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Abstract

Today’s world is undeniably data-driven. The explosion of the Internet has
generated vast volumes of data, and the advent of machine learning has unlocked
captivating applications that thrive on this data. In such a world, it is evident
that the ability to store, transmit, and process data securely is paramount.
Distributing trust is one of the fundamental cryptographic principles that enable
such security, and it is at the core of key cryptographic tools such as multi-party
computation (MPC) and randomness generation. As the demand for secure and
reliable cryptographic solutions grows, there is increasing interest in offering
distributed protocols as a service.

Such services are typically expected to run continuously for long periods of
time, requiring significant resource commitments from all participating parties.
One approach to mitigate this issue is to design distributed cryptographic
protocols that are stateless. In stateless protocols, parties are easily replaceable,
and can contribute to the execution by participating only for a short time,
without committing to a long-term computation.

In this work, we study stateless multi-party computation. We start by
introducing a stateless MPC protocol which does not require parties to be online
at the same time and requires no interaction between the participants. We
construct this protocol in the blockchain model and under the assumption of
what we call Conditional Storage and Retrieval (CSaR) systems. In our next
step, we eliminate the CSaR requirement and design stateless MPC without
relying on this assumption. More concretely, we focus on the recently introduced
You Only Speak Once (YOSO) paradigm. In this model participating parties
are allowed to send only a single message; i.e., they speak only once. We
improve the state of the art in YOSO MPC by designing a protocol with better
communication complexity than the currently known solutions. Then, we focus
on improving the efficiency of special-purpose YOSO MPC. Specifically, we
consider the task of distributed randomness generation, and design a suite of
protocols, each balancing different trade-offs in terms of underlying assumptions,
efficiency, and corruption threshold. We develop these protocols in the model
of YOSO with worst-case corruptions (YOSOWCC), which is even stronger than
the original YOSO MPC.
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Chapter 1

Introduction

It’s a dangerous business, Frodo, going out your door. You
step onto the road, and if you don’t keep your feet, there’s
no knowing where you might be swept off to.

J.R.R. Tolkien, The Lord of the Rings

Each day, we rely on digital services to handle our communication, access essential
information, and manage our money and health records. In this increasingly data-centric
world, access to secure and reliable digital services is crucial. At the same time, as our
dependence on digital communication and computation increases, traditional centralized
approaches to manage data start to show cracks. While centralization allows for highly
efficient systems, centralized systems are vulnerable to single points of failure. This can
be an issue even in non-adversarial settings – just think how often you encounter bugs,
network outages, and software glitches!

The problems become even more critical when there is malicious intent, especially when
the stakes are high. Denial of service (DoS), zero-day exploits, and social engineering
attacks are being used by powerful malicious actors, sometimes even governments, to steal
private data or disrupt processes and bring organizations to their knees.

Decentralization, one of the key principles of modern cryptography, helps. By distribut-
ing trust among multiple parties in a clever way, distributed systems are far more resilient
against compromise than their centralized counterparts. Indeed, there is growing demand
for distributed cryptographic protocols such as secure multi-party computation. However,
if these protocols were offered as a service, they would be expected to run continuously
for extended periods of time, which would, in turn, demand non-trivial resource commit-
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ments from participating parties. One way to alleviate this issue is to design distributed
cryptographic protocols in which parties are easily replaceable, so a party can leave the
computation at any given time, without committing their resources long-term. An easy
way to obtain this property is to design protocols which are stateless, in the sense that
parties do not maintain local private state. In such protocols, parties are easily replaceable
as there is no need to transfer sensitive information to the successor when a party leaves
and another takes over the execution.

In this thesis, we advance the state of the art in (mostly) stateless distributed crypto-
graphic protocols. As a first step, we focus on the problem of secure multi-party computation
(MPC). MPC protocols allow mutually distrusting parties to compute an output of a func-
tion on their private inputs. Remarkably, MPC protocols are designed in a way that, aside
from the intended output, no information is leaked about the inputs. This opens up an
entire realm of new applications. For example, two banks could employ an MPC protocol
to collaboratively run fraud detection mechanisms on joint data, without disclosing the
respective confidential data to each other. This long-standing cryptographic problem has
led to a prolific line of research, with many works focused on improving the communication,
computation, and round complexities of MPC. However, most works focus on stateful
protocols, which are not particularly well-suited for long-term operation. With this in mind,
we ask the following question:

Can we design a stateless MPC protocol under (not necessarily standard, but still) realistic
assumptions, where parties participate only for a single round?

In Chapter 2 we show that this is indeed possible. In our solution we utilize blockchains
and Conditional Storage and Retrieval (CSaR) systems, an abstraction for (conditional)
secret storage. Our MPC protocol achieves guaranteed output delivery, meaning that
the adversary cannot prevent honest parties from obtaining the output. This property is
essential when offering MPC as a service.

As CSaR systems can be somewhat complex, in Chapter 3 we design stateless MPC
protocols without relying on this assumption. For this, we focus on the new You Only Speak
Once (YOSO) model. This paradigm has been recently introduced by Gentry et al. [59],
and it is tailored to large-scale stateless environments such as blockchains. It introduces an
abstraction of so-called roles, which can be seen as stateless parties that only send a single
message; i.e., they speak only once. The role-assignment mechanism assigns roles to the
physical machines that execute these, and it is typically abstracted away from the protocol
itself. The latter then relies on roles to perform the needed functionality (for example,
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MPC).

In YOSO, our goal is to advance the state of the art in terms of communication
complexity. Towards this, we use techniques from traditional stateful MPC with good
communication complexity to design a YOSO MPC protocol in the preprocessing model,
where the communication complexity of the online phase is better than the state of the art
by a linear factor.

Finally, in Chapter 4 we complete our exploration of the YOSO paradigm by shifting
our focus from generic YOSO MPC to a specialized multi-party functionality: distributed
randomness generation. Here, a number of mutually distrusting parties, each with its own
local source of randomness, work together to produce public, unpredictable, and unbiased
randomness. Such randomness is a key component in numerous financial and cryptographic
applications. Traditionally, it was obtained via trusted third parties. However, as this
approach has the same issues as all centralized protocols, recently there has been an
increased effort to obtain distributed randomness generation protocols.

In our work we provide such randomness generation protocols in the setting of YOSO
with worst-case corruptions (YOSOWCC), a strengthening of the original YOSO MPC model,
which was recently introduced by Nielsen, Ribeiro and Obremski [96]. Both models are
similar in that they utilize stateless roles and allow these to speak only once. However, MPC
protocols in the original YOSO model typically assume that the adversary’s best strategy is
to corrupt machines at random. The intuition for this is the following: Assuming that the
role-assignment mechanism is secure and hides the assignment before the parties send their
single protocol message, and assuming that parties erase their state before sending their
message, the adversary simply does not know which party is the next to participate. Hence,
it also does not know which party to corrupt! However, this places high trust assumptions
on the role-assignment mechanism, which in turn makes such protocols hard to design.
Indeed, known role-assignment protocols are fairly complex, and tend to compromise either
in terms of efficiency [60] or resiliency [22]. Allowing for worst-case corruptions, as is done
in YOSOWCC, allows us to reduce the trust on the role-assignment mechanism.

In our work we provide a suite of YOSOWCC distributed randomness generation protocols
in the computational setting, which offer different trade-offs in terms of efficiency, corruption
threshold, and underlying assumptions. We complement our results by studying lower
bounds for such computationally secure protocols.

In the remainder of this chapter we give a technical overview of this thesis.

3



1.1 Blockchains Enable Non-Interactive MPC

In our first contribution we provide a solution for MPC which achieves the property that
each MPC participant who supplies inputs but does not wish to receive the output can
go offline after sending only a single message. Additionally, parties who execute the MPC
protocol do not need to interact with one another, are stateless, and it is sufficient if they
participate only for short periods of time. We further provide variations of our protocol
that offer further desirable properties such as guaranteed output delivery.

To obtain such non-interactive MPC, we assume a public key infrastructure (PKI).
Additionally, we rely what we call conditional storage and retrieval systems (CSaRs).
Roughly, CSaR systems allow a user to submit a secret along with a release condition.
Later, if a (possibly different) user is able to satisfy this release condition, the secret is
privately sent to this user. During the process, the secrets cannot be modified and no
information is leaked about the secrets. We use blockchains to design a system called
extractable witness encryption on a blockchain (eWEB) which fits this abstraction. Finally,
we assume the existence of append-only bulletin boards that allow parties to publish data
and receive a confirmation in return that the data was published. As both eWEB and
bulletin boards can be realized using blockchains [45, 65, 83], for simplicity, in the following
we will state that we design our protocols in the blockchain model.

In our construction, we distinguish between parties who supply inputs (dubbed contrib-
utors) and parties who wish to receive outputs (dubbed evaluators). At a high level, the
construction transforms any MPC protocol into one which requires no interaction between
the participants by having the contributors “encrypt” the next-message functions for each
round of MPC while hardcoding their private inputs. These encryptions are then stored
using CSaR. During the MPC execution, the evaluators can then decrypt the next-message
functions round-by-round (and party-by-party) in a controlled way to eventually obtain
the output of the protocol. To ensure that privacy of the intermediate outputs holds, the
next-message functions of the underlying MPC are modified slightly to provide encryptions
of the state (instead of the state in plain) that must be passed to the next round. Impor-
tantly, it is not necessary for an evaluator to contribute to every round of the underlying
MPC – it is sufficient to contribute for one round (then, another evaluator can take over).

We further discuss ways to optimize our protocol. Towards this, we note that the com-
bined communication- and state complexity of the underlying MPC is particularly important
in our construction. This is because both the communication- and state complexities of the
underlying MPC translate into the number of CSaR storage- and retrieval requests (and
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thus communication complexity) in our overall construction. While there are a number
of works optimizing communication complexity of MPC, optimizing internal state com-
plexity has been largely overlooked. We design a scheme in the plain model which relies
on multi-key fully homomorphic encryption (MFHE), probabilistically checkable proofs,
collision-resistant hash functions, and IND-CPA secure public key encryption. Its combined
communication- and state complexity is independent of the function that we are computing.

By combining this MPC protocol with our main construction we obtain an MPC protocol
in the blockchain model which in addition to being stateless has the property that the
communication complexity of this protocol is independent of the function that is being
computed using this MPC protocol.

Finally, we design an MPC scheme which requires only a single message from the
contributors with the additional property of guaranteed output delivery, i.e., the adversary
cannot prevent honest parties from obtaining the output. For this, we in particular rely on
the underlying protocol having guaranteed output delivery as well (and thus require the
majority of the MPC contributors to be honest).

1.2 Towards Scalable YOSO MPC via Packed Secret-
Sharing

In the previous section we described non-interactive MPC using blockchains, which can
be seen as a stateless protocol under the assumption of a CSaR. As CSaR systems can
get somewhat complex, in our next contribution we move to fully stateless distributed
protocols which do not rely on the CSaR assumption. Towards this, we explore the YOSO
paradigm [59], which is tailored to large-scale stateless computing environments such as
blockchains.

The YOSO model is built around the notion of roles, which are stateless parties that
send out only a single message. MPC is being performed by committees of such roles,
where the size of the committees is much smaller than the number of parties in the system.
Furthermore, the information about the party-role assignment of the next committee is
typically hidden from the adversary. Such a paradigm has an interesting advantage: It
enables MPC protocols which utilize only small committees (think only a few thousands
out of a million total participants) and are secure in the face of a very powerful adversary
who can potentially corrupt many parties (say half a million parties). In particular, the
corruption budget of the adversary can be big enough to corrupt the entire MPC committee.
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Somewhat surprisingly, assuming that parties erase their state after they have spoken,
security holds even if the adversary is adaptive, meaning that it can corrupt any parties at
any time, subject to the corruption budget.

The intuition here is that the adversary does not know who to corrupt – participants of
the future committees are hidden until they speak, and corrupting them after they have
spoken does not bring the adversary any advantage, as they will not participate in the
protocol again1.

While the YOSO paradigm is very appealing, the restriction to send out only a single
message makes designing the MPC protocols in this model challenging, which leads to
complex protocols with high communication complexity. Currently, the communication
complexity per gate of the state-of the art YOSO MPC protocol in the computational
setting is 𝑂(𝑛2) (can be amortized to 𝑂(𝑛) given a wide circuit). In our work, we improve
the communication complexity of YOSO MPC in order to bring it closer to practicality.

In more detail, we explore the online/offline paradigm, which has been extensively
utilized in the standard MPC literature to achieve improvements (in particular, in terms of
communication complexity) of the MPC protocols. We further focus on the setting where
the YOSO committees not only have an honest majority (which is the standard assumption
in this line of work), but there is a gap proportional to the committee size between the
number of honest parties and the number of corrupt parties. In more detail, let 𝑛 be the
committee size, and let 𝑡 be the amount of corruptions in the committee. In our work we
consider the setting in which the committee satisfies 𝑡 < 𝑛(1

2 − 𝜖), for some constant 𝜖 > 0.

We obtain our results by adapting techniques from traditional (non-YOSO) MPC
literature to the YOSO setting. Here, we consider Turbopack [54] as our starting point.
Turbopack provides MPC with abort with constant online communication complexity. To
obtain a YOSO MPC protocol that satisfies our goals in terms of security and efficiency,
we need to solve a few technical issues. First, Turbopack is inherently stateful and requires
multiple rounds; in order to adapt it to the YOSO setting we need a way to pass secret
protocol state to future parties in a way that does not break security. Next, we note
Turbopack is in the preprocessing model, and it crucially assumes that during the online
phase, the parties know certain secrets that were obtained during the offline phase. However,
in the YOSO world, parties who participate in the online phase are not the same as the
ones who prepared the preprocessing material. More importantly, in YOSO we cannot even

1Technically, it is possible that a physical machine fulfills multiple roles. However, a machine that has
spoken does not have a higher chance of participating in a later committee than any other machine in the
system.
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assume that the parties who execute the offline phase know which parties will be performing
the online phase. Thus, we need to find an efficient way to pass the preprocessing secrets
to the online parties, and do so without knowing who these parties will be. Finally, we note
that Turbopack achieves only security with abort, while our goal is to provide guaranteed
output delivery.

To solve these issues, we carefully combine the techniques from Turbopack with the ideas
from the well-known CDN protocol [47]. This allows us to design a YOSO MPC protocol
that has guaranteed output delivery and scales much better as 𝑛 grows, in contrast to the
case when 𝜖 = 0. In particular, we show how to achieve an online phase with communication
complexity that is independent of the committee size 𝑛.

1.3 Improved YOSO Randomness Generation with
Worst-Case Corruptions

In our final chapter, we delve deeper into the YOSO paradigm, narrowing our focus from
general-purpose MPC to the specialized multi-party functionality of distributed randomness
generation. In more detail, we consider the following problem: Given 𝑛 mutually distrusting
parties, each with its own local source of randomness, we wish to generate a public random
bit. The generated bit must be unpredictable and unbiasable, even though some 𝑡 of the
parties can be corrupt.

We design our protocols in the setting of YOSO with worst-case corruptions, a recently
introduced model [96] which is specifically tailored to the problem of randomness generation.
Just as in the original YOSO model, in YOSO with worst-case corruptions (YOSOWCC) we
distinguish between stateless “roles” and physical machines which may run for a long time
and retain state. The 𝑛 participating roles 𝑃1, . . . , 𝑃𝑛 are executed in a linear fashion one
after the other, and the adversary is allowed to corrupt any 𝑡 of them prior to the start
of the protocol. Upon its execution, 𝑃𝑖 can publicly broadcast a value 𝑥𝑖 and send secret
values 𝑠𝑖,𝑗 to each “future” role 𝑃𝑗, i.e., any 𝑃𝑗 with 𝑗 > 𝑖. After the execution of the last
role 𝑃𝑛, anyone should be able to obtain an unbiased public random bit by applying a
publicly known and deterministic extraction function to the broadcasted values (𝑥1, . . . , 𝑥𝑛).

Intuitively, any traditional stateful protocol for randomness generation can be translated
into one in the YOSOWCC setting: Given an 𝑟-round stateful protocol for 𝑛 participants
and 𝑡 corruptions, we can “linearize” it by using 𝑟 roles to implement the behavior of the
𝑖-th party over 𝑟 rounds. To mimic the stateful behavior of the round-based protocol, each
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role in YOSOWCC sends the adjusted “state” to the role which implements the behavior of
the next round of the same stateful party. Clearly, if the round-based protocol is secure, its
YOSOWCC counterpart is secure as well. Unfortunately, this approach has subpar resilience:
It tolerates only 𝑡 corruptions while requiring 𝑛 * 𝑟 roles.

In our work, we propose multiple YOSOWCC randomness generation protocols in the
computational setting with trade-offs in terms of communication, resiliency, and required
assumptions. At the core of our constructions lies the well-known commit-and-reveal
paradigm: Intuitively, we let roles “commit” to their randomness, and forward the reveal
information to the roles in the future who help with opening these values. After 𝑡 + 1
roles have committed their randomness, each random value is opened and the output is
computed by taking the xor of the revealed values. By using 𝑡 + 1 roles who contribute
randomness, we ensure that at least one contributed random value is coming from an honest
party. Further, the commitments to the values ensure that a malicious party cannot change
the value they committed to after seeing the opening values of honest parties. While this
already looks like a secure solution, there is a subtlety: We must ensure that the committed
values are guaranteed to be opened. This is because otherwise an adversarial party could
simply commit to, say, bit 1, and later decide whether to flip the outcome of the xor by
revealing the opening or not, and do so after seeing honest values.

To ensure this final property, in our first protocol we rely on a cryptographic primitive
known as publicly verifiable secret sharing (PVSS). In PVSS, a dealer can share its secret
among 𝑛 parties in a way that any 𝑡+ 1 parties can reconstruct the secret, but any 𝑡 parties
have no information about the secret. Public verifiability of PVSS ensures that anyone
(even non-recipients) can verify that the dealer performed the sharing correctly, and there
indeed exists a unique secret which can be later reconstructed by any set of 𝑡+ 1 recipient
parties. By relying on PVSS with some further properties, we fix the issue above and ensure
that the adversary is not able to bias the outcome.

As PVSS requires setup and somewhat heavy cryptographic assumptions, in our next
construction we adopt verifiable secret sharing (VSS), a primitive which is similar to
PVSS, except that it does not provide public verifiability. Instead, VSS provides a “strong
commitment” property, which ensures that the shares of the honest parties define a secret
(which could be ⊥). We design our next randomness generation protocols based on a
YOSOWCC-friendly variation of a VSS primitive, which we dub split-dealer VSS.

Finally, we design a protocol which assumes non-interactive perfectly binding commit-
ments and reduces the number of roles in the setting without setup, though at the cost of
exponential communication and computation complexity. We complement our results by
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studying lower bounds (in terms of role complexity) for computationally secure YOSOWCC

protocols without setup.

1.3.1 Summary

To summarize, in this thesis we advance the state of the art in stateless secure multi-party
computation. We study stateless MPC under various models and assumptions – from CSaRs
to YOSO with its role-assignment. We then narrow our focus and explore a specialized
MPC functionality – randomness generation. Last but not least, in addition to being
stateless, most our protocols require parties to speak only once and provide guaranteed
output delivery, a highly desirable property in MPC as a service.
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Chapter 2

Blockchains Enable Non-Interactive
MPC

What, like it’s hard?

Elle Woods
Legally Blonde

We start our exploration of distributed cryptography as a service by using blockchains
to design a protocol which achieves non-interactive MPC, a powerful primitive which is
known to be impossible in the standard model.

The work presented in this chapter is based primarily on a joint work with Vipul Goyal,
Bryan Parno, and Yifan Song, which has been published at TCC 2021 [69]. As the main
author, I formalized the key primitive which we call conditional storage and retrieval systems
(CSaR), and designed a secure CSaR-based protocol which enables MPC where participants
do not need to interact with each other. Additionally, this chapter includes the eWEB
protocol, an instantiation of a CSaR system, which I designed during another joint work
with the same co-authors along with Abhiram Kothapalli. This work has been published at
PKC 2022 [68].

2.1 Introduction

Secure Multiparty Computation (MPC) [63, 108] enables parties to evaluate an arbitrary
function in a secure manner, i.e., without revealing anything besides the outcome of the
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computation. MPC is increasingly important in the modern world and allows people to
securely accomplish a number of difficult tasks. Obtaining efficient MPC protocols is thus
a relevant problem and it has indeed been extensively studied [58, 63, 108]. One important
question is the round complexity of MPC schemes. In the semi-honest case, in 1990, Beaver
et al. [16] gave the first constant-round MPC protocol for three or more parties. A number
of works [67, 84, 97] aiming to analyze and reduce round complexity followed, both in the
semi-honest and fully malicious models. In 2016, Garg et al. [58] proved that four rounds
are necessary to achieve secure MPC in the fully malicious case in the plain model. Four
round MPC protocols have been recently proposed [11, 31, 43], resolving the questions of
round complexity.

Unfortunately, solutions that achieve even the optimal round complexity are still
problematic for many applications since these solutions typically require synchronous
communication from the participants – imagine for example the U.S. voting process. If the
voting is conducted via secure multi-party computation, all participants are required to
be online at the same time. It is unrealistic to assume that all of the eligible U.S. voters
can be persuaded to be online at the same time on the Election Day. In this work, we rely
on blockchains to achieve MPC that does not require participants to be online at the same
time or interact with each other.

Such non-interactive solutions advance the state of the art of secure multi-party compu-
tation, opening up a whole new realm of possible applications. For example, passive data
collection for privacy preserving collaborative machine learning becomes possible. Federated
learning is already used to train machine learning models for the keyboards of mobile
devices for the purposes of autocorrect and predictive typing [2]. Unfortunately, using
off-the-shelf MPC protocols to perform such training securely is not straight-forward. Not
all smartphones are online at the same time and it might even be unknown how many
devices will end up participating. In contrast, off-the-shelf MPC protocols typically assume
that all (honest) participants are indeed online during some time period, and the number
of participants is known. This leads us to the following question:

Can we construct a secure MPC protocol which does not require the parties to be online at
the same time and guarantees privacy and correctness even if all but one of the parties are

fully malicious? Is it possible to design a protocol which requires only a single round of
participation from the parties supplying the inputs, and allows the parties to go offline after

the first round if they are not interested in learning the output?

Consider such a protocol in the use case outlined above – each smartphone could
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independently send a single message to a server, and at the end of the collection period the
server would obtain the model trained on the submitted inputs, all while preserving the
privacy of the gathered inputs.

2.1.1 Our Results

In our work, we provide a solution for MPC which achieves the property that each MPC
participant who supplies inputs but does not wish to receive the output can go offline
after the first round. The participants are not required to interact with each other. We
additionally provide variations of our protocol that offer further desirable properties.

Before we provide the formal theorem statements, we discuss the protocol execution
model and the notation.

In our work, we assume the existence of append-only bulletin boards that allow parties
to publish data and receive an unforgeable confirmation that the data was published in
return. Furthermore, we assume a public key infrastructure (PKI). Finally, we rely on
conditional storage and retrieval systems (CSaRs, see Section 2.3 for details). Roughly,
CSaR systems allow a user to submit a secret along with a release condition. Later, if a
(possibly different) user is able to satisfy this release condition, the secret is privately sent to
this user. Intuitively, during the process, the secrets cannot be modified and no information
is leaked about the secrets. We require that CSaRs are used as ideal functionalities. We give
an instantiation of a CSaR system which we call eWEB – extractable witness encryption
on a blockchain. As eWEB relies on blockchains, and bulletin boards can be realized using
blockchains as well [45, 65, 83], for simplicity, we will state that we design our protocols
in the blockchain model. Finally, we assume IND-CCA secure public key encryption, and
digital signatures.

In our construction, we distinguish between parties who supply inputs (dubbed MPC
contributors) and parties who wish to receive outputs (dubbed evaluators). Our construction
is a protocol transforming an MPC scheme 𝜋 into another scheme 𝜋′. The contributors in
𝜋′ are exactly the participants in 𝜋. The evaluators can (but do not have to) be entirely
different parties from those who contribute inputs in 𝜋.

We are now ready to introduce our first result:
Theorem 1. (Informal) Any MPC protocol 𝜋 secure against fully-malicious adversaries
can be transformed into another MPC protocol 𝜋′ in the blockchain model that provides
security with abort against fully-malicious adversaries and does not require participants
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to be online at the same time. The MPC contributors are required to participate for only
a single round (the evaluators might be required to participate for multiple rounds). The
adversary is allowed to corrupt as many MPC contributors in 𝜋′ as it is allowed to corrupt
participants in 𝜋. The adversary is allowed to corrupt any number of evaluators.

In addition to this result, we discuss ways to optimize our construction. To this end, we
explain why the combined communication and state complexity (where state complexity
is the amount of data that parties maintain between the different rounds of the protocol
execution) of the underlying MPC protocol is of a particular importance in our construction.
Briefly, both the communication and state complexities of the underlying MPC translate
directly into the number of CSaR storage and retrieval requests in our overall construction.
We describe a protocol in the plain model which relies on multi-key fully homomorphic
encryption (MFHE). Its combined communication and state complexity is independent
of the function that we are computing. While optimizing communication complexity
has received considerable attention in the community in the past few years, optimizing
internal state complexity has been largely overlooked. We believe that this particular
problem might be exciting on its own. In our construction which optimizes the combined
communication and state complexity, we assume multi-key fully homomorphic encryption,
and collision-resistant hash functions. The result that we achieve here is the following:
Theorem 2. (Informal) Let 𝑓 be an 𝑁-party function. Protocol 14 is an MPC protocol
computing 𝑓 in the standard model and secure against fully malicious adversaries corrupting
up to 𝑡 < 𝑁 parties. Its combined communication and state complexity depends only on
the security parameter, number of parties, and input and output sizes. In particular, the
combined communication and state complexity is independent of the function 𝑓 .

Using this MPC protocol in combination with our first construction, under the assump-
tions that we rely on in our main construction and in the MPC construction with optimized
communication and state complexity, we achieve the following:
Corollary 1. (Informal) There exists an MPC protocol 𝜋′ in the blockchain model
which provides security with abort against fully-malicious adversaries and does not require
participants to be online at the same time. The MPC contributors are required to participate
for a single round (the evaluators might be required to participate for multiple rounds).
Furthermore, the number of calls to CSaR in this protocol is independent of the function
that is being computed using this MPC protocol 1.

Finally, we achieve an MPC protocol which requires only a single round of participation

1A prior version of this paper erroneously stated that the communication complexity (instead of the
number of CSaR calls) is independent of the function being computed.
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from MPC contributors with the additional property of guaranteed output delivery, meaning
that adversarial parties cannot prevent honest parties from receiving the output. For this,
we in particular rely on the underlying protocol having guaranteed output delivery as well
(and thus requiring the majority of the MPC contributors to be honest). We rely on the
same assumptions (PKI, CSaRs, append-only bulletin boards etc.) as the ones used in our
main construction. The formal result that we achieve is the following:
Theorem 3. (Informal) Any MPC protocol 𝜋 that is secure against fully-malicious
adversaries and provides guaranteed output delivery can be transformed into another MPC
protocol 𝜋′ in the blockchain model that provides security with guaranteed output delivery
against fully-malicious adversaries and does not require participants to be online at the same
time. The MPC contributors and evaluators are required to participate for only a single
round. The adversary is allowed to corrupt as many MPC contributors in 𝜋′ as it is allowed
to corrupt participants in 𝜋. The adversary is allowed to corrupt all but one evaluator.

2.1.2 Technical Overview

In this work, we propose an MPC protocol that does not require participants to be present
at the same time. In order to do so, we rely on the following cryptographic building blocks
– garbled circuits [19, 108, 110], CSaRs, and bulletin boards with certain properties. Before
we introduce the construction idea, we elaborate on each of these primitives.

Roughly, a garbling scheme allows one to “encrypt” (garble) a circuit and its inputs
such that when evaluating the garbled circuit only the output is revealed. In particular,
no information about the inputs of other parties or intermediate values is revealed by
the garbled circuit or during its evaluation. In our construction we use Yao’s garbled
circuits [108, 110].

In our construction, we rely on bulletin boards which allow parties to publish strings on
an append-only log. It must be hard to modify or erase contents from this log. Additionally,
we require that parties receive a confirmation (“proof of publish”) that the string was
published and that other parties can verify this proof. Such bulletin boards have been
extensively used in prior works [45, 65, 83] and as pointed out by these works can be
realized both from centralized systems such as the Certificate Transparency project [1] and
decentralized systems such as proof-of-stake or proof-of-work blockchains.

Finally, we define the CSaR primitive. Roughly, this primitive allows for the distributed
and secure storage and retrieval of secrets and realizes the following ideal functionality:
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• Upon receiving a secret along with a release condition and an identifier, if the identifier
was not used before, the secret is stored and all participants are notified of a valid
secret storage request. The release condition is simply an NP statement.

• Upon receiving an (identifier, witness) from a user, the ideal functionality checks
whether a secret with this identifier exists and if so, whether the given witness satisfies
the release condition of this secret record. If so, the secret is sent to the user who
submitted the release request.

We can instantiate the CSaR with eWEB, which stands for “Extractable Witness
Encryption on a Blockchain”. Roughly, it allows users to encode a secret along with a
release condition and store the secret on a blockchain. Once a user proves that they are
able to satisfy the release condition, blockchain miners jointly and privately release the
secret to this user. Along the way, no single party is able to learn any information about
the secret.

Our construction. By relying on bulletin boards, Yao’s garbled circuits and CSaRs,
we are able to transform any secure MPC protocol 𝜋 into another secure MPC protocol 𝜋′

that provides security with abort and does not require participants to be online at the same
time. At a high level, our idea is as follows: first, each contributor (party who supplies
inputs in the protocol) 𝑃 in the MPC protocol 𝜋 garbles the next-message function for
each round of 𝜋. Then, 𝑃 stores the garbled circuits as well as the garbled keys with a
CSaR using carefully designed release conditions. Note that each party 𝑃 is able to do
so individually, without waiting for any information from other parties and can go offline
afterwards. Once all contributors have stored their data with the CSaR, one or more
“evaluators” (parties who wish to receive the output) interact with the CSaR and use the
information stored by the MPC contributors in order to retrieve the garbled circuits and
execute the original protocol 𝜋. The group of the contributors and the group of evaluators
do not need to be the same – in fact, these groups can even be disjoint. The evaluators
might change from round to round.

Note that while the high-level overview is simple, there are a number of technical
challenges that we must overcome in the actual construction due to its non-interactive
nature. For example, since the security of Yao’s construction relies on the fact that for
each wire only a single key is revealed, we must ensure that each honest garbled circuit is
executed only on a single set of inputs. The adversary also must not trick a garbled circuit
of some honest party 𝐴 into thinking that a message broadcast by some party 𝐶 is message
𝑚, and tricking a garbled circuit of another honest party 𝐵 into thinking that 𝐶 in fact
broadcast message 𝑚′ ̸= 𝑚. Furthermore, we must ensure that it is hard to execute the
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protocol “out of order”, i.e., an adversary cannot execute some round 𝑖 prior to round 𝑗

where 𝑖 > 𝑗. Such issues do not come up in the setting where parties are online during the
protocol execution and able to witness messages broadcast by other parties.

We solve these issues by utilizing bulletin boards, carefully constructing the release
conditions for the garbled circuits and the wire keys, and modifying the next-message
functions which must be garbled by the contributors.

Note that the next-message functions from round two onward take as inputs messages
produced by the garbled circuits in prior rounds. At the time when the MPC contributors
are constructing their circuits, the inputs of other parties are not known, and thus it is not
possible to predict which wire key (the one corresponding to 0 or the one corresponding to
1) will be needed during the protocol execution. At the same time, one cannot simply make
both wire keys public since the security of the garbled circuit crucially relies on the fact
that for each wire only a single wire key can be revealed. We solve this problem by storing
both wire keys with the CSaR, utilizing bulletin boards, and requiring the evaluators to
publish the output of the garbled circuits of each round. Then, (part of) the CSaR release
condition for the wire key corresponding to bit 𝑏 on some wire 𝑤 of some party’s garbled
circuit for round 𝑖 is that the message from round 𝑖− 1 is published and contains bit 𝑏 at
position 𝑤. This way we ensure that while both options for wire 𝑤 are “obtainable”, only
the wire key for bit 𝑏 (the one that is needed for the execution) is revealed.

Next, note that in our construction we specifically rely on Yao’s garbled circuits. Yao’s
construction satisfies the so-called “selective” notion of security, which requires the adversary
to choose its inputs before it sees the garbled circuit (in contrast to the stronger “adaptive”
notion of security which would allow the adversary to choose its inputs after seeing the
garbled circuits [18]). We ensure that the selective notion of security is sufficient for our
construction by requiring that not only the wire keys, but also the garbled circuits are
stored with the CSaR. The release conditions both for the garbled circuit for some round 𝑖
and all its wire keys require a proof that all messages for rounds 1 up to and including round
𝑖− 1 are published by the evaluators. This way, the evaluators are required to “commit” to
the inputs before receiving the selectively secure garbled circuits, which achieves the same
effect as adaptive garbled circuits.

As outlined above, we must ensure that it is hard for the adversary to trick the garbled
circuit produced by some honest party 𝐴 into accepting inputs from another honest party 𝐵
that were not produced by 𝐵’s circuits. We accomplish this by modifying the next-message
function of every party 𝐴 as follows: in addition to every message 𝑚 that is produced by
some party 𝐵, the next-message function takes as input a signature 𝜎 on 𝑚 as well and
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verifies that the signature is correct. If this is not the case for any of the input messages,
the next-message function outputs ⊥. Otherwise, the next-message function proceeds as
usual and in addition to outputting the resulting message it outputs the signature of party
𝐴 on this message.

Our end goal is to reduce the security of our construction to the security of the underlying
MPC protocol 𝜋. While utilizing bulletin boards and introducing signatures is a good step
forward, we must be careful when designing the CSaR release conditions. The adversary
could sign multiple messages for each corrupted contributor in 𝜋, publish these messages
on the bulletin board and thus receive multiple keys for some wires. To prevent this, the
CSaR release condition must consider only the very first message published for round 𝑖− 1
on the bulletin board. This way, we ensure that there is only a single instance of the MPC
running (only a single wire key is released for each circuit): even if the adversary is able to
sign multiple messages on behalf of various MPC contributors, only the very first message
published on the bulletin board for a specific round will be used by the CSaR system to
release the wire keys for the next round.

The ideas outlined above are the main ideas in our protocol. We now elaborate on a
few additional details:

The next-message function of the protocol typically outputs not only the message for
the next round, but also the state which is used in the next round. It is assumed that this
state is kept private by the party. In our case, the output of the next-message function will
be output by the garbled circuit and thus made available to the evaluator. To ensure that
the state is kept private, we further modify the next-message function to add an encryption
step at the end: the state is encrypted under the public key of the party who is executing
this next-message function. To ensure that the state can be used by the garbled circuit
of the party in the next round, we add a state decryption step at the beginning of the
next-message function of that round. Similar to the public output of the next-message
function, we compute a signature on the encryption of the state and verify this signature in
the garbled circuit of the next round.

Note that in the construction outlined above, we use some secret information which
does not depend on the particular execution but still must be kept private (secret keys of
the parties used for the decryption of the state, signing keys used to sign the output of the
next-message function etc.). This information is hard-coded in the garbled circuits. We
explain how this can be done in Section 2.4.

Finally, note that we require the following property from the underlying protocol 𝜋:
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given a transcript of execution of 𝜋, the output of 𝜋 can be publicly computed. As we
note in Section 2.4, this property can be easily achieved by slightly modifying the original
protocol 𝜋.

We provide all protocol details and outline optimizations in Section 2.4 and give the
formal construction in Protocols 6, 7 and 8. The formal security proof is done by providing
a simulator for the construction and proving that an interaction with the simulator in the
ideal world is indistinguishable from the interaction with an adversary in the real world.

To summarize, using the construction sketched above we achieve the following result:
Theorem 4. (Informal) Protocols 6, 7 and 8 transform any MPC protocol 𝜋 secure
against fully-malicious adversaries into another MPC protocol 𝜋′ in the blockchain model
that provides security with abort against fully-malicious adversaries and does not require
participants to be online at the same time. The MPC contributors are required to participate
for only a single round (the evaluators might be required to participate for multiple rounds).
The adversary is allowed to corrupt as many MPC contributors in 𝜋′ as it is allowed to
corrupt participants in 𝜋. The adversary is allowed to corrupt any number of evaluators.

In addition to our main protocol that requires only one message from the MPC contrib-
utors and does not require any additional functionality from the CSaR participants apart
from the core CSaR functionality itself (storing and releasing secrets), we provide a number
of variations that have further desirable properties, such as guaranteed output delivery. We
now outline these further contributions.

Improving Efficiency. The efficiency of our construction is strongly tied to the
efficiency of the underlying MPC protocol 𝜋. Note that in our construction each input wire
key of each garbled circuit is stored with the CSaR, and the inputs of the garbled circuits
are exactly messages exchanged between the parties as well as the state information passed
from previous rounds. Thus, the communication and state complexities translate directly
into the number of CSaR store and release operations that the MPC contributors, as well
as later the evaluators, must make. In order to reduce the number of CSaR invocations, we
describe an MPC protocol which optimizes the combined communication and internal-state
complexity. While communication complexity is typically considered to be one of the
most important properties of an MPC protocol, state complexity receives relatively little
attention. Our main construction shows that there are indeed use cases where both the
communication and the state complexity matter, and we initiate a study of the combined
state and communication complexity.

Specifically, we introduce an MPC protocol in which the combined communication and
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state complexity is independent of the function we are computing. We achieve it in two
steps: we start with a protocol secure against semi-malicious adversaries 2 which at the
same time has communication and state complexity which is independent of the function
that is being computed. Then, we extend it to provide fully malicious security while taking
care to retain the attractive communication and state complexity properties in the process.

In more detail, we start with the MPC construction by Brakerski et al. [31] which is
based on multi-key fully homomorphic encryption (MFHE) and achieves semi-malicious
security. We note that the communication and state complexity of this construction depends
only on the security parameters, the number of parties, and the input and output sizes. In
particular, note that the construction’s combined communication and state complexity is
independent of the function we are computing.

Our next step is to extend this construction so that it provides security against malicious
adversaries. For this, we propose to use the zero-knowledge protocol proposed by Kilian [86]
that relies on probabilistically checkable proofs (PCPs) and allows a party 𝑃 to prove
the correctness of some statement 𝑥 to the prover 𝑉 using a witness 𝑤. Along the way,
we need to make minor adjustments to Kilian’s construction because its state complexity
is unfortunately too high for our purposes – in particular, in the original construction,
the entire PCP string is stored by the prover to be used in later rounds. After making a
minor adjustment – recomputing the PCP instead of storing it – to the construction to
address this issue, we use this scheme after each round of the construction by Brakerski et
al. in order to prove the correct execution of the protocol by the parties. The resulting
construction achieves fully malicious security, and its communication and state complexities
are still independent of the function that we are computing.

We provide the details of the construction and analyse its security and communica-
tion/state complexity properties in Section 2.9 with the formal protocol description in
Protocol 14. In this protocol, we assume the existence of an MFHE scheme with circular
security and the existence of a collision-resistant hash functions. We are able to achieve the
following result which may be of independent interest:
Lemma 1. (Informal) Let 𝑓 be an 𝑁-party function. Protocol 14 is an MPC protocol
computing 𝑓 in the plain (authenticated broadcast) model and secure against fully malicious
adversaries corrupting up to 𝑡 < 𝑁 parties. Its communication and state complexity depend
only on security parameters, number of parties, and the input and output sizes. In particular,
the communication and state complexity of Protocol 14 is independent of the function 𝑓 .

2Intuitively, semi-malicious adversaries can be viewed as semi-honest adversaries which are allowed to
freely choose their random tapes.
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Using this MPC protocol in combination with our first construction, under the assump-
tions that we rely on in our main construction and in the MPC construction with optimized
communication and state complexity, we achieve the following:
Corollary 2. (Informal) There exists an MPC protocol 𝜋′ in the blockchain model that has
adversarial threshold 𝑡 < 𝑁 , provides security with abort against fully-malicious adversaries
and does not require participants to be online at the same time. Only a single message is
required from the MPC contributors (the evaluators might be required to produce multiple
messages). Furthermore, the number of calls to CSaR of this protocol is independent of the
function that is being computed using this MPC protocol.

Non-Interactive MPC with Guaranteed Output Delivery (GoD). We need to
modify our construction in order to provide guaranteed output delivery. In order to achieve
GoD, we require the protocol 𝜋 to have the GoD property as well, and thus the majority of
the participants in 𝜋 (recall that these are exactly the contributors in 𝜋′) must be honest 3.
While making this change (in addition to a few minor adjustments) would be enough to
guarantee GoD in our construction in the setting with only a single evaluator, it is certainly
not sufficient when there are multiple evaluators, some of them dishonest. This is due to
the following issue: since we must prevent an adversary from executing honest garbled
circuits on multiple different inputs, we cannot simply allow each evaluator to execute
garbled circuits on the inputs of its choosing. In particular, the CSaR release conditions
must ensure that for each wire only a single key is revealed. In our first construction this
results in the malicious evaluator being able to prevent an honest evaluator from executing
the garbled circuits as intended by submitting an invalid first message for any round. Thus,
to ensure guaranteed output delivery while maintaining secrecy, we must ensure that a
malicious evaluator posting a wrong message does not prevent an honest evaluator from
posting a correct message and using it for the key reveal. In particular, we will ensure that
only a correct (for a definition of “correctness” explained below) message can be used for
the wire key reveal.

Note that the inputs to the garbled circuits depend on the evaluators’ outputs from
the previous rounds. Checking the “correctness” of the evaluators’ outputs is not entirely
straight-forward since an honest execution of a garbled circuit which was submitted by
a dishonest party might produce outputs which look incorrect (for example, have invalid
signatures). Thus, simply letting the CSaR system check the signatures on the messages
supplied by the evaluators might result in an honest evaluator being denied the wire keys
for the next round.

3Note that there is no such restriction on the evaluators in 𝜋′.
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In our GoD construction we overcome this issue largely using the following adjustments:

• all initial messages containing garbled circuits and wire keys are required to be posted
before some deadline.

• we use a CSaR with public release (whenever a secret is released, it is released publicly
and the information can be viewed by anyone).

• we ensure that it is possible to distinguish between the case where the evaluator is
being dishonest, and the case where the evaluator is being honest, but the contributor
in 𝜋 supplied invalid garbled circuits or keys, or did not supply some required piece
of information.

We achieve the last point by designing the CSaR release condition in a way that it verifies
that the evaluator’s output can be explained by the information stored by the contributors
in 𝜋. In particular, as part of the CSaR’s release condition, we require a proof of correct
execution for the garbled circuit outputs. The relation that the CSaR system is required to
check in this case is roughly as follows: “The execution of the garbled circuit 𝐺𝐶 on the
wire keys {𝑘𝑖}𝑖∈𝐼 results in the output provided by 𝐸. Here, the garbled circuit 𝐺𝐶 is the
circuit, and {𝑘𝑖}𝑖∈𝐼 are the keys for this circuit reconstructed using the values published by
the CSaR which are present on the proof of publish supplied by 𝐸”. Note that due to the
switch to the CSaR with public release, the wire keys used for the computation are indeed
accessible to the CSaR system after their first release.

Similar to our first construction, we eventually reduce the security of the new protocol to
the security of the original protocol. In addition to our first construction however, since the
CSaR system is now able to verify messages submitted by the evaluators, honest evaluators
are always able to advance in the protocol execution. This insight allows us to ensure that
honest evaluators do not need to abort with more than a negligible probability along the
way. Thus, if the underlying protocol 𝜋 achieves guaranteed output delivery, the protocol
we propose achieves guaranteed output delivery as well.

We give full details of the GoD construction in Section 2.6. The statement about our
GoD construction is given below.
Lemma 2. (Informal) Any MPC protocol 𝜋 which is secure against fully-malicious
adversaries and provides guaranteed output delivery can be transformed into another MPC
protocol 𝜋′ in the blockchain model that provides security with guaranteed output delivery
against fully-malicious adversaries and does not require participants to be online at the same
time. The MPC contributors and evaluators are required to participate for only a single
round. The adversary is allowed to corrupt as many MPC contributors in 𝜋′ as it is allowed
to corrupt participants in 𝜋. The adversary is allowed to corrupt up to one evaluators.
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2.1.3 Related Work

Closest to our work is the line of research that studies non-interactive multiparty computa-
tion [55, 77, 79], initiated in 1994 by Feige et al. [55], in which a number of parties submit
a single message to a server (evaluator) that, upon receiving all of the messages, computes
the output of the function. In their work, Feige et al. allow the messages of the parties to
be dependent on some shared randomness that must be unknown to the evaluator. Unfor-
tunately, this means that if the evaluator is colluding with one or more of the participants,
the scheme becomes insecure. Overcoming this restriction, Halevi et al. [79] started a line
of work on non-interactive collusion-resistant MPC. Their model of computation required
parties to interact sequentially with the evaluator (in particular, the order in which the
clients connect to the evaluator is known beforehand). Beimel et al. [17] and Halevi et
al. [78] subsequently removed the requirement of sequential interaction. Further improving
upon these results, the work of Halevi et al. [77] removed the requirement of a complex
correlated randomness setup that was present in a number of previous works [17, 64, 78].
Halevi et al. [77] work in a public-key infrastructure (PKI) model in combination with
a common random string. As the authors point out, PKI is the minimal possible setup
that allows one to achieve the best-possible security in this setting, where the adversary
is allowed to corrupt the evaluator and an arbitrary number of parties and learn nothing
more than the so-called “residual function”, which is the original function restricted to the
inputs of the honest parties. In particular, this means that the adversary is allowed to learn
the outcome of the original function on every possible choice of adversarial inputs.

Our work differs from the line of work on non-interactive MPC described above in a
number of aspects. In contrast to those works, our construction is not susceptible to the
adversary learning the residual function – roughly because the adversary must effectively
“commit” to its input, and the CSaR system ensures that the adversary only receives a
single set of wire keys per honest garbled circuit (the set of wire keys that aligns with the
adversarial input). Additionally, in our work the parties do not need to directly communicate
with the evaluator. In fact, in our construction that ensures guaranteed output delivery,
any party can spontaneously decide to become an evaluator and still receive the result –
there is no need to rerun the protocol in this case.

Related to us are also the works on reusable non-interactive secure computation (NISC) [6,
10, 13, 35, 40], initiated by Ishai et al. [81]. Intuitively, reusable NISC allows a receiver
to publish a reusable encoding of its input 𝑥 in a way that allows any sender to let the
receiver obtain 𝑓(𝑥, 𝑦) for any 𝑓 by sending only a single message to the receiver. In our
work, we focus on a multi-party case, where a party that does not need the output is not
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required to wait for other parties to submit their inputs.

Recently, Benhamouda and Lin [24] proposed a model called multiparty reusable Non-
Interactive Secure Computation (mrNISC) Market that beautifully extends reusable NISC
to the multiparty setting. In this model, parties first commit their inputs to a public
bulletin board. Later, the parties can compute a function on-the-fly by sending a public
message to an evaluator. An adversary who corrupts a subset of parties learns nothing
more about the secret inputs of honest parties than what it can derive from the output
of the computation. Importantly, the bulletin board commitments are reusable, and the
security guarantee continues to hold even if there are multiple computation sessions. In
their work, Benhamouda and Lin mention that any one-round construction is susceptible
to the residual attacks and thus slightly relax the non-interactive requirement in order to
solve this problem. Indeed, their construction can be viewed as a 2-round MPC protocol
with the possibility to reuse messages of the first round for multiple computations. Our
scheme shows that when using blockchains it is indeed possible to provide a construction
that requires only a single round of interaction from the parties supplying the input and is
nonetheless not susceptible to residual attacks.

Concurrent to our work, Almashaqbeh et al. [7] recently published a manuscript which
focuses on designing non-interactive MPC protocols which use blockchains to provide short
term security without residual leakage. They focus on the setting where the inputs of
all but one of the parties are public. In this setting, designing one-round MPC can be
done easily by having all parties send their input to the only party which holds the secret
input. This party can then compute the output and distribute it to other parties. The
authors are able to extend the setting to the two-party semi-honest private input setting
where one round protocols for the party not getting the output can be easily designed
as well. While our protocol provides a worst-case security guarantee, they focus on an
incentive-based notion of security. While both constructions bypass the residual leakage
issue, their security guarantees might degrade with time. The key challenge in their setting
is fairness / guaranteed output delivery which they solve using an incentive-based model of
security. Hence their work is essentially unrelated to ours.

Finally, two blockchain-based works ([44] and [59]) focus on improving the flexibility of
the MPC protocols. Choudhuri et al. [44] proposed the notion of fluid MPC, while Gentry
et al. [59] proposed YOSO MPC (which we will discuss in detail in later chapters). Similar
to us, these constructions allow the MPC participants to leave after the first round if they
are not interested in learning the output. However, to execute the MPC protocol both
Choudhuri et al. and Gentry et al. require a number of committees of different parties
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which interact with each other, and each committee must provide honest majority. Our
protocol preserves privacy of inputs even if there is a single evaluator who is dishonest.

2.2 Preliminaries

In this section we briefly discuss cryptographic building blocks used in our system.

2.2.1 MPC

In our work we consider MPC that allow a set of parties 𝒫 = {𝑃1, . . . , 𝑃𝑛} to securely
compute the output of some function 𝑓 . We specifically consider MPC protocols in the
broadcast model 4, where all parties have access to a broadcast channel and each round
consists of parties broadcasting messages to other parties that participate in the protocol.
An MPC protocol specifies for each party and each round the so-called next-message
function, which defines the computation that is performed by that particular party in that
round, as well as the message that the party broadcasts in that round and the state that is
passed to the next round. More formally:
Definition 1. Given an interactive broadcast-only 𝑑-round MPC protocol, the next-
message function for round 𝑖 of party 𝑃𝑗 is the function (𝑚𝑖

𝑗, 𝑠
𝑖
𝑗) ← 𝑓(𝑥𝑗, 𝑟

𝑖
𝑗,𝑚

𝑖, 𝑠𝑖−1
𝑗 ),

where 𝑥𝑗 is 𝑃𝑗’s input in the MPC protocol, 𝑟𝑖
𝑗 is the local randomness used by party 𝑃𝑗 in

round 𝑖, 𝑚𝑖 = 𝑚𝑖−1
1 ‖𝑚𝑖−1

2 ‖ . . . ‖𝑚𝑖−1
𝑛 is the concatenation of messages received by each party

in round 𝑖− 1 (note that since we consider a broadcast protocol all parties receive the same
message), 𝑠𝑖

𝑗 is an auxiliary state information output by 𝑃𝑗 in round 𝑖 (𝑠0
𝑗 = ⊥), and 𝑚𝑖

𝑗 is
the message output by 𝑃𝑗 in round 𝑖.

Note: we assume that if a message from round 𝑘 < 𝑖 − 1 is needed in round 𝑖, it is
incorporated in all of 𝑃𝑗’s state messages from 𝑠𝑘+1

𝑗 to 𝑠𝑖−1
𝑗 .

Regarding the security of the MPC protocol, we consider the standard simulation-based
notion. In the ideal world parties interact with the ideal functionality ℱMPC, described in
Functionality 2.1. In the real world, parties engage in the real-world MPC protocol 𝜋 in
the presence of an adversary 𝐴, who is allowed to corrupt a set 𝐼 ⊂ [𝑛] of parties and may
follow an arbitrary polynomial-time strategy. Security of 𝜋 is defined as follows:

4Note that we will relax this requirement later, also allowing MPC protocols which use secure point-to-
point channels. See Section 2.4 for details.
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Definition 2. A protocol 𝜋 is said to securely compute 𝐹 with abort if for every PPT
adversary 𝐴 in the real world, there exists a PPT adversary 𝑆, such that for any set of
corrupted parties 𝐼 ⊂ [𝑛] with |𝐼| ≤ 𝑡 (where 𝑡 is the adversarial threshold), every initial
input vector (𝑥1, . . . , 𝑥𝑛), and every security parameter 𝜆, it holds that

{IDEAL𝑓,𝑆(𝑧),𝐼(1𝜆, (𝑥1, . . . , 𝑥𝑛))} =𝑐 {REAL𝜋,𝐴(𝑧),𝐼(1𝜆, (𝑥1, . . . , 𝑥𝑛))},

where 𝑧 ∈ {0, 1}* is the auxiliary input, IDEAL𝑓,𝑆(𝑧),𝐼 denotes the output of the interaction
of the adversary 𝑆(𝑧) (who corrupts parties in 𝐼) with the ideal functionality (this output
consists of the output of the adversary 𝑆(𝑧) as well as the outputs of the honest parties),
and REAL𝜋,𝐴(𝑧),𝐼 denotes the output of protocol 𝜋 given the adversary 𝐴(𝑧) who corrupts
parties in 𝐼 (this output consists of the output of the adversary 𝐴(𝑧) as well as the outputs
of the honest parties).

Finally, in our constructions we additionally assume that the underlying protocol 𝜋 has
the property that given the transcript of the protocol execution, the output can be publicly
computed (as defined in [82]):
Definition 3 (Publicly Recoverable Output). Given a transcript 𝜏 of an execution of a
protocol 𝜋, there exists a function Eval such that the output of the protocol 𝜋 for all parties
is given by 𝑦 = Eval(𝜏).

Functionality 2.1: ℱMPC

1. Let the set of MPC participants be 𝒫 = {𝑃1, . . . , 𝑃𝑛}.
2. Let 𝑥𝑖 denote the input of the party 𝑃𝑖 ∈ 𝒫 .
3. The adversary 𝑆 selects a set 𝐼 ⊂ [𝑛] of corrupted parties.
4. Each honest party 𝑃𝑖 sends its input 𝑥*

𝑖 = 𝑥𝑖 to ℱMPC. For each corrupted party
𝑃𝑗, the adversary may select any value 𝑥*

𝑗 and send it to ℱMPC.
5. ℱMPC computes 𝐹 (𝑥*

1, . . . , 𝑥
*
𝑛) = (𝑦1, . . . , 𝑦𝑛) and sends {𝑦𝑖}𝑖∈𝐼 to the adversary.

6. The adversary sends either abort or continue to ℱMPC.
• If the adversary sent abort, ℱMPC sends ⊥ to each honest party.
• Otherwise, ℱMPC sends 𝑦𝑖 to each honest party 𝑃𝑖.

7. Each honest party 𝑃𝑖 outputs the message it received from ℱMPC. Each adversarial
party can output an arbitrary PPT function of the adversary’s view.

In one of our constructions, we consider MPC protocols which provide guaranteed output
delivery. In that case the security of protocol 𝜋 is defined the same way as before, except
that the ideal functionality is now ℱMPC-GoD, described in Functionality 2.2.
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Functionality 2.2: ℱMPC-GoD

1. Let the set of MPC participants be 𝒫 = {𝑃1, . . . , 𝑃𝑛}.
2. Let 𝑥𝑖 denote the input of the party 𝑃𝑖 ∈ 𝒫 .
3. The adversary 𝑆 selects a set 𝐼 ⊂ [𝑛] of corrupted parties.
4. Each honest party 𝑃𝑖 sends its input 𝑥*

𝑖 = 𝑥𝑖 to ℱMPC-GoD. For each corrupted
party 𝑃𝑗, the adversary may select any value 𝑥*

𝑗 and send it to ℱMPC-GoD.
5. ℱMPC computes 𝐹 (𝑥*

1, . . . , 𝑥
*
𝑛) = (𝑦1, . . . , 𝑦𝑛), substituting each missing value by

some default value.
6. ℱMPC-GoD sends 𝑦𝑖 to each party 𝑃𝑖.
7. Each honest party 𝑃𝑖 outputs the message it received from ℱMPC-GoD. Each

adversarial party can output an arbitrary PPT function of the adversary’s view.

2.2.2 Yao’s Grabled Circuits

One of the core building blocks in our construction are Yao’s garbled circuits that allow
secure two-party computation [108, 110]. In the following, we provide definitions for the
garbling process as well as the security of garbling scheme (taken verbatim from [43]):
Definition 4 (Garbling scheme). A garbling scheme for circuits is a tuple of PPT algorithms
GC := (Gen, Garble, Eval) such that:

• ({lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1})← Gen(1𝜆, inp) : Gen takes the security parameter 1𝜆 and length
of input for the circuit as input and outputs a set of input labels {lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1}.

• 𝐶 ← Garble(𝐶, ({lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1}) : Garble takes as input a circuit 𝐶 : {0, 1}inp →
{0, 1}out and a set of input labels {lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1} and outputs the garbled circuit
𝐶.

• 𝑦 ← Eval(𝐶, lab𝑥) : Eval takes as input the garbled circuit 𝐶, input labels lab𝑥

corresponding to the input 𝑥 ∈ {0, 1}inp and outputs 𝑦 ∈ {0, 1}out.

The garbling scheme satisfies the following properties:

1. Correctness: For any circuit 𝐶 and input 𝑥 ∈ {0, 1}inp,

𝑃 𝑟[𝐶(𝑥) = Eval(𝐶, lab𝑥)] = 1,

where ({lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1})← Gen(1𝜆, inp) and 𝐶 ← Garble(𝐶, {lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1}).
2. Selective Security: There exists a PPT simulator SimGC such that, for any PPT

adversary 𝒜, there exists a negligible function 𝜇(·) such that

|𝑃𝑟[Experiment𝒜,SimGC
(1𝜆, 0) = 1]− 𝑃𝑟[Experiment𝒜,SimGC

(1𝜆, 1) = 1]| ≤ 𝜇(𝜆)
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where the experiment Experiment𝒜,SimGC
(1𝜆, 𝑏) is defined as follows:

(a) The adversary 𝒜 specifies the circuit 𝐶 and an input 𝑥 ∈ {0, 1}inp and gets 𝐶
and ^lab, which are computed as follows:

• If 𝑏 = 0:
({lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1})← Gen(1𝜆, inp)
𝐶 ← Garble(𝐶, ({lab𝑤,𝑏}𝑤∈inp,𝑏∈{0,1})

• If 𝑏 = 1:
(𝐶, ^lab)← SimGC(1𝜆, 𝐶(𝑥))

• The adversary outputs a bit 𝑏′, which is the output of the experiment.

We note that Yao’s protocol achieves selective security. Very roughly, the security of
the party producing the garbled circuit relies on the fact that for each wire of the circuit,
only a single garbled key is revealed, and thus the only information the other party gets
is the (garbled) output. We refer to the work of Lindell and Pinkas for the details of the
construction as well as the security proof [91].

2.2.3 DPSS

A key building block of our CSaR instantiation is a dynamic proactive secret sharing scheme
(DPSS), which allows a party to distribute shares of a secret to 𝑛 parties. The scheme
ensures that an adversary in control of some threshold number of parties 𝑡 will learn no
information about the secret. Over the course of running the protocol the set of parties
holding the secret is constantly changing, and the adversary might “release” some parties
(corresponding to users who regain control of their systems) and corrupt new ones.

A DPSS scheme consists of the following three phases.

Setup. In each setup phase, one or more independent clients secret-share a total of 𝑚
secrets to a set of 𝑛 parties, known as a committee, denoted by 𝒞 = {𝑃1, . . . , 𝑃𝑛}. After
each setup phase, each committee member holds one share for each secret 𝑠 distributed
during this phase.

Hand-off. As the protocol runs, the hand-off phase is periodically invoked. In the
hand-off phase, the sharing of each secret is passed from the old committee, 𝒞, to a new
committee, 𝒞 ′. This process reflects parties leaving and joining the committee. After
the hand-off phase, all parties in the old committee delete their shares, and all parties in
the new committee hold a sharing for each secret 𝑠. The hand-off phase is particularly
challenging, since during the hand-off a total of 2𝑡 parties may be corrupted (𝑡 parties in
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the old committee and 𝑡 parties in the new committee).

