinces the finite character
of observations. Taking the example of an observation over functions Φ(f), whenever a recursive
function fix(f) is apprehended by Φ, so must a finite prefix f (n) of fix(f) have been apprehended
as well.

(6.3∗6) Recall the Sierpiński space Σ from (3.2.2∗9), whose open sets are given by the up
sets on the interval I = {0 ⊑ 1}. In a classical metatheory, Σ has the following universal property:
it is the open subset classifier. More precisely, this means that every open U ↪→ X of a space X
arises as the pullback of the generic open ⊤ : 1→ Σ determined by {1} ∈ O(Σ):

U

X

1

Σ

⊤

The characteristic map X → Σ is defined as follows.
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x 7→
{
1 if x ∈ U
0 o.w.

Conversely, the open subset associated to a map f : X → Σ is given by f−1(1).

(6.3∗7) In the internal domain theory of an arbitrary (non boolean) topos, the Sierpiński
space Σ is defined to be the ind-completion/ideal-completion/free dcpo on {0 ⊑ 1}, i.e. the
subobject classifier Ω (in a classical metatheory the ind-completion is identity on {0 ⊑ 1}). Thus
constructively, we have that Scott-open subsets of a dcpo D are in unique correspondence with
continuous predicates X → Σ. These subsets play an important role in Chapter 7 as they are used
to define finite coproducts in the category of internal dcpos (6.2.2∗1).

; (6.3∗8) One may associate a preorder relation called the specialization preorder to every
topological space X: we define x ⊑ y if and only if every open set containing x also contains y.

(6.3∗9) In view of (6.3∗7), we have that the specialization preorder on a dcpo D is such that
x ⊑ y if and only if f(x) implies f(y) for every continuous f : D → Σ. One may verify that this
coincides with the original order on D. In synthetic domain theory we call the specialization order
on a type its intrinsic order.

� (6.3∗10) Use (6.3∗9) to show that a function between dcpos D → E is continuous (in the
domain-theoretic sense) if and only if it is continuous (in the topological sense with respect to the
Scott topology).
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Synthetic domain theory

(7∗1) The goal of this chapter is to integrate the type theory calf of Chapter 4 with the
domain-theoretic structure discussed in Chapter 6. Our tool of choice to produce semantic models
of such an integration is synthetic domain theory (SDT) [62].

(7∗2) Synthetic domain theory as a field started when Dana Scott conjectured that one ought
to be able to reason about domains as if they were just special sets provided that one employs
a constructive ambient metalanguage. In technical terms, this metalanguage can be construed
as the internal languages of a topos, i.e. an extensional dependent type theory. In general it is
difficult to reconcile the domain-theoretic structure with the rich logical structure of dependent
type theory, so the quest for SDT was in essence about constructing full subcategories of topoi
that supported domain-theoretic constructions. Fullness is a critical property — it means that
every map definable in type-theoretic language is a domain morphism, which absolves one from
checking onerous side conditions (namely monotonicity and continuity of maps) when working
internally.

(7∗3) There are two well-known ways to obtain models of synthetic domain theory: one based
on realizability (Hyland [62], Phoa [94], Reus [98]) and one based on sheaf topoi (Rosolini [103],
Fiore and Rosolini [39], Fiore and Plotkin [38], Matache et al. [82]). In this dissertation we will
employ relative sheaf models of SDT based on the work of Sterling and Harper. The rough idea
is that given a basic domain-theoretic site C , the (pre)sheaf topos on C contains a reflective
subcategory of synthetic predomains so that the image of every concrete predomain in C under
the Yoneda embedding is a synthetic predomain. A relative sheaf model of SDT just means that
instead of an ordinary site C , the construction is based on an internal site or a site fibred over
some base topos E . For the purposes of modeling cost structure, naturally we will define a site
internal to Î (in particular, we will employ the category of internal dcpos as defined in (6.2.2∗1)).

(7∗4) The structure of this chapter is as follows. In Section 7.2, we define an axiomatization
dubbed basic domain-theoretic category (BDTC) that serves to identify appropriate domain-
theoretic sites for our sheaf model of SDT. In Section 7.3, we introduce the axioms of cost-sensitive
synthetic domain theory and show that the category of synthetic predomains admit a model of
BDTC. In Section 7.4, we substantiate the axioms of cost-sensitive SDT by constructing a model
of cost-sensitive SDT from every BDTC following the outline in (7∗3).

78
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7.1. WHAT IS SYNTHETIC ABOUT SYNTHETIC DOMAIN THEORY?

(7.1∗1) While studying the primary literature on synthetic domain theory the reader is likely
to encounter a separate subfield of domain theory called axiomatic domain theory (ADT) [34],
which aims to both find concrete models of domains and give universal characterizations to domain
constructions. Although related, these two subfields of domain theory serve distinct purposes. In
this section I will attempt to clarify the picture by illustrating the relationship between synthetic
and axiomatic domain theory (in the context of this thesis) through the simpler theory of preorders.

7.1.1. Synthetic and axiomatic preorder theory.

(7.1.1∗1) The theory of preorders is not only ideal for illustration purposes but also relevant
to the subject of cost analysis, as demonstrated in the work of Grodin et al. on extending the calf
type theory to account for higher-order, effectful programs. Briefly op. cit. argue that instead
of artificially limiting a cost bound to have the form A → C for some monoid C, one should
consider general program inequalities e ⊑ e′, which means that programs should be modeled in a
preorder-enriched category with sufficiently nice closure properties to accommodate the existing
type connectives of calf .

Now a clear candidate for such a category is Preord, the category of preorders and monotone
maps. However, it is difficult to construct models of dependent type theories out of categories of
order-like objects (preorders, posets, categories) because they are not locally Cartesian closed.1

� (7.1.1∗2) The approach of Grodin et al. [46] (and indeed of synthetic domain theory) is to
start, at least conceptually, from the opposite end: isolate within type theory a class of types that
behave like preorders, which one may call synthetic preorders. The benefit of such a synthetic
theory of preorders is that one has a unified language to reason about both general mathematical
objects and these distinguished objects equipped with an intrinsic preorder relation. Moreover, one
may arrange the semantics of the theory so that every internal type-theoretic construction respects
the intrinsic preorder (in the case of synthetic domain theory this corresponds to constructions
being both monotone and continuous).

(7.1.1∗3) A typical (perhaps even defining) feature of synthetic formulations of classical
theories such as preorders/domains/smooth spaces is that one aims to find a special object in
an ambient type theory or intuitionistic set theory such that the development of the theory can
proceed by assuming a few axioms on the distinguished object. In the case of preorders, the
interval preorder I = {0 < 1} plays the role of the distinguished object.

There are two ways to understand how the interval can be used to derive a theory of synthetic
preorders. First, observe that given a preorder P , ordered pairs in P are in one-to-one corre-
spondence with monotone maps I → P , which we may visualize as paths in P . Thus one may
express the preorder relation in terms of paths: x ⊑P y ⇐⇒ ∃[α : I→ P ] ∂(α) = (x, y), where
∂(α) = (α 0, α 1) is the boundary of the path α.

Alternatively, we may use I in the dual role as the classifier of upwards closed subsets (cf . Σ
as the classifier of Scott-open subsets as in (6.3∗6)). More precisely, we have that maps P → I

1In particular the pullback functor f∗ : Preord/P → Preord/Q does not preserve all colimits and so cannot
have a right adjoint Πf : Preord/Q → Preord/P , which is used to give the categorical semantics of dependent
product types; for details see Hazratpour [55, p. 3].
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are in one-to-one correspondence with upwards closed subsets of P . As in the topology view of
domains in Section 6.3, there is an analogous intrinsic/specialization preorder on P defined by
x ⊑◦P y

def= ∀[f : P → I] f x ⊑ f y, which coincides with the original preorder on P .

(7.1.1∗4) The point of thinking about preorders in terms of maps into/out of the interval
object I is that the definitions of (7.1.1∗3) can be used to induce a preorder relation on general
types that are not a priori preorders, thus furnishing a convenient mechanism for axiomatizing
preorders in type theory. More precisely, the synthetic preorder theory of Grodin et al. [46] is
entirely derived from the existence of a bipointed object 0, 1 : I satisfying an axiom called Phoa’s
principle for preorders whose domain-theoretic analog we explain in (7.2.2∗5). In op. cit. the
synthetic preorder is defined in terms of paths2 in order to ensure that preorders become discrete
in the functional phase, a property achieved by requiring I to be sealed (recall from Section 3.3
that this means ¶ → (I ∼= 1)). Internal to the type theory, every map f : P → Q is monotone
with respect to the synthetic preorder, which is evident since from a path I→ P one obtains the
required path I→ Q by postcomposing with f .

(7.1.1∗5) As observed in (7.1.1∗1), one cannot directly interpret the axioms of synthetic
preorder theory into Preord because the latter is not a model of type theory. A well-known way
to make poorly structured categories such as Preord into models of type theories is by means of
the Yoneda embedding.

Note that P̂reord would be a model of type theory if we were able to take presheaves on
Preord, which is unfortunately not a small category. To accommodate the fact that the semantic
category is not necessarily small, recall from (3.1.4∗5) that a full subcategory D ↪→ C is dense
when the nerve/restricted Yoneda embedding N : C → [Dop,Set] is fully faithful. The idea is
that we want a small3 subcategory D ↪→ C that “contains” all the basic pieces from which every
object in C can be reconstructed as a canonical colimit.

In the case of preorders the (small) category ∆ of nonempty finite ordinals {[n] | n ≥ 0} and
monotone maps furnishes a dense subcategory of Preord. Indeed, even just the full subcategory
∆⊑1 suffices, since every preorder P is given by a canonical colimit involving the generating set
(given by maps [0]→ P ) and order relation (given by maps [1]→ P ). The category of presheaves
over ∆ then provides a model of type theory that in addition admits a synthetic preorder theory
in which the interval object is just the image of the actual interval preorder {0 < 1} under the
nerve N : Preord ↪→ ∆̂.

(7.1.1∗6) We may derive a preorder relation on individual types, but what is the structure
of such synthetic preorders as a collection? In other words, what are the categorical properties
of the (full, sub) category of synthetic preorders? This is important if we want to be able to
implement algorithms (such as the ones discussed in Section 4.3) in a natural and ergonomic
programming language. The study of such structural properties may well be dubbed axiomatic
preorder theory, parallel to the relationship between synthetic and axiomatic domain theory. The
axiomatic preorder theory of Grodin et al. [46] can be summarized as requiring synthetic preorders

2The path relation is not necessarily transitive and pointwise on functions in all models [35, Example 6.8]; to
solve this Grodin et al. [46] restrict attention to the so-called path-transitive and boundary-separated types.

3The reason that smallness is desirable is that a lot of nice properties of the category of presheaves such as
Cartesian closure only hold when the base category is small. An alternative would be to assume the existence of
Grothendieck universes and relativize everything in sight to a Grothendieck universe U . In fact this is the approach
we take in (6.2.2∗1) since there is no obvious small dense subcategory of the category of dcpos.
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to form a Cartesian closed preorder-enriched category that is closed under dependent products
and discretely indexed dependent sums. At a high level, the results of op. cit. show that every
model of synthetic preorders in the sense of (7.1.1∗4) supports a full subcategory of synthetic
preorders complying with the axiomatic preorder theory outlined above.

7.2. AXIOMATIC DOMAIN THEORY

(7.2∗1) In this section we recall and outline basic notions in axiomatic domain theory (ADT),
the domain-theoretic counterpart to the axiomatic preorder theory discussed in (7.1.1∗6). Similar
to the axiomatic theory of preorders, the role of ADT is to provide the structural basis for the
semantics of typed programming languages that in addition accounts for higher-order/general
recursion. A difference in comparison to the situation of Section 7.1.1 is that ADT is used to
give the general axiomatic requirements on both the base category and the resulting category of
synthetic (pre)domains. This kind of extension of models of ADT to models of SDT in which the
category of synthetic predomains is again a model of ADT was pioneered in Fiore and Plotkin
[38] and adapted in Sterling and Harper [122] to account for the presence of information flow
structures. Although in the discussion for preorders we have fixed Preord for the base category, it
would be reasonable to also develop general extension results along the lines of Fiore and Plotkin
[38] by calibrating the axiomatic preorder theory outlined in (7.1.1∗6).

(7.2∗2) Similar to the concrete categories of domains in Chapter 6, a model of ADT consists
of a category C equipped with a lift monad L = (L, ηL, µL) whose algebras can be thought of as
domains. The main ingredient in the (relatively basic) axiomatic domain theory used in this thesis
is the familiar limit-colimit coincidence evinced by the inductive fixed-point object, an object ω : C

that is both an initial L-algebra and a final L-coalgebra. Here inductive refers to a property of the
fixed-point object used to link the axiomatic development to the ambient synthetic domain theory
(which we discuss in Section 7.3).

2 (7.2∗3) For a much fuller and more detailed account of axiomatic domain theory, we refer the
reader to Marcelo Fiore’s dissertation [34].

7.2.1. Partial maps, dominance, lifting.

; (7.2.1∗1) In a category C with pullbacks, a partial map A ⇀ B is a span A ←↩ D → B

consisting of a monomorphism D ↪→ A on which A ⇀ B is defined; we also call D ↪→ A the
termination support of a partial map.

; (7.2.1∗2) To obtain a category of partial maps, the class of monos serving as the domain of
definition must be closed under identity and composition. Such a class is called a dominion in
Rosolini [103].

