
Evolving Intrinsic Triangulations

Mark Gillespie

CMU-CS-24-116

April 2024

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Keenan Crane, Chair

James McCann
Ioannis Gkioulekas

Boris Springborn (TU Berlin)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2024 Mark Gillespie

This research was sponsored by: The David and Lucille Packard Foundation under award number 201868047;
Apple, Inc. under award number 1012669; and the National Science Foundation under award numbers IIS2212290;
IIS1955444; CCF1910264; IIS1943123; as well as a 2019 NSF Graduate Research Fellowship. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: geometry processing, discrete differential geometry, intrinsic triangulations,
numerical computing, normal coordinates, surface parameterization, mesh simplification

Abstract

T
his thesis presents algorithms and data structures for performing
robust computation on surfaces that evolve over time. Throughout
scientific and geometric computing, surfaces are often modeled as
triangle meshes. However, finding high-quality meshes remains a
challenge because meshes play two distinct and often-conflicting

roles: defining both the surface geometry and a space of functions on that surface.
One solution to this dilemma, which has proven quite powerful in recent years, is

the use of intrinsic triangulations to decouple these two concerns. The key idea is that
given a triangle mesh representing an input surface, one can find many alternative
triangulations which encode the exact same intrinsic geometry but offer alternative
function spaces to work in. This techniquemakes it easy to find high-quality intrinsic
triangle meshes, sidestepping the tradeoffs of classical mesh construction. However,
the fact that intrinsic triangulations exactly preserve the input geometry—one of
the central benefits of the technique—also makes it challenging to apply to surfaces
whose geometry changes over time.

In this thesis we relax the assumption of exact geometry preservation, allowing
the intrinsic perspective to be applied to time-evolving surfaces. We take as examples
the problems of mesh simplification and surface parameterization. In the case
of mesh simplification, we provide a general-purpose data structure for intrinsic
triangulations which share only the topological class of the input surface, but may
feature different geometry. In the case of surface parameterization, we build more
efficient data structures and algorithms for the special case where the geometry
changes conformally, using a connection between discrete conformal maps and
hyperbolic geometry. In both cases, we find that the intrinsic perspective leads to
simple algorithms which are still robust and efficient on a variety of examples.

6

Acknowledgments
A PhD takes a long time, and I have somany people to thank for helpingme along

the way. First of all, thank you Keenan for being a wonderful advisor, for guiding me
as I learned both about how to do interesting research, and how to communicate that
research to our broader community. I have really enjoyed the countless hours we
spent working together—from hashing out algorithms on whiteboards, to tweaking
the kerning on diagrams that just weren’t quite right yet. And even before that: the
first book on differential geometry that I ever read was an unfinished manuscript
that I picked up by mistake and left me with more questions than answers, but the
second book on differential geometry that I read was your lecture notes, which have
been a source of illumination ever since.

Thank you also to my committee members—Jim, Ioannis, and Boris—for all of
your advice, both about research and broader academic life. And thanks to my
advisors at Caltech—Peter, Mathieu, and Al—for getting me excited about discrete
differential geometry in the first place, and helping me find my way to grad school.

I’m also grateful to all of my wonderful collaborators: Boris, Nick, Nicole, Derek,
Ben, Alec, Yuichi, Angie, Jim, Denise, Mario, Paul, David, Olli and Albert. Regardless
of whether of our projects become completed papers, or never made it past the
exploratory phase, I enjoyed working with you all. We’ve done things together that
did not seem possible in the beginning, and I’ve learned so much along the way.

My experience as a researcher has been shaped by all of the members of the
Geometry Collective: Nick, Chris, Rohan, Kai, Nicole, Hossein, Olga, Zoë, Etienne,
Josua, Simon, Connor, Denise, Hesper, and many more. I could not have wished
for a more supportive group, and there was always something interesting to talk
about—from cool geometry facts, to finer points of C¸¸ that I never thought would
matter to me (until they did!), to explorations in cooking and gardening. And, of
course thanks again to Keenan for building up this great place to do geometry.

Outside of my research community, I’m grateful to all of my friends who made
my time in grad school a delight. Thank you to Abhiram, Aria, Arjun, Alex, Anson,
Bella, Dan, David, Ellis, Isaac, Jalani, Jalex, Kevin2, Lucio, Maria, Marissa, Misha,
Pallavi, Sarah, Siva, Shir, and Xinyu for all of the fun adventures, and for enabling
all my countless cooking experiments. And thanks especially to Jenny, for showing
me that even after years in Pittsburgh, there’s still plenty to explore.

Last, but most important, thank you to my family. Thank you Mom, Dad, and
Fiona, both for all of your support during my PhD, and throughout the rest of my
life. I see reflections of you all in everything that I do.

6

2It’s squared because I need to thank both of you!

Contents

1 Introduction 1

2 Background & Related Work 3
2.1 Notation & Conventions . 4
2.2 Manifolds . 5

2.2.1 Smooth Structure . 5
2.2.2 Riemannian Structure . 6
2.2.3 Embeddings . 8

2.3 Polyhedral Surfaces . 9
2.3.1 Triangulations . 9
2.3.2 Polyhedral Geometry . 10
2.3.3 Retriangulation . 13
2.3.4 Polyhedral Embeddings . 14

3 Integer Coordinates 15
3.1 Correspondence Data . 16

3.1.1 Normal Coordinates . 16
3.1.2 Roundabouts . 20

3.2 Tracing Edges . 21
3.2.1 Topological Tracing . 21
3.2.2 Recovering Geodesics . 22

3.3 Common Subdivision . 22
3.4 Flipping to a Given Triangulation . 24
3.5 Modifying the Vertex Set . 25

3.5.1 Vertex Insertion . 26
3.5.2 Flat Vertex Removal . 27

3.6 Delaunay Refinement . 29
3.6.1 Refinement Results . 31
3.6.2 Proof of Correctness on Manifold Meshes without Boundary 33

3.7 Robust Implementation . 35

v

4 Surface Parameterization 36
4.1 Discrete Conformal Equivalence . 38

4.1.1 Discrete Uniformization . 38
4.1.2 Working with Hyperbolic Polyhedra . 43

4.2 Correspondence . 44
4.2.1 Integer Coordinates for Ideal Hyperbolic Polyhedra 44
4.2.2 Common Subdivision of Three Triangulations 46
4.2.3 Interpolation . 46

4.3 Planar Parameterization . 47
4.3.1 Variational Formulation . 47
4.3.2 Energy Evaluation . 47
4.3.3 Optimization . 48
4.3.4 Surfaces with Boundary . 48
4.3.5 Planar Layout . 49

4.4 Spherical Parameterization . 49
4.4.1 Modified Delaunay Flips . 51
4.4.2 Spherical Variational Principle . 51
4.4.3 Constraints . 52
4.4.4 Optimization . 52
4.4.5 Spherical Layout . 53
4.4.6 Spherical Interpolation . 53

4.5 Parameterization Results . 53
4.5.1 Planar Parameterization Results . 54
4.5.2 Spherical Parameterization Results . 55
4.5.3 Performance & Complexity . 56

5 Surface Simpli�cation 57
5.1 Intrinsic Vertex Removal . 58

5.1.1 Vertex Flattening . 59
5.1.2 Flat Vertex Removal . 59

5.2 Correspondence Tracking . 59
5.2.1 Mapping Points . 59
5.2.2 Mapping Edges . 60
5.2.3 Mapping Functions . 60

5.3 Measuring Distortion . 61
5.3.1 Flat Error Metric . 61
5.3.2 Intrinsic Curvature Error Metric . 62

5.4 Simplification Algorithm . 64
5.5 Simplification Results . 65

5.5.1 Comparison with Extrinsic Methods . 65
5.5.2 Geometric Algorithms . 66
5.5.3 Performance & Complexity . 67

6 Open Questions 69

vi

Bibliography 71

A A Brief Introduction to Hyperbolic Geometry 80
A.1 Models of Hyperbolic Geometry . 80
A.2 Ideal Polyhedra . 82

A.2.1 Euclidean-Ideal Correspondence . 82
A.2.2 Ptolemy Flip . 85
A.2.3 Ideal Delaunay Triangulations . 85

A.3 Light Cone Formulas . 86
A.3.1 Vertex Scaling and Projective Interpolation 86
A.3.2 Edge Flips . 87
A.3.3 Piecewise-Projective Interpolation . 87
A.3.4 Discrete Uniformization: Hyperboloid Model POV 87
A.3.5 Layout in the Light Cone I: Placing the First Triangle 88
A.3.6 Layout in the Light Cone II: Placing the Next Triangle 89

vii

List of Figures

2.1 An embedding of a surface into R3 allows us to realize tangent vectors as vectors
in R3 pointing tangent to the surface. 8

2.2 In a � -complex, the vertices of an edge or triangle may not to be distinct. One
can build a cone by gluing together two edges of the same triangle (top), or a
torus out of two triangles and just a single vertex (bottom). 9

2.3 Top: Any convex polyhedral surface can be isometrically embedded into R3,
possibly after performing intrinsic edge flips. Bottom: A nonconvex polyhedron
(with negative angle defect at 8) cannot be isometrically embedded without
refining the triangulation. 14

3.1 Traditionally, normal coordinates encode a curve on a triangulated surface by
counting how many times the curve crosses each edge. 16

3.2 We could represent the correspondence between triangulations T1 and T2 using
normal coordinates on the edges of T1 (left), or on edges of T2 (right). The latter
is easier to update following an edge flip: if we flip the highlighted edge, we
need to update the three highlighted normal coordinates in the former case, but
we only need to update the normal coordinate on the flipped edge in the latter
case. 17

3.3 The normal coordinates =89count the number of times each edge 892 E2 crosses
any edge of the other triangulation T1. These counts can be used to determine
other quantities, e.g. how many edges of T1 cross or leave a corner of a triangle
from T2. 18

3.4 Edges of quadrilateral 8:9;come in 6 types. The first four each intersect edge ;: ,
contributing to Equation (3.4), while the last two do not. 19

3.5 For each halfedge of T2, the roundabout gives the next halfedge of T1. 20
3.6 A curve entering triangle 98;along edge 89can proceed in 3 ways: the left-most

28:
9 crossings go left (left), the rightmost 2: 9

8 crossings go right (right), and the
rest terminate at vertex : (center). 21

3.7 We find the connectivity of common subdivision within each triangle using its
normal coordinates. 23

viii

3.8 Theoretically, we only know that Mosher’s algorithm terminates in finite time.
But in practice, its cost seems to scale sublinearly with the total number of
intersection between the two triangulations, i.e. with