Reconstruction. When a client (which need not be one who participated in the setup
phase) asks for the reconstruction of a specific secret, that client and all parties in the
current committee engage in a reconstruction process to allow the client learn the secret.

2.2.3.1 DPSS Security Definition

A DPSS scheme is required to satisfy two properties, robustness and secrecy. At a high-level,
robustness requires that it should always be possible to recover the secret. Secrecy requires
that an adversary should not learn any further information about the secret beyond what
has been learned before running the protocol.

Robustness. For any PPT adversary 𝒜 with corruption threshold 𝑡 it holds that after
each setup phase, there exists a fixed secret 𝑠⋆ for each sharing distributed during this
phase. If the setup phase was executed by an honest client, this secret is the same as the
one chosen by this client. When at some point an honest client asks for a reconstruction
of this secret, the client receives the correct secret 𝑠⋆.

Secrecy. For any PPT adversary 𝒜 with corruption threshold 𝑡, there exists a simulator
𝒮 with access to our security model Idealsafe (described in Ideal Secrecy), such that the
view of 𝒜 interacting with 𝒮 is computationally indistinguishable from the view in the real
execution.

Ideal Secrecy: Idealsafe

1. Idealsafe receives the secrets from the clients in the setup phase.
2. When an honest client asks for the reconstruction of some specific secret 𝑠⋆, Idealsafe

sends 𝑠⋆ to that client.

Definition 5. A dynamic proactive secret-sharing scheme is secure if for any PPT adversary
𝒜 and threshold 𝑡, it satisfies both robustness and secrecy.

2.2.4 Non-interactive zero-knowledge proofs

Non-interactive zero-knowledge proofs (NIZKs) allow one party (the prover) prove validity
of some statement to another party (the verifier), in a way that nothing except for the
validity of the statement is revealed and no interaction between the prover and the verifier
is needed. More formally, as defined by Groth [71]:

29



Let 𝑅 be an efficiently computable binary relation. For pairs (𝑥,𝑤) ∈ 𝑅 we call 𝑥 the
statement and 𝑤 the witness.

A proof system for relation 𝑅 consists of a key generation algorithm 𝐾𝑒𝑦𝐺𝑒𝑛, a prover
𝑃 and a verifier 𝑉 . The key generation algorithm produces a CRS 𝜎. The prover takes as
input (𝜎, 𝑥, 𝑤) and produces a proof 𝜋. The verifier takes as input (𝜎, 𝑥, 𝜋) and outputs 1 if
the proof is acceptable and 0 otherwise.
Definition 6 (Proof system). (𝐾𝑒𝑦𝐺𝑒𝑛, 𝑃, 𝑉 ) is a proof system for 𝑅 if it satisfies the
following properties:

• Perfect completeness. For all adversaries 𝒜 holds:
𝑃𝑟[𝜎 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘); (𝑥,𝑤)← 𝒜(𝜎); 𝜋 ← 𝑃 (𝜎, 𝑥, 𝑤) :

𝑉 (𝜎, 𝑥, 𝜋) = 1 if (𝑥,𝑤) ∈ 𝑅] = 1
• Perfect soundness. For all adversaries 𝒜 holds:

𝑃𝑟[𝜎 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘); (𝑥, 𝜋)← 𝒜(𝜎) :𝑉 (𝜎, 𝑥, 𝜋) = 0 if 𝑥 /∈ 𝐿] = 1
Definition 7 (Proof of knowledge). We call a proof system (𝐾𝑒𝑦𝐺𝑒𝑛, 𝑃, 𝑉 ) a proof of
knowledge for 𝑅 if there exists a polynomial time extractor 𝐸 = (𝐸1, 𝐸2) such that for all
adversaries 𝒜 holds:

𝑃𝑟[𝜎 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘) : 𝒜(𝜎) = 1] = 𝑃𝑟[(𝜎, 𝜖)← 𝐸1(1𝑘) : 𝒜(𝜎) = 1], and
𝑃𝑟[(𝜎, 𝜖)← 𝐸1(1𝑘); (𝑥, 𝜋)← 𝒜(𝜎);𝑤 ← 𝐸2(𝜎, 𝜖, 𝑥, 𝜋) :𝑉 (𝜎, 𝑥, 𝜋) = 0 or (𝑥,𝑤) ∈ 𝑅] = 1

Definition 8 (Non-interactive zero-knowledge proof, NIZK). A non-interactive proof system
(𝐾𝑒𝑦𝐺𝑒𝑛, 𝑃, 𝑉 ) is a NIZK for 𝑅 if there exists a polynomial time simulator 𝑆 = (𝑆1, 𝑆2),
which satisfies the following property:

(Unbounded) computational zero-knowledge. For all PPT adversaries 𝒜 holds

𝑃𝑟[𝜎 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘) : 𝒜𝑃 (𝜎,·,·)(𝜎) = 1] ≈ 𝑃𝑟[(𝜎, 𝜏)← 𝑆1(1𝑘) : 𝒜𝑆(𝜎,𝜏,·,·)(𝜎) = 1],

where 𝑓(𝑘) ≈ 𝑔(𝑘) means that there exists a negligible function 𝑛𝑒𝑔𝑙(𝑘) s.t. |𝑓(𝑘)− 𝑔(𝑘)| <
𝑛𝑒𝑔𝑙(𝑘)

Finally, in our CSaR instantiation we require that if after seeing some number of
simulated proofs the adversary is able to produce a new valid proof, we are able to extract
a witness from this proof. This property is called simulation sound extractability [71]:

(Unbounded) simulation sound extractability. A NIZK proof of knowledge
(𝐾𝑒𝑦𝐺𝑒𝑛, 𝑃,
𝑉, 𝑆1, 𝑆2, 𝐸1, 𝐸2) is simulation sound extractable, if for all PPT adversaries 𝒜 holds

𝑃𝑟[(𝜎, 𝜏, 𝜖)← 𝑆𝐸1(1𝑘); (𝑥, 𝜋)← 𝒜𝑆2(𝜎,𝜏,·)(𝜎, 𝜖);𝑤 ← 𝐸2(𝜎, 𝜖, 𝑥, 𝜋) : (𝑥, 𝜋) /∈ 𝑄 and (𝑥,𝑤) /∈
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𝑅 and 𝑉 (𝜎, 𝑥, 𝜋) = 1] ≈ 0,

where 𝑆𝐸1 is an algorithm that outputs (𝜎, 𝜏, 𝜖) such that it is identical to 𝑆1 when restricted
to the first two parts (𝜎, 𝜏), and 𝑄 is a list of simulation queries and responses (i.e., simulated
proofs).

2.2.5 Hash functions

To reduce communication cost of our eWEB protocol, we use hash functions. In the
following, we formally define a hash function family and the collision-resistance property
that we rely on in our construction.
Definition 9. Hash function family

A family of functions 𝐻 = {ℎ𝑖 : 𝐷𝑖 → 𝑅𝑖}𝑖∈𝐼 is a hash function family, if the following
holds:

Easy to sample. There exists a PPT algorithm 𝐺𝑒𝑛 outputting 𝑖 s.t. ℎ𝑖 is a random
member of 𝐻.

Easy to evaluate. There exists a PPT algorithm 𝐸𝑣𝑎𝑙 s.t. for all 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝐷𝑖,
𝐸𝑣𝑎𝑙(𝑖, 𝑥) = ℎ𝑖(𝑥).

Compression. For all 𝑖 ∈ 𝐼 holds |𝑅𝑖| < |𝐷𝑖|.

We say a hash function family is a collision resistant hash function (CRHF) if the
following condition holds:

Collision-resistance. Foll all PPT 𝒜, security parameter 𝑘 and a negligible function
𝑛𝑒𝑔𝑙(·) holds:

𝑃𝑟[𝑖← 𝐺𝑒𝑛(𝑘); (𝑥, 𝑥′)← 𝒜(𝑖) : 𝑥 ̸= 𝑥′ and ℎ𝑖(𝑥) = ℎ𝑖(𝑥′)] ≤ 𝑛𝑒𝑔𝑙(𝑘)

2.2.6 Append-only Bulletin Boards

In our construction, we rely on public bulletin boards. Specifically, we require that the
bulletin boards allows parties to publish arbitrary strings and receive a confirmation (dubbed
“proof of publish”) that the string was published in return.

Following the approach of Kaptchuk et al [83], we assume that parties publish their
strings as part of a public chain of values, and abstract the bulletin board syntax as follows:
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• (post, 𝜎)← Post(M). Intuitively, when a party wishes to post some data 𝑀 on the
public chain, the Post function is called. This call results in post (which consists of
𝑀 , as well as additional data which identifies this data record on the chain) being
appended to the chain. The tuple (post, 𝜎), where 𝜎 is the proof of publish, is
returned. We assume that a proof of publish is public and can be retrieved for already
published posts as well.

• {0, 1} ← Verify(post, 𝜎). The public verification algorithm takes as input a suppos-
edly published record post as well as a proof of publish 𝜎, and verifies that the record
post has indeed been published.

Security-wise, we require that the contents of the bulletin board are hard to erase
or modify and that the proof of publish is unforgeable. Specifically, we require that up
to a negligible probability it is impossible to come up with a pair (post, 𝜎) such that
Verify(post, 𝜎) = 1, unless this pair has been generated through a call to the Post
algorithm. This property holds even if the adversary is given an oracle that posts arbitrary
strings on the bulletin board on the behalf of the adversary.

Such bulletin boards have been extensively investigated in prior works [45, 65, 83].
While specific syntax details of the bulletin board abstraction slightly vary throughout these
works, they all ensure that parties are able to post arbitrary strings on an append-only
log, and the proof of publish cannot be forged. These works also point out that bulletin
boards with the properties described above already exist in practice. They can be realized
from centralized systems such as the Certificate Transparency project [1], and from the
decentralized systems such as proof-of-work or proof-of-stake blockchains.

2.2.7 MPC in the Presence of Contributors and Evaluators

In the following, we formally define the security of the functionality which we want to
achieve. Recall that we consider two sets of parties – MPC contributors who supply inputs
and MPC evaluators who wish to obtain the output.

We consider the simulation-based notion of security. In the ideal world, parties interact
with the ideal functionality ℱeval-MPC, described in Figure 2.3. Note that the difference to
the standard ideal functionality for MPC with abort (described in Figure 2.1) is that we
distinguish between contributors and evaluators.

In the real world, parties execute the protocol 𝜋 in the presence of an adversary 𝐴. The
adversary 𝐴 is allowed to corrupt a set of contributors 𝐼 ⊂ [𝑛] as well as a set of evaluators
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𝐼 ′ ⊂ [𝑛′]. 𝐴 is allowed to send messages in place of corrupted parties and can follow an
arbitrary polynomial-time strategy.

Security of 𝜋 is defined as follows:
Definition 10. A protocol 𝜋 is said to securely compute 𝐹 with abort in the presence of
contributors and evaluators if for every PPT adversary 𝐴 in the real world, there exists
a PPT adversary 𝑆, such that for any set of corrupted evaluators 𝐼 ′ ⊂ [𝑛′], any set of
contributors 𝐼 ⊂ [𝑛] with |𝐼| ≤ 𝑡 (where 𝑡 is the adversarial threshold), every initial input
vector (𝑥1, . . . , 𝑥𝑛), and every security parameter 𝜆, it holds that

{IDEAL𝑓,𝑆(𝑧),𝐼(1𝜆, (𝑥1, . . . , 𝑥𝑛))} =𝑐 {REAL𝜋,𝐴(𝑧),𝐼(1𝜆, (𝑥1, . . . , 𝑥𝑛))},

where 𝑧 ∈ {0, 1}* is the auxiliary input, IDEAL𝑓,𝑆(𝑧),𝐼 denotes the output of the interaction
of the adversary 𝑆(𝑧) (who corrupts parties in 𝐼) with the ideal functionality ℱeval-MPC (this
output consists of the output of the adversary 𝑆(𝑧) as well as the outputs of the honest
parties), and REAL𝜋,𝐴(𝑧),𝐼 denotes the output of the interaction between the adversary 𝐴(𝑧)
who corrupts parties in 𝐼 and the honest parties in the protocol 𝜋 (this output consists of
the output of the adversary 𝐴(𝑧) as well as the outputs of the honest parties).

Functionality 2.3: ℱeval-MPC

1. We distinguish between the set of MPC contributors 𝒫 = {𝑃1, . . . , 𝑃𝑛} and the
set of evaluators ℰ = {𝐸1, . . . , 𝐸𝑛′}. These sets can be, but do not need to be
disjoint.

2. Let 𝑥𝑖 denote the input of the party 𝑃𝑖 ∈ 𝒫 .
3. The adversary 𝑆 selects a set of contributors 𝐼 ⊂ [𝑛] to corrupt.
4. The adversary 𝑆 selects a set of evaluators 𝐼 ′ ⊂ [𝑛′] to corrupt.
5. Each honest party 𝑃𝑖 sends its input 𝑥*

𝑖 = 𝑥𝑖 to ℱeval-MPC. For each corrupted
party 𝑃𝑗, the adversary may select any value 𝑥*

𝑗 and send it to ℱeval-MPC.
6. ℱeval-MPC computes 𝐹 (𝑥*

1, . . . 𝑥
*
𝑛) and sends 𝐹 (𝑥*

1, . . . 𝑥
*
𝑛) to the adversary.

7. The adversary sends either abort or continue to ℱeval-MPC.
• If the adversary send abort, ℱeval-MPC sends ⊥ to all honest evaluators.
• Otherwise, ℱeval-MPC sends 𝐹 (𝑥*

1, . . . 𝑥
*
𝑛) to each honest evaluator.

8. Each honest evaluator outputs the message it received from ℱeval-MPC. Each
adversarial party can output an arbitrary PPT function of the adversary’s view.

In one of our constructions, we consider MPC protocols which provide guaranteed output
delivery. In that case the security of protocol 𝜋 is defined the same way as before, except
that the ideal functionality is now ℱeval-MPC-GoD, described in Functionality 2.4.
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Functionality 2.4: ℱeval-MPC-GoD

1. We distinguish between the set of MPC contributors 𝒫 = {𝑃1, . . . , 𝑃𝑛} and the
set of evaluators ℰ = {𝐸1, . . . , 𝐸𝑛′}. These sets can be, but do not need to be
disjoint.

2. Let 𝑥𝑖 denote the input of the party 𝑃𝑖 ∈ 𝒫 .
3. The adversary 𝑆 selects a set of contributors 𝐼 ⊂ [𝑛] to corrupt.
4. The adversary 𝑆 selects a set of evaluators 𝐼 ′ ⊂ [𝑛′] to corrupt.
5. Each honest party 𝑃𝑖 sends its input 𝑥*

𝑖 = 𝑥𝑖 to ℱeval-MPC. For each corrupted
party 𝑃𝑗, the adversary may select any value 𝑥*

𝑗 and send it to ℱeval-MPC.
6. ℱeval-MPC computes 𝐹 (𝑥*

1, . . . 𝑥
*
𝑛) and sends it to the adversary as well as each

honest evaluator.
7. Each honest evaluator outputs the message it received from ℱeval-MPC-GoD. Each

adversarial party can output an arbitrary PPT function of the adversary’s view.

2.2.8 Multi-Key FHE with Distributed Setup

Our construction of an MPC scheme which combined communication and state complexity
is independent of the function being computed is based on the MPC protocol of Brakerski
et al. [31], which in turn utilizes multi-key fully homomorphic encryption scheme with
distributed setup. In the following, we formally define this primitive (in large parts taken
verbatim from Brakerski et al. [31]).
Definition 11 (Multi-key fully homomorphic encryption scheme, MFHE). An MFHE
scheme with distributed setup consists of the procedures (MFHE.DistSetup,MFHE.Keygen,MFHE.Encrypt,
MFHE.Decrypt,MFHE.Eval), defined as follows:

• params𝑖 ← MFHE.DistSetup(1𝜅, 1𝑁 , 𝑖): On input the security parameter 𝜅 and number
of users 𝑁 , outputs the system parameters for the 𝑖-th player params𝑖. Let params =
{params𝑖}𝑖∈[𝑁 ].

• (pk, sk) ← MFHE.Keygen(params, i): On input params and entry number 𝑖 the key
generation algorithm outputs a public/secret key pair (pk, sk).

• 𝑐← MFHE.Encrypt(pk,𝑥): On input 𝑝𝑘 and a plaintext message 𝑥 ∈ {0, 1}* output a
“fresh ciphertext” 𝑐. (We assume for convenience that the ciphertext includes also the
respective public key.)

• 𝑐 := MFHE.Eval(params;𝒞; (𝑐1, . . . , 𝑐𝑙)): On input a (description of a) Boolean circuit
𝒞 and a sequence of fresh ciphertexts (𝑐1, . . . , 𝑐𝑙), output an “evaluated ciphertext” 𝑐.
(Here we assume that the evaluated ciphertext includes also all the public keys from
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the 𝑐𝑖’s.)
• 𝑥 := MFHE.Decrypt((sk1, . . . , skN), ĉ): On input an evaluated ciphertext 𝑐 (with 𝑁

public keys) and the corresponding 𝑁 secret keys (sk1, . . . , skN), output the message
𝑥 ∈ {0, 1}*.

The scheme is correct if for every circuit 𝒞 on 𝑁 inputs and any input sequence 𝑥1, . . . , 𝑥𝑁

for 𝒞, we set params𝑖 ← MFHE.DistSetup(1𝜅, 1𝑁 , 𝑖), params = {params𝑖}𝑖∈[𝑁 ], and then
generate 𝑁 key-pairs and 𝑁 ciphertexts (𝑝𝑘𝑖, 𝑠𝑘𝑖) ← MFHE.Keygen(params) and 𝑐𝑖 ←
MFHE.Encrypt(pki, 𝑥𝑖), then we get

MFHE.Decrypt((sk1, . . . , skN),MFHE.Eval(params;𝒞; (𝑐1, . . . , 𝑐𝑁))) = 𝒞(𝑥1, . . . , 𝑥𝑁)

except with negligible probability (in 𝜅) taken over the randomness of all these algorithms.

In the work of Brakerski et al. the following two properties are needed of the multi-
key FHE schemes: first, the decryption procedure consists of a “local” partial-decryption
procedure 𝑒𝑣𝑖 ← MFHE.PartDec(𝑐, ski) that only takes one of the secret keys and outputs
a partial decryption share, and a public combination procedure that takes these partial
shares and outputs the plaintext, 𝑥 ← MFHE.FinDec(𝑒𝑣1, . . . , 𝑒𝑣𝑁 , 𝑐). Another property
that is needed is the ability to simulate the decryption shares. Specifically, there exists a
PPT simulator 𝑆𝑇 , that gets for input:

• the evaluated ciphertext 𝑐,
• the output plaintext 𝑥 := MFHE.Decrypt((sk1,←, skN), 𝑐),
• a subset 𝐼 ⊂ [𝑁 ], and all secret keys except the one for 𝐼, {skj}𝑗∈[𝑁 ]∖𝐼 .

The simulator produces as output simulated partial evaluation decryption shares: {𝑒𝑣𝑖}𝑖∈𝐼 ←
𝑆𝑇 (𝑥, 𝑐, 𝐼, {skj}𝑗∈[𝑁 ]∖𝐼). We want the simulated shares to be statistically close to the shares
produced by the local partial decryption procedures using the keys {𝑠𝑘𝑖}𝑖∈𝐼 , even conditioned
on all the inputs of 𝑆𝑇 . A scheme is simulatable if it has local decryption and a simulator
as described here.

Brakerski et al. require that semantic security for the 𝑖-th party holds even when all
{params𝑗}𝑗∈[𝑁 ]∖𝑖 are generated adversarially and possibly depending on params𝑖.

They consider a rushing adversary that chooses 𝑁 and 𝑖 ∈ [𝑁 ], then it sees params𝑖 and
produces params𝑗 for all 𝑗 ∈ [𝑁 ] ∖ {𝑖}. After this setup, the adversary is engaged in the
usual semantic-security game, where it is given the public key, chooses two messages and is
given the encryption of one of them, and it needs to guess which one was encrypted.

Simulation of the decryption shares is defined as before, but now the evaluated ciphertext
is produced by the honest party interacting with the same rushing adversary (and statistical
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closeness holds even conditioned on everything that the adversary sees).

2.3 CSaRs

In our work, we rely on what we call conditional storage and retrieval systems (CSaRs)
that allow for a secure storage- and retrieval of secrets. In this section, we formalize the
CSaR primitive and discuss its instantiation.

2.3.1 Defining CSaRs

Informally, CSaRs allow a user to store a secret with a CSaR along with a release condition.
The user’s secret is released if and only if this condition is satisfied. While such systems
could be realized via a trusted third party, they can also be obtained using a set of parties
with the guarantee that some sufficiently large subset of these parties is honest. A user
can then distribute its secret between the set of parties, and the CSaR’s security guarantee
ensures that no subset of parties that is smaller than a defined threshold can use its secret
shares to gain information about the secret. We capture this informal notion by giving a
formal ideal functionality in Figure 2.5.

Figure 2.5: Ideal CSaR: IdealCSaR

1. SecretStore Upon receiving an (identifier, release condition, secret) tuple 𝜏 =
(𝑖𝑑, 𝐹, 𝑠) from a client 𝑃 , IdealCSaR checks whether 𝑖𝑑 was already used. If not,
IdealCSaR stores 𝜏 and notifies all participants that a valid storage request with
the identifier 𝑖𝑑 and the release condition 𝐹 has been received from a client 𝑃 .
Here, the release condition is an NP statement.

2. SecretRelease Upon receiving an (identifier, witness) tuple (𝑖𝑑, 𝑤) from some
client 𝐶, IdealCSaR checks whether there exists a record with the identifier 𝑖𝑑.
If so, IdealCSaR checks whether 𝐹 (𝑤) = 𝑡𝑟𝑢𝑒, where 𝐹 is the release condition
corresponding to the secret with the identifier 𝑖𝑑. If so, IdealCSaR sends the
corresponding secret 𝑠 to client 𝐶.

Based on the ideal functionality, we define the security of a CSaR scheme as follows:

CSaR Security. For any PPT adversary 𝒜 there exists a PPT simulator 𝒮 with
access to our security model IdealCSaR (described in Ideal CSaR), such that the view of 𝒜
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interacting with 𝒮 is computationally indistinguishable from the view in the real execution.

2.3.2 Instantiating CSaRs

We now provide an implementation of a CSaR system which we dub eWEB. 5 Its key
building block is a DPSS scheme used in a black-box way. The initial committee are miners
who mined the most recent 𝑛 blocks in the underlying blockchains.

Given a secret message 𝑀 and a release condition 𝐹 , the depositor stores the release
condition 𝐹 on the blockchain and secret-shares 𝑀 among the miners using the secret
storage (setup) algorithm of the DPSS scheme.

During the protocol’s periodically executed hand-off phase, the secrets are passed from
the miners of the old committee to the miners of the new committee using the DPSS
hand-off algorithm. The new committee consists of the miners who mined the most recent 𝑛
blocks. This keeps the size of the committee constant and allows all parties to determine the
current committee by looking at the blockchain state. It is possible that some committee
members receive more information about the secrets than others — roughly, if a party
mined 𝑚 out of the last 𝑛 blocks, this party receives 𝑚

𝑛
of all the shares. This reflects the

distribution of the computing power (for POW blockchains) or stake (for POS blockchains)
in the system [65].

To retrieve a stored secret, a requester 𝑈 needs to prove that they are eligible to do so.
This poses a challenge. An insecure solution is to just send a valid witness 𝑤 (𝐹 (𝑤) = 𝑡𝑟𝑢𝑒)
to the miners. One obvious problem with this solution is that a malicious miner can
use the provided witness to construct a new secret release request and retrieve the secret
himself. To solve this problem, instead of sending the witness in clear, the user proves
that they know a valid witness. Thus, while the committee members are able to check the
validity of the request and privately release the secret to 𝑈 , the witness remains hidden. In
our scheme we rely on non-interactive zero knowledge proofs (NIZKs) [28]. Such proofs
allow one party (the prover) to prove validity of some statement to another party (the
verifier), such that nothing except for the validity of the statement is revealed. In eWEB we
specifically use simulation extractable non-interactive zero knowledge proofs of knowledge,
which allow the prover convince the verifier that they know a witness to some statement.

5Note that another viable candidate for a CSaR instantiation is the system proposed by Benhamouda
et al. [22]. While it does not formally explain how the secrets can be stored to and retrieved from the
blockchain given a specific release condition, it should be possible to extend their system by the techniques
we use in eWEB.
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Note that extractability can be added to any NIZK [3, 88]. We use NIZKs for relation
𝑅 = {(𝑝𝑘, 𝑤) | 𝐹 (𝑤) = 𝑡𝑟𝑢𝑒 and 𝑝𝑘 = 𝑝𝑘}, where 𝐹 (·) is the release condition specified by
the depositor and 𝑝𝑘 is the public key of user 𝑈 and is used to identify the user eligible to
receive the secret. After the miners verify the validity of the request, they engage in the
DPSS’s secret reconstruction with requester 𝑈 to release the secret to 𝑈 .

We provide the full secret storage protocol in Figure 3. The hand-off protocol is given
in Figure 4. The secret release protocol is in Figure 5. Note that the asymptotics of eWEB
match those of the underlying DPSS scheme. Below, we elaborate on additional details of
our construction.

2.3.2.1 Subtleties of Point-to-Point Channels

Instead of assuming secure point-to-point channels, we rely on authenticated encryption and
Protocols 1 and 2, executed whenever a message needs to be securely sent from one party
to another. It is used for all messages exchanged in eWEB, including the underlying DPSS
protocol. Whenever a party receives an encrypted message, it performs an authentication
check to ensure that a ciphertext received from some party was generated by that party.
This prevents the following malleability issue - a malicious user desiring to learn a secret
with the identifier 𝑖𝑑 could generate a new secret storage request with a function 𝐹 for
which he knows a witness, copy the DPSS messages sent by the user who created the storage
request 𝑖𝑑 to the miners and later prove his knowledge of a witness for 𝐹 to release the
corresponding secret. Without the authentication check, our scheme would be insecure,
and our security proof would not go through.

Protocol 1 MessagePreparation
1. For a message 𝑚 to be sent by party 𝑃𝑠 to party 𝑃𝑟, 𝑃𝑠 computes the ciphertext
𝑐← 𝐸𝑛𝑐𝑝𝑘𝑟(𝑚|𝑝𝑖𝑑𝑠), where 𝑝𝑘𝑟 is the public key of 𝑃𝑟 and 𝑝𝑖𝑑𝑠 is the party identifier
of 𝑃𝑠.

2. 𝑃𝑠 prepends the storage identifier 𝑖𝑑 of his request and sends the tuple (𝑖𝑑, 𝑐) to 𝑃𝑟.

Protocol 2 AuthenticatedDecryption
1. Upon receiving a tuple (𝑖𝑑, 𝑐) from party 𝑃𝑠 over an authenticated channel, the

receiving party 𝑃𝑟 decrypts 𝑐 using its secret key 𝑠𝑘 to obtain 𝑚← 𝐷𝑒𝑐𝑠𝑘(𝑐).
2. 𝑃𝑟 verifies that 𝑚 is of the form 𝑚′|𝑝𝑖𝑑𝑠 for some message 𝑚′, where 𝑝𝑖𝑑𝑠 is the

identifier of party 𝑃𝑠.
3. If the verification check fails, 𝑃𝑟 stops processing 𝑐 and outputs an error message.
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2.3.2.2 Storage Identifiers

Each storage request has a unique identifier 𝑖𝑑. This can be, e.g., the address of this
particular transaction in the blockchain. It is used for practical reasons, and is not relevant
for the security of our construction.

2.3.2.3 Handling Large Secrets

Since the secret itself might be very large, it is also possible to first encrypt the secret using
a symmetric encryption scheme, store the ciphertext publicly off chain and then secret-share
the symmetric key instead. Also, we store request parameters (such as release conditions or
proofs) off-chain, saving only the hash of the message on-chain.

Protocol 3 SecretStore
1. The depositor executes NIZK’s KeyGen protocol to obtain a CRS: 𝜎 ← KeyGen(1𝑘).
2. The depositor computes hash requestHash← 𝐻(𝐹 |𝜎), and publishes requestHash on

the blockchain. Let 𝑖𝑑 be the storage identifier of the published request.
3. The depositor stores the tuple (𝑖𝑑, 𝐹 |𝜎) offchain.
4. The depositor and the current members of the miner committee engage in the DPSS

Setup Phase.
5. Each committee member retrieves requestHash from the blockchain, 𝐹 |𝜎 from the

offchain storage, and verifies that requestHash is indeed the hash of 𝐹 |𝜎:

requestHash ?= 𝐻(𝐹 |𝜎)

If this is not the case, the committee member aborts.
6. 𝐶𝑖 stores (𝑖𝑑, dpss-data𝑖) internally, where dpss-data𝑖 is the data obtained from the

DPSS Setup Phase.

Protocol 4 SecretsHandoff
1. For each secret storage identifier 𝑖𝑑, the miners of the old and the new committee

engage in the DPSS Handoff Phase for the corresponding secret. Let dpss-data𝑖𝑑
𝑖

denote the resulting DPSS data corresponding to the storage identifier 𝑖𝑑 of party 𝐶𝑖

of the new committee after the handoff phase.
2. For each secret storage identifier 𝑖𝑑, each miner of the new committee stores

(𝑖𝑑, dpss-data𝑖𝑑
𝑖 ) internally.

Proving security. In the following, we briefly outline why the eWEB system satisfies
the CSaR security notion. We sketch out the simulator 𝑆 that has access to the parties’

39



Protocol 5 SecretRelease
1. To request the release of a secret with identifier 𝑖𝑑, the requester retrieves requestHash

from the blockchain, 𝐹 |𝜎 from off-chain storage, and verifies that requestHash is
indeed the hash of 𝐹 |𝜎:

requestHash ?= 𝐻(𝐹 |𝜎)

If this is not the case, the requester aborts.
2. The requester computes a NIZK proof of knowledge of the witness for 𝐹 and his

identifier 𝑝𝑖𝑑:
𝜋 ← 𝑃 (𝜎, 𝑝𝑖𝑑, 𝑤),

3. The requester computes hash of the storage identifier, his identifier and the proof
to obtain requestHash* ← 𝐻(𝑖𝑑|𝑝𝑖𝑑|𝜋) and publishes requestHash* on blockchain. Let
𝑖𝑑* be the identifier of the published request.

4. The requester stores (𝑖𝑑*, 𝑖𝑑|𝑝𝑖𝑑|𝜋) offchain.
5. Each committee member retrieves requestHash* from the blockchain request with the

identifier 𝑖𝑑*, 𝑖𝑑|𝑝𝑖𝑑|𝜋 from the offchain storage, and verifies that:

requestHash* ?= 𝐻(𝑖𝑑|𝑝𝑖𝑑|𝜋)

If not, the committee member aborts.
6. Each committee member retrieves requestHash from the blockchain request with the

identifier 𝑖𝑑, 𝐹 |𝜎 from the offchain storage, and verifies that:

requestHash ?= 𝐻(𝐹 |𝜎)

If not, the committee member aborts.
7. Each committee member 𝐶𝑖 retrieves its share of the secret, dpss-data𝑖, from its

internal storage.
8. Each committee member 𝐶𝑖 checks if 𝜋 is a valid proof using the NIZK’s verification

algorithm 𝑉 :
𝑉 (𝜎, 𝑝𝑖𝑑, 𝜋) ?= 𝑡𝑟𝑢𝑒

If so, 𝐶𝑖 and party 𝑝𝑖𝑑 engage in the DPSS Reconstruction using dpss-data𝑖.

secrets only via the ideal CSaR functionality and has the property that no PPT adversary
can distinguish between interaction with the simulator and the interaction with the honest
parties. 𝑆 in particular relies on the DPSS simulator 𝑆𝐷𝑃 𝑆𝑆 while simulating Idealsafe for
𝑆𝐷𝑃 𝑆𝑆 and the NIZK simulator given by the zero-knowledge property of the NIZK scheme.
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Before we describe the simulation of each eWEB subprotocol, we note that in the
following 𝑆 internally stores all information published on the blockchain and aborts if
whenever during the execution it notices that the information it retrieved from the blockchain
is inconsistent with the internal copy.

Similarly, whenever according to the protocol 𝑆 is required to store some data off-chain
and the hash of it on-chain, 𝑆 additionally stores the data internally. Whenever according
to the protocol 𝑆 is required to verify the correctness of this off-chain data by comparing its
hash to the on-chain hash, 𝑆 instead directly compares the data to the one stored internally.

Additionally, whenever 𝑆 needs to send a message from an honest party to an honest
party, it sends an encryption of a zero string of the according length instead.

Simulating SecretStore. We distinguish between the following cases:

• The client storing the secret is honest.
• The client storing the secret is malicious.

In the first case, instead of generating NIZK’s CRS honestly, 𝑆 uses NIZK’s simulator
to generate the CRS 𝜎. Then, 𝑆 generates the hash of the request, publishes it on
the blockchain and stores the request data offchain as specified by the eWEB protocol.
Additionally, 𝑆 stores the request data internally. Then, 𝑆 (acting as Idealsafe) notifies the
DPSS simulator of an honest secret storage request to simulate the DPSS setup phase
(stopping the execution for a committee party whenever the request verification check did
not go through).

In the second case, 𝑆 follows the eWEB protocol to verify the hashes and stores the
obtained data internally. Additionally, 𝑆 uses the DPSS simulator and passes messages
between the adversary and the DPSS simulator (for those parties whose hash verification
did not fail) and if the DPSS simulator subsequently extracts the secret and stores it in
Idealsafe, 𝑆 stores it internally and in IdealCSaR (with the given release condition).

Simulating SecretsHandoff. 𝑆 uses the DPSS simulator to simulate the handoff
phase.

Simulating SecretRelease. We again distinguish between the following cases:

• The client requesting the secret is honest.
• The client requesting the secret is malicious.

In the first case, 𝑆 follows the protocol for the request hash verification and if the offchain
data is successfully verified 𝑆 uses the NIZK simulator to generate the required proof of
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knowledge. Then, 𝑆 continues to follow the eWEB protocol to generate the hash of the
secret release request, publish it on the blockchain and store the required information
offchain. For each honest committee member, 𝑆 continues to follow the protocol to retrieve
the secret release request hash and verify the offchain data. Then, 𝑆 uses the DPSS
simulator for the secret reconstruction process.

In the second case, we additionally distinguish between the following cases:

• The client who stored the secret is honest.
• The client who stored the secret is malicious.

In the first case, 𝑆 follows the protocol up to the step when it must engage with the client
in the DPSS reconstruction phase. If the requester passed all verification checks, 𝑆 uses the
witness extractor on the submitted proof and use the retrieved witness to retrieve the secret
from the IdealCSaR and store it in Idealsafe and uses the DPSS simulator for the last step.

In the second case, 𝑆 simply uses the DPSS simulator while accessing internally stored
secret if necessary (acting as Idealsafe).

We now outline why no PPT adversary 𝒜 is able to distinguish the view of interaction
with the simulator 𝑆 constructed above from the view of interacting with honest parties
in the real world. For this, we establish a series of hybrids such that any two consecutive
hybrids are indistinguishable.

Hybrid0: This hybrid corresponds to the execution in the real world. The simulator 𝑆
controls all honest parties and follows the protocol.

Hybrid1: In this hybrid, 𝑆 switches from honestly generating the CRS and the proofs
to using the NIZK’s simulator. By the unbounded zero-knowledge property of the NIZK,
the adversary can detect the difference at most with a negligible probability.

Hybrid2: In this hybrid, 𝑆 switches from generating the CRS using the NIZK’s simulator
given by the unbounded zero-knowledge property to generating the CRS given by the
simulation sound extractability property of the NIZK. Again, the adversary can detect the
difference at most with a negligible probability due to the simulation sound extractability
property.

Hybrid3: In this hybrid, 𝑆 internally stores all messages published on the blockchain
and aborts whenever a message it retrieved from the blockchain during the execution at a
later point is not consistent with the internal copy. Since we assume that is hard to modify
or erase posts on the blockchain, 𝑆 aborts only with a negligible probability.
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Hybrid4: In this hybrid, 𝑆 additionally internally stores the information that is normally
being hashed with the hash being published on chain and data being stored off chain. 𝑆
aborts whenever during the execution the information stored offchain is not consistent with
𝑆’s internal copy, but still passes the hash verification check. Since we assume that the
hash function is collision-resistant, 𝑆 aborts only with a negligible probability.

Hybrid5: In this hybrid, all encrypted messages sent between honest parties are changed
to encryptions of zero strings of the same length. Due to the multi-message IND-CCA
security of the encryption scheme, the adversary can detect the difference at most with a
negligible probability.

Hybrid6: In this hybrid, 𝑆 switches to using the DPSS simulator while honestly
simulating Idealsafe for it by keeping a list 𝐿 of secrets and adding secrets to this list
whenever honest parties wish to store a secret or whenever the DPSS simulator wishes to
store a secret. Here, 𝑆 simulates the point-to-point channels of the DPSS protocol in the
same way as outlined in the proof given in the eWEB paper. By the security of the DPSS
scheme, the adversary notices the difference with at most a negligible probability.

Hybrid7: In this hybrid, 𝑆 changes the time when honest secrets are stored in 𝐿 –
instead of storing them when the honest user wishes to store a secret, 𝑆 stores them only
when a party wishes to see the secret and is able to provide a valid release request. Note
that the only case when the secrets in 𝐿 are accessed by 𝑆 is when a client requests a
reconstruction and is able to satisfy the release condition. Thus, nothing changes in this
case.

Hybrid8: In this hybrid, 𝑆 switches to using IdealCSaR to retrieve honest users’ secrets.
Whenever the DPSS simulator wishes to retrieve an honest secret from Idealsafe, 𝑆 uses the
proof of knowledge property of the NIZK to extract a witness from the adversarial proof.
Then, 𝑆 sends the witness to IdealCSaR and (if the witness is correct) stores the obtained
secret in 𝐿 for the DPSS simulator to use. By the unbounded simulation soundness property
of the NIZK, the extracted witness satisfies the release condition. Thus, the adversary is
able to detect a difference at most with a negligible probability.

2.3.3 CSaR-PR

For one of our constructions we rely on a CSaR variation which releases the secrets not
privately to a single user, but publicly to everyone. We call this variation CSaR with public
release (CSaR-PR), and introduce the ideal functionality in Figure 2.6.
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Figure 2.6: Ideal CSaR-PR: IdealCSaR-PR

1. SecretStore Upon receiving an (identifier, release condition, secret) tuple 𝜏 =
(𝑖𝑑, 𝐹, 𝑠) from a client 𝑃 , IdealCSaR-PR checks whether 𝑖𝑑 was already used. If not,
IdealCSaR-PR stores 𝜏 and notifies all participants that a valid storage request with
the identifier 𝑖𝑑 and the release condition 𝐹 has been received from a client 𝑃 .

2. SecretRelease Upon receiving an (identifier, witness) tuple (𝑖𝑑, 𝑤) from some
client 𝐶, IdealCSaR-PR checks whether there exists a record with the identifier 𝑖𝑑.
If so, IdealCSaR-PR checks whether 𝐹 (𝑤) = 𝑡𝑟𝑢𝑒, where 𝐹 is the release condition
corresponding to the secret with the identifier 𝑖𝑑. If so, IdealCSaR-PR broadcasts
the secret.

CSaR-PR Security. For any PPT adversary 𝒜 there exists a PPT simulator 𝒮 with
access to our security model IdealCSaR-PR (described in Ideal CSaR-PR), such that the view
of 𝒜 interacting with 𝒮 is computationally indistinguishable from the view in the real
execution.

CSaR-PR Instantiation. CSaR-PR can be instantiated with a primitive that is
very similar to our eWEB protocol, except that the user requesting the release of the
secret provides the witness for the secret release condition publicly, allowing everyone to
reconstruct the secret.

In more detail, to achieve public secret release, we make the following changes to the
eWEB scheme:

• Instead of using NIZK proofs, the witness is submitted in clear.
• Instead of engaging in the DPSS Reconstruction phase with the user who provided

a valid witness, miners post the corresponding reconstruction data off-chain and the
signed hash of this data on-chain.

• Users retrieve the hashes from blockchain and verify the signatures. Using the retrieved
information, users get the data from the off-chain storage, check the validity using
the verified hashes and execute the DPSS Reconstruction phase to reconstruct the
secret.

The security of this instantiation can be proven analogously to that of the original CSaR
and eWEB constructions.
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2.4 Our Non-Interactive MPC Construction

We now present our first construction - given an MPC protocol 𝜋, we use Yao’s garbled
circuits as well as a CSaR to transform it into an MPC protocol 𝜋′ that does not require
parties to be online at the same time and only requires a single message from the contributors
in 𝜋. The contributors in 𝜋 do not need to interact with each other. First, we briefly outline
the assumptions we make and define the adversarial model.

Assumptions. We assume a public-key infrastructure and the existence of a CSaR.
To distinguish between concurrent executions of the protocol, we give each computation
a unique identifier 𝑖𝑑, and we assume that the evaluators know the public keys of the
parties eligible to contribute in the protocol 𝜋. We assume the existence of a bulletin board
modeled as an append-only log that provides a proof of publish which cannot be (efficiently)
forged. Finally,we assume IND-CCA secure public key encryption.

For the ease of presentation, we assume the following about the MPC protocol 𝜋: (a)
it is in a broadcast model, and (b) it has a single output which is made public to all
participants in the last round 6.

Adversary model. We consider a computationally bounded, fully malicious, static
adversary 𝒜. Once an adversary corrupts a party it remains corrupted: the adversary is
not allowed to adaptively corrupt previously honest parties.

2.4.1 Construction Overview

Intuitively, there are two main steps in the protocol. In the first step, the parties (dubbed
“contributors”) prepare the garbled circuits (and keys) and store these with the CSaR. In
the second step, one or more parties (we dub them “evaluators”) use the garbled circuits to
execute the original protocol 𝜋.

Step 1. Preparing Garbled Circuits and Keys. Each party 𝑃𝑗 that wishes to
participate (contribute inputs) in 𝜋 starts by garbling the slightly modified next-message
functions of each round of 𝜋. Typically, the next-message function takes as input some
subset of the following: the secret input of the party, local randomness of the party for that

6Note that these are not real limitations: if a protocol has several outputs, some of which cannot be
made public, the MPC functionality broadcasts the encryption of a party’s output under that party’s
public key. Additionally, later in this section we discuss how protocols with point-to-point channels can be
supported in the broadcast model.
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particular round, the messages received in the previous rounds, some secret state passed
along from the previous round. The output consists of the message that is broadcast as well
as the state that is passed to the next round. We make the following modifications: in each
round 𝑖, instead of the state 𝑠𝑖

𝑗 that is passed to the next round, the function outputs the
encryption 𝑐𝑖

𝑗 of the state as well as a signature 𝑠𝑖𝑔𝑝𝑟𝑖
𝑗 over this encryption. Additionally,

the modified next-message function outputs the public message 𝑚𝑖
𝑗 that is supposed to

be broadcast by 𝑃𝑗 in this round, as well as the signature 𝑠𝑖𝑔𝑝𝑢𝑏𝑖
𝑗 over this message. The

secret key as well as the signature key of 𝑃𝑗 are hard-coded in the circuit (we explain how
it can be done later in this section). Prior to executing the original next-message function,
the modified function decrypts the state using the hard-coded secret key of 𝑃𝑗 and verifies
the signatures on each public message as well as the signature on the state passed in from
previous round. Intuitively, these modifications are due to the following reasons:

• The state of the party is passed in an encrypted state because the state information is
assumed to be private in the original MPC construction.

• The parties need to sign their messages (and verify signatures on the messages passed
as inputs) since we must prevent the adversary from tricking an honest party into
acceptance of a message that is supposedly generated by another honest party, but in
reality is mauled by the adversary.

Once the garbled circuits are prepared, 𝑃𝑗 stores the garbled circuits with CSaR. Note
that the next-round functions in particular take messages produced by other parties as
inputs. Thus, there is no way for the party to know at the time the garbled circuits are
constructed, whether the key corresponding to bit 0 or the key corresponding to bit 1 will
be chosen for some wire 𝑤. To allow an evaluator to execute the garbled circuits anyway,
𝑃𝑗 additionally stores both wire keys for each input wire with CSaR, each with a separate
CSaR request. This needs to be done for every single round, since in any particular round
the inputs will depend on the messages produced by the garbled circuits of other parties in
the previous round.

Intuitively, in order to be able to reduce the security of this protocol to the security
of the original MPC protocol, we need to ensure not only that the adversary is not able
to maul messages of the honest parties and see the parties’ private information, but also
that the protocol is executed in order and there is only a single instance of the protocol
running. This is ensured by carefully constructing conditions that must be met in order to
release the garbled circuits and wire keys. In order to release a garbled circuit for some
round 𝑖, a party needs to provide a proof that the execution of the protocol up to and
including round 𝑖− 1 is finalized. In order to release a wire key corresponding to bit 𝑏 on
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a wire corresponding to position 𝑝 of the input to some garbled circuit, a party needs to
additionally provide a proof that the input bit to position 𝑝 in this circuit is indeed bit
𝑏. In the following, we first explain how the protocol is executed, and then explain how
exactly the release conditions look like.

Step 2. Executing 𝜋. Once all required information is stored, an evaluator 𝐸 can
execute the original MPC protocol 𝜋. It is not required that 𝐸 is one of the parties
participating in the protocol 𝜋 and in fact, there can be multiple evaluators (for simplicity,
we refer to all of them as “𝐸”). 𝐸 executes the garbled circuits round-by-round. Once 𝐸
has executed all garbled circuits for a certain round, 𝐸 publishes the concatenation of the
outputs of these circuits on a bulletin board. Then, 𝐸 uses the proof of publishing of this
message in order to release the garbled circuits as well as the wire keys of the next round.

First round optimization. Note that the message broadcast by the parties in the
first round of the protocol 𝜋 does not require any information from the other participants
in the MPC protocol. Thus, instead of storing the garbled circuits for the first round, we
let the parties publish their first message (and the signature on it) directly. The secret
state that needs to be passed to the second round is hard-coded in the garbled circuit of
the second round.

Release conditions. As described above, after the execution of all garbled circuits
of the certain round, the evaluator is tasked with publishing the (concatenation of the)
outputs of these circuits. This published message servers as a commitment to the evaluator’s
execution of this round, and this is what is needed to release the gabled circuits of the next
round. We additionally require that the length of each published message is the same as
expected by the protocol (corresponds to the number of input wires), and the correct length
requirement holds for every part of this message (i.e., the public message, the signature
over it, the state, and the signature over the state for each contributing party). In order to
ensure that there is only a single evaluation of the original MPC running, only the very
first published message that is of a correct form (i.e., satisfies the length requirements) can
be used as the witness to release garbled circuits and keys of a certain round. We call such
messages authoritative messages. Formally, the authoritative message of round 𝑑 > 1 is a
published message that satisfies the following conditions:

• Message is of the form (𝑖𝑑, 𝑑,𝑚), where 𝑚 is of the form (𝑚𝑑
1 ‖ · · · ‖𝑚𝑑

𝑛 ‖ 𝑠𝑖𝑔𝑝𝑢𝑏𝑑
1 ‖ · · · ‖

𝑠𝑖𝑔𝑝𝑢𝑏𝑑
𝑛 ‖ 𝑐𝑑

1 ‖ · · · ‖ 𝑐𝑑
𝑛 ‖ 𝑠𝑖𝑔𝑝𝑟𝑑

1 ‖ · · · ‖ 𝑠𝑖𝑔𝑝𝑟𝑑
𝑛). This corresponds to the concatenated

output of the garbled circuits of round 𝑑: public messages followed by signatures
over each public message, and encryptions of state followed by signatures over each
ciphertext.
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• each 𝑚𝑑
𝑗 , 𝑐𝑑

𝑗 , 𝑠𝑖𝑔𝑝𝑢𝑏𝑑
𝑗 , 𝑠𝑖𝑔𝑝𝑟𝑑

𝑗 has correct length.
• This is the first published message that satisfies the requirements above.

Due to our first round optimization the authoritative message of the first round is
slightly different. In particular, there are up to 𝑛 authoritative messages for the first round
– one for each contributing party. Formally, an authoritative message of round 𝑑 = 1 from
party 𝑃𝑘 is a published message that satisfies the following conditions:

• Message is of the form (𝑖𝑑, 1, 𝑘,𝑚1
𝑘, 𝑠𝑖𝑔𝑝𝑢𝑏

1
𝑘).

• 𝑚1
𝑘 and 𝑠𝑖𝑔𝑝𝑢𝑏1

𝑘 both have correct length.
• This is the first published message that satisfies the requirements above.

In terms of authoritative messages, the release conditions can be now defined as follows:
in order to release the garbled circuits for round 𝑖, we require that all authoritative messages
for rounds 1 up to and including round 𝑖− 1 are published. In order to release the wire
key for some bit 𝑏 of an input wire 𝑤 of a garbled circuit the authoritative message of the
previous round must contain bit 𝑏 at the same position 𝑤.

Identifying secrets. In order for the evaluator to know the identifiers of the secrets it
must request from CSaR, we require that upon storing the secrets (i.e., garbled circuits and
wire keys), the contributors choose their CSaR secret identifiers (appending their own party
identifier to the secret in order to ensure that it has not been used before) and publish
those identifiers on the bulletin board (we assume messages can’t be posted or stored by a
party pretending to be another party). For readability purposes, further we exclude this
detail from the construction description.

Removing point-to-point channels. While in our construction we assume that the
original MPC protocol is in a broadcast model, it is very common for MPC protocols to
assume secure point-to-point channels. We can handle such protocols as well since an MPC
protocol that assumes point-to-point channels can be easily converted to a protocol in a
broadcast model, see “Subtleties of Point-to-Point Channels” in Section 2.3.2.

Hardcoding secret inputs. As mentioned above, some of the information used in the
modified next-message function (such as the secrets of the parties, their secret keys etc.) is
hardcoded in the circuit. Say the hardcoded input wire is 𝑤, and its value is (bit) 𝑏. Then,
the party preparing the garbled circuit that uses 𝑤 does so as follows: whenever one of the
inputs to a gate is 𝑤, the party removes the wire corresponding to 𝑤 from the circuit and
computes the values in the ciphertexts using bit 𝑏 only (instead of computing the output
both for 𝑤 = 0 and 𝑤 = 1). We give an example for the computation of the AND-Gate
in Figure 2.7. For security purposes, it is important that we do not perform any circuit
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x w out
0 0 𝐾0

0 1 𝐾0

1 0 𝐾0

1 1 𝐾1

x out
0 𝐾0

1 𝐾0

Figure 2.7: On the left, we show the computation of the AND-gate in Yao’s construction.
Given the garbled keys of 𝑥 and 𝑤, depending on whether they correspond to zero or one,
the doubly-encrypted ciphertext contains 𝐾0 or 𝐾1. On the right, we show the
computation for the AND-gate if 𝑤 = 0. In this case, both ciphertexts contain 𝐾0.

optimizations based on the value of 𝑤.

Notation. In the following, we denote party 𝑃𝑗 ’s public and secret encryption key pair
as (𝑝𝑘𝑗, 𝑠𝑘𝑗). We denote party 𝑃𝑗’s signature and verification keys as 𝑠𝑖𝑔𝑘𝑗 and 𝑣𝑒𝑟𝑘𝑗. By
𝑚𝑖

𝑗 we denote messages that are generated by the party 𝑃𝑗 in the i-th round.

Further Details. Note that eWEB, the construction that we use as the instantiation
of the CSaR, assumes a CRS. This requirement can be removed in our case by simply
allowing each participant in the protocol 𝜋 to prepare the CRS on its own. From a security
standpoint, this is unproblematic – we only wish to protect the secrets of honest clients,
and if a client is honest, it will generate the CRS honestly as well 7.

Additionally, we note that in eWEB the party storing the secret is required to send
multiple messages. In order to ensure that in our MPC protocol a single message from the
MPC participant is sufficient and the parties can go offline after sending this message, we
slightly modify the eWEB construction. Roughly, in eWEB miners are tasked with jointly
preparing a random value 𝑟 s.t. each miner knows a share of 𝑟. The user then publishes
the value 𝑠 + 𝑟 (where 𝑠 denotes the secret to be stored), and the miners compute their
shares of 𝑠 by subtracting their shares of 𝑟 from 𝑠+ 𝑟. Along the way, the commitments to
the sharing of 𝑠 are made public. We modify it as follows: the user simply publishes the
commitments to the sharing of 𝑠 and sends shares of 𝑠 (along with the witnesses) to the
miners who then verify the correctness of the shares and witnesses.

Finally, note that we require that the original protocol 𝜋 has the publicly recoverable
output property (see Definition 3). For security with abort, this property can be easily

7Note that this change reduces the efficiency of the eWEB system – instead of batching secrets from
different clients, only secrets from a single client can be processed together now.
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achieved as follows: first, all parties broadcast the output. Then, if all parties broadcasted
the same value, this value is taken as the output. Otherwise, protocol is considered to
be aborted. In the following, for simplicity we assume that protocol 𝜋 has the publicly
recoverable output property and Eval denotes the algorithm used to retrieve the output
from the transcript.

The full construction is given in Protocols 6 and 7 (preparation of the garbled circuits
and keys), as well as Protocol 8 (execution phase).

Security Analysis. Intuitively, correctness of the construction as well as the secrecy
of the honest parties’ inputs follow from the correctness as well as security properties of the
underlying cryptographic primitives as well as the original protocol 𝜋. We formally show
security by providing a simulator in the ideal model and showing that no PPT adversary
can distinguish between interaction with the simulator and the interaction with the honest
parties. Intuitively, we rely on the security of the cryptographic primitives used in our
construction to show that the adversary is not able to use a garbled circuit from an honest
party in a “wrong” way. In particular, the adversary cannot trick an honestly produced
garbled circuit into accepting wrong inputs from other honest parties i.e., inputs that were
not produced using the garbled circuits or published (for the first message) by those parties
directly, or claim that a required message from some honest party is missing. Additionally,
there is no way for the adversary to execute honest garbled circuits for the same round on
inconsistent inputs (or execute a single honest garbled circuit multiple times on a different
inputs) since only the authoritative message published for a single round is considered
valid. We then rely on the security of the original protocol 𝜋. We give the formal proof in
Section 2.5.

2.5 Security Proof - Main Construction

Formally, we show that our construction supports the MPC functionality ℱeval-MPC described
in Functionality 2.3.

We do so by constructing the simulator 𝑆 using the CSaR simulator 𝑆𝐶𝑆𝑎𝑅, the garbled
circuit simulator 𝑆𝐺𝐶 , and the simulator of the original MPC protocol 𝑆𝑀𝑃 𝐶 . Intuitively,
our end goal is to arrive at the point where we only have access to the honest parties’
secrets via the ideal functionality ℱeval-MPC – then we have shown that the parties’ secrets
are safe. In order to use the CSaR simulator (which needs access to an ideal functionality
IdealCSaR), 𝑆 simulates IdealCSaR by itself. In order to use the garbled circuit simulator 𝑆𝐺𝐶
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Protocol 6 Non-Interactive MPC− 𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒
1. 𝑃𝑗 computes the output (𝑚1

𝑗 , 𝑠
1
𝑗) of the first round of 𝜋. 𝑃𝑗 computes the signature

𝑠𝑖𝑔𝑝𝑢𝑏1
𝑗 on the message (𝑖𝑑, 1, 𝑗,𝑚1

𝑗) using its signing key 𝑠𝑖𝑔𝑘𝑗. 𝑃𝑗 posts M1
j =

(𝑖𝑑, 1, 𝑗,𝑚1
𝑗 , 𝑠𝑖𝑔𝑝𝑢𝑏

1
𝑗) on the bulletin board.

2. 𝑃𝑗 produces Yao’s garbled circuits {𝐺𝐶𝑖
𝑗} for each round 𝑖 > 1 based on the circuit

𝐶𝑖
𝑗 of the next-message function 𝑓 𝑖

𝑗 of the original MPC protocol 𝜋:

({lab𝑤,𝑏,𝑖
𝑗 }𝑤∈inpi

j,𝑏∈{0,1})← Gen(1𝜆, inpi
j)

𝐺𝐶𝑖
𝑗 ← Garble(𝐶𝑖

𝑗, ({lab𝑤,𝑏,𝑖
𝑗 }𝑤∈inpi

j,𝑏∈{0,1})

Here, inpi
j is the length of the input to the circuit 𝐶𝑖

𝑗. This circuit takes as input
messages {𝑚𝑖−1

𝑘 }𝑛
𝑘=1 published by the parties in the previous round along with the

signatures {𝑠𝑖𝑔𝑝𝑢𝑏𝑖−1
𝑘 }𝑛

𝑘=1 of these messages, and the encryption 𝑐𝑖−1
𝑗 of the secret

state passed by 𝑃𝑗 from the previous round as well as the signature 𝑠𝑖𝑔𝑝𝑟𝑖−1
𝑗 over this

ciphertext. All of 𝑃𝑗’s keys, input 𝑥𝑗 and randomness 𝑟𝑖
𝑗 are hardcoded in the circuit.

The verification and public keys of other participants are also hardcoded in the circuit.
For the circuit of the second round, the secret state passed from the first round is also
hardcoded in the circuit. The circuit decrypts the secret state and, if the ciphertext
was correctly authenticated, executes the next message function of the current round:
(a) If 𝑖 = 2, proceed to step 2(c).
(b) Verify the signature on the tuple (𝑖𝑑, 𝑖− 1, 𝑗, 𝑐𝑖−1

𝑗 ) using 𝑣𝑒𝑟𝑘𝑗 . If this check fails,
stop the execution and output ⊥.

(c) Verify the signature on the tuple (𝑖𝑑, 𝑖 − 1, 𝑧,𝑚𝑖−1
𝑧 ) from party 𝑃𝑧. If any

verification check fails, stop the execution and output ⊥.
(d) Compute 𝑠𝑖−1

𝑗 = 𝐷𝑒𝑐𝑠𝑘𝑗
(𝑐𝑖−1

𝑗 ).
(e) Obtain (𝑚𝑖

𝑗, 𝑠
𝑖
𝑗) by executing 𝑓 𝑖

𝑗(𝑥𝑗, 𝑟
𝑖
𝑗,𝑚

𝑖, 𝑠𝑖−1
𝑗 ), where 𝑚𝑖 = 𝑚𝑖−1

1 ‖ · · · ‖𝑚𝑖−1
𝑛 .

(f) Compute the signature 𝑠𝑖𝑔𝑝𝑢𝑏𝑖
𝑗 on the public message (𝑖𝑑, 𝑖, 𝑗,𝑚𝑖

𝑗) using the
signing key 𝑠𝑖𝑔𝑘𝑗.

(g) Compute the encryption of the state 𝑐𝑖
𝑗 = 𝐸𝑛𝑐𝑝𝑘𝑗

(𝑠𝑖
𝑗).

(h) Compute the signature 𝑠𝑖𝑔𝑝𝑟𝑖
𝑗 on the tuple (𝑖𝑑, 𝑖, 𝑗, 𝑐𝑖

𝑗) including the encryption
of state using the signing key 𝑠𝑖𝑔𝑘𝑗.