(7.2.1∗3) Similar to how we built a synthetic preorder theory in Section 2.3 around the
interval object I, we will base the development of synthetic domain theory around a fundamental
object Σ equipped with two distinguished points ⊥,⊤ : Σ called the dominance that has the
following roles.
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1. The dominance Σ classifies the dominion, i.e. the domain of definition of every partial map
A ←↩ D → B arises from a unique map A → Σ. By analogy to concrete categories of
predomains (6.3∗6) we also call these subsets Scott-open subsets.

2. A map f : Σ→ A can be thought of as a path in A whose endpoints are determined by the
boundary (f ⊥, f ⊤).

Similar to the situation in (7.1.1∗3), one may induce a domain-theoretic/information-theoretic
(pre)order on predomains by means of the specialization or path relation relative to Σ, whose
definition and relationship we elaborate in Sections 7.3.2 to 7.3.4. Although the somewhat dual
roles of the dominance might seem strange at first, we show in (7.2.2∗4) that it is semantically
natural to classify paths in a type in terms of Σ.

; (7.2.1∗4) Given a category C with finite limits, we fix an object Σ equipped with a map
⊤ : 1→ Σ. A Σ-subset or Σ-subobject is a (necessarily monomorphic) map U ↪→ X obtained as
the pullback of ⊤ along some X → Σ. We say that U ↪→ X is classified by Σ when there is a
unique characteristic map X → Σ making the following a pullback diagram:

U

X

1

Σ

⊤

A Σ-partial map is a partial map whose support is a Σ-subset.

; (7.2.1∗5) We call (Σ,⊤) a dominance when the following conditions hold [38].

1. Every Σ-subset is classified by Σ and the collection of Σ-subsets form a dominion.

2. The base change functor ⊤∗ : C /Σ → C along ⊤ : 1 → Σ sending a family
X

↓
Σ

to the

corresponding Σ-subset has a right adjoint called the lift structure.

More explicitly, the second condition states that every Σ-partial map A←↩ U → B corresponds
to a unique total map A→ L(B). When C is locally Cartesian closed, we may define the right

adjoint ⊤∗ : C → C /Σ by sending X to the first projection
Σφ:Σ.φ→ X

↓
Σ

. The right adjoint gives

rise to a functor L : C → C called the lift functor that sends an object X to the dependent sum
Σφ:Σ.φ→ X.

(7.2.1∗6) In the internal language of a topos, a dominance is just a collection of propositions
φ : Ω closed under ⊤ : Ω and dependent sums: φ : Σ and f : φ→ Σ implies Σφ:Σ.f : Σ. Observe
that Σφ:Σ.f is a proposition because given (u, p) : Σφ:Σ.f and (u′, p′) : Σφ:Σ.f , we have u =φ u

′

since φ is a proposition and p =f(u) p
′ is a proposition since f(u) =Σ f(u′) is a proposition. We

also write φ∠f for the dependent sum Σφ:Σ.f .
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(7.2.1∗7) For domain-theoretic applications, it is necessary to also assume that the empty
sub-domain of any domain is a Σ-subset. Therefore, we also assume that the dominance also
classifies subsets of the form ∅ → X whenever the ambient category has an initial object ∅.

x (7.2.1∗8) The subobject classifier ⊤ : 1→ Ω always determines a dominance.

x (7.2.1∗9) In a topos, both the subobject classifier Ω and the collection {⊥,⊤} with the map
determined by the element ⊤ form dominances; the former classifies all subsets by definition, and
the latter classifies decidable subsets.

x (7.2.1∗10) In a category of (pre)orders, the internal I = {0 ⊑ 1} and the map 1 : 1→ I form
a dominance classifying upwards-closed subsets.

x (7.2.1∗11) In a category of domains, the internal I is a dominance classifying Scott-open
subsets.

x (7.2.1∗12) In a category of internal domains (6.2.2∗1), the subobject classifier of the ambient
topos and the map ⊤ : 1→ Ω form a dominance classifying (internally) Scott-open subsets.

x (7.2.1∗13) In a topos satisfying countable choice, the set of semi-decidable propositions
{φ : Ω | ∃[f : N→ 2] (φ = (∃[n : N] f n = 1))} forms a dominance called the Rosolini dominance
classifying the semi-decidable subsets.

(7.2.1∗14) The construction in (6.2.1∗7) shows that the lift structure relative to the dominance
determined by the subobject classifier has the structure of monad. Observe that this generalizes
to any dominance Σ because 1) monad unit can always be defined since ⊤ : Ω is required to be
a Σ-proposition and 2) monad multiplication can always be defined because Σ-propositions are
closed under dependent sums (7.2.1∗5). We write L = (L, η, µ) for the resulting lift monad.

(7.2.1∗15) The lift monad is also called the Σ-partial map classifier because every Σ-partial
map A←↩ U → B appears as the pullback of a unique map A→ LB as follows.

U

A

B

LB

ηB

(7.2.1∗16) Given a partial element e : LA, we write e↓ : Σ for its support, i.e. −↓ is the first
projection L(A)→ Σ. When it is known that e↓ holds, we may write e : A for the defined element.

7.2.2. Phoa’s principle.

(7.2.2∗1) So far we have not constrained the possible choices for Σ aside from properties
needed to ensure that Σ-partial maps are closed under identity and composition. However, neither
of the two obvious, extreme choices for the dominance necessarily leads to suitable models of
axiomatic domain theory.

On the one hand, we may consider Σ = 2, which means we consider only decidable partial
maps whose termination support is a decidable proposition. In this case the induced lift functor
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L(A) = Σφ:2.φ→ A is equivalent to the functor 1+−, and thus the initial lift algebra is the natural
numbers object N and the final lift coalgebra is the extended natural numbers N∞. Consequently
the limit-colimit coincidence will likely fail because we do not have N ∼= N∞ in most standard
categories of predomains.

On the other hand, in a topos we may consider the class of all partial maps by taking Σ = Ω to
be the subobject classifier. Unlikely the situation in (7.2.1∗12), this choice will also fail because
the induced Σ-partial map classifier admits maps that are not continuous — namely we may define
a function ¬ : Σ→ Σ that takes the complement of the termination support of its input.

In this section we introduce an axiom called Phoa’s principle that eliminates such pathological
choices for the dominance and also unifies the two domain-theoretic order-like relations discussed
in (7.2.1∗3).

(7.2.2∗2) In the following we fix a Cartesian closed category C equipped with a dominance
(Σ,⊤).

; (7.2.2∗3) A path in an object A is a map Σ→ A. The boundary of a path f : Σ→ A is a
pair ∂f : 1→ A×A given by evaluating at the distinguished points ⊥,⊤ : 1→ Σ.

 (7.2.2∗4) It may be natural to wonder why the dominance Σ, which classifies the termination
support of partial maps, is also used to classify paths. The reason is that in the models of axiomatic
domain theory we consider the dominance indeed classifies paths. For instance, in the category
of dcpos internal to a presheaf topos (6.2.2∗1), we take the dominance to be Σ = Ω, where
Ω is the subobject classifier of the ambient topos. Recalling from (6.3∗7) that Ω is the free
dcpo-completion of the interval poset I, we see that continuous maps f : Ω→ A are in bijective
correspondence with monotone maps f : I→ A, which is of course just a path f(0) ⊑ f(1) in A.

; (7.2.2∗5) Let the subobject E be defined as the following equalizer:

E Σ× Σ Σ

π1

∧

We say C satisfies Phoa’s principle when the boundary map ∂ : ΣΣ → Σ× Σ factors through E
via an isomorphism followed by an inclusion: ΣΣ ∼= E ↪→ Σ× Σ.

(7.2.2∗6) In a topos, the subobject E can be expressed as the subset {(φ, ψ) | φ ⊑ ψ} of pairs
of Σ-propositions ordered by entailment. Thus Phoa’s principle states that f(⊥) ⊑ f(⊤) for any
f : Σ→ Σ, and that every ordered pair φ ⊑ ψ determines a map Σ→ Σ, with the two operations
inverse to each other.

 (7.2.2∗7) Thinking about the dominance in a category of domains as classifying observations in
the sense of (6.3∗4), Phoa’s principle implies that one may not negate observations. In the context
of recursion theory, this corresponds to the fact that the class of semi-decidable propositions
(which form the Rosolini dominance (7.2.1∗13)) is not closed under complement. We will also
use Phoa’s principle in Section 7.3.4 and (7.3.6∗6) to develop a synthetic domain theory in which
the path relation and specialization preorder on predomains coincide.
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x (7.2.2∗8) In the category of posets the interval dominance I satisfies Phoa’s principle: the
boundary of the three monotone functions I→ I corresponds to ordered pairs (0, 0), (0, 1), and
(1, 1).

x (7.2.2∗9) In the category of internal dcpos, the dominance of (7.2.1∗12) given by the
subobject classifier Ω satisfies Phoa’s principle. This is because Ω is the free dcpo-completion or
ind-completion of the interval {0 ⊑ 1}. More precisely, de Jong [31, Example 4.9.1] shows that the
family {⊥,⊤} is a (small) compact basis for Ω, thence we have that a continuous map Ω → Ω
corresponds to a unique monotone map {⊥,⊤} → Ω, i.e. a pair (φ, ψ) with φ→ ψ.

7.2.3. Inductive fixed-point object.

(7.2.3∗1) In this section we outline the main infinitary axiom of axiomatic domain theory:
the existence of a inductive fixed-point object, an object evincing a limit-colimit coincidence that
allows one to define a fixed-point operator in any complying category.

; (7.2.3∗2) Given a functor F : C → C , an F -invariant object is a fixed-point of F , i.e. an
object X such that X ∼= F (X).

; (7.2.3∗3) An F -invariant object is free when it is both an initial F -algebra and final
F -coalgebra.

(7.2.3∗4) Suppose that C possesses an initial lift algebra ω and a final lift coalgebra ω.
Thinking of the canonical inclusion ω ↪→ ω as the figure shape in which the generic chain ω is
incident with the generic chain equipped with a top element ω, the main infinitary axiom of
axiomatic domain theory is concentrated in the property that from the perspective of a category
of predomains one has that the incidence relation/inclusion ω ↪→ ω is an isomorphism, i.e. that ω
is a free L-invariant object.

. (7.2.3∗5) NB — in the current context a lift algebra refers to an algebra for the functor L as
opposed to the associated lift monad L. Recall from (3.2.4∗2) that the latter notion comes with
coherence laws that are not required of algebras of endofunctors.

; (7.2.3∗6) Note that every lift algebra α : LA → A gives rise to a successor map σα : A η−→
LA α−→ A. We write σ and σ for the successor maps associated to the initial lift algebra and final
lift coalgebra, respectively.

x (7.2.3∗7) Recall from (6.1.1∗2) that the lift D⊥ of an ω-cpo D adjoins a distinguished
element ⊥ below all existing elements of D. The initial algebra ω for the lift functor ⊥ is the
canonical infinite chain equipped with a point at infinity: {0 ⊑ 1 ⊑ . . . ⊑ ∞}. The algebra map
ω⊥ → ω is defined as follows.

{⊥ ⊑ 0 ⊑ 1 ⊑ . . . ⊑ ∞} → {0 ⊑ 1 ⊑ . . . ⊑ ∞}
⊥ 7→ 0
n 7→ n+ 1
∞ 7→ ∞

Given a lift algebra α : A⊥ → A, we may define an algebra morphism ω → A as follows.

n 7→ σ
(n)
α (α(⊥))
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∞ 7→
∨

i=0 σ
(n)
α (α(⊥))

In the above we write η : A → A⊥ for the inclusion of A into A⊥. Observe that the finite
prefixes of this map are ω-directed because we always have ⊥ ⊑ η(a) for any a : A.

x (7.2.3∗8) In ωCPO ω is also the final lift coalgebra ω, with the coalgebra map ω → ω⊥
defined as follows.

0 7→ ⊥
n+ 1 7→ n

∞ 7→ ∞

Given a lift coalgebra α : A→ A⊥, the universal map A→ ω is defined by sending a to the
number of times one can apply α before encountering ⊥; if this number does not exist a is sent to
∞.

□ (7.2.3∗9) The point ∞ : 1→ ω determined by universal coalgebra map out of the L-coalgebra
η1 : 1→ L1 is a fixed-point of σ [99].

x (7.2.3∗10) In ωCPO, the successor map on ω ∼= ω is the ordinary successor map extended by
sending ∞ to itself. The point ∞ : 1→ ω determined in (7.2.3∗9) is the actual point at infinity
∞ and is a σ-invariant point.

; (7.2.3∗11) In C the standard chain is defined by iterating the lift functor:

∅ L∅ L2∅ . . .! L! L2!

(7.2.3∗12) In ωCPO the initial lift algebra ω/final lift coalgebra ω can be computed as the
colimit of the standard chain, which is just inclusion of the finite prefixes of ω:

∅ {0} {0 ⊑ 1} . . .

; (7.2.3∗13) An inductive fixed-point object [38] in C is an L-invariant object X that may
be computed as the colimit of the standard chain. In Fiore and Plotkin [38] this inductive
characterization of X is the primary ingredient in connecting the domain-theoretic structure on a
base category with the synthetic domain theory of a topos.

x (7.2.3∗14) Since the structure map of every initial algebra/final coalgebra is an isomorphism,
by (7.2.3∗12) we have that the initial lift algebra/final lift coalgebra in ωCPO is an inductive
fixed-point object.