Í
892E2

=89. Here we plot
the number of flips used by Algorithm 4 to flip from a mesh of the bunny to a
randomly-chosen triangulation of the same surface. 25

3.9 Intrinsic Delaunay refinement inserts new vertices intrinsically into a mesh to
improve the triangle quality. We show that (under a few assumptions), intrinsic
Delaunay refinement is guaranteed to produce a mesh whose triangles all have
corner angles of at least 30� . 29

3.10 Triangles in Delaunay meshes have empty circumdisks, and thus well-defined
circumcenters (left). When necessary, we locate a triangle’s circumcenter by
walking outwards from its barycenter (right). 30

3.11 Signposts may fail to recover the common subdivision on near-degenerate inputs.
By contrast, integer coordinates always yield a valid common subdivision. . . . 31

3.12 We fail to compute an explicit mesh of the common subdivision following Delau-
nay refinement on one Thingi10k model (left). Its common subdivision would
contain 34 million vertices and our program runs out of memory. We succeed
on a nearly identical model (right), whose common subdivision contains merely
27 million vertices. 32

4.1 Steps of our algorithm. Throughout we color the input mesh T� red, its intrinsic
Delaunay triangulation T� yellow, the uniformized triangulation T� blue, and
the common subdivision Sof all three green. (Note: triangulations in dashed
boxes are purely intrinsic and never actually embedded in R=.) 37

4.2 Conformal parameterization with cones. 38

4.3 Flipping edgeswhen triangles degenerate causes the energyE to jump discontinuously—
voiding any guarantee of convergence (top). In contrast, flipping to Delaunay
via Ptolemy flips before evaluating the energy ensures that we always reach the
correct solution (bottom). Here we consider a coarse double torus with target
angle defects ¸ 3c•4 at all but one vertex, which has large negative curvature.
We take small steps to clearly plot the energy; vertical lines indicate flip times. . 39

4.4 Performing Euclidean edge flips at arbitrary moments in the flow can badly
distort the conformal structure. Here, we flip edge 89, scale edges incident on :
by a factor 4D: •2, and undo the flip. The cross ratio ~c:8 of edge :8 (Equation (4.2))
is not preserved, and in fact can take almost any value. 39

4.6 Top: Triangle meshes with different connectivity (but the same vertices) are con-
sidered discretely conformally equivalent if they are the same up to a conformal
rescaling of edge lengths, followed by Ptolemy edge flips to a Delaunay triangu-
lation. Bottom: This definition, and the use of Ptolemy (rather than Euclidean)
edge flips, arises from a hyperbolic perspective, where we simply retriangulate
a hyperbolic polyhedron without changing its geometry. 40

ix

4.5 We adopt a notion of conformal equivalence that yields the same discrete con-
formal map, no matter how the input polyhedral surface is triangulated. Here
a mesh with planar faces is triangulated two different ways, yielding identical
results. 40

4.8 A slice of the energy landscape for a tetrahedron. Each conformal scaling D
induces aDelaunay triangulation—white curves delineate regionswith a common
triangulation. Previous algorithms must stop and flip at each region boundary
(where triangles become concyclic), whereas we can flip at any moment—since
Ptolemy flips commute with scaling. 41

4.7 Both of the triangulations of a circular quad obey the local Delaunay condition
U¸ V � c . 41

4.9 Top: uniformization should leave a flat region unchanged, but unless one first
flips to an intrinsic Delaunay triangulation, Ptolemy flips performed during
optimization will distort the given shape. Bottom: in general, flipping to intrinsic
Delaunay first yields a better map. 42

4.10 An ordinary triangle mesh (left) can always be viewed as an ideal hyperbolic

polyhedron (right), i.e., surfacemade from triangles of constant negative curvature
and all three vertices lying on the ideal boundary of hyperbolic space. 43

4.11 Left: The signpost data structure suffers from numerical error in extreme sit-
uations, like the “peacock triangulation” from Section 4.4.3. Right: integer
coordinates always provide the correct connectivity. 44

4.12 By drawing triangles in the light cone (left), the map between surfaces can be
found by drawing a straight line through the origin (center), which also works
for two different triangulations (right). 45

4.13 For meshes with low-quality triangles, standard linear interpolation yields a
poor conformal map (left). We describe how to perform projective interpolation
across triangulations, yielding a dramatically smoother map (right). 46

4.14 Our algorithm guarantees existence of a locally injective discrete conformal map
for any prescribed boundary lengths or angles, which can be used to achieve a
rich variety of behavior. 48

4.15 Left: a convex polyhedron inscribed in the sphere can also be viewed, via stereo-
graphic projection, as a planar Delaunay triangulation with all boundary vertices
connected to a vertex 8� at infinity. Right: in the Poincaré model, the horocycle
at 8� shrinks to a point, and the incident Penner coordinates _8� 9go to infinity. . 50

4.16 To find a triangulation connecting vertex 8� to all other vertices 9, we put a finite
horocycle at 8� and send all other horocycles to infinity. Modified Delaunay flips
then yield the desired triangulation. 52

4.17 Peacock triangulation. 52
4.19 Even when CETM succeeds, the quality of the map may be lower since it uses

a different notion of conformal equivalence (based on the input rather than
Delaunay triangulation). 53

x

4.18 Our method computes locally injective, discretely conformal maps even for
near-degenerate triangulations (turquoise meshes) and extremely difficult con-
figurations of cone singularities (magenta meshes). We also compute globally
bijective conformal maps to the sphere (yellow meshes). 54

4.20 Timings for our method (CEPS) on two datasets. Note that CETM fails on a large
percentage of models where we succeed (highlighted in red). 54

4.23 In the genus-0 case, our method guarantees a bijective discrete conformal map
to a convex polyhedron with vertices on the sphere. 55

4.21 Our implementation robustly handles extremely poor triangulations (left) failing
only on the most pathological inputs (right). 55

4.22 Existing spherical methods often exhibit foldover, and do not guarantee convexity. 55
4.24 Average breakdown of costs in CEPS on different datasets; layout and optimiza-

tion steps are shared by CETM. 56

5.1 We remove an interior vertex by intrinsically flattening it, flipping to degree 3,
removing it from the mesh, then flipping back to intrinsic Delaunay. 58

5.2 The local cost of removing any vertex 8is the optimal transport cost of transport-
ing its mass < 8 to its neighbors 9. We can also calculate this cost as the sum
of new masses ~< 9 times the length of error vectors ~C9, which point to the new
centers of mass ~29. 61

5.3 Flattening a vertex 8changes the angle sums � at neighboring vertices 9, effec-
tively redistributing the discrete curvature = 2c � � . We use the change in
curvature from to ~ to guide simplification. 63

5.4 We canmix andmatch different quantities to guide coarsening. Here, for instance,
strongly weighting Gaussian curvature emphasizes preservation of intrinsic
geometry, whereas strongly weighting area prioritizes uniform triangle size. . . 64

5.5 Even on an extremely nice triangulation of a highly regular surface we see a
reduction in distortion relative to past methods—owing to the much larger space
of intrinsic triangulations. 65

5.6 On surfaces with small extrinsic curvature, we achieve dramatically lower error
in surface area compared to extrinsic methods like QEM. 65

5.8 Intrinsic coarsening offers an attractive approach to approximating single-source
geodesic distance, here providing a three orders of magnitude speedup for a
fraction of a percent relative error. 66

5.7 For the same vertex budget as extrinsic methods like QEM, ICE provides more
accurate solutions for basic problems like solving a Poisson equation—seen here
via smoother isolines that better approximate the ground truth. 66

5.9 As geodesic distance is an intrinsic quantity, it is more accurately approximated
via intrinsic coarsening—here providing a 4x reduction in relative error. 66

5.10 For a mesh with 6k vertices we obtain an all-pairs geodesic distance matrix 1650x
faster, while incurring only 1.4% relative error. 67

xi

5.11 In practice, the total cost of simplification and building the prolongation matrix
scales approximately linearly in both input mesh size and percent reduction.
Left: increasingly high-resolution meshes are simplified. Right: a subdivision
with 750k vertices is simplified to various resolutions. 67

A.1 Since the hyperbolic plane � 2 cannot be isometrically embedded in R3, it must be
understood through the use of several “models”—here we illustrate how several
key quantities are realized in each model. 80

A.2 An edge flip in an ideal hyperbolic polyhedron can be viewed in terms of Eu-
clidean edge lengths (left), or Penner coordinates (right). 85

xii

List of Tables

3.1 Success rate of integer coordinates compared to other approaches on the Thingi10k
dataset. We construct a Delaunay triangulation and Delaunay refinement on
each model, and attempt to recover the connectivity of the common subdivision. 31

xiii

Chapter 1

Introduction

“You see,” Mrs. Whatsit said, “if a very small insect were to move from the section of skirt in Mrs.

Who’s right hand to that in her left, it would be quite a long walk for him if he had to walk

straight across.”

Madeleine L’Engle, A Wrinkle in Time [1962]

T
he distinction between intrinsic and extrinsic properties has played a central
role throughout the history of differential geometry, dating back to pioneering
work by Gauß [1825] and Riemann [1854] in the early 19th century. Intrinsic
geometry describes the properties of a surface which depend on local measure-
ments along the surface like lengths or angles, independent of the surface’s

embedding in space. A common metaphor—referenced above—is that intrinsic geometry takes
the perspective of an ant walking along the surface. By contrast, extrinsic geometry encompasses
the properties which do depend on the embedding of a surface. Importantly, one can consider
surfaces which have only intrinsic geometry, without any embedding into ambient space. This
intrinsic perspective is famously used in general relativity, where one considers the curved
spacetime of our universe without requiring any larger space for the universe to “curve into”.

More recently, the intrinsic perspective has become a useful tool in geometry processing,
where it allows one to work with triangle meshes which are not embedded into R3—and even
meshes which cannot be embedded into R3. This opens up a larger space of meshes to work in,
providing meshes of much higher quality than is possible extrinsically, while still supporting
a wide variety of geometry processing tasks. However, existing techniques apply only as a
precomputation for static objects: they find alternative representations of fixed objects, but
these representations immediately become invalid if the object deforms.