(i) Output (𝑚𝑖
𝑗, 𝑠𝑖𝑔𝑝𝑢𝑏

𝑖
𝑗, 𝑐

𝑖
𝑗, 𝑠𝑖𝑔𝑝𝑟

𝑖
𝑗).

3. 𝑃𝑗 securely stores garbled circuits 𝐺𝐶𝑖
𝑗 for all rounds 𝑖 > 1 using a CSaR. The witness

needed to release the garbled circuit of round 𝑖 is a valid proof of publishing of all
authoritative messages from round 1 and up to and including round 𝑖− 1.
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Protocol 7 Non-Interactive MPC−𝐾𝑒𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃ℎ𝑎𝑠𝑒
1. Securely store input wire keys ({lab𝑤,𝑏,2

𝑗 }𝑤∈inp2
j,𝑏∈{0,1}) for the circuit of the second

round using CSaR. For each party 𝑃𝑘 whose first round message is needed for the
computation, the witness required to decrypt the wire key corresponding to the 𝑖-th
bit of the input being 0 (resp. 1) is a valid proof of publishing of the following:
(a) All of the authoritative messages of the first round.
(b) 𝑖-th bit of the authoritative message of round 1 of Party 𝑃𝑘 is 0 (resp. 1).

2. Securely store input wire keys ({lab𝑤,𝑏,𝑑
𝑗 }𝑤∈inpd

j,𝑏∈{0,1}) for the circuit of the d-th
(𝑑 ≥ 3) round using CSaR. The witness needed to decrypt the wire key corresponding
to the 𝑖-th bit of the input being 0 (resp. 1) is a valid proof of publishing of the
following:
(a) All of the authoritative messages of the first 𝑑− 1 rounds.
(b) 𝑖-th bit of the authoritative message of round 𝑑− 1 is 0 (resp. 1).

which takes as input the output that it needs to compute, 𝑆 uses the messages output by
the MPC simulator 𝑆𝑀𝑃 𝐶 . Note that whenever we use the simulator 𝑆𝐺𝐶 , we also give it
as input the circuit representation of the next-message function of the according round (for
the according party) as specified by our construction. For ease of presentation, we skip this
detail in the following proof.

We construct the simulator 𝑆 as follows:

𝑆 starts by choosing the public and secret keys (𝑝𝑘𝑗, 𝑠𝑘𝑗), as well as the signing and
verification keys (𝑠𝑖𝑔𝑘𝑗, 𝑣𝑒𝑟𝑘𝑗) for the honest parties, and initializing an empty list 𝐿 which
will be later used for the secret storage when simulating IdealCSaR. Then, 𝑆 starts the
real-world adversary 𝒜, and gives 𝒜 the public and verification keys. Additionally, 𝑆 starts
the CSaR simulator 𝑆𝐶𝑆𝑎𝑅. 𝑆 also starts the simulator 𝑆𝑀𝑃 𝐶 for MPC functionality 𝑓 and
secure protocol 𝜋. Whenever 𝑆𝑀𝑃 𝐶 sends a message to its ideal functionality, 𝑆 forwards
this message to its own ideal functionality (and vice versa).

Note that the CSaR simulator 𝑆𝐶𝑆𝑎𝑅 is running during the whole execution of 𝑆, and
requires access to the ideal functionality IdealCSaR. We first explain how exactly 𝑆 is
simulating the CSaR infrastructure, and then explain how 𝑆 is simulating each phase of
the protocol.

Simulation of the CSaR infrastructure.

• 𝑆 honestly simulates IdealCSaR by keeping the list 𝐿 of (identifier, release condition,
secret) tuples and honestly storing messages whenever such requests come from 𝑆𝐶𝑆𝑎𝑅.
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Protocol 8 Non-Interactive MPC− 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒
1. The evaluator 𝐸 uses messages (𝑖𝑑, 1, 𝑧,𝑚1

𝑧, 𝑠𝑖𝑔𝑝𝑢𝑏
1
𝑧) posted on the bulletin board by

each party 𝑃𝑧 as the proof of publishing to get the garbled circuits (and keys) for the
second round stored in CSaR by each participant in 𝜋. Then, 𝐸 computes the outputs
(𝑚2

𝑗 , 𝑠𝑖𝑔𝑝𝑢𝑏
2
𝑗 , 𝑐

2
𝑗 , 𝑠𝑖𝑔𝑝𝑟

2
𝑗 ) of the second round by executing the garbled circuits.

2. If an authoritative message of the second round was not published on the bulletin
board yet, set 𝑚 = (𝑚2

1‖· · ·‖𝑚2
𝑛‖𝑠𝑖𝑔𝑝𝑢𝑏2

1‖· · ·‖𝑠𝑖𝑔𝑝𝑢𝑏2
𝑛‖𝑐2

1‖· · ·‖𝑐2
𝑛‖𝑠𝑖𝑔𝑝𝑟2

1‖· · ·‖𝑠𝑖𝑔𝑝𝑟2
𝑛),

publish M2 = (𝑖𝑑, 2,𝑚):
(post2, 𝜎2)← Post(M2)

and use the proof of publish 𝜎2 as the witness to decrypt the wire keys and the garbled
circuits of the next round. If an authoritative message (𝑖𝑑, 2,𝑚′) was published on
the bulletin board, use its proof of publishing as the witness if 𝑚′ = 𝑚. Otherwise,
stop the execution and output ⊥.

3. In each following round 𝑑 ≥ 3, 𝐸 executes each garbled circuit published by party 𝑃𝑧

for round 𝑑− 1. Then, 𝐸 concatenates the outputs and checks if there is a message on
the bulletin board for this round. If there is no such message, 𝐸 posts the computed
output Md = (𝑖𝑑, 𝑑,𝑚𝑑−1

1 ‖ · · · ‖𝑚𝑑−1
𝑛 ‖ 𝑠𝑖𝑔𝑝𝑢𝑏𝑑−1

1 ‖ · · · ‖ 𝑠𝑖𝑔𝑝𝑢𝑏𝑑−1
𝑛 ‖ 𝑐𝑑−1

1 ‖ · · · ‖ 𝑐𝑑−1
𝑛 ‖

𝑠𝑖𝑔𝑝𝑟𝑑−1
1 ‖ · · · ‖ 𝑠𝑖𝑔𝑝𝑟𝑑−1

𝑛 ):
(postd, 𝜎𝑑)← Post(Md)

and uses the proof of publishing 𝜎𝑑 as witness to obtain input keys and garbled
circuits of the next round. Otherwise, if a message for this round is already published
and is the same as the one computed by 𝐸, 𝐸 uses the proof of publishing of this
message as the witness. If it is not the same message as the one computed by 𝐸, 𝐸
aborts the execution.

4. Let 𝜏 denote the resulting transcript of execution of 𝜋. 𝐸 outputs Eval(𝜏) as the
result.

Messages stored by the adversary are not only stored, but also released honestly. For
an honest message the simulator 𝑆 decides on the fly whether and what it returns
(acting as IdealCSaR) (see the description of the next two phases for details). If 𝑆 is
unable to provide a response to a valid release request of an honest message, 𝑆 aborts.

Simulation of the CircuitPreparationPhase.

• In Step 1 of the CircuitPreparationPhase, for each honest party 𝑃𝑗, 𝑆 waits until it
receives the message 𝑚1

𝑗 output by 𝑆𝑀𝑃 𝐶 as the party 𝑃𝑗, honestly computes the
signature 𝑠𝑖𝑔𝑝𝑢𝑏1

𝑗 over it, and posts (𝑖𝑑, 1, 𝑗,𝑚1
𝑗 , 𝑠𝑖𝑔𝑝𝑢𝑏

1
𝑗) on the bulletin board.
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• In Step 2, to construct garbled circuits for round 𝑖, 𝑆 waits until all authoritative
messages of the first 𝑖 − 1 rounds are published (either by the adversary, or, if
applicable, by 𝑆 itself). Then, 𝑆 forwards each message 𝑚𝑖−1

𝑧 that is supposed to
represent the public message of a corrupted party 𝑃𝑧 in the authoritative message of
round 𝑖− 1 to 𝑆𝑀𝑃 𝐶 (as if coming from 𝑃𝑧).
To construct the garbled circuit of an honest party 𝑃𝑗 in round 𝑖, 𝑆 uses the garbled
circuit simulator 𝑆𝐺𝐶 . If 𝑃𝑗 ’s garbled circuit is supposed to use an input 𝑚 according
to our protocol, 𝑆 verifies that the authoritative message of round 𝑖− 1 contains a
valid signature on 𝑚. If not, 𝑆 uses the garbled circuit simulator on the input ⊥.
If all the required signatures are valid, 𝑆 uses the garbled circuit simulator on the
input (𝑚𝑖

𝑗, 𝑠𝑖𝑔𝑝𝑢𝑏
𝑖
𝑗, 𝑐

𝑖
𝑗, 𝑠𝑖𝑝𝑟

𝑖
𝑗). Here, 𝑚𝑖

𝑗 is the output of 𝑆𝑀𝑃 𝐶 for party 𝑃𝑗 in round 𝑖,
𝑠𝑖𝑔𝑝𝑢𝑏𝑖

𝑗 is the signature honestly computed by 𝑆 over (𝑖𝑑, 𝑖, 𝑗,𝑚𝑖
𝑗), 𝑐𝑖

𝑗 the encryption
of a zero string, and 𝑠𝑖𝑝𝑟𝑖

𝑗 the signature honestly computed by 𝑆 over (𝑖𝑑, 𝑖, 𝑗, 𝑐𝑖
𝑗).

• When an honest party is supposed to store a garbled circuit as specified by Step 3, 𝑆
simulates the SecretStorage step of IdealCSaR by informing 𝑆𝐶𝑆𝑎𝑅 that a secret has been
stored with the release condition as specified by Step 3 of the CircuitPreparationPhase.
Once a valid release request for this garbled circuit has been submitted to 𝑆𝐶𝑆𝑎𝑅, 𝑆
checks whether it was able to construct a garbled circuit according to the procedure
outlined in the simulation of Step 2, and if so, honestly simulates IdealCSaR by storing
the constructed garbled circuit in the list 𝐿 and then honestly releasing it to 𝑆𝐶𝑆𝑎𝑅.
Otherwise, 𝑆 aborts.

Simulation of the KeyStoragePhase.

• For all wire keys that must be stored according to Step 1 and Step 2 of the KeyStor-
agePhase, 𝑆 simulates the SecretStorage step IdealCSaR by informing 𝑆𝐶𝑆𝑎𝑅 that a
secret has been stored with the release condition as specified by Step 1 and Step 2 of
the KeyStoragePhase. Once a valid release request has been submitted for a wire key,
𝑆 checks whether it was able to create the requested garbled key according to the
procedure outlined in Step 2 of the simulation of the CircuitPreparationPhase, and if
so, 𝑆 honestly simulates IdealCSaR by storing this garbled wire key in the list 𝐿 and
then honestly releasing it to 𝑆𝐶𝑆𝑎𝑅. Otherwise, 𝑆 aborts.

Simulation of the ExecutionPhase.

• Note that the evaluator does not possess any secrets. Thus, 𝑆 simply follows the
procedure outlined in Protocol 8, sending its CSaR release requests to 𝑆𝐶𝑆𝑎𝑅.

Now, we prove that no PPT adversary 𝒜 is able to distinguish the view of interaction

54



with the simulator 𝑆 constructed above from the view of interacting with honest parties in
the real world. We prove it by establishing a series of hybrids such that any two consecutive
hybrids are indistinguishable. We denote the advantage of the adversary in distinguishing
the between the Hybrid𝑖−1 and Hybrid𝑖 by 𝜖𝑖, and define the hybrids as follows:

Hybrid0: This hybrid corresponds to the execution in the real world. The simulator 𝑆
controls all honest parties and follows the protocol.

Hybrid1: The simulator 𝑆 behaves the same as in the previous protocol, except that it
switches from honestly executing the CSaR protocol to using the CSaR simulator 𝑆𝐶𝑆𝑎𝑅

while honestly simulating IdealCSaR by himself. In more detail, 𝑆 passes messages to and
from 𝑆𝐶𝑆𝑎𝑅 and the dishonest parties, as well as simulates IdealCSaR by storing a list 𝐿 of
(identifier, release condition, secret) tuples as follows:

• Upon receiving a secret 𝑠 and a release condition 𝐹 from 𝑆𝐶𝑆𝑎𝑅, the simulator 𝑆
stores (𝑖𝑑, 𝐹, 𝑠), where 𝑖𝑑 is the identifier of the CSaR request.

• Whenever an honest message needs to be stored, 𝑆 honestly stores it in 𝐿 and notifies
𝑆𝐶𝑆𝑎𝑅.

• Whenever 𝑆𝐶𝑆𝑎𝑅 queries IdealCSaR for a secret with the identifier 𝑖𝑑, the simulator 𝑆
checks whether the entry with the identifier 𝑖𝑑 exists, and if so, whether the given
witness satisfies the release condition of this entry. If so, the simulator looks up the
list 𝐿 of stored tuples and returns the corresponding secret 𝑠 to 𝑆𝐶𝑆𝑎𝑅.

Lemma 3. For the hybrids Hybrid1 and Hybrid0 holds: 𝜖1 ≤ 𝑛𝑒𝑔𝑙1(𝑛).

Proof. Intuitively, this holds by the security of the CSaR protocol. In more detail, assume
that there exists an adversary 𝒜 able to distinguish between Hybrid1 and Hybrid0. Then,
we can construct an adversary ℬ for the CSaR protocol. ℬ starts by choosing the public and
secret keys for the honest parties, sends the public keys to 𝒜, constructs the garbled circuits
as specified by Protocol 6, and posts the messages of the first round on the bulletin board.
Whenever a CSaR message needs to be passed from 𝒜 to an honest party, ℬ forwards it
to its challenger. Whenever the challenger passes an CSaR message to a dishonest party,
ℬ forwards it to 𝒜. Additionally, ℬ passes messages to and from honest clients and the
challenger. Now, if ℬ’s challenger uses the real CSaR protocol, the game 𝒜 is in is exactly
Hybrid0, while if ℬ’s challenger uses the simulator, the game 𝒜 is in is exactly Hybrid1.
Thus, ℬ’s advantage is at least the same as the advantage of 𝒜. Since the advantage of
ℬ is negligible by the security of the CSaR protocol we use, the advantage of 𝒜 must be
negligible.
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Hybrid2: The simulator behaves the same as in the previous round, except that it
changes the way IdealCSaR is simulated. Specifically, instead of saving the honest parties’
secrets (wire keys, garbled circuits) in list 𝐿 at the time specified by the protocol, the
simulator stores each secret in 𝐿 only when the simulator asks for this secret and is able to
provide a valid witness for the corresponding release condition.
Lemma 4. For the hybrids Hybrid2 and Hybrid1 holds: 𝜖2 = 0.

Proof. Note that in IdealCSaR, access to a secret is needed only upon a valid release request
for this secret. Thus, it makes no difference whether the message is stored in 𝐿 at the time
that is specified by the protocol or only upon a valid release request.

Hybrid3: The simulator 𝑆 behaves the same as in the previous round, except that it
aborts if 𝑆𝐶𝑆𝑎𝑅 provides a valid release request for an honest input wire key or an honest
garbled circuit that does not satisfy one of the requirements outlined in Protocols 6 and 7
based on 𝑆’s own view of the computation, i.e, corresponds to bit 1− 𝑏𝑝 at some position 𝑝
in the string, when the authoritative message’s bit in this position is 𝑏𝑝, or corresponds to
some position which does not have a recorded authoritative message on the bulletin board
yet). We denote this by abort1.
Lemma 5. For the hybrids Hybrid3 and Hybrid2 holds: 𝜖3 ≤ 𝑛𝑒𝑔𝑙3(𝑛)

Proof. Note that the simulator 𝑆 aborts only if 𝑆𝐶𝑆𝑎𝑅 provides a valid request for some
wire key 𝑧 such that one of the release requirements either of Protocol 6 or of Protocol 7
does not hold. Since we know that 𝑆𝐶𝑆𝑎𝑅 provides a valid request, and at the same time
the release requirement does not hold based on 𝑆’s view of the bulletin board, it means that
as a part of its execution, the adversary 𝒜 is able to provide a forged proof of publishing.
If 𝒜 is able to do so with a non-negligible probability, we can use it to forge a proof of
publishing with non-negligible probability as well.

Hybrid4: The simulator 𝑆 behaves the same as in the previous hybrid, except that it
now uses the garbled circuit simulator 𝑆𝐺𝐶 instead of honestly constructing the garbled
circuit. Specifically, once the adversary published its authoritative message for round 𝑖− 1,
the simulator 𝑆 honestly computes the output of the garbled circuit (consisting of the
public message, the encrypted state, and the signatures) of an honest party 𝑃𝑗 in round 𝑖

using the authoritative message from round 𝑖− 1, as well as honest party’s input, public
and secret keys, signature and verification keys, and (for the garbled circuit of the second
round) the honest parties’ state from the first round. Denote the output of party 𝑃𝑗’s
garbled circuit of round 𝑖 by 𝑜𝑢𝑡𝑗𝑖 . Then, 𝑆 uses the garbled circuit simulator to construct
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the circuit for round 𝑖 of an honest party 𝑃𝑗: 𝑔𝑐𝑗
𝑖 = 𝑆𝐺𝐶(𝑜𝑢𝑡𝑗𝑖 ) and uses the result instead

of the actual garbled circuit.
Lemma 6. For the hybrids Hybrid4 and Hybrid3 holds: 𝜖4 ≤ 𝑛𝑒𝑔𝑙4(𝑛).

Proof. Technically, this is a series of hybrids where the circuits are replaced one after the
other (starting with the circuits of the first round). Note that at this point the adversarial
input is guaranteed to be known before the circuit is constructed. Thus, 𝑆 is always able
to correctly compute the output, and the statement holds by the selective security of the
garbled circuit construction.

Hybrid5: The simulator behaves the same as in the previous hybrid, except that the
simulation of the garbled circuits is done a bit differently. Specifically, we change the input
we provide to the garbled circuit simulator 𝑆𝐺𝐶 : instead of using an encryption of the state,
we use an encryption of zeroes (the signature is computed on this encryption of zeroes).
Lemma 7. For the hybrids Hybrid5 and Hybrid4 holds: 𝜖5 ≤ 𝑛𝑒𝑔𝑙5(𝑛).

Proof. Technically, this is a series of hybrids where the encryptions of the state are replaced
one after the other. Note that at this point, the simulator 𝑆 does not use the secret keys of
the honest parties anymore. By the security of the encryption scheme, in each hybrid, the
distribution of the input we give to the garbled circuit simulator 𝑆𝐺𝐶 is computationally
indistinguishable from the input in the previous hybrid. Thus, the input distribution of
the adversary does not change as well. Therefore, each two consecutive hybrids (and thus
Hybrid4 and Hybrid5 as well) are indistinguishable.

Hybrid6: The simulator 𝑆 behaves the same as in the previous hybrid, except that it
aborts if the adversary posts an authoritative message for some round 𝑖 such that some
honest part of it (public message or state that is supposed to be produced by the honest
party) is not consistent with what the simulator expects based on the authoritative message
of the previous round, but still has a valid signature. Specifically, the simulator computes
the output of the honest party’s garbled circuit on the authoritative message of the previous
round, and checks whether this message is the same as what is given in the authoritative
message of the current round. We denote this by abort2.
Lemma 8. For the hybrids Hybrid6 and Hybrid5 holds: |𝜖6 − 𝜖5| ≤ 𝑛𝑒𝑔𝑙6(𝑛)

Proof. Note that if the adversary is able to post such message, we can use this adversary
to construct an adversary against the unforgeability of the signature scheme that we use.
Thus, this situation can occur only with some negligible probability.
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In more detail, this is a series of hybrids where in each hybrid we target one honest
party at a time. Assume that there exists an adversary 𝒜 able to distinguish between two
consecutive hybrids that differ only in the fact that the adversary posts an unexpected,
correctly signed message for some honest party 𝑃𝑗. Then we can construct an adversary ℬ
against the security of the signature scheme. ℬ starts by choosing the public and secret
keys of the honest parties (except for the signature/verification key of party 𝑃𝑗 - those keys
are chosen by ℬ’s challenger), sends the public keys to 𝒜, constructs the garbled circuits,
posts messages of the first round on the bulletin board etc. as specified by the description
of the simulator in the previous hybrid. Whenever ℬ needs to sign a message for 𝑃𝑗 , it uses
the signature oracle. Now, if 𝒜 outputs an unexpected correctly signed message for 𝑃𝑗, ℬ
can use this message to present the forgery to its own challenger. Thus, ℬ’s advantage is at
least the same as the advantage of 𝒜. Since the advantage of ℬ is negligible by the security
of the signature scheme we use, the advantage of 𝒜 must be negligible as well.

Hybrid7: The simulator 𝑆 behaves the same as in the previous hybrid, except that if
the adversary posts an authoritative message for some round 𝑖− 1 such that some part of
it does not have a valid signature, the simulator changes the way that the garbled circuits
for round 𝑖 that use this partial message is generated: instead of computing the output
using the inputs and then using the garbled circuit simulator as is done in the previous
hybrid, the simulator 𝑆 computes the garbled circuit directly as 𝑆𝐺𝐶(⊥).
Lemma 9. For the hybrids Hybrid7 and Hybrid6 holds: |𝜖7 − 𝜖6| = 0

Proof. Note that the garbled circuit of an honest party would have output ⊥ anyway due
to the signature verification check. Thus, nothing has changed.

Hybrid8: The simulator 𝑆 behaves the same as in the previous hybrid, except that if
the adversary posts a message for some round 𝑖 − 1 such that some honest part of it is
not consistent with the simulator’s expectations based on the authoritative message of the
previous round, the simulator changes the way that the garbled circuits for round 𝑖 − 1
that use this honest message are generated: instead of computing the output using the
inputs and then using the garbled circuit simulator as is done in Hybrid9, the simulator 𝑆
computes the garbled circuit directly as 𝑆𝐺𝐶(⊥).
Lemma 10. For the hybrids Hybrid8 and Hybrid7 holds: |𝜖8 − 𝜖7| = 0

Proof. Note that at this point, due to the steps made in the previous two hybrids, we know
that the signature on the changed message is invalid. Thus, any honest garbled circuit that
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uses this changed message will output ⊥ either as part of Step 2b) or part of Step 2c) of
Protocol 6. Thus, the input we feed into the garbled circuit simulator does not change.

Hybrid9: Consider the garbled circuits of the honest parties that were computed not
using the garbled circuit simulator with the input ⊥. Note that 𝑆 currently computes those
garbled circuits by using the garbled circuit simulator 𝑆𝐺𝐶 on the output that 𝑆 honestly
computed based on the authoritative message of the previous round as well as the honest
party’s input and state from the previous round. In this hybrid, we remove the requirement
of knowing the honest party’s input and state. Specifically, the simulator behaves the same
as in the previous hybrid, except that instead of honestly computing the output using the
honest parties’ inputs and states, it relies on the simulator 𝑆𝑀𝑃 𝐶 of the original MPC
protocol 𝜋 to retrieve the public messages that are supposed to be output by those garbled
circuits that were not already generated by the garbled circuit simulator using the input ⊥.
Note that in Hybrid5 we already changed the encryption of state to encryption of zeroes,
so once we retrieved the public messages, we are done.
Lemma 11. For the hybrids Hybrid9 and Hybrid8 holds: |𝜖9 − 𝜖8| ≤ 𝑛𝑒𝑔𝑙9(𝑛)

Proof. At this point, note the the adversary is not able to misbehave more than it can in
the execution of the protocol 𝜋. Thus, the indistinguishability of the hybrids holds by the
security of the original MPC protocol 𝜋.

Note that in the last hybrid, the simulator does not need the honest parties’ inputs to
simulate the execution.

2.6 Guaranteed Output Delivery

In this section, we provide an extension of our main construction that ensures guaranteed
output delivery, meaning that the corrupted parties cannot prevent honest parties from
receiving their output.

In order to provide guaranteed output delivery, the first step is to build upon an MPC
protocol 𝜋 that also has this property. However, note that this change by itself is not
sufficient – a malicious evaluator could still disrupt the execution of our original construction
by simply providing an authoritative message that contains an invalid signature and thus
forcing honest garbled circuits to abort. It is clear that we cannot simply accept such
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invalid signatures. Thus, further modifications are required. In general, compared to our
main protocol we make the following changes:

• The original MPC protocol must have the guaranteed output delivery property.
• We introduce a deadline by which all initial messages must be posted. In the following,

we denote this deadline by 𝜏 .
• Signatures on the messages are verified not by the garbled circuits, but rather by the

CSaR parties as part of the CSaR request. The signature is computed on the whole
message, rather than separately for the public and state parts of the next-message
function’s output.

• We use CSaR with public release, which is similar to CSaR, but instead of privately
releasing secret shares to the user, the parties release the shares publicly (e.g., by
posting them on the bulletin board).

• As a part of the release condition, the garbled circuits and wire keys of the current
round (that were previously published on the bullet board) are used to check whether
the message submitted by the evaluator is indeed the output of the garbled circuit in
question. Only if this is the case (i.e., the evaluator acted honestly) is the evaluator
allowed to receive the next wire keys. The evaluator uses a proof of publishing of
the garbled circuits and the wire keys released by the CSaR to prove the correctness
of the computation. Roughly the following statement is checked: “The execution of
the garbled circuit 𝐺𝐶 on the wire keys {𝑘𝑖}𝑖∈𝐼 results in the output provided by 𝐸.
Here, the garbled circuit 𝐺𝐶 is the circuit, and {𝑘𝑖}𝑖∈𝐼 are the keys for this circuit
reconstructed using the published values of the CSaR present on the proof of publish
supplied by 𝐸”.

• If a message from the first round was not published, or a garbled circuit or wire key
from some party was not stored with CSaR, the evaluator needs to prove that with
respect to the genesis block, by deadline 𝜏 indeed no such message was stored. We
call such proof a “proof of missing message”.

• In the cases described in the last two points, the CSaR releases default wire keys
(encoding “⊥”) for each garbled circuit that is supposed to use the missing message.

In order to allow for an easy verification of the evaluator’s claims of invalid garbled
circuits, we use CSaR with public release (CSaR-PR, see Figure 2.6), which is the same as
CSaR, except that the witness is supplied by the client that wishes to receive the secrets
publicly, and the secrets (garbled circuits and wire keys in our case) are released publicly
as well (as long as the release condition is satisfied). Such CSaR-PR can be instantiated
with the PublicWitness construction presented in the eWEB work. For simplicity, in the
following we assume that the public release of the computation result is permitted. If the
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application requires that only a certain party obtains the function result, it can be easily
supported by changing the output of the function that is being computed to the encryption
of this output under that party’s public key.

The definition of the authoritative message for this construction is a bit different from
the definition in our main construction to account for the fact that the signatures and
proofs of execution are checked by the CSaR parties. Formally, the authoritative message
of round 𝑑 > 1 is a published message that satisfies the following conditions:

• Message is of the form (𝑖𝑑, 𝑑,𝑚), where 𝑚 is of the form (𝑚𝑑
1 ‖ · · · ‖𝑚𝑑

𝑛 ‖ 𝑐𝑑
1 ‖ · · · ‖

𝑐𝑑
𝑛 ‖ 𝑠𝑖𝑔𝑑

1 ‖ · · · ‖ 𝑠𝑖𝑔𝑑
𝑛‖𝒫), where 𝒫 is some additional proof data, as explained below.

• each 𝑚𝑑
𝑗 , 𝑐𝑑

𝑗 , 𝑠𝑖𝑔𝑑
𝑗 has correct length, and each 𝑠𝑖𝑔𝑑

𝑗 is a valid signature of 𝑃𝑑 on the
tuple (𝑖𝑑, 𝑑, 𝑗,𝑚𝑑

𝑗 , 𝑐
𝑑
𝑗 ), and 𝒫 contains a proof that for each contributor 𝑃𝑑 the output

of 𝑃𝑑’s garbled circuit for that round is indeed what the evaluator claims this output
to be 8. The following exceptions are allowed:

1. if a garbled circuit or wire key needed for the evaluation of that garbled circuit
from some party 𝑃𝑗 is missing and the corresponding message part could not be
computed, the evaluator must prove that 𝑃𝑗 failed to post the garbled circuit or
wire key and the deadline 𝜏 has passed. Recall that in our main construction we
require CSaR secret identifiers to be published on the bulletin board (in order for
the evaluator to know what secrets it must request from the CSaR). If 𝑃𝑗 failed
to post the secret identifier, “proof of missing message” is used to prove that
this message does not exist. If 𝑃𝑗 posted this identifier, but the corresponding
message is not stored with CSaR, CSaR publicly returned ⊥ upon evaluator’s
request to retrieve this message and the proof of this publication is used to prove
that the message was not stored. In both cases, wire keys for the default value ⊥
are released by the CSaR participants as wire keys corresponding to the output
of the missing circuit.

2. If a 𝑚𝑑
𝑗 , 𝑐𝑑

𝑗 , or 𝑠𝑖𝑔𝑑
𝑗 has incorrect length, or 𝑠𝑖𝑔𝑑

𝑗 is not a valid signature of 𝑃𝑑 on
the tuple (𝑖𝑑, 𝑑, 𝑗,𝑚𝑑

𝑗 , 𝑐
𝑑
𝑗 ), but the evaluator proved that it is indeed the output

of 𝑃𝑑’s garbled circuit, this still counts as an authoritative message. In this case,
wire keys for the default value ⊥ are released by the CSaR participants as wire
keys corresponding to 𝑚𝑑

𝑗 and 𝑐𝑑
𝑗 .

• The deadline 𝜏 has passed at the time of posting.
• This is the first published message that satisfies the requirements above.
8The “proof” simply consists of the whole bulletin board. CSaR retrieves the garbled circuit of 𝑃𝑗 and

the corresponding wire keys that were published by CSaR on the bulletin board, executes the garbled
circuit and checks whether the output is consistent with the message posted by the evaluator.
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Same as in our main construction, there are up to 𝑛 authoritative messages for the first
round – one for each contributing party. Formally, an authoritative message of round 𝑑 = 1
from party 𝑃𝑘 is a published message that satisfies the following conditions:

• Message is of the form (𝑖𝑑, 1, 𝑘,𝑚1
𝑘, 𝑠𝑖𝑔

1
𝑘).

• 𝑠𝑖𝑔1
𝑘 is a 𝑃𝑘’s correct signature over 𝑚1

𝑘.
• 𝑚1

𝑘 has correct length.
• The deadline 𝜏 has not passed at the time of posting.
• This is the first published message that satisfies the requirements above.

If a required authoritative first message from some party 𝑃𝑗 is missing, the evaluator
must prove that 𝑃𝑗 failed to post this message and the deadline 𝜏 has passed (“proof of
missing message”). In this case, wire keys for the default value ⊥ are released by the CSaR
participants as wire keys corresponding to that message.

Finally, note that same as in our main construction, we require that the original protocol
𝜋 has the publicly recoverable output property, now with the additional guarantee of output
delivery. The publicly recoverable output property with guaranteed output delivery can
be easily achieved as follows in a protocol which has guaranteed output delivery: first,
all parties broadcast the output. Then, the value that was broadcasted by more than
half of the parties is taken as the output. Note that if 𝜋 has guaranteed output delivery,
each honest participant in 𝜋 is guaranteed to be able to correctly compute the honest
output. Given honest majority among the participants (which we assume in order for 𝜋 to
provide the guaranteed output delivery anyway), the protocol outlined above results in a
correct output. In the following, for simplicity we assume that protocol 𝜋 has the publicly
recoverable output property with guaranteed otput delivery and Eval denotes the algorithm
used to retrieve the output from the transcript.

The full construction is given in Protocols 9 and 10 (preparation of the garbled circuits
and keys), as well as Protocol 11 (execution phase). Just as in our main construction, we
show security by providing a simulator that does not have access to the honest parties’
secrets and showing that no PPT adversary is able to distinguish the interaction with the
simulator from the interaction with the honest parties. However, this time we additionally
prove that the guaranteed output delivery property holds for our construction. We provide
the formal proof in §2.7.
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Protocol 9 Non-Interactive MPC with GoD− 𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒
1. 𝑃𝑗 computes the output (𝑚1

𝑗 , 𝑠
1
𝑗) of the first round of the MPC protocol for 𝐹 . 𝑃𝑗

computes the signature 𝑠𝑖𝑔1
𝑗 on the tuple (𝑖𝑑, 1, 𝑗,𝑚1

𝑗) using its signing key 𝑠𝑖𝑔𝑘𝑗. 𝑃𝑗

posts (𝑖𝑑, 1, 𝑗,𝑚1
𝑗 , 𝑠𝑖𝑔

1
𝑗 ) on the bulletin board.

2. 𝑃𝑗 produces Yao garbled circuit {𝐺𝐶𝑖
𝑗} for each round 𝑖 > 1 based on the circuit 𝐶𝑖

𝑗

of the next-message function 𝑓 𝑖 of the original MPC protocol 𝜋:

({lab𝑤,𝑏,𝑖
𝑗 }𝑤∈inpi

j,𝑏∈{0,1})← Gen(1𝜆, inpi
j)

𝐺𝐶𝑖
𝑗 ← Garble(𝐶𝑖

𝑗, ({lab𝑤,𝑏,𝑖
𝑗 }𝑤∈inpi

j,𝑏∈{0,1})

Here, inpi
j is the length of the input to the circuit 𝐶𝑖

𝑗. This circuit takes as input
messages {𝑚𝑖−1

𝑘 }𝑛
𝑘=1 published by the parties in the previous round, and the encryption

𝑐𝑖−1
𝑗 of the secret state passed by 𝑃𝑗 from the previous round. All of 𝑃𝑗’s keys, input

and randomness are hardcoded in the circuit. The verification and public keys of
other contributors are also hardcoded in the circuit. For the circuit of the second
round, the secret state passed from the first round is hardcoded in the circuit as well.
The circuit decrypts the secret state and executes the next message function of the
current round:
(a) Compute 𝑠𝑖−1

𝑗 = 𝐷𝑒𝑐𝑠𝑘𝑗
(𝑐𝑖−1

𝑗 ).
(b) Obtain (𝑚𝑖

𝑗, 𝑠
𝑖
𝑗) by executing 𝑓(𝑥𝑗, 𝑟

𝑖
𝑗,𝑚

𝑖, 𝑠𝑖−1
𝑗 ), where 𝑚𝑖 = 𝑚𝑖−1

1 ‖ · · · ‖𝑚𝑖−1
𝑛 .

(c) Compute the encryption of the state 𝑐𝑖
𝑗 = 𝐸𝑛𝑐𝑝𝑘𝑗

(𝑠𝑖
𝑗).

(d) Compute the signature 𝑠𝑖𝑔𝑖
𝑗 on the tuple (𝑖𝑑, 𝑖, 𝑗,𝑚𝑖

𝑗, 𝑐
𝑖
𝑗) using the signing key

𝑠𝑖𝑔𝑘𝑗.
(e) Output (𝑚𝑖

𝑗, 𝑐
𝑖
𝑗, 𝑠𝑖𝑔

𝑖
𝑗).

3. 𝑃𝑗 securely stores garbled circuits {𝐺𝐶𝑖
𝑗} for all rounds 𝑖 > 1 using CSaR-PR. The

witness needed to decrypt the ciphertext of some round 𝑖 is a valid proof of publishing
of all authoritative messages of round 1 and up to (and including) round 𝑖− 1. If 𝜏
was reached and some party did not post its authoritative message of the first round,
the witness does not need to include a proof of publishing of the message computed
by the garbled circuits of this party. Instead, the witness needs to include a proof of
missing message by the deadline 𝜏 .

2.7 Proof of Security - GoD Construction

In order to prove security properties of our construction, we again construct the simulator
𝑆 using the CSaR simulator 𝑆𝐶𝑆𝑎𝑅, the garbled circuit simulator 𝑆𝐺𝐶 , and the simulator of
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Protocol 10 Non-Interactive MPC with GoD−𝐾𝑒𝑦𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒
1. Securely store input wire keys ({lab𝑤,𝑏,2

𝑗 }𝑤∈inp2
j,𝑏∈{0,1}) for the circuit of the second

round using CSaR-PR. For each party 𝑃𝑘 whose first round message 𝑚1
𝑘 is needed

for the computation, the witness required to decrypt the wire key corresponding to
the 𝑖-th bit of the input 𝑚1

𝑘 being 0 (resp. 1) is a valid proof of publishing with
respect to the genesis block of the following:
(a) Each authoritative message of the first round is published. If a message is missing,

the witness needs to include a proof of missing message by deadline 𝜏 instead of
that message. For each missing message that is needed in the computation, wire
keys for the default value ⊥ are released.

(b) 𝑖-th bit of 𝑚1
𝑘 is 0 (resp. 1).

2. Securely store input wire keys ({lab𝑤,𝑏,𝑑
𝑗 }𝑤∈inpd

j,𝑏∈{0,1}) for the circuit of the d-th
(𝑑 ≥ 3) round using CSaR-PR. Say a message 𝑚𝑑−1

𝑗 (resp., 𝑐𝑑−1
𝑗 ) is needed for the

computation. The witness needed to decrypt the wire key corresponding to the 𝑖-th
bit of 𝑚𝑑−1

𝑗 (resp., 𝑐𝑑−1
𝑗 ) being 0 (resp. 1) is a valid proof of publishing with

respect to the genesis block of the following:
(a) All authoritative messages of round 1 up to and including round 𝑑 − 1 are

published (subject to the constraint that 𝜏 is reached and some party did not
post its authoritative message of the first round). Recall that an authoritative
message is defined in a way that allows for missing or invalid partial messages
(given a valid execution proof from the evaluator) – in those cases, for each
missing message that is needed in the computation, wire keys for the default
value ⊥ are released.

(b) 𝑖-th bit of 𝑚𝑑−1
𝑗 (resp., 𝑐𝑑−1

𝑗 ) is 0 (resp. 1).

the original MPC protocol 𝑆𝑀𝑃 𝐶 .

𝑆 starts by choosing the public and secret keys (𝑝𝑘𝑗, 𝑠𝑘𝑗), as well as the signature
and verification keys (𝑠𝑖𝑔𝑘𝑗, 𝑣𝑒𝑟𝑘𝑗) for the honest parties, and initializing an empty list 𝐿
which will be later used for the secret storage when simulating IdealCSaR. Then, 𝑆 starts
the real-world adversary 𝒜, and gives 𝒜 the public and verification keys. Additionally, 𝑆
starts the CSaR simulator 𝑆𝐶𝑆𝑎𝑅. 𝑆 also starts the simulator 𝑆𝑀𝑃 𝐶 for MPC functionality
𝑓 and secure protocol 𝜋. Whenever 𝑆𝑀𝑃 𝐶 sends a message to its ideal functionality, 𝑆
forwards this message to its own ideal functionality (and vice versa). Finally, 𝑆 observes
the blockchain and aborts whenever an authoritative message is posted such that it is
not consistent with 𝑆’s expectations based on the authoritative messages of the previous
rounds.
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Protocol 11 Non-Interactive MPC with GoD− 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑃ℎ𝑎𝑠𝑒
1. Wait until either deadline 𝜏 has passed.
2. The evaluator 𝐸 uses messages (𝑖𝑑, 1, 𝑧,𝑚1

𝑧, 𝑠𝑖𝑔𝑝𝑢𝑏
1
𝑧) posted on the bulletin board by

each party 𝑃𝑧 as the proof of publishing to get the garbled circuits (and keys) for the
second round stored in CSaR by each participant in 𝜋. Then, 𝐸 computes the outputs
(𝑚2

𝑗 , 𝑠𝑖𝑔𝑝𝑢𝑏
2
𝑗 , 𝑐

2
𝑗 , 𝑠𝑖𝑔𝑝𝑟

2
𝑗 ) of the second round by executing the garbled circuits. If for

a party 𝑃𝑗 any part of the information required to compute the output is missing,
output ⊥ is used in the following.

3. Check whether an authoritative message was published for round 2. If yes, check
if this message is consistent with own output and if so, simply use its proof of
publish as the witness to decrypt the wire keys of the next round. If the message
is not consistent, abort. If the authoritative message is not published yet, publish
(𝑖𝑑, 2,𝑚2

1 ‖ · · · ‖𝑚2
𝑛 ‖ 𝑐2

1 ‖ · · · ‖ 𝑐2
𝑛 ‖ 𝑠𝑖𝑔2

1 ‖ · · · ‖ 𝑠𝑖𝑔2
𝑛) (appending the proof of execution,

as well as proofs of of missing/invalid messages if necessary) and use the proof of
publish as the witness.

4. In each following round 𝑑 ≥ 3, 𝐸 executes each garbled circuit published by party 𝑃𝑧

for round 𝑑− 1. Then, 𝐸 checks whether the authoritative message was published for
that round and whether this message is consistent with own output and if so, simply
uses its proof of publish as the witness to decrypt the wire keys of the next round. If
the message is not consistent, 𝐸 aborts. If the authoritative message is not published
yet, 𝐸 publishes the concatenated output of the garbled circuits along with the proof
of execution. In any case, 𝐸 uses the proof of publish of the authoritative message to
release the wire keys and the garbled circuits of the next round.

5. Whenever any needed wire key and/or garbled circuit was missing, 𝐸 additionally
supplies a proof of missing message to decrypt the default wire keys of the next round.

6. Let 𝜏 ′ denote the resulting transcript of execution of 𝜋. 𝐸 outputs Eval(𝜏 ′) as the
result.

First, note that the CSaR simulator 𝑆𝐶𝑆𝑎𝑅 is running during the whole execution of 𝑆,
and requires access to the ideal functionality IdealCSaR. We first explain how exactly 𝑆 is
simulating the CSaR infrastructure, and then explain how 𝑆 is simulating each phase of
the protocol.

Simulation of the CSaR infrastructure.

• 𝑆 honestly simulates IdealCSaR by keeping the list 𝐿 of (identifier, release condition,
secret) tuples and honestly storing messages whenever such requests come from 𝑆𝐶𝑆𝑎𝑅.
Messages stored by the adversary are not only stored, but also released honestly. For
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an honest message that was not stored in 𝐿 the simulator 𝑆 decides on the fly whether
and what it returns (acting as IdealCSaR) (see the description of the next two phases
to understand what we mean by this). If 𝑆 is unable to provide a response to a valid
release request of an honest message, 𝑆 aborts.

Simulation of the CircuitPreparationPhase.

• In Step 1 of the CircuitPreparationPhase, for each honest party 𝑃𝑗, 𝑆 waits until it
receives the message 𝑚1

𝑗 output by 𝑆𝑀𝑃 𝐶 as the party 𝑃𝑗, honestly computes the
signature 𝑠𝑖𝑔𝑝𝑢𝑏1

𝑗 over (𝑖𝑑, 1, 𝑗,𝑚1
𝑗), and posts (𝑖𝑑, 1, 𝑗,𝑚1

𝑗 , 𝑠𝑖𝑔𝑝𝑢𝑏
1
𝑗) on the bulletin

board.
• In Step 2, to construct garbled circuits for round 𝑖 = 2, 𝑆 waits until the deadline 𝜏

has passed and forwards each message 𝑚1
𝑧 which is part of 𝑃𝑧’s authoritative message

of round 1 to 𝑆𝑀𝑃 𝐶 as if coming from 𝑃𝑧 (forwarding ⊥ whenever an authoritative
message is missing).
To construct garbled circuits for rounds 𝑖 > 2, 𝑆 waits until all authoritative messages
of the first 𝑖− 1 rounds are published (either by the adversary, or, if applicable, by
𝑆 itself), and the deadline 𝜏 has passed. Then, 𝑆 forwards each message 𝑚𝑖−1

𝑧 that
represents the public message of a corrupted party 𝑃𝑧 in the authoritative message of
round 𝑖− 1 to 𝑆𝑀𝑃 𝐶 as if coming from 𝑃𝑧, forwarding ⊥ whenever the authoritative
message contained the corresponding proof of missing message or the party’s message
was invalid (had an invalid signature or length etc).
To construct the garbled circuit of an honest party 𝑃𝑗 in round 𝑖, 𝑆 uses the garbled
circuit simulator 𝑆𝐺𝐶 on the input (𝑚𝑖

𝑗, 𝑐
𝑖
𝑗, 𝑠𝑖𝑔

𝑖
𝑗). Here, 𝑚𝑖

𝑗 is the output of 𝑆𝑀𝑃 𝐶

for party 𝑃𝑗 in round 𝑖, 𝑐𝑖
𝑗 the encryption of a zero string, and 𝑠𝑖𝑝𝑟𝑖

𝑗 the signature
honestly computed by 𝑆 over (𝑖𝑑, 𝑖, 𝑗,𝑚𝑖

𝑗, 𝑐
𝑖
𝑗).

• When an honest party is supposed to store a garbled circuit as specified by Step 3, 𝑆
simulates the SecretStorage step of IdealCSaR by informing 𝑆𝐶𝑆𝑎𝑅 that a secret has been
stored with the release condition as specified by Step 3 of the CircuitPreparationPhase.
Once a valid release request has been submitted, 𝑆 checks whether it was able to
construct a garbled circuit according to the procedure outlined in the simulation of
Step 2, and if so, honestly simulates IdealCSaR by storing the constructed garbled
circuit in the list 𝐿 and then honestly releasing it. Otherwise, 𝑆 aborts.

Simulation of the KeyStoragePhase.

• For all wire keys that must be stored according to Step 1 and Step 2 of the KeyStor-
agePhase, 𝑆 simulates the SecretStorage step IdealCSaR by informing 𝑆𝐶𝑆𝑎𝑅 that a
secret has been stored with the release condition as specified by Step 1 and Step 2 of
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the KeyStoragePhase. Once a valid release request has been submitted for a wire key,
𝑆 checks whether it was able to create the requested garbled key according to the
procedure outlined in Step 2 of the simulation of the CircuitPreparationPhase, and if
so, 𝑆 honestly simulates IdealCSaR by storing this garbled wire key in the list 𝐿 and
then honestly releasing it. Otherwise, 𝑆 aborts.

Simulation of the ExecutionPhase.

• Note that the evaluator does not possess any secrets. Thus, 𝑆 simply follows the
procedure outlined in Protocol 11, sending its CSaR release requests to 𝑆𝐶𝑆𝑎𝑅.

Now, we prove that no PPT adversary 𝒜 is able to distinguish the view of interaction
with the simulator 𝑆 constructed above from the view of interacting with honest parties
in the real world. We start by having the the simulator control the honest parties and
honestly follow the protocol, and make gradual changes in order to achieve the simulator
described above. We denote the advantage of the adversary in distinguishing the between the
Hybrid𝑖−1 and Hybrid𝑖 by 𝜖𝑖. We define the following hybrids (the detailed proofs for the
indistinguishability between the neighboring hybrids are the same as for the corresponding
hybrids in our main construction):

Hybrid0: This hybrid corresponds to the execution in the real world. The simulator 𝑆
controls all honest parties and follows the protocol.

Hybrid1: The simulator 𝑆 behaves the same as in the previous protocol, except that it
switches from honestly executing the CSaR protocol to using the CSaR simulator 𝑆𝐶𝑆𝑎𝑅

while honestly simulating IdealCSaR by itself. In more detail, 𝑆 passes messages to and from
𝑆𝐶𝑆𝑎𝑅 and the dishonest parties, and simulates IdealCSaR by storing a list 𝐿 of (identifier,
release condition, secret) tuples as follows:

• Upon receiving a secret 𝑠 and a release condition 𝐹 from 𝑆𝐶𝑆𝑎𝑅, the simulator stores
(𝑖𝑑, 𝐹, 𝑠), where 𝑖𝑑 is the identifier of the CSaR request.

• Whenever an honest message needs to be stored, 𝑆 honestly stores it in 𝐿 and notifies
𝑆𝐶𝑆𝑎𝑅.

• Whenever 𝑆𝐶𝑆𝑎𝑅 queries IdealCSaR for a secret with the identifier 𝑖𝑑, the simulator 𝑆
checks whether the entry with the identifier 𝑖𝑑 exists, and if so, whether the given
witness satisfies the release condition of this entry. If so, the simulator looks up the
list 𝐿 of stored tuples and returns the corresponding secret 𝑠 to 𝑆𝐶𝑆𝑎𝑅 if an entry
with the identifier 𝑖𝑑 is in the list.

Lemma 12. For the hybrids Hybrid1 and Hybrid0 holds 𝜖1 ≤ 𝑛𝑒𝑔𝑙1(𝑛) by the security of
the CSaR construction.
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Hybrid2: The simulator behaves the same as in the previous round, except that it
changes the way IdealCSaR is simulated. Specifically, instead of saving the honest parties’
wire keys and garbled circuits in list 𝐿 at the time specified by the protocol, the simulator
stores each secret in 𝐿 only when 𝑆𝐶𝑆𝑎𝑅 asks for this secret and is able to provide a valid
witness for the corresponding release condition.
Lemma 13. For the hybrids Hybrid2 and Hybrid1 holds: 𝜖2 = 0 (nothing changed between
the hybrids).

Hybrid3: The simulator 𝑆 behaves the same as in the previous round, except that it
aborts if an authoritative message for round 𝑖 > 1 is submitted by the adversary which is
inconsistent with 𝑆’s own view of the bulletin board: corresponds to bit 1 − 𝑏𝑝 at some
position 𝑝 in the string, when based on 𝑆’s view the authoritative message contains 𝑏𝑝 at
this position, or corresponds to some position which does not have a recorded authoritative
message on the bulletin board yet, or contains a valid proof of missing message for a
message that is present on the bulletin board, or contains a proof of publication of garbled
circuits/wire keys different from those released by the CSaR according to 𝑆’s view. We
denote this by abort1.
Lemma 14. For the hybrids Hybrid3 and Hybrid2 holds: 𝜖3 ≤ 𝑛𝑒𝑔𝑙3(𝑛) by the unforge-
ability of the proof of publish.

Hybrid4: The simulator 𝑆 behaves the same as in the previous hybrid, except that it
aborts if some honest party’s authoritative message for the first round is not the same as
expected by the simulator. We denote this by abort2.
Lemma 15. For the hybrids Hybrid4 and Hybrid3 holds: 𝜖4 ≤ 𝑛𝑒𝑔𝑙4(𝑛)

Proof. Note that honest parties always publish all required messages, and according to the
previous hybrid, the authoritative messages published by the adversary are consistent with
𝑆’s view of the bulletin board. By the definition of an authoritative message each first
message of a party must contain a valid signature. Thus, if the adversary is able to publish
an authoritative message of the first round of some honest party such that is not the same
as expected by the simulator, it means that the adversary is also able to forge a signature
of that honest party. We can thus use this adversary to construct an adversary on the
unforgeability of the signature scheme that we use.

Hybrid5: The simulator 𝑆 behaves the same as in the previous hybrid, except that it
aborts if the adversary publishes an authoritative message for some round 𝑖 > 1 that is not
the same as expected by the simulator. We denote this by abort3.
Lemma 16. For the hybrids Hybrid5 and Hybrid4 holds: 𝜖5 = 0
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Proof. Note that at this point the authoritative messages published by the adversary are
consistent with 𝑆’s view of the bulletin board. Since the authoritative message in particular
contains pointers to the garbled circuits/wire keys for the previous round which must
explain the output claimed by the evaluator, the output claimed by the evaluator must be
the same as expected by the simulator.

Hybrid6: The simulator 𝑆 behaves the same as in the previous hybrid, except that it
now uses the garbled circuit simulator 𝑆𝐺𝐶 instead of honestly constructing the garbled
circuit. Specifically, once the authoritative message for round 𝑖− 1 is published (and the
deadline 𝜏 has passed), the simulator 𝑆 honestly computes the output of the garbled circuit
(consisting of the public message, the encrypted state, and the signatures) of an honest party
𝑃𝑗 in round 𝑖 using the authoritative message from round 𝑖− 1, as well as honest public
and secret keys, signature and verification keys, and (for the garbled circuit of the second
round) the honest parties’ state from the first round. Whenever a (part of an) authoritative
message (needed as part of the input) is shown missing or shown to be invalid, the default
message ⊥ is used instead. Denote the output of an honest party 𝑃𝑗’s garbled circuit of
round 𝑖 by 𝑜𝑢𝑡𝑗𝑖 . Then, use the garbled circuit simulator to construct the circuit for round 𝑖
of 𝑃𝑗 as follows: 𝑔𝑐𝑗

𝑖 = 𝑆𝐺𝐶(𝑜𝑢𝑡𝑗𝑖 ) and use the result instead of the actual garbled circuit.
Lemma 17. For the hybrids Hybrid6 and Hybrid5 holds: 𝜖6 ≤ 𝑛𝑒𝑔𝑙6(𝑛) by the security
of the garbled circuits construction.

Hybrid7: The simulator behaves the same as in the previous hybrid, except that the
simulation of the garbled circuits is done a bit different. Specifically, we change the input
we provide to the garbled circuit simulator 𝑆𝐺𝐶 : instead of using an encryption of the state
that was published by the adversary in the previous round, we use an encryption of zeroes
(the signature is computed using this encryption of zeroes as well).
Lemma 18. For the hybrids Hybrid7 and Hybrid6 holds: 𝜖7 ≤ 𝑛𝑒𝑔𝑙7(𝑛) by the security
of the encryption scheme.

Hybrid8: The simulator behaves the same as in the previous hybrid, except that instead
of using the honest parties’ inputs, it relies on the simulator 𝑆𝑀𝑃 𝐶 of the original MPC
protocol 𝜋 to retrieve the messages used in the construction of the garbled circuits.
Lemma 19. For the hybrids Hybrid8 and Hybrid7 holds: 𝜖8 ≤ 𝑛𝑒𝑔𝑙8(𝑛) by the security
of the original MPC protocol 𝜋.

Note that in the last hybrid, the simulator does not need the honest parties’ inputs to
simulate the execution, and that all of the simulator’s aborts happen only with a negligible
probability. Additionally, note that from the proofs above follows that the authoritative
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messages are consistent with what an honest evaluator would have output (thus in particular,
up to some negligible probability, an honest evaluator does not need to abort), and that the
messages forwarded to the ideal functionality are consistent with the authoritative messages.
Finally, note that it is given that the original protocol has the publicly recoverable output
with guaranteed output delivery property. Thus, up to some negligible probability, the
output of an honest evaluator is guaranteed to exist and is the same both in the real and in
the ideal world. Thus, our protocol securely computes 𝑓 in the presence of contributors
and evaluators with guaranteed output delivery for the evaluators, as required.

2.8 Optimizations

Our next goal is to minimize the number of CSaR invocations in our construction. For this,
we will focus on our main construction (Protocols 6, 7 and 8), but the optimizations are
applicable to our guaranteed output delivery construction as well.

Let 𝑛 denote the number of parties participating in the original MPC protocol 𝜋, 𝑛𝑟𝑜𝑢𝑛𝑑𝑠

denote the number of rounds in 𝜋, 𝑛𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗 denote the number of input wires of a garbled

circuit of the next-message function for round 𝑖 of party 𝑃𝑗.

Then, the number of CSaR secret store operations is upper bounded by:

𝑁𝑠𝑡𝑜𝑟𝑒 = 𝑛 * (𝑛𝑟𝑜𝑢𝑛𝑑𝑠 − 1) +
𝑛𝑟𝑜𝑢𝑛𝑑𝑠∑︁

𝑖=2

𝑛∑︁
𝑗=1

2 * 𝑛𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗

The term 𝑛 * (𝑛𝑟𝑜𝑢𝑛𝑑𝑠 − 1) is due to the fact that each party needs to store a garbled
circuit for each round, except for the very first one. The term ∑︀𝑛𝑟𝑜𝑢𝑛𝑑𝑠

𝑖=2
∑︀𝑛

𝑖=1 2 * 𝑛𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗 is

added because each party also needs to store two wire keys for each input wire of each
garbled circuit it publishes.

The number of CSaR secret release operations for each evaluator is upper bounded by:

𝑁𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑛 * (𝑛𝑟𝑜𝑢𝑛𝑑𝑠 − 1) +
𝑛𝑟𝑜𝑢𝑛𝑑𝑠∑︁

𝑖=2

𝑛∑︁
𝑗=1

𝑛𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗

This is because the evaluator needs all of the garbled circuits, as well as a single wire
key for each input wire of each garbled circuit, to perform the computation.

Note that the dominant factor in both of the equations is ∑︀𝑛𝑟𝑜𝑢𝑛𝑑𝑠
𝑖=2

∑︀𝑛
𝑗=1 𝑛

𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗. This

term is precisely the combined communication and (encrypted) state complexity of the
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original MPC protocol 𝜋, minus the messages of the first round and plus the signatures
on the public messages and the state. Thus, in order to minimize the number of CSaR
invocations, we must first and foremost optimize the combined communication and state
complexity of the original MPC scheme. We discuss a possible way to do this in the next
section.

2.9 Optimizing Communication and State Complexity
in MPC

Our goal in this section is to design an MPC protocol in the plain model such that
its combined communication and state complexity is independent of the function that
it is computing. While a number of works have focused on optimizing communication
complexity, we are not aware of any construction optimizing both the communication and
state complexity.

We achieve it in two steps, starting with a protocol secure against semi-malicious
adversaries. Semi-malicious security, introduced by Asharov et al [9], intuitively means that
the adversary must follow the protocol, but can choose its random coins in an arbitrary
way. The adversary is assumed to have a special witness-tape and is required to write a
pair of input and randomness (𝑥, 𝑟) that explains its behavior. We specifically start with a
semi-malicious MPC protocol that has attractive communication and state complexity (i.e.,
independent of the function being computed). Then, we extend it so that the resulting
construction is secure against not only semi-malicious, but also fully malicious adversaries.

2.9.1 Step. 1: MPC with semi-malicious security

Our starting point is the solution proposed in the work of Brakerski et al. [31] based on multi-
key fully homomorphic encryption (MFHE) that achieves semi-malicious security 9. The
construction is for deterministic functionalities where all the parties receive the same output,
however it can be easily extended using standard techniques to randomized functionalities

9Their scheme is secure when exactly all but one parties are corrupted. To transform it into a scheme
that is secure against any number of corruptions, Brakerski et al. suggest to extend it by a protocol proposed
by Mukherjee and Wichs (Section 6.2 in [95]) that relies on a so-called extended function. For simplicity,
we skip this technical detail in our protocol. We note, however, that the additional communication and
state complexity incurred due to the transformation depend only on the security parameter, as well as the
parties’ input and output sizes.
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with individual outputs for different parties [9]. For technical details behind the construction
and the security proof we refer to Brakerski et al.

We note that while Brakerski et al. do not explicitly explain how to handle circuits
of arbitrary depth, the bootstrapping approach outlined by Mukherjee and Wichs [95] can
be used here. Informally, the bootstrapping is done as follows: each party encrypts their
secret key bit-by-bit using their public key and broadcasts the resulting ciphertext. These
ciphertexts are used to evaluate the decryption circuit, thus reducing the noise. To do so,
the parameters of the MFHE scheme must be set in a way that allows it to handle the
evaluation of the decryption circuit. We assume circular security that ensures that it is
secure to encrypt a secret key under its corresponding public key and refer to Mukherjee
and Wichs [95] for details.

To summarize, the construction in Protocol 12 is an MPC protocol secure against
semi-malicious adversaries and can handle functions of arbitrary depth 10.

The communication complexity in Protocol 12 depends only on the security parameters,
the number of parties, and input and output sizes [31]. Note that for a party 𝑃𝑘 the state
that is passed between the rounds in Protocol 12 consists of the following data:

• params𝑘 (passed from round one to round two and round three)
• params, (pkk, skk), {𝑐𝑘,𝑗}𝑗∈[𝑙𝑖𝑛], {𝑐𝑘,𝑗}𝑗∈[𝑙𝑘𝑒𝑦 ] (passed from round two to round three)
• {𝑒𝑣𝑘,𝑗}𝑗∈𝑙𝑜𝑢𝑡 (passed from round three to round four)

Note that this data depends only on security parameters, number of parties, and input and
output sizes. Thus, the communication and state complexity of the semi-malicious protocol
does not depend on the circuit we are computing.