7.2.4. Basic domain-theoretic category.

(7.2.4∗1) A basic domain-theoretic category (BDTC) is a Cartesian closed category C equipped
with the following structure:

1. A dominance Σ satisfying Phoa’s principle.

2. A free inductive fixed-point object ∞ : 1 → ω, i.e. an inductive fixed-point object that is
both an initial L-algebra and a final L-coalgebra.
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An object in a BDTC may be called a predomain, and an L-algebra may be called a domain.

(7.2.4∗2) Every BDTC supports fixed-points of endomaps on domains; see for instance Reus
and Streicher [99]. Briefly, for any L-algebra α : LA → A and f : A → A, we have a universal
L-algebra morphism as follows.

Lω LA

LA

Lf

ω A

α

klf

The map klf : ω → A can be thought of as an abstract version of the Kleene chain from (6.1∗6);
in fact when there is a nno in C the canonical inclusion N→ ω induces an ordinary Kleene chain
k : N→ A with kn = f (n)⊥A [99].

(7.2.4∗3) To define the fixed-point of f , we observe the following commuting diagram.

ω

ω

σ

A

A

klf

f

klf
(7.2.4∗3∗1)

We then define the fixed-point of f to be the evaluation of the abstract Kleene chain at the
invariant point ∞ : 1→ ω; the fixed-point property follows immediately by Eq. (7.2.4∗3∗1).

2 (7.2.4∗4) Fiore and Plotkin [38] base their notion of axiomatic domain theory around a
monadic base C serving as a source of domain-theoretic enrichment. The Kleisli category CL is
called a Kleisli model of ADT in op. cit. when it is C -algebraically compact; this structure is
primarily used to interpret the programming language FPC, an extension of PCF with recursive
types. Because the denotational semantics of recursive types is outside the scope of this dissertation,
we axiomatize a weaker notion of ADT that is essentially the monadic base of op. cit. without the
symmetric monoidal closed structure on the category of L-algebras C L.

7.3. SYNTHETIC DOMAINS

(7.3∗1) In contrast to the relatively simple synthetic preorder theory of (7.1.1∗4), the
axiomatics of synthetic domain theory is much more involved. Conceptually we may split the
definitions and axiomatic structure of this section into two parts: the domain-theoretic and the
order-theoretic.



chapter 7. SYNTHETIC DOMAIN THEORY 88

replete
(7.3.1∗6)

Phoa’s principle
(7.2.2∗5)

(well) complete
(7.3.1∗3)

boundary separated
(7.3.3∗6)

linked
(7.3.4∗1)

closed under
synthetic ω-joins

(path = intrinsic)
pointwise

(path = intrinsic)
partially ordered

Section 7.3.6.3 (7.3.6.1∗3)

Figure 7.1: Relationships between various properties on types. Arrows represent implications;
multiple premises to a node should be understood conjunctively. Unlabeled implications all refer
to (7.3.6∗6). Note that in the middle right and lower right nodes the path relation and intrinsic
preorder coincide from the premise of linkedness.

One the domain-theoretic side, we isolate a class of predomain-like types that “believe” in
the limit-colimit coincidence. Technically this is achieved by requiring every predomain to be
orthogonal (3.5∗2) to the inclusion ω ↪→ ω.

On the order-theoretic side, we show that for a certain subset of predomain-like types to
be defined in Section 7.3.1, the specialization/intrinsic preorder and path relation coincide; we
call the resulting order relation the synthetic order on predomains, which furnishes a convenient
interface for developing denotational semantics in a manner that resembles classic domain-theoretic
semantics. Although all of the technical results of this thesis may be carried out without reference
to the synthetic order on predomains, as argued in Niu, Sterling, and Harper [89], the synthetic
order provides an intuitively appealing framework for doing classic denotational semantics without
the drawback of constantly having to verify continuity side conditions. Moreover, synthetic
(pre)orders have also been used by Grodin et al. in the context of cost analysis, which is germane
to the broader picture of this dissertation. In this context an order-theoretic language appears to
be the right abstraction for combining partiality and cost structure [66, Section 8].

(7.3∗2) The plan is as follows. In Section 7.3.1 we define the class of well-complete types which
can be thought of as the synthetic counterparts to ω-cpos. Although well-complete types suffice
to develop the denotational semantics of general recursion, their order structure is not necessarily
well-behaved: the path relation and intrinsic preorder need not coincide, and neither needs to be
computed pointwise on limits or partially ordered. To ensure a well-behaved order structure on
predomains we will work with a more restrictive class called the replete types. The relationships
between the various classes of types are depicted in (7.3∗2).

(7.3∗3) In this section we fix a topos E equipped with a dominance (Σ,⊤) satisfying Phoa’s
principle. We write L = (L, η, µ) for the induced lifting structure.

ñ (7.3∗4) In this section by an orthogonal object or local object we mean orthogonality in the
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internal sense (3.5∗3).

7.3.1. Complete types, replete types, synthetic predomains.

(7.3.1∗1) We synthesize the discussion of Section 7.2 on the axiomatic properties shared by
concrete categories of domains and use them as criteria to isolate a class of types in E to serve
as synthetic predomains. We first introduce the notion of complete types [39, 38], which can be
thought of as the synthetic counterparts to the ω-cpos of classic domain theory.

; (7.3.1∗2) A synthetic ω-chain in a type A is a map ω → A out of the initial L-algebra.

; (7.3.1∗3) A type A is complete when it is orthogonal to the canonical inclusion ω → ω, i.e.
the following holds in an internal sense:

ω

A

ω

∃!

A type A is well complete when LA is complete. In particular we have that every synthetic ω-chain
in a complete type is equipped with a supremum given by evaluating at the point ∞ : 1→ ω.

(7.3.1∗4) To get a class of predomains that is workable for basic denotational semantics,
Longley and Simpson introduced the notion of well-complete types as the least restrictive possible
notion of predomain that is closed under lifting. In contrast we will consider the dual most
restrictive class of predomain, the replete types [62], which has better properties with respect to
the synthetic order of synthetic predomains.

; (7.3.1∗5) A map f : X → Y is called Σ-equable or a Σ-isomorphism when Σ is orthogonal to
f .

; (7.3.1∗6) A type is replete when it is orthogonal to every Σ-isomorphism. A predomain is a
replete type.

 (7.3.1∗7) The intuition behind replete types is that they “believe” in every isomorphism from
the perspective of Σ. Thinking about a map A→ Σ as a computational predicate, a Σ-isomorphism
A→ B is an isomorphism “up to” computational properties. Moreover, observe that by definition
every property of Σ that is defined by a localization with respect to a collection of maps is also
shared by a replete type. We will use this fact to show that the intrinsic order on replete types is
extremely well-behaved — in particular that it is partially ordered and pointwise on limits.

(7.3.1∗8) Both well-complete types and replete types are (internally) complete and cocomplete
and form reflective exponential ideals in E . Thus under either notion of predomains we have a
standard interpretation of PCF by means of the given Cartesian closed structure (in Section 7.3.6
we explain how to interpret the fixed-point operator by means of the synthetic ω-join on predomains).
The difference is that class of replete types may be universally characterized as the smallest reflective
exponential ideal containing Σ, and thus we have that every replete object is also well-complete
but not vice versa [80].
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7.3.2. The intrinsic order.

; (7.3.2∗1) For every type A, one may define the intrinsic preorder ⊑◦A on A analogous to the
specialization preorder on a topological space (6.3∗8): x ⊑◦A y if and only if f x implies f y for
every f : A→ Σ.

(7.3.2∗2) Under the view of Σ-predicates f : A → Σ as observations (6.3∗4), we may
understand x ⊑◦A y as y is apprehended by every observation apprehending x, i.e. y contains at
least as much computational information as x.

□ (7.3.2∗3) We have that ⊥ ⊑◦ ⊤ on the intrinsic preorder.

□ (7.3.2∗4) Indeed, fixing a map f : Σ→ Σ, by Phoa’s principle, evaluation at boundary obtains
a pair (f ⊥, f ⊤) such that f ⊥ implies f ⊤.

7.3.3. The path relation.

(7.3.3∗1) Unfortunately, the intrinsic order need not be well-behaved generally. For instance,
⊑◦A may fail to be a partial order, and the intrinsic order on limits need not be pointwise. To
rectify this, we introduce the path relation.

; (7.3.3∗2) The path relation x ⊑p
A y is defined hold if and only if there exists a path (7.2.2∗3)

Σ→ A whose boundary is (x, y).

2 (7.3.3∗3) The path relation is an alternative way to surface the order structure of predomains,
studied in much more detail by Fiore [36]; the path relation is also used by Grodin et al. [46] to
obtain a theory of synthetic preorders for cost analysis.

□ (7.3.3∗4) The path relation need not coincide with the intrinsic order, but a path α : x ⊑p y

always implies x ⊑◦ y.

□ (7.3.3∗5) Suppose we have a path l : Σ→ Σ whose boundary is determined by x, y. Fixing
f : Σ → Σ, we want to show that f x → f y. But this follows by evaluating ⊥ ⊑◦ ⊤ at the
Σ-predicate f ◦ l : Σ→ Σ.

; (7.3.3∗6) A type is boundary separated when two paths in the type with identical boundaries
are equal.

� (7.3.3∗7) Consider the following pushout:

2

Σ

(⊥,⊤)

Σ

S

(⊥,⊤)

By the universal property of S, we have that maps S → A correspond to paths in A with equal
boundaries. There is a canonical map s : S → Σ given by the identity 1 : Σ → Σ satisfying(
Σ→ S

s−→ Σ
)
=

(
Σ 1−→ Σ

)
.
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□ (7.3.3∗8) A type A is boundary separated when it is orthogonal to s : S → Σ.

7.3.4. Linked types.

; (7.3.4∗1) A type A is linked when the path relation on A coincides with the intrinsic order
on A.

(7.3.4∗2) A number of good properties follow from the fact that a type is linked. In particular,
we may use it to show that the intrinsic order on Σ = path relation on Σ = entailment order on Σ.

□ (7.3.4∗3) The dominance Σ is linked.

□ (7.3.4∗4) One direction already holds by (7.3.3∗4). Conversely, if x ⊑◦ y, then we have in
particular x→ y, which by Phoa’s principle uniquely determines a path l : Σ→ Σ.

 (7.3.4∗5) The intrinsic order on Σ coincides with the entailment order.

. (7.3.4∗6) In realizability models of synthetic domain theory, a linked object is always boundary
separated, but this need not be the case in the synthetic domain theory we consider in this
dissertation. The reason is that in the realizability setting one typically assumes Markov’s
principle, which has the effect of making the dominance Σ a ¬¬-separated object. Therefore it
is tenable to work, for instance in the effective topos, in the full subcategory of ¬¬-separated
predomains (i.e. assemblies), which are automatically boundary separated [94, Lemma 5.4.3].
Because we strive to be constructive rather than anti-classical, we do not rely on Markov’s principle
and thus need to separately stipulate boundary separation on linked objects.

(7.3.4∗7) Nonetheless, the dominance Σ itself is boundary separated by virtue of Phoa’s
principle.

7.3.5. A cost-sensitive model of synthetic domain theory.

(7.3.5∗1) To obtain an account of cost structure as in the manner Chapter 4, we will layer the
FC phase distinction on top of the synthetic domain theory topos. From an internal perspective,
this corresponds to assuming a distinguished Σ-proposition ¶. We require the phase distinction
proposition to be computational in order to ensure that the associated sealing monad  − preserves
the property of being a predomain. In Chapter 8 we use this property to define a denotational
model of a cost-sensitive version of PCF.

; (7.3.5∗2) An SDT model of the FC phase distinction consists of a topos E equipped with a
complete dominance Σ satisfying Phoa’s principle and a Σ-proposition ¶. Moreover, we require
that the type of booleans 2 is a predomain and restriction-modal in the sense of (3.3∗7).

7.3.6. Properties of predomains.

(7.3.6∗1) In the following we assume an SDT model of the FC phase distinction (E ,Σ,¶).

(7.3.6∗2) We wish to establish the following properties of the intrinsic preorder on predomains:

1. The intrinsic preorder is pointwise on products, functions, and liftings of predomains.

2. The intrinsic preorder on a predomain is a synthetic ω-complete partial order.
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3. The synthetic ω-complete partial order structure of predomains is defined componentwise
for products and functions between predomains.

2 (7.3.6∗3) The general properties of the intrinsic preorder and path relation in SDT have been
investigated in several prior works [94, 98, 77]. In this dissertation we merely organize and collate
the known results under a single framework.

� (7.3.6∗4) Consider the following pushout (note that it is different from the one in (7.3.3∗7)
since the left map is (⊤,⊥) instead of (⊥,⊤)).

2

Σ

(⊤,⊥)

Σ

D

(⊥,⊤)

The object D has the following universal property: a map D → A is given by a pair of paths
f, g : Σ→ A such that f and g have swapped boundaries, i.e. we have that f : a ⊑ b and g : b ⊑ a.

□ (7.3.6∗5) The path relation on a type A is anti-symmetric when A is orthogonal to the
terminal map D → 1.

□ (7.3.6∗6) Any predomain A enjoys the following properties:

1. Completeness: A is orthogonal to ω ↪→ ω.

2. Anti-symmetry: the intrinsic preorder on A is a partial order.

3. Boundary separation: maps Σ→ A with equal boundary are equal.

4. Linkedness: the intrinsic preorder and the path relation on A coincide.

Because of linkedness, we may speak of a single synthetic order ⊑ on any predomain A.