This thesis begins with a discussion of our integer coordinates data structure for efficiently
encoding static intrinsic triangulations (Chapter 3), before moving on to explore two settings
where intrinsic triangulations sit atop changing geometries:

1. Maintaining an intrinsic triangulation while coarsening a surface to perform intrinsic
simplification (Chapter 5).

2. Using an intrinsic triangulation while parameterizing a surface via discrete conformal
maps (Chapter 4).

1

Chapter 1 Introduction Introduction

Thesis Content
The work described in this thesis was published in several articles, from which much of the
text and figures have been drawn. In particular, see:

Mark Gillespie, Nicholas Sharp, and Keenan Crane (2021a). “Integer Coordinates for
Intrinsic Geometry Processing”. ACM Transactions on Graphics 40.6, pp. 1–13. doi:
10.1145/3478513.3480522.
(code: https://github.com/MarkGillespie/intrinsic-triangulations-demo)

Nicholas Sharp, Mark Gillespie, and Keenan Crane (2021). “Geometry Processing with
Intrinsic Triangulations”. ACM SIGGRAPH 2021 Courses. doi: 10.1145/3450508.3464592.
(code: https://github.com/nmwsharp/intrinsic-triangulations-tutorial)

Mark Gillespie, Boris Springborn, and Keenan Crane (2021b). “Discrete Conformal
Equivalence of Polyhedral Surfaces”. ACM Transactions on Graphics 40.4, pp. 1–20.
doi: 10.1145/3592401.
(code: https://github.com/MarkGillespie/CEPS)

Hsueh-Ti Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson,
and Keenan Crane (2023). “Surface Simplification using Intrinsic Error Metrics”. ACM
Transactions on Graphics 42.4, pp. 1–17. doi: 10.1145/3592403.
(code: https://github.com/HTDerekLiu/intrinsic-simplification/)

2

https://www.doi.org/10.1145/3478513.3480522
https://github.com/MarkGillespie/intrinsic-triangulations-demo
https://www.doi.org/10.1145/3450508.3464592.
https://github.com/nmwsharp/intrinsic-triangulations-tutorial
https://www.doi.org/10.1145/3592401
https://github.com/MarkGillespie/CEPS
https://www.doi.org/10.1145/3592403
https://github.com/HTDerekLiu/intrinsic-simplification/

Chapter 2

Background & Related Work

The start of intrinsic geometry was made by Gauss’ paper “Disquisitiones generales circa su-

perficies curvas,” which appeared in 1827. Since that time, intrinsic geometry has advanced so

far that, at present, all of its major issues can be considered solved, at least those that deal with

the geometry of small pieces of regular surfaces . . . Meanwhile, irregular surfaces merit no less

consideration, as they often occur in real life and can be made from, say, a sheet of paper. For

example, any polyhedron or cone, or the surface of a lens with sharp edges are not regular. It is

no wonder then that there is a need to study irregular surfaces, too.

A. D. Alexandrov, Intrinsic Geometry of Convex Surfaces [1948]

P
erhaps the first major result concerning the intrinsic geometry of polyhedra—
rather than smooth surfaces—was Alexandrov’s uniqueness theorem for embed-
dings of convex polyhedra in the 1940s [Alexandrov 1942]. A decade and a half
later Regge [1961] took inspiration from Alexandrov’s work and used intrinsic
polyhedra in his study of numerical general relativity. It is fitting that general

relativity, which motivated much of the development of smooth differential geometry, was also
a key impetus behind the devlopment of discrete differential geometry.

From there, the study of polyhedral intrinsic geometry branched in several direction: Troy-
anov [1986] developed the smooth theory of polyhedra in his study of smooth conformal maps
between polyhedral surfaces, while Rivin [1994a] defined intrinsic Delaunay triangulations of
polyhedral surfaces and introduced the deep connections between Euclidean and ideal hyperbolic
polyhedra. He also introduced the flip algorithm for computing intrinsic Delaunay triangulations.
Several years later Indermitte et al. [2001] fixed a flaw in Rivin’s proof of correctness of the flip
algorithm, although they themselves left open the possibility of a topological obstruction which
was only ruled out by Bobenko & Springborn [2007]. Glickenstein [2005, 2023] generalized the
intrinsic Delaunay triangulation and edge flip algorithm, introducing increasingly broad classes
of triangulations such as weighted, Thurston, and duality triangulations, sharing many of the
important properties of intrinsic Delaunay triangulations. Bobenko & Izmestiev [2008] used
weighted Delaunay triangulations to provide a constructive proof of Alexandrov’s theorem on
isometric embeddings of convex polytopes.

In parallel, intrinsic geometry has developed through the study of discrete conformal maps,
starting with the work of Roček & Williams [1984] on discrete conformal field theories. Discrete

3

Chapter 2 Background & Related Work Notation & Conventions

conformal maps were rediscovered in mathematics by Luo [2004] in his work on combinatorial
Yamabe flow, starting a line of work which culiminated in the discrete uniformization theorem
for polyhedral surfaces [Gu et al. 2018b; a; Springborn 2019].

The computer graphics community was introduced to intrinsic geometry by the work of
Kharevych et al. [2006] and Springborn et al. [2008] on discrete conformal parameterization,
and the work of Fisher et al. [2007] exploring the benefits of intrinsic Delaunay triangulations.
de Goes et al. [2014] went on to explore applications of weighted triangulations in geometry
processing, including architectural design andmesh generation. More recently, Sharp et al. [2019]
proposed a lightweight data structure for computing with intrinsic triangulations, alongside a
suite of novel intrinsic retriangulation algorithms beyond the intrinsic Delaunay flips introduced
by Rivin in the ’90s. Gillespie et al. [2021a] introduced a more robust data structure for encoding
intrinsic triangulations. Since then, intrinsic triangulation have proved useful in a variety
of contexts, from spectral geometry processing [Fumero et al. 2020] to mesh deformation
[Finnendahl et al. 2023]. A more exhaustive survey of the literature on intrinsic triangulations
and their applications was provided by Sharp et al. [2021].

Notably, all past work has considered intrinsic triangulations which are isometric to the
reference input surface—i.e. intrinsic triangulations which preserve the input geometry exactly.
In this thesis, we introduce data strucures an algorithms for manipulating intrinsic triangulations
of surfaces whose geometry changes over time. These data structures necessarily accomodate
intrinsic triangulations whose geometry differs in various ways from the input geometry.

In the rest of this chapter, we review our notation and conventions (Section 2.1), before
providing an introduction to smooth differential geometry (Section 2.2), and the analogous
discrete theory used in this thesis (Section 2.3).

2.1 Notation & Conventions
Throughout, we consider a manifold triangle mesh " with vertex set V,
edge set E and face set F. We denote vertices by indices82 V and edges
and faces by tuples 892 E,89:2 F respectively. We also denote the oriented
halfedge pointing from vertex 8to vertex 9by ™892 H, and the corner of
face 89:at vertex 8as 9:

8 2 C.

Quantities and functions. The value of a functionD: + ! R at vertex8is written asD8; similarly,
values on edges are denotedD89and values on faces are denotedD89:. A value at the corner of
face 89:incident on vertex 8is denotedD9:

8 . For instance, the position of a vertex may be denoted
?8, the length of an edge �89, the area of a face � 89:, or the angle of a corner \ 9:

8 . It will sometimes
be helpful to think of a functionD: V ! R defined on vertices as a jVj-dimensional vector—in
this case, we will also writeD 2 RV. In general for any set (, we use R(to denote the space of
functions (! R (so, e.g., we write a function defined on edges as � 2 RE or a function defined
on faces as � 2 RF).

� -complexes. We allow meshes to feature multiple edges between the same pair of vertices.
Formally, our meshes are general � -complexes (see Section 2.3.1 for more discussion of the

4

Manifolds Chapter 2 Background & Related Work

details). Consequently, our edge notation 89may not specify a unique edge from the mesh—it is
merely used to indicate a particular edge that happense to go from vertex 8to vertex 9(where 8
may equal 9). Similar caveats apply to the notation for faces.

Defining the degree of a vertex in a � -complex also requires some care, as the same
edge may be incident on a vertex more than once. We define the degree deg¹8º as the
number of incident edges counted with multiplicity, i.e., ¸ 2 for a self-edge from 8back
to 8, and ¸ 1 for any other edge 89with 9< 8. For instance, in the inset figure vertex
8has degree four, even though it is contained in only three distinct edges; vertices 9
and : both have degree one.

Time-evolving meshes. When our mesh changes over times, we denote the original mesh by
" = ¹+• �• � º and the modified mesh by e" = ¹e+•e�• e� º. Quantities on the modified mesh
are indicated in the same way, so e.g. the edge lengths on the modified mesh are denoted by
~� : e� ! R� 0.

2.2 Manifolds
p

p

UpInformally speaking, a manifold is a space which “looks like R=

everywhere”. More formally, a manifold " is a topological space
where every point ? 2 " is contained in some open set * ? which
is in continuous bijection with an open set in R=. So a sphere
is a manifold, since every point on the sphere is contained in a
disk which can be mapped continuously to the unit disk in the
plane. By contrast, a double-knapped cone is not a manifold,
because no neighborhood of the tip can be mapped to the plane
by a continuous bijection. Each mapping to the plane is called a chart, as it describes the “terrain”
around a point ?, and the collection of all of these charts is referred to as an atlas.

So far, our notion of a manifold is purely topological—since our charts are continuous maps,
we have defined manifolds as spaces which look like R= everywhere as topological spaces. To
move from the world of topology to geometry, we have to equip our manifolds with additional
structure. The twomost important examples in this thesis will be smooth structure (Section 2.2.1)—
allowing us to talk about differentiability of functions in addition to continuity—and Riemannian

structure (Section 2.2.2)—allowing us to measure lengths and angles along the surface.

2.2.1 Smooth Structure
A smooth structure on a manifold " determines which functions 5 : " ! R are smooth (i.e.
infinitely differentiable). Traditionally, this is expressed using a special atlas of charts which
is declared to be smooth: then a function 5 is smooth on " if its expression in each chart is a
smooth function on R=. As long as the charts satisfy some simple compatibility conditions on
their overlaps, then this definition is independent of which particular charts we select from the
atlas to check 5’s smoothness [Lee 2012, Chapter 1].

5

Chapter 2 Background & Related Work Manifolds

p
Tangent Spaces A smooth structure on " allows one to define tangent spaces
associated to points on " . Conceptually, the tangent space) ?" represents
the plane tangent to " at point ?, giving a linear approximation of the domain
around this point. Somewhat counterintuitively, these tangent spaces can be
defined purely intrinsically, without any embedding to provide the position of
" in R=. The key idea is that tangent vectors can be thought of as derivatives of curves lying on
" . Since the smooth structure allows us to talk about derivatives of curves, this is enough to
define tangent vectors, and hence tangent spaces. The tangent bundle) " is the collection of all
tangent spaces:

) " :=
Ä

?2"

) ?"” (2.1)

Any smooth mapping 5 : " ! # between manifolds " and # has a linear approximation
35 :) " !) # which sends tangent vectors on " to tangent vectors on # . This map is often
called the differential, or push-forward, since it pushes vectors from " to # .