2.9.2 Step. 2: MPC with fully malicious security

In order to protect from fully malicious adversaries, we extend the construction above with
the zero-knowledge protocol proposed by Kilian [86]. In the following, we first elaborate on
Kilian’s protocol and some changes we need to make to it in order to keep the combined
communication and state complexity low. Then, we elaborate on how Kilian’s protocol is
used in the overall MPC construction.

10Again, this construction is secure against exactly 𝑁 − 1 corruptions (where 𝑁 is the total number of
parties). When used with the extended function transformation by Mukherjee and Wichs (which we skip
here for readability purposes), the construction becomes secure against arbitrary many corruptions.
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Protocol 12 Optimizing MPC
1. Let 𝑃𝑘 be the party executing this protocol.
2. Run params𝑘 ← MFHE.DistSetup(1𝜅, 1𝑁 , 𝑘). Broadcast params𝑘.
3. Set params = (params1, . . . , params𝑁), and do the following:

• Generate a key-pair (𝑝𝑘𝑘, 𝑠𝑘𝑘)← MFHE.Keygen(params, 𝑘)
• Let 𝑙𝑖𝑛 denote the length of the party’s input. Let 𝑥𝑘[𝑗] denote the 𝑗-th bit of
𝑃𝑘’s input 𝑥𝑘. Let 𝑙𝑘𝑒𝑦 denote the length of the party’s secret key.

• Encrypt the input bit-by-bit:

{𝑐𝑘,𝑗 ← MFHE.Encrypt(𝑝𝑘𝑘, x𝑘[𝑗])𝑗∈[𝑙𝑖𝑛]

• Encrypt the secret key bit-by-bit:

{𝑐𝑘,𝑗 ← MFHE.Encrypt(𝑝𝑘𝑘, 𝑠𝑘𝑘[𝑗])𝑗∈[𝑙𝑘𝑒𝑦 ]

• Broadcast the public key and the ciphertexts (𝑝𝑘𝑘, {𝑐𝑘,𝑗}𝑗∈[𝑙𝑖𝑛], {𝑐𝑘,𝑗}𝑗∈[𝑙𝑘𝑒𝑦 ])
4. On receiving values {𝑝𝑘𝑖, 𝑐𝑖,𝑗}𝑖∈[𝑁 ]∖{𝑘},𝑗∈[𝑙𝑖𝑛] execute the following steps:

• Let 𝑓𝑗 be the boolean function for 𝑗-th bit of the output of 𝑓 . Let 𝑙𝑜𝑢𝑡 denote
the length of the output of 𝑓 .

• Run the evaluation algorithm to generate the evaluated ciphertext bit-by-bit:

{𝑐𝑗 ← MFHE.Eval(params, 𝑓𝑗, (𝑐1,1, . . . , 𝑐𝑁,𝑙𝑖𝑛
))}𝑗∈[𝑙𝑜𝑢𝑡],

while performing a bootstrapping (using the previously broadcasted encryptions
of the secret keys) whenever needed.

• Compute the partial decryption for all 𝑗 ∈ [𝑙𝑜𝑢𝑡] :

𝑒𝑣𝑘,𝑗 ← MFHE.PartDec(𝑠𝑘𝑘, 𝑐𝑗)

• Broadcasts the values {𝑒𝑣𝑘,𝑗}𝑗∈𝑙𝑜𝑢𝑡

5. On receiving all the values {𝑒𝑣𝑖,𝑗}𝑖∈[𝑁 ],𝑗∈[𝑙𝑜𝑢𝑡] run the final decryption to obtain the 𝑗-th
output bit: {𝑦𝑗 ← MFHE.FinDec(𝑒𝑣1,𝑗, . . . , 𝑒𝑣𝑁,𝑗, 𝑐𝑗)}𝑗∈[𝑙𝑜𝑢𝑡]. Output 𝑦 = 𝑦1 . . . 𝑦𝑙𝑜𝑢𝑡 .

2.9.2.1 Kilian’s zero-knowledge protocol

Kilian’s construction [86] relies on probabilistically checkable proofs (PCPs) and allows a
party 𝑃 to prove the correctness of some statement 𝑥 using a witness 𝑤 to the prover 𝑉 . We
specifically chose Kilian’s construction because of its attractive communication and state
complexities. Note that we make a minor change to Kilian’s construction (Protocol 13)
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– instead of storing the PCP string that was computed in round two to use it in round
four (as is done in the Kilian’s original scheme), 𝑃 recomputes the string (using the same
randomness) in round four. Clearly, this changes nothing in terms of correctness and
security. However, it allows us to drastically cut the state complexity of Kilian’s original
construction since the storage of the PCP becomes unnecessary.

Protocol 13 Optimizing MPC - Kilian’s construction
1. Verifier 𝑉 chooses a collision-resistant hash function ℎ and sends its description to

the prover 𝑃 .
2. Prover 𝑃 uses the PCP prover 𝑃 ′ to construct a PCP string 𝜓 ← 𝑃 (𝑥,𝑤). Denote by
𝑟𝑝 the randomness used by the prover in the generation of 𝜓. 𝑃 computes the root of
the Merkle tree (using the hash function ℎ) on 𝜓, and sends the commitment to the
Merkle tree root to the verifier 𝑉 .

3. 𝑉 chooses a randomness 𝑟𝑣 and sends it to 𝑃 .
4. 𝑃 recomputes the PCP string 𝜓 ← 𝑃 (𝑥,𝑤) using the randomness 𝑟𝑝 and sends PCP

answers to the set of queries generated according to the PCP verifier 𝑉 ′ (executed on
randomness 𝑟𝑣) to 𝑉 .

5. 𝑉 checks the validity of the answers, and accepts if all answers are valid and consistent
with the previously received Merkle tree root. Otherwise, 𝑉 outputs ⊥.

2.9.2.2 Full construction

The MPC construction secure against fully malicious adversaries is effectively the same
as the semi-malicious one, except that additionally the parties commit to their input and
randomness in the semi-malicious protocol and prove (using any zero-knowledge argument
of knowledge, denoted by ZKAoK in the following) that they know the opening to the
commitment. Kilian’s construction is executed by each party 𝑃𝑘 after each of the first three
rounds of Protocol 12. In more detail:

We assume that there exists some ordering of parties participating in Protocol 12.
Following the approach outlined by Asharov et al. [9], in each round 𝑑 of Protocol 12 we
use Kilian’s construction as follows:

For each pair of parties (𝑃𝑖, 𝑃𝑗), 𝑃𝑖 acts as a prover to the verifier 𝑃𝑗 in order to prove
the statement

NextMessage𝑑(𝑥𝑖, 𝑟𝑖, {𝑚𝑘}𝑑
𝑘=1) = 𝑚𝑑

𝑖 , 𝑐𝑜𝑚(𝑥𝑖||𝑟𝑖, 𝑟
′
𝑖) = 𝑐𝑖
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Here, NextMessage is the function executed by 𝑃𝑖 in this round according to Protocol 12, 𝑥𝑖

is the secret input of 𝑃𝑖, 𝑟𝑖 is the randomness used by 𝑃𝑖 in the semi-malicious construction,
{𝑚𝑘}𝑑

𝑘=1 are (concatenations of) the messages broadcast by all parties participating in
Protocol 12 in rounds 1 to 𝑑, 𝑚𝑑

𝑖 is the message broadcast by 𝑃𝑖 in round 𝑑, and 𝑐𝑖 is
the commitment broadcast by 𝑃𝑖 in the first round (𝑐𝑜𝑚(𝑥, 𝑟) denotes a perfectly binding,
computationally hiding commitment to value 𝑥 using randomness 𝑟). If a check fails, 𝑃𝑗

broadcasts ⊥ and aborts. These proofs are done sequentially (starting a new one only after
the previous is fully finished), following the ordering of the (pairs of) parties. If at least
one party has broadcasted ⊥, all parties abort.

Protocol 14 Optimizing MPC - handling fully malicious adversaries
1. Let 𝑃𝑧 denote the party executing this protocol.
2. Let NextMessage𝑑(·) denote the next message function of Protocol 12.
3. Compute and broadcast 𝑐𝑧 = 𝑐𝑜𝑚(𝑥𝑧||𝑟𝑧, 𝑟

′
𝑧).

4. Sequentially, for each ordered pair of parties (𝑃𝑖, 𝑃𝑗):
(a) If 𝑃𝑖 = 𝑃𝑧: Act as a prover in a ZKAoK to prove knowledge of 𝑥𝑧||𝑟𝑧, 𝑟′

𝑧 such
that 𝑐𝑧 = 𝑐𝑜𝑚(𝑥𝑧||𝑟𝑧, 𝑟

′
𝑧).

(b) If 𝑃𝑗 = 𝑃𝑧: act as verifier in a ZKAoK to check knowledge of 𝑥𝑖||𝑟𝑖, 𝑟′
𝑖 such that

𝑐𝑖 = 𝑐𝑜𝑚(𝑥𝑖||𝑟𝑖, 𝑟
′
𝑖). If this check fails, broadcast ⊥.

5. If any party party broadcast ⊥, abort.
6. For each round 𝑑 = 1, . . . , 3

(a) Let 𝑚𝑑 = 𝑚𝑑−1
1 , . . . ,𝑚𝑑−1

𝑛 .
(b) Compute NextMessage𝑑(𝑥𝑧, 𝑟𝑧, {𝑚𝑘}𝑑

𝑘=1) = 𝑚𝑑
𝑧.

(c) Broadcast 𝑚𝑑
𝑧.

(d) Sequentially, for each ordered pair of parties (𝑃𝑖, 𝑃𝑗):
i. If 𝑃𝑖 = 𝑃𝑧, 𝑃𝑧 acts as a Prover in Protocol 13 and uses the witness

(𝑥𝑧, 𝑟𝑧, 𝑐
𝑑−1
𝑧 , 𝑟′

𝑧) to prove that the following holds:

NextMessage𝑑(𝑥𝑧, 𝑟𝑧, {𝑚𝑘}𝑑
𝑘=1) = 𝑚𝑑

𝑧, 𝑐𝑜𝑚(𝑥𝑧||𝑟𝑧, 𝑟
′
𝑧) = 𝑐𝑧

ii. If 𝑃𝑗 = 𝑃𝑧, 𝑃𝑧 acts as a Verifier in Protocol 13 to verify that there exist
(𝑥𝑖, 𝑟𝑖, 𝑐

𝑑−1
𝑖 , 𝑟′

𝑖) such that the following holds:

NextMessage𝑑(𝑥𝑖, 𝑟𝑖, {𝑚𝑘}𝑑
𝑘=1) = 𝑚𝑑

𝑖 , 𝑐𝑜𝑚(𝑥𝑖||𝑟𝑖, 𝑟
′
𝑖) = 𝑐𝑖

If this verification check fails, broadcast ⊥ and abort.
(e) If any party party broadcast ⊥, abort.

7. Output NextMessage4(𝑥𝑧, 𝑟𝑧, {𝑚𝑘}4
𝑘=1, 𝑐

3
𝑧) = 𝑚𝑑

𝑧.
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2.9.3 Properties of the resulting MPC construction

We now discuss the properties of the scheme constructed above. Specifically, we show the
following:
Theorem 5. Let 𝑓 be an 𝑁 -party function. Protocol 14 is an MPC protocol computing 𝑓 in
the plain (authenticated broadcast) model which is secure against fully malicious adversaries
corrupting up to 𝑡 < 𝑁 parties. Its communication and state complexity depend only on
security parameters, number of parties, and input and output sizes. In particular, the
complexity is independent of the function 𝑓 .

Security. We outline why this construction is secure. Intuitively, in order to prove
security we construct the simulator 𝑆 as follows: 𝑆 commits to 0 for each honest party,
and uses a zero-knowledge argument of knowledge simulator to prove that it knows the
opening to the commitment. Then, 𝑆 uses an extractor 𝐸𝑥𝑡 of the argument of knowledge
construction to retrieve the input and randomness 𝑥𝑖, 𝑟𝑖, 𝑟′

𝑖 of each corrupted party 𝑃𝑖’s valid
proof. Then, in each round 𝑆 uses the simulator 𝑆𝑠𝑚 of the semi-malicious scheme to retrieve
the honest parties’ messages, while forwarding messages broadcasted by any adversarial
party 𝑃𝑖 to 𝑆𝑠𝑚 (aborting whenever NextMessage𝑑(𝑥𝑖, 𝑟𝑖, {𝑚𝑘}𝑑

𝑘=1, 𝑠
𝑑−1
𝑖 ) ̸= 𝑚𝑑

𝑖 but the proof
supplied by the adversary goes through, and writing witnesses (𝑥𝑖, 𝑟𝑖) extracted by 𝐸𝑥𝑡

on the witness tape of 𝑃𝑖 otherwise). 𝑆 uses the zero-knowledge simulator 𝑆𝑧𝑘 of Kilian’s
protocol to simulate proofs on behalf of the honest parties. 𝑆 honestly checks the proofs
submitted by the adversary, aborting (according to the protocol) whenever a proof is invalid.

Communication and State Complexity Analysis.

As we mentioned above, the communication complexity of Protocol 12 depends only
on security parameters, number of parties, and input and output sizes. In particular, the
communication and state complexity of the semi-malicious protocol does not depend on
the circuit we are computing.

The communication complexity of Kilian’s protocol depends on the security parameter
as well as the length of the statement. In our case, the statement consists of the messages
sent by the parties participating in the semi-malicious MPC protocol in the previous round
as well as the message output by the party in the current round. Since the communication
complexity of the semi-malicious MPC protocol is independent of the function being
computed, the communication complexity of the overall construction is also independent
of the function being computed. As for the state complexity, recall that we made a
minor change to Kilian’s original protocol – instead of storing the PCP, the prover simply
recomputes (using the same randomness) it whenever it is needed. Due to this simple
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modification the PCP string does not contribute to the state complexity. The only other
things contributing to the state complexity is the hash function ℎ and the randomness 𝑟𝑣,
both independent of the function being computed by the MPC 11.

The combined communication and state complexity added due to the broadcasted
commitments as well as ZKAoK proofs about these commitments also depends only on
security parameters, number of parties, and input and output sizes.

Thus, we have shown that the communication and state complexity of our construction
in Protocol 14 is independent of the function the MPC protocol is tasked with computing.

Integrating communication and state optimized MPC. As we showed in Sec-
tion 2.8, the number of CSaR secret store operations in our non-interactive MPC construction
(Protocols 6, 7 and 8) is upper bounded by:

𝑁𝑠𝑡𝑜𝑟𝑒 = 𝑛 * (𝑛𝑟𝑜𝑢𝑛𝑑𝑠 − 1) +
𝑛𝑟𝑜𝑢𝑛𝑑𝑠∑︁

𝑖=2

𝑛∑︁
𝑗=1

2 * 𝑛𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗

The number of CSaR secret release operations for each evaluator is upper bounded by:

𝑁𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑛 * (𝑛𝑟𝑜𝑢𝑛𝑑𝑠 − 1) +
𝑛𝑟𝑜𝑢𝑛𝑑𝑠∑︁

𝑖=2

𝑛∑︁
𝑗=1

𝑛𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗

As we pointed out in Section 2.8, the term ∑︀𝑛𝑟𝑜𝑢𝑛𝑑𝑠
𝑖=2

∑︀𝑛
𝑗=1 𝑛

𝑖
𝑤𝑖𝑟𝑒𝑠,𝑗 is precisely the combined

communication and (encrypted) state complexity of the underlying MPC protocol 𝜋, minus
the messages of the first round and plus signatures on the public messages and the state.
Thus, when using Protocol 14 as the underlying protocol 𝜋 in our main non-interactive MPC
construction (Protocols 6, 7 and 8), we obtain a construction which number of CSaR store
and release operations depends only on the number of rounds in 𝜋, security parameters,
number of parties, and input and output sizes. All of these parameters are independent of
the function that 𝜋 is tasked with computing.

Thus, we get the following result:
Corollary 3. There exists an MPC protocol 𝜋′ in the blockchain model that has adversarial
threshold 𝑡 < 𝑁 , provides security with abort against fully-malicious adversaries and does
not require participants to be online at the same time. Only a single message is required
from the MPC contributors (the evaluators might be required to produce multiple messages).
Furthermore, the number of calls to CSaR of this protocol is independent of the function
that is being computed using this MPC protocol.

11Additionally, they can be chosen by 𝑉 independently of any messages from 𝑃 , and thus they can be
hardcoded in the garbled circuits and do not add to the state complexity of the non-interactive construction.
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2.10 A Note on Statelessness

In prior sections, for simplicity we described our protocols as having a single evaluator 𝐸.
However, we note that in our constructions the evaluators possess no secret information,
and in fact, as we explain below, it is sufficient for each evaluator who wishes to contribute
to participate only for a single round.

For simplicity, in the following we assume that CSaR-PR is used as an ideal functional-
ity 12. Consider one round of the underlying MPC protocol in our GoD construction. To
execute it, in one round an evaluator (let us denote it by 𝐸1), needs to read the bulletin
board and send a CSaR request for the garbled keys and circuits for the next round of
MPC. Then, the evaluator (denoted by 𝐸2), obtains the garbled circuits (along with the
corresponding keys) that were published by CSaR-PR in response to 𝐸1’s request, executes
the circuits and publishes the output on the bulletin board. Note that no state is passed
from 𝐸1 by 𝐸2. In fact, 𝐸1 and 𝐸2 can be different parties, and it is sufficient that each
evaluator sends only a single message.

Similar reasoning applies to our construction with abort, except that because it uses
the CSaR system with private release, CSaR returns the requested data to the client 𝐸1.
Thus, technically, in our construction with abort, each evaluator must participate for two
rounds (even though no state needs to be saved between the first and the second round).
However, by using CSaR-PR instead of CSaR, just as in our GoD construction, we can
reduce the number of participation rounds to a single one.

12The statelessness of eWEB, which we use to instantiate the CSaR in this work, depends on the particular
DPSS instantiation.
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Chapter 3

Towards Scalable YOSO MPC via
Packed Secret-Sharing

It’s no use going back to yesterday, because I was
a different person then.

Lewis Carroll, Alice in Wonderland

In the previous chapter we moved one step closer towards obtaining distributed cryp-
tographic protocols as a service by designing a stateless MPC protocol under the CSaR
assumption. In the next part of our thesis we continue exploring stateless MPC and remove
the assumption of CSaRs. Towards this, we focus on YOSO, short for You Only Speak Once,
which is a paradigm that is tailored to stateless large-scale environments such as blockchains.
While this paradigm has been gaining a lot of traction in the cryptographic community,
it is still fairly new, and prior to our work the most asymptotically efficient YOSO MPC
protocol had communication complexity per gate that was linear in the size of the MPC
committee. By using preprocessing, we can improve the online communication complexity
to 𝑂(1) broadcast bits per gate under the assumption that the circuit’s width is 𝑂(𝑛). The
total offline communication is 𝑂(𝑛|𝐶|) + 𝑂(𝑛2), and the total online communication is
𝑂(|𝐶|) +𝑂(𝑛), where |𝐶| denotes the number of multiplication gates in the circuit 𝐶 that
we aim to compute.

The work presented in this chapter is a joint work with Daniel Escudero and Antigoni
Polychroniadou. As the main author, I designed our MPC protocol and proved it secure.

79



3.1 Introduction

In secure multiparty computation security holds even if 𝑡 out of the 𝑛 parties are corrupted
and collude, and typically, the smaller 𝑡 is with respect to 𝑛, the more efficiency and other
benefits are gained. However, the smaller 𝑛 is, the more reasonable it is for an adversary to
corrupt a large fraction of the parties. Hence, low ratios such as 𝑡/𝑛 < 1/2, also known as
the honest majority setting, are a more reasonable assumption when 𝑛 is somewhat large.
Unfortunately, MPC is made of very communication-intensive interactive protocols, and
this is particularly critical in a context where a large number of parties are involved. This
situation quickly led to adopting the notion of committees, already common in distributed
computing. Instead of a large pool of parties performing an MPC protocol among each
other, a subset of the parties—a committee—is sampled at random, and this smaller set is
the one in charge of executing the MPC protocol on behalf of the larger set. The intuition
is that, by setting parameters properly, if the large set of 𝑁 parties has 𝑇 corruptions, then
with high probability the smaller set of 𝑛 parties will have 𝑡 corruptions, where the ratio
𝑡/𝑛 is only slightly larger than the original 𝑇/𝑁 .

Committee-based MPC is a common approach for handling cases with a large number
of parties (see e.g. [8]). However, it suffers from an inherent drawback: it is insecure when
considering an adversary who can corrupt parties after the committee has been sampled,
which is a property known as adaptive security. For example, if 𝑁 = 1000, we assume the
adversary can corrupt 𝑇 = 400 parties, and we sample committees of size 𝑛 = 400, an
adaptive adversary can choose to corrupt all of the parties of a selected committee once
it learns their identities. As a potential solution to this problem, Gentry et al. proposed
the YOSO model [59]. It assumes a large pool of parties, who can be used to handle
computation tasks. Just as in the traditional committee-based MPC, instead of performing
computations using the whole available pool, the computation is done by a number of
committees, with the sizes of the committees being significantly smaller than the total
number of parties. However, recall that in YOSO, the computation is done via committees
of stateless roles, which change from one round to the next, keeping the communication
pattern dynamic. If the YOSO role-assignment mechanism is secure, the information on
who is selected to execute the roles of the next committee is only known to the parties who
have been sampled for that committee. As further every party in every committee only
communicates once, assuming they erase state after the execution, corrupting them after
they sent the one message is of no use to the adversary, since they don’t hold any secrets
and are as likely to be chosen to participate in a future committee as any other party. Thus,
YOSO MPC protocols can withstand even highly powerful adversaries, for example an
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adversary which is performing an adaptive Denial of Service attack. Simultaneously, the
committees which are performing the computation are much smaller than the overall pool
of physical machines. Hence, this enables MPC protocols with communication complexity
that scales sublinearly with the total number of parties.

3.1.1 The Efficiency of YOSO MPC.

Since its inception, many works have expanded the limits of the YOSO model, cf. [23, 39,
87, 101]. Very interesting results exist, and we survey some of them in detail in Section 3.1.3.
However, we note a common trend shared by all YOSO MPC protocols to date: their
total communication complexity grows as the size of the committees increases. This is
particularly harmful for YOSO, where the committee sizes are considered very large. To
illustrate this, consider the work of Gentry et al. [59], which makes use of the role assignment
from Benhamouda et al. [22] to sample committees. Benhamouda et al. show that if the
global corruption ratio is 𝑓 = 0.25, then committees of size roughly 40k are needed to get
honest majority! The associated YOSO MPC protocol given by Gentry et al. [59] has a
communication complexity that scales linearly with the size of the committee, leading to
extremely poor performance for committees as large as 40K.

3.1.2 Our Contributions

In this work we explore YOSO MPC in a context where the committees not only have an
honest majority, but there is a gap proportional to the committee size between the number
of honest parties and the number of corrupt parties. In more detail, let 𝑛 be the committee
size, and let 𝑡 be the amount of corruptions in the committee. Instead of studying the case
𝑛 = 2𝑡+ 1, which is the setting shared by all prior works in YOSO MPC, we initiate the
study of YOSO MPC for the setting in which the committee satisfies 𝑡 < 𝑛(1

2 − 𝜖), for some
constant 𝜖 > 0. Our motivation to do so is two-fold:

1. As we show in our work, when 𝑡 < 𝑛(1
2 − 𝜖) it is possible to design YOSO MPC

protocols that scale much better as 𝑛 grows, in contrast to the case when 𝜖 = 0.
In particular, it is possible to obtain an online phase whose total communication is
independent of the committee size 𝑛, allowing for better scalability.

2. For large number of parties—which is the context that YOSO protocols are aimed
at—it is not unreasonable to assume that the adversary cannot corrupt not only
49.99% (1/2) of the parties, but a smaller percentage such as, say 45% or 40% (1/2−𝜖).
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In fact, for committee-based protocols such as YOSO, we show that requiring the
committees to have a gap 𝜖 > 0 only increases committee sizes by a marginal amount,
while reducing online communication drastically.

We elaborate on these points below.

3.1.2.1 Improved communication of YOSO MPC.

We present a YOSO MPC protocol that is divided in two phases. In an offline phase, a
series of preprocessing committees are in charge of generating certain correlations that can
be consumed by subsequent committees. In this phase, our communication is asymptotically
the same as prior works: 𝑂(𝑛|𝐶|). Our main benefits appear in the online phase, which is
set in motion once the inputs to the computation are known. Here, our total communication
is 𝑂(|𝐶|), independently of the committee size 𝑛. For instance, this allows deploying YOSO
in large scale scenarios, such as the blockchain settings initially devised in the YOSO
literature. In more detail, we make use of packed secret-sharing in order to improve prior
protocols by a factor of 𝑘 ≈ 𝑛 · 𝜖, at the expense of a slightly larger committee size. Note
that the bigger the 𝜖, which corresponds to less corruption tolerance, the more the efficiency
gains.

3.1.2.2 Role assignment for committees with “gap”.

We observe that prior role-assignment works such as the one in the work of Benhamouda
et al. [22] focus on choosing the committee size 𝑛 so that the new corruption threshold
𝑡 satisfies 𝑡 < 𝑛/2, and YOSO MPC protocols such as given by Gentry et al. [59] are
designed assuming committees of this size, with 1/2 as the corruption ratio. In order to
obtain committees whose corruption ratio is 1/2− 𝜖, we generalize the probability analysis
from [22] and show that, by choosing committees of slightly larger size, we can achieve a
smaller corruption ratios of 1/2− 𝜖, for some 𝜖 > 0. Our results are discussed in Section 3.5.
Crucially, we show that the cost of enabling the gap 𝜖 > 0 is really minimal, and its
benefits are substantial. For example, for 5% global corruptions we can already get 28×
improvement by moving from committees of size 900 to 1000. For larger corruption ratios
such as 20%, we can get 1000× online improvement with respect to the approach from
Benhamouda et al. and Gentry et al. by moving from committees of size ≈ 18k to ≈ 20k.
Remark 1 (Fail-stop tolerance.). We also highlight an important benefit of considering the
ratio 1/2− 𝜖 instead of 1/2. All current YOSO solutions are designed to tolerate certain
amount of active corruptions. However, in large-scale settings, it’s essential to safeguard

82



against not only active attacks but also fail-stop parties—honest participants who may
inadvertently fail due to various reasons, including external attacks like denial of service,
software/hardware errors, or natural events. In current YOSO MPC protocols fail-stop
parties are treated the same as active corruptions, which has been shown to be an overkill in
the non-YOSO literature [12, 50, 56, 75]. Considering a ratio of 1/2− 𝜖 not only allows us
to gain efficiency, but it also allows us to tolerate unresponsive honest parties. We show in
Section 3.4.5 that, if we cut by a factor of two the gains in communication, we can tolerate
𝑛𝜖 honest parties who may become unresponsive during the protocol execution. This can
happen perhaps due to crashes or other issues, which is essential for large scale settings
such as YOSO MPC.

3.1.3 Related work

Since the introduction of the YOSO model by Gentry et al. [59], numerous works focused
on improving various aspects of YOSO constructions. Most related to our work are those,
which study either (1) role-assignment protocols, or (2) YOSO MPC constructions.

YOSO Role-Assignment. The task of assigning physical machines to roles, along
with a mechanism of sending private messages to these roles is a core building block in
YOSO constructions. The seminal work of Benhamouda et al. [22] introduced the first such
mechanism – receiver-anonymous communication channels (RACCs). Benhamouda et al.’s
solution allows protocol participants to generate short-term keys for the next committee
members, with the public portion of the key known to everyone, and the secret portion
known only to the corresponding machine. This is done without revealing which machines
are selected to participate in the next committee. Later, Gentry et al.[60] introduced
another RACCs solution. Their protocol supported higher adversarial thresholds, but at
the cost of being much more computationally expensive than the solution of Benhamouda et
al. More recently, Campanelli et al. [33] proposed an Encryption to the Future primitive, a
paradigm of sending messages to the anonymous committees in the future. Their solution is
based on a special kind of witness encryption. Finally, Cascudo et al. [39] recently proposed
another solution, based on publicly verifiable secret sharing (PVSS) towards anonymous
committees.

YOSO MPC. The first MPC constructions both in the information-theoretic and the
computational settings have been proposed by Gentry et al. [59]. The information-theoretic
construction of Gentry et al. [59] is based on the famous BGW protocol [21], which, as the
authors note, is essentially already a YOSO protocol in the semi-honest setting. To extend
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it to the malicious setting, Gentry et al. provide YOSO-style equivalents for IT MACs, IT
signatures etc. Unfortunately, the communication complexity of the resulting protocol is
prohibitively high. The computationally secure solution is based on the CDN protocol [47].
Intuitively, CDN uses a a linearly homomorphic threshold encryption scheme, where the
public key is known to everyone, and the secret key is shared among the committee members.
The circuit is then evaluated gate-by-gate, with the addition gates being computed locally.
To perform multiplications, parties can decrypt partial results using their shares of the
global threshold key. One remaining open problem was the generation of the setup, i.e.,
the generation of the threshold public key and sharing of the secret key shares to the first
committee. This was addressed by Braun et al. [32], who showed how to obtain distributed
key generation for a linearly homomorphic threshold encryption scheme in the YOSO
setting. Using this primitive allows to easily obtain a CDN-style solution for YOSO MPC.
Concurrently to the work of Braun et al., Kolby et al. [87] introduced constant-round YOSO
MPC protocols without setup based on garbled circuits and threshold fully homomorphic
encryption. Kolby et al. further proposed (a non-constant) CDN-based protocol, which
they use to obtain the (constant-round) setup of one of their other constructions.

3.2 Technical Overview – Improving Computational
YOSO MPC

We now outline our YOSO MPC protocol in the computational setting. While the state-of-
the-art protocol boasts an amortized communication complexity of 𝑂(𝑛) per circuit gate [59],
assuming the circuit’s width is 𝑂(𝑛), our protocol leverages the widely used offline/online
paradigm. In particular, we achieve 𝑂(1) online and 𝑂(𝑛) total communication complexity
per gate, under the assumption that the circuit’s width is 𝑂(𝑛). In the following, we will
use bold font to represent a vector.

3.2.1 Starting idea: Building upon an Efficient Non-YOSO Pro-
tocol in the Offline/Online Paradigm

In our scheme, we follow the approach of Turbopack [54], which achieves MPC with abort
with constant online communication complexity in the traditional (non-YOSO) setting. We
now review the main techniques used in this work. At a high level, Turbopack follows the
common MPC approach of secret-sharing the clients’ secrets, and then evaluating the circuit
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gate-by-gate. To achieve its constant amortized communication, Turbopack utilizes packed
secret sharing, where 𝑘 ∈ 𝑂(𝑛) secrets are stored using the same sharing. Intuitively, this
ensures that the cost of evaluating a set of 𝑘 multiplication gates is the same as evaluating
only a single multiplication gate.

As in the other works which utilize packing, the main challenge in Turbopack is to
solve what is known as the network routing issue. Specifically, at each circuit layer, the
secrets within a packed secret sharing may not be in correct order. For instance, the packed
vectors may not be correctly aligned, or sharings intended for a set of multiplication gates
are scattered among many different packed output sharings of the previous layer. Naively,
re-organizing the secrets at each level by first reconstructing, and then placing them in
correct positions of the packed vectors would result in communication complexity of 𝑂(𝑛),
thus defying the purpose of using packing.

Instead, Turbopack relies on a circuit-dependent preprocessing phase to prepare cor-
related randomness, which later helps with solving the routing issue in an efficient way.
During this phase, the circuit is known, but the parties’ inputs are not. Turbopack assigns
a value 𝜆𝛼 to each wire 𝛼 of the circuit, such that:

• For any output wire of an input gate and any output wire of a multiplication gate,
𝜆𝛼 is uniformly random.

• For any addition gate 𝛾 with input wires 𝛼 and 𝛽, 𝜆𝛾 = 𝜆𝛼 + 𝜆𝛽.

After the preprocessing, for each batch 𝛼 = (𝛼1, . . . , 𝛼𝑘) of 𝑘 input and multiplication
gates, each party has a packed share of 𝜆𝛼 = (𝜆𝛼1 , . . . , 𝜆𝛼𝑘).

In the online phase, Turbopack uses these sharings to step-by-step compute 𝜇𝛼 = 𝑣𝛼−𝜆𝛼

in clear for each gate 𝛼, where 𝑣𝛼 is the actual value on this wire. The addition gates can
be computed locally, as 𝜇𝛾 = 𝜇𝛼 + 𝜇𝛽 = 𝑣𝛼 + 𝑣𝛽 − 𝜆𝛼 − 𝜆𝛽, where 𝜇𝛼 and 𝜇𝛽 are known,
and each party has a share of 𝜆𝛼 and 𝜆𝛽 from the preprocessing. For the multiplication
gates, Turbopack adapts the technique of packed Beaver triples [70], a generalization of
the famous Beaver triple technique [15], to their solution. Here, the computation again
crucially relies on the parties knowing the preprocessed shares of 𝜆𝛼.

To obtain a solution which is compatible with the YOSO model, we need to solve the
following issues:

• In YOSO, the parties who are participating in the online phase of the protocol are
not the same as the ones preparing the preprocessed values. We must ensure that the
parties of the online committee obtain the preprocessed values, e.g., shares of 𝜆𝛼, in
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a way that does not break security, as the adversary can corrupt parties both in the
online phase and during the preprocessing. More crucially, in the YOSO setting, the
roles of the online committee that are supposed to obtain the preprocessed values can
not be assumed to be known during the preprocessing phase. Thus, we must find a way
to pass the secret values to these roles into the future without assuming knowledge of
their YOSO role keys, all while ensuring that the communication complexity remains
efficient.

• Finally, note that Turbopack achieves security with abort, while our goal is to obtain
a solution which achieves guaranteed output delivery. One might think that moving
to a computational setting and utilizing non-interactive zero-knowledge proofs ought
to be sufficient to obtain GOD. However, in oder to obtain its low communication
complexity, Turbopack uses a trick which seems inherently incompatible with GOD.
Intuitively, shares of 𝜇 are revealed only to a single party. Thus, a single corruption
might prevent the protocol from finishing. To ensure that our solution achieves GOD,
we must find another way to compute 𝜇𝛾, while retaining efficient communication
complexity.

3.2.2 YOSO-ifying Turbopack via CDN

To solve these issues, we carefully combine the techniques from Turbopack with the ideas
of the famous CDN protocol [47], and utilize a few additional tricks to ensure that the
amortized online communication complexity remains constant per gate.

Recall that CDN relies on a system-wide public key 𝑡𝑝𝑘 of a linearly homomorphic
threshold encryption scheme, where the corresponding secret key 𝑡𝑠𝑘 is shared among the
committee members. In our case, the committees will be changing, hence we will refresh
the shares of the 𝑡𝑠𝑘 after each usage.

Note that ours is not the first work to propose using CDN in the YOSO setting –
both the original YOSO work [59], as well as the work by Braun et al. [32] suggest a
CDN-based approach. Indeed, CDN is very appealing in the YOSO setting: with private
communication between the committees being one of the bottlenecks in YOSO MPC,
CDN-based approaches require only a small secret state to be maintained, i.e., the parties’
shares of the secret key 𝑡𝑠𝑘. However, the communication complexity in both works remains
high due to the following. To compute a multiplication gate with encrypted inputs 𝑥 and
𝑦, both works simply generate Beaver triples (𝑎, 𝑏, 𝑐) encrypted under the 𝑡𝑝𝑘 on the fly,
and let committee members use their shares of 𝑡𝑠𝑘 to decrypt the ciphertexts 𝑥+ 𝑎 and
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𝑦 + 𝑏. Note that during the decryption, committee members must not only compute and
publish their share of the decrypted value, but also pass the (refreshed) shares of 𝑡𝑠𝑘 to
the next committee. Naively, this results in communication complexity 𝑂(𝑛2) per gate. If
committees are responsible for 𝑂(𝑛) gates, the communication complexity can be brought
down to amortized 𝑂(𝑛) by letting committees process 𝑂(𝑛) gates in parallel. However,
further amortization is not possible, as to decrypt each ciphertext that is encrypted under
𝑡𝑝𝑘, we ultimately need 𝑂(𝑛) committee members to supply their shares.

As we will see, in our protocol, by building upon Turbopack, during the online phase
(1) we will not have to compute Beaver triples, and, more importantly, (2) we will
perform the expensive threshold decryption procedure only once, instead of for each
(batch) of multiplication gates. Instead, we will use the threshold encryption primarily for
computations during the offline phase, as well as for passing preprocessed secret values, e.g.,
shares of 𝜆𝛼, to online parties in an efficient way.

Keys For Future: YOSO-compatible Preprocessing Usage. In more detail, in
order to pass preprocessed secret values to the members of the online committees (without
knowing their YOSO role keys), we propose the following approach of making traditional
preprocessing YOSO-friendly. First, during the setup we generate keys for future (KFF) –
these are the keys that act as substitutes for the YOSO role keys of the future roles. We
generate a KFF public and secret key pair for each member of the later committee. We
publish the public keys, and encrypt secret keys under the threshold public key 𝑡𝑝𝑘 of
the linearly homomorphic threshold encryption scheme. Then, whenever a party needs to
encrypt certain information to a future committee role whose role key is not known yet, the
party encrypts it under the KFF public key of that specific role. Later, once the protocol
reaches the phase where the role keys of the corresponding committees are known, one
committee can use their shares of 𝑡𝑠𝑘 to decrypt the ciphertexts which contain the KFF
secret keys, and re-encrypt these secret keys under the YOSO role key of the corresponding
role. Note that using KFF, as opposed to simply encrypting every secret value that needs
to be passed to a future role under the 𝑡𝑝𝑘 is crucial – each value that is reconstructed via
the CDN’s decryption procedure requires amortized communication complexity of at least
𝑂(𝑛), as 𝑂(𝑛) committee members must publish their shares in order to reconstruct this
value. Assuming that a role processes 𝑂(𝑛) gates, using KFF results in constant online
complexity per gate, as opposed to the linear complexity of the naive approach.

We now describe the stages of our protocol – setup, offline, and online phase, in reverse
order, and give intuition for the challenges we encounter and our approaches to solving
these.

87



Notation and Packed Shamir Secret Sharing. Before diving in, we briefly specify
the notation we use in the following, as well as recall the packed Shamir secret sharing
scheme [57], which is a generalization of the standard Shamir secret sharing [103]. Intuitively,
it allows to secret-share a batch of secrets using a single Shamir sharing. For a vector
𝑥 ∈ ℱ𝑘, we use J𝑥K𝑑 to denote a degree-𝑑 packed Shamir sharing, where 𝑘 − 1 ≤ 𝑑 ≤ 𝑛− 1.
It requires 𝑑 + 1 shares to reconstruct the whole sharing, and any 𝑑 − 𝑘 + 1 shares are
independent of the secrets.

Same as the standard Shamir secret sharing, the packed version is linearly homomorphic,
i.e., for all 𝑑 ≥ 𝑘 − 1 and 𝑥,𝑦 ∈ ℱ𝑘, J𝑥+ 𝑦K𝑑 = J𝑥K𝑑 + J𝑦K𝑑. Further, we can perform
multiplication on the shares as follows: For all 𝑑1, 𝑑2 ≥ 𝑘− 1 subject to 𝑑1 + 𝑑2 < 𝑛, and for
all 𝑥, 𝑦 ∈ ℱ𝑘, J𝑥 * 𝑦K𝑑1+𝑑2

= J𝑥K𝑑1
* J𝑦K𝑑2

. Finally, we note that packed Shamir sharing
is multiplication-friendly [70], in the sense that when 𝑑 ≤ 𝑛 − 𝑘, all parties can locally
multiply a public vector 𝑐 ∈ ℱ𝑘 with a degree-𝑑 packed Shamir sharing J𝑥K𝑑 as follows:

1. All parties first locally compute a degree-(𝑘 − 1) packed Shamir sharing of 𝑐, denoted
by J𝑐K𝑘−1. Note that for a degree-(𝑘 − 1) packed Shamir sharing, all shares are
determined by the secrets.

2. All parties then locally compute J𝑐 * 𝑥K𝑛−1 = J𝑐K𝑘−1 * J𝑥K𝑛−𝑘.

In the following, we denote the above process by J𝑐 * 𝑥K𝑛−1 = 𝑐 * J𝑥K𝑛−𝑘.

3.2.3 Online Phase

During the online phase, we follow Turbopack’s approach of efficiently computing 𝜇𝛼 =
𝑣𝛼 − 𝜆𝛼 in clear for each circuit wire 𝛼. Recall that here, 𝑣𝛼 is the actual value on the wire,
and 𝜆𝛼 is the value assigned to this wire during the preprocessing. We now describe how to
obtain 𝜇𝛼 for each gate type.

In order to compute 𝜇𝛼 for the inpute wire 𝛼 of a circuit, where this input is supplied
by some client 𝐶, we let 𝐶 learn 𝜆𝛼. Then, 𝐶 can publish 𝜇𝛼 = 𝑣𝛼 − 𝜆𝛼. To compute 𝜇𝛾

for an output wire 𝛾 of an addition gate with input wires 𝛼 and 𝛽, anyone can simply add
𝜇𝛼 and 𝜇𝛽.

Computing multiplication gates is trickier. To obtain a communication-efficient so-
lution, Turbopack adapts the technique of packed Beaver triples [70], which are triples
(J𝑎K𝑑 , J𝑏K𝑑 , J𝑐K𝑑), where 𝑎 and 𝑏 are random vectors from ℱ𝑘 and 𝑐 = 𝑎 * 𝑏. Intuitively,
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for a group of multiplication gates with input wires 𝛼,𝛽 and output wires 𝛾, it holds that

𝜇𝛾 = 𝑣𝛼 * 𝑣𝛽 − 𝜆𝛾 = (𝜇𝛼 + 𝜆𝛼) * (𝜇𝛽 + 𝜆𝛽)− 𝜆𝛾

= 𝜇𝛼 * 𝜇𝛽 + 𝜇𝛼 * 𝜆𝛽 + 𝜆𝛼 * 𝜇𝛽 + 𝜆𝛼 * 𝜆𝛽 − 𝜆𝛾 (3.1)

Thus, in order to compute 𝜇𝛾 , we must let parties of the current online committee
obtain shares of 𝜆𝛼,𝜆𝛽 and shares of Γ𝛾 = 𝜆𝛼 *𝜆𝛽 −𝜆𝛾 . Looking ahead, these values will
be generated during the preprocessing. In order to efficiently pass them to the members of
the online committee without assuming that the YOSO role keys of the online committees
are known during the preprocessing phase, we rely on our keys for future (see 3.2.2 for
details). Briefly, the secret shares of 𝜆𝛼,𝜆𝛽, and Γ𝛾 are encrypted under the keys for future,
and the secret key parts of the keys for future are in turn encrypted under the 𝑡𝑝𝑘. To
give parties their secret shares, during the online phase we let the first committee use their
shares of 𝑡𝑠𝑘 to re-encrypt the secret shares of 𝜆𝛼,𝜆𝛼, and Γ𝛾 under the (now known)
YOSO role keys of the online committee members. Note that after this point we will not
require access to 𝑡𝑠𝑘 anymore. Hence, there is no need to re-share shares of 𝑡𝑠𝑘, which
allows us to save communication.

Efficiently Computing 𝜇𝛾 with GOD. One issue remains. Note that in Turbopack
𝜇𝛾 is computed by having each party compute its share of the equation above locally, and
send the result to a single party 𝑃1. This ensures that the communication complexity
remains low – each out of 𝑛 parties only sends one message to 𝑃1, and since 𝜇𝛾 covers to
𝑂(𝑛) gates, this ensures that amortized communication complexity per gate is still constant.
This unfortunately does not work for us, as our goal is to obtain a solution which has
the guaranteed output delivery property. To alleviate this, we first observe that, in all
currently known YOSO protocols, P2P messages are sent by posting encryptions to future
committees in, for example, a bulletin board. However, what is more interesting is that
broadcast messages are also disseminated in the same way, which means that, in YOSO
MPC, broadcast has the same cost as P2P communication! We are able to leverage
this observation to improve the communication of YOSO MPC by using less reserved use of
the broadcast channel. Additionally, in order to ensure that 𝜇𝛾 is reconstructed correctly,
roles who are contributing their local shares will prove that they did the computation
correctly. For this, as in previous works, we will have parties compute and publish a NIZK
proof of correctness.
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3.2.4 Offline Phase

During the offline phase, for each batch of 𝑘 multiplication gates our goal is to prepare
shares of correctly routed packed wire values 𝜆𝛼, as well as Γ𝛾 . To achieve this, for each
multiplication gate, we first prepare a Beaver triple. Then, we let the current committee
members jointly generate a random value 𝜆𝛼 for each output wire of an input/multiplication
gate 𝛼, encrypted under the global threshold public key 𝑡𝑝𝑘 (in the following, denote such
ciphertext for the wire 𝛼 by 𝑐𝛼). Note that for all values that are published during the offline
phase, we let parties attach NIZK proofs explaining that they did everything correctly. We
then use only those values for the computation, for which the corresponding proofs verify.

Given ciphertexts 𝑐𝛼, we process the circuit gate by gate (first without using packing).
For the addition gates, we simply compute the sum of two ciphertexts containing the
random wire values of the two input wires to this gate. For each multiplication gate with
encrypted inputs 𝑐𝛼 and 𝑐𝛽, and encrypted output wire value 𝑐𝛾, we need to compute the
encryption of Γ𝛾 = 𝜆𝛼 * 𝜆𝛽 − 𝜆𝛾. For this, we follow the approach of Gentry et al. [59].
Specifically, to compute a multiplication gate with encrypted inputs 𝑐𝛼 and 𝑐𝛽, we consume
one of the Beaver triples (𝑎, 𝑏, 𝑐), and let committee members use their shares of 𝑡𝑠𝑘 to
decrypt the ciphertexts 𝑐𝛼 + 𝑎 and 𝑐𝛽 + 𝑏.

Next, in order to ensure that our online phase is efficient, we pack the random wire
values (𝜆𝛼1 , . . . , 𝜆𝛼𝑘) for each group of 𝑘 circuit input wires (𝛼1, . . . , 𝛼𝑘) which are supplied
by a single client. Similarly, we pack the random vector 𝜆𝛼 = (𝜆𝛼1 , . . . , 𝜆𝛼𝑘) of the output
wires for each batch of 𝑘 multiplication gates. This is done as follows: Given ciphertexts
𝑐𝜆𝛼1 , . . . , 𝑐𝜆𝛼𝑘 , we first generate 𝑡 additional encryptions of random values 𝑐𝑟1 , . . . , 𝑐𝑟𝑡 . Then,
we use these ciphertexts to homomorphically compute encryptions of the evaluation points
of the polynomial 𝑓(𝑥) of degree 𝑡 + 𝑘 − 1, which on each 𝑥-point −(𝑖 − 1) evaluates to
𝜆𝛼

𝑖 , 𝑖 ∈ [𝑘], and on 𝑖 evaluates to 𝑟𝑖, 𝑖 ∈ [𝑡]. Then, we use all points (both the values
𝜆𝛼𝑖 , 𝑖 ∈ [𝑘] and extra random values 𝑟𝑖, 𝑖 ∈ [1, . . . , 𝑡]), to locally interpolate using the
homomorphic properties of the threshold encryption scheme, and this way obtain packed
shares 𝑓(1), . . . , 𝑓(𝑛) of 𝜆𝛼 which are encrypted under 𝑡𝑝𝑘.

Finally, note that currently the packed shares are encrypted under the 𝑡𝑝𝑘. Note that
this is problematic: If a share is encrypted under 𝑡𝑝𝑘, then during the online phase one
committee will have to spend 𝑂(𝑛) communication to decrypt a single packed share, with
each committee member publishing its CDN-style share of the packed share. This would
defy the usage of packing and result in communication cost 𝑂(𝑛2) per packed sharing, hence
linear amortized cost—no better than prior works. To solve this, we re-encrypt the packed
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shares to the KFFs of the roles in the online committee who will use these shares. Doing so
allows us to pay the linear cost during the offline phase, and keep the online phase very
efficient.

3.3 Preliminaries

We now describe our building blocks. We take large parts the following verbatim from
Gentry et al. [59].

3.3.1 Linearly Homomorphic Key Rerandomizable Threshold
Encryption

A linearly homomorphic (over ring R) key rerandomizable threshold encryption scheme TE
has the following algorithms:

• TKGen(1𝜅)→ (𝑡𝑝𝑘, 𝑡𝑠𝑘1, . . . , 𝑡𝑠𝑘𝑛): An algorithm that, given the security parameter
𝜅, sets up the public key 𝑡𝑝𝑘 and the shares 𝑡𝑠𝑘1, . . . , 𝑡𝑠𝑘𝑛 of the secret key.

• TEnc(𝑡𝑝𝑘,𝑚; 𝑟)→ 𝛽: An algorithm that, given the public key, a message 𝑚 ∈ R and
randomness 𝑟, outputs an encryption 𝛽 of 𝑚.

• TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖, 𝛽)→ 𝑑𝑖: An algorithm that, given the public key, a share 𝑡𝑠𝑘𝑖 of the
secret key and a ciphertext 𝛽, outputs a partial decryption 𝑑𝑖.

• TDec(𝑡𝑝𝑘, {𝑑𝑖}𝑖∈𝑆,|𝑆|>𝑡) → 𝑚: An algorithm that, given sufficiently many partial
decryptions, returns the decrypted message 𝑚.

• TEval(𝑡𝑝𝑘, 𝛽1, . . . , 𝛽𝑘, 𝜆1, . . . , 𝜆𝑘) → 𝛽: A deterministic algorithm that, given the
public key, ciphertexts 𝛽1, · · · , 𝛽𝑘 corresponding to messages 𝑚1, . . . ,𝑚𝑘 ∈ R𝑘 and
coefficients 𝜆1, . . . , 𝜆𝑘 ∈ R𝑘, outputs a ciphertext 𝛽 that encrypts ∑︀𝑘

𝑖=1 𝜆𝑖𝑚𝑖 ∈ R.
• TKRes(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖; 𝑟𝑖)→ (𝑚𝑖,1, . . . ,𝑚𝑖,𝑛): An algorithm that, given the public key and

a share of a secret key, produces 𝑛 messages to help with the rerandomization of the
secret key sharing.

• TKRec(𝑡𝑝𝑘, {𝑚𝑗,𝑖}𝑗∈𝑆,|𝑆|>𝑡)→ 𝑡𝑠𝑘𝑖: An algorithm that, given sufficiently many mes-
sages for the rerandomization of the secret key sharing, outputs a share of the secret
key.

• SimTPDec(𝑡𝑝𝑘, 𝛽,𝑚, {𝑡𝑠𝑘𝑖}𝑖∈[𝑛]∖𝑆, {𝑑𝑖}𝑖∈𝑆)→ {𝑑𝑖}𝑖∈[𝑛]∖𝑆: A simulation algorithm that,
given a ciphertext, a target message, and partial decryptions belonging to corrupt
parties, simulates partial decryptions belonging to honest parties that cause TDec to

91



output the desired message.

Security Properties. A linearly homomorphic key rerandomizable threshold encryp-
tion scheme must satisfy the following correctness properties:

• Decryption on honestly produced ciphertext and keys must return the appropriate
message.

• Decryption must remain correct after homomorphic evaluation.
• Decryption must remain correct after a rerandomization of the secret key sharing.

These correctness properties are intuitive, and we do not formalize them here. The
important security property of a TE scheme is partial decryption simulatability, described
below. Note that it trivially implies chosen plaintext security.
Definition 12 (Partial Decryption Simulatability). Informally, a TE scheme has partial
decryption simulatability if for any honestly produced ciphertext, desired message 𝑚 and fewer
than 𝑡 partial decryptions, the algorithm SimTPDec produces remaining partial decryptions
which cause TDec to return 𝑚. More formally, let 𝜅 ∈ 𝑁 be the security parameter, and
let TE = (TKGen,TEnc,TPDec, TDec,TEval,TKRes,TKRec, SimTPDec) be a TE scheme.
Consider the game between a probabilistic polynomial-time adversary 𝐴 and a challenger 𝐶
described in Figure 3.1.

TE has partial decryption simulatability if for any sufficiently large security parameter
𝜅, for any probabilistic polynomial-time adversary 𝐴, there exists a negligible function 𝑛𝑒𝑔𝑙

in the security parameter 𝜅 such that the probability that 𝐴 wins the game is less than
1
2 + 𝑛𝑒𝑔𝑙(𝜅).

We can instantiate such a linearly homomorphic key rerandomizable threshold encryption
scheme by Shamir sharing a Paillier decryption key [48], see Gentry et al. [59] for details.

3.3.2 Non-Interactive Zero-Knowledge Arguments of Knowledge

A non-interactive zero-knowledge argument of knowledge (NIZKAoK) scheme has the
following algorithms, as described by Groth and Maller [74].

Setup(1𝜅,ℛ)→ (𝑐𝑟𝑠, 𝑡𝑑): An algorithm that, given the security parameter, sets up the
global common reference string 𝑐𝑟𝑠 and the trapdoor 𝑡𝑑 for the NIZKAoK system.

P(𝑐𝑟𝑠, 𝜑, 𝑤)→ 𝜋: An algorithm that, given the common reference string 𝑐𝑟𝑠 for a relation
ℛ, a statement 𝜑 and a witness 𝑤, returns a proof 𝜋 that (𝜑,𝑤) ∈ ℛ. V(𝑐𝑟𝑠, 𝜑, 𝜋) →
accept/reject: An algorithm that, given the common reference string 𝑐𝑟𝑠 for a relation
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Figure 3.1: Security game for the partial decryption simulatability property of the TE
(verbatim from Gentry et al. [59])

ℛ, a statement 𝜑 and a proof 𝜋, checks whether 𝜋 proves the existence of a witness 𝑤 such
that (𝜑,𝑤) ∈ ℛ.

SimP(𝑐𝑟𝑠, 𝑡𝑑, 𝜑) → 𝜋: An algorithm that, given the common reference string crs for
a relation 𝑅, the trapdoor 𝑡𝑑 and a statement 𝜑, simulates a proof of the existence of a
witness 𝑤 such that (𝜑,𝑤) ∈ 𝑅.

Security properties. A NIZKAoK scheme must be correct (that is, verification using
an honestly produced proof must return accept). The important security properties of a
NIZKAoK scheme are zero knowledge, knowledge soundness, and simulation extractability,
described below.
Definition 13 (Zero Knowledge for NIZKAoK). Informally, a NIZKAoK scheme has zero
knowledge if a proof does not leak any more information than the truth of the statement.

More formally, let 𝜅 ∈ N be the security parameter, and let NIZKAoK = (Setup,
P,V, SimP) be a NIZKAoK scheme. Consider the game between a probabilistic polynomial-
time adversary A and a challenger C described in Figure 3.2.

NIZKAoK has zero knowledge if for any sufficiently large security parameter 𝜅, for any
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probabilistic polynomial-time adversary A, there exists a negligible function 𝑛𝑒𝑔𝑙 in the
security parameter 𝜅 such that the probability that A wins the game is less than 1

2 + 𝑛𝑒𝑔𝑙(𝜅).

Informally, knowledge soundness is the property that guarantees that it is always possible
to extract a valid witness from a proof that verifies. Simulation extractability is a stronger
version of knowledge soundness, where it is always possible to extract a valid witness from
a proof that verifies even if the adversary has access to a simulation oracle. This is a flavor
of non-malleability; an adversary should not even be able to modify a simulated proof in
order to forge a proof.

Figure 3.2: Security game for the zero knowledge property of the NIZKAoK (verbatim
from Gentry et al. [59])

Definition 14 (Simulation Extractability for NIZKAoK). Informally, a NIZKAoK scheme
has simulation extractability if it is always possible to extract a valid witness from a proof
that verifies.

More formally, let 𝜅 ∈ N be the security parameter, and let NIZKAoK = (Setup,P,V, SimP)
be a NIZKAoK scheme. Consider the game between a probabilistic polynomial-time adversary
𝒜 and a challenger 𝒞 described in Figure 3.3, where 𝜏𝒜 denotes the adversary’s inputs and
outputs, including its randomness:

NIZKAoK has simulation extractability if for any sufficiently large security parameter
𝜅, for any probabilistic polynomial-time adversary A, there exists an extraction algorithm
Extract𝒜 and a negligible function 𝑛𝑒𝑔𝑙 in the security parameter 𝜅 such that the probability
that 𝒜 wins the game is less than 𝑛𝑒𝑔𝑙(𝜅).
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Figure 3.3: Security game for the simulation extractability property of the NIZKAoK
(verbatim from Gentry et al. [59])

3.3.3 Our Model and YOSO Background

In this section we outline our model. Towards this, we first recap the background on YOSO.
At its core, it is a variation of the UC framework [34] which separates between physical
machines and roles that these machines play in the protocol. It is the job of the roles
assignment functionality to map roles to the machines. The YOSO MPC protocols are then
described entirely using roles, we refer to such protocols as “abstract YOSO” (vs. “natural
YOSO” which includes explicit role assignment) in the following. We now recap further
details of the YOSO model and its differences to the standard UC. For a detailed version,
refer to the original YOSO work [60].

• To ensure that the roles speak only once, the framework “yoso-ifies” them with a
YOSO wrapper. This wrapper ensures that roles are killed immediately after they
have spoken. This is modelled by a Spoke token which ideal functionalities send
to roles (the time at which the functionality sends the token is determined by the
functionality itself). Upon obtaining a Spoke token, the role also passes it onto its
sub-routines and its environment. Once a roles is killed, the machine executing it
also erases any associated state, which prevents the adversary from obtaining any
information from the roles that have already spoken by corrupting the corresponding
machines.

• The roles have access to idealised communication functionalities, which in particular
allows point-to-point messages between roles.

• Gentry et al. [60] note that if the adversary does not know which roles are assigned to a
machine before it is corrupted, the “best” that an adversary can do is corrupt machines
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at random. They further make the observation that for such random corruptions,
the difference between adaptive corruptions and static corruptions is minimal. This
allows to design protocols secure against a somewhat restricted adversary in the
abstract YOSO model, which nevertheless translate into adaptively secure protocols
in the natural YOSO model. To control which corruptions are allowed, the framework
introduces a “corruption controller” (CC). The CC handles the random corruptions
roughly as follows: If an adversary wishes to do a random corruption, it asks the
environment, which passes the request to the CC. The CC samples the corruption
and informs the adversary which role was chosen.

• While the roles which perform the computation are typically corrupt at random, the
input and output nodes are assumed to be known machines and are subject to chosen
corruptions.

We denote a yoso-ified role R by YoS(R), and we denote the protocol obtained by
yoso-ifying all roles in protocol 𝜋 by YoS(𝜋). We say that 𝜋 YOSO-securely implements
ℱ and write 𝜋 ≤𝑌 𝑂𝑆𝑂 ℱ , if YoS(𝜋) UC-securely implements ℱ against the given class of
controlled environments. Recall that 𝜋 UC-securely implements ℱ , if for all PPT adversaries
𝒜 there exists a PPT simulator 𝒮 such that Real𝜋,𝒜,ℰ ≈ Idealℱ ,𝒮,ℰ for all PPT environments
ℰ . Here, Real𝜋,𝒜,ℰ denotes the random variable representing ℰ ’s output in the real world,
where the adversary 𝒜 is interacting with the honest parties who execute 𝜋; and Idealℱ ,𝒮,ℰ

denotes the random variable representing ℰ ’s output in the ideal world, where the simulator
𝒜 is interacting with the ideal functionality ℱ .