□ (7.3.6∗7) By (7.3.1∗7) replete types are both complete and boundary separated they are
defined by localizations (by (7.3.1∗3) and (7.3.3∗8)). Assuming Phoa’s principle, the proof
that replete types are linked can be found in Taylor [127, Corollary 2.10] and Reus [98, Corollary
6.1.16]. Lastly, by (7.3.6∗5), objects whose path relation is antisymmetric can be defined as a
localization, thus we know that the link relation on every replete type is antisymmetric, hence it
follows the intrinsic order on replete types are also partial orders since they are linked.

7.3.6.1. The synthetic order on predomains.

□ (7.3.6.1∗1) Every map f : A → B between predomains is monotone with respect to the
synthetic order.

□ (7.3.6.1∗2) Given a ⊑ a′, we derive a path Σ → B whose boundary is (f a, f a′) by
postcomposing with f , and so f a ⊑ f a′ as well.

□ (7.3.6.1∗3) The synthetic orders on products and exponentials of predomains are pointwise.
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□ (7.3.6.1∗4) This is proven by Phoa [94, Proposition 5.4.4]. We recall the case for the function
types. Given a path f ⊑X→B g, it is clear that we may construct a path f x ⊑B g x for all x : X.
Conversely, suppose we are given a path f x ⊑B g x for all x : X. By (7.3.6∗6), B is boundary
separated, and so such paths are necessarily unique, and so we have a function α : X → Σ→ B

such that α(x) is a path f x ⊑ Bg x. We then obtain a path f ⊑X→B g by taking the exponential
transpose of α.

□ (7.3.6.1∗5) Given a predomain A, we have that x ⊑LA y if and only if x↓ implies y↓ and
whenever x↓, we have x ⊑A y.

□ (7.3.6.1∗6) In the forward direction, we have a path x↓ ⊑ y↓, which means x↓ implies y↓ as
the Σ is linked by (7.3.4∗3). Suppose x↓ holds, and let f : A→ Σ be arbitrary. By assumption,
we have that f ′(x)→ f ′(y), where f ′((φ, u)) = φ∠f ◦u. In other words, we have x↓∠f(x) implies
y↓ ∠ f(y). Since x↓ holds, we have that f(x)→ f(y), which by definition means x ⊑A y.

In the backward direction, let α : x↓ → x ⊑A y be the given partial path. We may define a
total path β : Σ→ LA between x and y by setting β(φ) = (x↓, λp. α p φ). Thus we have x ⊑LA y

as required.

7.3.6.2. Discrete predomains and Σ-equality.

; (7.3.6.2∗1) A type A is called flat or discrete when x ⊑◦ y implies x = y.

; (7.3.6.2∗2) A type has Σ-equality when its equality relation is valued in Σ-propositions.

□ (7.3.6.2∗3) Any type with Σ-equality is discrete.

□ (7.3.6.2∗4) Let f : A → Σ be the characteristic map that sends a to a = x, which by
assumption is a Σ-proposition. Since x ⊑A y on the specialization order and f(x) holds, we have
that f(y) holds as well.

. (7.3.6.2∗5) The category of predomains possesses a natural numbers type NP with Σ-equality,
which means it is also discrete. Note that it is not necessarily the same as the ambient natural
numbers type N, and we will not assume that it is the case in this chapter or Chapter 8. From a
logical perspective, this difference means that NP has a universal mapping-out property whose
motive is valued in predomains rather than arbitrary types. Nonetheless the natural numbers
object of predomains plays an important role in other approaches to computational adequacy in
synthetic domain theory, which we discuss in Section 8.5.

□ (7.3.6.2∗6) If A has Σ-equality, then so does ¶ ∨A.

□ (7.3.6.2∗7) We observe that ¶ ∨ A is defined as the pushout of the projections of A× ¶ as
indicated below:

A× ¶

¶

A

¶ ∨A

η¶∨−

⋆
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Using the fact that A has Σ-equality, we obtain a map f : (¶ ∨A)× (¶ ∨A)→ ¶ ∨ Σ such that
f(η¶∨−(x), η¶∨−(y)) = η¶∨−(x = y) and f(⋆,−) = f(−, ⋆) = ⋆. The desired characteristic map
can then be defined as σ ◦ f , where σ : ¶ ∨ Σ→ Σ is defined as follows.

σ : ¶ ∨ Σ→ Σ
σ(η¶∨−(φ)) = ¶ ∨ φ
σ(⋆) = ⊤

For any u, v : ¶ ∨ A, if u = v = η¶∨−(x) for some x : A, then we have σ(f(u, v)) = σ(η¶∨−(x =
x)) = ¶ ∨ (x = x) = ⊤. Otherwise, we have that u or v is ⋆, which means ¶ holds and so
σ(f(u, v)) = σ(⋆) = ⊤ as well. Conversely, suppose σ(f(u, v)) = ⊤, and that u = η¶∨−(x) and
v = η¶∨−(y), which means that σ(η¶∨−(x = y)) = ¶ ∨ (x = y) holds. If ¶ holds, we are done as
(¶ ∨A) ∼= 1 in this case. Otherwise, we have x = y, and so u = η¶∨−(x) = η¶∨−(y) = v. Lastly, if
either u or v is the unique element ⋆ then we may discharge the case as above.

7.3.6.3. The synthetic ω-complete partial order structure.

□ (7.3.6.3∗1) In a topos with a dominance Σ and a natural numbers object N, the initial lift
algebra ω and final lift coalgebra ω can be characterized as subsets of N→ Σ [130]. Explicitly we
have the following formula for the underling sets of ω:{

F : ΣN | ∀[n : N] F (n+ 1)→ F (n)
}

The invariant point ∞ : 1→ ω is defined as the constant map N→ Σ determined by ⊤ : Σ.

□ (7.3.6.3∗2) The invariant point is the top element of ω with respect to the intrinsic preorder.

□ (7.3.6.3∗3) Observe that for any i : ω we have a path α : i ⊑p ∞ defined by α(φ, n) = φ∨ i(n).
Thus we have i ⊑◦ ∞ by (7.3.3∗4).

□ (7.3.6.3∗4) For any α : A the principal lower set ↓α of a complete type A is complete.

□ (7.3.6.3∗5) We can express the principal lower set as follows.

↓(α) = {a | a ⊑◦ α}
= {a | ∀f : A→ Σ f(a)→ f(α)}

=
⋂

f :A→Σ
{a | f(a)→ f(α)}

Because complete types are internally complete, the result would follow if we can show that
S = {a | f(a)→ f(α)} is complete. We may show that S can be computed as follows.

S

ΣΣ

A

Σ× Σ

⟨f, f(α)⟩

∂
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Since S can be defined as the limit of a diagram of complete types, it is complete as well.

□ (7.3.6.3∗6) For every map f : ω → A into a complete type A, there exists an element f∞ : A
such that f∞ is a least upper bound of f with respect to the intrinsic preorder.

□ (7.3.6.3∗7) Define f∞ be the element determined by the unique extension f : ω → A evaluated
at the invariant point ∞ : 1→ ω.

1. First we show that f∞ is an upper bound for f . Fixing i : ω, we need to show that
f i ⊑◦A f∞. Because f extends f , it suffices to show f i ⊑◦A f∞. Using the fact that every
map is monotone with respect to the intrinsic preorder, the result follows from (7.3.6.3∗2).

2. Let α be an upper bound for f . We need to show that f∞ ⊑◦ α. By (7.3.6.3∗4) the
principal lower set ↓(α) is complete, so we have the following lifting property:

ω ω

↓(α) = {a | a ⊑◦ α}

f f̃

In the above f̃ is the unique extension of f considered as a map ω → ↓(α). By uniqueness of
f as the extension of f : ω → A, f̃ is equal to f considered as maps ω → A. Consequently
we have that f∞ = f(∞) = f̃(∞), so the result follows by observing that f̃(∞) ∈ ↓(α).

 (7.3.6.3∗8) Because the intrinsic preorder on every predomain A is a partial order, every
synthetic ω-chain f : ω → A is equipped with a synthetic ω-join, which we write as

∨
f : A.

□ (7.3.6.3∗9) Every map f : A → B between predomains is continuous, in the sense that f
preserves synthetic ω-joins.

□ (7.3.6.3∗10) Fix a synthetic ω-chain d : ω → A. We need to show that f(
∨
d) =

∨
(fd). By

Section 7.3.6 predomains are complete, so we have the following extensions of d and f ◦ d:

ω

ω

A

B

f

f ◦ d

d

Because extensions along ω ↪→ ω are unique for complete types, we have f ◦ d = f ◦ d. But by
definition of the synthetic ω-join, this means that f(

∨
d) = f(d(∞)) = f ◦ d(∞) =

∨
(f ◦ d).

7.3.7. Domains and recursion.

; (7.3.7∗1) A domain is a predomain equipped with a L-algebra structure.

□ (7.3.7∗2) A predomain is a domain if and only if it has a least element [36, 117].
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(7.3.7∗3) Analogous to the discussion in Section 7.2.4 in the context of axiomatic domain
theory, synthetic domains also support recursive functions by taking the synthetic ω-join of the
abstract Kleene chain of a domain endomap. The main difference is that we need to take care to
distinguish ω from ω since they are different from the perspective of general types. In the following
we recap the fixed-point construction of Reus and Streicher [99].

� (7.3.7∗4) For every domain α : LD → D and f : D → D, define the Kleene chain of f as the
universal algebra morphism in the following situation:

Lω

ω

LD

D

αLf

klf
(7.3.7∗4∗1)

Because (pre)domains are complete (7.3.6∗6), there is a unique extension klf : ω → D:

ω

D

ω

□ (7.3.7∗5) Every map f : D → D with D a domain has a fixed-point.

□ (7.3.7∗6) We define the fixed-point of f to be
∨

klf : D, which by (7.3.6.3∗7) is defined to
be klf (∞). Recalling from (7.2.3∗9) that ∞ : ω is invariant under the successor map σ, it suffices
to show that the following diagram commutes:

ω

ω

σ

D

D

f

Since D is a complete object, it suffices to show that both maps ω → D arise as the corresponding
extensions of ω → D, i.e. the following diagram commutes:

ω

ω

σ

D

D

f

ω

ω

σ

klf

klf
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But this follows by Eq. (7.3.7∗4∗1) and recalling that σ = ω
ηL−→ Lω → ω.

7.3.7.1. Admissibility.

; (7.3.7.1∗1) A subset of a domain is admissible when it is complete and closed under the least
element.

□ (7.3.7.1∗2) The intersection of a family of admissible subsets of a domain is admissible.

□ (7.3.7.1∗3) The least element is contained in the intersection as it is contained in every
fibre. That complete types are closed under intersections essentially follows from Simpson [112,
Proposition 2.5] using the fact that completeness can be expressed using the internal language.

□ (7.3.7.1∗4) If P,Q are Σ-subsets of a domain A with ⊥ ∈ P → ⊥ ∈ Q, then the exponential
subobject QP is an admissible subset of A.

□ (7.3.7.1∗5) We have that ⊥ ∈ QP by the premise, and by an argument similar to (7.3.6.3∗5),
we have that QP is complete as well. In particular, we observe that QP may be defined as the
following pullback of complete types:

QP

ΣΣ

A

Σ× Σ

⟨P,Q⟩

∂

□ (7.3.7.1∗6) We may establish admissible properties of recursive functions by fixed-point
induction [99, Theorem 8.2]: given an admissible subset A ⊆ D and f : D → D such that f restrict
to a map A→ A, we have that fix(f) ∈ A.

□ (7.3.7.1∗7) The fixed-point defined in (7.3.7∗5) is the least (pre)-fixed-point with respect to
the intrinsic order [99, Theorem 8.18].

∗ ∗ ∗

. (7.3.7.1∗8) In Niu, Sterling, and Harper [89] I had mistakenly defined an admissible subset to
be any subset closed under ⊥ and synthetic ω-joins. Although a natural and tempting generalization
of classic admissibility, this definition neglects the fact that constructively one does not have a
case analysis principle for ω distinguishing ∞ from those in the image of ω ↪→ ω. This corresponds
to the fact that ω ∪ {∞} ↪→ ω is ¬¬-dense, i.e. ω consists of elements i such that it is false that
i is neither ∞ nor contained in ω. Consequently, the admissibile subsets A ↪→ D proposed in
op. cit. only satisfy fixed-point induction when the corresponding characteristic proposition d ∈ A
is ¬¬-closed.

(7.3.7.1∗9) Nonetheless, all concrete instances of admissible subsets used in Niu, Sterling, and
Harper [89] are admissible in the sense of (7.3.7.1∗1) as we show in (7.3.7.1∗10).

□ (7.3.7.1∗10) A lower subset of a complete type is complete when it is closed under synthetic
ω-joins.
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□ (7.3.7.1∗11) Suppose S ⊆ A is downward closed and closed under synthetic ω-joins. We must
complete the following lifting problem:

ω

S

f

ω

?

Because S is complete, we have the following extension of ω f−→ A
ι
↪−→ S:

ω

S

f

ω

A

ιf

?

Thus it suffices to show that ιf factors through S. Fixing i : ω, we want to show that ιf(i) ∈ S. By
the assumptions on S, we have that

∨
(ιf) = ιf(∞) is in S and that a ∈ S whenever a ⊑ ιf(∞).

Thus it suffices to show ιf(i) ⊑ ιf(∞), which follows from (7.3.6.3∗2).