It is important to note that these tangent spaces are defined only as abstract vector spaces,
without any canonical choice of basis or inner product. So we can do arithmetic with tangent
vectors—we can add them together or scale them up and down—but we cannot yet measure the
lengths of vectors or angles between them. In the next section we will equip our surfaces with a
Riemannian metric which will provide us with an inner product on our tangent spaces.

Similarly, since tangent vectors based at different points on the surface live in different
tangent spaces, we cannot compare vectors which live at different points—e.g. we cannot ask
whether two vectors point in the “same” direction, since they are elements of different vector
spaces. Later on, we will see how a Riemannian metric also allows us to relate vectors in different
tangent spaces through parallel transport.

Uniqueness of Smooth Structure Topological manifolds of dimension = � 3have a unique
smooth structure (up to diffeomorphism). Interestingly, the standard proof begins by showing
that these manifolds can be triangulated piecewise-linearly [Moise 1952], and then proceeding
to show that such triangulations can be smoothed to obtain a smooth structure [Hirsch & Mazur
1974]. Triangulations, which we use to encode polyhedral surfaces in Section 2.3.1 are also
an essential tool in the continuous setting. On the other hand, higher-dimensional manifolds
may have different smooth structures; for instance, Milnor [1956] famously constructed smooth
structures on the 7-sphere inequivalent to the standard one.

2.2.2 Riemannian Structure

A Riemannian structure on " allows us to start doing geometry, measuring lengths and angles
and so forth for curves running along " . Formally, this structure is usually encoded via a
Riemannian metric 6, which provides an inner product on each tangent space of " . That is to
say, at each point ? we have a symmetric, bilinear, positive-definite form 6? :) ?" �) ?" ! R.
To emphasize that 6? is an inner product on) ?" , we will sometimes write 6?¹-• . º as h-• . i6
for vectors -• . 2) ?" , and similarly, we will write 6?¹-• - º as k- k2

? for vectors - 2) ?" .

6

Manifolds Chapter 2 Background & Related Work

Isometries An isometry is a smooth mapping 5 : " ! # between manifolds " and # which
preserves the metric. So, for instance, if Wis a curve on " , then 5 � Wis a curve of the same
length on # . Similarly, if two curvesW1 andW2 meet at an angle \ on " , then the curves 5 � W1
and 5 � W1 must meet at the same angle \ on # .

Geodesics To measure the length of a curveW: »0•) ¼ ! " , we add up the size of its velocity
at all times from 0 to) . More formally, the length ofWcan be expressed as the integral

! ¹Wº :=
¹)

0
k ¤W¹Cºk6 3C• (2.2)

where ¤W: »0•) ¼ !) " is the derivative ofW. Now that we can measure the lengths of curves
along " , we can also define distances between points in " : the distance between points Gand ~
on " is simply the length of the shortest path from Gto ~. If " is equal to R= with the standard
metric, then the shortest line between two points will be a straight line connecting them. On
general Riemannian manifolds, then, we thing of shortest paths as generalizations of straight
lines.

A geodesic is a (unit-speed) curve Wwhich is a locally shortest path, in the sense that for
sufficiently close times Band C, Wfollows the shortest path between W¹Bº and W¹Cº. However,
Witself may not be the shortest path between its endpoints. A classic example of a geodesic
which is not a shortest path is a curve wrapping around the equator of the sphere. This is locally
shortest, since over any short time interval it follows a shortest path, but of course walking all
of the way around the sphere is longer than not moving at all.

p

q

γ1
γ2

Parallel Transport If " is merely a smooth surface with no
metric, then vectors in different tangent spaces live in totally
separate worlds. It does not even make sense to ask questions like
“do vectors E2) ?" and F 2) @" point in the same direction?” or
“which vector F 2) @" is most similar to E2) ?" ?” But if " has
a Riemannian metric, we can start to relate the different tangent
spaces together. In particular, parallel transport allows us to pick
some curveWstarting at a point ? and ending at @, and allows us
to take a vector E2) ?" and “transport” Ealong the curveWto obtain a resulting vector in) @" .
Indeed, we can transport our starting vector to any point along the curveW, yielding a collection
of vectors which are as “parallel” as possible, according to our metric. However, the result of
parallel transport depends in an essential way on the curveW—as depicted in the inset, parallel
transporting Ealong different pathsW1 andW2 will generally result in different vectors in) @" .

If Wis a geodesic, then parallel transport is quite simple. Starting from a vector E 2) ?" ,
we use the metric to measure its length kEk6, as well as the angle \ 2 »0•2cº between Eand
the derivative vectorW0at ?. The result of transporting EalongWto another point @2 " is the
vector F 2) @" with the same magnitude which makes the same angle with W0at @. Parallel
transport along general curves, or on manifolds of higher dimension, is more complicated—we
will not use such general parallel transport in this thesis, but the curious reader can find an
introduction in do Carmo [1992, Chapter 2].

7

Chapter 2 Background & Related Work Manifolds

pp
p

Curvature At any point ? of a Riemannian
manifold " , theGaussian curvature ? measures
how “non-flat” " is around point ?. Intuitively,
points where ? is positive are “round” like the
sphere, points where ? is negative are “saddle-
shaped”, and points where ? is exactly equal to zero are “intrinsically-flat”—they can be unfolded
and laid out in the plane without stretching out the surface. Even though these descriptions
sound extrinsic, as they refer to the shape of the surface in space, one can compute the Gaussian
curvature purely intrinsically, using only the Riemannian metric on " .

2.2.3 Embeddings

smooth
embedding

not an
embedding

So far, all of our treatment of manifold has been intrin-

sic—we have discussed measurements of lengths, angles,
and curvatures, independent of any ambient space. If we
want work extrinsically—to think about quantities like
positions in space, or surface normals—we can equip our
surface with an embedding 5 : " ! R3 defining where in
space each point of our surface is situated. An embedding
must satisfy two conditions to define meaningful geom-
etry on our surface: (i) it must be smooth and bijective1
and (ii) its derivative must have full rank everywhere, in define valid normal vectors along the
surface. The inset depicts two mappings from the unit disk into R3. The top map is a smooth
embedding, while the bottom is not, as there are no well-defined normal vectors for points on
the “crease” lying along the center of the surface.

p

f(p)
f

M f(M)

Figure 2.1: An embedding of a sur-
face intoR3 allows us to realize tan-
gent vectors as vectors inR3 point-
ing tangent to the surface.

An embedding of a smooth surface " into R3 also gives
us a notion of geometry on " . For instance, we can measure
the length of any curve on " by viewing it as a space curve in
R3 and measuring its length there. Formally, an embedding
5 : " ! R3 allows us to view any tangent vector E 2) ?"
as a vector pointing away from the position 5¹?º 2 R3. So
we can define a Riemannian metric on " by saying that the
inner product of two tangent vectors is given by mapping
them into R3 and taking the dot product of the resulting
vectors in R3. The mapping of tangent vectors into R3 is

given precisely by the differential 35, so we can write the induced Riemannian metric on " as
6¹-• . º = h35¹- º•35¹. ºiR3.

Isometric Embeddings If " already has a Riemannian metric 6, then we often want to find
isometric embeddings 5 : " ! R3 where the inner product defined by the embedding coincides
with the existing metric 6. Not every surface has a smooth isometric embedding into R3—for

1technically, one must also require the inverse be smooth. Unlike the case of, say, linear maps (where any
invertible linear map has a linear inverse), the inverse of a smooth bijective function is not necessarily smooth

8

Polyhedral Surfaces Chapter 2 Background & Related Work

instance, the hyperbolic plane has no such embedding (Appendix A). However, it is always
possible to construct an isometric embedding of any orientable surface into R= for a sufficiently
large dimension = [Nash 1956]. Additionally, if we relax our smoothness assumption, we can
find � 1 isometric embeddings of surfaces into R3 [Kuiper 1955; Nash 1954].

2.3 Polyhedral Surfaces

Up

p

p

Informally speaking, a polyhedral surface is a collection of trian-
gles which have been glued together to form a manifold. Just as in
the smooth setting, a triangulated sphere is a manifold, whereas
a double-knapped pyramid is not. And like in the smooth set-
ting, we can consider different structures on a polyhedral surface:
we can consider a triangulation, which yields topological infor-
mation about the surface (Section 2.3.1), and we can consider a
metric (Section 2.3.2), which yields geometric information about
the surface.

2.3.1 Triangulations

Figure 2.2: In a� -complex, the vertices of an
edge or triangle may not to be distinct. One
can build a cone by gluing together two edges
of the same triangle (top), or a torus out of two
triangles and just a single vertex (bo�om).

In this thesis, we will represent the connectivity of
a polyhedral surfaces using a triangulation. More
precisely, we use a � -complex, which consists of
a collection of disjoint triangles along with a pre-
scribed gluing which attaches their vertices and
edges together. Explicitly, this amounts to a col-
lection of triangles 8090: 0• ” ” ” 8j� j 9j� j: j� j, alongside
a list of vertex gluings 0 � 1 and a list of edge
gluings ¹0•1º � ¹ 2•3º, where 0•1•2•3are vertices
from the disjoint triangles. Figure 2.2 shows some
examples; a more formal definition is provided by
Hatcher [2002, Section 2.1]. Finally, throughout
this thesis we consider only pure 2-complexes, i.e.,
we require that every vertex and edge is contained
in some triangle (and triangles are the cells of great-
est dimension).

Existence Radó [1925] showed that every surface can be triangulated, which is to say that
every topological 2-manifold is homeomorphic to some � -complex [Moise 2013, Chapter 8].
Perhaps the more surprising fact is that this theorem is not true in higher dimensions: Kirby &
Siebenmann [1969] showed that topological manifolds of dimension � 6 are triangulable if and
only if a certain cohomology class ^ ¹" º 2 � 4¹" ;Z•2Zº vanishes. On the other hand, Whitehead
[1940] showed that every smooth (or even just � 1) manifold can be triangulated—meaning that
the non-triangulable manifolds must be quite pathological. In any case, this thesis only considers
surfaces, where working with triangulations is much more straightforward.