In this work, we consider a synchronous model of execution, i.e., the protocol proceeds
in rounds, and parties are aware in which round they are currently in. We consider further
consider a rushing adversary, i.e., the adversary can see the messages sent by the honest
roles before producing messages of the corrupt roles.

We now recall the ideal broadcast functionality ℱ𝐵𝐶 defined by Gentry et al. [60].

Ideal Functionality ℱ𝐵𝐶 for Broadcast

The ideal functionality has the following behavior.
• Initially create a map 𝑦 : N× Role→ Msg⊥ with 𝑦(𝑟,R) = ⊥ for all 𝑟,R.

Below we use 𝑦(𝑟, ·) to denote the map 𝑦′ : Role→ Msg⊥ with 𝑦′(R) = 𝑦(𝑟,R).
• On input (Send,R, 𝑥R ∈ Msg) in round 𝑟 proceed as follows:

1. Update 𝑦(𝑟,R) = 𝑥R. Store inputs of the round.
2. Output (R, 𝑥R) to 𝒮. Leak messages to the simulator in a rushing fashion.
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3. If R is honest then give output Spoke to R.
• On input (Read,R, 𝑟′) in round 𝑟 where 𝑟′ < 𝑟 output 𝑦(𝑟, ·) to R.

Finally, we define YOSO MPC. We consider a synchronous model, and recall the ideal
functionality ℱ𝐹

MPC as defined by Gentry et al. The functionality distinguishes between two
stages that the protocol goes through, GettingInputs and Evaluated. While honest parties
give input in the first round, the protocol can be in the GettingInputs stage for a long time,
as corrupted parties might only be committed to their inputs at a later point in time.
Once the adversary 𝑆 decides that it is time to give outputs, it sets the stage to Evaluated.
We distinguish between input roles RoleIn, output roles RoleOut, and roles RoleCmp which
perform the computation.

Ideal Functionality ℱ𝐹
MPC for MPC

The functionality is wrapping a function 𝐹 (𝑥1, . . . , 𝑥𝑛)→ (𝑦1, . . . , 𝑦𝑚). Roles in
RoleIn hold inputs and roles in RoleOut receive outputs.

• Initially set the stage to be GettingInputs. We set a default input for all roles,
which they may overwrite later: for all R ∈ RoleIn let 𝑥R = 0.

• On input (Input,R ∈ RoleIn, 𝑥 ∈ Msg) proceed as follows:
1. Store 𝑥R = 𝑥.
2. If R ∈ Honest then output (Input,R, |𝑥|) to 𝒮.
3. If R ∈ Malicious output (Input,R, 𝑥) to 𝒮.

If R is honest then output Spoke to R. If R is honest then consider only the
first input, and only if it is given in round 1.

• On Evaluated from 𝒮 in a round 𝑟 > 1 and when the stage is GettingInputs, set
the stage to be Evaluated and compute {𝑦R}R∈RoleOut = 𝐹 ({𝑥R})R∈RoleIn . Store
𝑦R for all R ∈ Correct and output to 𝒮 the value {𝑦R}R∈RoleOut∩Malicious.

• On input (Read,R ∈ RoleOut), if the stage is Evaluated output 𝑦R to R.

The YOSO MPC is then defined as follows:
Definition 15 (YOSO MPC). We say that 𝜋 YOSO-securely realizes 𝐹 against 𝜏 corruption
if 𝜋 ≤𝑌 𝑂𝑆𝑂 ℱ𝐹

MPC for the set of environments allowed to corrupt any number of roles in
RoleIn ∪ RoleOut and a uniformly random fraction 𝜏 of RoleCmp.
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3.4 Improving Computational YOSO MPC

In this section we describe our YOSO MPC protocol in the computational setting. It
consists of three phases – setup, offline, and online phase. Importantly, we only assume the
knowledge of the YOSO role-assignment public keys for the committee of a given phase
starting only with the first committee of that phase. In particular, during the offline phase
we do not assume knowledge of the public keys of the roles of the future online phase.

In the following, let 𝜅 denote the security parameter. Let 𝐶𝑖 denote the 𝑖’s online
committee, 𝐶Off

𝑖 denote the 𝑖’s offline committee, and 𝐶𝑖,𝑗 denote the 𝑗’s role of the online
committee 𝐶𝑖 (similarly for 𝐶Off

𝑖,𝑗 ). Let 𝑛 denote the size of the committee. For a set 𝑆, let |𝑆|
denote the size of this set. Let TE = (TKGen,TKEnc,TPDec,TDec,TEval,TKRes,TKRec)
denote a linearly homomorphic key rerandomizable threshold encryption scheme, let
NIZKAoK = (Setup, P, V, SimP) denote a simulation extractable non-interactive zero-
knowledge argument of knowledge, and let PKE = (PKE.Gen,PKE.Enc,PKE.Dec) denote
an additively homomorphic public key encryption scheme.

For the ease of presentation, we describe each phase of the protocol separately. In the
following, we use bold font to represent a vector.

3.4.1 Setup

During the setup phase, we instantiate the components that we will need during the offline
and online phases of the protocol. In particular, we generate the keys for future (KFF),
which will allow us to efficiently pass messages to future roles whose role keys will not be
known during the earlier stages of the protocol execution. We further generate the setup for
the NIZK proof system that we will be using during the later phases to prove correctness of
the protocol execution by specific parties. Finally, we set up the linearly homomorphic key
rerandomizable threshold encryption. Note that we assume that in our encryption scheme
the public key corresponds to a single decryption key. We describe our assumed setup in
Figure 3.4.1 below.

ΠYOSO-Setup

Setup:
1. Generate keys for futurea:

• For each role 𝐶𝑙,𝑖 of each committee 𝐶𝑙 participating in the online phase:
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Generate (𝑝𝑘KFF
𝐶𝑙,𝑖

, 𝑠𝑘KFF
𝐶𝑙,𝑖

)← PKE.Gen(1𝜅).
Let 𝑐KFF

𝐶𝑙,𝑖
← TEnc(𝑡𝑝𝑘, 𝑠𝑘KFF

𝐶𝑙,𝑖
).

• For each input-contributing party 𝑃𝑖:
Generate (𝑝𝑘KFF

𝑃𝑖
, 𝑠𝑘KFF

𝑃𝑖
)← PKE.Gen(1𝜅).

Let 𝑐KFF
𝑃𝑖
← TEnc(𝑡𝑝𝑘, 𝑠𝑘KFF

𝑃𝑖
).

2. Generate the NIZK setup via 𝑐𝑟𝑠← NIZKAoK.Setup(1𝜅).
3. Generate the threshold public key and secret keys as

(𝑡𝑝𝑘, 𝑡𝑠𝑘1, . . . , 𝑡𝑠𝑘𝑛)← TKGen(1𝜅). Publish 𝑡𝑝𝑘 and give 𝑡𝑠𝑘𝑖 to 𝐶Off
1,𝑖 .

aThese are not the keys that will be later generated by the YOSO role-assignment for these
roles.

3.4.2 Offline Phase

During the offline phase, our goal is to prepare correlated randomness that will be later
consumed during the online phase. Specifically, we generate the following values:

• For each input wire 𝛼 that is supplied by client 𝑃𝑖, we generate a random value 𝜆𝛼.
• For each output wire 𝛼 of a multiplication gate, we generate a random value 𝜆𝛼. Then,

for each group of 𝑘 multiplication gates, we prepare a packed sharing of the vector
𝜆𝛼 = (𝜆𝛼1 , . . . , 𝜆𝛼𝑘).

• For each group of 𝑘 multiplication gates with input wires 𝛼 = (𝛼1, . . . , 𝛼𝑘) and
𝛽 = (𝛽1, . . . , 𝛽𝑘), and output wires 𝛾 = (𝛾1, . . . , 𝛾𝑘), we compute a packed sharing of
the vector Γ𝛾 = 𝜆𝛼 * 𝜆𝛽 − 𝜆𝛾 = (𝜆𝛼1 · 𝜆𝛽1 − 𝜆𝛾1 , . . . , 𝜆𝛼𝑘 · 𝜆𝛽𝑘 − 𝜆𝛾𝑘).

We then prepare the following data for the online phase:

• For each input wire 𝛼 that is supplied by client 𝑃𝑖, we prepare a ciphertext 𝑐𝛼, which
encrypts 𝜆𝛼 under the KFF of 𝑃𝑖.

• For each group of 𝑘 multiplication gates with output wires 𝛾 = (𝛾1, . . . , 𝛾𝑘), we
prepare an encryption of the 𝑖-th packed share of 𝜆𝛼 under the public key of the 𝑖-th
committee member of the online phase who will need this value.

• Similarly, for each group of 𝑘 multiplication gates with output wires 𝛾 = (𝛾1, . . . , 𝛾𝑘),
we prepare an encryption of the 𝑖-th packed share of Γ𝛾 under the public key of the
𝑖-th committee member of the online phase who will need this value.

At a high level, the offline phase works as follows: First, for each multiplication gate,
we prepare a Beaver triple. Then, we let each committee member generate a random value
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𝜆𝛼
𝑖 for each output wire of an input/multiplication gate, and encrypt it under the global

threshold public key 𝑡𝑝𝑘, while attaching a NIZK proof that the result is a valid ciphertext.
For each wire 𝛼, we then use the homomorphic properties of the encryption scheme TE to
add contributions of all committee members. This ensures that each wire value 𝜆𝛼 is truly
random.1 Given encryptions of these values, we then process the circuit gate by gate. In
the following, let 𝑐𝛼 denote the ciphertext containing the value 𝜆𝛼 for each wire 𝛼. Note
that for all values that are published in the following description, we ask the parties to
always attach NIZK proofs stating that they did everything correctly. The parties then use
for the computation only the values for which the corresponding proofs verify.

For the addition gates, we obtain the encryption of the output wire value by simply
adding the ciphertexts containing the encryptions of the input values. For each multiplication
gate with encrypted input wire values 𝑐𝛼, 𝑐𝛽, and encrypted output wire value 𝑐𝛾 , we need to
compute the encryption of Γ𝛾 = 𝜆𝛼 · 𝜆𝛽 − 𝜆𝛾 . To do this, we use an encrypted Beaver triple
(𝑐𝑥, 𝑐𝑦, 𝑐𝑧) to compute 𝑐𝜖 = 𝑐𝛼 + 𝑐𝑥 and 𝑐𝛿 = 𝑐𝛽 + 𝑐𝑦. Then, we let the current committee
use its shares of 𝑡𝑠𝑘 to decrypt 𝑐𝜖 and 𝑐𝛿. Denote the result by 𝜖 and 𝛿. Then, we use the
homomorphic properties of the encryption scheme to obtain 𝑐𝛽 · 𝜖− 𝑐𝑥 · 𝛿+ 𝑐𝑧 − 𝑐𝛾 , which is
precisely the encryption of 𝜆𝛽 · (𝜆𝛼 + 𝜆𝑥)− 𝜆𝑥 · (𝜆𝛽 + 𝜆𝑦) + 𝜆𝑧 − 𝜆𝛾 = 𝜆𝛼 · 𝜆𝛽 − 𝜆𝛾.

Finally, in order to ensure that our online phase remains efficient, we pack the random
wire values (𝜆𝛼1 , . . . , 𝜆𝛼𝑘) for each group of 𝑘 input wires (𝛼1, . . . , 𝛼𝑘) which belong to a
single client. Similarly, we pack the random vector 𝜆𝛼 = (𝜆𝛼1 , . . . , 𝜆𝛼𝑘) of the output wires
for each group of 𝑘 multiplication gates. For this we use the fact that we have encryptions
𝑐𝜆𝛼1 , . . . , 𝑐𝜆𝛼𝑘 : by getting 𝑡 extra encryptions of random values 𝑐𝑟1 , . . . , 𝑐𝑟𝑡 (which can be
obtained by letting each committee member prepare 𝑡 random values 𝑟𝑖,𝑗 , and encrypt each
of these values under the global threshold key 𝑡𝑝𝑘, and then adding up the contributions),
we can use these ciphertexts to homomorphically compute encryptions of the evaluation
points of the polynomial 𝑓(𝑥) of degree 𝑡+ 𝑘 − 1, which on each 𝑥-point −(𝑖− 1) evaluates
to 𝜆𝛼

𝑖 , 𝑖 ∈ [𝑘], and on 𝑖 evaluates to 𝑟𝑖, 𝑖 ∈ [𝑡]. Then, we can use all points (both the
values 𝜆𝛼𝑖 , 𝑖 ∈ [𝑘] and extra random values 𝑟𝑖, 𝑖 ∈ [1, . . . , 𝑡]), to locally interpolate using the
homomorphic properties of the threshold encryption scheme, and this way obtain packed
shares 𝑓(1), . . . , 𝑓(𝑛) of 𝜆𝛼 which are encrypted under 𝑡𝑝𝑘.

As the last step, we must re-encrypt previously computed packed shares (which are
currently encrypted under the 𝑡𝑝𝑘) to the KFFs of the roles in the online committee who

1Although it is common in honest majority settings to apply randomness extraction to achieve better
communication [49], in our case such techniques do not turn out to yield any benefits, given that, in all
currently known YOSO protocols, the cost of broadcast is the same as peer-to-peer.
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will use these shares. Note that this step is crucial: If we simply leave the packed shares
encrypted under 𝑡𝑝𝑘, then during the online phase one committee will have to spend 𝑂(𝑛)
communication to decrypt a single packed share, with each committee member publishing
its CDN-style share of the packed share. This would defy the usage of packing and result in
communication cost 𝑂(𝑛2) per packed sharing, hence linear amortized cost—no better than
prior works. Re-encrypting the share towards the KFF of an online committee member
who will be using this value allows us to pay the linear cost during the offline phase, and
keep the online phase very efficient.

For the ease of presentation, we first separately present a few helper functions, which we
will use throughout our protocol. We start with Re-encrypt. This function takes as input
a ciphertext 𝑐 which was encrypted using the threshold key 𝑡𝑝𝑘, and enables the current
committee 𝐶𝑙 to re-encrypt the underlying plaintext using the given key 𝑝𝑘. For this, the
members of the current committee first recover their shares of 𝑡𝑠𝑘. See Figure 1 for details.

Note that the relation 𝑅 that we prove is the following:

𝑅 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑 = (𝑝𝑘, 𝑡𝑝𝑘, {𝑝𝑘𝑗}𝑗∈[𝑛],

{𝑐𝑛𝑒𝑤
𝑗 }𝑗∈[𝑛], {𝑐𝑜𝑙𝑑

𝑗 }𝑗∈𝑆, 𝑐
𝑛𝑒𝑤, 𝑐𝑜𝑙𝑑)

𝑤 = (𝑠𝑘, 𝑡𝑠𝑘, 𝑟𝑐, 𝑟, {𝑟𝑗}𝑗∈[𝑛], 𝑑,

{𝑠𝑛𝑒𝑤
𝑗 }𝑗∈[𝑛], {𝑠𝑜𝑙𝑑

𝑗 }𝑗∈𝑆)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

𝑠𝑘 corresponds to 𝑝𝑘,
𝑠𝑜𝑙𝑑

𝑗 ← PKE.Dec(𝑠𝑘, 𝑐𝑜𝑙𝑑
𝑗 ) for 𝑗 ∈ 𝑆,

𝑡𝑠𝑘 ← TKRec(𝑡𝑝𝑘, {𝑠𝑜𝑙𝑑
𝑗 }𝑗∈𝑆),

{𝑠𝑛𝑒𝑤
𝑗 }𝑗∈[𝑛] ← TRes(𝑡𝑝𝑘, 𝑡𝑠𝑘; 𝑟),

𝑑← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘),
𝑐𝑛𝑒𝑤 ← PKE.Enc(𝑝𝑘, 𝑑; 𝑟𝑐),
{𝑐𝑛𝑒𝑤

𝑗 }𝑗∈[𝑛] ← PKE.Enc(𝑝𝑘𝑗, 𝑠
𝑛𝑒𝑤
𝑗 ; 𝑟𝑗)

for 𝑗 ∈ [𝑛]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Protocol 1: ΠYOSO-Re-encrypt

Let 𝐶𝑚 denote the committee that published encryptions of subshares of 𝑡𝑠𝑘 that were
intended for 𝐶𝑙,𝑗 . Let 𝜋𝐶𝑚,𝑗 denote the corresponding proof by party 𝐶𝑚,𝑗 that everything
was done correctly (details below). Finally, let 𝑐TK

𝐶𝑙,𝑖,𝑗
denote the encryption of the 𝑖-th

subshare of the share of 𝑡𝑠𝑘 that is intended for 𝐶𝑙,𝑗 .
Re-encrypt𝐶𝑙

(𝑝𝑘, 𝑐) : Each role 𝐶𝑙,𝑖 of committee 𝐶𝑙 does the following:
1. Reconstruct its key share:

• Let 𝑆 denote a set of parties in 𝐶𝑚 whose proof 𝜋𝐶𝑚,𝑗 verifies.
• Decrypt encryptions of the subshares of 𝑡𝑠𝑘 intended for 𝐶𝑙,𝑖:

𝑠𝑜𝑙𝑑
𝑗,𝑖 ← PKE.Dec(𝑠𝑘𝐶𝑙,𝑖

, 𝑐TK
𝐶𝑙,𝑗,𝑖) for each 𝑗 ∈ 𝑆.

• Reconstruct its key share as 𝑡𝑠𝑘𝑖 ← TRec(𝑡𝑝𝑘, {𝑠𝑜𝑙𝑑
𝑗,𝑖 }𝑗∈𝑆).

2. Compute the partial decryption as 𝑑𝑖 ← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖).
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3. Sample randomness 𝑟𝑒𝑛𝑐 and encrypt the partial decryption under the given public
key 𝑐𝑖 ← PKE.Enc(𝑝𝑘, 𝑑𝑖; 𝑟𝑒𝑛𝑐).

4. Re-share its key share to the committee 𝐶𝑘 that will need it next:
• Sample randomness 𝑟 and compute (𝑠𝑛𝑒𝑤

𝑖,1 , . . . , 𝑠𝑛𝑒𝑤
𝑖,𝑛 )← TRes(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖; 𝑟).

• Sample randomness 𝑟𝑗 and compute 𝑐TK
𝐶𝑘,𝑖,𝑗 ← PKE.Enc(𝑝𝑘𝐶𝑘,𝑗

, 𝑠𝑖,𝑗 ; 𝑟𝑗) for each
𝑗 ∈ [𝑛].

• Compute a NIZK proof 𝜋𝐶𝑙,𝑖 that everything was done correctly:

𝜋𝐶𝑙,𝑖
← NIZKAoK.P

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑟𝑠,

𝜑 = (𝑝𝑘𝐶𝑙,𝑖
, 𝑡𝑝𝑘, {𝑝𝑘𝐶𝑘,𝑗

}𝑗∈[𝑛], {𝑐TK
𝐶𝑘,𝑖,𝑗}𝑗∈[𝑛],

{𝑐TK
𝐶𝑙,𝑗,𝑖}𝑗∈𝑆 , 𝑐𝑖, 𝑐),

𝑤 = (𝑠𝑘𝐶𝑙,𝑖
, 𝑡𝑠𝑘𝑖, 𝑟𝑒𝑛𝑐, 𝑟, {𝑟𝑗}𝑗∈[𝑛], 𝑑,

{𝑠𝑛𝑒𝑤
𝑖,𝑗 }𝑗∈[𝑛], {𝑠𝑜𝑙𝑑

𝑗,𝑖 }𝑗∈𝑆)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
5. Broadcast (𝑐TK

𝐶𝑘,𝑖,1, . . . , 𝑐TK
𝑖,𝑛 ) along with 𝜋𝐶𝑙,𝑖.

6. Broadcast 𝑐𝑖.

We further use the function Decrypt, which is essentially the same as Re-encrypt, except
that instead of re-encrypting the obtained share under a new public key, we simply broadcast
it in clear. See Figure 3 for details, where the NIZK relation that we prove is the following:

𝑅 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑 = (𝑝𝑘, 𝑡𝑝𝑘, {𝑝𝑘𝑗}𝑗∈[𝑛],

{𝑐𝑛𝑒𝑤
𝑗 }𝑗∈[𝑛], {𝑐𝑜𝑙𝑑

𝑗 }𝑗∈𝑆, 𝑐
𝑜𝑙𝑑)

𝑤 = (𝑠𝑘, 𝑡𝑠𝑘, 𝑟𝑐, 𝑟, {𝑟𝑗}𝑗∈[𝑛], 𝑑,

{𝑠𝑛𝑒𝑤
𝑗 }𝑗∈[𝑛], {𝑠𝑜𝑙𝑑

𝑗 }𝑗∈𝑆)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑠𝑘 corresponds to 𝑝𝑘,
𝑠𝑜𝑙𝑑

𝑗 ← PKE.Dec(𝑠𝑘, 𝑐𝑜𝑙𝑑
𝑗 ) for 𝑗 ∈ 𝑆,

𝑡𝑠𝑘 ← TKRec(𝑡𝑝𝑘, {𝑠𝑜𝑙𝑑
𝑗 }𝑗∈𝑆),

{𝑠𝑛𝑒𝑤
𝑗 }𝑗∈[𝑛] ← TRes(𝑡𝑝𝑘, 𝑡𝑠𝑘; 𝑟),

𝑑← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘),
{𝑐𝑛𝑒𝑤

𝑗 }𝑗∈[𝑛] ← PKE.Enc(𝑝𝑘𝑗, 𝑠
𝑛𝑒𝑤
𝑗 ; 𝑟𝑗)

for 𝑗 ∈ [𝑛]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Protocol 2: ΠYOSO-Decrypt

Let 𝐶𝑚 denote the committee that published encryptions of subshares of 𝑡𝑠𝑘 that were
intended for 𝐶𝑙,𝑗 . Let 𝜋𝐶𝑚,𝑗 denote the corresponding proof by party 𝐶𝑚,𝑗 that everything
was done correctly (details below). Finally, let 𝑐TK

𝐶𝑙,𝑖,𝑗
denote the encryption of the 𝑖-th

subshare of the share of 𝑡𝑠𝑘 that is intended for 𝐶𝑙,𝑗 .
Decrypt𝐶𝑙

(𝑐) : Each role 𝐶𝑙,𝑖 of committee 𝐶𝑙 does the following:
1. Reconstruct its key share:

• Let 𝑆 denote a set of parties in 𝐶𝑚 whose proof 𝜋𝐶𝑚,𝑗 verifies.
• Decrypt encryptions of the subshares of 𝑡𝑠𝑘 intended for 𝐶𝑙,𝑖:
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𝑠𝑜𝑙𝑑
𝑗,𝑖 ← PKE.Dec(𝑠𝑘𝐶𝑙,𝑖

, 𝑐TK
𝐶𝑙,𝑗,𝑖) for each 𝑗 ∈ 𝑆.

• Reconstruct its key share as 𝑡𝑠𝑘𝑖 ← TRec(𝑡𝑝𝑘, {𝑠𝑜𝑙𝑑
𝑗,𝑖 }𝑗∈𝑆).

2. Compute the partial decryption as 𝑑𝑖 ← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖).
3. Re-share its key share to the committee 𝐶𝑘 that will need it next:

• Sample randomness 𝑟 and compute (𝑠𝑛𝑒𝑤
𝑖,1 , . . . , 𝑠𝑛𝑒𝑤

𝑖,𝑛 )← TRes(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖; 𝑟).
• Sample randomness 𝑟𝑗 and compute 𝑐TK

𝐶𝑘,𝑖,𝑗 ← PKE.Enc(𝑝𝑘𝐶𝑘,𝑗
, 𝑠𝑖,𝑗 ; 𝑟𝑗) for each

𝑗 ∈ [𝑛].
• Compute a NIZK proof 𝜋𝐶𝑙,𝑖 that everything was done correctly:

𝜋𝐶𝑙,𝑖
← NIZKAoK.P

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑟𝑠,

𝜑 = (𝑝𝑘𝐶𝑙,𝑖
, 𝑡𝑝𝑘, {𝑝𝑘𝐶𝑘,𝑗

}𝑗∈[𝑛], {𝑐TK
𝐶𝑘,𝑖,𝑗}𝑗∈[𝑛],

{𝑐TK
𝐶𝑙,𝑗,𝑖}𝑗∈𝑆 , 𝑐),

𝑤 = (𝑠𝑘𝐶𝑙,𝑖
, 𝑡𝑠𝑘𝑖, 𝑟𝑒𝑛𝑐, 𝑟, {𝑟𝑗}𝑗∈[𝑛], 𝑑,

{𝑠𝑛𝑒𝑤
𝑖,𝑗 }𝑗∈[𝑛], {𝑠𝑜𝑙𝑑

𝑗,𝑖 }𝑗∈𝑆)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
4. Broadcast (𝑐TK

𝐶𝑘,𝑖,1, . . . , 𝑐TK
𝑖,𝑛 ) along with 𝜋𝐶𝑙,𝑖.

5. Broadcast 𝑑𝑖.

Finally, we use the following function to have two committees 𝐶1 and 𝐶2 prepare a
Beaver triples. The relation 𝑅 that the members of the committee 𝐶2 have to prove is the
following:

𝑅 =
⎧⎨⎩ 𝜑 = (𝑡𝑝𝑘, 𝑐𝑎, 𝑐𝑏

𝑖 , 𝑐
𝑐
𝑖)

𝑤 = (𝑏, 𝑟)

⃒⃒⃒⃒
⃒⃒ 𝑐𝑏

𝑖 ← TEnc(𝑡𝑝𝑘, 𝑏𝑖; 𝑟𝑖),
𝑐𝑐

𝑖 ← TEval(𝑡𝑝𝑘, 𝑐𝑎, 𝑏𝑖)

⎫⎬⎭
Protocol 3: ΠYOSO-Beaver-Triples

Let 𝐶1 and 𝐶2 denote two committees that are participating in the generation of the Beaver
triple.
Beaver-Triple𝐶1,𝐶2 :

• Each role 𝐶1,𝑖 of committee 𝐶1 does the following:
Generate a random value 𝑎𝑖.
Generate randomness 𝑟𝑖, and encrypt 𝑎𝑖 via 𝑐𝑎

𝑖 ← TEnc(𝑡𝑝𝑘, 𝑎𝑖,𝑗 ; 𝑟𝑖).
Broadcast 𝑐𝑎

𝑖 along with a NIZK proof 𝜋𝐶1,𝑖 that the ciphertext was computed
correctly.

• Let 𝑆 denote a set of roles in 𝐶1 whose proof 𝜋𝐶1,𝑖 verifies. Let |𝑆| denote the size of
𝑆.

• Everyone can now compute 𝑐𝑎 ← TEval(𝑡𝑝𝑘, {𝑐𝑎
𝑖 }𝑖∈𝑆 , (1)|𝑆|).

• Each role 𝐶2,𝑖 of committee 𝐶2 does the following:
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Generate a random value 𝑏𝑖.
Generate randomness 𝑟𝑖, and encrypt 𝑏𝑖 via 𝑐𝑏

𝑖 ← TEnc(𝑡𝑝𝑘, 𝑏𝑖; 𝑟𝑖).
Compute 𝑐𝑐

𝑖 ← TEval(𝑡𝑝𝑘, 𝑐𝑎, 𝑏𝑖)
Compute a NIZK proof 𝜋𝐶2,𝑖 that everything was done correctly:

𝜋𝐶𝑙,𝑖
← NIZKAoK.P

⎛⎜⎜⎝
𝑐𝑟𝑠,

𝜑 = (𝑡𝑝𝑘, 𝑐𝑎, 𝑐𝑏
𝑖 , 𝑐𝑐

𝑖 ),
𝑤 = (𝑏𝑖, 𝑟𝑖)

⎞⎟⎟⎠
Broadcast 𝑏𝑖, 𝑐𝑖 along with the proof 𝜋𝐶2,𝑖.

• Let 𝑆′ denote a set of roles in 𝐶2 whose proof 𝜋𝐶2,𝑖 verifies. Let |𝑆′| denote the size
of 𝑆′.

• Everyone can now compute 𝑐𝑎 ← TEval(𝑡𝑝𝑘, {𝑐𝑏
𝑖}𝑖∈𝑆′ , (1)|𝑆′|) and

𝑐𝑐 ← TEval(𝑡𝑝𝑘, {𝑐𝑐
𝑖}𝑖∈𝑆′ , (1)|𝑆′|)

• The resulting triple is (𝑐𝑎, 𝑐𝑏, 𝑐𝑐).

We now give the full description of the offline phase in Figure 4.

Protocol 4: ΠYOSO-Offline

Offline phase:
Let 𝐶 denote the circuit.
Step 1: Prepare Beaver Triples Let the first two committees 𝐶Off

1 and 𝐶Off
2 prepare a

Beaver triple for each multiplication gate of the circuit via Beaver-Triple𝐶1,𝐶2 .
Step 2: Prepare random wire values
For each wire 𝛼 of 𝐶 that is an output wire of an input/multiplication gate:

1. Each 𝐶Off
3,𝑖 does the following:

• Generate a random value 𝜆𝛼
𝑖 .

• Encrypt 𝜆𝛼
𝑖 via 𝑐𝛼

𝑖 ← TEnc(𝑡𝑝𝑘, 𝜆𝛼
𝑖 ).

• Broadcast 𝑐𝛼
𝑖 along with a NIZK proof 𝜋𝐶Off

3,𝑖
that the ciphertext was computed

correctly.
2. Let 𝑆 denote the set of roles 𝐶Off

3,𝑖 whose proofs verified correctly.
3. Everyone computes 𝑐𝛼 ← TEval(𝑡𝑝𝑘, {𝑐𝛼

𝑖 }𝑖∈𝑆 , (1)|𝑆|).
Step 3: Compute dependent wire values
For each addition gate with inputs wires 𝛼 and 𝛽, and output wire 𝛾, set (from lowest
depth gates to highest):

• 𝑐𝛾 ← TEval(𝑡𝑝𝑘, (𝑐𝛼, 𝑐𝛽), (1, 1)).
For each multiplication gate with inputs wires 𝛼 and 𝛽, and output wire 𝛾, compute the
encryption 𝑐Γ𝛾 of the value 𝜆𝛼 * 𝜆𝛽 − 𝜆𝛾 on wire 𝛾. For this, let (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) denote an
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unused Beaver triple (from the ones prepared in Step 1). Then, compute the following for
groups of 𝑘 multiplication gates in parallel:

• Everyone computes 𝑐𝜖 ← TEval(𝑡𝑝𝑘, (𝑐𝛼, 𝑐𝑥), (1, 1)) and
𝑐𝛿 ← TEval(𝑡𝑝𝑘, (𝑐𝛽, 𝑐𝑦), (1, 1)).

• Current committee 𝐶Off
𝑙 decrypts 𝜖 = Decrypt𝐶Off

𝑙
(𝑐𝜖) and 𝛿 = Decrypt

𝐶Prep
𝑙

(𝑐𝛿).
• Everyone computes 𝑐Γ𝛾 ← TEval(𝑡𝑝𝑘, (𝑐𝛽, 𝑐𝑥, 𝑐𝑧, 𝑐𝛾), (𝜖,−𝛿, 1,−1)).

Step 4: Pack values for multiplication gates
For each group of 𝑘 multiplication gates, let (𝑐𝛼1 , . . . , 𝑐𝛼𝑘) denote the ciphertexts
containing the values on the corresponding output wires. Each role 𝐶Off

𝑙,𝑖 of the current
committee 𝐶Off

𝑙 does the following:
• Generate 𝑡 random values (𝑟𝑘+1

𝑖 , . . . , 𝑟𝑡+𝑘
𝑖 ).

• Let 𝑐
Help,𝛼𝑗

𝑖 ← TEnc(𝑡𝑝𝑘, 𝑟𝑗
𝑖 ) for 𝑗 ∈ [𝑘 + 1, . . . , 𝑡 + 𝑘]

• Broadcast {𝑐Help,𝛼𝑗

𝑖 }𝑗∈[𝑘+1,...,𝑡+𝑘] along with a NIZK proof 𝜋𝐶Off
𝑙,𝑖

that the ciphertext
was computed correctly.

Now, everyone does the following:
• Let 𝑆 denote the set of roles 𝐶Off

𝑙,𝑖 whose proofs verified correctly.
• Compute 𝑐Help,𝛼𝑗 ← TEval(𝑡𝑝𝑘, {𝑐Help,𝛼𝑗

𝑖 }𝑖∈𝑆 , (1)|𝑆|) for each 𝑗 ∈ [𝑘 + 1, 𝑡 + 𝑘].
• For each 𝑖 ∈ [𝑛], compute the share of the 𝑖-th committee role as:

𝑐𝛼𝑖 ← TEval(𝑡𝑝𝑘, (𝑐𝛼1 , . . . , 𝑐𝛼𝑘 , 𝑐Help,𝛼𝑘+1 , . . . , 𝑐Help,𝛼𝑡+𝑘), (𝑙1(𝑖), . . . , 𝑙𝑡+𝑘(𝑖))),

where 𝑙𝑗(·) denotes the 𝑗-th Lagrange basis polynomial.
Similarly, for each group of 𝑘 multiplication gates, pack the ciphertexts containing 𝑐Γ𝛾 .
Step 5: Prepare ciphertexts to the future, input gates
For each input gate 𝛼 that belongs to the 𝑖-th client, let 𝑐𝛼 denote the ciphertext
containing the value on the corresponding output wire. Current committee 𝐶Off

𝑙 computes
the following for all 𝑖 ∈ [𝑛] in parallel:

• 𝑐𝛼
𝑃𝑖
← Re-encrypt𝐶Off

𝑙
(𝑝𝑘KFF

𝑃𝑖
, 𝑐𝛼)

Step 6: Prepare ciphertexts to the future, multiplication gates
For each group of 𝑘 multiplication gates, let 𝑐𝛼𝑖 denote the encryption of the 𝑖-th (packed)
share of the left input wires, 𝑐𝛽𝑖 the encryption of the 𝑖-th (packed) share of the right input
wires, and 𝑐Γ

𝛾

𝑖 denote the encryption of 𝑖-th (packed) share of the values 𝜆𝛼 * 𝜆𝛽 − 𝜆𝛾 for
the vector of corresponding output wires 𝛾. Let 𝐶𝑚 denote the committee that will be
evaluating gates 𝛾 in the online phase. Current committee 𝐶off

𝑙 computes the following for
all 𝑖 ∈ [𝑛] in parallel:

• 𝑐𝛼𝐶𝑚,𝑖
← Re-encrypt𝐶off

𝑙
(𝑝𝑘KFF

𝐶𝑚,𝑖
, 𝑐𝛼𝑖 )

• 𝑐𝛽𝐶𝑚,𝑖
← Re-encrypt𝐶off

𝑙
(𝑝𝑘KFF

𝐶𝑚,𝑖
, 𝑐𝛽𝑖 )

• 𝑐Γ
𝛾

𝐶𝑚,𝑖
← Re-encrypt𝐶Off

𝑙
(𝑝𝑘KFF

𝐶𝑚,𝑖
, 𝑐Γ

𝛾

𝑖 )
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Communication analysis.

In Step 1, we need 𝑂(𝑛) communication to prepare a Beaver triple 2. We require 𝑂(𝑛)
communication to prepare each random wire value in Step 2. Next, Step 3 requires 𝑂(𝑛2)

𝑘
=

𝑂(𝑛) communication per gate. In Step 4, the communication cost is again 𝑂(𝑛2)
𝑘

= 𝑂(𝑛)
per gate. Re-encrypting values in Steps 5 and 6 each requires 𝑂(𝑛) communication per
re-encrypted value, i.e., per wire, plus 𝑂(𝑛2) one-time cost. In total, the communication
complexity of our offline phase is 𝑂(𝑛|𝐶|).

3.4.3 Online Phase

During the online phase, our goal is to compute values 𝜇𝛼 = 𝑣𝛼 − 𝜆𝛼 for each wire of the
circuit, where 𝑣𝛼 is the actual wire value, and 𝜆𝛼 the random value prepared for this wire
during the offline phase. To do this, we must first let the roles of the online committees
obtain the random values prepared for these roles during the preprocessing. Note that
during the offline phase, we were encrypting the secret random values under the KFFs of
the corresponding roles’ of the online phase. Hence, it is sufficient to let the online roles
learn the secret key portion of their corresponding KFF. For this, we have parties of the
first online committee use their shares of 𝑡𝑠𝑘 to re-encrypt the secret portions of the KFFs
towards the role keys of the YOSO role-generation, which can now safely assumed to be
known.

For the input gates, given input 𝑣𝛼 for the input wire 𝛼, each client can simply use its
secret KFF to decrypt the value 𝜆𝛼 and broadcast 𝑣𝛼 − 𝜆𝛼.

For the addition gates, given input wires 𝛼 and 𝛽, by invariant we know both 𝜇𝛼 and
𝜇𝛽. Hence, everyone can locally compute 𝜇𝛼 + 𝜇𝛽.

For the multiplication gates, given input wire vectors 𝛼 and 𝛽, and output wire vector
𝛾, the 𝑖-th member of the current committee can use the packed shares of 𝜆Γ𝛾

𝑖 which it
has from the offline phase, along with the publicly reconstructed 𝜇𝛼 and 𝜇𝛽, to obtain
𝜇𝛾

𝑖 = 𝜇𝛼
𝑖 * 𝜇

𝛽
𝑖 + 𝜇𝛼

𝑖 * 𝜆
𝛽
𝑖 + 𝜇𝛽

𝑖 * 𝜆𝛼𝑖 + 𝜆Γ
𝛾

𝑖 .

Finally, for each output wire 𝛼, we let the last committee use its shares of 𝑡𝑠𝑘 to
re-ecrypt the preprocessed value 𝜆𝛼 towards the public key of the client 𝑃𝑖, who is supposed
to get the output of this wire. Then, 𝑃𝑖 can use the publicly available 𝜇𝛼 to reconstruct 𝑣𝛼

2Note that our offline phase is bottlenecked by a step which requires linear communication, hence for
simplicity we skip potential optimizations that could amortize the cost of non-bottleneck steps to a constant
one.
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as 𝜇𝛼 + 𝜆𝛼.

Protocol 5: ΠYOSO−Online

Let 𝑝𝑘𝑃𝑖 denote public key of the client 𝑃𝑖, and 𝑝𝑘𝐶𝑙,𝑖
denote YOSO role-assignment key of

the committee member 𝐶𝑙,𝑖.
Online phase:
Future key distribution
The first online committee 𝐶1 computes the following for all clients and all future
committee roles 𝐶𝑙[𝑖] in parallel:

• 𝑐KFF’
𝑃𝑖
← Re-encrypt𝐶1(𝑝𝑘𝑃𝑖 , 𝑐KFF

𝑃𝑖
)

• 𝑐KFF’
𝐶𝑙,𝑖
← Re-encrypt𝐶1(𝑝𝑘𝐶𝑙,𝑖

, 𝑐KFF
𝐶𝑙,𝑖

)
Input
For each input gate that belong client 𝑃𝑖, let 𝑐𝛼

𝑃𝑖
denote the ciphertext containing the

prepared random value on the corresponding output wires. Each client 𝑃𝑖 uses its secret
role key 𝑠𝑘𝑃𝑖 from the YOSO role-assignment to compute the following:

• Let 𝑠𝑘KFF
𝑃𝑖
← Dec(𝑠𝑘𝑃𝑖 , 𝑐KFF’

𝑃𝑖
)

• Let 𝜆𝛼 ← Dec(𝑠𝑘KFF
𝑃𝑖

, 𝑐𝛼
𝑃𝑖

)
• Compute and publish 𝜇𝛼 = 𝑣𝛼 − 𝜆𝛼

Addition
For two addition gates with input wires 𝛼 and 𝛽, everyone can locally compute 𝜇𝛼 + 𝜇𝛽.
Multiplication
Let 𝐶𝑙 denote the current committee. For each group of multiplication gates with input
wires 𝛼,𝛽 and output wires 𝛾, let 𝑐𝛼𝐶𝑙,𝑖

, 𝑐𝛽𝐶𝑙,𝑖
, 𝑐Γ

𝛾

𝐶𝑙,𝑖
denote the ciphertexts containing the

share prepared for the 𝑖-th role of 𝐶𝑙. Let 𝜇𝛼 and 𝜇𝛽 denote the publicly reconstructed
values on wires 𝛼 and 𝛽. Let 𝜇𝛼

𝑖 and 𝜇𝛽
𝑖 denote the 𝑖-th share of a degree-(𝑘 − 1) packed

sharing of each of this vectors. Each member of the current committee uses its secret role
key 𝑠𝑘𝐶𝑙,𝑖

from the YOSO role-assignment to compute the following:
• Let 𝑠𝑘KFF

𝐶𝑙,𝑖
← Dec(𝑠𝑘𝐶𝑙,𝑖

, 𝑐KFF’
𝐶𝑙,𝑖

)
• Let 𝜆𝛼

𝑖 ← Dec(𝑠𝑘KFF
𝐶𝑙,𝑖

, 𝑐𝛼𝐶𝑙,𝑖
)

• Let 𝜆𝛽
𝑖 ← Dec(𝑠𝑘KFF

𝐶𝑙,𝑖
, 𝑐𝛽𝐶𝑙,𝑖

)
• Let 𝜆Γ𝛾

𝑖 ← Dec(𝑠𝑘KFF
𝐶𝑙,𝑖

, 𝑐Γ
𝛾

𝐶𝑙,𝑖
)

• Compute and publish 𝜇𝛾
𝑖 = 𝜇𝛼

𝑖 * 𝜇𝛽
𝑖 + 𝜇𝛼

𝑖 * 𝜆𝛽
𝑖 + 𝜇𝛽

𝑖 * 𝜆𝛼
𝑖 + 𝜆Γ𝛾

𝑖 along with the proof
of correctness.

In order to reconstruct 𝜇𝛾 , anyone can use 𝑡 + 2(𝑘− 1) + 1 shares 𝜇𝛾
𝑖 that verified correctly.

Output
The last committee 𝐶𝑙 uses its shares of 𝑡𝑠𝑘 to re-encrypt (in parallel) each value 𝑐𝛼

towards the client 𝑃𝑖 who is obtaining the output of wire 𝛼.
• 𝑐𝛼

𝑃𝑖
← Re-encrypt*𝐶1(𝑝𝑘𝑃𝑖 , 𝑐𝛼)

107



Above, Re-encrypt* is the same as Re-encrypt, except that we do not distribute shares of
𝑡𝑠𝑘 anymore. This reduces the overall communication per output wire to 𝑂(𝑛).
To obtain the output for a wire 𝛼, client 𝑃𝑖 uses 𝑠𝑘𝑃𝑖 to decrypt the ciphertext 𝑐𝛼

𝑃𝑖

containing the corresponding random wire value. Then, the client computes the output
using the public value 𝜇𝛼:

• Let 𝜆𝛼 ← Dec(𝑠𝑘KFF
𝑃𝑖

, 𝑐𝛼
𝑃𝑖

).
• Compute 𝑣𝛼 = 𝜇𝛼 + 𝜆𝛼.

Communication analysis. The future key distribution step results in 𝑂(𝑛) commu-
nication per role, as each committee member must publish its share of the value that is
being re-encrypted, plus a one-time cost of 𝑂(𝑛2) for the re-distribution of the shares of
𝑡𝑠𝑘. Further, the input step requires a one-time cost that is linear in the number of inputs.
Addition gates do not require any communication, and a batch of 𝑂(𝑛) multiplication
gates requires each committee member to publish its share of 𝜇𝛾 along with a proof of
correctness, and thus incurs 𝑂(𝑛) cost per batch. Finally, the output layer requires 𝑂(𝑛)
communication per output wire. Assuming that each role processes 𝑂(𝑛) values, this gives
us 𝑂(1) amortized communication per gate.

This construction allows us to obtain the following result:
Theorem 6. Assuming a secure broadcast and role-assignment, for any 𝑛-party function 𝑓 ,
protocol Π = (ΠYOSO-Setup,ΠYOSO-Offline,ΠYOSO−Online), YOSO-securely implements the ideal
functionality ℱF

MPC for a corruption threshold 𝑡 < 𝑛
2 · (1− 𝜖). The offline communication

complexity is 𝑂(𝑛) elements per gate, the online communication complexity is 𝑂(1) elements
per gate.

3.4.4 Security Analysis

In the following, we describe the hybrid games which lead to a simulator description for the
protocol given above.

Game 0: The simulator honestly follows the protocol, except that during the Setup
phase the simulator additionally stores the NIZKAoK trapdoor td.

Game 1: The simulator behaves as before, except that it uses the NIZKAoK simulator
SimP to simulate the proofs of the honest roles. Note that this game is indistinguishable
from the previous one by the zero knowledge property of NIZKAoK system that we use.

Game 2: The simulator behaves as before, except that it now extracts a witness from
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each proof that was given by a corrupt party. The simulator aborts if it fails to extract a
valid witness for a proof that verifies correctly. Note that this game is indistinguishable
from the previous one by the simulation extractability property of the NIZKAoK.

Note that now, the simulator in particular always knows the shares of 𝑡𝑠𝑘 (even for
corrupt parties), along with the plaintexts inside the ciphertexts distributed during the
offline phase.

Game 3: Let 𝑀 denote the set of currently corrupt roles. The simulator behaves as
before, except that during the Re-encrypt* step of computing the output, for each output
wire 𝛼 that belongs to a malicious client, the simulator does the following:

• Let 𝑐𝛼 denote the ciphertext that contains the value 𝜆𝛼 encrypted under 𝑡𝑝𝑘.
• The simulator computes 𝜆𝛼.
• The simulator computes the decryption shares of the corrupt roles as 𝑑𝑖 ← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖, 𝑐

𝛼).
• Compute the decryption shares of the honest roles as
{𝑑𝑖}𝑖∈[𝑛]∖𝑀 ← SimTPDec(𝑡𝑝𝑘, 𝑐𝛼, 𝜆𝛼, {𝑡𝑠𝑘𝑖}𝑖∈[𝑛]∖𝑀 , {𝑑𝑖}𝑀)

Note that the indistinguishability to the previous game holds by the partial decryption
simulatability property of the threshold encryption scheme.

Game 4: Let 𝑀 denote the set of the currently corrupt roles. The simulator behaves as
before, except that for each output wire 𝛼 that belongs to a malicious client, the simulator
does the following:

• Let 𝑐𝛼 denote the ciphertext that contains the value 𝜆𝛼 encrypted under 𝑡𝑝𝑘.
• The simulator computes the values 𝑣𝛼 of the corrupt parties using its knowledge of 𝜆𝛼,

sends these values to the ideal functionality ℱMPC𝐹 , obtains 𝑣𝛼 from it, and computes
𝜆𝛼 = 𝜇𝛼 − 𝑣𝛼.

• The simulator computes the decryption shares of the corrupt roles as 𝑑𝑖 ← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖, 𝑐
𝛼).

• Compute the decryption shares of the honest roles as
{𝑑𝑖}𝑖∈[𝑛]∖𝑀 ← SimTPDec(𝑡𝑝𝑘, 𝑐𝛼, 𝜆𝛼, {𝑡𝑠𝑘𝑖}𝑖∈[𝑛]∖𝑀 , {𝑑𝑖}𝑀)

Note that the indistinguishability to the previous game holds by the partial decryption
simulatability property of the threshold encryption scheme.

Game 5: Let 𝑀 denote the set of the currently corrupt roles. The simulator behaves
as before, except that for each input wire 𝛼 that belongs to an honest client, the simulator
does the following:

• Let 𝑐𝛼 denote the ciphertext that contains the value 𝜆𝛼 encrypted under 𝑡𝑝𝑘.
• The simulator generates a fresh random value �̂�𝛼.
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• The simulator computes the decryption shares of the corrupt roles as 𝑑𝑖 ← TPDec(𝑡𝑝𝑘, 𝑡𝑠𝑘𝑖, 𝑐
𝛼).

• Compute the decryption shares of the honest roles as
{𝑑𝑖}𝑖∈[𝑛]∖𝑀 ← SimTPDec(𝑡𝑝𝑘, 𝑐𝛼, �̂�𝛼, {𝑡𝑠𝑘𝑖}𝑖∈[𝑛]∖𝑀 , {𝑑𝑖}𝑀)

Note that the indistinguishability to the previous game holds as �̂�𝛼 and 𝜆𝛼 are both uniformly
random, and the threshold encryption scheme has the partial decryption simulatability
property.

Game 6: The simulator behaves as before, except that when an honest client needs
to publish 𝜇𝛼, the simulator simply samples a random value 𝜇𝛼, and publishes it instead.
Note that 𝜇𝛼 = 𝑣𝛼−𝜆𝛼, and from the previous game we know that 𝜆𝛼 is uniformly random.
Hence, 𝜇𝛼 is uniformly random and thus the distribution of 𝜇𝛼 remains the same as before.

Note that in our last game, the simulator no longer needs the honest input roles’ inputs.
This finishes our proof.

3.4.5 Bonus: Supporting Fail-Stop Parties

We observe that, in our protocol, the online phase requires at least 𝑡+ 2(𝑘 − 1) + 1 partial
decriptions to be posted. There are 𝑛 − 𝑡 honest parties, so we need to ensure that
𝑛 − 𝑡 ≥ 𝑡 + 2(𝑘 − 1) + 1 for GOD, or 𝑛 > 2𝑡 + 2(𝑘 − 1). Assuming 𝑡 < 𝑛(1

2 − 𝜖), this is
equivalent to 𝑛 ≥ 𝑛(1− 2𝜖) + 2(𝑘 − 1), or 𝑘 − 1 ≤ 𝑛𝜖 This allows us to get a saving factor
in the online phase of 𝑘 ≈ 𝑛𝜖.

However, note we can do the following. Write 𝜖 = 2𝜖′, and set 𝑘 = 𝑛𝜖′ + 1. We have
that 𝑡+ 2(𝑘 − 1) + 1 < 𝑛(1

2 − 𝜖) + 2(𝑛𝜖′) + 1 = 𝑛/2 + 1. On the other hand, the amount
of honest parties is 𝑛 − 𝑡 > 𝑛 − 𝑛(1

2 − 𝜖) = 𝑛(1
2 + 𝜖), which is at least 𝑛𝜖 more than the

required amount of parties for reconstruction. We conclude the following: by reducing the
packing parameter from ≈ 𝑛𝜖 to ≈ 𝑛𝜖/2, the protocol is able to proceed, even if 𝑛 · 𝜖 honest
parties do not participate. We believe this property is crucial for YOSO MPC protocols,
which are intended to be deployed in settings with large number of parties and hence are
prone to non-malicious failures such as slowdowns, hardware/software errors, and others.

3.5 Role Assignment: Committee Size Analysis

In previous sections we have described a YOSO MPC protocol with high efficiency, assuming
that the committee sizes 𝑛 are such that the amount of corrupted parties in each committee
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is upper bounded by 𝑡 < 𝑛(1
2 − 𝜖). Ensuring this corruption threshold is in charge of the

role assignment layer, which is generally a separate task to that of YOSO MPC. Different
works have proposed different role assignment layers for YOSO [22], but generally, these
approaches focus on obtaining committees with 1/2 corruption ratios. In this section we
make use of the analysis from [22] in order to obtain the stronger honest majority bound
𝑡 < 𝑛(1

2 − 𝜖). Briefly recall that Benhamouda et al.’s role assignment works as follows: to
select members of the MPC committee, a so-called nominating committee is first formed by
self-selection via a process known as cryptographic sortition. Each nominator then chooses a
member of the MPC committee, and generates short-term public/secret key pair (epk, esk).
The nominator encrypts esk under the chosen party’s long-term key to obtain a ciphertext 𝑐,
and publishes the pair (epk, 𝑐). Finally, each party can attempt to decrypt the ciphertexts
𝑐 to check whether they were selected to participant in the MPC committee or not. We
refer the reader to [22] for details.

For this section, we stick to the notation from [22, Section 3.2], so that we can easily
reuse their analysis. Let 𝑁 be the total number of parties, among which committees will
be sampled, and let us assume that the adversary corrupts 𝑓 ·𝑁 out of these 𝑁 parties.
Cryptographic sortition is a probabilistic process that samples committees by including
each party in the committee with some probability 𝐶/𝑁 .3 Let 𝑐 be the random variable
denoting the size of the committee, and let 𝜑 be the random variable denoting the number
of corrupted parties in the selected committee. Our goal is to determine a threshold 𝑡 so
that, with high probability, 𝜑 < 𝑡 and 𝑡 ≤ 𝑐 · (1

2 − 𝜖). Note that 𝑡 in [22] has a different
connotation than in our previous sections: here, 𝑡− 1 corresponds an upper bound (with
high probability) for the number of corruptions in a committee. This is roughly equivalent
to what we refer to as “𝑡” in prior sections.

Let 𝑘1, 𝑘2 and 𝑘3 be three security parameters for the analysis, as follows.

1. The adversary can try to win the cryptographic sortition at most 2𝑘1 times
2. We want to ensure that 𝜑 < 𝑡 with probability ≥ 1− 2𝑘2

3. We want to ensure that 𝑡 ≤ 𝑐 · (1
2 − 𝜖) with probability ≥ 1− 2𝑘3 .

In [22], the threshold 𝑡 is written as 𝑡 = 𝐵1 + 𝐵2 + 1, where 𝐵1 = 𝑓𝐶(1 + 𝜖1) and
𝐵2 = 𝑓(1− 𝑓)𝐶(1 + 𝜖2), for some 𝜖1, 𝜖2 > 0. In [22] it is shown that, if

𝐶 > max
{︃

(𝑘1 + 𝑘2 + 1)(2 + 𝜖1) ln 2
𝑓𝜖2

1
,

(𝑘2 + 1)(2 + 𝜖2) ln 2
𝑓(1− 𝑓)𝜖2

2

}︃
, (3.2)

then Item 2 from above holds, that is, the number of corruptions 𝜑 among the elected
3Note that, even though the expected size of the committee is 𝐶, its concrete size is variable.
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committee is at most 𝑡, except with probability 2−𝑘2 .

Regarding Item 3, we note that 𝑡 < 𝑐 · (1
2 − 𝜖) is equivalent to the number of honest

parties 𝑐 − 𝑡 being greater than 1/2+𝜖
1/2−𝜖

· 𝑡. In [22] this is shown to hold with probability
≥ 1− 2𝑘3 if, for some 𝜖3 > 0:

𝐶 > max
{︃

2𝑘3 ln 2
(𝜖3(1− 𝑓))2 ,

(1
2 + 𝜖) · (𝑓𝐶(1 + 𝜖1) + 𝑓(1− 𝑓)𝐶(1 + 𝜖2))

(1
2 − 𝜖)(1− 𝑓)2(1− 𝜖3)

}︃
(3.3)

Interestingly, this is a generalization of [22], with their set of constraints being achieved
by setting 𝜖 = 0. We see then that the only difference with respect to their work is the
factor 1/2+𝜖

1/2−𝜖
in Eq. (3.3). That is, the cost to enable the gap 𝜖 > 0 is reflected in this term.

In what follows, let us fix as in [22] 𝑘1 = 64, 𝑘2 = 𝑘3 = 128. Set 𝜖1 and 𝜖2 as small as
possible so that Eq. (3.2) holds. Using numerical methods we find this is

𝜖1 >
1
2

⎯⎸⎸⎷1544𝐶𝑓 ln(2) + 37249 ln2(2)
𝐶2𝑓 2 + 193 ln(2)

2𝐶𝑓 (3.4)

and

𝜖2 >
1
2

⎯⎸⎸⎷−1032𝐶𝑓 2 ln(2) + 1032𝐶𝑓 ln(2) + 16641 ln2(2)
𝐶2(𝑓 2 − 𝑓)2 − 129 ln(2)

2𝐶(𝑓 2 − 𝑓) . (3.5)

Note these values—which determine 𝑡—only depend on 𝐶 and 𝑓 . Now, let 𝜖3 to be the
smallest value that satisfies (3.3), we have:√︃

256 ln 2
𝐶(1− 𝑓)2 < 𝜖3 < 1−

(︃ 1
2 + 𝜖
1
2 − 𝜖

)︃
· (𝑓𝐶(1 + 𝜖1) + 𝑓(1− 𝑓)𝐶(1 + 𝜖2))

(1− 𝑓)2𝐶
(3.6)

Let us denote 𝛿 =
1
2 +𝜖
1
2 −𝜖

, which satisfies 1 ≤ 𝛿 for 0 < 𝜖 < 1/2. Note that the most
efficient choice is to take 𝜖1 and 𝜖2 as small as possible, according to Eqs. (3.4) and (3.5).
Then, set 𝜖3 as small as possible according to Eq. (3.6). At this point, 𝛿 > 1 must satisfy
the right inequality of Eq. (3.6). The work of [22] took 𝛿 = 1, for which 𝜖 = 0. Here, we
can take some 𝛿 > 1, which corresponds to 𝜖 > 0, as long as the inequality still holds.

In Table 3.1 we present a selection of parameters obtained with the reasoning above. We
choose the sortition parameter 𝐶 in {1000, 5000, 10000, 20000, 40000} (which is the expected
size of the committee), and the global corruption ratio 𝑓 in {0.05, 0.10, 0.15, 0.20, 0.25}.
Then, we compute 𝜖1, 𝜖2, 𝜖3 as described above. This determines 𝑡, where 𝑡−1 is (w.h.p.) an
upper bound the number of corruptions in the committee, and along with it 𝑐 = 𝑡/(1/2− 𝜖)
is determined, which is (w.h.p.) a lower bound on the size of the committee. Note that
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the lower bound that is guaranteed (w.h.p.) in [22] is 𝑐′ = 2𝑡. However, our analysis
shows that the committee size is actually larger than that, and that gap can be used to
gain a 𝑘 = 𝑛 · 𝜖 improvement factor. Overall, we see that by increasing the committee
size from 𝑐′ to 𝑐, which as 𝑓 grows this becomes a less pronounced jump, we can actually
reduce communication by a factor of 𝑘, which can be as big as three orders of magnitude!
For instance, setting 𝐶 = 20000, for 20% global corruptions, we can take a committee of
size ≈ 20k instead of ≈ 18k from [22] and get an improvement factor in terms of online
communication complexity of > 1000×. For smaller 𝑓 this factor improves even more, at
the expense of having a bigger difference in committee sizes. This disparity can be reduced
by settling for a smaller packing factor.

3.6 Summary

In this work we have shown that YOSO MPC can benefit greatly from transitioning from
a setting where 𝑡 < 𝑛/2, to 𝑡 < 𝑛(1/2 − 𝜖). In large-scale scenarios such as YOSO it is
reasonable to assume the adversary corrupts strictly less than a minority, and such “gap”
can be exploited in order to get concrete benefits in terms of online communication, as well
as fail-stop tolerance. Our work shows how packed secret-sharing can be used to materialize
such communication savings. Furthermore, we have shown that requiring such gap does
not substantially affect the size of elected committees.

Our work serves as a starting point to fully unleash the practicality of YOSO MPC.
Relevant follow-up works include the following:

• Instantiating our framework with class groups-based solutions such as [32, 38], which
remove the trusted setup. We did not follow this approach in our work since (1) it is
simpler in terms of exposition to consider the original presentation from [59], and (2)
class group-based solutions have a 𝑛! overhead in terms of communication due to the
use of integer secret-sharing, which may not be suitable for large-party settings.