7.4. A RELATIVE SHEAF MODEL OF COST-SENSITIVE SDT

(7.4∗1) In this section we substantiate the internal developments of Section 7.3 by means of a
model construction based on the relative sheaf model of SDT of Sterling and Harper [122]. In fact
the results of op. cit. show that every basic domain-theoretic category in the sense of (7.2.4∗1)
internal to a presheaf topos E lifts to a model of synthetic domain theory fibred over E . Sterling
and Harper [122] do not rely on some properties of the resulting SDT such as repleteness or Phoa’s
principle, but they nonetheless hold in the models so constructed. In the following we recall some
key definitions and results from op. cit. and verify that every internal BDTC indeed lifts to a
model of cost-sensitive synthetic domain theory in the sense of (7.3.5∗2).

(7.4∗2) Because we want to model the FC phase distinction, we fix E = Î and consider a
BDTC D internal to Î. Sterling and Harper [122] consider the category of internal dcpos of Î as in
(6.2.2∗1), but a suitable site may be constructed out of any extensive (3.4.2∗14) BDTC.

(7.4∗3) Recall that a BDTC (D ,Σ) consists of a dominance satisfying Phoa’s principle and
a free inductive fixed-point object ω ∼= ω. In the following, we assume that D also contains the

intermediate proposition ¶ : Ω̂I determined by
0
↓
1
.
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□ (7.4∗4) Any extensive BDTC as in (7.4∗3) embeds into a sheaf topos Sh(D) for the extensive
coverage in which Σ = yD(Σ) is a complete dominance closed under finite joins and the proposition
¶ = yD¶ is a Σ-proposition [122].

□ (7.4∗5) The dominance Σ in the sheaf topos Sh(D) satisfies Phoa’s principle.

□ (7.4∗6) Recalling from (7.2.2∗5) that we seek to factor the boundary map ∂ : ΣΣ → Σ× Σ
through ΣΣ ∼= E ↪→ Σ × Σ, the result follows from the fact that y : D → Sh(D) is a Cartesian
closed functor and thus preserves the map ∂; moreover recalling that E is defined as the equalizer
of Σ× Σ π1,∧−−−→ Σ, we also have E = yE in Sh(D) since y preserves limits as well.

□ (7.4∗7) The constant presheaf 2 determined by 2 : Set is (¶ → −)-modal (i.e. restriction-
modal).

□ (7.4∗8) We need to show that 2 is internally orthogonal to ¶ → 1, i.e. we have the following
unique lifting property:

X × ¶

2

X × 1

?

Because a presheaf X is a canonically a colimit of representables (3.1.4∗3) and the functor −×Z
preserves colimits (by virtue of being left adjoint to (−)Z), it suffices to solve the following lifting
problem for every representable yI(i):

yI(i)× ¶

2

yI(i)× 1

?

Observing that yI(0) is the proposition ¶, we just need to check the case for yI(1) = 1̂I, which
reduces to an ordinary lifting problem as follows.

¶

2

1

?
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Unfolding this diagram in Set, we have the following situation:

1

1

2

2

?

?

0

1

!

As input we are given a commuting outer square
0
↓
1
→

2
↓
2
, but in this case this data consists of just

the downstairs map 1→ 2. We must fill in the indicated square. Observing that both indicated
maps must be equal, we immediately conclude that the given map 1→ 2 corresponds to a unique
map (itself) on the bottom as indicated.

□ (7.4∗9) We have that 2 is a predomain in the sense of (7.3.1∗6).

□ (7.4∗10) By definition we need to show that 2 is replete. We observe that 2 is isomorphic to
its type of singletons:

2 ∼=
{
φ : Σ2 | (∀[a, b : 2] φ a ∧ φ b→ a = b) ∧ (φ(inl · ⋆) ∨ φ(inr · ⋆))

}
Because Σ is closed under finite joins by (7.4∗4), the type of singletons of 2 can be defined as the
limit of a diagram of replete types, and so it is replete as well.

□ (7.4∗11) We have that (Sh(D),Σ,¶) is a model of cost-sensitive synthetic domain theory in
the sense of (7.3.5∗2).

□ (7.4∗12) By (7.4∗4), (7.4∗5) and (7.4∗7).



chapter 8

Cost-sensitive computational adequacy for PCF

(8∗1) In this chapter we extend the results of Chapter 5 to PCF by means of the cost-sensitive
synthetic domain theory developed in Chapter 7. In the following we fix a model of cost-sensitive
synthetic domain theory E with a dominance Σ and phase proposition ¶.

2 (8∗2) The language PCF was introduced in Plotkin [96] to study the relationship between
denotational and operational semantics; op. cit. was also where the notion of computational
adequacy was first introduced. It would not be an exaggeration to say that PCF is the progenitor
of all programming languages equipped with higher-order recursion.

. (8∗3) In contrast to Chapter 5, we work with a dynamic semantics of PCF not based on
taking the reflexive-transitive closure of the one step transition 7→ but rather defined directly as a
partial computation. This decision is necessitated by the proof of the computational adequacy
property, which requires that the relation e ⇓c v coming from the one step transition relation as
in (5.1∗6) is a Σ-proposition. A way to show that the reflexive-transitive closure of a decidable
relation is a Σ-proposition is to close Σ under countable joins — a property that need not hold in
general models of synthetic domain theory (and indeed unlikely to hold in the model in Section 7.4).
The approach we take in this dissertation is to define the “big-step” semantics of a one step
transition relation as a recursive function, which always exist in models of synthetic domain theory.
In Chapter 9 we shall discuss the relationship between the two semantics in the context of internal
vs. external adequacy.

8.1. COST-SENSITIVE PCF: PCFcost

(8.1∗1) We have already discussed PCF in (4.1.3∗8) and (6∗1) and the representation of
cost structure as an effect in (4.1.3∗9); for completeness we record the syntax of this language,

101
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dubbed PCFcost:

Γ, x : A ⊢ x : A Γ ⊢ zero : nat
Γ ⊢ v : nat

Γ ⊢ suc(v) : nat

Γ ⊢ e : nat Γ ⊢ e0 : X Γ, z : nat ⊢ e1 : X
Γ ⊢ ifz(e, e0, z.e1) : X

Γ, x : A ⊢ e : X
Γ ⊢ λx.e : A→ X

Γ ⊢ e : A→ X Γ ⊢ e1 : A
Γ ⊢ e e1 : X

Γ, x : UX ⊢ e : X
Γ ⊢ fix(x.e) : X

Γ ⊢ a : A
Γ ⊢ ret(a) : FA

Γ ⊢ e : FA Γ, a : A ⊢ e1 : X
Γ ⊢ bind(e, a.e1) : X Γ ⊢ yes : 2 Γ ⊢ no : 2 Γ ⊢ ⋆ : 1

c : C Γ ⊢ e : X
Γ ⊢ stepc(e) : X

Observe that the syntax of PCFcost may be parameterized in an arbitrary (internal) monoid
(C,+, 0). Semantically we require additional properties on C, which we delineate in (8.2∗1).

(8.1∗2) We will write tm(Γ, A) and tm(A) for the set of well-typed terms Γ ⊢ e : A and closed
terms e : A, respectively.

8.2. DENOTATIONAL COST SEMANTICS

(8.2∗1) In keeping with the model of calf in Section 4.4, we parameterize the developments
in this section with a restriction-modal monoid (C, 0,+) (we drop the preorder relation since it
plays no role in the denotational semantics). In addition, because we intend to interpret the types
of PCFcost into synthetic (pre)domains, we require C to be a predomain. Consequently the sealing
modality  − = ¶ ∨ − used to implement the phase distinction must be computed as a colimit in
the category of synthetic predomains (which recall from (3.5.1∗4) need not coincide with the
corresponding colimit computed in the ambient topos).

To facilitate the proof of the computational adequacy property, we require the cost monoid
(C,+, 0) to be computational in the sense that C has Σ-equality. This property is used in two
places: when reasoning about the computational semantics (8.2.4∗2) of PCFcost, we need  C
to be discrete (which follows from (7.3.6.2∗3) and (7.3.6.2∗6)) in order to prove the property
that sequential composition of computations may be decomposed (8.2.4∗6); the discreteness of
 C is used again when showing that the formal approximation predicates (8.4∗2) associated to
semantic domains are admissible in the sense of (7.3.7.1∗1).

8.2.1. The partial cost monad.

(8.2.1∗1) We will define a model of PCFcost based on the algebra models of call-by-push-value,
which we have already worked through in Section 4.4 for calf in the total case. To account
for partiality, we work with the partial cost monad T, whose underlying functor composes the
lift monad with the writer monad for the sealed cost monoid: T(A) = L( C× A). The monad
structure on T arises by the following distributive law:

τ :  C× LA→ L( C×A)
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τ(c, (φ, f)) = (φ, λu : φ. (c, fu))

Explicitly we obtain the following monad structure:

ηT(a) = ηL(0, a)
µT(e) = (c, x)←L e; (c′, a)←L x; (c+ c′, a)

In the above we write x ←M e; f(x) for the induced bind operation of a monad M where
f : A→ M(B) is a map into a free M-algebra.

(8.2.1∗2) As in Section 4.4.3 we have a map f ♯ : TA→ X for every map f : A→ X into a
T-algebra satisfying f ♯(ηT(a)) = f(a).

8.2.2. The derived cost algebra.

(8.2.2∗1) To facilitate equational reasoning about the partial cost monad and its algebras, we
rely on some general properties about monads associated to a distributive law. In this section
we fix strong monads M1,M2 on a Cartesian closed category C such that the composite monad
M = M2M1 arising from a distributive law l : M2M1 → M1M2 is also strong. We denote the
strength maps by s, s1, s2 respectively.

□ (8.2.2∗2) Given an M-algebra α :MX → X, we have that ⊞X :M1X
η2−→M2(M1X) α−→ X

is a M1-algebra and that ⊠X :M2X
M2η2−−−→M2(M1X) α−→ X is a M2-algebra [11, Section 2].

□ (8.2.2∗3) We have that ⊞MA = M2µ1 ◦ l : M1(MA) → MA holds for the free M1-algebra.
Diagrammatically,

M1M2

M2M
2
1

l

(M2M1)2

M2M1

η1

αMX = µM

M2µ1
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□ (8.2.2∗4) The result follows from a diagram chase of naturality squares:

M1M2M1

M2M
2
1

l

M2M1M2M1

M2
2M

2
1

η2

M2l

M2M1 M2
2M1

M2M1

η2

µ2

M2µ1 M2
2µ1

η2

□ (8.2.2∗5) For every map f : A→ |X| where α :M |X| → |X| is an M-algebra, we have that
f ♯⊞MA = ⊞MAM1f

♯:

M1M2M1A

M1|X|

f ♯

M2M1A

|X|

⊞MA

M1f
♯

⊞X

□ (8.2.2∗6) The proof again follows by expanding definitions and diagram chasing:

M1M2M1A

M1M2M1|X|

M1M2M1f

M2M1M2M1A

M2M1M2M1|X|

η2

M2f

η2

M1|X| M2M1|X|

M2M1A

M2M1|X|

|X|

M1α Mα

⊞MA = µ

⊞MA = µ

α

αη2

Mf

The bottom right square commutes by the coherence law for algebras and the other three inner
squares are naturality squares.

□ (8.2.2∗7) Recall from Levy [72] that given a strong monad M with a strength s and a
M-algebra α : M |X| → |X|, there is a unique M-algebra structure on A→ |X| whose structure
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map αA→|X| is defined as the exponential transpose of the following maps:

M(|X|A)×A s−→M(|X|A ×A) Mev−−−→M(|X|) α−→ |X|

satisfying the following:

M(|X|A ×A)

M |X|

Mev

|X|A ×A

|X|

αA→|X|

ev

α|X|

 (8.2.2∗8) Given an M-algebra X, we have a M1-algebra on A→ |X|. Then we may compute
that ev ◦ (⊞A→X ×A) = ⊞X ◦M1ev ◦ s1 for the M1-algebra A→ X. Diagrammatically,

M1(|X|A ×A)

M1|X|

s1

|X|A ×A

|X|

⊞A→X ×A

M1ev
|X|

ev⊞
A→|X|

⊞X

 (8.2.2∗9) The action of the derived cost algebra satisfies the following equations for e : T(A)
and f : A→ X for some T-algebra X:

c⊞T(A) e = (e↓, λu. µ C×−(c, e))
f ♯(c⊞T(A) e) = c⊞X (f ♯ e)
(c⊞A→X f) a = c⊞X (f a)

□ (8.2.2∗10) By (8.2.2∗3), (8.2.2∗5) and (8.2.2∗8).

8.2.3. Model of PCFcost.

(8.2.3∗1) We interpret a value type as a predomain and a computation type as a predomain
equipped with a T-algebra structure. The interpretation of the basic call-by-push-value structure of
PCFcost follows from the semantic adjunction between partial cost algebras and general predomains.
We interpret types as follows.

J−K : tp+ → Upredom
J−K : tp− → AlgT(Upredom)

JFAK = T(JAK)
JUXK = U(JXK)
J1K = 1
J2K = 2
JnatK = NP
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JA→ XK = JAK→ JXK

Observe that we interpret nat as NP, the nno of predomains, and that JAK → JXK has a
canonically given algebra structure by virtue of (8.2.2∗7).