9

Chapter 2 Background & Related Work Polyhedral Surfaces

Equivalence Two triangulations of a manifold are said to be combinatorially equivalent if
they have a common subdivision, i.e. if there is a finer triangulation which can express all faces
of both triangulations as unions of its finer faces. In 1908, Steinitz [1908] and Tietze [1908]
conjectured that any two triangulations of a topological manifold are combinatorially equivalent,
which came to be known as the Hauptvermutung (main conjecture) of geometric topology. This
conjecture holds true in dimensions two [Radó 1925] and three [Moise 1952], but again fails in
higher dimensions [Kirby & Siebenmann 1969].

Although any two triangulations of a given surface are combinatorially equivalent, the
choice of triangulation can have dramatic impacts in practice.

Data Structures Perhaps the most common mesh data structure is the vertex-face adjacency list,
which simply stores the three three vertices associated with each triangle. This representation is
simple and easy to use, as it requires only an j� j � 3matrix. However, a vertex-face adjacency list
alone does not provide enough information to encode a general � -complex: it provides a vertex
gluing map, but leaves the edge gluing map implicit. When working with extrinsic triangle
meshes in R3 this information is sufficient to recover the triangulation, but when working
intrinsically one must store more information.

Fortunately, many of the other standard mesh data structures can be used out of the box to
represent general � -complexes. For instance one can use winged-edge or halfedge structures
[Baumgart 1975; Weiler 1985; Kettner 1999]; Botsch et al. [2010] provide an accessible introduc-
tion to these data structures. Alternatively, Sharp & Crane [2020a] observe that one can simply
augment the vertex-face adjacency list with an additional array storing the edge gluing map to
fully encode a general � -complex.

Tangent Spaces Away from vertices, tangent vectors on a manifold triangulation are straight-
forward to reason about, especially in our setting of interest where the triangles are given flat
Euclidean metrics (Section 2.3.2). But even at vertices, there are still well-defined tangent spaces.
After all, a manifold 2-dimensional � -complex is in particular a topological surface, which has
a unique smooth structure. In the next section, we will use a metric on the triangulation to
construct a convenient parameterization for these tangent spaces.

2.3.2 Polyhedral Geometry

A polyhedral cone metric on a surface " with vertex set V is a smooth Riemannian metric on the
punctured surface " nV which is intrinsically flat everywhere. Such a metric can be encoded by
fixing a triangulation T = ¹V•E•Fº of " (with the same vertex set V) and picking set of positive
edge lengths � : E ! R¡ 0 satisfying the triangle inequality �89̧ � 9: ¡ �:8 at each triangle corner;
conversely, any such set of lengths determines a valid intrinsic metric. Under this metric, each
triangle is isometric to a standard Euclidean triangle with the presecribed edge lengths. One
typically obtains initial edge lengths �89= k?8 � ?9k from input vertex positions ? : + ! R3,
but in principle this could be any abstract metric (e.g., coming from a cone flattening [Bobenko
& Springborn 2004]). As usual, this metric allows us to measure lengths and angles along the
surface. For instance, triangle corner angles \ 9:

8 2 ¹0• cº can be determined from the edge

10

Polyhedral Surfaces Chapter 2 Background & Related Work

lengths via the law of cosines. Sharp et al. [2021, Appendix A] provide a detailed explanation of
how to compute many geometric quantities of interest from edge lengths.

Curvature Although a polyhedral conemetric is flat almost everywhere, it still has ameaningful
notion of curvature: each interior vertex 8has an associated discrete Gaussian curvature

 8 := 2c �
Õ

89:38

\ 9:
8 ” (2.3)

This angle defect measures the deviation of vertex 8from being flat, and can be interpreted as
the integral of Gaussian curvature over a small surface patch containing vertex 8. Similarly, each
boundary vertex has an associate discrete geodesic curvature

^8 := c �
Õ

89:38

\ 9:
8 • (2.4)

measuring the deviation of the boundary from a straight line around 8.

normalize angle

isometric

cu
t

Vertex Tangent Spaces Even though the smooth polyhedral
metric is not technically defined at a vertex 8, it still provides us
with a convenient parameterization of the tangent space) 8" .
Any sufficiently small neighborhood of vertex 8is isometric a
cone of total angle � 8. Following Knöppel et al. [2013, Section
6], we express the direction of any tangent vector E2) 8" as a
normalized angle i := 2c\ •� 2 »0•2cº, where \ is the angle of
Erelative to an arbitrary but fixed reference edge 890, and � is
the total angle sum at vertex 8. The vector itself is then encoded
as a complex number A4ii 2 C, where i is the imaginary unit
and A is the vector’s magnitude. Note that although we have
used the metric to define a particular coordinate system on) 8" , the tangent space itself is
well-defined independent of our choice of metric.

Discrete Parallel Transport The tangent spaces at adjacent vertices 8and 9are a priori just a
pair of abstract vector spaces which are entirely unrelated to each other. However, once we have
equipped our surface with a polyhedral metric we can use parallel transport to map vectors
between the two tangent spaces. Concretely, we let the angular coordinate i 892 »0•2cº encode
the outgoing direction of an oriented edge 89from vertex 8; we use 489 2) 8" to denote the
vector with direction i 89and magnitude �89. The corresponding direction at vertex 9is given by
i 98̧ c . Hence, we can parallel transport vectors from) 8" to) 9" following edge 89by applying
a rotation ' 89:= 4i ¹¹i 98̧ cº� i 89º (encoded as a unit complex number). See Sharp et al. [2019, §3.3 &
§5.2] for further discussion.

Barycentric Coordinates Barycentric coordinates provide a convenient coordinate system for
performing calculations on points within a triangle, or defining functions on a triangle. Given a

11

Chapter 2 Background & Related Work Polyhedral Surfaces

triangle 89:with vertex positions ?8• ?9• ?: 2 R2, the three barycentric coordinates 18•19•1: 2 R
describe the point G= 18?8 ¸ 19?9 ¸ 1: ?: . This point lies within triangle 89:precisely when the
18describe a convex combination, i.e. when:

1. 18 � 0 for all 8, and

2. 18 ¸ 19 ¸ 1: = 1.

The barycentric coordinates for a point G=
Í

818?8 are invariant under linear maps. That is
to say, if we have some linear function 5 : R2 ! R2, then the barycentric coordinates for Gin
terms of ?8• ?9 and ?: are precisely the same as the barycentric coordinates for 5¹Gº in terms of
5¹?8º• 5¹?9º and 5¹?: º. This equivalence follows directly from the linearity of 5, just using the
fact that 5 ¹

Í
818?8º =

Í
8185¹?8º, but has the important consequence that we can use barycentric

coordinates to refer to points in a triangle independent of its vertex positions. For instance, the
coordinates ¹1•0•0º always refer to vertex 8, and the coordinates

� 1
3• 1

3• 1
3

�
always refer to the

center of mass, no matter where the vertices of the triangle are located. Consequently, we will
often use barycentric coordinates to refer to points on an intrinsic triangulation, even when the
triangles have no canonically-defined vertex positions.

Homogeneous barycentric coordinates. When working with conformal maps, it will often be
convenient to use barycentric coordinates which are not normalized to have unit sum. Given
three vertex positions ?8• ?9• ?: 2 R2 we say that a triple of coordinates 18•19•1: 2 R (which does
not necessarily sum to 1) corresponds to the point

G= 1
18̧ 19̧ 1:

�
18?8 ¸ 19?9 ¸ 1: ?:

�
” (2.5)

These non-normalized barycentric coordinates can be viewed as homogeneous coordinates on
R2, so we will also refer to them as homogeneous barycentric coordinates.

Barycentric coordinates on edges. In addition to using barycentric coordinates on triangles, we
will often use barycentric coordinates to refer to points lying along edges of our mesh. The
coordinates ¹18•19º correspond to the point G= 18?8 ¸ 19?9 along edge 89. If we also require that
the coordinates sum to 1, then one of these values is redundant. We use the convention that the
scalar barycentric coordinate C892 R corresponds to the point G= ¹1� C89º?8¸ C89?9, so that C= 0
corresponds to the starting vertex 8and C= 1 corresponds to the ending vertex 9.

Of course, if we wish to use homogeneous barycentric coordinates along edge 89, then there
is no redundancy and we need to store the values of both 18and 19 explicitly.

Exponential and Logarithmic Map The exponential map
expG¹Dº of a tangent vector D at point Gcomputes the point ?
reached by starting at point Gand walking straight (i.e., along a
geodesic) with initial direction D for a distance kDk (inset, left).
Concretely, this can be evaluated by laying out the relevant se-
quence of triangles in the plane and drawing a straight line (inset,
right). Note that for any oriented edge 89we have exp8¹489º = 9. Conversely, the logarithmic

12

Polyhedral Surfaces Chapter 2 Background & Related Work

map logG¹?º of a given point ? 2 " taken at point Ggives the smallest tangent vector Dat G
such that expG¹Dº = ?. Hence, for any point ? and veretx 8, we have that expG¹logG¹?ºº = ?.
However, it is not necessarily the case that for any tangent vector Ewe have logG¹expG¹Eºº = E,
since there may be a shorter path leading to the same destination. In particular, log8¹9º may not
always yield the edge vector 489.

2.3.3 Retriangulation
We can represent the intrinsic geometry of a polyhedral surface by recording the edge lengths
for any triangulation of its vertices. However, not all triangulations serve equally well when we
start trying to do computations on the surface. For instance, when considering scalar functions
defined on the surface, we often work with piecewise-linear functions which are linear on each
triangle. So even if two triangulations may encode the exact same geometry, they might still
provide us with different function spaces—and as we will see in Section 3.6, some function spaces
work much better than others. The most basic way of improving the quality of a triangulation is
to perform intrinsic edge flips, which modify the triangulation while preserving the vertex set.

edge flip

not flippable

Intrinsic Edge Flip Consider an edge 89contained in triangles
89:• 98;. An edge flip replaces 89with the opposite diagonal :; . An
edge 89is flippable if and only if

(i) deg8•deg9� 2 and

(ii) triangles 89:• 98;form a convex quadrilateral,

i.e., if both \ 9:
8 ¸ \ ;9

8 and \ :8
9 ¸ \ 8;

9 are less than c [Sharp & Crane
2020c, §3.1.3]. Note that these conditions are considerably easier
to check than in the extrinsic case [Liu et al. 2020, Appendix C].
One can write down explicit formulas to compute the new length�;: , as well as the angular
coordinates i ™;: and i ™:; if desired (see e.g. Section 3.4.2 and Appendix A of Sharp et al. [2021]).