• We adapted the role assignment from [22], showing that demanding for a gap does
not affect committee sizes drastically (specially given the benefits). It remains to be
seen what is the impact of gap in more recent role assignment protocols such as [33].

• As a feasibility result, it is interesting to explore what the impact of the “gap” is in the
context of the information-theoretic security, where no computational assumptions
are used at the protocol level.

• Our preprocessing unfortunately does not benefit from packing. This is an inherent
limitation of Turbopack, and we find it highly relevant to remove such limitation.
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𝐶 𝑓 𝑡 𝑐 𝑐′ 𝜖 𝑘

1000

0.05 446 949 893 0.03 28
0.1 ⊥ ⊥ ⊥ ⊥ ⊥
0.15 ⊥ ⊥ ⊥ ⊥ ⊥
0.2 ⊥ ⊥ ⊥ ⊥ ⊥
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

5000

0.05 1078 4699 2157 0.27 1271
0.1 1721 4925 3444 0.15 741
0.15 2293 5106 4588 0.05 259
0.2 ⊥ ⊥ ⊥ ⊥ ⊥
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

10000

0.05 1754 9518 3509 0.32 3004
0.1 2937 9841 5876 0.20 1982
0.15 4004 10098 8009 0.10 1045
0.2 4983 10319 9968 0.02 175
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

20000

0.05 2998 19264 5998 0.34 6633
0.1 5216 19723 10433 0.24 4645
0.15 7237 20088 14476 0.14 2806
0.2 9107 20401 18215 0.05 1093
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

40000

0.05 5331 38907 10664 0.36 14121
0.1 9552 39558 19106 0.26 10226
0.15 13437 40074 26875 0.16 6600
0.2 17047 40517 34096 0.08 3211
0.25 20408 40911 40818 0.01 47

Table 3.1: Sample parameters. 𝐶 is the parameter for the cryptographic sortition, that
is, each party from the global pool is chosen with prob. 𝐶/𝑁 . 𝑓 is the global corruption
ratio, that is, there are 𝑓 ·𝑁 corrupt parties among the global 𝑁 parties. 𝑡 is the threshold
that upper-bounds the number of corruptions (plus one) in the committee (w.h.p.).
𝑐 = 𝑡/(1

2 − 𝜖) is the lower bound on the committee size (w.h.p.), and 𝑐′ = 2𝑡 is the lower
bound on the committee size if one takes 𝜖 = 0 (w.h.p.). 𝜖 is the gap. 𝑘 is the packing
factor. ⊥ means that the given ratio 𝑓 is impossible for the given value of 𝐶.
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Chapter 4

Improved YOSO Randomness
Generation with Worst-Case
Corruptions

Another way to be prepared is to think negatively.
Yes, I’m a great optimist. but, when trying to make a decision, I often think of
the worst case scenario. I call it “the eaten by wolves factor.” If I do
something, what’s the most terrible thing that could happen? Would I be eaten
by wolves?
One thing that makes it possible to be an optimist, is if you have a
contingency plan for when all hell breaks loose.

Randy Pausch, The Last Lecture

We conclude our quest of improving the state of the art in stateless MPC by focusing
on a specialized multi-party functionality, the task of distributed randomness generation.
We design protocols for this functionality in the recent model of YOSO with worst-case
corruptions [96], which is tailored to the problem of randomness generation. Prior work in
this model provided feasibility results in the information-theoretic setting [96]. Unfortunately,
the corresponding constructions were inefficient, and in particular, required exponential
communication complexity. In our work, we switch to the computational setting and provide
efficient protocols which also have good resiliency. We further complement our results by
lower bounds in terms of round-complexity in the setting without setup and give a protocol
which matches these lower bounds (in contrast to our efficient protocols, this one requires
exponential communication complexity).
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The work presented in this chapter is based on two joint works with Chen-Da Liu-Zhang,
João Ribeiro, Pratik Soni, and Sri AravindaKrishnan Thyagarajan. The first of these works
has been published at FC 2024 [92]. As one of the main authors, I contributed to the design
and security analysis of most of our protocols and lower bounds.

4.1 Introduction

Public randomness is a fundamental component of numerous financial and security proto-
cols [85, 100]. Randomness usage is ubiquitous: From establishing fairness in the green card
lottery, to assessing risk via Monte Carlo simulations, to generating the public parameters
for the cryptographic protocols [14, 90]. In the past, public randomness was typically
obtained via trusted third parties. However, with the emergence of blockchains and web3,
there has been an increased effort to decentralize economic activities, and as a consequence,
to decentralize public randomness generation as well [36, 37, 42, 73, 105].

A protocol for such distributed public randomness allows multiple mutually distrusting
parties, each with their own source of randomness, to generate and agree on a public
random value. However, designing a secure protocol which provides such a functionality
is a notoriously hard task. Indeed, the cryptographic community put significant effort
into designing distributed randomness generation protocols [36, 37, 42, 73, 105], as well as
improving functionalities such as verifiable delay functions [29] and time-lock puzzles [106],
which oftentimes serve as building blocks in such protocols.

Traditionally, those protocols consider static adversaries, where security is guaranteed
as long as the adversary decides which parties to corrupt prior to the start of the execution.
However, such an assumption seems unjustified, especially for protocols that run over long
periods of time. A far more realistic setting would allow the adversary to corrupt parties
dynamically during the course of the execution. This gave rise to a line of adaptively-secure
protocols that are built out of ephemeral one-time roles (e.g., [26, 41, 94, 98]), mostly
focused on agreement primitives. In the context of general multi-party computation, such
protocols have been recently proposed in the YOSO line of work.

Typically, the protocols designed in the YOSO setting rely on the fact that the adversary’s
best option is to corrupt machines at random. However, this assumption is viable only if
role-assignment mechanism is truly secure. This makes role-assignment protocols hard to
design, and the currently known constructions compromise either in terms of efficiency [59]
or in terms of the supported corruption threshold [22]. In order to reduce trust in role-
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assignment, Nielsen, Ribeiro, and Obremski (NRO in the following) recently introduced a
model for YOSO with worst-case corruptions [96], which we dub YOSOWCC. In this model,
prior to the start of the protocol, the adversary can choose any up to 𝑡 roles to corrupt
overall across all participating parties. The YOSOWCC model is tailored to the randomness
generation setting, and the authors introduce two information-theoretic protocols which are
secure given worst-case corruption of roles. Unfortunately, these protocols incur exponential
communication- and computation complexities, which motivates us to ask the following
question:

Can we design efficient distributed randomness generation protocols in the model of YOSO
with worst-case corruptions?

As it is trivially possible to adapt known stateful randomness generation protocols to
the YOSOWCC setting at the cost of having a very low adversarial threshold (see Section 4.2
for details), we further refine the question as follows:

Can we design efficient distributed randomness generation protocols in the model of YOSO
with worst-case corruptions while optimizing the required number of roles?

Finally, given the increasing significance of (variants) of the YOSO model for secure
distributed computing, it is imperative to understand the weakest cryptographic assumptions
necessary to generate useful yet stateless randomness in the distributed setting. This
motivates us to ask the following question:

What are the minimal assumptions under which efficient (poly-time) computa-
tionally secure randomness generation is feasible in the YOSOWCC model?

4.1.1 Our Contributions

In the remainder of this chapter we answer the questions above. As in NRO, we distinguish
between two different adversarial models, the sending-leaks and execution-leaks models.
Intuitively, in the execution-leaks model the adversary only obtains messages addressed to
corrupted parties upon their execution. In the stronger sending-leaks model, the adversary
obtains the messages addressed to corrupted parties immediately upon the sender sending
the message. We design two randomness generation protocols in the sending-leaks model,
along with an optimized version for the execution-leaks model, and prove these protocols
secure. Our protocols are in the computational setting, meaning that the adversary we
consider is computationally bounded.
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In our first construction, we build upon a non-interactive publicly verifiable secret sharing
(PVSS) protocol [104], which allows a dealer to share a secret in a single round among a set
of parties (a subset of which can be corrupt) in a way that lets anyone verify that the dealer
behaved correctly. Our PVSS-based randomness generation protocol requires 3𝑡+ 2 roles,
and has communication complexity that grows quadratically in the number of parties.

While the above construction requires setup and somewhat heavy cryptographic ma-
chinery in the form of simulation-extractable non-interactive zero-knowledge proofs, in our
second result we build a protocol which requires 5𝑡+ 3 roles in the execution-leaks model
and is based only on one-way functions. With the same assumption, the protocol can be
adapted to the stronger sending-leaks model while requiring 𝑛 = 6𝑡+ 3 parties.

Next, we show that we can reduce the number of parties to 𝑛 = 4𝑡+ 2 in the execution-
leaks model assuming the slightly stronger cryptographic primitive of non-interactive
perfectly binding commitments. Non-interactive commitments can be instantiated from a
variety of concrete assumptions including factoring [27, 62, 109], more recently from LWE
and LPN [66], and even from the general assumption of injective one-way functions. While
black-box separations between general one-way functions and non-interactive commitments
are known [93], non-interactive commitments are fundamental and one of the weakest
complexity-theoretic cryptographic assumptions. In the sending-leaks model, we can adapt
the above protocol with 𝑛 = 5𝑡 + 2 parties, while requiring the same computational
assumptions.

In the setting without setup, we further reduce the number of parties to 3𝑡+ 1 in the
execution-leaks model (and 𝑛 = 4𝑡 in the sending-leaks model) at the expense of exponential
computational and communication complexities in the corruption threshold 𝑡. Therefore,
the resulting protocol is only efficient when the number of parties 𝑛 satisfies 𝑛 = 𝑂(log 𝜆),
where 𝜆 is the security parameter. This is relevant as it also makes sense to consider
settings where the adversary’s running time grows much faster than the number of parties.
In particular, the protocol is efficient when the number of parties is constant.

We complement the above by studying lower bounds for computationally secure
YOSOWCC protocols without setup. Previous work [96] proved an impossibility result
for information-theoretic YOSOWCC randomness generation with 𝑛 = 4 parties and 𝑡 = 1
corruptions, which is tight and directly extends to 𝑡 > 1 corruptions and 𝑛 = 4𝑡 parties in
the sending-leaks model.1 First, we observe that the same approach gives an impossibility

1The work [96] claims that the information-theoretic (𝑡 = 1, 𝑛 = 4) impossibility result also extends
directly to 𝑡 > 1 and 𝑛 = 4𝑡 in the weaker execution-leaks model, but it is not clear whether this holds. We
discuss this in more detail in Section 4.9.
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result for computationally secure YOSOWCC randomness generation with 𝑛 = 3 parties and
𝑡 = 1 corruptions, which is tight and easily extends to 𝑡 > 1 corruptions and 𝑛 = 3𝑡 parties
in the sending-leaks model.

More interestingly, we investigate whether it is also possible to extend the (𝑡 = 1, 𝑛 = 3)
impossibility in the computational setting to 𝑡 > 1 and 𝑛 = 3𝑡 in the execution-leaks model.
In this endeavor, we take the first step with a novel approach and show the impossibility of
(𝑡 = 2, 𝑛 = 6)-computationally secure YOSOWCC randomness generation in the execution-
leaks model. We leave extending this result to 𝑡 > 2 as an interesting open problem.
Coupled with our feasibility results, this result tells us that 𝑛 = 4 parties are necessary
and sufficient for computationally secure YOSOWCC randomness generation against 𝑡 = 1
corruptions. It also tells us that 𝑛 = 7 parties are necessary and sufficient against 𝑡 = 2
corruptions in the execution-leaks model, while 𝑛 = 7 parties are necessary and 𝑛 = 8
parties are sufficient in the sending-leaks model.

In the following, we first briefly outline our model, and then provide an overview of the
main techniques and ideas used in our work.

4.1.2 Our Model and Security Goal

We now briefly outline the YOSOWCC model we work in, following the communication model
description of NRO [96]. We distinguish between stateless “roles” and physical machines
which may run for a long time and retain state. Note that in the following we use the terms
“role” and “party” interchangeably. We consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛, which are executed
one after the other. We assume that each party has its own internal source of randomness.
We consider a computationally bounded adversary which is allowed to corrupt any 𝑡 out of
𝑛 parties before the protocol starts. Upon its execution, 𝑃𝑖 can publicly broadcast a value
𝑥𝑖 and send secret values 𝑠𝑖,𝑗 to each “future” party 𝑃𝑗, i.e., any 𝑃𝑗 such that 𝑗 > 𝑖. We
consider the following two adversarial network settings:

• In the sending-leaks model an adversary obtains a message 𝑠𝑖,𝑗 sent by an honest 𝑃𝑖 to a
corrupt 𝑃𝑗 as soon as 𝑃𝑖 sent it. We call the corresponding adversary the sending-leaks
adversary.

• In the execution-leaks model an adversary obtains a message 𝑠𝑖,𝑗 sent by an honest 𝑃𝑖

to a corrupt 𝑃𝑗 only once 𝑃𝑗 is activated. We call the corresponding adversary the
execution-leaks adversary.

Our goal is the following: After the execution of all parties is complete, anyone (not just
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Figure 4.1: Communication model from [96, Figure 1]. Parties 𝑃𝑖 speak one after the
other, send secrets to future parties 𝑃𝑗 for 𝑗 > 𝑖, and publish public values, which are
available to all parties.

physical machines which acted as roles 𝑃1, . . . , 𝑃𝑛) can obtain unbiased public randomness
by applying a publicly known and deterministic extraction function to the values (𝑥1, . . . , 𝑥𝑛).
See Figure 4.1 for a visual representation of this process.

More formally, let 𝜆 denote a security parameter. Consider an interaction of an adversary
𝐴 with the honest parties in the randomness generation protocol and let OUT(𝐴) denote
the coin output of this protocol with adversary 𝐴. Let 𝐿(𝜆) denote the length of this
output. Let 𝐷 be a distinguisher. Consider the following experiment (for protocols which
assume trusted setup, this setup is generated by the challenger):

1. 𝑏 $← {0, 1}.
2. 𝑟 $← {0, 1}𝐿(𝜆).
3. If 𝑏 = 0, set coin← OUT(𝐴). Otherwise, set coin← 𝑟.
4. 𝑏′ ← 𝐷(coin).

Then, we have the following formal security definition.
Definition 16 (Computationally secure YOSOWCC randomness generation). A YOSOWCC

randomness generation protocol with 𝑛 parties is (𝑡, 𝑛)-computationally secure in the sending-
leaks (resp. execution-leaks) model if for all PPT sending-leaks (resp. execution-leaks)
adversaries 𝐴 that corrupt 𝑡 out of 𝑛 parties and all PPT distinguishers 𝐷 in the above
security game it holds that

⃒⃒⃒⃒
Pr[𝑏 = 𝑏′]− 1

2

⃒⃒⃒⃒
≤ negl.
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4.2 Our Techniques

First, note that, as pointed out by NRO, any stateful 𝑟-round multiparty computation
protocol which is secure against 𝑡 out of 𝑛 corruptions can be ported to the YOSOWCC

setting as follows: Use 𝑟 roles 𝑃𝑖,𝑟 to implement the behavior of each participant 𝑃𝑖 of
the stateful protocol over 𝑟 rounds. Role 𝑃𝑖,𝑘 mimics the behavior of 𝑃𝑖 in round 𝑘 of the
stateful protocol, with the caveat that it additionally sends its state to the future role 𝑃𝑖,𝑘+1.
Unfortunately, this approach is costly in terms of the required number of roles: It requires
𝑛 · 𝑟 roles, while tolerating only 𝑡 corrupted parties.

To address this issue, we design randomness generation protocols which are tailored to
the YOSOWCC setting. For simplicity, say we wish to generate only a single random bit
𝑟 ∈ {0, 1}.

4.2.1 First Attempts at YOSOWCC Protocols

Our first idea is the following: As each party has its own source of randomness, we could
set 𝑛 = 𝑡+ 1 and simply XOR all values 𝑟𝑖, where 𝑟𝑖 is the random bit generated by 𝑃𝑖, i.e.,
set 𝑟 = ⨁︀

𝑖∈[𝑡+1] 𝑟𝑖. As at least one party out of 𝑡+ 1 is honest, the XOR should result in an
unbiased bit. However, we need to be careful – we must not let a corrupt party see the
values of the honest parties before supplying its own 𝑟𝑖. Thus, intuitively, we have to make
each party commit to the randomness it wishes to contribute prior to revealing the values of
other parties. This approach requires a party to speak two times: Once when committing
to a value, and once when opening it. This can be naively achieved by using two roles to
implement 𝑃𝑖, and having the first role privately send its state to its counterpart.

Perhaps surprisingly, this approach still does not achieve what we want: As corrupt
parties can refuse to open the committed values, in our protocol we must specify how to
proceed in such a case. This allows for conditional abort attacks. Consider the following.
When dealing with verifiably malicious behavior, we can either choose to ignore each such
party 𝑃𝑖, thereby making their contribution equal to 𝑟𝑖 = 0 (first case in the following), or
set 𝑟𝑖 = 1 (second case). In both cases, a corrupt 𝑃𝑡+1 can bias the outcome of the final
XOR by committing to 𝑟𝑡+1 = 1 in the first case and 𝑟𝑡+1 = 0 in the second case, and then
adaptively deciding whether to open the value or not during the execution of its second
role, thereby setting the result 𝑟 to the value of its choice. As the second role of 𝑃𝑡+1 is the
last party speaking, all values supplied by the honest parties are known upon its execution.

121



4.2.2 Utilizing PVSS

We address the issue above by ensuring that the coin output is fixed prior to the reveal
phase. We begin by considering a setting with trusted setup. In this case, we can rely on
a (𝑡, 𝑛)-publicly verifiable secret sharing (PVSS) protocol. Using such a protocol, a dealer
can secret share its secret among 𝑛 parties in a way that any 𝑡+ 1 parties can reconstruct
the secret, but any 𝑡 (potentially corrupted) parties have no information about the secret.
Moreover, public verifiability ensures that anyone (even non-recipients) can verify that the
dealer sharing has been performed correctly; i.e., there exists a unique secret which can be
later reconstructed by any set of 𝑡+ 1 recipient parties.

Intuitively, this fixes the secret at the end of the commit/sharing phase, and if the
adversary corrupts at most 𝑡 parties, it does not learn any information about the secret. If
we ensure that the secret reconstruction starts only after the sharing phase of all secrets
is complete, the adversary can no longer bias the outcome. However, there is one caveat:
As anyone must be able to verify that the sharing was done correctly, the dealer cannot
send the shares to the parties via private communication. Instead, the dealer publishes
encryptions of the shares of the parties with respect to their corresponding public keys.
In a scenario such as ours, where we run not only one, but multiple PVSS protocols,
publicly revealing encryptions of the shares makes PVSS susceptible to malleability attacks.
To prevent such attacks from adversarial dealers, we make use of a PVSS protocol with
appropriate non-malleability properties. Such properties can be achieved, for example, via
simulation-extractable non-interactive zero-knowledge proofs [72].

If we use a (𝑡, 2𝑡+ 1)-PVSS protocol, the above protocol requires only 3𝑡+ 2 roles in
total: 𝑡+ 1 dealers and 2𝑡+ 1 parties who obtain the secret shares. This protocol allows us
to achieve the following result:
Theorem 7 (informal). Assuming public key encryption and simulation-extractable NIZKs,
there exists a computationally secure randomness generation protocol with 3𝑡+ 2 roles in
the sending-leaks model, where 𝑡 is the number of corruptions.

We give a formal description of our PVSS-based construction in Section 4.4.

While the protocol above enjoys good efficiency properties and requires only a small
number of parties, it relies on somewhat heavy cryptographic assumptions and a trusted
setup. We now address these limitations.
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4.2.3 An Efficient YOSOWCC Protocol based on Digital Signatures

Recall that to circumvent the “conditional abort” issue, we need to ensure that the coin
output is fixed prior to the reveal phase. Toward this end, we turn to Verifiable Secret
Sharing (VSS). Roughly speaking, a (𝑡, 𝑛)-VSS protocol allows threshold secret sharing of a
secret to 𝑛 parties such that (1) a secret shared by an honest dealer is always reconstructed
correctly by any set of 𝑡+ 1 parties, (2) prior to reconstruction phase, no information is
leaked about the secret to any set of 𝑡 parties, and (3) receivers can verify that the dealer
behaved correctly, i.e., there exists a unique secret corresponding to the sharing phase, and
it can be correctly reconstructed.

Intuitively, this fixes the secret at the end of the commit (sharing) phase, and the
adversary corrupting at most 𝑡 parties learns no information about the secret. If we ensure
that the coin reconstruction starts only after the sharing phase of all secrets is complete,
the adversary can no longer bias the outcome.

Our first goal is to design a YOSOWCC VSS protocol with as few roles and as minimal
assumptions as possible. We will then see how to use this VSS protocol to build a full-
fledged YOSOWCC randomness generation protocol. In fact, we show that our randomness
generation protocol can be based on a weaker version of VSS, which we call split-dealer
VSS.

Unoptimized Stateful VSS. Our starting point is the elegant stateful VSS protocol by
Hirt and Zikas [80] that is based on the BGW VSS protocol [20] and the work of Cramer,
Damg̊ard, Dziembowski, Hirt, and Rabin [46]. The protocol requires 𝑛 = 2𝑡 + 1 parties
who hold secret shares and rely on a standard signature scheme, private communication
channels, and access to a broadcast channel. This protocol consists of two phases each with
several rounds as described below.

Sharing Phase:

(1) Share round: Dealer 𝐷 with secret 𝑠 selects a uniform bi-variate polynomial 𝑓(𝑥, 𝑦)
of degree at most 𝑡 in each variable, such that 𝑓(0, 0) = 𝑠. Let 𝑠𝑖,𝑗 = 𝑓(𝑖, 𝑗). 𝐷 privately
sends shares {𝑠𝑘,𝑖}𝑘∈[𝑛] and {𝑠𝑖,𝑘}𝑘∈[𝑛], along with signatures on these values to each party
𝑃𝑖. 𝑃𝑖 denotes these values as {𝑠(𝑖)

𝑘,𝑖}𝑘∈[𝑛] and {𝑠(𝑖)
𝑖,𝑘}𝑘∈[𝑛].

(2) Share check round: Each party 𝑃𝑖 checks whether the values they received are
𝑡-consistent, i.e., fit onto a polynomial of degree at most 𝑡, and contain valid signatures
from 𝐷. If not, 𝑃𝑖 broadcasts a complaint.
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(3) Dealer response round: Dealer 𝐷 addresses the complaint of each party 𝑃𝑖 by
broadcasting the correct values for 𝑃𝑖, along it’s signatures. If these values are not 𝑡-
consistent or the signatures are invalid, 𝐷 is deemed corrupt and the execution halts.
Otherwise, 𝑃𝑖 adopts the new values as the messages it received in the sharing round.

(4) Subshare exchange round: Party 𝑃𝑖 sends the value 𝑠(𝑖)
𝑖,𝑗 and both its own, and the

dealer’s signature on it privately to 𝑃𝑗.

(5) First subshare check round: Party 𝑃𝑖 checks if they received a message along with
valid signatures from every other party. If a message from 𝑃𝑗 is missing or does not contain
valid signatures, 𝑃𝑖 broadcasts a complaint.

(6) Resolve complaints round: Party 𝑃𝑖 checks if there is a complaint by any 𝑃𝑗 about
𝑃𝑖. If yes, 𝑃𝑖 broadcasts 𝑠(𝑖)

𝑖,𝑗 along with 𝐷’s and its own signature. If 𝑃𝑖 is silent, or any of
the signatures are invalid, 𝑃𝑖 is deemed corrupt, and everyone sets signatures of 𝑃𝑖 to ⊥.
Otherwise, 𝑃𝑗 adopts the message broadcast by 𝑃𝑖 as the message it received during the
subshare exchange.

(7) Second subshare check round: Party 𝑃𝑖 checks if it received any value 𝑠(𝑗)
𝑗,𝑖 during

the subshare exchange or resolve complaints round which is inconsistent with its view. If
yes, 𝑃𝑖 broadcasts 𝑠(𝑗)

𝑗,𝑖 , 𝑠(𝑖)
𝑗,𝑖 , along with 𝐷’s signature on both values. If the two values are

different, and have valid signatures, 𝐷 is deemed corrupt and the execution halts.

Reconstruction Phase: In this phase each party 𝑃𝑖 broadcasts {𝑠(𝑖)
𝑘,𝑖}𝑘∈[𝑛], along with the

signature for each 𝑠
(𝑖)
𝑗,𝑖 that 𝑃𝑖 received from 𝑃𝑗. Each party checks if the values broadcast

by every 𝑃𝑖 are 𝑡-consistent, and all signatures are valid. If not, 𝑃𝑖 is disqualified. The
values of all non-disqualified parties are interpolated to compute 𝑓(0, 0).

The protocol’s correctness relies on honest parties only sending or broadcasting consistent,
correctly signed values, with their shares being sufficient to compute the secret. Privacy
is maintained as any 𝑡 shares reveal no information about the secret, and the adversary
learns nothing additional from honest parties during the sharing phase. For verifiability, if
the dealer is not disqualified, a sufficient number of honest parties (𝑛− 𝑡 = 𝑡+ 1) possess
consistent shares that define a unique secret. Even a malicious dealer cannot prevent the
secret’s reconstruction, as no honest party would sign inconsistent shares.

Reducing Round Complexity. The scheme above is not well-suited for a direct transfor-
mation into the YOSOWCC setting. In fact, a naive transformation of the above protocol
to the YOSOWCC model would require 𝑛 = 6(2𝑡 + 1) + 2 = 12𝑡 + 8 parties. The round
complexity of the above VSS is the first clear bottleneck in our approach. Therefore, we
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aim to reduce the number of rounds, and thus reduce the number of parties needed in the
YOSOWCC model.

Merging Subshare Checks. Observe that if round 5 and round 7 subshare checks could
be merged, followed by a one-shot “resolve complaints” (round 6), this would reduce the
round complexity by one round, resulting in a reduction of 2𝑡+ 1 parties in the YOSOWCC

setting.

The intuition behind having the “resolve complaint” phase between the two subshare
checks is the following: If party 𝑃𝑖 complains in (5), party 𝑃𝑗 resolves the complaint publicly
in (6) while including its own and the dealer’s signatures. Everyone can verify whether
𝑃𝑗’s response is valid. Even if so, 𝑃𝑖 might still be unhappy, as the dealer could have given
inconsistent shares to 𝑃𝑖 and 𝑃𝑗. In this case, 𝑃𝑖 can complain again, this time including
its own and the dealer’s signature on the corresponding value. Since all the complaints and
the resolving messages are public, anyone can conclude if the dealer is to be blamed or not.
We make the following crucial observation: 𝑃𝑖 never changes its own share based on the
resolving message from 𝑃𝑗 in round (6). Additionally, 𝑃𝑖 can verify whether the value it
received from 𝑃𝑗 in the subshare exchange (4) is consistent with its own shares received
from the dealer directly after (4).

These observations allow us to change the protocol as follows, while retaining its security.
If the share that 𝑃𝑖 was supposed to receive from 𝑃𝑗 during the subshare exchange (4) is
missing, contains invalid signatures, or is inconsistent with its own share, 𝑃𝑖 complains and
includes its own and the dealer’s signatures. Then, 𝑃𝑗 is forced to publicly respond. As
before, if 𝑃𝑗’s response is missing or contains invalid signatures, 𝑃𝑗 is discarded. If 𝑃𝑗’s
response is inconsistent with 𝑃𝑖’s, but the signatures are valid, everyone can conclude that
the dealer misbehaved. This has the same effect as before – either the parties agree on their
shares, or either a malicious party 𝑃𝑖 or the malicious dealer is disqualified.

Merging Share Check and Subshare Exchange. Next, we seek to merge the share
check (2) and the subshare exchange (4) rounds, which would result in another reduction
of 2𝑡+ 1 parties.

Currently, the dealer ensures in (3) that either all parties are happy with their shares, or
the dealer can be deemed corrupt for publicly providing inconsistent shares. Thus after (3),
all parties must have complete sharings signed by the dealer, and if there are complaints in
later rounds, we can definitively assign blame to either the dealer or a party. Observe that
if a party complains in (2), everyone knows that the party is unhappy, and other happy
parties can still crosscheck their values. However, we must ensure that if the dealer resolves
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complaints after the subshare checks, the new shares are still consistent with the shares of
the happy ones. Subtle modifications allow merging (2) and (4) and delaying the dealer
response until the sharing phase’s end.

Happy parties proceed with the subshare exchange, while unhappy party 𝑃𝑖 skips this
phase and broadcasts a complaint. 𝑃𝑖 also skips the subshare checks and the resolve
complaints round. If happy party 𝑃𝑗 complains about a missing message from 𝑃𝑖, 𝑃𝑗

includes 𝑠(𝑗)
𝑗,𝑖 and 𝑠

(𝑗)
𝑖,𝑗 , along with its own and the dealer’s signature. After the resolve

complaint phase, the dealer addresses 𝑃𝑖’s complaint. Everyone verifies that the values
posted by the dealer are consistent, in particular with the non-complaining parties, like 𝑃𝑗.
As 𝑃𝑗 broadcast 𝑠(𝑗)

𝑗,𝑖 , 𝑠
(𝑗)
𝑖,𝑗 along with valid signatures from the dealer, anyone can see if the

new share distributed by the dealer is consistent, and the dealer can be discarded if this is
not the case.

Removing “Resolve Complaints”. Currently, the “resolve complaints” round is followed
by the dealer response. We might hope that the dealer can resolve the complaints on behalf
of every party 𝑃𝑗, eliminating the need for the resolve complaints round. However, this
modification requires some care: A malicious dealer and a malicious party 𝑃𝑖 can provide
a share inconsistent with an honest happy party 𝑃𝑗. Imagine a malicious 𝑃𝑖 complaining
about an honest party 𝑃𝑗, while including a valid signature on 𝑠

(𝑗)
𝑗,𝑖 , 𝑠

(𝑗)
𝑖,𝑗 from a malicious

dealer. Previously, 𝑃𝑗 would have responded publicly by providing the dealer’s signature
on its own share, thus unmasking the malicious dealer. However, now the dealer can simply
confirm 𝑃𝑖’s share, and thus the share held by 𝑃𝑗 becomes inconsistent.

We rectify this issue by using 3𝑡+ 1 share receivers (instead of 2𝑡+ 1), and skipping the
“resolve complaints” round, without having the dealer resolve parties’ complaints about each
other. Every point on which 𝑃𝑖 did not get a valid signature from 𝑃𝑗 is now essentially lost
for reconstruction. 𝑃𝑖 still checks whether the points from 𝑃𝑗 contain valid signatures of the
dealer on an inconsistent share, and blames the dealer if so. 𝑃𝑖 also broadcasts a complaint
for a missing message from 𝑃𝑗 , along with the dealer’s signature on its corresponding share
to ensure that any share that the dealer will broadcast for an unhappy 𝑃𝑗 remains consistent
with 𝑃𝑖’s share. In the reconstruction phase, we consider any polynomial of 𝑃𝑖 to be valid
if it has 2𝑡 + 1 points 𝑠(𝑖)

𝑗,𝑖 , such that (1) each point is either correctly signed by 𝑃𝑗, or
broadcast by the dealer if 𝑃𝑗 complained during the share check, and (2) all these points
lie on a polynomial of degree at most 𝑡. Intuitively, requiring 2𝑡+ 1 valid points ensures
that any party’s share is consistent with at least 2𝑡+ 1− 𝑡 = 𝑡+ 1 honest parties. Since
any 𝑡 + 1 honest shares fix the secret, any valid share is thus consistent with the secret.
Simultaneously, given 3𝑡 + 1 share receivers, any party can provide at least 2𝑡 + 1 such
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points, as at most 𝑡 of the points can be unavailable due to malicious parties. While this
adds 𝑡 receivers, we can cut the resolve complaints round and save 𝑡+ 1 parties with further
optimisations discussed below.

Obtaining YOSOWCC VSS. In the scheme we arrived at, the sharing phase consists of
the following rounds: sharing, share check with subshare exchange, subshare checks, and
dealer response. Consider a “linearized” version of this scheme in the YOSOWCC setting,
where parties are executed one after the other: It requires one party 𝐷1 to be the dealer
in share round, and another party 𝐷2 to execute the role of the dealer in dealer response
(this will be the resolver). It further requires a set of 3𝑡 + 1 parties 𝒫1 to execute share
check with subshare exchange, another set 𝒫2 of size 3𝑡+ 1 to execute the subshare check,
and a set 𝒫 ′ of 3𝑡+ 1 parties to perform the reconstruction. The scheme works as follows:
First, the dealer 𝐷1 distributes shares of secrets to parties in 𝒫1, and additionally sends
its entire state to the future dealer 𝐷2. Then, one after the other, each party 𝑃 1

𝑖 ∈ 𝒫1

performs the share check, and either sends its subshares to the parties in 𝒫2, or complains
about the dealer. Additionally, 𝑃 1

𝑖 sends its state to its future counterpart 𝑃 2
𝑖 ∈ 𝒫2. Each

𝑃 2
𝑖 ∈ 𝒫2 performs the subshare checks, complains if necessary, and sends its state to the

future counterpart 𝑃 ′
𝑖 . Finally, parties in 𝑃 ′

𝑖 output the data from which 𝑠 can be computed
according to the reconstruction phase.

We observe the following: during the sharing check with subshare exchange, when party
𝑃 1

𝑗 is executed, it could have already obtained the shares of all parties 𝑃 1
𝑖 , for 𝑖 < 𝑗, and

perform the subshare checks, as those parties have already executed the subshare exchange.
If we were to require the checks to be performed only by such ordered pairs of parties, in
the YOSOWCC model we could remove the 3𝑡+ 1 parties 𝒫2 which are currently used to
execute the subshare check round of the stateful construction. Note that in the stateful
version, we already do not require parties 𝑃𝑖 to resolve the complaints about them, as we
were able to remove the resolve complaints round by requiring 3𝑡+ 1 share receivers and
2𝑡+ 1 valid points in the reconstruction phase instead. Thus, we simply must ensure that if
honest parties notice an inconsistency in the prior version of the protocol, this inconsistency
still becomes public, even if the check is done only for pairs (𝑃𝑖, 𝑃𝑗), where 𝑖 < 𝑗. Note that
given two honest parties 𝑃𝑖, 𝑃𝑗, it is sufficient if only one of them checks their shares for
consistency and complains on behalf of the pair if necessary. For this, we let the complaint
include signatures on the respective values from both 𝑃𝑖 and 𝑃𝑗, as well as the dealer’s
signatures on these values. This way, in the YOSOWCC version of the construction, we can
slash additional 3𝑡+1 parties 𝒫2 by merging the sharing check with subshare exchange, and
subshare checks phases. In the following, we have only the set 𝒫 , instead of two separate
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sets 𝒫1 and 𝒫2.

Optimizing Reconstruction in the Sending-Leaks Model. In the sending-leaks model
we optimize our construction as follows. Having a one-to-one correspondence between the
3𝑡+ 1 parties 𝑃 and parties 𝑃 ′ seems wasteful, as intuitively 2𝑡+ 1 reconstructors ought to
be sufficient. Consider the following optimization: Instead of having each 𝑃𝑖 ∈ 𝒫 send the
state only to its counterpart 𝑃 ′

𝑖 ∈ 𝒫 ′, party 𝑃𝑖 secret shares it to parties 𝒫 ′, |𝒫 ′| = 2𝑡+ 1,
using a standard (𝑡, 2𝑡+ 1)-Shamir secret sharing, while including its own signature on the
share. The privacy of the honest shares is still preserved for the duration of the sharing
phase by the privacy of the secret sharing scheme. The 2𝑡+ 1 reconstructors now broadcast
the signed shares of each 𝑃𝑖’s state. As only the shares correctly signed by 𝑃𝑖 will be used
for reconstruction of 𝑃𝑖’s state, no adversary can modify the reconstructed state of an
honest 𝑃𝑖. Further, 𝑡+ 1 correctly signed shares are available for any honest 𝑃𝑖 as there are
at least 𝑡+1 honest reconstructors. Now, we only require 2𝑡+1 parties in the reconstruction
phase. This finalizes our scheme in the sending-leaks model. A full formal description is
given in Protocol 17.

Optimizing Reconstruction in the Execution-Leaks Model. In the execu-tion-leaks
model we can further reduce the number of reconstructors compared to the sending-leaks
model. Consider the following modification: Instead of having each 𝑃𝑖 ∈ 𝒫 send the state
only to its counterpart 𝑃 ′

𝑖 ∈ 𝒫 ′, 𝑃𝑖 sends it (signed) to every party in 𝒫 ′. As in the
execution-leaks model the adversary obtains the values only when an adversarial party is
being executed, the privacy of the honest shares is preserved for the duration of the sharing
phase. Now, we only require 𝑡+ 1 parties in the reconstruction phase to ensure there is at
least 1 honest reconstructor in 𝒫 ′. These parties gather the information sent to them by
the parties 𝑃𝑖, and reveal all shares that are verified, along with all available signatures.
This finalizes our scheme in the execution-leaks model. We give the full construction in
Protocol 16, and provide a formal security proof in Section 4.6.1.

Putting It Together: Efficient YOSOWCC Randomness Generation. We now
compile several instances of our YOSOWCC SD-VSS protocol introduced above into the
randomness generation protocol we aimed for. Concretely, we take 𝑡+ 1 instances of our
YOSOWCC SD-VSS so that we have 𝑡+ 1 dealers and the final coin is computed through
some deterministic function of the non-misbehaving dealers’ secrets. This compilation
step has to be done carefully to minimize the role-overhead for our randomness generation
protocol without compromising security.

As a first step, consider the following construction: 𝑡+ 1 dealers in 𝒟 share their secrets
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via YOSOWCC SD-VSS to the same set of share receivers 𝒫 . Each 𝑃𝑖 ∈ 𝒫 verifies its shares,
distributes subshares, submits complaints and sends its state to the future as specified
by YOSOWCC SD-VSS above. Then, for each dealer 𝑃𝑖 ∈ 𝒟 its counterpart 𝑃 ′

𝑖 ∈ 𝒟′,
dubbed resolver, addresses the complaints of the receivers. The reconstructors publish
data according to the YOSOWCC SD-VSS. Given this information, anyone can compute the
value shared by each dealer, and output for instance the XOR of each valid value that was
reconstructed. This requires 6𝑡+ 4 parties in total in the execution-leaks model, and 7𝑡+ 4
parties in the sending-leaks model.

Role-Stacking. We introduce role-stacking to reduce the number of parties needed. Notice
that when dealer 𝑃𝑖 ∈ 𝒟 is active, each dealer 𝑃𝑗 for 𝑗 < 𝑖 has already distributed their
share. Thus, 𝑃𝑖 can act as a dealer for its secret, a share receiver of all secrets from prior
dealers 𝑃𝑗 for 𝑗 < 𝑖, and a receiver for the sharing of its own secret. This allows us to
“stack” multiple instances of SD-VSS, so each party performs multiple roles during execution.
Role-stacking merges (1) dealers and share recipients, and (2) share recipients and resolvers.

This approach maintains security, as at most 𝑡 dealers can be corrupted, ensuring at least
one honest value is used in the output. For each SD-VSS, at most 𝑡 recipients are corrupted,
preserving the security properties of the stacked construction. However, care is required
when using role-stacking in general: For example, security immediately breaks down if
we stack roles from the sharing phase with roles from the reconstruction phase. Using
role-stacking in combination with YOSOWCC SD-VSS, we obtain a YOSOWCC randomness
generation with role complexity of 𝑛 = 5𝑡+3 in the execution-leaks model, and 𝑛 = 6𝑡+3 in
the sending-leaks model with the minimal assumption of the existence of digital signatures
(or one-way functions).

4.2.4 An Efficient YOSOWCC Protocol based on Non-Interactive
Commitments

In our next step, we improve the number of required roles by providing efficient YOSOWCC

protocols under the assumption of non-interactive commitments. Our construction can be
seen as a variant of the protocol from [92] that uses ElGamal commitments, but generalized
to allow for any non-interactive commitment scheme (even if it is not homomorphic). The
protocol from [92] is a custom version of a sequence 𝑡+ 1 instantiations of Pedersen’s VSS
protocol [99], where each dealer shares a random value. More precisely, each instantiation
has the following roles:
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1. Party 𝐷, who acts as the dealer distributing the secrets (publishing commitments to
the coefficients of 𝑡-degree polynomial and bilaterally sending to each receiver a share
evaluation), and sends its state to its counterpart 𝐷′.

2. 2𝑡+ 1 receivers 𝑅𝑖, who receive and verify the secret shares, complain about the shares
if applicable, and otherwise send these to each party 𝑅′

𝑖.
3. Party 𝐷′ who obtains a state from 𝐷 and uses it to publish the shares of the receivers

that complained. If 𝐷′ cannot resolve a complaint, this instance is aborted.
4. 𝑡 + 1 receivers 𝑅′

𝑖 who receive all the shares from each party 𝑅𝑖, as well as set their
shares to the ones broadcast by 𝐷′ (if the counterpart 𝑅𝑖 complained), and publicly
reveal all these shares.

The idea is that after the first three steps, the dealer has committed to a random value,
which will be reconstructed in Step 4. Note that before Step 4, if both 𝐷 and 𝐷′ are honest,
no information about the committed random value is revealed. Therefore, to generate a
random coin, one can use a standard linearization of 𝑡+ 1 instances of the above protocol
(where the first three steps of each instance are executed, and subsequently all committed
random values are reconstructed). The final coin is then the sum of the 𝑡 + 1 random
values. This works because since there are 𝑡 + 1 dealers, at least one of them is honest;
moreover, before the reconstruction phase starts (Step 4 of each instance), the adversary
submits secrets without knowing the honest secrets, and every instance that succeeded, is
guaranteed to be reconstructed.

The above construction requires the commitment to be homomorphic, since the receivers
need to compute commitments to the point evaluations from the commitments to the
polynomial coefficients. We observe that one can instead let the dealer 𝐷 publish 2𝑡+ 1
commitments to the points themselves, rather than the 𝑡+ 1 coefficients, and send its state
to 𝐷′. However, the difference is that now a cheating dealer could commit to a polynomial
that is not of degree 𝑡.

To solve this, one can instead let the dealer commit to all the points of a bivariate
degree-𝑡 polynomial 𝐹 (𝑥, 𝑦), and send to each receiver 𝑅𝑖 the openings corresponding to
the 𝑖-th projection (horizontal and vertical), i.e. openings to the commitments of the points
{𝐹 (𝑖, 𝑗)}𝑗∈[2𝑡+1] and {𝐹 (𝑗, 𝑖)}𝑗∈[2𝑡+1]. Each receiver can now directly check the openings
against the published commitments, and also check that the two projections are of degree 𝑡.
The party 𝐷′ will publish the openings to the points of any 𝑅𝑖 that complained.

After resolving the complaints, observe that the projections corresponding to any two
honest receivers 𝑅𝑖 and 𝑅𝑗 are consistent among each other and have degree 𝑡, and therefore
the committed bivariate polynomial 𝐹 has degree 𝑡. Moreover, the state of each 𝑅𝑖 is sent
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to all receivers 𝑅′
𝑖, and therefore any honest receiver 𝑅′

𝑖 can provide enough information to
reveal the whole polynomial.

At a high level, the protocol described above uses a total of 𝑛 = 5𝑡+ 4 parties: a group
𝒟 of size 𝑡+ 1, group ℛ of size 2𝑡+ 1, group 𝒟′ of size 𝑡+ 1, and group ℛ′ of size 𝑡+ 1.
The parties execute the following roles:

• Each 𝐷𝑖 ∈ 𝒟 acts as the dealer 𝐷 in the 𝑖-th linearization.
• Each 𝑅𝑖 ∈ ℛ executes the role of the 𝑖-th receiver 𝑅𝑖 in each of the 𝑡+ 1 linearizations.
• Each 𝐷′

𝑖 ∈ 𝒟′ acts as the dealer 𝐷′ in the 𝑖-th linearization.
• Each 𝑅′

𝑖 ∈ ℛ′ executes the role of the 𝑖-th receiver 𝑅′
𝑖 in each of the 𝑡+ 1 linearizations.

However, one can slightly improve the number of roles to 4𝑡 + 4 with the following
modification. Instead of letting 𝑡+ 1 dealers, each of whom shares secrets among the same
set ℛ of 2𝑡+ 1 parties, we let each dealer share secrets among the next 2𝑡+ 1 parties. More
details can be found in Section 4.7.

4.2.5 A YOSOWCC Protocol for 𝑛 = 3𝑡+ 1 Parties

We now discuss how we can further reduce the number of parties to 𝑛 = 3𝑡+1 in the execution-
leaks model, at the expense of exponential computational and communication complexities
in the corruption threshold 𝑡. The protocol follows the familiar high-level structure where
we split the set of parties into dealers and receivers. In previous instantiations of this
structure, we had each dealer perform one sharing. Instead, here we have each dealer
perform a number of sharings potentially exponential in 𝑡.

Let ℓ be the number of dealers (to be set later). Each sharing is represented by a
nonzero vector 𝑣 ∈ {0, 1}ℓ. The dealer corresponds to min Supp(𝑣), i.e., the position of the
leftmost 1 in 𝑣. Our building block is a non-interactive commitment scheme COM (that is
perfectly binding and computationally hiding). We focus on generating a random bit here.
A sharing proceeds as follows:

1. The dealer samples a random bit 𝑟𝑣 ←$ {0, 1} and broadcasts a commitment com to 𝑟𝑣.
It also sends 𝑟𝑣 to all parties 𝑃𝑖 such that 𝑖 ∈ Supp(𝑣) and to all receivers via private
messages.

2. Each party 𝑃𝑖 such that 𝑖 ∈ Supp(𝑣) forwards the openings it receives from earlier parties
in Supp(𝑣) to all receivers. If it receives an inconsistent opening from the earlier party,
then it broadcasts (Complain, 𝑣).

3. Receivers broadcast everything that they receive through private messages.
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Overall, the 𝑚 total sharings are represented by rows of a binary “𝑡-sharing matrix”
𝑀 ∈ {0, 1}𝑚×ℓ. Given this matrix, the full protocol works as follows:

1. The ℓ dealers 𝑃1, . . . , 𝑃ℓ perform sharings according to the 𝑚 rows of 𝑀 .
2. Party 𝑃ℓ+1 outputs a random bit 𝑟⋆ ←$ {0, 1}.
3. The 𝑡+ 1 receivers 𝑃ℓ+2, . . . , 𝑃ℓ+𝑡+1 broadcast everything they receive from the dealers
𝑃1, . . . , 𝑃ℓ.

To reconstruct the coin from the public broadcasts, we use the information published by
the receivers to open the commitments published by the dealers, and then XOR the random
bits 𝑟𝑣 for all rows 𝑣 of 𝑀 with the special random bit 𝑟⋆. If a complaint was broadcast
during the sharing of some bit 𝑟𝑣, then we ignore that sharing (i.e., replace it by 0 in the
XOR).

We identify two properties of the 𝑡-sharing matrix 𝑀 that are sufficient to yield a secure
protocol against 𝑡 corruptions:

1. Every row of 𝑀 has Hamming weight 𝑡 (i.e., |Supp(𝑣)| = 𝑡 for all rows 𝑣);
2. For any 𝑡 − 1 columns 𝑀·𝑗1 ,𝑀·𝑗2 , . . . ,𝑀·𝑗𝑡−1 of 𝑀 , there exists an index 𝑖 such that
𝑀𝑖𝑗1 = 𝑀𝑖𝑗2 = · · · = 𝑀𝑖𝑗𝑡−1 = 0. In other words, the coordinate-wise union of any 𝑡− 1
columns is not the all-1s vector.

The second property is reminiscent of the notion of 𝑡-disjunct matrices, which are useful
in the design of non-adaptive group testing schemes (see [76, Chapter 22] for a discussion
of this topic).

Intuition behind the security proof. We give some intuition on why the properties
above are sufficient to establish security. First, note that if the adversary corrupts 𝑡 dealers,
then they cannot bias the coin because they do not know the random bit published by
𝑃ℓ+1 (who is honest), and, furthermore, all the receivers are also honest. Therefore, we
may assume that the adversary corrupts at most 𝑡 − 1 dealers, and possibly some other
non-dealer parties.

By Property 1 above, the assumption that only at most 𝑡 − 1 dealers are dishonest
means that every sharing contains at least one honest party. This forces the dishonest
parties in that particular sharing to commit to some (possibly non-random) value during
the sharing procedure, as otherwise the honest party would identify an inconsistency and
complain. If 𝑃ℓ+1 is honest, then the output of the protocol will be unbiased, because this
party is only executed after the sharing phase has concluded and so its published bit 𝑟⋆

is uniformly random and independent of the bits generated in the sharing phase. On the
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other hand, if 𝑃ℓ+1 is dishonest then we invoke Property 2, which ensures that there is a
sharing in which all participating parties are honest. Intuitively, the random bit produced
in this fully honest sharing is hidden (by the security of the commitment scheme) from the
adversary until the receivers are executed, at which point other shared values have already
been committed to and party 𝑃ℓ+1 has already been executed.

Constructing the 𝑡-sharing matrix. It remains to give a construction of a 𝑡-sharing
matrix 𝑀 ∈ {0, 1}𝑚×ℓ satisfying the properties laid out above. A simple option that works,
and which we use, is to consider ℓ = 2𝑡− 1 columns and 𝑚 =

(︁
2𝑡−1

𝑡

)︁
rows, one per weight-𝑡

vector of length 2𝑡−1. Instantiating the framework above with this matrix yields a protocol
with

𝑛 = ℓ+ 1 + (𝑡+ 1) = (2𝑡− 1) + 1 + (𝑡+ 1) = 3𝑡+ 1

parties. It is natural to wonder whether one can obtain sharing matrices with fewer rows
(meaning reduced computational complexity), or with a better tradeoff between number of
rows (the number of sharings) and number of columns (the number of dealers) in a 𝑡-sharing
matrix.

We use a simple argument to show that any 𝑡-sharing matrix 𝑀 ∈ {0, 1}𝑚×ℓ must satisfy
𝑚 ≥

(︁
ℓ

𝑡−1

)︁
/
(︁

ℓ−𝑡
𝑡−1

)︁
. In particular, this means that when ℓ = 2𝑡− 1, which is the minimum

number of columns in a 𝑡-sharing matrix, then it is not possible to do better than our simple
construction above. We can hope to obtain some complexity versus number of parties
tradeoff by increasing the number of columns and decreasing the number of rows, but this
lower bound also shows that the number of sharings remains exponential in 𝑡 unless we
significantly increase the number of dealers.

Finally, we note that we can easily extend our execution-leaks protocol to work in
the sending-leaks model by adding 𝑡 − 1 additional parties. More details can be found
in Section 4.8.

4.3 Preliminaries

4.3.1 Notation

The sampling of a value 𝑥 according to a distribution 𝑋 is denoted by 𝑥←$ 𝑋. If 𝑆 is a
set, we also write 𝑥←$ 𝑆 when 𝑥 is sampled uniformly at random from 𝑆. The support of
the distribution 𝑋 is denoted by Supp(𝑋).
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We denote by 𝜆 ∈ N the security parameter and by 𝑥 ← 𝒜(in; 𝑟) the output of the
algorithm𝒜 on input in using 𝑟 ←$ {0, 1}* as its randomness. We often omit this randomness
and only mention it explicitly when required. We consider probabilistic polynomial time
(PPT) machines as efficient algorithms.

For integers 𝑚,𝑛 ∈ N we write [𝑛] = {1, 2, . . . , 𝑛} and [𝑚,𝑛] = {𝑚,𝑚 + 1, . . . , 𝑛}.
A function negl[] : N → R is negligible if it is asymptotically smaller than any inverse-
polynomial function, namely, for every constant 𝑐 > 0 there exists an integer 𝑁𝑐 such that
negl ≤ 𝜆−𝑐 for all 𝜆 > 𝑁𝑐.

4.3.2 Digital Signatures

A digital signature scheme DS is a tuple of algorithms:

• A key generation algorithm KGen(1𝜆) that takes the security parameter 𝜆 and outputs
the verification/signing key pair (vk, sk).

• A signing algorithm Sign(sk,𝑚) which outputs a signature 𝜎 on input the secret key
sk and the message 𝑚.

• A verification algorithm Vf(vk,𝑚, 𝜎) with binary output. We say that 𝜎 is a valid
signature of 𝑚 under the verification key vk if Vf(vk,𝑚, 𝜎) = 1, and invalid otherwise.

We require standard unforgeability of the digital signature scheme.
Definition 17 (Unforgeability). A digital signature scheme DS is unforgeable if for any
PPT adversary 𝒜 there exists a negligible function negl such that the probability of winning
the following game is upper bounded by negl, where 𝜆 is a security parameter:

1. The challenger runs KGen(1𝜆) and obtains a verification/secret key pair (vk, sk).
2. The adversary 𝒜 can adaptively choose messages 𝑚 and query the challenger to learn

a corresponding signature Sign(sk,𝑚). Let 𝑚1, . . . ,𝑚𝑞 be the messages queried by 𝒜,
for some integer 𝑞.

3. The adversary 𝒜 chooses a fresh message 𝑚′ ̸∈ {𝑚1, . . . ,𝑚𝑞} and wins the game if
they output a valid signature 𝜎 of 𝑚′ under the verification key vk.

Signature schemes have been constructed from a wide range of assumptions starting
from one-way functions [89], to more structured algebraic assumptions like the discrete
logarithm problem [53, 102], pairing-based problems [30, 107], and the Shortest Integer
Solution problem (SIS) [61].
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4.3.3 Non-Interactive Commitments

A non-interactive commitment scheme COM is a tuple of algorithms:

• A commitment generation algorithm Commit(𝑚; 𝑟) that takes as input a message
𝑚 ∈ {0, 1}ℓ𝑚(𝜆) (for some message space ℳ), and some randomness 𝑟 ∈ {0, 1}ℓ𝑟(𝜆),
and returns a commitment com ∈ {0, 1}ℓ𝑐(𝜆). Here ℓ𝑚, ℓ𝑟, ℓ𝑐 are some polynomials in
𝜆, the security parameter.

• The opening of the commitment com. In our case, this is simply the message 𝑚 and
the randomness 𝑟.

We will require two standard properties of non-interactive commitments: perfect binding
and computational hiding.
Definition 18 (Perfectly binding commitment). A non-interactive commitment scheme
COM is perfectly binding if for all 𝑚0,𝑚1 ∈ {0, 1}ℓ𝑚(𝜆) such that 𝑚0 ̸= 𝑚1 it holds that

{Commit(𝑚0; 𝑟0)}𝑟0∈{0,1}ℓ𝑟(𝜆)

⋂︁
{Commit(𝑚1; 𝑟1)}𝑟1∈{0,1}ℓ𝑟(𝜆) = ∅.

Definition 19 (Computationally hiding commitment). A non-interactive commitment
scheme COM is computationally hiding if for every polynomially bounded function 𝛼(·) and
every PPT adversary 𝒜 there exists a negligible function negl[] such that the probability
of winning the following game is upper bounded by 1/2 + negl, where 𝜆 is the security
parameter:

1. The adversary 𝒜(1𝜆) samples distinct messages 𝑚0,𝑚1 ∈ {0, 1}𝛼(𝜆) and sends them
to the challenger;

2. The challenger samples a bit 𝑏←$ {0, 1}, computes a commitment com = Commit(𝑚𝑏; 𝑟)
to 𝑚𝑏, and sends com to 𝒜.

3. The adversary 𝒜 outputs a bit 𝑏′ and wins if and only if 𝑏′ = 𝑏.

As mentioned before, non-interactive commitments can be instantiated from a variety
of concrete assumptions including factoring [27, 62, 109], more recently from LWE and
LPN [66], and even from the general assumption of injective one-way functions. While
black-box separations between general one-way functions and non-interactive commitments
are known [93], non-interactive commitments are fundamental and one of the weakest
complexity-theoretic cryptographic assumptions.
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4.4 PVSS-based YOSOWCC Randomness Generation

We introduce a randomness generation scheme which relies on publicly verifiable secret
sharing (PVSS). Before going into our protocol, we briefly explain what a PVSS is.

4.4.1 Publicly Verifiable Secret Sharing

Recall the definition of Publicly Verifiable Secret Sharing (PVSS) from [36]. In PVSS, a
dealer 𝐷 shares a secret to a set of 𝑛 parties 𝒫 = {𝑃1, · · · , 𝑃𝑛}. A (𝑡, 𝑛)-PVSS protocol
ensures that a secret is split in a way that allows 𝑡 + 1 parties to reconstruct a secret,
but at the same time, knowing 𝑡 shares does not reveal any information about the secret.
Any external verifier 𝑉 is able to check that 𝐷 acts honestly. More formally, a PVSS
protocol consists of the algorithms (Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool), where
Setup = (Setup𝜋, SetupPKI), and which denote the following:

• Setup: Consists of (Setup𝜋, SetupPKI), which take security parameter 𝜆 as input. In
Setup𝜋, the parameters of the proof system are generated in a trusted fashion. Using
SetupPKI, every party generates a public key 𝑝𝑘𝑖 and withholds the corresponding secret
key 𝑠𝑘𝑖.

• Distribution: The dealer creates shares 𝑠1, · · · , 𝑠𝑛 for the secret 𝑠, encrypts share 𝑠𝑖

with the key 𝑝𝑘𝑖 for 𝑖 = {1, · · · , 𝑛} and publishes these encryptions 𝑠𝑖, together with a
proof proof𝐷 that these are indeed encryptions of a valid sharing of some secret.

• Verification: In this phase, any external 𝑉 (not necessarily being a participant in the
protocol) can verify non-interactively, given all the public information until this point,
that the values 𝑠𝑖 are encryptions of a valid sharing of some secret.

• Reconstruction: This phase is divided in two.
Decryption of the shares: This phase can be carried out by any set 𝑄 of 𝑡+ 1 or more
parties. Every party 𝑃𝑖 in 𝑄 decrypts the share 𝑠𝑖 from the ciphertext 𝑠𝑖 by using its
secret key 𝑠𝑘𝑖, and publishes 𝑠𝑖 together with a (non-interactive) zero-knowledge proof
proof𝑖 that this value is indeed a correct decryption of 𝑠𝑖.
Share pooling: Any external verifier 𝑉 (not necessarily being a participant in the protocol)
can now execute this phase. 𝑉 first checks whether the proofs proof𝑖 are correct. If
the check passes for less than 𝑡+ 1 parties in 𝑄 then 𝑉 aborts; otherwise 𝑉 applies a
reconstruction procedure to the set 𝑠𝑖 of shares corresponding to parties 𝑃𝑖 that passed
the checks.

A PVSS protocol (Setup,Dist,Verif,Reconstr-Dec,Reconstr-Pool) must provide three
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security guarantees: Correctness, Verifiability and IND1-Secrecy. These properties are
defined below:

• Correctness: If the dealer and all players in 𝑄 are honest, then all checks in the
verification and reconstruction phases pass, and the secret can be reconstructed from
the information published by the players in 𝑄 during reconstruction.

• Verifiability: If the check in the Verification phase passes, then with high probability
the values 𝑠𝑖 are encryptions of a valid sharing of some secret. Furthermore, if the check
in the Reconstruction phase passes, then the values 𝑠𝑖 are indeed the shares of the secret
distributed by 𝐷.

• IND1-Secrecy: Prior to the reconstruction phase, the public information together with
the secret keys 𝑠𝑘𝑖 of any set of at most 𝑡 players gives no information about the secret.

We first formally specify the IND-1 secrecy of the scheme:
Definition 20. We say that the PVSS is IND1-secret if for any PPT adversary 𝐴 corrupting
at most 𝑡 parties, 𝐴 has negligible advantage in the following game played against a challenger
𝐶.