(8.2.3∗2) The types 1, 2, nat, and A → X have standard interpretations. We focus on the
interpretation of the free algebra:

J−K : {Γ, A} (Γ ⊢ A)→ JΓK→ JAK
J−K : {Γ, A} (Γ ⊢ X)→ JΓK→ U(JXK)

Jret(a)K(γ) = ηT(JaK(γ))
Jstep(c, e)K(γ) = (η c)⊞ JeK(γ)
Jbind(e, f)K(γ) = JfK(γ)♯(JeK(γ))
Jfix(f)K(γ) = fix(λx. JfK(x, γ))

Observe that because every T-algebra is also an L-algebra by (8.2.2∗2) and thus a domain,
we have that every semantic map JXK→ JXK for a computation type possesses a fixed point by
(7.3.7∗5).

8.2.4. Computational semantics of PCFcost.

; (8.2.4∗1) We begin with a family of small-step transition relations 7→A ⊆ tm(A)×C× tm(A)
that implements the cost effect model in the sense of Hoffmann [56] (congruence rules omitted):

bind(ret(a), f) 7→ 0, f(a) (λx.e) e1 7→ 0, e[e1/x] fix(λx.e) 7→ 0, e[fix(e)/x]

ifz(zero, e0, e1) 7→ 0, e0 ifz(succ(v), e0, e1) 7→ 0, e1(v) stepc(e) 7→ c, e

The intuitive meaning of e 7→ c, e′ is that e transitions in one step to e′ and incurs cost c; the only
place where cost is effected is at stepc(e) 7→ c, e. Because 7→A is decidable, we have a characteristic
map out : {A : tp+} . tm(A)→ 1 + (C× tm(A)).

; (8.2.4∗2) To obtain a big-step cost semantics, we iterate the one step relation 7→ to obtain a
partial map implementing the computational semantics. For any PCFcost type A : tp+, we may
define the following functional of type (tm(A)× tm(A)→ T(1))→ (tm(A)× tm(A)→ T(1)).

Φeval f (e, v) =
{
(η c)⊞ f(e′, v) out(e) = inr · (c, e′)
(e = v, λ− . η 0) out(e) = inl · ⋆

Recall that ⊞ :  C× T(1)→ T(1) is the induced cost algebra map on free T-algebras (8.2.2∗9).
Define eval : {A : tp+} tm(A) × tm(A) → T(1) to be the fixed-point of Φeval and profile :
tm+(UF1) → T(1) as profile(e) = eval(e, ret(⋆)). The meaning of evalA(e, v) : T(1) is that when
it is defined, e computes to a value v incurring the defined cost. Similarly, profile(e) is the cost
of computing e when the former is defined. In the following, we will establish some expected
properties of the computational semantics such as the uniqueness of evaluation and a “big-step”
law for sequencing evaluations.

□ (8.2.4∗3) The relation π1 ◦ eval is functional, i.e. ↓eval(e, v) and ↓eval(e, v′) implies v = v′.
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Proof. Consider the following subset of ΠA:tp. tm(UFA)→ tm(UFA)→ T1:

P = {α | ∀[e, v, v′] α(e, v)↓ ∧ α(e, v′)↓ → v = v′}

By (7.3.7.1∗2) and (7.3.7.1∗4) P is admissible and proceed by fixed-point induction. Suppose
that α ∈ P and that Φeval(α)(e, v)↓ and Φeval(α)(e, v′)↓. We need to show that v = v′. We proceed
by cases on out(e).

1. If e 7→ c′, e′, we may deduce that α(e′, v)↓ and α(e′, v′)↓, so the result follows from the
assumption that α ∈ P .

2. Otherwise, we have that e = v and e = v′ by definition of Φeval, and so v = v′.

□ (8.2.4∗4) If eval(e, ret(v)) = c1 and eval(g v, ret(w)) = c2, then eval(e; g, ret(w)) = c1 + c2.

Proof. Consider the following subset of ΠA:tp. tm(UFA)→ tm(UFA)→ T1:

P = {α | ∀[e] α(e, v)↓ ∧ eval(g v, ret(w))↓ → eval(e; g, ret(w)) = α(e, v) + eval(g v, ret(w))}

It suffices to show that eval ∈ P . Observing that P is admissible, we proceed by fixed-point
induction. Suppose that α ∈ P , Φeval(α)(e, v)↓, and that eval(g v, ret(w))↓. We need to show that
eval(e; g, ret(w)) = Φeval(α)(e, v) + eval(g v, ret(w)). We proceed by cases on out(e).

1. If e 7→ c′, e′, then we compute:

eval(e; g, ret(w)) = c′ ⊞ eval(e′; g, ret(w))
= c′ + α(e′, v) + eval(g v, ret(w))
= Φeval(α)(e, v) + eval(g v, ret(w))

Where the first equality follows from the assumption that α ∈ P and the second by the
definition of Φeval.

2. Otherwise, we have that e val. Since Φeval(α)(e, ret(v))↓ = (e = ret(v), 0)↓ = (e = ret(v))
holds, we can compute:

eval(e; g, ret(w)) = eval(ret(v); g, ret(w))
= Φeval(eval)(ret(v); g, ret(w))
= eval(g v, ret(w))

But this is what we needed to show since Φeval(α)(e, ret(v)) = 0.

 (8.2.4∗5) If eval(e, ret(v)) = c1 and profile(g v) = c2, then profile(e; g) = c1 + c2.

□ (8.2.4∗6) The following inference rule is valid for any Σ-predicate ϕ:

∀[v : A] eval(e, v)↓ ∧ eval(g v, ret(w))↓ → ϕ(eval(e, v) + eval(g v, ret(w)))
eval(e; g, ret(w))↓ → ϕ(eval(e; g, ret(w)))
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□ (8.2.4∗7) Consider the subset P defined as the intersection of the following subsets:

Q = {α | α ⊑ eval}
R = {α | ∀[c′, e′, n] (e 7→n c′, e′) ∧ (α(e′; g, ret(w))↓)→ ϕ(c′ + α(e′; g, ret(w)))}

It suffices to show that eval ∈ P . We have that P is admissible, and we proceed by fixed-point
induction. Suppose that α ∈ P . We need to show that Φeval(α) ∈ P , where Φeval is the characteristic
functional of eval (Section 8.2.4). It’s immediate that Φeval(α) ∈ Q. It remains to show that it
is also contained in R. So suppose that e 7→n c′, e′ and Φeval(α)(e′; g, ret(w))↓. We want to show
that ϕ(c′ +Φeval(α)(e′; g, ret(w))). We proceed by cases on out(e′).

1. If out(e′) = inl · ⋆, then we know that e′ = ret(v) for some v : UF1. Stepping the operational
semantics, we have that ret(v); g 7→ 0, g v, and by definition of the computational semantics
Φeval(α)(e′; g, ret(w)) = 0 ⊞ α(g v, ret(w)) = α(g v, ret(w)). Since we assumed α ∈ Q ⇐⇒
α ⊑ eval, we also have eval(g v, ret(w))↓, and since C is discrete by (8.2∗1) so is  C by
(7.3.6.2∗6), from which it follows that  C is discrete by (7.3.6.2∗3). Thus we have
α(g v, ret(w)) = eval(g v, ret(w)). Recalling the premise and the fact that eval(e, ret(v)) = c′,
we may conclude that ϕ(c′ + eval(g v, ret(w))), which is what we needed to show.

2. Otherwise, out(e′) = inr · (c′′, e′′) for some e′′ : UF1, and we have that e′; g 7→ c′′, e′′; g.
By definition of the computational semantics, this means that Φeval(α)(e′; g, ret(w)) =
c′′ ⊞ α(e′′; g, ret(w)). Since we assumed that c′′ ⊞ α(e′′; g, ret(w))↓, we can use the laws
of the derived algebra ((8.2.2∗9)) to deduce that α(e′′; g, ret(w))↓ as well, and so by the
assumption that α ∈ R ⊆ P , we have that ϕ(c′ + c′′ + α(e′′; g, ret(w))) holds, which is what
we needed to show.

□ (8.2.4∗8) We have profile((e; g); i) = profile(e; (λv. g v; i)).

□ (8.2.4∗9) In one direction, we show that profile((e; g); i)↓ implies profile(e; (λv. g v; i))↓
and both denote identical costs. Consider the Σ-predicate ϕ such that ϕ(c) if and only if
profile(e; (λv. g v;h)) = c. Suppose that eval(e; g, ret(w))↓ and profile(i w)↓. By computa-
tional induction on sequencing (8.2.4∗6), it suffices to show that profile(e; (λv. g v;h)) =
eval(e; g, ret(w)) + profile(i w). Applying computational induction on eval(e; g, ret(w))↓, we further
suppose that eval(e, ret(v))↓ and eval(g v, ret(w))↓ and aim to show that profile(e; (λv. g v;h)) =
eval(e, ret(v)) + eval(g v, ret(w)) + profile(i w).

1. We claim that profile(e; (λv. g v; i))↓. By the big-step semantics of profiling (8.2.4∗5), it
suffices to show that eval(e, ret(v))↓ for some v and profile(g v; i)↓. The former follows from
our assumption; for the latter, it suffices to show that eval(g v, ret(w))↓ and profile(i w)↓,
both of which follow from assumptions.

2. Given that profile(e; (λv. g v; i))↓, we may apply computational induction again: supposing
that eval(e, ret(v′))↓ and profile(g v; i)↓, we have to show that eval(e, ret(v′))+profile(g v; i) =
eval(e, ret(v)) + eval(g v, ret(w)) + profile(i w), which follows from the uniqueness of evalua-
tion (8.2.4∗3) and big-step semantics of profiling (8.2.4∗5).

In the other direction, suppose that profile(e; (λv. g v; i))↓. It suffices to show that profile((e; g); i)↓.
By computational induction, we may assume that eval(e, ret(v))↓ and profile(g v; i)↓. Applying
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computational induction again, we can also assume that eval(g v, ret(w))↓ and profile(i w)↓ for
some w. By the big-step semantics of profiling (8.2.4∗5), it suffices to show that eval(e; g, ret(w))↓
and profile(i w)↓. The latter is our assumption, and the former follows from the big-step semantics
of evaluation (8.2.4∗4).

□ (8.2.4∗10) The following is valid:

∀[e] eval(f, λe)↓ ∧ eval(e[v], ret(w))↓ → ϕ(eval(f, λe) + eval(e[v], ret(w)))
eval(f v, ret(w))↓ → ϕ(eval(f v, ret(w)))

□ (8.2.4∗11) Similar to (8.2.4∗6).

□ (8.2.4∗12) We have that eval((e; g) w, z) = eval(e;λv. g v w, z).

□ (8.2.4∗13) Similar to (8.2.4∗8).

8.3. SOUNDNESS

(8.3∗1) In this section we show that the denotational semantics is sound, which means that
the computational steps are respected by the denotational semantics:

□ (8.3∗2) If e 7→ c, e′, then JeK = c⊞ Je′K.

□ (8.3∗3) By induction on the derivation of e 7→ c, e′.

□ (8.3∗4) If eval(e, v)↓, then JeK = eval(e, v)⊞ JvK.

(8.3∗5) Consider the following subset:

P = {α | ∀[e] α(e, v)↓ → JeK = eval(e, v)⊞ JvK}

Because JeK = eval(e, v)⊞JvK is a Σ-proposition, we see that P is an admissible subset. Suppose
that α ∈ P and Φeval(α)(e, v)↓. We need to show that JeK = eval(e, v)⊞ JvK. We proceed by cases
on out(e).

1. If e 7→ c′, e′, then by the soundness of the one step relation (8.3∗2), it suffices to show that
c′⊞Je′K = c′⊞eval(e′, v)⊞JvK, which follows from the assumption, noting that Φeval(α)(e, v)↓
implies α(e, v)↓.

2. Otherwise, we have that e = v, and so the result holds since eval(e, e) = 0.

 (8.3∗6) Given e : UF1, we have profile(e) ⊑ JeK.

□ (8.3∗7) As a simple corollary of the soundness we obtain a rigorous proof of the intuitive
fact that computations may not observe the cost effect: any e : UF1⇀ F2 is weakly, functionally
constant in the sense that for all x, y : UF1, if profile(x)↓ and profile(y)↓, then eval(e x, ret(v))↓
and eval(e y, ret(u))↓ imply v = u.

□ (8.3∗8) Let c :  C and d :  C be the costs denoted by eval(e x, ret(v)) and eval(e y, ret(u)),
and cx and cy :  C be the costs denoted by profile(x) and profile(y). By soundness (8.3∗4)
and laws of the derived algebra (8.2.2∗9), we have that Je xK = c ⊞ ηT(JvK) = ηL(c, JvK) and
similarly Je yK = d ⊞ ηT(JuK) = ηL(d, JuK). It suffices to show that JvK =2 JuK. Because 2 is a
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restriction-modal type by (7.3.5∗2), we may assume that ¶ holds. On the other hand, by (8.3∗6),
we have cx ⊑ JxK and cy ⊑ JyK. By (7.3.6.1∗5) and the fact that  C is sealed, this means that
JxK = JyK as they are both elements of 1. Thus we have Je xK = ηL(c, JvK) = ηL(d, JuK) = Je yK,
which means that JvK = JuK.

8.4. COMPUTATIONAL ADEQUACY

(8.4∗1) In this section we prove the converse to (8.3∗4) at base type: denotational steps are
respected by the computational semantics. Similar to Section 5.2.4, we employ a binary logical
relation argument between the semantics and syntax of PCFcost.