Intrinsic Delaunay Triangulations A planar triangulation is Delau-
nay if there are no vertices inside any triangle circumcircle. Equivalently,
we can ask that every interior edge 89satisfy the local Delaunay condition

\ 89
: ¸ \ 98

; � c ” (2.6)

Note that if both triangles are inscribed in a common circle, then either diagonal satisfies
Equation (2.6). This characterization generalizes to Euclidean polyhedra, since the edge lengths
� are sufficient to determine the angles \ . Such intrinsic Delaunay triangulations extend many
useful properties of 2D Delaunay triangulations to surface meshes—[Sharp et al. 2021, §4.1.1]
gives a detailed list. Intrinsic delaunay triangulations can be found via a simple greedy algorithm:
flip any non-Delaunay edge (i.e. any edge violating Equation (2.6)) until none remain [Bobenko
& Springborn 2007]. This algorithm terminates after finitely many flips [Indermitte et al. 2001;
Bobenko & Springborn 2007], and in practice takes about jEj flips on real-world meshes [Sharp
et al. 2019, Figure 10].

13

Chapter 2 Background & Related Work Polyhedral Surfaces

2.3.4 Polyhedral Embeddings
We can describe the extrinsic geometry of a polyhedral surface " by picking a triangulation
T = ¹V•E•Fº and equipping it with a set of vertex positions ? : V ! R3. We often think
of intrinsic geometry as a generalization of this kind of extrinsic geometry because—as in
the smooth setting—an embedding into R3 immediately defines the intrinsic geometry of our
polyhedron as well: we can easily read off the edge lengths �89:= k?8 � ?9kR3. However, the
reverse direction is far harder.

i

i i

ii

i
j j

k
k

must refine
before embedding

easy to
embed

nonconvex
metric

convex
metric

l

i

i

i j

kl

l

i

j
k

l

Figure 2.3:Top: Any convexpolyhedral
surface can be isometrically embedded
into R3, possibly a�er performing intrin-
sic edge flips.Bo�om: A nonconvex poly-
hedron (with negative angle defect at8)
cannot be isometrically embedded with-
out refining the triangulation.

Alexandrov [1942] showed that any convex intrinsic
polyhedron " (i.e. any polyhedral cone metric whose
angle defects are all nonnegative) has a unique isometric
embedding into R3 as a convex polyhedron. Bobenko &
Izmestiev [2008] provide a constructive proof by lever-
aging a surprising connection to weighted Delaunay tri-

angulations. One challenging aspect of the problem is
the choice of triangulation—although the theorem guar-
antees that some triangulation of our polyhedron " can
be embedded into R3, not every triangulation can be
isometrically embedded. Consequently, in order to con-
struct an isometric embedding one must also identify
which triangulation of " may be embedded. However,
if the polyhedral surface is convex, then one can always
find an embeddable triangulation simply by performing
edge flips—adding additional vertices is never necessary.

In the general, nonconvex case isometric embeddings
are still guaranteed to exist, but our triangulation may
need to be refined. Burago & Zalgaller [1960, 1995]
showed that after subdividing the triangulation finitely many times, one can always construct
a piecewise-linear isometric embedding of any polyhedral surface " into R3. However, their
construction produces highly corrugated surfaces which can feature wrinkles of arbitrarily high
frequency—constructing smoother isometric embeddings of triangle meshes is still an active
area of research (see, e.g., [Chern et al. 2018] or [Sassen et al. 2024]).

14

Chapter 3

Integer Coordinates for
Intrinsic Triangulations

God made the integers, all else is the work of man.

Leopold Kronecker [1886]

B
efore diving in to time-evolving intrinsic triangulations, we start with a simpler
problem: how should you encode an ordinary intrinsic triangulation? If you
only care about the intrinsic geometry itself, the answer is easy: the geometry
is determined by the edge lengths � : E ! R¡ 0. But often, we care not only
about the geometry of the intrinsic triangulation, but also about its relationship

to some input mesh. For instance, we often start with an extrinsic triangle mesh and compute
an alternative triangulation of the same surface by performing intrinsic edge flips. In this case
we might want to know how to map points between the two triangulations: given some point ?
lying in face 89:of the input triangulation, where does ? lie on the intrinsic triangulation? Or
we might want to map functions between the triangulations: given a piecewise-linear function 5
computed on the intrinsic triangulation, how can we plot this function over the input triangles?
These questions concern not just the intrinsic triangulation, but its correspondence with the input
mesh. In this chapter we describe a data structure for encoding the correspondence between
two triangulations. While we specialize to the traditional case of two triangulations sharing the
same geometry, ideas developed here will play important roles in our treatment of time-evolving
geometries in the following chapters.

Problem Statement
Explicitly, suppose we have two manifold triangulations T1 = ¹V1•E1•F1º and T2 = ¹V2•E2•F2º,
each equipped with a set of edge lengths �8 : E8 ! R¡ 0 defining an intrinsic metric on each
surface. We additionally assume that the two surfaces are isometric—i.e. that there is a
bijective mapping between the two surfaces which preserves distances. Our goal in this
chapter is to develop a data structure which can efficiently encode this mapping, and can
be efficiently updated as the triangulations are modified (e.g. by flipping edges or inserting
vertices).

15

Chapter 3 Integer Coordinates Correspondence Data

We begin by considering the special case where both triangulations share the same vertex
set. This case already allows us to compute intrinsic Delaunay triangulations (Section 2.3.3),
which have a wide variety of applications and play a key role in Chapter 4. In Section 3.5.1
we describe how the data structure can be adapted to support the insertion of new vertices
into T2, opening the doors to more advanced retriangulations schemes like intrinsic Delaunay
refinement (Section 3.6). The ideas discussed in this chapter were published in Gillespie et al.
[2021b] and Gillespie et al. [2021a]—note that the two works used slightly different conventions1;
this chapter follows the latter, which supports a wider variety of mesh operations.

3.1 Correspondence Data
Our data structure consists of two pieces types data. We maintain

(1) normal coordinates = : E2 ! Z, which count how many times T1 crosses each edge of T2
(Section 3.1.1),

(2) roundabouts A: H2 ! Z, which give the circular ordering of halfedges from both T1 and
T2 around each vertex (Section 3.1.2),

which amounts to 3jE2j integer values, a small fraction of the cost already required to store
triangulations T1 and T2. The normal coordinates can be used to trace geodesic curves from
each vertex 8to all vertices 9adjacent to 8 in T1, yielding a collection of curves lying along
T2. However, they provide only the unordered set of curves, but do not identify which curve
corresponds to which logical edge of T1. Determining which curve corresponds to which edge
can be surprisingly difficult since our meshes may have multiple edges between the same pair
of vertices—we use the roundabouts to identify traced curves along T2 with logical edges of T1.

3.1.1 Normal Coordinates

2
2

2

2
11111

1
1

1 1
12

2

2

2
11111

1
1

1 1
1

Figure 3.1: Traditionally, normal coordi-
nates encode a curve on a triangulated
surface by counting how many times the
curve crosses each edge.

Normal coordinates represent a curve sitting atop a tri-
angulated surface by recording the number of times that
the curve crosses each edge2 (Figure 3.1). They were
originally developed one dimension higher, to study
surfaces embedded in 3-manifolds [Kneser 1929; Haken
1961; Hass & Trnkova 2020], but have spread through-
out topology—e.g., providing a key tool for studying
the “mapping class group” of a surface [Farb & Mar-
galit 2011; Bell 2015; 2013; Schaefer et al. 2008]. Normal
coordinates have also found use as an efficient curve
encoding for computational geometry [Erickson & Nayyeri 2013], since storing the number of
intersections requires exponentially less space than recording each intersection individually.

1In particular, Gillespie et al. [2021b] set =89= 0 for edges 89shared by both triangulations, whereas Gillespie
et al. [2021a] set =89= � 1 for edges shared by both triangulations and reserve =89= 0 to mark edges of E2 which are
not present in T1 but also intersect no edges from T1. This situation is impossible if T1 and T2 share the same vertex
set, but is important to handle correctly if one wants to insert new vertices into T2.

2Not to be confused with geodesic normal coordinates from Riemannian geometry, which are entirely unrelated.

16

Correspondence Data Chapter 3 Integer Coordinates

intersection U-turn

normal
curveThere are just two normality conditions that the curve must satisfy

in each face in order to be encoded via normal coordinates:

(1) it cannot intersect itself, and

(2) it cannot make a “U-turn”—i.e. it cannot enter a face and then
exit through the same edge.

If these two conditions are satisfied then the normal coordinates are sufficient to determine
the curve, modulo homotopies which do not pass through vertices. Equivalently, normal
coordinates determine the sequence of triangles that the curve passes through. And in addition
to representing a single curve, normal coordinates can simultaneously encode several curves
sitting on the same surface. No matter how many curves are present, one still stores a single
integer per edge of the triangulation counting how many times any curve crosses that edge.

Our use of normal coordinates deviates from the standard treatment in several. First, rather
than working in the topological setting of curves on smooth surfaces, we consider geodesic
curves on Riemannian manifolds with Euclidean metrics. Using geodesics allows us to recover
the exact path of the curve along the surface without having to work modulo homotopy.

U-turn valid

Second, rather than working with closed curves, we assume that
our normal coordinates encode the edges of a second triangulation of
the surface. In particular, each curve is topologically equivalent to a
line segment connecting two vertices. Such curves must obey the two
ordinary normality conditions, and we additionally require that curves which enter a triangle
through a vertex must exit via the opposite edge (see inset). These assumptions allow us to
introduce a new edge flip formula, given in Section 3.1.1.

Finally, we need to decide which triangulation to store normal coordinates on. In the setting
of intrinsic triangulations, where we think of T2 as sitting atop T1, it may feel more natural
to store normal coordinates on the edges of T1 to encode the paths taken by the edges of T2.
However, the situation is symmetric and we can also store normal coordinates on T2 to encode the
paths taken by the edges of T1. And indeed, this second option allows us to implement intrinsic
edge flips more efficiently: if we wish to flip an edge 89of T2, but store normal coordinates on
edges of T1, then we must update the normal coordinates on every edge of T1 which 89crosses
(Figure 3.2, left). Since 89could cross arbitrarily many edges of T1, this update could be quite

Figure 3.2: We could represent the correspon-
dence between triangulationsT1 andT2 using
normal coordinates on the edges ofT1 (le�),
or on edges ofT2 (right). The la�er is easier
to update following an edge flip: if we flip
the highlighted edge, we need to update the
three highlighted normal coordinates in the
former case, but we only need to update the
normal coordinate on the flipped edge in the
la�er case.