1. 𝐶 runs the Setup phase of the PVSS and sends all public information to 𝐴. Moreover,
it creates secret and public keys for all uncorrupted parties, and sends the corresponding
public keys to 𝐴.

2. 𝐴 creates secret keys for the corrupted parties and sends the corresponding public keys
to 𝐶.

3. 𝐶 chooses values 𝑥0 and 𝑥1 at random in the space of secrets. Furthermore it chooses
𝑏← {0, 1} uniformly at random. It runs the Distribution phase with 𝑥0 as secret. It
sends 𝐴 all public information generated in that phase, together with 𝑥𝑏.

4. 𝐴 outputs a guess 𝑏′ ∈ {0, 1}.

The advantage of 𝐴 is defined as |Pr[𝑏 = 𝑏′]− 1
2 |.

In addition to the above IND-1 secrecy, as well as correctness and verifiability, which
have been defined previously, we require our PVSS to be non-malleable.

A Note on Non-Malleability. To obtain the non-malleability guarantee required by
our construction we informally require the compatibility with the (unbounded) computa-
tional zero-knowledge property and the simulation-extractability property of the underlying
proof system. In more detail, consider the proof system (𝐺,𝑃, 𝑉 ) for a relation 𝑅, where

• 𝜎 ← 𝐺(1𝜆): given a security parameter 𝜆, the key generation algorithm produces a
crs 𝜎.
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• 𝜋 ← 𝑉 (𝜎, 𝑥, 𝑤): the prover algorithm takes as input a crs 𝜎, a statement 𝑥, and a
witness, and produces a proof 𝜋.

• 𝑏← 𝐺(𝜎, 𝑥, 𝜋): the verifier algorithm takes as input a crs 𝜎, a statement 𝑥 produces
a crs 𝜎.

We consider non-interactive proofs, and require that in addition to the standard completeness
and soundness guarantees, the proof system has the following properties:
Definition 21 ((unbounded) computational zero-knowledge). A non-interactive proof
system (𝐺,𝑃, 𝑉 ) is zero-knowledge for a relation 𝑅, if there exists a PPT simulator consisting
of a tuple of PPT algorithms 𝑆 = (𝑆1, 𝑆2), such that for all PPT adversaries 𝐴 holds that

𝑃𝑟|[𝜎 ← 𝐺(1𝜆) : 𝐴𝑃 (𝜎,·,·)(𝜎) = 1] − 𝑃𝑟[(𝜎, 𝜏) ← 𝑆1(1𝜆) : 𝐴𝑆(𝜎,𝜏,·,·)(𝜎) = 1]| < negl,

where 𝑆(𝜎, 𝜏, 𝑥, 𝑤) = 𝑆2(𝜎, 𝜏, 𝑥) if (𝑥,𝑤) ∈ 𝑅.

We call non-interactive zero-knowledge proof systems NIZKs. We additionally require
the following:
Definition 22 (Simulation Extractability [72]). We call a NIZK (𝐺,𝑃, 𝑉 ) simulation-
extractable if there exists a tuple of PPT algorithms (𝑆𝐸1, 𝐸), such that 𝑆𝐸1 output a triple
(𝜎, 𝜏, 𝜁), which is identical to the output of 𝑆1 when restricted to the first two parts, and for
all PPT adversaries 𝐴 holds that

Pr

⎡⎢⎢⎣
(𝜎, 𝜏, 𝜁)← 𝑆𝐸1(1𝜆)

(𝑥, 𝜋)← 𝐴𝑆2(𝜎,𝜏,·)(𝜎, 𝜁)
𝑤 ← 𝐸(𝜎, 𝜁, 𝑥, 𝜋)

:
(𝑥, 𝜋) /∈ 𝑄
(𝑥,𝑤) /∈ 𝑅

𝑉 (𝜎, 𝑥, 𝜋) = 1

⎤⎥⎥⎦ < negl,

where 𝑄 is the list of 𝐴’s simulation queries and responses.

Additionally, we require that the proof system is “decoupled” from the encryption
scheme used in the PVSS, in the sense that the keys and the proof crs are generated
independently of each other, and the distribution algorithm can be split into two steps, first
of which produces the ciphertexts 𝑠𝑖, and the second of which produces a NIZK proof given
these ciphertexts.

Note that such PVSS scheme can be trivially built from a public-key encryption scheme
and a simulation-extractable NIZK as follows. First, the dealer splits its secret using a (𝑡, 𝑛)
Shamir secret sharing, and encrypts each share using the public keys of the share receivers.
Then, the dealer generates a NIZK proof confirming that it knows shares underlying the
ciphertexts, and these lie on a polynomial of degree at most 𝑡. Anyone can verify the
correctness of the dealer’s sharing using the verifier for the NIZK proof. In the reconstruction
phase, every share recipient decrypts its share, and generates a proof that the decrypted
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value indeed corresponds to the ciphertext published by the dealer. Given 𝑡 + 1 honest
share recipients, the correctness of the scheme follows from the correctness of the encryption
scheme, completeness and soundness of the NIZK, and correctness of Shamir’s secret sharing.
Privacy follows from the security of the encryption scheme, zero-knowledge of the NIZK, and
security of Shamir’s secret sharing. Verifiability follows from the simulation-extractability
of the NIZK, correctness of the encryption, and and the fact that any 𝑡+ 1 shares fix the
secret.

4.4.2 Our PVSS-Based Randomness Generation Protocol

Our protocol is in the sending-leaks model (thus also secure in the execution-leaks model).
We describe the scheme and outline the security proof.

The high-level idea of the scheme is the following: given 𝑛 = 3𝑡+ 2 parties, split them
into two groups 𝒫 and 𝒫 ′ of size 𝑡+ 1 and 2𝑡+ 1, respectively. We dub the parties from
the first group dealers, denoted by 𝑃1, 𝑃2, · · · , 𝑃𝑡+1, and the parties from the second group
decryptors, denoted by 𝑃 ′

1, 𝑃
′
2, · · · , 𝑃 ′

2𝑡+1. Let (Setup := (Setup𝜋, SetupPKI),Dist,Verif,RDec,
RPool) denote a (𝑡, 2𝑡 + 1)-PVSS protocol. The protocol starts with a “sharing” phase,
where every 𝑃𝑖 is executed one after another and acts as a PVSS dealer distributing its
secret to the decryptors in 𝒫 ′. Then, decryptors 𝑃 ′

𝑖 ∈ 𝒫 ′ are executed one after another,
and each decryptor 𝑃 ′

𝑖 executes the share decryption part of the PVSS reconstruction phase
for each dealer 𝑃𝑖. Finally, any party 𝐶 can execute the share pooling phase of the PVSS
reconstruction phase in order to obtain the secret shared by each dealer. We give the full
scheme in Protocol 15.

For security, we need our PVSS to be non-malleable, which can be naively achieved by
using simulation-extractable NIZKs [72] as PVSS proofs. Intuitively, a strawman PVSS
scheme which provides the required non-malleability works as follows: Share the secret
using a (𝑡, 𝑛) secret sharing scheme (e.g, Shamir’s secret sharing [103]), encrypt each share
using a public key of the corresponding share receiver, and append a simulation-extractable
NIZK proof confirming that the dealer knows the shares underlying the ciphertexts, and
these shares correspond to the (𝑡, 𝑛) secret sharing. The reconstruction works by having
each receiver decrypt its share, and publish a proof confirming that it knows a secret key
such that the decryption of the corresponding ciphertext results in the stated value. The
communication complexity is 𝑂(𝑛2|𝑐|+ 𝑛|𝑝|), where |𝑐| is the length of a single ciphertext,
and |𝑝| of a proof.
Theorem 8. Assuming public key encryption and simulation-extractable NIZKs, there
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Protocol 15 Randomness Beacon from PVSS in the Sending-Leaks Model.
Setup: PVSS Setup𝜋 algorithm is executed in a trusted fashion to obtain the common
reference string crs. Public key of every party in the protocol is generated according to
SetupPKI.
Sharing phase: Each party 𝑃𝑖, 𝑖 ∈ [𝑡+ 1] does the following:

1. 𝑃𝑖 samples 𝑥𝑖 from {0, 1} uniformly at random.
2. 𝑃𝑖 uses PVSS algorithm Dist as the dealer to distribute shares of 𝑥𝑖 to the parties
𝑃 ′

1, · · · , 𝑃 ′
2𝑡+1:

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← Dist(𝑥𝑖, {𝑝𝑘𝑃 ′
𝑗
}𝑗∈[2𝑡+1], crs).

3. 𝑃𝑖 publishes ({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 ).
Reconstruction phase: Each party 𝑃 ′

𝑗 , 𝑗 ∈ [2𝑡+ 1] does the following:
1. For each 𝑃𝑖, 𝑃 ′

𝑗 uses Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) to verify that 𝑃𝑖 dealt a valid
secret. For each 𝑃𝑖 who passed the check, 𝑃 ′

𝑗 verifies that the proof proof(𝑖)
𝐷 and

every encryption 𝑠(𝑖)
𝑚 distributed by 𝑃𝑖 is not the same as one distributed by any

dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.
2. For each valid 𝑃𝑖, 𝑃 ′

𝑗 uses the PVSS algorithm RDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑃 ′

𝑗
, crs) to obtain

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 ), and publishes this pair.
Any party 𝐶 can use the PVSS algorithm RPool on information published by the parties
𝑃 ′

1, · · · , 𝑃 ′
2𝑡+1 to obtain 𝑥𝑖. Output ⨁︀𝑖∈𝐼 𝑥𝑖, where 𝐼 denotes an index set of dealers for

which 𝐶 obtained the secret using RPool.

exists a YOSOWCC (𝑡, 3𝑡+ 2)-computationally secure randomness generation protocol in the
sending-leaks model.

4.5 PVSS-based YOSOWCC Randomness Generation:
Security Proof

We prove the theorem via a hybrid argument. In the following, let 𝜆 denote the security
parameter.

Hybrid H0 : This hybrid corresponds to the real world experiment as defined in
Definition 16 with the bit 𝑏 fixed to 0. Specifically, the challenger interacts with a PPT
adversary 𝐴 that corrupts a set 𝑀 of parties, where |𝑀 | = 𝑡, and interacts with a set 𝐻,
|𝐻| = 2𝑡+ 2, of honest parties to obtain the coin output of the Protocol 15, and forwards
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this output to a PPT distinguisher 𝐷.

1. crs← Setup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
(b) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← Dist(𝑥𝑖, {𝑝𝑘′
𝑗}𝑗∈[2𝑡+1], crs).

5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that

Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1,

check whether proof(𝑖)
𝐷 and every encryption 𝑠(𝑖)

𝑚 distributed by 𝑃𝑖 is not the
same as one distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.

(b) For each valid 𝑃𝑖 publish

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 )← RDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑖, crs).

6. For each 𝑖 ∈ [𝑡+ 1] let

out𝑖 ← RPool((𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 , crs)𝑗∈[2𝑡+1]).

7. out ← ⨁︀
𝑖∈𝐼 out𝑖, where 𝐼 denotes the index set such that for every 𝑖 ∈ 𝐼 holds

out𝑖 ̸= ⊥.
8. 𝑏′ ← 𝐷(out).

Here, 𝑀 denotes the set of parties controlled by 𝐴, and 𝐻 is the set of honest parties.

Hybrid H1 : This hybrid is the same as before, except that instead of computing proofs
proof𝐷 and proof𝑖 honestly, the proofs are generated using a simulator.

The game becomes the following (changes from the previous hybrid in blue):

1. (crs, 𝜏)← SimSetup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
(b) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← SimDist(𝑥𝑖, {𝑝𝑘′
𝑗}𝑗∈[2𝑡+1], crs, 𝜏).
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5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1, check whether
proof(𝑖)

𝐷 and every encryption 𝑠(𝑖)
𝑚 distributed by 𝑃𝑖 is not the same as one

distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.
(b) For each valid 𝑃𝑖 publish

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 )← SimRDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑖, crs, 𝜏).

6. For each 𝑖 ∈ [𝑡+ 1] let

out𝑖 ← RPool((𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 , crs)𝑗∈[2𝑡+1]).

7. out ← ⨁︀
𝑖∈𝐼 out𝑖, where 𝐼 denotes the index set such that for every 𝑖 ∈ 𝐼 holds

out𝑖 ̸= ⊥.
8. 𝑏′ ← 𝐷(out).

Lemma 20. Assuming that the proof system used in the PVSS scheme has the zero-
knowledge property, the outputs of experiments H0 and H1 are computationally indistin-
guishable.

Proof. This is a series of hybrids in which each honest proof is replaced one by one. Given a
PPT adversary 𝐴 and a distinguisher 𝐷 who is able to distinguish between the two hybrids
given the output of the challenger’s interaction with 𝐴, we construct an adversary 𝐵 on the
zero-knowledge property of the underlying PVSS scheme as follows. 𝐵 obtains the setup
information for the proof system used in PVSS from its challenger 𝐶, and forwards this
information to the adversary 𝐴. Then, 𝐵 follows the game as specified by the previous
hybrid (using the challenger to obtain simulated proofs if required by the previous hybrid),
except that when 𝐵 must produce the proof proof𝐷 (proof𝑖), 𝐵 uses the simulated
proof which it obtains from 𝐶. 𝐵 forwards the protocol output of its interaction with
𝐴 to 𝐷. If 𝐷 outputs “Hybrid 0”, 𝐵 outputs “Real prover”, otherwise “Simulator”. As
the only difference between the two hybrids is the way that proof𝐷 (proof𝑖) is being
generated, 𝐵’s advantage is the same as 𝐷’s. Thus, if the advantage of the pair 𝐴 and 𝐷 is
non-negligible, 𝐵’s advantage is non-negligible as well.

Hybrid H2 : This hybrid is the same as before, except that the challenger uses the
extractor Ext to extract the corresponding secret from each proof𝐷 that verifies correctly.
The challenger aborts if the extraction fails.
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1. (crs, 𝜏, 𝜁)← SimExtSetup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
(b) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← SimDist(𝑥𝑖, {𝑝𝑘′
𝑗}𝑗∈[2𝑡+1], crs, 𝜏).

5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that

Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1,

check whether proof(𝑖)
𝐷 and every encryption 𝑠(𝑖)

𝑚 distributed by 𝑃𝑖 is not the
same as one distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.

(b) For each valid 𝑃𝑖 ∈𝑀 let 𝑤 ← Ext(proof(𝑖)
𝐷 , crs, 𝜁). If

(𝑐𝑟𝑠, {𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , 𝑤) /∈ 𝑅,

then abort.
(c) For each valid 𝑃𝑖 publish

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 )← SimRDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑖, crs, 𝜏).

6. For each 𝑖 ∈ [𝑡+ 1] let

out𝑖 ← RPool((𝑠(𝑖)
𝑗 , {𝑝𝑘′

𝑖}𝑖∈[2𝑡+1],proof(𝑖)
𝑗 , crs)𝑗∈[2𝑡+1]).

7. out ← ⨁︀
𝑖∈𝐼 out𝑖, where 𝐼 denotes the index set such that for every 𝑖 ∈ 𝐼 holds

out𝑖 ̸= ⊥.
8. 𝑏′ ← 𝐷(out).

Lemma 21. Assuming that the proof system used in the PVSS scheme has the simula-
tion extractability property, the outputs of experiments H1 and H2 are computationally
indistinguishable.

Proof. This is a series of hybrids in which each adversarial proof which verifies correctly
is handled one by one. In the 𝑖-th such hybrid step, given a PPT adversary 𝐴 and a
distinguisher 𝐷 who is able to distinguish between the two hybrids given the output of the
challenger’s interaction with 𝐴, we construct an adversary 𝐵 on the simulation extractability
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of the underlying PVSS scheme as follows. 𝐵 obtains the setup information for the proof
system used in PVSS from its challenger 𝐶, and forwards this information to the adversary
𝐴. Then, 𝐵 follows the game as specified by the previous hybrid, except that it uses 𝐶 to
obtain simulated proofs that 𝐵 is required to generate according to the protocol. When
the adversary 𝐴 publishes the 𝑖-th adversarial proof, 𝐵 forwards this proof to its challenger
𝐶, and uses the extractor on this proof. If the extraction succeeds, 𝐵 forwards the protocol
output of its interaction with 𝐴 to 𝐷, otherwise 𝐵 aborts. Note that the two hybrids are
exactly the same when the proof extraction succeeds. Thus, we get that

Pr[(𝐴,𝐷) wins]
= Pr[(𝐴,𝐷) wins|Extr. succeeds] · Pr[Extr. succeeds]
+ Pr[(𝐴,𝐷) wins|Extr. fails] · Pr[Extr. fails]

=
(︂1

2 + negl
)︂

(1− Pr[Extr. fails])

+ Pr[(𝐴,𝐷) wins|Extr. fails] · Pr[Extr. fails]

≤ 1
2 + negl + Pr[Extr. fails]

(︂
1− 1

2 − negl
)︂
.

Therefore, we have that

Pr[Extr. fails] ≥
Pr[𝐴 wins]− 1

2 − negl
1
2 − negl .

Note that 𝐵 wins whenever the extraction fails. Thus, if 𝐴 wins with some non-negligible
advantage, 𝐵 wins with non-negligible probability as well.

Hybrid H3 : This hybrid is the same as before, except that the protocol outcome
computation is modified as follows: For the dealers controlled by the adversary which pass
the check of the PVSS verification phase, instead of using the secrets obtained for these
dealers during the reconstruction phase, the challenger uses the secrets that were extracted
using the extractor Ext.

1. (crs, 𝜏, 𝜁)← SimSetup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
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(b) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← SimDist(𝑥𝑖, {𝑝𝑘′
𝑗}𝑗∈[2𝑡+1], crs, 𝜏).

5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1, check whether
proof(𝑖)

𝐷 and every encryption 𝑠(𝑖)
𝑚 distributed by 𝑃𝑖 is not the same as one

distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.
(b) For each valid 𝑃𝑖 ∈𝑀 let 𝑤𝑖 ← Ext(proof(𝑖)

𝐷 , crs, 𝜏, 𝜁). If

(𝑐𝑟𝑠, {𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , 𝑤) /∈ 𝑅,

then abort.
(c) For each valid 𝑃𝑖 publish

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 )← SimRDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑖, crs, 𝜏)

6. For each 𝑖 ∈ [𝑡+ 1] let

out𝑖 ← RPool((𝑠(𝑖)
𝑗 , {𝑝𝑘′

𝑖}𝑖∈[2𝑡+1],proof(𝑖)
𝑗 , crs)𝑗∈[2𝑡+1]).

7. out ← ⨁︀
𝑖∈𝐼∩𝐻 out𝑖 ⊕ �̃�𝑖∈𝐼 , where 𝐼 denotes the index set such that for every 𝑖 ∈ 𝐼

holds out𝑖 ̸= ⊥, 𝐼 ⊆ 𝑀 denotes the index set such that for each 𝑖 ∈ 𝐼 holds 𝑃 ′
𝑖 is

valid, and �̃�𝑖 is the secret corresponding to the witness 𝑤𝑖.
8. 𝑏′ ← 𝐷(out).

Lemma 22. Assuming that the PVSS scheme is verifiable, the outputs of experiments H2

and H3 are computationally indistinguishable.

Proof. This is a series of hybrids, where we change the contribution of each malicious
dealer one-by-one. By the verifiability property of the PVSS scheme, if the verifications
checks passes, then the sharing phase determines a unique secret, and this secret will be
reconstructed by the end of the reconstruction phase. As the extractor Ext extracted a
valid secret 𝑠*, and the secret determined by the sharing phase is unique and is guaranteed
to be reconstructed by the end of the protocol, 𝑠* is exactly the secret that the parties
would have reconstructed for this dealer by the end of the reconstruction phase.

Hybrid H4 : This hybrid is the same as before, except that the protocol outcome
computation is modified as follows: For the honest dealers, instead of using the secrets
obtained for these dealers during the reconstruction phase, the challenger uses the secrets
that these dealers shared during the sharing phase:
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1. (crs, 𝜏, 𝜁)← SimSetup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
(b) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← SimDist(𝑥𝑖, {𝑝𝑘′
𝑗}𝑗∈[2𝑡+1], crs, 𝜏).

5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that

Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1,

check whether proof(𝑖)
𝐷 and every encryption 𝑠(𝑖)

𝑚 distributed by 𝑃𝑖 is not the
same as one distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.

(b) For each valid 𝑃𝑖 ∈𝑀 let 𝑤𝑖 ← Ext(proof(𝑖)
𝐷 , crs, 𝜏, 𝜁). If

(𝑐𝑟𝑠, {𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , 𝑤) /∈ 𝑅,

then abort.
(c) For each valid 𝑃𝑖 publish

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 )← SimRDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑖, crs, 𝜏).

6. For each 𝑖 ∈ [𝑡+ 1] let

out𝑖 ← RPool((𝑠(𝑖)
𝑗 , {𝑝𝑘′

𝑖}𝑖∈[2𝑡+1],proof(𝑖)
𝑗 , crs)𝑗∈[2𝑡+1]).

7. out ← ⨁︀
𝑖∈𝐻 𝑥𝑖 ⊕ �̃�𝑖∈𝐼 , where 𝐼 ⊆ 𝑀 denotes the index set such that for each 𝑖 ∈ 𝐼

holds 𝑃 ′
𝑖 is valid, and �̃�𝑖 is the secret corresponding to the witness 𝑤𝑖.

8. 𝑏′ ← 𝐷(out).
Lemma 23. Assuming that the PVSS scheme is correct, the outputs of experiments H3

and H4 are indistinguishable.

Proof. This is a series of hybrids, where we change the contribution of each honest dealer
one-by-one. By the correctness property of the PVSS scheme all verifications checks in the
protocol pass (for the secret distributed by this honest dealer) and the reconstructed secret
is the same as the honest dealer shared during the sharing phase.
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Hybrid H5 : This hybrid is the same as before, except that the challenger stops its
interaction with 𝐴 after the sharing phase.

1. (crs, 𝜏, 𝜁)← SimSetup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
(b) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← SimDist(𝑥𝑖, {𝑝𝑘′
𝑗}𝑗∈[2𝑡+1], crs, 𝜏).

5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1, check whether
proof(𝑖)

𝐷 and every encryption 𝑠(𝑖)
𝑚 distributed by 𝑃𝑖 is not the same as one

distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.
(b) For each valid 𝑃𝑖 ∈𝑀 let 𝑤𝑖 ← Ext(proof(𝑖)

𝐷 , crs, 𝜏, 𝜁). If

(𝑐𝑟𝑠, {𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , 𝑤) /∈ 𝑅,

then abort.
(c) For each valid 𝑃𝑖 publish

(𝑠(𝑖)
𝑗 ,proof(𝑖)

𝑗 )← SimRDec(𝑠(𝑖)
𝑗 , 𝑠𝑘

′
𝑖, crs, 𝜏).

6. For each 𝑖 ∈ [𝑡+ 1] let

out𝑖 ← RPool((𝑠(𝑖)
𝑗 , {𝑝𝑘′

𝑖}𝑖∈[2𝑡+1],proof(𝑖)
𝑗 , crs)𝑗∈[2𝑡+1]).

7. out← ⨁︀
𝑖∈𝐼∩𝐻 𝑥𝑖 ⊕ �̃�𝑖∈𝐼 , where 𝐼 ⊆𝑀 denotes the index set such that for each 𝑖 ∈ 𝐼

holds 𝑃 ′
𝑖 is valid, and �̃�𝑖 is the secret corresponding to the witness 𝑤𝑖.

8. 𝑏′ ← 𝐷(out).
Lemma 24. The outputs of experiments H4 and H5 are indistinguishable.

Proof. Note that in the previous hybrid the protocol output, which is exactly the input of
the distinguisher 𝐷, was already fixed and could be computed by the challenger by the end
of the sharing phase. Thus, nothing changed.
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Hybrid H6 : This hybrid is the same as before, except that in the beginning of the
sharing phase each honest dealer 𝑃𝑖 now chooses a value 𝑥′

𝑖 uniformly at random. Each
encryption of a share sent by an honest dealer to a party 𝑃𝑗 is now changed to an encryption
of a corresponding share of 𝑥′

𝑖.

1. (crs, 𝜏, 𝜁)← SimSetup𝜋(1𝜆).
2. For 𝑃 ′

𝑖 ∈ 𝐻, let (𝑝𝑘′
𝑖, 𝑠𝑘

′
𝑖)← SetupPKI(1𝜆).

3. For 𝑃 ′
𝑖 ∈𝑀 , let 𝑝𝑘′

𝑖 ← 𝐴({𝑝𝑘′
𝑗}𝑃 ′

𝑗∈𝐻).
4. For 𝑃𝑖 ∈ 𝐻:

(a) Sample 𝑥𝑖 ← {0, 1} uniformly at random.
(b) Sample 𝑥′

𝑖 ← {0, 1} uniformly at random.
(c) Publish

({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 )← SimDist(𝑥′
𝑖, {𝑝𝑘′

𝑗}𝑗∈[2𝑡+1], crs, 𝜏).

5. For 𝑃 ′
𝑖 ∈ 𝐻:

(a) For each 𝑃𝑖 such that

Verif({𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , crs) = 1,

check whether proof(𝑖)
𝐷 and every encryption 𝑠(𝑖)

𝑚 distributed by 𝑃𝑖 is not the
same as one distributed by any dealer 𝑃𝑘, where 𝑘 < 𝑖. Denote 𝑃𝑖 as valid if so.

(b) For each valid 𝑃𝑖 ∈𝑀 let 𝑤𝑖 ← Ext(proof(𝑖)
𝐷 , crs, 𝜏, 𝜁). If

(𝑐𝑟𝑠, {𝑠(𝑖)
𝑗 }𝑗∈[2𝑡+1],proof(𝑖)

𝐷 , 𝑤) /∈ 𝑅,

then abort.
6. out←⨁︀

𝑖∈𝐼∩𝐻 𝑥𝑖 ⊕ �̃�𝑖∈𝐼 , where 𝐼 ′ ⊆𝑀 denotes the index set such that for each 𝑖 ∈ 𝐼
holds 𝑃 ′

𝑖 is valid, and �̃�𝑖 is the secret corresponding to the witness 𝑤𝑖.
7. 𝑏′ ← 𝐷(out).

Lemma 25. Assuming that the PVSS scheme satisfies the IND1-secrecy property, the
outputs of experiments H6 and H7 are computationally indistinguishable.

Proof. This is a series of hybrids, where we change sets encryptions sent by each honest
dealer 𝐷𝑖 one-by-one. Given a PPT adversary 𝐴 and a distinguisher 𝐷 who is able to
distinguish between the two hybrids given the output of the challenger’s interaction with
𝐴, we construct an adversary 𝐵 on the IND1-secrecy property of the underlying PVSS
scheme as follows. Upon obtaining the PVSS setup information as well as the public keys
of the honest parties from its challenger 𝐶, 𝐵 generates new PVSS setup, and forwards
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this setup information to the adversary 𝐴, along with the public keys of the honest parties
generated by 𝐶. Then, 𝐵 forwards the public keys supplied by 𝐴 to 𝐶. 𝐵 follows the game
as specified by the previous hybrid, except when it needs to act as the dealer 𝐷𝑖. Then,
upon obtaining the ciphertexts, proof𝐷, and 𝑥𝑏 from its challenger, 𝐵 generates a new
proof′

𝐷 using the simulator for the setup generated by 𝐵, and forwards the ciphertexts
along with the new proof′

𝐷 to the adversary 𝐴. Then, 𝐵 continues to follow the game
as specified by the previous hybrid. When computing the output of the protocol, 𝐵 uses
𝑥𝑏 as the contribution from the honest dealer. 𝐵 outputs exactly what 𝐷 outputs. Note
that if 𝑥𝑏 was 𝑥0, the game played corresponds exactly to the game in the previous hybrid.
Otherwise, the game played corresponds exactly to the game specified in the new hybrid.
Thus, if the advantage of the pair 𝐴 and 𝐷 is non-negligible, 𝐵’s advantage is non-negligible
as well.

Note that in the last hybrid the information about each honest secret 𝑥𝑖 the adversary
receives during the sharing phase of the protocol is completely independent of the honest
secrets values 𝑥𝑖. This corresponds to the security game outlined in Definition 16 with the
bit 𝑏 fixed to 1.

4.6 Protocols from One-Way Functions

We introduce a new building block called Split-Dealer Verifiable Secret Sharing in YOSOWCC,
which can be constructed using any signature scheme. Later, we will formally describe how
this building block can be used to construct an efficient randomness generation protocol
with 𝑛 = 5𝑡+ 3 roles for 𝑡 ∈ 𝑂(poly).

4.6.1 Split-Dealer Verifiable Secret Sharing in YOSOWCC

We now describe our split-dealer verifiable secret sharing (SD-VSS) protocol, consisting of 𝑛
roles, divided into four categories: a dealer with an initial secret input 𝑠, a set of receivers,
a resolver, and a set of reconstructors. The protocol satisfies the usual security guarantees
for correctness, privacy, and verifiability defined below, with the caveat that correctness
and privacy are required only when both the dealer and resolver are honest. Nevertheless, we
will show in Section 4.6.2 that this notion will be enough to obtain randomness generation.

SD-VSS in the execution-leaks model We will first consider the execution-leaks model
as the technical crux is easier to understand in this model. Informally, the scheme works as
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follows: The dealer 𝑃1 generates a symmetric bivariate polynomial 𝑓(𝑥, 𝑦) of degree at most
𝑡 in each variable uniformly at random, subject to the constraint that 𝑃1’s secret is encoded
at point (0, 0). Then, 𝑃1 sends a projection 𝑓(𝑖, 𝑦) to each receiver 𝑃𝑖 for 𝑖 = {2, · · · , 3𝑡+2}.
Here, the projection is a set of points 𝑓(𝑖, 𝑗) for 𝑗 ∈ [3𝑡 + 1], each signed by the dealer.
Additionally, 𝑃1 sends the bivariate polynomial to the party 𝑃3𝑡+3, which we call the resolver.
Each 𝑃𝑖 verifies the projection it received, and if it is not valid, broadcasts a complaint
about the dealer. Otherwise, 𝑃𝑖 sends a point 𝑓(𝑖, 𝑗), signed both by 𝑃𝑖 and the dealer, to
party 𝑃𝑗 . Additionally, 𝑃𝑖 verifies all points 𝑓(𝑘, 𝑖) it received from parties 𝑃𝑘, for 𝑘 < 𝑖. If
any of these points contain a dealer’s signature on a message which is inconsistent with
the corresponding share that 𝑃𝑖 received from the dealer, 𝑃𝑖 broadcasts these points along
with dealer’s signatures on them. If any point is missing or contains invalid signatures, 𝑃𝑖

broadcasts a complaint about the corresponding party 𝑃𝑘, and includes 𝑓(𝑖, 𝑘), as well as its
own, and the dealer’s signatures on this value. Finally, 𝑃𝑖 sends all shares it received, along
with their signatures, to each of the parties 𝑃3𝑡+1, · · · , 𝑃5𝑡+4, dubbed reconstructors. Now,
the resolver responds to the complaint of each party 𝑃𝑖 about the dealer by broadcasting
this party’s projection. Then, each reconstructor verifies the shares it obtained from each
receiver 𝑃𝑖. The share is valid if it contains at least 2𝑡+ 1 points 𝑓(𝑖, 𝑗) which are correctly
signed by 𝑃𝑖, 𝑃𝑗, and the dealer (or contained in the resolver’s message). The shares of all
valid receivers are then used to obtain 𝑓(0, 0). See Protocol 16 for the full scheme. Here,
we call 𝑃1 the dealer, 𝑃2, . . . , 𝑃3𝑡+2 the receivers, 𝑃3𝑡+3 the resolver and 𝑃3𝑡+4, . . . , 𝑃4𝑡+4 the
reconstructors. We let 𝑠 be the secret input of the dealer 𝑃1. We let DS = (KGen, Sign,Vf)
denote a digital signatures scheme. The communication complexity of this construction
is 𝑂(𝑛3) (excluding any polynomial factors in the security parameter). We show that the
protocol in the execution-leaks model satisfies the following security guarantees.
Lemma 26 (Correctness). If the dealer and the resolver are honest, the sharing phase in
Protocol 16 does not fail and the reconstructed secret after executing both the sharing and
consequently the reconstruction phase is 𝑠.

Proof. First, we show that the sharing phase does not fail. This is because all points signed
by the dealer lie on the bivariate polynomial 𝐹 , and any polynomial broadcasted by the
dealer or point signed by the dealer is consistent with 𝐹 . That is, any message Complain

with a point and a dealer’s signature that is broadcasted by a receiver lies on 𝐹 , and any
polynomial broadcasted by the resolver as a response to a message ComplainPoly lies on
𝐹 as well.

Moreover, consider each 𝑖-th honest receiver, for 𝑖 ∈ [1, 3𝑡+ 1]. The receiver correctly
received a signed degree-𝑡 projection, so he did not broadcast any ComplainPoly message.
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Protocol 16 Split-Dealer Verifiable Secret Sharing, Execution-Leaks.
Each 𝑃𝑖, 𝑖 ∈ [1, 4𝑡+ 4], does the following:
Sharing phase:
• If 𝑃𝑖 is the dealer (i.e., 𝑖 = 1):

1. Sample a symmetric polynomial 𝐹 (𝑥, 𝑦) such that 𝐹 (0, 0) = 𝑠.
2. Sample

(︁
vk𝐷, sk𝐷

)︁
← DS.KGen(1𝜆). Publicly broadcast the public key vk𝐷. Also

privately send the polynomial 𝐹 to the resolver (party 𝑃3𝑡+3).
3. Let 𝑓𝑗 := 𝐹 (𝑗, 𝑦), 𝑗 ∈ [3𝑡+ 1], be the 𝑗-th vertical projection of 𝐹 . Privately send to

the 𝑗-th receiver all points of 𝑓𝑗 signed, i.e. send to party 𝑃𝑗+1 the pairs
{𝑓𝑗(𝑦), 𝜎𝐷

𝑗,𝑦}𝑦∈[3𝑡+1], where 𝜎𝐷
𝑗,𝑦 = DS.Signsk𝐷(𝑓𝑗(𝑦)).

• If 𝑃𝑖 is the 𝑗-th receiver (i.e. 𝑖 = 𝑗 + 1 and 𝑗 ∈ [3𝑡+ 1]):
1. Sample

(︁
vk𝑗, sk𝑗

)︁
← DS.KGen(1𝜆) and publicly broadcast the public key vk𝑗.

2. For the messages received from the dealer (𝑃1), {𝑓𝑗(𝑦), 𝜎𝐷
𝑗,𝑦}𝑦∈[3𝑡+1]:

(a) Check that the signatures are correct according to the broadcasted public key
vk𝐷, i.e. DS.Vfvk𝐷(𝑓𝑗(𝑦), 𝜎𝐷

𝑗,𝑦) = 1 for each point.
(b) Check that the points {𝑓𝑗(𝑦)}𝑦∈[3𝑡+1] lie on a degree-𝑡 polynomial.
(c) If any check fails, publicly broadcast a message ComplainPoly.
(d) Otherwise, for each receiver 𝑗 < 𝑘 < 3𝑡+ 2, send (𝑓𝑗(𝑘), 𝜎𝐷

𝑗,𝑘, 𝜎
𝑗
𝑘) to the 𝑘-th

receiver, where 𝜎𝑗
𝑘 = DS.Signsk𝑗 (𝑓𝑗(𝑘)).

3. For the message (𝑓𝑘(𝑗), 𝜎𝐷
𝑘,𝑗, 𝜎

𝑘
𝑗 ) received from the 𝑘-th receiver (i.e., party 𝑃𝑘+1)

with 𝑘 < 𝑗: check the signature validity, i.e. DS.Vfsk𝐷(𝑓𝑘(𝑗)) = DS.Vfsk𝑘(𝑓𝑘(𝑗)) = 1.
(a) If the received signatures are incorrect (or no message was received) and no

ComplainPoly was broadcast at step 2𝑏, broadcast a complaint message with
the received point from the dealer and its signature: (Complain, 𝑘, 𝑓𝑗(𝑘), 𝜎𝐷

𝑗,𝑘).
(b) If the received signatures are correct, no ComplainPoly is being broadcasted at

step 2𝑏, do the following. If 𝑓𝑘(𝑗) ̸= 𝑓𝑗(𝑘), broadcast a complaint
(Complain, 𝑘, 𝑓𝑘(𝑗), 𝜎𝐷

𝑘,𝑗, 𝑓𝑗(𝑘), 𝜎𝐷
𝑗,𝑘) and the sharing phase is failed. Otherwise,

send (𝑓𝑗(𝑘), 𝜎𝐷
𝑗,𝑘, 𝜎

𝑘
𝑗 , 𝜎

𝑗
𝑘) privately to every reconstructor.

(c) If the received signatures are correct but ComplainPoly is being broadcasted at
step 2𝑏, broadcast a complaint message with the received point from the 𝑃𝑘+1

and both signatures: (Complain, 𝑘, 𝑓𝑘(𝑗), 𝜎𝐷
𝑘,𝑗, 𝜎

𝑘
𝑗 ).

• If 𝑃𝑖 is the resolver: For each message ComplainPoly from the 𝑗-th receiver, publicly
broadcast the projection polynomial 𝑓𝑗.

The sharing is considered to have failed if the polynomial output by the resolver does not
have degree-𝑡 or it is inconsistent with any point broadcasted by a receiver that is correctly
signed by the dealer at steps 3𝑎 or 3𝑐, or other projection polynomial broadcasted by the
resolver at this step.
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(Protocol 16) Reconstruction phase:
• If party 𝑃𝑖 is a reconstructor and the sharing phase did not fail, do the following.

Consider the triply-signed points {𝑓𝑗(𝑘), 𝜎𝐷
𝑗,𝑘, 𝜎

𝑘
𝑗 , 𝜎

𝑗
𝑘}𝑘 by the 𝑗-th receiver. If the 𝑗-th

receiver did not broadcast ComplainPoly, broadcast all the received the triply-signed
points.

• Secret Reconstruction: The secret 𝑠 can be reconstructed by any party that takes
any valid projections for 𝑡+ 1 receivers. A projection for the 𝑗-th receiver is
considered valid if 1) it was broadcasted by the resolver as a result of a
ComplainPoly message, or 2) a reconstructor broadcasted triply-signed points
{𝑓𝑗(𝑘), 𝜎𝐷

𝑗,𝑘, 𝜎
𝑘
𝑗 , 𝜎

𝑗
𝑘}𝑘by the 𝑗-th receiver, form a degree-𝑡 polynomial and there are at

least 2𝑡+ 1 points which are all either correctly triply signed, or were contained in
one of the ComplainPoly messages.

Moreover, for at least 2𝑡+ 1 points, the receiver sent this point triply signed by the dealer,
the 𝑗-th receiver and his own signature to all the reconstructors at step 3𝑏.

Now we show that the reconstructed secret is 𝑠. In the reconstruction phase, the 𝑡+ 1
reconstructors broadcast all the received points and signatures that have been received,
for each receiver. Since there is at least one honest reconstructor, this reconstructor will
broadcast points corresponding to the 𝑡+1 consistent valid projections (with the polynomial
𝐹 ) from honest receivers, uniquely determine the secret 𝑠. Moreover, any projection
broadcasted by the resolver as a result of a ComplainPoly also lies on 𝐹 . Finally, note that
the adversary cannot contribute any projection that is not consistent with 𝐹 because the
projection must be signed by each of the honest receivers.

Lemma 27 (Privacy). If the dealer and the resolver are honest, no information about the
secret 𝑠 is revealed before the reconstruction phase is started in Protocol 16.

Proof. The view of the adversary contains only the projections of 𝐹 with indices that belong
to corrupted receivers. Since there are at most 𝑡 corrupted receivers, this information is
statistically independent of the secret 𝑠.

Note that any broadcasted message of the form ComplainPoly comes from a corrupted
receiver and therefore the resolver broadcasts a projection that was already known to the
adversary. Similarly, any broadcasted message Complain containing a point 𝐹 (𝑖, 𝑗) at step
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3𝑎 or 3𝑐,2 is only broadcasted when either the 𝑖-th or the 𝑗-th receiver is corrupted (and
therefore the point was already known by the adversary).

Lemma 28 (Verifiability). At the end of the sharing phase in Protocol 16, if it succeeded,
there is only one secret 𝑠′ that will be reconstructed upon executing the reconstruction phase.

Proof. Let 𝑖, 𝑗 ∈ [1, 3𝑡 + 1] with 𝑖 < 𝑗. We first show that if the sharing phase succeeds,
the projections corresponding to every pair of 𝑖-th and 𝑗-th honest receivers (taken into
account in the Secret Reconstruction phase) are consistent. We divide four cases.

1. Both projections are broadcasted by the resolver as a result of corresponding ComplainPoly
messages. In this case, since the sharing succeeds, the protocol prescribes that both
polynomials need to be consistent.

2. No party broadcasted a ComplainPoly message and therefore no projection is broadcasted
by the resolver. In this case, both honest receivers received correctly signed degree-𝑡
projections from the dealer. Moreover, the 𝑖-th receiver sent the point 𝑓𝑖(𝑗) signed by
the dealer and his own signature to the 𝑗-th receiver. Since the sharing phase succeeds,
we have that both projections are consistent, i.e. 𝑓𝑖(𝑗) = 𝑓𝑗(𝑖), and therefore the point
𝑓𝑗(𝑖) and the signatures from the dealer, the 𝑖-th receiver and the 𝑗-th receiver are sent
to every reconstructor at step 3𝑏. Moreover, at least one (honest) reconstructor will
broadcast this information.

3. Only the 𝑖-th receiver broadcasts a ComplainPoly, and as a result the resolver broadcasts
the projection 𝑓𝑖. In this case, the 𝑖-th receiver did not send any message to the 𝑗-th
receiver at step 2𝑑, and therefore the 𝑗-th receiver broadcasts a message Complain with
his own point 𝑓𝑗(𝑖). Since the sharing phase succeeds, it must be case that 𝑓𝑖(𝑗) = 𝑓𝑗(𝑖).
(Note that 2𝑡+ 1 triply signed points of 𝑓𝑗 are sent to each of the reconstructors.)

4. Only the 𝑗-th receiver broadcasts a ComplainPoly, and as a result the resolver broadcasts
the projection 𝑓𝑗 . In this case, the 𝑖-th receiver sent the point 𝑓𝑖(𝑗) signed by the dealer
and his own signature to the 𝑗-th receiver. The 𝑗-th receiver receives this point with
correct signatures and broadcasts a message Complain with the point 𝑓𝑖(𝑗) signed by the
dealer and the 𝑖-th receiver. Since the sharing phase succeeds, this point is consistent
with the broadcasted polynomial 𝑓𝑗 . (Note that 2𝑡+ 1 triply signed points of 𝑓𝑖 are sent
to each of the reconstructors.)

2Note that step 3𝑏 does not reveal any information, since we consider the execution-leaks model and
messages in this step are sent to the reconstructors, which are executed only in the reconstruction phase.

153



The projections corresponding to honest receivers are sufficient to uniquely define a
bivariate polynomial 𝐹 ′, which in turn defines a value 𝑠′.

Furthermore, note that any valid projection for a corrupted receiver is also consistent
with 𝐹 ′. Either the projection was broadcasted as a result of ComplainPoly (in which case
it is consistent with the honest receiver’s projections), or it is signed by at least 2𝑡 + 1
receivers (𝑡+ 1 are honest, and therefore these uniquely define a consistent projection with
𝐹 ′).

4.6.1.1 SD-VSS in the sending-leaks model.

In the sending-leaks model, the protocol is almost the same, except that we require a
simple adaptation, i.e., we now require 2𝑡+ 1 reconstructors. Each receiver 𝑃𝑖 now shares
its state to the reconstructors, while signing each share. The reconstructors output all
shares along with the signature of the corresponding 𝑃𝑖. The correctly signed shares are
used to reconstruct the state of 𝑃𝑖, which in turn is used to compute the output as in the
execution-leaks case. The full protocol description is given in Protocol 17. Same as in the
execution-leaks case, the communication complexity is 𝑂(𝑛3) (excluding any polynomial
factors in the security parameter).

The resulting protocol can be proven to achieve the same lemma statements.

The following lemmas formally argue that our VSS protocol in the sending-leaks model
satisfies correctness, privacy, and verifiability.
Lemma 29 (Correctness). If the dealer and the resolver are honest, the sharing phase in
Protocol 17 does not fail and the reconstructed secret after executing both the sharing and
consequently the reconstruction phase is 𝑠.

Proof. First, we show that the sharing phase does not fail. This is because all points signed
by the dealer lie on the bivariate polynomial 𝐹 , and any polynomial broadcasted by the
dealer or point signed by the dealer is consistent with 𝐹 . That is, any message Complain

with a point and a dealer’s signature that is broadcasted by a receiver lies on 𝐹 , and any
polynomial broadcasted by the resolver as a response to a message ComplainPoly lies on
𝐹 as well.

Moreover, consider each 𝑖-th honest receiver, for 𝑖 ∈ [1, 3𝑡+ 1]. The receiver correctly
received a signed degree-𝑡 projection, so he did not broadcast any ComplainPoly message.
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Moreover, the receiver sends a signed share of at least 2𝑡+ 1 points, each point triply signed
by the dealer, the 𝑗-th receiver and himself, to each reconstructors at step 3𝑏.

Now we show that the reconstructed secret is 𝑠. In the reconstruction phase, the 𝑡+ 1
reconstructors broadcast all the correctly signed shares they received from each receiver.
For each receiver, only the messages signed by this receiver are used to reconstruct the
values it submitted. As there are at least 𝑡+ 1 honest reconstructors, each share of each
honest receiver will be reconstructed correctly. The shares of 𝑡+ 1 honest receivers (where
some of them might have broadcast the ComplainPoly) uniquely determine the secret 𝑠.
Finally, note that the adversary cannot contribute any projection that is not consistent
with 𝐹 because the projection must be signed by the dealer.

Lemma 30 (Privacy). If the dealer and the resolver are honest, no information about the
secret 𝑠 is revealed before the reconstruction phase is started in Protocol 17.

Proof. The view of the adversary contains only the projections of 𝐹 with indices that belong
to corrupted receivers. Since there are at most 𝑡 corrupted receivers, this information is
statistically independent of the secret 𝑠.

Note that any broadcasted message of the form ComplainPoly comes from a corrupted
receiver and therefore the resolver broadcasts a projection that was already known to
the adversary. Similarly, any broadcasted message Complain containing a point 𝐹 (𝑖, 𝑗) at
step 3𝑎 or 3𝑐, is only broadcasted when either the 𝑖-th or the 𝑗-th receiver is corrupted
(and therefore the point was already known by the adversary). Finally, step 3𝑏 does not
reveal any information, as we are using a (𝑡+ 1, 2𝑡+ 1) secret sharing scheme, and 𝑡+ 1
reconstructors are honest.

Lemma 31 (Verifiability). At the end of the sharing phase in Protocol 17, if it succeeded,
there is only one secret 𝑠′ that will be reconstructed upon executing the reconstruction phase.

Proof. Let 𝑖 < 𝑗, 𝑖, 𝑗 ∈ [1, 3𝑡 + 1]. We first show that if the sharing phase succeeds, the
projections corresponding to every pair of 𝑖-th and 𝑗-th honest receivers (taken into account
in the Secret Reconstruction phase) are consistent. We divide four cases.

1. Both projections are broadcasted by the resolver as a result of corresponding ComplainPoly
messages. In this case, since the sharing succeeds, the protocol prescribes that both
polynomials need to be consistent.
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2. No party broadcasted a ComplainPoly message and therefore no projection is broad-
casted by the resolver. In this case, both honest receivers received correctly signed
degree-𝑡 projections from the dealer. Moreover, the 𝑖-th receiver sent the point 𝑓𝑖(𝑗)
signed by the dealer and his own signature to the 𝑗-th receiver. Since the sharing
phase succeeds, we have that both projections are consistent, i.e. 𝑓𝑖(𝑗) = 𝑓𝑗(𝑖), and
therefore the point 𝑓𝑗(𝑖) and the signatures from the dealer, the 𝑖-th receiver and the
𝑗-th receiver are secret-shared to the reconstructors at step 3𝑏, and each such share
is signed. The 𝑡+ 1 honest reconstructors are sufficient to recover this information,
while no adversarial reconstructor can suggest a wrong share for 𝑃𝑗 , as the share must
be signed.

3. Only the 𝑖-th receiver broadcasts a ComplainPoly, and as a result the resolver
broadcasts the projection 𝑓𝑖. In this case, the 𝑖-th receiver did not send any message
to the 𝑗-th receiver at step 2𝑑, and therefore the 𝑗-th receiver broadcasts a message
Complain with his own point 𝑓𝑗(𝑖). Since the sharing phase succeeds, it must be case
that 𝑓𝑖(𝑗) = 𝑓𝑗(𝑖). (Note that 2𝑡 + 1 triply signed points of 𝑓𝑗 are secret-shared to
the reconstructors.)

4. Only the 𝑗-th receiver broadcasts a ComplainPoly, and as a result the resolver
broadcasts the projection 𝑓𝑗 . In this case, the 𝑖-th receiver sent the point 𝑓𝑖(𝑗) signed
by the dealer and his own signature to the 𝑗-th receiver. The 𝑗-th receiver receives
this point with correct signatures and broadcasts a message Complain with the point
𝑓𝑖(𝑗) signed by the dealer and the 𝑖-th receiver. Since the sharing phase succeeds,
this point is consistent with the broadcasted polynomial 𝑓𝑗. (Note that 2𝑡+ 1 triply
signed points of 𝑓𝑖 are secret-shared to the reconstructors.)

The projections corresponding to honest receivers are sufficient to uniquely define a
bivariate polynomial 𝐹 ′, which in turn defines a value 𝑠′.

Furthermore, note that any valid projection for a corrupted receiver is also consistent
with 𝐹 ′. Either the projection was broadcasted as a result of ComplainPoly (in which case
it is consistent with the honest receiver’s projections), or it is signed by at least 2𝑡 + 1
receivers (𝑡+ 1 are honest, and therefore these uniquely define a consistent projection with
𝐹 ′).
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Protocol 17 Split-Dealer Verifiable Secret Sharing, Sending-Leaks.
Each 𝑃𝑖, for 𝑖 ∈ [1, 5𝑡+ 4] does the following: Sharing phase:
• If 𝑃𝑖 is the dealer (i.e., 𝑖 = 1):

1. Sample a symmetric polynomial 𝐹 (𝑥, 𝑦) such that 𝐹 (0, 0) = 𝑠.
2. Sample

(︁
vk𝐷, sk𝐷

)︁
← DS.KGen(1𝜆). Publicly broadcast the public key vk𝐷. Also

privately send the polynomial 𝐹 to the resolver (party 𝑃3𝑡+3).
3. Let 𝑓𝑗 := 𝐹 (𝑗, 𝑦), 𝑗 ∈ [3𝑡+ 1], be the 𝑗-th vertical projection of 𝐹 . Privately send to

the 𝑗-th receiver all points of 𝑓𝑗 signed, i.e. send to party 𝑃𝑗+1 the pairs
{𝑓𝑗(𝑦), 𝜎𝐷

𝑗,𝑦}𝑦∈[3𝑡+1], where 𝜎𝐷
𝑗,𝑦 = DS.Signsk𝐷(𝑓𝑗(𝑦)).

• If 𝑃𝑖 is the 𝑗-th receiver (i.e. 𝑖 = 𝑗 + 1 and 𝑗 ∈ [3𝑡+ 1]):
1. Sample

(︁
vk𝑗, sk𝑗

)︁
← DS.KGen(1𝜆) and publicly broadcast the public key vk𝑗.

2. For the messages received from the dealer (party 𝑃1), {𝑓𝑗(𝑦), 𝜎𝐷
𝑗,𝑦}𝑦∈[3𝑡+1], do the

following:
(a) Check that the signatures are correct according to the broadcasted public key

vk𝐷, i.e. DS.Vfvk𝐷(𝑓𝑗(𝑦), 𝜎𝐷
𝑗,𝑦) = 1 for each point.

(b) Check that the points {𝑓𝑗(𝑦)}𝑦∈[3𝑡+1] lie on a degree-𝑡 polynomial.
(c) If any check fails, publicly broadcast a message ComplainPoly.
(d) Otherwise, for each receiver 𝑗 < 𝑘 < 3𝑡+ 2, send (𝑓𝑗(𝑘), 𝜎𝐷

𝑗,𝑘, 𝜎
𝑗
𝑘) to the 𝑘-th

receiver, where 𝜎𝑗
𝑘 = DS.Signsk𝑗 (𝑓𝑗(𝑘)).

3. For the message (𝑓𝑘(𝑗), 𝜎𝐷
𝑘,𝑗, 𝜎

𝑘
𝑗 ) received from the 𝑘-th receiver (party 𝑃𝑘+1) with

𝑘 < 𝑗: check that the signatures are valid, i.e. DS.Vfsk𝐷(𝑓𝑘(𝑗)) = DS.Vfsk𝑘(𝑓𝑘(𝑗)) = 1.
(a) If the received signatures are incorrect (or no message was received) and no

message ComplainPoly is being broadcasted at step 2𝑏, broadcast a complaint
message (Complain, 𝑘, 𝑓𝑗(𝑘), 𝜎𝐷

𝑗,𝑘).
(b) If the received signatures are correct, no ComplainPoly is being broadcasted at

step 2𝑏, do the following. If the points are not consistent 𝑓𝑘(𝑗) ̸= 𝑓𝑗(𝑘)
broadcast a complaint with both points signed by the dealer:
(Complain, 𝑘, 𝑓𝑘(𝑗), 𝜎𝐷

𝑘,𝑗, 𝑓𝑗(𝑘), 𝜎𝐷
𝑗,𝑘) and the sharing phase is failed. Otherwise, if

the points are consistent, let 𝑠𝑗,𝑘 denote the point with the signatures from the
dealer, the 𝑘-th receiver and the 𝑗-th receiver: (𝑓𝑗(𝑘) = 𝑠𝑗,𝑘, 𝜎

𝐷
𝑗,𝑘, 𝜎

𝑘
𝑗 , 𝜎

𝑗
𝑘). Share

𝑠𝑗,𝑘 using (𝑡+ 1, 2𝑡+ 1) Shamir’s secret sharing, let 𝑠𝑗,𝑘(𝑚) denote the 𝑚-th
share. Send the share 𝑠𝑗,𝑘(𝑚), along with its own signature on it
DS.Signsk𝑗 (𝑠𝑗,𝑘(𝑚)) to the reconstructor 𝑃3𝑡+3+𝑚, for 𝑚 ∈ [2𝑡+ 1].

(c) If the received signatures are correct but ComplainPoly is being broadcasted at
step 2𝑏, broadcast a complaint (Complain, 𝑘, 𝑓𝑘(𝑗), 𝜎𝐷

𝑘,𝑗, 𝜎
𝑘
𝑗 ).

• If 𝑃𝑖 is the resolver: For each message ComplainPoly from the 𝑗-th receiver, publicly
broadcast the projection polynomial 𝑓𝑗.
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The sharing is considered to have failed if the polynomial output by the resolver does not
have degree-𝑡 or it is inconsistent with any point broadcasted by a receiver that is correctly
signed by the dealer at steps 3𝑎 or 3𝑐, or other projection polynomial broadcasted by the
resolver at this step.
(Protocol 17) Reconstruction phase:

• If party 𝑃𝑖 is a reconstructor and the sharing phase did not fail, do the following.
Consider the shares 𝑠𝑗,𝑘(𝑖− (3𝑡+ 3)) and signatures on these shares
DS.Signsk𝑗 (𝑠𝑗,𝑘(𝑖− (3𝑡+ 3))) by the 𝑗-th receiver. If the 𝑗-th receiver did not
broadcast ComplainPoly, broadcast these shares and signatures.

• Secret Reconstruction: The secret 𝑠 can be reconstructed by any party 𝐶. First,
for each receiver 𝑗 who did not broadcast ComplainPoly, each point 𝑘 ∈ [3𝑡+ 1], 𝐶
reconstructs the value 𝑠𝑗,𝑘 using any 𝑡+ 1 shares of this value with correct signatures
from 𝑃𝑗+1. Then, 𝐶 reconstructs the secret 𝑠 using valid projections for 𝑡+ 1 receivers.
A projection for the 𝑗-th receiver is considered valid if 1) it was broadcasted by the
resolver as a result of a ComplainPoly message, or 2) a reconstructor broadcasted
triply-signed points {𝑓𝑗(𝑘), 𝜎𝐷

𝑗,𝑘, 𝜎
𝑘
𝑗 , 𝜎

𝑗
𝑘}𝑘by the 𝑗-th receiver, form a degree-𝑡

polynomial and there are at least 2𝑡+ 1 points which are all either correctly triply
signed, or were contained in one of the ComplainPoly messages.

4.6.2 YOSOWCC SD-VSS-based Randomness Generation with 𝑛 =
5𝑡+ 3

We will now show how to build a randomness generation protocol in the YOSOWCC

model with our SD-VSS as the building block. The basic idea is to execute 𝑡+1 independent
instances of our SD-VSS protocol, and the final random coin is set as the XOR of all the
reconstructed secret coins of each SD-VSS instance that did not fail. We have 𝑡+1 instances
to ensure that there is at least one honest dealer, and thus we get a random string as output
in the end.

We employ role-stacking to amortize the number of roles needed for our randomness
generation scheme. Instead of naively repeating the SD-VSS protocol sequentially one
after the other, we pipeline the protocol execution in a careful way. This means that some
parties may have to perform the role of a dealer in some 𝑖-th SD-VSS instance, a receiver in
some 𝑘-th SD-VSS instance, and so on. We give our randomness generation protocol in the
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execution-leaks model in Protocol 18. The communication complexity of this construction
is 𝑂(𝑛4) (excluding any polynomial factors in the security parameter).

Protocol 18 Randomness Generation from YOSOWCC SD-VSS in the Execution-Leaks
Model.
We have the 𝑡+ 1 parties (or roles) as dealers, parties 𝑃𝑖 for 𝑖 ∈ [2, 4𝑡+ 2] are referred to as
receivers, parties 𝑃𝑖 for 𝑖 ∈ [3𝑡+ 3, 4𝑡+ 3] are referred to as resolvers and the final set of
parties 𝑃𝑖 for 𝑖 ∈ [4𝑡+ 4, 5𝑡+ 4] are called reconstructors.
For 𝑖 ∈ [𝑡+ 1], in the 𝑖-th instance of the execution-leaks SD-VSS:

• For 𝑘 = 𝑖, party 𝑃𝑘 plays the role of the dealer.
• For 𝑘 ∈ [𝑖+ 1, 3𝑡+ 𝑖+ 1], party 𝑃𝑘 plays the role of the (𝑘 − 𝑖)-th receiver.
• For 𝑘 = 3𝑡+ 2 + 𝑖, party 𝑃𝑘 plays the role of the resolver.
• For 𝑘 ∈ [4𝑡+ 4, 5𝑡+ 4], party 𝑃𝑘 plays the role of a reconstructor.