; (8.4∗2) The formal approximation relations for PCFcost are a family of relations ◁A ⊆
JAK× tm(A) indexed in value types A of PCFcost defined by recursion on A as follows.

e◁1 e
′ = ⊤

e◁2 e
′ = (e = Je′K)

e◁nat e
′ = (e = Je′K)

adq(e, e′) = (e ⊑ profile(e′))
e (R⇒ S) e′ = ∀[a R a′] (e a) S (e′ a′)
e◁UFA e

′ = ∀[f (◁A ⇒ adq) f ′] adq(f ♯(e), e′; f ′)
e◁U(A→X) e

′ = e (◁A ⇒ ◁UX) e′

The meaning of the logical relations interpretation of free algebras is as follows: e : JUFAK is
related to e′ : tm(UFA) whenever given a pair of logically related continuations f (◁A ⇒ adq) f ′
at type UF1, the corresponding semantic and syntactic sequences f ♯(e) and e′; f ′ are also related
by the relation adq, which is precisely the adequacy property we want to prove.

(8.4∗3) Formal approximation relations may be extended to contexts in the evident way. We
write Γ ⊢ e◁A e

′ when for all closing substitutions s◁Γ σ, we have that e(s)◁A e
′[σ] holds.

(8.4∗4) As for the case for STLC in Section 5.2.5, the computational adequacy property
follows by proving the fundamental lemma of logical relations. In order to apply fixed-point
induction in the fixed-point case, we must first show that all subsets of the form ◁UXe for a
computation e : tm(UX) is admissible.

8.4.1. Admissibility properties.

□ (8.4.1∗1) We have that −◁UFA e is an admissible subset of T(A).

(8.4.1∗2) By (7.3.7.1∗10) it suffices to show downward closure and closure under ⊥ and
synthetic ω-joins.

1. By definition this means to show f ♯(⊥) ⊑ profile(e; g) for all f (A⇒ adq) g. But this holds
since f ♯(⊥) = ⊥ and ⊥ is the least element of T(A).

2. Let d be a synthetic ω-chain such that di◁UFAe for all i : ω. We want to show that
∨
d◁UFAe,

which is to show that f ♯(
∨
d) ⊑ profile(e; g) for all f (A⇒ adq) g. Since f ♯(

∨
d) =

∨
(f ♯ ◦d),

this means to show
∨
(f ♯ ◦ d) ⊑ profile(e; g). By the universal property of the synthetic

ω-join, it suffices to show f ♯(di) ⊑ profile(e; g) for all i : ω, but this is the assumption.
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3. Fixing d′ ⊑ d◁UFA e, we need to show that d′◁UFA e. Suppose that f (A⇒ adq) g. We need
to show f ♯(d′) ⊑ profile(e; g). By the characterization of the order on lifts (7.3.6.1∗5), we
suppose f ♯(d′)↓ and show that profile(e; g)↓ and that f ♯(d′) = profile(e; g). By assumption
we know d′ = ηL(a′) and f(a′) = c for some a : JAK and c :  C. Since d′ ⊑ d, we know
d′ = ηL(a) for some a such that a′ ⊑ a. Consequently, we have c = f(a′) ⊑ f(a), but since
 C is discrete (by (8.2∗1) and the argument in (8.2.4∗7)), we have f(a) = c = f(a′). Thus
by the assumption that d◁UFA e, we have f ♯(d) = c ⊑ profile(e; g). Again by the discreteness
of  C we have that f ♯(d′) = f(a′) = c = profile(e; g), as required.

□ (8.4.1∗3) If − ◁UX e is admissible for all e : UX, then − ◁U(A→X) e is admissible for all
e : U(A→ X).

□ (8.4.1∗4) Again we show downward closure and closure under ⊥ and
∨
.

1. Because ⊥(a) = ⊥, we have that ⊥◁U(A→X) e by the assumption that ⊥◁UX e for all e.

2. Suppose that fi◁U(A→X) e. We need to show that
∨
f ◁U(A→X) e. Suppose that a◁A b. We

need to show that (
∨
f) a◁UX e b. This follows the fact that synthetic ω-joins in function

spaces are computed pointwise and the assumption that −◁UX e b is closed under
∨
.

3. Fix f ′ ⊑ f ◁U(A→X) e. To show that f ′ ◁U(A→X) e, suppose that a◁A b. We need to show
that f ′ a◁UX e b. By the premise, we have that −◁UX e b is a lower set, so it suffices to
show f ′ a ⊑ f a◁UX e b, which follow from the assumptions f ′ ⊑ f and f ◁U(A→X) e.

□ (8.4.1∗5) Given e : UX, we have that −◁UX e is an admissible subset of JUXK.

□ (8.4.1∗6) By (8.4.1∗1) and (8.4.1∗3).

8.4.2. Fundamental lemma.

(8.4.2∗1) In this section we prove the fundamental lemma of logical relations for the formal
approximation relations. We give the representative cases of the proof by induction on the
derivation of terms.

□ (8.4.2∗2) If d◁X e and e′ 7→ c, e, then c⊞ d◁X e′.

□ (8.4.2∗3) By induction on X, using the laws of the cost algebra (8.2.2∗9).

□ (8.4.2∗4) If a◁A v, then ηT(a)◁UFA ret(v).

□ (8.4.2∗5) Let f (◁A ⇒ adq) g. We need to show that (f ♯(ηT(a))) adq (ret(v); g). Computing
the denotational semantics and applying (8.4.2∗2), it suffices to show that (f a) adq (g v), which
follows from our assumption.

□ (8.4.2∗6) If d◁UFA e and f ◁U(A→X) g, then f ♯(d)◁UX e; g.

□ (8.4.2∗7) By induction on X.

1. If X = FB, let h (◁B ⇒ adq) i. We need to show that h♯(f ♯(d)) adq (e; g); i. Computing
the denotational semantics and using the fact that we may reassociate sequences (8.2.4∗8),
it suffices to show ((h♯ ◦ f)♯(d)) adq (e; (λv. g v; i)). By the assumption that d ◁UFA e, it
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suffices to show that for all a◁A v, we have that (h♯(f a)) adq (g v; i), which follows directly
from the assumptions that f ◁U(A→X) g and h (◁B ⇒ adq) i.

2. If X = B → Y , suppose that b◁B v. We need to show that (f ♯(d)) b◁UY (e; g) v. Unraveling
the denotational semantics and the computational semantics using (8.2.4∗12), it suffices to
show (λd. f d b)♯ d◁UY (e;λd. g d v), which follows from the inductive hypothesis and the
assumption that f ◁U(A→(B→Y )) g.

□ (8.4.2∗8) If d◁X e, then c⊞ d◁X stepc(e).

□ (8.4.2∗9) Since stepc(e) 7→ c, e, the result holds by (8.4.2∗2).

□ (8.4.2∗10) For every closed term e : Γ ⊢ A, the approximation Γ ⊢ JeK ◁A e holds.

□ (8.4.2∗11) By (8.4.1∗5), (8.4.2∗4), (8.4.2∗6) and (8.4.2∗8).

 (8.4.2∗12) Given e : UF1, we have that JeK = profile(e).

(8.4.2∗13) In the functional phase both the denotational and computational semantics of e
are simply partial computations of type L1, so one may view (8.4.2∗12) as a cost-sensitive (and
internal) version of Ploktin’s original adequacy theorem for PCF.

8.5. INTERNAL AND EXTERNAL ADEQUACY

(8.5∗1) In Section 8.4 we proved an internal adequacy theorem about PCFcost, a language
defined internally to the synthetic domain theory topos. What does that say about “ordinary”
PCFcost, i.e. the inductive family specified by (4.1.3∗9) in Set.

(8.5∗2) Ideally, we would like an external version of (8.4.2∗12) about PCFcost taken as a
language in Set. In the case of a sheaf model of synthetic domain theory, we may attempt to relate
internal and external adequacy as follows, assuming that the coverage on the base domain-theoretic
category C is subcanonical, i.e. admits a fully faithful embedding C ↪→ Sh(C ) (which is satisfied
by the model construction of Section 7.4). It is a routine exercise in Gödel numbering to see that
internally to the synthetic domain theory topos, every PCFcost term can be assigned a unique
number n : N. Since every category of sheaves on C is reflective in Ĉ (3.5.1∗7) , the natural
numbers object in Sh(C ) can be computed by applying the sheafification functor a : Ĉ → Sh(C )
to the natural numbers object N

Ĉ
= ∆(NSet) in Ĉ , where ∆ : Set→ Ĉ is the constant presheaf

functor. Therefore we have the following series of bijective correspondences.

1Sh(C ) −→ NSh(C ) in Sh(C )
1Sh(C ) −→ a(∆NSet) in Sh(C )
a(∆1Set) −→ a(∆NSet) in Sh(C )

∆1Set −→ ∆NSet in Ĉ

1Set −→ NSet in Set

In the above we used the fact that the associated sheaf functor a : Ĉ → Sh(C ) is lex (preserves
finite limits) and so 1Sh(C ) ∼= a(1

Ĉ
) = a(∆1Set) and the fact that it is also fully faithful since

the coverage is subcanonical. Thus we see that there is a bijective correspondence between global
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elements of internal terms e : 1 → tm(Γ, A) and external terms ⌜e⌝ : 1 → NSet. Observe that
we may define an external profiling cost semantics ⌜e⌝ ⇓c. Given an external natural number c,
external adequacy is the property that JeK denotes the numeral c if and only if ⌜e⌝ ⇓c.

(8.5∗3) While we conjecture that the backwards direction would follow from a simple external
induction on the derivation of ⌜e⌝ ⇓c, the forwards direction requires further investigation of
the synthetic ω-joins. By internal adequacy (8.4.2∗12), it suffices to show that JeK = profile(e)
implies ⌜e⌝ ⇓c. Because the termination support of profile(e) is defined as a synthetic ω-join of
Σ-propositions, we must show that when this internal join

∨
φi holds, we have ⌜e⌝ ⇓c as well,

where c is the cost denoted by profile(e). Since synthetic ω-joins are unlikely to be preserved
by Σ ↪→ Ω, it is unclear how to give an external characterization of the internal join

∨
φi (for

instance, it is probably not the case that
∨
φi = ⊤ implies there is a global element i : 1→ ω such

that φi = ⊤). In the absence of such a characterization it would be difficult to relate the internal
operational cost semantics profile(e) and its external counterpart ⌜e⌝ ⇓c.

2 (8.5∗4) Simpson introduced several important ideas and techniques for developing computa-
tional adequacy proofs internal to a topos. In particular a general property of the internal logic
of topoi called 1-consistency1 is proved to be both necessary and sufficient to relate the internal
adequacy property to an external adequacy property in the sense of (0.5∗3).

(8.5∗5) However Simpson [114] assumes that N is well-complete, which closes the dominance
Σ under countable joins of decidable families in the ambient logic. We do not rely on this axiom in
the constructions of this chapter, but under this axiom one may define the internal computational
dynamics of PCFcost (8.2.4∗2) by means of existentially quantified statements of the form
∃[n : N] φ(n) where φ is a primitive recursive predicate, thence 1-consistency can be used to
externalize the adequacy property.

(8.5∗6) Consequently, one way out of the conundrum of (8.5∗3) would be to alter the model
construction of Section 7.4 so that natural numbers of the SDT topos is a predomain, i.e. equip
our domain-theoretic site with the countable extensive coverage so that the natural numbers
object, which is the countable coproduct ⨿n∈N1, is preserved by the Yoneda embedding. Under
this coverage the lift functor need not preserve ω-filtered colimits (essentially because one can no
longer exploit the commutation of finite limits and filtered colimits), which means one loses the
characterization of the initial lift algebra as an inductive fixed-point object (7.2.3∗13). Nonetheless
since the property that the initial lift algebra is computed as the colimit of the standard chain is
only used to show that every representable presheaf is a well-complete object, one may try to show
that the lift functor preserves κ-filtered colimits for some cardinal κ > ω and replay the same
argument by exhibiting the initial lift algebra as a κ-filtered colimit of a “longer” chain obtained
by transfinitely iterating the lift functor. Thus it appears there are no serious obstructions in
updating and validating the sheaf model construction of Sterling and Harper [122] against this
coverage, but we leave this to future work.

2 (8.5∗7) In an effort to reduce the reliance on the ambient nno of the SDT topos, Simpson in a
follow up paper [113] to Simpson [114] develops an alternative way to relate internal and external
adequacy by means of the notion of computational 1-consistency, a logical principle analogous to

1A topos E is 1-consistent when a closed formula ∃[n : N] φ(n) of the form described above holding in the
internal logic of E implies that it holds externally.
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1-consistency for the nno of predomains NP. However, since computational 1-consistency is still a
statement intrinsically about natural numbers, it is unclear how this can be applied to our setting,
where the central objects such as the initial lift algebra ω and synthetic ω-chains do not have have
natural external counterparts.



chapter 9

Conclusion

(9∗1) In the first half of this dissertation, we saw that a number of known problems with
incorporating cost into type theory may be resolved by imposing a (Kripke) world view consisting
of a cost-sensitive phase lying over a purely functional phase, which is mathematically represented
by the category of presheaves over the interval I. This semantic picture gives rise to powerful
restriction and sealing modalities in the internal language of Î that one may use to organize cost
structure by exploiting the configuration of the cost-sensitive and functional phases; in particular,
by recording the cost of programs via a sealed monoid, one may simultaneously speak about a
cost-sensitive function and restrict to its purely functional/mathematical aspect by means of the
restriction modality as necessary. Combining this internal modal type theory of Î with the idea of
cost as an abstract effect, we obtain a type theory dubbed calf suitable for general cost-sensitive
specification, programming, and verification. We selected some common textbook examples of
algorithm analyses as case studies and showed that the usual pen-and-paper techniques carry over
to calf . What is gained is 1) a higher level of rigor, 2) a means for compositional cost bounds, 3)
the ability to mechanize the results in a computerized proof assistant.