1

1

22
1

edge of T1
edge of T2

3

1

1 1
1

1 1

flip flip

normal coordinates
on edges of T
update many coordinates
each flip

update one coordinate
each flip

normal coordinates
on edges of T1

1 -1 1 -1

17

Chapter 3 Integer Coordinates Correspondence Data

expensive. However, if we store normal coordinates on the edges of T2, then when flipping 89we
only have to update the normal coordinate on 89itself, so our update will always run in constant
time (Figure 3.2, right). In addition, storing normal coordinates on edges of T2 is essential when
the adding new vertices into triangulation T2 (Section 3.5.1).

i

j

k

edges leaving
corner k

edges crossing
corner k

normal coordinates nij

1

-1
-1

-1
-1

-1

1

1 3

i

j

k
edge of T1
edge of T2

Figure 3.3: The normal coordinates=89count
the number of times each edge89 2 E2

crosses any edge of the other triangulation
T1. These counts can be used to determine
other quantities,e.g.how many edges ofT1

cross or leave a corner of a triangle fromT2.

Formal Definition We store normal coordinates on
the edges of T2 which count intersections with edges
of T1. In particular, for each edge89of T2, we store the
number of times=892 Z that any edge of T1 crosses 89
transversally (Figure 3.3, left); if 89is shared between
T2 and T1, we assign it a special value of =89= � 1.
The value =¸

89:= max¹=89•0º hence gives the number
of transversal crossings; the value =�

89:= � min¹=89•0º
is 1 on shared edges and 0 otherwise3.

From these numbers we can determine howmany
edges in T1 emanate from corner 89

: in T2 (excluding
those along edges of T2) :

489
:

:= max¹0• =̧89� =¸
9: � =¸

:8º” (3.1)

Likewise, the number of edges crossing corner 89
: is

289
:

:= 1
2

�
max

�
0• =̧9: ¸ =¸

:8 � =¸
89

�
� 49:

8 � 4:8
9

�
” (3.2)

See Figure 3.3, right for examples. For curves that do not touch vertices, the corner coordinates
2 are essentially dual to the normal coordinates =—see Erickson & Nayyeri [2013, Section 2.3].

Validity Not every assignment of integers to edges of T2 form a valid set of
normal coordinates: for instance, it is impossible for a closed curve to intersect
each edge in a given face exactly once. The normal coordinates used in our
data structure are always valid by construction, so an explicit treatment of
the validity conditions for normal coordinates is not necessary to use them
to encode intrinsic triangulations, but it may nonetheless be illuminating to consider which
assignments of integers to edges serve as valid normal coordinates.

In the traditional setting, when the normal coordinates encode a collection of closed curves,
there are two validity conditions on the normal coordinates on the edges of for each triangle:

1. their sum must be even, and

2. they must obey the triangle inequality.

(see e.g. Thurston & Yuan [2012, Lecture 2]). The first condition must hold, since every curve
which enters the triangle via one crossing must then exit through another, leaving an even
number of crossings on the triangle’s boundary. The second condition must hold since a normal
curve which enters the triangle through one edge must exit through a different edge.

3Note that we follow the convention of Gillespie et al. [2021a], rather than Gillespie et al. [2021b] who set
=89= 0 for parallel edges.

18

Correspondence Data Chapter 3 Integer Coordinates

i

j

k

In our setting, where we use normal coordinates to encode edges of a geodesic
triangulation, the validity conditions become slightly more complicated. Of
course, if the values =89•=9:•=:8 satisfy the two original conditions then they are
valid. But we now have other valid normal coordinates as well. For instance,
the inset depicts a triangle where the normal coordinates have odd sum, and
fail to obey the triangle inequality, but still correspond to a valid set of curves
passing through the triangle. The validity conditions for our normal coordinates may be stated
as follows: if the values =¸

89• =̧9:• =̧:8 obey the triangle inequality, then they must have even sum.
If they violate the triangle inequality, then any values are valid.

i

j

l
k

Normal Coordinate Edge Flip Consider two triangles 89:• 98;from T2. In
the simple case where no edge from T1 terminates in a corner of either triangle
(see inset), there is an edge flip update that resembles the Ptolemy relation for
inscribed quadrilaterals [Mosher 1988; Thurston & Yuan 2012, Equation 1]:

=:; = max¹=:8 ¸ =;9•=9: ¸ =;8º � =89” (3.3)

In the general case, we must derive a more complicated formula:

=:; = 29:
; ¸ 289

: ¸ 1
2

�
�
�28;

9 � 2:8
9

�
�
� ¸ 1

2

�
�
�2;9

8 � 29:
8

�
�
� � 1

2498
; � 1

2489
: ¸ 4;9

8 ¸ 49:
8 ¸ 48;

9 ¸ 4:8
9 ¸ =�

89” (3.4)

i

j

l
k

(3)

i

j

l
k

(2)i

j

l
k

(1)

i

j

l
k

(4)

i

j

k

(5)

l

i

j

l
k

(6)

Figure 3.4: Edges of quadri-
lateral 8:9; come in 6 types.
The first four each intersect
edge;: , contributing toEqua-
tion (3.4), while the last two do
not.

To understand Equation (3.4) of Section 3.1.1, consider first the
case that ;: is not an edge of T1. Then the edges of T1 intersect the
interior of the quadrilateral in segments of the following types
(Figure 3.4):

1. crossing corner ; of 98;or crossing corner : of 89:

2. crossing corners 8of 98;and 9of 89:, or crossing corners
9of 98;and 8of 89:

3. emanating in corner 8or 9of 98;or 89:

4. the edge 89

5. crossing both corners 8of 89:and 98;or both corners 9of
89:and 98;

6. emanating in corner ; of 98;or emanating in corner : of 89:

Segments of types 1–4 are counted by

1. 289
; ¸ 289

:

2. 1
2

�
�28;

9 � 2:8
9

�
� ¸ 1

2

�
�2;9

8 � 29:
8

�
� � 1

2498
; � 1

2489
:

3. 4;9
8 ¸ 49:

8 ¸ 48;
9 ¸ 4:8

9

4. =�
89

19

Chapter 3 Integer Coordinates Correspondence Data

and each contributes 1 to =9:, while segments of types 5–6 contribute 0. To see the counting
formulas for cases 2 and 4, note that 1

2

�
�28;

9 � 2:8
9

�
� ¸ 1

2

�
�2;9

8 � 29:
8

�
� counts #f type 2g ¸ 1

2 #f type 6g, and
that =�

89= 1 if and only if 89is also an edge of T1.
Finally, if ;: is an edge of T1, then term 2 above is � 1 and terms 1, 3, and 4 are zero (since ;:

cannot intersect other edges of T1). So Equation (3.4) is satisfied with both sides equal to �1.

3.1.2 Roundabouts

i
j

k

lAlthough normal coordinates completely describe a triangulation sitting
on top of T2, they do not tell us how the edges of this triangulation
correspond to the edges of T1: as noted in Section 2.1, two endpoints may
not uniquely identify an edge. For instance, the two highlighted edges on
the tetrahedron drawn in the inset both connect vertex 8to vertex 9, so
if we obtain a path from 8to 9from our normal coordinates, it is hard to
tell a priori which edge the path describes.

i

0

12

3

4

halfedge of T1

halfedge of T2

both T1 and T2

roundabout

33
44 44

00
00

00
11

Figure 3.5: For each halfedge ofT2, the
roundabout gives the next halfedge ofT1.

We therefore augment our normal coordinates with
what we call roundabouts, in analogy with roundabouts
or traffic circles found on roadways. At each vertex
8 2 V, these roundabouts describe how the outgoing
halfedges of the two triangulations are interleaved.

Conceptually, for each halfedge ™892 H2, the round-
about tells us the first halfedge from T1 counterclock-
wise from ™89around vertex 8. In practice, we encode
the halfedge from T1 as in index A™89 2 Z� 0 local to
vertex 8 (Figure 3.5), which allows us to update the

roundabout values in constant time when flipping an edge of T2 (Section 3.1.2). These indices
start at zero, and enumerate the halfedges of T1 which emanate from 8in counter-clockwise
order, starting at some arbitrary but fixed halfedge. Note that if a halfedge from T2 coincides
with a halfedge from T1, the roundabout points to this halfedge, as indicated by self-arrows.

Roundabout Edge Flip To update our roundabouts after flipping an edge 89with opposite
vertices :• ; , we first update the normal coordinates as described in Section 3.1.1. We then set

A™:; = mod¹A™:8 ¸ 48;
: ¸ =�

:8•deg1¹: ºº•
A™;: = mod¹A™;9 ¸ 49:

; ¸ =�
;9•deg1¹;ºº•

(3.5)

l

j

i

k

where deg1¹8º is the degree of vertex8in the triangulation T1. In other
words, to find the first outgoing halfedge of T1 following ™:; 2 H2,
we start at ™:8 and add the number of edges 48;

: of T1 that emanate
from corner : of triangle :8;. Also, if ™:8 is coincident with a halfedge
from T1, we add 1 to advance past this halfedge. The mod operation
accounts for wraparound. See inset for an example. This update
resembles a combinatorial version of the signpost update from Sharp
et al. [2019, p. 3.2.1]: integer indices A™89play the role of real-valued
directions; the integer counts 49:

8 play the role of real-valued angles.

20

Tracing Edges Chapter 3 Integer Coordinates

3.2 Tracing Edges
Using normal coordinates and roundabouts, we can pick any edge in T1 and trace out the
sequence of triangles in T2 that it passes through (Section 3.2.1). To get the curve geometry, we
lay out this triangle strip in the plane and draw a straight line between endpoints (Section 3.2.2).
The final curve is encoded by 1D barycentric coordinates B• C2 »0•1¼on each intersected edge.

3.2.1 Topological Tracing

C��� 1 C��� 2 C��� 3

Figure 3.6: A curve entering triangle98;along edge89
can proceed in 3 ways: the le�-most28:

9 crossings go
le� (le�), the rightmost2: 9

8 crossings go right (right),
and the rest terminate at vertex: (center).

To identify the sequence of edges in T2
crossed by some edge in T1, we start at one
crossing and repeatedly identify the next
edge crossed until the edge of T1 terminates
at a vertex. We can determine the next edge
crossed purely from the stored normal co-
ordinates, by considering the three cases
illustrated in Figure 3.6.

Now we just need to find the first crossing, which we do using the roundabouts. Suppose
we want to trace edge 8;of T1, starting from vertex 8. Since T1 and T2 share the same vertex set,
we know that the curve also starts at vertex 8in T2. And for every corner 9:

8 of T2 incident on 8,
we can use the roundabouts A89and A8: to determine which edges of T1 start in 9:

8 . Once we find
the corner containing 8;, we use the normal coordinates and roundabouts to work out the index
of that first crossing along 9:, from which we can trace out the rest of the curve.