Protocol 19 Randomness Generation from YOSOWCC SD-VSS in the Sending-Leaks Model.
We have the 𝑡+ 1 parties (or roles) as dealers, parties 𝑃𝑖 for 𝑖 ∈ [2, 4𝑡+ 2] are referred to as
receivers, parties 𝑃𝑖 for 𝑖 ∈ [3𝑡+ 3, 4𝑡+ 3] are referred to as resolvers and the final set of
parties 𝑃𝑖 for 𝑖 ∈ [4𝑡+ 4, 6𝑡+ 4] are called reconstructors.
For 𝑖 ∈ [𝑡+ 1], in the 𝑖-th instance of the sending-leaks VSS:

• For 𝑘 = 𝑖, party 𝑃𝑘 plays the role of the dealer.
• For 𝑘 ∈ [𝑖+ 1, 3𝑡+ 𝑖+ 1], party 𝑃𝑘 plays the role of the (𝑘 − 𝑖)-th receiver.
• For 𝑘 = 3𝑡+ 2 + 𝑖, party 𝑃𝑘 plays the role of the resolver.
• For 𝑘 ∈ [4𝑡+ 4, 6𝑡+ 4], party 𝑃𝑘 plays the role of a reconstructor.

The protocol for the sending-leaks is the same as the execution-leaks protocol except
that we have parties 𝑃𝑖 for 𝑖 ∈ [4𝑡 + 4, 6𝑡 + 4] acting as reconstructors and we make use
of the sending-leaks SD-VSS as our building block. For completeness, we describe our
sending-leaks protocol in Protocol 19, which is deferred to the appendix due to space
constraints. The communication complexity of the sending-leaks construction is also 𝑂(𝑛4)
(excluding any polynomial factors in the security parameter).

Further Role Reduction. We can reduce the number of roles even further from 5𝑡+ 4 to
5𝑡+3 in the case of execution-leaks and from 6𝑡+4 to 6𝑡+3 in the case of sending-leaks. To
do this, we make a simple observation that the 𝑖-th dealer can be their own recipient in the
𝑖-th SD-VSS instance. This is further optimising the role-stacking mechanism above and the
receivers are now parties 𝑃𝑘 for 𝑘 ∈ [4𝑡+ 1] instead of 4𝑡+ 2. Thus we are able to shave-off
one more role from our randomness generation protocols. For ease of understanding, we
present our formal protocols without including this optimization.
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Theorem 9. Assuming the existence of digital signatures, there exists a (𝑡, 𝑛 = 5𝑡 + 3)-
computationally secure YOSOWCC randomness generation protocol in the execution-leaks
model.

Proof. The role-stacking mechanism executes 𝑡+ 1 instances of verifiable secret sharing. In
order to see that the output coin is uniform distributed, we make following observations.

First, there is at least one instance of verifiable secret sharing that has the respective
dealer and resolver parties honest. This is simply because there are 𝑡+ 1 SD-VSS instances,
with at most 𝑡 parties being corrupted, and each party in the protocol can execute at most
one role as a dealer or as a resolver (but not both).

Second, by privacy of the SD-VSS that has an honest dealer and resolver (see Lemma 27),
no information about his shared value is revealed before any of the reconstructor parties
are executed. Moreover, by correctness of SD-VSS (see Lemma 26), the sharing phase of
this SD-VSS instance is successful (and will be publicly reconstructed by the reconstructor
parties).

Third, by the verifiability property of SD-VSS (see Lemma 28), for each other instance,
either the sharing phase failed, or there is a fixed value that will be reconstructed by the
reconstructor parties. Importantly, this value is fixed at the end of the sharing phase,
independently of any value that has been distributed in an instance of SD-VSS that has an
honest dealer and resolver (since in such an instance the adversary obtains no information,
in a statistical sense, about the shared value).

Given that the output-coin is computed as the sum of the values that are publicly
reconstructed, and one of the values is distributed in an instance of SD-VSS with honest
dealer and resolver, the output is uniformly random.

Theorem 10. Assuming the existence of digital signatures, there exists an efficient (𝑡, 𝑛 =
6𝑡+ 3)-computationally secure YOSOWCC randomness generation protocol in the sending-
leaks model.

Proof. The proof for correctness and verifiability is similar to the case we saw for execution-
leaks model. The only change is in arguing privacy. Notice that no 𝑡 reconstructors can
recover the secret of a honest dealer as the information is secret shared among the parties of
𝒫 ′ using a (𝑡+ 1)-out of-(2𝑡+ 1) secret sharing. Therefore, in the worst-case, the adversary
only has access to 𝑡 shares and therefore a honest secret is information-theoretically hidden
from its view.
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4.7 Protocols from Non-Interactive Commitments

Our construction consists of a sequence of 𝑡+ 1 instantiations of a split-dealer VSS protocol,
which is a modification of the protocol presented in [92]. To recall, each instance contains
the following roles:

1. Party 𝐷, who acts as the dealer distributing the secrets (publishing commitments to
the points of a bivariate degree-𝑡 polynomial and bilaterally sending to each receiver the
openings to the horizontal and vertical projections), and sends its state to its counterpart
𝐷′.

2. 2𝑡 + 1 receivers 𝑅𝑖, who receive and verify the projections (they are of degree-𝑡 and
consistent with the commitments); complain about the received values if applicable, and
otherwise send these to each party 𝑅′

𝑖.
3. Party 𝐷′ who obtains a state from 𝐷 and uses it to reveal the projections of the receivers

that complained. If 𝐷′ cannot resolve a complaint, this instance is aborted (𝐷′ is deemed
corrupt).

4. 𝑡 + 1 receivers 𝑅′
𝑖 who receive all the shares from each party 𝑅𝑖, as well as set their

shares to the ones broadcast by 𝐷′ (if the counterpart 𝑅𝑖 complained), and publicly
reveal all these shares.

To compose the instances, we organize the roles are as follows:

• For 1 ≤ 𝑖 ≤ 𝑡 + 1, party 𝑃𝑖 executes the role of the dealer 𝐷 in 𝑖-th instance. If
additionally 𝑖 > 1, 𝑃𝑖 also executes the role 𝑅𝑖−𝑗 in 𝑗-th instance, where 𝑗 < 𝑖.

• For 𝑡+ 2 ≤ 𝑖 ≤ 3𝑡+ 2, party 𝑃𝑖 executes the role 𝑅𝑖−𝑗 in 𝑗-th instance, where 𝑗 < 𝑖.
If additionally 𝑖 > 2𝑡+ 2, 𝑃𝑖 also executes the role of the dealer 𝐷′ in the 𝑖− 2𝑡− 2-th
instance.

• For 𝑖 = 3𝑡+ 3, party 𝑃𝑖 executes the role 𝐷′ in the (𝑡+ 1)-st instance.
• For 3𝑡+ 4 ≤ 𝑖 ≤ 4𝑡+ 4, 𝑃𝑖 executes the role 𝑅′

𝑖−3𝑡−3 for each instance.

We formally describe the protocol below.
Theorem 11. Assuming non-interactive perfectly binding commitments, there is an efficient
(𝑡, 𝑛 = 4𝑡 + 4)-computationally secure YOSOWCC randomness generation protocol in the
execution-leaks model.

Proof. Note that since the adversary corrupts up to 𝑡 parties and there are 𝑡+ 1 instances,
there exists an instance where both 𝐷𝑖 and 𝐷′

𝑖 are honest.

First, observe that for this particular instance, we prove that before role 3𝑡 + 4, the
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Protocol 20 Ex. Leaks Coin Tossing from any Non-Interactive Commitment
Sharing phase:
Each 𝐷𝑖, 𝑖 ∈ [𝑡+ 1] does the following:

1. 𝐷𝑖 chooses a random bivariate degree-𝑡 (on both variables) polynomial 𝐹 𝑖(𝑥, 𝑦).
2. 𝐷𝑖 commits to each point of 𝐹 𝑖(𝑥, 𝑦) using the non-interactive commitment scheme,

leading to commitments com𝑥,𝑦 ← Commit(𝐹 𝑖(𝑥, 𝑦); 𝑟𝑥,𝑦) for random coins 𝑟𝑥,𝑦, and
publicly broadcasts the commitments com𝑥,𝑦 for each 𝑥, 𝑦 ∈ [1, 2𝑡+ 1].

3. 𝐷𝑖 sends the opening information of the 𝑥-th horizontal and vertical projections
points: {(𝐹 𝑖(𝑥, 𝑦), 𝑟𝑥,𝑦)}𝑦∈[2𝑡+1] and {(𝐹 (𝑦, 𝑥), 𝑟𝑦,𝑥)}𝑦∈[2𝑡+1] to each 𝑃𝑥, 𝑥 ∈ [2𝑡+ 1];
and sends all opening information to 𝐷′

𝑖.
Each 𝑅𝑖, 𝑖 ∈ [2𝑡+ 1] does the following:

1. For each dealer 𝐷𝑗, 𝑅𝑖 checks whether the received openings against the published
commitments, and also that the received projections are of degree-𝑡.

2. 𝑅𝑖 sends its private state to every 𝑅′
𝑗.

Each 𝐷′
𝑖, 𝑖 ∈ [𝑡+ 1] does the following:

1. 𝐷′
𝑖 broadcasts the openings of all points corresponding to parties who complained

about 𝐷𝑖. If any broadcasted opening by 𝐷′
𝑖 is not consistent with the corresponding

commitment, or any openings corresponding to a projection do not form a degree-𝑡
polynomial, 𝐷′

𝑖 is deemed corrupt.
Reconstruction phase:
Each 𝑅′

𝑖, 𝑖 ∈ [𝑡+ 1] does the following:
1. If 𝑅𝑖 complained about 𝐷𝑗 , and 𝐷′

𝑗 was not deemed corrupt, 𝑅′
𝑖 sets the points of the

𝑖-th projections to the values broadcasted by 𝐷′
𝑗.

2. 𝑅′
𝑖 outputs all points obtained for non-corrupt dealers.

Client 𝐶 does the following to compute the coin:
1. For each 𝐷′

𝑖 who was not deemed corrupt, 𝐶 uses any 𝑡+ 1 projections that pass the
verification check against the corresponding published commitments to reconstruct a
bivariate polynomial 𝐹 𝑖. Let the value 𝑠𝑖 = 𝐹 𝑖(0, 0).

2. Let 𝐻 denote the index set of dealers 𝐷′
𝑖 which were not deemed corrupt. 𝐶 outputs⨁︀

𝑖∈𝐻 𝑠𝑖.
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corresponding bivariate polynomial 𝐹 𝑖 is unknown. This is because at most 𝑡 roles 𝑅𝑗 belong
to corrupted parties, and therefore only up to 𝑡 projections of the bivariate polynomial 𝐹 𝑖

are initially known to the adversary. Further note that honest receivers 𝑅𝑗 do not complain
about 𝐷𝑖, since an honest 𝐷𝑖 always commits to a degree-𝑡 bivariate polynomial 𝐹 𝑖, and the
points that are sent private are consistent with the commitments. Therefore, any point that
is publicly opened by an honest 𝐷′

𝑖 belongs to a projection that is known to the adversary.
Further note that at the end of the protocol, the client will reconstruct 𝐹 𝑖(0, 0). This is
because there is at least one honest recipient 𝑅′

𝑗 that holds openings corresponding to 𝑡+ 1
projections and that are consistent with the published commitments.

Second, observe that at the start of role 3𝑡 + 4, any instance 𝑗 where either 𝐷𝑗 or
𝐷′

𝑗 were corrupted, and where the instance did not abort (𝐷′
𝑗 was not publicly deemed

corrupt), has a fixed bivariate polynomial 𝐹 𝑗 and the client will reconstruct 𝐹 𝑗(0, 0). This
is because the honest receivers hold consistent projections of degree-𝑡 with the published
commitments. Moreover, by the first point, the value 𝐹 𝑗(0, 0) was fixed independently of
the honest instance 𝐹 𝑖, due to the hiding property of the commitments.

From the two points above, since the final coin is computed as the sum of instances that
were successful (where the dealer was not deemed corrupt), and in at least one instance the
random value was chosen by an honest dealer, the coin has negligible bias.

4.7.0.1 Sending-Leaks Variant.

For the sending-leaks model, we similarly implement the behavior of each dealer using
two roles – one responsible for the sharing of a secret, and one responsible for addressing
the complaints. However, we not only have 2𝑡 + 1 parties 𝑅𝑖, but also 2𝑡 + 1 parties 𝑅′

𝑗.
Each 𝑅𝑖 follows the procedure of round two, and if its shares verify, but it additionally
sends its shares to only 𝑅′

𝑖. Finally, each 𝑅′
𝑖 publishes the shares (it got from 𝑅𝑖) which

verified correctly. Note that there are 𝑡+ 1 pairs (𝑅𝑖, 𝑅
′
𝑖) that are both honest, which will

publish projections that are consistent with the published commitments and therefore will
be enough to reconstruct the bivariate polynomials.
Theorem 12. Assuming non-interactive perfectly binding commitments, there is an efficient
(𝑡, 𝑛 = 5𝑡 + 4)-computationally secure YOSOWCC randomness generation protocol in the
sending-leaks model.
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4.8 Improved Protocols for Small Number of Parties
from Non-Interactive Commitments

We now present our efficient randomness generation protocol for 𝑛 = 3𝑡+ 1 parties using
non-interactive commitments in the execution-leaks model. We make use of a combinatorial
object that we formally define below.

4.8.1 𝑡-Sharing Matrices

Definition 23 (𝑡-sharing matrix). We say that a matrix 𝑀 ∈ {0, 1}𝑚×ℓ is a 𝑡-sharing
matrix if the following two properties hold:

• Every row of 𝑀 has Hamming weight 𝑡;
• For any set 𝑆 ⊆ [ℓ] of size 𝑡− 1 there exists 𝑖 ∈ [𝑚] such that 𝑀𝑖𝑗 = 0 for all 𝑗 ∈ 𝑆.

We note that 𝑡-sharing matrices are related to (but weaker than) constant-weight
𝑡-disjunct matrices.

Our next lemma exhibits a lower bound on the number of rows of any 𝑡-sharing matrix
𝑀 .
Lemma 32. If 𝑀 ∈ {0, 1}𝑚×ℓ is a 𝑡-sharing matrix, then we must have 𝑚 ≥ ( ℓ

𝑡−1)
(ℓ−𝑡

𝑡−1)
.

Proof. We say that a vector 𝑣 ∈ {0, 1}ℓ evades a set 𝑆 ⊆ [ℓ] if 𝑣𝑆 = 0. Every such 𝑣 of
weight 𝑡 evades exactly

(︁
ℓ−𝑡
𝑡−1

)︁
sets 𝑆 ⊆ [ℓ] of size 𝑡− 1. This means that at most 𝑚 ·

(︁
ℓ−𝑡
𝑡−1

)︁
such sets are evaded by at least one of the 𝑚 rows of 𝑀 . On the other hand, for 𝑀 to
be 𝑡-sharing it must be the case that every set 𝑆 ⊆ [ℓ] of size 𝑡− 1 (of which there

(︁
ℓ

𝑡−1

)︁
choices) is evaded by some row of 𝑀 , and so we must have

𝑚 ·
(︃
ℓ− 𝑡
𝑡− 1

)︃
≥
(︃

ℓ

𝑡− 1

)︃
.

This yields the desired lower bound on 𝑚.

We use the following simple construction of a 𝑡-sharing matrix in our general protocol
for 𝑛 = 3𝑡+ 1 parties.
Lemma 33. There exists a 𝑡-sharing matrix 𝑀 ∈ {0, 1}𝑚×ℓ with ℓ = 2𝑡− 1 columns and
𝑚 =

(︁
2𝑡−1

𝑡

)︁
rows. Moreover, this matrix can be constructed in time polynomial in ℓ and 𝑚.
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Proof. Consider the matrix 𝑀 ∈ {0, 1}(
2𝑡−1

𝑡 )×(2𝑡−1) where the rows of 𝑀 correspond to all
(2𝑡 − 1)-bit vectors of weight exactly 𝑡. It suffices to check that for all subsets of 𝑡 − 1
columns of 𝑀 there exists an index 𝑖 on which they are all 0.

Fix any subset 𝑆 ⊆ [2𝑡− 1] of size 𝑡− 1. Since [ℓ] ∖ 𝑆 has size 𝑡, there is a row of 𝑀
whose support lies outside 𝑆. Therefore, the columns of 𝑀 indexed by 𝑆 are all 0 on this
row.

By lemma 32, we get that the number of rows in the construction of lemma 33 cannot
be improved if the number of rows is kept as is.

4.8.2 Our Protocol

With the aid of a 𝑡-sharing matrix 𝑀 as defined above, we present our randomness generation
protocol in the YOSOWCC execution-leaks model, as detailed in Protocol 21.
Theorem 13. If COM is a perfectly binding and computationally hiding non-interactive
commitment scheme, then Protocol 21 is a (𝑡, 𝑛 = 3𝑡+ 1)-computationally secure YOSOWCC

randomness generation protocol in the execution-leaks model. Furthermore, its computational
and communication complexities are polynomial in 𝑡 and the security parameter 𝜆.

Proof. Our proof proceeds on a case-by-case basis. This way we can capture all the
adversarial strategies in an easy-to-understand way. In all the cases, the adversary corrupts
up to 𝑡 parties in {𝑃1, . . . , 𝑃3𝑡+1}.

We state the following lemma that will be useful in our analysis.

Lemma 34. If the adversary corrupts some party 𝑃𝑖* where 𝑖* ∈ [2𝑡 − 1], such that
for some 𝑗 ∈ [𝑚], 𝑀𝑗𝑘 = 0 for 𝑘 ∈ [𝑖* − 1] and 𝑀𝑗𝑖* = 1, then either the adversary’s
commitment com𝑗 receives a (Complain, 𝑗) or a valid opening is broadcast by some party
𝑃ℎ for ℎ ∈ [2𝑡+ 1, 3𝑡+ 1].

lemma 34. Consider index 𝑖* ∈ [2𝑡 − 1], such that party 𝑃𝑖* is corrupt and any index
𝑗 ∈ [𝑚] such that 𝑀𝑗𝑘 = 0 for all 𝑘 ∈ [𝑖* − 1] and 𝑀𝑗𝑖* = 1. The adversary broadcasts
commitment com𝑗, and the openings to any party it wishes to. However, note that there
exists an honest party 𝑃𝑘 for 𝑘 ∈ [𝑖*, 2𝑡 − 1] and 𝑀𝑗𝑘 = 1, which if it did not receive
the valid opening, it would broadcast a message (Complain, 𝑗). On the other hand, if the
adversary sends valid opening of the commitment com𝑗 to party 𝑃𝑘, then party 𝑃𝑘 would
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Protocol 21 Randomness Generation using 𝑛 = 3𝑡+ 1 roles in the Execution-Leaks Model.
We have a 𝑡-sharing matrix 𝑀 ∈ {0, 1}𝑚×ℓ according to lemma 33, where ℓ = 2𝑡− 1 and
𝑚 =

(︁
2𝑡−1

𝑡

)︁
.

1. For 𝑖 ∈ [2𝑡− 1]:
(a) For 𝑗 ∈ [𝑚], party 𝑃𝑖 does the following:

i. If ∀𝑘 ∈ [𝑖− 1],𝑀𝑗𝑘 = 0 and 𝑀𝑗𝑖 = 1,
A. Choose value 𝑠𝑗 ←$ {0, 1}ℓ𝑚(𝜆) and generate com𝑗 ← Commit(𝑠𝑗; 𝑟𝑗) for

random coins 𝑟𝑗 ∈ {0, 1}ℓ𝑟(𝜆).
B. Broadcast com𝑗 and send the opening (𝑠𝑗, 𝑟𝑗) to all parties 𝑃𝑘 where

𝑘 ∈ [𝑖+ 1, ℓ] and 𝑀𝑗𝑘 = 1, and to all parties 𝑃𝑘 where
𝑘 ∈ [2𝑡+ 1, 3𝑡+ 1].

ii. Else if 𝑀𝑗𝑖 = 1,
A. Receive (𝑠𝑗, 𝑟𝑗) from party 𝑃𝑘 for some 𝑘 ∈ [𝑖− 1] and 𝑀𝑗𝑘 = 1.
B. Broadcast (Complain, 𝑗) if nothing was received or if

Commit(𝑠𝑗; 𝑟𝑗) ̸= com𝑗. Else, send (𝑠𝑗, 𝑟𝑗) to all parties 𝑃𝑘 where
𝑘 ∈ [2𝑡+ 1, 3𝑡+ 1].

2. Party 𝑃2𝑡 samples 𝑠* ←$ {0, 1}ℓ𝑚(𝜆) and broadcasts 𝑠*.
3. For 𝑖 ∈ [2𝑡+ 1, 3𝑡+ 1], party 𝑃𝑖 does the following:

(a) For any 𝑗 ∈ [𝑚], if no message (Complain, 𝑗) was seen, then receive all messages
(𝑠𝑗, 𝑟𝑗) such that Commit(𝑠𝑗; 𝑟𝑗) = com𝑗, and output (𝑠𝑗, 𝑟𝑗).

Let 𝐶 ⊆ [𝑚] be the set of indices such that for any 𝑗 ∈ 𝐶, no message (Complain, 𝑗) was
seen and (𝑠𝑗, 𝑟𝑗) was broadcast such that Commit(𝑠𝑗; 𝑟𝑗) = com𝑗. Let the final randomness
be set as 𝑠 = ⨁︀

𝑗∈𝐶 𝑠𝑗 ⊕ 𝑠*.
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send the opening to all recipients {𝑃2𝑡+1, . . . , 𝑃3𝑡+1}. Note that there is at least 1 honest
party 𝑃ℎ ∈ {𝑃2𝑡+1, . . . , 𝑃3𝑡+1} that receives the opening of com𝑗 from 𝑃𝑘 and outputs that
during its execution. This ensures that the opening of the adversarial commitment will be
broadcast by an honest party 𝑃ℎ.

Case 1 - Adversary corrupts 𝑡 roles in {𝑃1, . . . , 𝑃2𝑡−1}: In this case, by the definition
of 𝑡-sharing matrix 𝑀 , the adversary can learn the openings of all the honest parties’
commitments. Moreover, the commitments generated by the adversary, the openings, and
the recipients in {𝑃2𝑡+1, . . . , 𝑃3𝑡+1} that it chooses to reveal the openings to, are all completed
before the execution of the honest 𝑃2𝑡. Therefore, we can say that the adversary’s choices
are made independent of the random string that honest party 𝑃2𝑡 will output. Therefore,
the final values output by {𝑃2𝑡+1, . . . , 𝑃3𝑡+1} irrespective of the adversarial choices, will
result in a random string that is uniformly distributed in the coin space.

Case 2 - Adversary corrupts 𝑡 roles except party 𝑃2𝑡: Let the adversary corrupt 𝑡1 ≤ (𝑡−1)
parties in {𝑃1, . . . , 𝑃2𝑡−1} and 𝑡− 𝑡1 among {𝑃2𝑡+1, . . . , 𝑃3𝑡+1}. Consider index 𝑖* ∈ [2𝑡− 1],
such that party 𝑃𝑖* is corrupt and any index 𝑗 ∈ [𝑚] such that 𝑀𝑗𝑘 = 0 for all 𝑘 ∈ [𝑖* − 1]
and 𝑀𝑗𝑖* = 1. The adversary broadcasts commitment com𝑗. We know by lemma 34,
that the commitment either receives a message (Complain, 𝑗) from an honest party 𝑃𝑘 for
𝑘 ∈ [𝑖*, 2𝑡−1], and the commitment and its opening will be ignored during the computation
of the final random coin of the protocol. This is even before party 𝑃2𝑡 outputs its random
value, similar to the previous case. Alternatively, some honest party 𝑃𝑘′ ∈ {𝑃2𝑡+1, . . . , 𝑃3𝑡+1}
outputs the correct opening of com𝑗 during its execution.

Now observe that similar to the previous case, the adversary is committed to its value,
and choice of recipients independent of the execution of the honest party 𝑃2𝑡 that will output
a uniformly distributed random string. By the above argument, there exists an honest
party 𝑃𝑘′ ∈ {𝑃2𝑡+1, . . . , 𝑃3𝑡+1} that will open all the adversarial commitments correctly if
they have not received Complain messages already. Therefore, the final random coin is
generated independent of the adversary’s choices and is hence uniformly distributed in the
coin space.

Case 3 - Adversary corrupts 𝑡 roles including 𝑃2𝑡: Let the adversary corrupt 𝑡1 ≤ (𝑡− 1)
parties in {𝑃1, . . . , 𝑃2𝑡−1}, party 𝑃2𝑡, and (𝑡−1)−𝑡1 among {𝑃2𝑡+1, . . . , 𝑃3𝑡+1}. By lemma 34,
we know that adversary’s commitments will either receive Complain message or be opened
with a valid opening by some honest party in {𝑃2𝑡+1, . . . , 𝑃3𝑡+1}. The only analysis left is
to show that the adversary cannot bias its behaviour by learning information from honest
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party’s commitments. To see this, we reduce the security to the hiding property of the
commitment scheme COM.

The proof follows a standard hybrid argument, where the hybrids are simulated execu-
tions of the protocol. More precisely, the simulator simulates the operations of the honest
parties, while receiving all the broadcast messages and those that were sent privately by
the adversary.

Hybrid0: This hybrid is an execution of the protocol where the honest parties behave as per
the protocol specification, and the final random coin is set as the xor of all valid opened
values. This is the real-world execution of the protocol.

Hybrid1: This hybrid execution is the same as Hybrid0, except that the simulator exits the
execution of the protocol after party 𝑃2𝑡 and sets the final random coin. This is done by
looking at the random coins being committed to by the honest parties and the openings
shares by the adversary. Importantly, the parties {𝑃2𝑡+1, . . . , 𝑃3𝑡+1} need not be executed
as the final coin is already determined. Note the random coins generated in both hybrids
are identically distributed given that the commitments are perfectly binding and following
from lemma 34.

Hybrid2: The hybrid execution is the same as Hybrid1, except for the following. The simulator
does not broadcast (Complain, ·) on behalf of honest parties for the commitments broadcast
by honest parties. In other words, the honest parties do not complain about other honest
parties’ commitments. The execution in both hybrids is identical as honest parties behave
according to the protocol when they commit to values and open them and will receive no
complaints from other honest parties.

Hybrid3: This hybrid execution is the same as Hybrid2, except for the following change.
Consider an honest party 𝑃𝑖 for 𝑖 ∈ [2𝑡− 1], such that for some 𝑗 ∈ [𝑚], all 𝑀𝑗𝑘 = 0 for all
𝑘 ∈ [𝑖− 1], and 𝑀𝑗𝑖 = 1. Moreover, we also have that for all 𝑘′ ∈ [𝑖, 2𝑡− 1], where 𝑀𝑗𝑘′ = 1,
party 𝑃𝑘′ is honest. The existence of such an index 𝑗 ∈ [𝑚] is guaranteed by the definition
of the matrix 𝑀 (see lemma 33). The simulator sets the commitment com𝑗 broadcast by
party 𝑃𝑖 to be commitments to 0. The final coin is computed right after the execution of
𝑃2𝑡 like before, but choosing random value 𝑠𝑗 as opening for party 𝑃𝑖’s commitment com𝑗.
Clearly, the opening is not correct, but note that the opening is not sent to the adversary
given that for all 𝑘′ ∈ [𝑖, 2𝑡− 1], where 𝑀𝑗𝑘 = 1, party 𝑃𝑘′ is honest.

We now argue that the random coin generated in Hybrid3 is computationally indistin-
guishable from a uniformly random string. To see this, we consider a distinguisher 𝒟
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against the hiding property of COM. The distinguisher chooses a random value 𝑠𝑗 and
sends (𝑠𝑗, 0) as the two challenge messages to its challenger. It receives a commitment
com*

𝑗 . The distinguisher proceeds with the simulation as in Hybrid2, except that the 𝑗-th
commitment broadcast by party 𝑃𝑖 is set to be com*

𝑗 . The final random coin denoted by 𝑠
is computed as in Hybrid2 using 𝑠𝑗 as the supposed opening of the commitment com*

𝑗 . Let
𝒟′ be the distinguisher that distinguishes between the random coin generated by Hybrid2

and Hybrid3. Distinguisher 𝒟 returns the random coin 𝑠 to 𝒟′ and returns whatever bit
𝑏 that 𝒟′ outputs. Notice that if the challenger sets com*

𝑗 to be the commitment to 𝑠𝑗,
then the random coin 𝑠 is set according to Hybrid2. On the other hand, if com*

𝑗 was set to
be the commitment to 0, then the random coin 𝑠 is set according to Hybrid3. Therefore,
distinguisher 𝒟 is able to win the hiding game with the same non-negligible advantage as
that of 𝒟′. Given the computationally hiding property of COM, we arrive at a contradiction
and can conclude that Hybrid3 is computationally indistinguishable from Hybrid2.

We can see that in Hybrid3 the commitment com*
𝑗 has no information about 𝑠𝑗, and the

adversary has committed to its values, commitments, and choice of recipients independent of
𝑠𝑗. Therefore, the final coin 𝑠 is computationally indistinguishable from a uniform random
string.

4.8.2.1 Our Protocol in the Sending-leaks Model.

Our sending-leaks model protocol is similar to the above protocol except that we have
2𝑡+ 1 receivers instead of 𝑡+ 1. More formally, in Protocol 22, we present our randomness
generation protocol in the YOSOWCC sending-leaks model. The security is stated formally
in the theorem below.
Theorem 14. If COM is a perfectly binding and computationally hiding non-interactive
commitment scheme, then Protocol 22 is a (𝑡, 𝑛 = 4𝑡)-computationally secure YOSOWCC

randomness generation protocol in the sending-leaks model. Furthermore, its computational
and communication complexities are polynomial in 𝑡 and the security parameter 𝜆.

Proof. The proof of the theorem follows the same strategy as the proof for theorem 13. For
completeness, we describe it below. We make use of the following adapted lemma.

Lemma 35. If the adversary corrupts some party 𝑃𝑖* where 𝑖* ∈ [2𝑡−1], such that for some
𝑗 ∈ [𝑚], 𝑀𝑗𝑘 = 0 for 𝑘 ∈ [𝑖* − 1] and 𝑀𝑗𝑖* = 1, then either the adversary’s commitment
com𝑗 receives a (Complain, 𝑗) or a valid opening is reconstructed after all parties 𝑃ℎ for
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ℎ ∈ [2𝑡, 4𝑡] have completed their execution.

lemma 35. Consider index 𝑖* ∈ [2𝑡−1], such that party 𝑃𝑖* is corrupt and any index 𝑗 ∈ [𝑚]
such that 𝑀𝑗𝑘 = 0 for all 𝑘 ∈ [𝑖* − 1] and 𝑀𝑗𝑖* = 1. The adversary broadcasts commitment
com𝑗 , and the openings to any party it wishes to. However, note that there exists an honest
party 𝑃𝑘 for 𝑘 ∈ [𝑖*, 2𝑡− 1] and 𝑀𝑗𝑘 = 1, which if it did not receive the valid opening, it
would broadcast a message (Complain, 𝑗). On the other hand, if the adversary sends a
valid opening of the commitment com𝑗 to party 𝑃𝑘, then party 𝑃𝑘 would send 𝑡+ 1-out of
2𝑡+ 1 sharing of the opening to all recipients {𝑃2𝑡, . . . , 𝑃4𝑡}. That is party 𝑃ℎ for ℎ ∈ [2𝑡, 4𝑡]
receives the (ℎ − (2𝑡 − 1))-th share of the opening. Note that there are at least 𝑡 + 1
honest parties in the set {𝑃2𝑡, . . . , 𝑃4𝑡} that receive the share of the opening of com𝑗 from
𝑃𝑘 and output that during their execution. This ensures that the opening of the adversarial
commitment will be reconstructed after 𝑃4𝑡 has completed its execution.

Case 1 - Adversary corrupts 𝑡 roles in {𝑃1, . . . , 𝑃2𝑡−1}: The case is the same as in the
execution leaks. The final values output by {𝑃2𝑡, . . . , 𝑃4𝑡} irrespective of the adversarial
choices, will result in a random string that is uniformly distributed in the coin space.

Case 2 - Adversary corrupts 𝑡 roles except party 𝑃2𝑡: Let the adversary corrupt 𝑡1 ≤ (𝑡−1)
parties in {𝑃1, . . . , 𝑃2𝑡−1} and 𝑡 − 𝑡1 among {𝑃2𝑡+1, . . . , 𝑃4𝑡}. This case is similar to the
execution-leaks model except that we invoke lemma 35 to show that adversarial commitments
are either complained on, or successfully opened after 𝑃4𝑡 completes its execution. This is
determined even before party 𝑃2𝑡 outputs its random value, similar to the previous case.
Alternatively, some honest party 𝑃𝑘′ ∈ {𝑃2𝑡+1, . . . , 𝑃3𝑡+1} outputs the correct opening of
com𝑗 during its execution. Therefore, the final random coin is generated independent of
the adversary’s choices and is hence uniformly distributed in the coin space.

Case 3 - Adversary corrupts 𝑡 roles including 𝑃2𝑡: Let the adversary corrupt 𝑡1 ≤ (𝑡− 1)
parties in {𝑃1, . . . , 𝑃2𝑡−1}, party 𝑃2𝑡 and (𝑡−1)−𝑡1 among {𝑃2𝑡+1, . . . , 𝑃4𝑡}. By lemma 35, we
know that adversary’s commitments will either receive Complain message or be opened with
a valid opening after the execution of 𝑃4𝑡. The only analysis left is to show that the adversary
cannot bias its behaviour by learning information from honest party’s commitments. To
see this, we reduce the security to the hiding property of the commitment scheme COM.

The proof follows a similar hybrid argument, where the hybrids are simulated executions
of the protocol. More precisely, the simulator simulates the operations of the honest
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parties, while receiving all the broadcast messages and those that were sent privately by
the adversary.

Hybrid0: This hybrid is an execution of the protocol where the honest parties behave as per
the protocol specification, and the final random coin is set as the xor of all valid opened
values. This is the real-world execution of the protocol.

Hybrid1: This hybrid execution is the same as Hybrid0, except that the simulator exits the
execution of the protocol after party 𝑃2𝑡 and sets the final random coin. This is done by
looking at the random coins being committed to by the honest parties and the openings
shared by the adversary. Importantly, the parties {𝑃2𝑡+1, . . . , 𝑃4𝑡} need not be executed
as the final coin is already determined. Note the random coins generated in both hybrids
are identically distributed given that the commitments are perfectly binding and following
from lemma 35.

Hybrid2: The hybrid execution is he same as Hybrid1, except for the following. The simulator
does not broadcast (Complain, ·) on behalf of honest parties for the commitments broadcast
by honest parties. In other words, the honest parties do not complain about other honest
parties’ commitments. The execution in both hybrids is identical as honest parties behave
according to the protocol when they commit to values and open them and will receive no
complaints from other honest parties.

Hybrid3: This hybrid execution is the same as Hybrid2, except for the following change.
Consider an honest party 𝑃𝑖 for 𝑖 ∈ [2𝑡− 1], such that for some 𝑗 ∈ [𝑚], all 𝑀𝑗𝑘 = 0 for all
𝑘 ∈ [𝑖− 1], and 𝑀𝑗𝑖 = 1. Moreover, we also have that for all 𝑘′ ∈ [𝑖, 2𝑡− 1], where 𝑀𝑗𝑘 = 1,
party 𝑃𝑘′ is honest. The existence of such an index 𝑗 ∈ [𝑚] is guaranteed by the definition
of the matrix 𝑀 (see lemma 33). The simulator sets the commitment com𝑗 broadcast by
party 𝑃𝑖 to be a commitment to 0. The final coin is computed right after the execution of
𝑃2𝑡 like before, but choosing random value 𝑠𝑗 as opening for party 𝑃𝑖’s commitment com𝑗.
The opening is not correct, but note that the adversary can corrupt at most 𝑡 parties in
{𝑃2𝑡, . . . , 𝑃4𝑡} and therefore the opening information 𝑠𝑗 is information-theoretically hidden
from the adversary.

The argument to show that the random coin generated in Hybrid3 is computationally
indistinguishable from the one in Hybrid2 is the same as in theorem 13. That is, we reduce
the advantage of a distinguishing attacker to the advantage of a distinguished against
the hiding property of COM. We can see that in Hybrid3 the commitment com*

𝑗 has no
information about 𝑠𝑗, and the adversary has committed to its values, commitments, and
choice of recipients independent of 𝑠𝑗. Therefore, the final coin 𝑠 is computationally
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indistinguishable from a uniform random string.

Protocol 22 Randomness Generation using 𝑛 = 4𝑡 roles in the Sending-Leaks Model.
We have a 𝑡-sharing matrix 𝑀 ∈ {0, 1}𝑚×ℓ according to lemma 33, where ℓ = 2𝑡− 1 and
𝑚 =

(︁
2𝑡−1

𝑡

)︁
.

1. For 𝑖 ∈ [2𝑡− 1]:
(a) For 𝑗 ∈ [𝑚], party 𝑃𝑖 does the following:

i. If ∀𝑘 ∈ [𝑖− 1],𝑀𝑗𝑘 = 0 and 𝑀𝑗𝑖 = 1,
A. Choose value 𝑠𝑗 ←$ {0, 1}ℓ𝑚(𝜆) and generate com𝑗 ← Commit(𝑠𝑗; 𝑟𝑗) for

random coins 𝑟𝑗 ∈ {0, 1}ℓ𝑟(𝜆).
B. Broadcast com𝑗 and send the opening (𝑠𝑗, 𝑟𝑗) to all parties 𝑃𝑘 where

𝑘 ∈ [𝑖+ 1, ℓ] and 𝑀𝑗𝑘 = 1.
C. It generates a 𝑡+ 1-out of-2𝑡+ 1 sharing of (𝑠𝑗, 𝑟𝑗) and send the 𝑘-th

share privately to party 𝑃𝑘 where 𝑘 ∈ [2𝑡, 4𝑡].
ii. Else if 𝑀𝑗𝑖 = 1,

A. Receive (𝑠𝑗, 𝑟𝑗) from party 𝑃𝑘 for some 𝑘 ∈ [𝑖− 1] and 𝑀𝑗𝑘 = 1.
B. Broadcast (Complain, 𝑗) if nothing was received or if

Commit(𝑠𝑗; 𝑟𝑗) ̸= com𝑗.
C. Else, generate a 𝑡+ 1-out of-2𝑡+ 1 sharing of (𝑠𝑗, 𝑟𝑗) and send the 𝑘-th

share privately to party 𝑃𝑘 where 𝑘 ∈ [2𝑡, 4𝑡].
2. Party 𝑃2𝑡 samples 𝑠* ←$ {0, 1}ℓ𝑚(𝜆) and broadcasts 𝑠*.
3. For 𝑖 ∈ [2𝑡, 4𝑡], party 𝑃𝑖 does the following:

(a) For any 𝑗 ∈ [𝑚], if no message (Complain, 𝑗) was seen, then receive shares from
different parties for the opening of com𝑗 and output the shares.

Let 𝐶 ⊆ [𝑚] be the set of indices such that for any 𝑗 ∈ 𝐶, no message (Complain, 𝑗) was
seen and there are 𝑡+ 1 shares output by the parties 𝑃2𝑡, . . . , 𝑃4𝑡 that reconstruct the
opening (𝑠𝑗, 𝑟𝑗) such that Commit(𝑠𝑗; 𝑟𝑗) = com𝑗. Let the final randomness be set as
𝑠 = ⨁︀

𝑗∈𝐶 𝑠𝑗 ⊕ 𝑠*.
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4.9 Lower Bounds for YOSOWCC Protocols without
Setup

In this section we discuss lower bounds on the number of parties of computationally secure
YOSOWCC randomness generation protocols as a function of the corruption threshold. Such
lower bounds were obtained for information-theoretic YOSOWCC in [96]. More precisely, they
showed an impossibility result for 𝑡 = 1 corruptions and 𝑛 = 4 parties, which generalizes
directly to an impossibility result for 𝑡 corruptions and 𝑛 = 4𝑡 parties in the sending-leaks
model (and hence to an 𝑛 ≥ 4𝑡 + 1 lower bound for protocols in this model). However,
contrary to what they claim, their impossibility result does not directly extend to 𝑡 > 1
corruptions in the execution-leaks model.

We begin by noting a computational analog of their impossibility result for 𝑡 = 1
corruptions (a case where the execution-leaks and sending-leaks models coincide). The
proof follows that of [96] very closely, with some added observations about the efficiency of
certain potential attacks. We present it for completeness.
Theorem 15. There is no (𝑡 = 1, 𝑛 = 3)-computationally secure YOSOWCC randomness
generation protocol with bias 𝜀 < 0.01 in either the execution-leaks or sending-leaks model.

As mentioned before, one take-away of this theorem combined with our prior feasibility
result is that 𝑛 = 4 parties are necessary and sufficient for computationally secure YOSOWCC

randomness generation against 𝑡 = 1 corruptions. In the information-theoretic setting,
𝑛 = 5 parties are known to be necessary and sufficient [96].

Proof. Assume for the sake of contradiction that there exists a protocol which satisfies the
conditions stated above. Let 𝑓(𝑥1, 𝑥2, 𝑥3) denote the coin output of the protocol. Now,
consider party 𝑃3. As we are in the plain model without setup, 𝑃3 is able to efficiently
compute 𝑥3 in its head using the messages sent by the honest 𝑃1 and 𝑃2 and thus compute
𝑓(𝑥1, 𝑥2, 𝑥3). Therefore, 𝑃3 should not be able to change the outcome of the coin too much.
More formally, consider sampling honest 𝑥1, 𝑥2, 𝑥3. Then, it must hold that

Pr[𝑓(𝑥1, 𝑥2,⊥) = 1− 𝑏|𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑏] ≤ 4𝜀
1 + 2𝜀

for 𝑏 ∈ {0, 1}, where the probability is taken over the honest sampling of 𝑥1, 𝑥2, and 𝑥3.
To see this, consider 𝑏 = 0 without loss of generality. If this inequality does not hold, an
adversary who corrupts 𝑃3 can efficiently sample 𝑥3 honestly, and, if the result is 0, the
adversary outputs ⊥ for 𝑃3. In this efficient attack, the final coin is 1 with probability at
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least (︂1
2 − 𝜀

)︂
+
(︂1

2 + 𝜀
)︂
· Pr[𝑓(𝑥1, 𝑥2,⊥) = 1|𝑓(𝑥1, 𝑥2, 𝑥3) = 0] > 1/2 + 𝜀, (4.1)

which contradicts the security of the protocol. From eq. (4.1), it follows that

Pr[𝑓(𝑥1, 𝑥2,⊥) ̸= 𝑓(𝑥1, 𝑥2, 𝑥3)] ≤ 2 ·
(︂1

2 + 𝜀
)︂
· 4𝜀

1 + 2𝜀 = 4𝜀. (4.2)

Due to eq. (4.2), not only does 𝑃3 have little control over changing the outcome of the
coin, but also 𝑃2. This is because 𝑃2 can now efficiently compute the output of the coin
by setting 𝑃3’s message to ⊥. Consider the following: Suppose that an honest 𝑃1 outputs
a public 𝑥1 and sends private messages 𝑠1,2, 𝑠1,3. Given the messages 𝑥1 and 𝑠1,2, sample
two values 𝑥1

2, 𝑥2
2, along with the corresponding private messages 𝑠1

2,3 and 𝑠2
2,3 (each in an

honest way). Sample 𝑥1
3 (resp. 𝑥2

3) using 𝑥1, 𝑥
1
2, 𝑠1,3, 𝑠

1
2,3 (resp. 𝑥1, 𝑥

2
2, 𝑠1,3, 𝑠

2
2,3) in an honest

way. Combining eq. (4.2) with a union bound over the two simulated runs shows that

Pr[𝑓(𝑥1, 𝑥
1
2, 𝑥

1
3) = 𝑓(𝑥1, 𝑥

1
2,⊥), 𝑓(𝑥1, 𝑥

2
2, 𝑥

2
3) = 𝑓(𝑥1, 𝑥

2
2,⊥)] ≥ 1− 8𝜀.

Furthermore, it must hold that

Pr[𝑓(𝑥1, 𝑥
1
2, 𝑥

1
3) = 𝑓(𝑥1, 𝑥

1
2,⊥), 𝑓(𝑥1, 𝑥

1
2, 𝑥

1
3) = 𝑓(𝑥1, 𝑥

2
2,⊥),

𝑓(𝑥1, 𝑥
1
2,⊥) ̸= 𝑓(𝑥1, 𝑥

2
2,⊥)] ≤ 𝜀. (4.3)

Otherwise, an adversary corrupting 𝑃2 would be able to efficiently bias by sampling two
messages 𝑥1

2, 𝑥
2
2, each in an honest way, computing 𝑓(𝑥1, 𝑥

1
2,⊥) and 𝑓(𝑥1, 𝑥

2
2,⊥), and picking

the one that corresponds to final coin 1. By combining eqs. (4.2) and (4.3) with a union
bound, we conclude that

Pr[𝑓(𝑥1, 𝑥
1
2, 𝑥

1
3) = 𝑓(𝑥1, 𝑥

1
2,⊥), 𝑓(𝑥1, 𝑥

1
2, 𝑥

1
3) = 𝑓(𝑥1, 𝑥

2
2,⊥),

𝑓(𝑥1, 𝑥
1
2,⊥) = 𝑓(𝑥1, 𝑥

2
2,⊥)] ≥ 1− 9𝜀.

This means that party 𝑃1 fully determines the output of the protocol with probability at
least 1− 9𝜀. In this case, 𝑃1 also can also efficiently compute the value of the coin. Thus,
an adversary corrupting 𝑃1 can conduct the following efficient attack: Sample two sets of
messages 𝑥1

1, 𝑠
1
1,2, 𝑠

1
1,3 and 𝑥2

1, 𝑠
2
1,2, 𝑠

2
1,3, compute the coin by emulating 𝑃2 and setting 𝑃3’s

message to ⊥. If either of the coins is 1, output the corresponding set 𝑥𝑖
1, 𝑠

𝑖
1,2, 𝑠

𝑖
1,3, where

𝑖 ∈ {1, 2}. As these are two independent runs of the protocol and we assume (for the sake
of contradiction) that the protocol has bias at most 𝜀, with probability at least 1

2 − 𝜀
2 we

get that the two runs result in a different coin. Thus, 𝑃1’s attack succeeds with probability
at least (1

2 − 𝜀
2)− 2 · 9𝜀 > 0.01 ≥ 𝜀, which leads to a contradiction.
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Next, we show how to extend theorem 15 to 𝑡 > 1 corruptions and 𝑛 = 3𝑡 parties in the
sending-leaks model. This implies that (𝑡, 𝑛)-computationally secure YOSOWCC protocols
in the sending-leaks model require 𝑛 ≥ 3𝑡+ 1 parties, for any 𝑡 ≥ 1. The proof is simple
and intuitive. We obtain an impossibility by arguing that a (𝑡, 𝑛 = 3𝑡)-computationally
secure YOSOWCC protocol in the sending-leaks model can be translated into a protocol for
𝑡 = 1 corruptions and 𝑛 = 3 parties by having each party emulate a block of 𝑡 consecutive
parties in the original protocol.
Theorem 16. There is no (𝑡, 𝑛 = 3𝑡)-computationally secure YOSOWCC randomness
generation protocol for 𝑡 > 1 corruptions with bias 𝜀 < 0.01 in the sending-leaks model.

Proof. For the sake of contradiction, say that such a protocol Π exists. We will show that
given such a protocol, it is possible to obtain a YOSOWCC protocol Π′ for 𝑛′ = 3 parties
and 𝑡′ = 1 corruptions, which would contradict Theorem 15.

We start by splitting the 𝑛 parties into three groups 𝑃 1 := {𝑃1, . . . , 𝑃𝑡}, 𝑃 2 :=
{𝑃𝑡+1, . . . , 𝑃2𝑡}, and 𝑃 3 := {𝑃2𝑡+1, . . . , 𝑃3𝑡}. Now, in the protocol Π′ for 𝑛′ = 3 par-
ties 𝑃 ′

1, 𝑃
′
2, 𝑃

′
3, we have the first party 𝑃 ′

1 do the following: locally execute the protocol
Π for each of the parties 𝑃1 up to 𝑃𝑡 one after the other, publish a concatenation of the
corresponding public messages 𝑥1, . . . , 𝑥𝑡, and forward private messages that are to be
received by parties in 𝑃 2 to the party 𝑃 ′

2 (similarly, forward private messages that are to
be received by parties in 𝑃 3 to the party 𝑃 ′

3). Party 𝑃 ′
2 then similarly executes the protocol

Π for each of the parties 𝑃𝑡+1 up to 𝑃2𝑡, while publishing the concatenation of the messages
𝑥𝑡+1, . . . , 𝑥2𝑡, and forwarding private messages designated for parties in 𝑃 3 to 𝑃 ′

3. Finally,
party 𝑃 ′

3 executes the protocol Π for each of the parties 𝑃2𝑡+1 up to 𝑃3𝑡, while publishing
the concatenation of the messages 𝑥2𝑡+1, . . . , 𝑥3𝑡. Note that if protocol Π is secure, protocol
Π′ is secure as well: Corrupting a party in Π′ corresponds to corrupting a block of parties
in Π (crucially, the adversary obtains all private messages designated for a corrupt party in
Π′ before starting to execute this party, as in the sending-leaks model the adversary obtains
the messages designated to the corrupt parties by the time they are sent). As each block is
of size 𝑡 and Π is secure for 𝑡 corruptions, we get that Π′ is a secure protocol for 𝑛′ = 3
parties and 𝑡′ = 1 corruptions, thus contradicting Theorem 15.

It is not clear whether theorem 16 applies in the execution-leaks model. Note that in
order for, say, party 𝑃 ′

2 to emulate the group of 𝑡 parties 𝑃 2 = {𝑃𝑡+1, . . . , 𝑃2𝑡} in the proof
above, 𝑃 ′

2 needs to know the private messages sent from the block 𝑃 1 to, say, party 𝑃2𝑡

already when executing party 𝑃𝑡+1. In the execution-leaks model, messages sent to 𝑃2𝑡 will
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only be revealed to the adversary when this party is executed.

Given this, it is natural to attempt to understand whether there are significant differences
with respect to feasibility between the execution-leaks and sending-leaks models. To conclude
this section, we present a new approach that allows us to show an improved lower bound
for 𝑡 = 2 corruptions in the execution-leaks model which matches the lower bound in the
sending-leaks model.
Theorem 17. There is no YOSOWCC protocol for 𝑛 = 6 parties and 𝑡 = 2 corruptions with
negligible bias in the execution-leaks model.

Combining this result with our prior feasibility result allows us to conclude that 𝑛 = 7
parties are necessary and sufficient for computationally secure YOSOWCC randomness
generation against 𝑡 = 2 corruptions in the execution-leaks model. We leave it as an
interesting open problem to generalize this result to arbitrary 𝑡 > 2.

Proof. Towards a contradiction, suppose that there exists such a protocol. Let 𝑓 be
the deterministic polynomial-time function which computes the coin based on the public
broadcasts from the protocol. In other words, if 𝑋1, 𝑋2, . . . , 𝑋6 are published by parties
𝑃1, 𝑃2, . . . , 𝑃6, respectively, then the coin value is 𝑓(𝑋1, 𝑋2, . . . , 𝑋6). From this assumption,
we know that

|Pr[𝑓(𝑋1, . . . , 𝑋6) = 0]− Pr[𝑓(𝑋1, . . . , 𝑋6) = 1]| ≤ negl

for any PPT execution-leaks adversary that corrupts at most 𝑡 = 2 parties.

We begin by showing that we may assume that if the public values 𝑋1, . . . , 𝑋4 of parties
𝑃1, . . . , 𝑃4, respectively, are sampled honestly according to the protocol, then 𝑃5 and 𝑃6

both publish ⊥. We corrupt 𝑃5 and 𝑃6 and analyze two PPT attacks. First, consider an
attack where 𝑃5 behaves honestly (publishing 𝑋5) and 𝑃6 generates its potential public
value 𝑋6 honestly. If 𝑓(𝑋1, . . . , 𝑋6) = 1 (which 𝑃6 can compute), then 𝑃6 outputs 𝑋6.
Otherwise, 𝑃6 outputs ⊥. Since the protocol is secure, we conclude that

𝑓(𝑋1, . . . , 𝑋5, 𝑋6) = 𝑓(𝑋1, . . . , 𝑋5,⊥) (4.4)

except with negligible probability. Next, consider an attack where 𝑃5 first generates its
potential public value 𝑋5 honestly. From eq. (4.4), we conclude that 𝑃5 can efficiently predict
the value the coin will take if he decides to publish 𝑋5, except with negligible probability, by
computing 𝑓(𝑋1, . . . , 𝑋5,⊥) locally. If 𝑓(𝑋1, . . . , 𝑋5,⊥) = 1, then 𝑃5 publishes 𝑋5 and 𝑃6

publishes ⊥. Otherwise, 𝑃5 and 𝑃6 both publish ⊥. Again by the security of the protocol
against 𝑡 = 2 corruptions, we must have

𝑓(𝑋1, . . . , 𝑋4,⊥,⊥) = 𝑓(𝑋1, . . . , 𝑋4, 𝑋5, 𝑋6) (4.5)
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except with negligible probability.

We now corrupt 𝑃1 and 𝑃4 with the aim of arguing that the private message 𝑠1,4 from
𝑃1 to 𝑃4 can be taken to be 𝑠1,4 = ⊥, so long as 𝑃1 samples its public value and the private
messages to 𝑃2 and 𝑃3 honestly. Consider the attack where 𝑃1 behaves honestly except
that it sends 𝑠1,5 = 𝑠1,6 = ⊥ and 𝑃4 behaves as follows: First, 𝑃4 samples 𝑋4 honestly and
𝑋 ′

4 honestly but assuming that the private message 𝑠1,4 = ⊥. From eq. (4.5), if 𝑃4 publishes
𝑋4 then the value of the coin will be 𝑓(𝑋1, . . . , 𝑋4,⊥,⊥), which 𝑃4 can efficiently compute
locally, except with negligible probability. If 𝑓(𝑋1, . . . , 𝑋4,⊥,⊥) = 1, then 𝑃4 publishes
𝑋4. Otherwise, 𝑃4 publishes 𝑋 ′

4. By the security of the protocol, we must have

𝑓(𝑋1, . . . , 𝑋4, 𝑋5, 𝑋6) = 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋
′
4, 𝑋

′
5, 𝑋

′
6) (4.6)

except with negligible probability, where 𝑋 ′
5 and 𝑋 ′

6 are sampled honestly based on 𝑋 ′
4

(and on private messages 𝑠1,5 = 𝑠1,6 = ⊥).

Next, corrupt 𝑃2 and 𝑃3 and consider the following attack. Party 𝑃2 behaves honestly,
except that it also forwards the private messages 𝑠2,4, 𝑠2,5, 𝑠2,6, which it sent to 𝑃4, 𝑃5, 𝑃6,
respectively, to 𝑃3. By eq. (4.6), 𝑃3 can efficiently predict the final coin if he publishes 𝑋3

except with negligible probability because (1) 𝑃3 can efficiently sample 𝑃4’s public value 𝑋 ′
4

and private messages 𝑠4,5 and 𝑠4,6 based on 𝑋1, 𝑋2, 𝑋3 and the private messages 𝑠1,4 = ⊥
and 𝑠2,4, and (2) 𝑃3 can efficiently sample 𝑋 ′

5 and 𝑋 ′
6 based on 𝑋1, 𝑋2, 𝑋3, 𝑋

′
4 and the

private messages 𝑠1,5 = 𝑠1,6 = ⊥, 𝑠2,5, 𝑠2,6, and 𝑠4,5, 𝑠4,6. Party 𝑃3 runs two independent
honest samplings of 𝑋3 and the messages 𝑠3,𝑖 for 𝑖 > 3 – denote them by 𝑋𝑗

3 , (𝑠𝑗
3,𝑖)𝑖>3 for

𝑗 ∈ {1, 2}. If 𝑃3 predicts coin value 1 when publishing 𝑋1
3 and sending 𝑠1

3,𝑖 for 𝑖 > 3, it
publishes this value and sends these messages to the corresponding later parties. Otherwise,
𝑃3 publishes 𝑋2

3 and sends 𝑠2
3,𝑖 for 𝑖 > 3. The security of the protocol then implies that

𝑓(𝑋1, 𝑋2, 𝑋
1
3 , 𝑋

1
4 , 𝑋

1
5 , 𝑋

1
6 ) = 𝑓(𝑋1, 𝑋2, 𝑋

2
3 , 𝑋

2
4 , 𝑋

2
5 , 𝑋

2
6 ) (4.7)

except with negligible probability, where 𝑋𝑗
4 , 𝑋

𝑗
5 , 𝑋

𝑗
6 are generated honestly conditioned on

𝑋𝑗
3 for 𝑗 ∈ {1, 2}.

Finally, we corrupt 𝑃1 and 𝑃2. The attack proceeds as follows: Party 𝑃1 samples
potential public values 𝑋𝑗

1 , 𝑋
𝑗
2 and potential private messages (𝑠𝑗

1,𝑖)𝑖>1 and (𝑠𝑗
2,𝑖)𝑖>2, for

𝑗 ∈ {1, 2}. By eq. (4.7), 𝑃1 can efficiently predict the value of the coin in the 𝑗-th run
of the protocol based solely on the samples above, assuming that 𝑃2 indeed publishes 𝑋𝑗

2

and sends private messages (𝑠𝑗
2,𝑖)𝑖>2. Therefore, 𝑃1 can check whether the 𝑗-th run leads

to coin value 1, publish 𝑋𝑗
1 , send private messages (𝑠𝑗

1,𝑖)𝑖>1, and additionally tell 𝑃2 to
publish 𝑋𝑗

2 and send private messages (𝑠𝑗
2,𝑖)𝑖>2. Since the two protocol runs are honest and
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independent, the correctness of the protocol ensures that there is a run leading to coin
value 1 with probability at least 3/4− negl, and, as we argued above, 𝑃1 can predict which
run has this property.
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Chapter 5

Conclusion

We are used to relying on digital services in our day-to-day life. However, when we entrust
sensitive data to a centralized service, we often give up control over this data. Even if
the service itself acts faithfully, it may become the target of an attack, in which case your
private data might get leaked anyway. Can’t we do better?

Indeed, we can. By distributing trust among multiple parties, we can eliminate single
points of failure, reducing the risk of compromise. This thesis makes progress towards
obtaining distributed cryptography as a service, laying the foundation for more secure and
resilient systems. We started by observing that protocols which are offered as a service
ought to be run for long periods of time. To improve the flexibility of the solution and not
require long-term commitments from the contributing parties, we aimed to design protocols
in a way which makes contributing parties easily replaceable. We further observed that
protocols which don’t require parties to hold on to local private state easily satisfy this
party-replaceability requirement. We designed such protocols for MPC, one under the CSaR
assumption, and another one in the YOSO model. We further designed special-purpose
stateless MPC solutions for the randomness-generation functionality.

This is an exciting space, and numerous problems remain open:

• Have we arrived at the best possible model for stateless MPC or is there potential
for an even better framework? Currently, in addition to YOSO and YOSOWCC,
the cryptographic community is exploring various alternative models, such as Fluid
MPC [25, 44, 51, 52] and Scales [4, 5]. Each of these models involves distinct trade-offs,
and arguable none yet provides a clearly practical and comprehensive solution.

• Can we obtain asynchronous stateless protocols? As of now, all known solutions
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in models such as Fluid and YOSO are in a synchronous setting. This means that
security guarantees might be lost if network delays end up higher than anticipated
by the protocol. Obtaining asynchronous protocols is thus of utmost importance to
ensure security in often unpredictable environments such as Internet.

• Another key question is whether it is possible to obtain a comprehensive formal
study of stateless protocols. Typically, protocol development in a model begins with
foundational components, such as basic secure messaging and broadcast, and gradually
builds towards complex constructions like MPC. However, stateless models such as
YOSO and Fluid started with MPC, and the low-level primitives in these models are
still missing.
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