(9∗2) In the second half we sought to relate denotational/equational reasoning in calf to
operational cost semantics. The method is an internalization of the classic program of denotational
(cost) semantics in which one specifies a programming language and its operational and denotational
cost semantics as functions in the type theory. In order to study programming languages with
general recursion, we axiomatize and work inside a cost-sensitive synthetic domain theory and
proved a cost-sensitive computational adequacy result that restricts to the classic theorem of
Plotkin’s in the purely functional phase. We justified these internal constructions by showing that
the relative sheaf model of synthetic domain theory of Sterling and Harper [122] is a model of
cost-sensitive synthetic domain theory.

(9∗3) Now seems appropriate for some higher level remarks about the method and results of
this dissertation. First is the importance of functional semantics. In the early years of my PhD I
struggled to pin computational cost as a property of the execution behavior of raw syntax, which
resulted in a type theory [88] that was intractable to use in practice. The remedy is to work not
over raw syntax but over equivalence classes of terms or functions only. Rather than assigning
properties to computations based on some accidental property (such as which raw term is chosen
as the representative of the function), cost should be thought of as structures over functions, a
lesson from workers in the metatheory of type theory.

115
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(9∗4) The internal modal type theory resulting from the Artin gluing of topoi (of which Î is a
simple instance) was first applied to the theory of programming languages by Sterling and Harper
in the context of program modules and data abstraction and has proved to be a versatile weapon
against classic PL problems including cost analysis [90, 46], metatheory of (cubical, multimodal)
dependent type theories [118, 116, 41], controlled unfolding of definitions in proof assistants [44],
and information flow [122].

(9∗5) Lastly, the results of this dissertation (especially those of Chapters 7 and 8) contribute
towards the growing evidence that despite their waning prevalence in the previous decades,
denotational methods are increasingly germane in contemporary PL research. Although operational
methods have been developed to spectacular heights and have dominated the general PL landscape
in recent years, denotational semantics still has an important role as a space for developing general,
reusable mathematical principles that may be combined to attack challenging problems. Following
the renewed interests of the community in denotational methods, this dissertation can be thought
of as a small step onto the path left by the semanticists of the 90s.

9.1. RELATED WORK

(9.1∗1) In this section I briefly survey other approaches to cost-sensitive verification and
semantics, focusing on the lines of work most closely resembling this thesis either in application or
technique.

9.1.1. Program logics.

(9.1.1∗1) The approach perhaps most closely related in terms of the target use of the
framework has been developed in a line of work based on separation logic [100]. First noticed in
Atkey [7] to have applications to resource analysis, separation logic has since been used as the
theoretical basis of verification frameworks in a multitude of works expanding the boundaries of
formalized algorithm analysis, including formalized proof of the correctness and tight cost bounds
for the union-find data structure [22], analysis of heap space usage under garbage collection [79],
and a formalization of the asymptotic notation [47].

(9.1.1∗2) From a technical point of view program logics are evidently different from type
theories since there is a categorical separation between the programming language and the logical
language in the former that is not present in the latter. Moreover, since the primary use of
(concurrent) separation logic is the verification of (concurrent) imperative programs, works of this
ilk tend towards the analysis of (concurrent) imperative algorithms, which I have not explored in
this thesis.

Aside from requiring a much more heavy-handed model construction, directly verifying imper-
ative programs in separation logic appears to be working at the incorrect abstraction level. In my
view, it is more sensible to verify programs that are mathematically natural (i.e. functional) first
and progressively lower the abstraction level by means of cost-sensitive adequacy theorems in the
sense of Chapter 8 between different programming languages. Admittedly this is, however, pure
speculation inspired by the results obtained in this thesis.

Despite the general technical differences between program logics and type theories, the works
cited in (9.1.1∗1) are still amongst the most closely related works to this thesis since in addition
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to cost analysis they also handle general program verification.

9.1.2. Denotational cost semantics.

(9.1.2∗1) Denotational cost semantics of general recursion has been studied since at least the
work of Plotkin and Power, who prove a general computational adequacy property for not just
cost-sensitive PCF but (call-by-value) PCF equipped with any algebraic effect [95]. More recently
Kavvos et al. present a formalization of the method of recurrence relations for cost analysis. Part
of the semantic justifications of op. cit. consists of a denotational cost semantics for PCF in sized
domains, structures that possess both the usual domain-theoretic information order and a cost
preorder that interacts with the information order in a nontrivial way.

The biggest difference between the material in the second half of this thesis compared to these
prior works is that in the former the denotational semantics is developed inside a type theory,
whereas the latter take place in concrete categories of domains (or in order-enriched categories in
the case of Plotkin and Power [95]). Thus the denotational semantics in the present work can
be directly reasoned with in the same framework that one uses to write programs, which in my
view represents an improvement over the status quo and in fact is a state of affairs that has been
conjectured in Plotkin and Power [95, p. 2]. Moreover, by formulating cost structure in terms of
a phase distinction, both the denotational cost semantics and the cost-sensitive computational
adequacy property in Chapter 8 immediately restrict to an ordinary, functional semantics and the
corresponding adequacy property in the functional phase, which I believe has not been possible
until now.

9.1.3. Computational adequacy in synthetic domain theory.

(9.1.3∗1) The developments of Chapters 7 and 8 on synthetic domain theory and internal
computational adequacy are heavily inspired by Simpson [114] and Simpson [112], from which many
important definitions and mathematical techniques were borrowed. To adapt classic denotational
semantics definitions into the synthetic setting, Simpson [112] has chosen to emphasize the role of
the computational natural numbers (the natural numbers object in the category of predomains) in
developing the syntax and operational semantics of the programming language. By contrast, in
this thesis I have instead advocated for the use of the synthetic ωcpo structure of the initial lift
algebra in defining the operational semantics, which is a natural choice because every model of
synthetic domain theory must possess such an initial lift algebra (as shown in Section 7.3.6.3).
I leave the relationship between these two approaches and the extension of the computational
adequacy to recursive types to future work.

(9.1.3∗2) Another recent work I relied heavily on is Sterling and Harper [122], who studied
the denotational semantics and computational adequacy of information flow security in synthetic
domain theory. Indeed, thinking about the functional phase ◦ and cost-sensitive phase • of calf
as a two-element security poset I = {◦ ⊑ •}, the model construction of Section 7.4 is just an
instantiation of the relative sheaf model of synthetic domain theory of op. cit. at I. However,
because in this thesis I have emphasized the intrinsic/synthetic order relation of predomains, some
additional properties of the model had to be verified (such as Phoa’s principle).

The approach to computational adequacy is also substantially different. In particular, while
studying the computational adequacy proof of Sterling and Harper [122] Sterling and I discovered
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a nontrivial mistake in the construction of the formal approximation relation for free algebras [115].
The proof of computational adequacy in this thesis essentially originated from our effort to rescue
the erroneous proof in Sterling and Harper [122]. Although it seems promising to adapt the results
in Chapter 8 to the original setting of information flow security, it remains a challenge to design
a programming language that itself incorporates phase propositions (as opposed to the case of
PCFcost in which the phase proposition only appears in the denotational semantics).

9.1.4. Denotational semantics in synthetic guarded domain theory.

(9.1.4∗1) In addition to synthetic domain theory, synthetic guarded domain theory [14] has
also been used to develop the denotational semantics of general recursion [93] and recursive
types [84] inside guarded type theory. With mathematical roots in metric domain theory [4, 19],
synthetic guarded domain theory can also be viewed as an abstraction of the well-known technique
of step-indexing in constructing logical relations for recursive types [6] and high-order store [15].

In comparison to synthetic domain theory, synthetic guarded domain theory integrates better
into type theory because every type can be regarded as a guarded predomain. Thus every guarded
endomap whatsoever possesses a guarded fixed point, and this fact extends smoothly to universes,
giving rise to a unified account of recursive functions and recursive types [131]. Combined with the
fact that guarded predomains are closed under the usual type-theoretic constructions, synthetic
guarded domain theory provides a robust mechanism for solving notoriously difficult domain
equations. For instance, Sterling, Gratzer, and Birkedal [119] use synthetic guarded domain theory
(along with ideas from realizability) to give a completely denotational account of the combination
of parametric polymorphism and higher-order store, a result that has been difficult to obtain in
classic domain theory.

(9.1.4∗2) However the great flexibility of synthetic guarded domain theory is not without
drawbacks. The primary mathematical “defect” is that solutions to guarded fixed points are not
fixed points on the nose; in particular the fixed-point equation only holds up to an abstract “step”
that reflects the semantics of synthetic guarded domain theory in the topos of trees (the category
of presheaves over ω = {0 ⊑ 1 ⊑ . . .}). Consequently the equational theory of the guarded lift
monad is too fine to use directly in many situations since it distinguishes two partial elements
denoting the same value but that differ in the number of abstract steps used to compute the value.
Although this problem may be overcome by quotienting the type of partial computations by weak
bisimulation, the resulting theory becomes needlessly involved in comparison to the canonical
theory of fixed points furnished by synthetic domain theory (at least for the purposes of studying
functional programs).

9.1.5. Type systems for cost analysis.

(9.1.5∗1) Lastly we discuss some related work that is outside of the realm of general-purpose
verification and focuses more on pure cost analysis. Danielsson [30] introduces an indexed-monadic
type system for tracking the cost of functional data structures. Like calf , this work treats cost
structure as a computational effect and has been formalized in the Agda proof assistant. A
major difference is that cost bounds are explicitly recorded in the type of the cost effect, a design
choice that has caused well-known problems with making the specifications of data too precise
in dependent type theory [30, Section 12]. For instance, the pervasive use of cost annotations
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for functions impedes composition across different modules and it is unclear if pure functional
reasoning about programs is possible, despite the fact that the framework is essentially a library
in a full-spectrum dependent type theory. This is not to claim that a theory of cost-bound
composition at the level of modules has been worked out in calf , but at least the separation of
code and their cost bounds means that composition of code would not present a problem in calf .

(9.1.5∗2) There has also been a variety of works on the automated side of formalized cost
analysis [24, 97, 56, 59]. I will just focus on Resource-Aware ML (RaML) [56], which appears to
be the most well-developed automated framework for deriving concrete cost bounds on functional
programs. In brief, RaML enriches the type system of e.g. PCF1 by assigning a potential to every
type, resulting in a type-theoretic version of the amortized analysis of Tarjan [126]. The RaML
framework collects linear constraints from the type checking process that are then delegated to an
off-the-shelf linear program solver. When the constraint set is feasible, RaML is able to derive a
cost bound that is (multi-variate) polynomial in the size of the input.

(9.1.5∗3) Clearly automated systems such as RaML and general-purpose verification frame-
works like calf serve different purposes, but there appear to be opportunities for using one of the
approaches to overcome limitations of the other and vice versa.

To set the stage, one may embed RaML into calf by means of a version of the internal
denotational cost semantics defined in Chapter 8. In particular, I conjecture that one may prove a
soundness theorem in which every cost bound derived by RaML is also valid in the denotational
cost semantics.

The use of such an embedding is twofold. In one direction, one may enrich the RaML type
system with what amounts to an oracle in order to derive cost bounds even in the presence of
challenging functions that defeat automation. More specifically, one may provide RaML with cost
bounds derived in calf , which may be treated as black-box facts from the point of view of RaML.

In the other direction, observe that under certain resource metrics, a cost bound on a program
derived by RaML can be viewed as a proof of termination. Therefore, it would be reasonable to
use RaML as a mechanism for programming and reasoning about general recursion in type theory.
For instance, although merge sort may be seen (after some effort) to be a total function in calf ,
RaML would automatically derive a cost bound (and therefore a termination proof) for merge
sort, thereby providing a way for programmers to write code in a natural manner that nonetheless
can be seen to satisfy certain safety2 properties.

9.2. FUTURE WORK

(9.2∗1) There are a number of directions in which it would be reasonable to extend the work
of this thesis. Perhaps the most obvious extension would be the cost-sensitive computational
adequacy property of recursive types. Although I have not focused on the order-enriched aspects of
the model construction in Section 7.4, the construction would also suffice to furnish a denotational
semantics for recursive types. The goal would then be to adapt the methods of Simpson [112]
to account for the presence of cost structure; here the diverging approaches to the syntax and
operational semantics of the internal programming language discussed in (9.1.3∗1) would need to
be reconciled.

1RaML also supports recursive types.
2Safety in the colloquial sense, since termination is of course a liveness property.



chapter 9. CONCLUSION 120

(9.2∗2) A central position of this thesis is that cost profiling should not interfere with the
pure functional behavior of programs — that there should be a phase distinction between the
cost-sensitive world and the functional world. But this position only represents a certain platonic
ideal that may be violated in practice. For instance, if the computational resource under analysis
is the amount of physical memory available to a computer, information from the cost-sensitive
phase may leak into the functional phase since repeated memory allocation without deallocation
would eventually exhaust the memory limit and cause the program to crash or signal an error
state (also known as a memory leak). It seems promising to consider the notion of termination
declassification as in Sterling and Harper [122] to mediate this leakage of information; translated
into the setting of cost analysis, one may use declassification to model a function that diverges in
the cost-sensitive phase (due to limits on the computational resource) but appears to terminate in
the functional phase.
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