Algorithm 1 GetFirstCrossing¹T2•=•A•8;º

Input: A triangulation T2 = ¹V2•E2•F2º, equipped with
normal coordinates = : E2 ! Z and roundabouts
A: H2 ! Z encoding a second triangulation T1 of the
same vertex set, along with an edge 8;2 E1 from the
second triangulation.

Output: The first intersection between 8;and an edge of T2,
encoded as a pair ¹™:; • ?º where ™:; 2 H2 and ? is the
index of the crossing along halfedge ™:; . If 8;coincides
with an edge of T2, returns ¹8;•�1º instead.

1: for 89:2 F2 incident on 8do
2: 8� LocalIndex¹™8;º
3: 49:

8 max¹0• =̧9: � =¸
:8 � =¸

89º •Equation (3.1)
• #curves emanating from

9:
8 , including along 89or :8

4: width 49:
8 ¸ =�

89¸ =�
:85: if A89� 8� Ÿ A89¸ width then

• If 8� lies in this range, it emanates from
9:
8 .

6: if 8� = A89¸ width � =�
:8 then •runs along 8:

7: return ¹™8:•�1º
8: else if 8� Ÿ A89¸ =�

89then •runs along 8:
9: return ¹™89 •�1º
10: else •crosses 9:
11: return ¹™9:•8� � A89� =�

89º

Algorithm 2 TraceEdge¹T2•=•A• ;<º

Input: A triangulation T2 = ¹V2•E2•F2º, equipped with
normal coordinates = : E2 ! Z and roundabouts
A: H2 ! Z encoding a second triangulation T1 of the
same vertex set, along with an edge ;< 2 E1 from the
second triangulation.

Output: The path of ;< as a sequence of crossings
¹;• Z1• ” ” ” • Z=•<º, where Z8 = ¹™89 • ?º is a crossings en-
coded as a halfedge ™892 H2 and an index ? for the
crossing along the halfedge.

1: ¹currHalfedge• ?º GetFirstCrossing¹T2•=•A• ;<º
2: if ? Ÿ 0 then •Shared halfedge, exit early
3: return »;•<¼
4: W » ;¼ •Start path at vertex ;
5: while Truedo •Walk untilWterminates at a vertex

6: ™89 currHalfedge
7: : OppVertex¹Twin¹currHalfedgeºº
8: if ? Ÿ 2: 9

8 then •turn right (Figure 3.6, right)

9: currHalfedge ™8: •Move to
™8:

10: ? ?
11: Append¹W•¹currHalfedge• ?ºº
12: else if ? � =89� 28:

9 then •turn left (Figure 3.6, left)

13: currHalfedge ™:9 •Move to
™:9

14: ? =: 9 ¸ ? � =89
15: Append¹W•¹currHalfedge• ?ºº
16: else •terminate at : (Figure 3.6, center)

17: return ¹W• :º

21

Chapter 3 Integer Coordinates Common Subdivision

Note that the tracing procedure gives us each edge from T1 as a sequence of edge crossings
on T2. To express the edges from T2 as sequences of T1 edge crossings, we allocate an array of
size =89for each edge 892 E2. Each time a traced edge 01 2 T1 crosses 89, we store a reference to
01 in entry ? of the array (using roundabouts to get the edge index).

3.2.2 Recovering Geodesics

Algorithm 3 RecoverGeodesic¹T2• �•Wº

Input: A triangulation T2 = ¹V2•E2•F2º with edge lengths
� : E2 ! R¡ 0, along with a pathW= ¹;• Z1• ” ” ” • Z=•<º
from vertex ; 2 V2 to < 2 V2. Each Z = ¹™89 • ?º is a
crossing encoded as a halfedge 892 H2 and the index
? of the crossing along the halfedge.

Output: The trajectory of W as a sequence of points
¹0• I1• ” ” ” • I=•<º along T2. Intermediate crossings are
encoded as pairs I = ¹™89 • Cº where 892 H2 andCis the
barycentric coordinate of point I along halfedge 89.

• Compute positions in R2
for triangle strip containingW

1: ` LayOutTriangleStrip¹Wº
2: trajectory » ;¼
3: for Z = ¹™89 • ?º 2 Wdo

• Intersection of 01 and 89in the plane (see inset above)

4: B• C IntersectionBarycentric¹`0• `1• `8• `9º
5: Append(trajectory• I = ¹™89• Cº)
6: Append(trajectory•<)
7: return trajectory

To get the geometry of each traced edge01 2 E2,
we use the crossing sequences computed in Sec-
tion 3.2 and the edge lengths � to incrementally
lay out a triangle strip in the plane. We then
intersect each interior edge 89of this strip with
the line from 0 to 1—by construction, this line
will be contained entirely inside the strip. In par-
ticular, if G8 2 R2 are the vertices of a Euclidean
triangle strip, we can solve the equation

¹1 � BºG0 ¸ BG1 = ¹1 � CºG8 ¸ CG9 (3.6)

for the barycentric coordinates B• C2 »0•1¼of
the intersection point. Algorithm 3 provides
pseudocode for a basic version of this procedure,
which recovers the path taken by a geodesicW
lying on T2, represented as a sequence of points
on T2 encoded in barycentric coordinates4. In
Section 4.2.1, we detail an analogous procedure
for recovering geodesic paths in the hyperbolic
plane which is used to compute discrete confor-
mal parameterizations.

3.3 Common Subdivision
The common subdivision

5 S of T1 and T2 is the polygon mesh obtained by “slicing up” the
underlying surface along the edges of both T1 and T2. The vertices of Sare hence a superset of
V1 and V2, and every edge or face of T1 and T2 can be expressed as union of edges or faces of S
respectively. Moreover, when T1 is an extrinsic triangulation, the faces of Sare always planar
and convex. They are planar since they are subsets of the faces of T1, which are planar. And they
are convex because each face is obtained by cutting a triangle along a collection of straight lines,
which always yields convex polygons (Figure 3.7). And most importantly, any piecewise-linear
function on T1 or T2 can be represented exactly as a piecewise-linear function on S.

4If more detailed correspondence information is required, one can use the algorithm described in Gillespie et al.
[2021a, Section 3.1], which computes the barycentric coordinates of each crossing point on T1 as well as on T2.

5Also known as the common subdivision, or even the supermesh (in FEM literature, e.g. Farrell et al. [2009,
Section 2]).

22

Common Subdivision Chapter 3 Integer Coordinates

The common subdivision serves as an essential “bridge” between an intrinsic triangulation
and the original extrinsic domain: it provides the minimal piecewise linear basis on which both
intrinsic data at vertices and extrinsic vertex positions can simultaneously be interpolated. S
can then be used to pull back functions from the abstract intrinsic setting to an ordinary mesh
sitting in space.

Note however that even if T1 and T2 have nice elements, S is not in general a high-quality
mesh, and may not itself be suitable for, e.g., solving PDEs. Rather, it plays a complementary
role in the geometry processing pipeline, enabling (for instance) transfer of data between
triangulations [Gillespie et al. 2021a, Section 4.3], or visualization of data downstream via
standard rendering tools.

C��� 1 C��� 2

Figure 3.7: We find the connectivity of common subdivi-
sion within each triangle using its normal coordinates.

Tracing out the edges allows us to con-
struct the common subdivision Sof T1 and
T2. To determine the connectivity of Swe
slice up each triangle 89: 2 F� indepen-
dently. First we extract the connectivity of
S, using only the normal coordinates=89.
Then we recover the intersection geometry,
allowing us to interpolate data stored at the
vertices of T1 or T2 to S—most commonly,
vertex positions on T1 along with any solu-
tion data on T2. Note that one can construct
pathological cases in which there are quadratically many intersections between T1 and T2 (or
worse—consider a triangulation with many Dehn twists, as pictured in [Sharp et al. 2019, Figure
4]). However, we do not observe such extreme behavior in practice.

Connectivity We subdivide T2 independently in each face 89:(Figure 3.7). There two cases to
consider. In case 1, when no curves emanate from any corner, we simply connect the first 29:

8
crossings along edge 89to the first 29:

8 crossings along 8: (in order), and likewise for corners 9
and : . In case 2 curves emanate from some corner; without loss of generality, let this corner be
: so that the number of emanating curves is 489

: ¡ 0. We walk from8to 9, connecting the first 29:
8

crossings to those along 8:, the next 49:
8 crossings to vertex : , and the remaining 2:8

9 crossings to
those along edge :9. Note that curves running along edges (=89Ÿ 0) require no special treatment.

Intersection Geometry Next, we associate each vertex 8of the common subdivision with a
point in T1 and a point in T2, encoded in barycentric coordinates. Using these values, one can
linearly interpolate data from T1 or T2 to the vertices of S. Again, there are just two cases: each
vertex 8in Sis either a vertex of T2 or the intersection of an edge of T1 with an edge of T2. In the
first case, the position on both triangulations is known. In the second case, we can compute the
desired barycentric coordinates using the tracing procedures described in Section 3.2.

23

Chapter 3 Integer Coordinates Flipping to a Given Triangulation

3.4 Flipping to a Given Triangulation
We primarily focus on modifying our triangulations by flipping edges. At first, one might worry
that this local operation could be too restrictive—if you start with one triangulation of a surface,
are there other triangulations (with the same vertex set) that you cannot reach merely by flipping
edges? Fortunately, this concern turns out to be false: any pair of triangulations are connected
by a finite sequence of edge flips. There are many proofs in the literature, but the most relevant
to us is a constructive proof by Mosher [1988], who presents a simple algorithm for finding
the sequence of edge flips to move from one triangulation to another. Unfortunately, Mosher’s
algorithm is embedded in a complicated analysis of its correctness and is moreover framed the
language of hyperbolic geometry:

Our proof has the advantage that it implicitly gives an algorithm for constructing

a sequence of elementary moves [i.e. edge flips] connecting [triangulations] Xand X0
,

when X0
is given in terms of certain intersection numbers with the arcs of X. We shall

not explicitly describe this algorithm; we leave that to the interested reader.

Mosher [1988, pages 37–38]

In this section, we give a more detailed description of the algorithm for flipping from one
triangulation to another. In practice we generally modify triangulations by flipping to Delaunay
(Section 2.3.3) or applying adaptive retriangulation schemes (Section 3.6), rather than trying to
flip to a particular set of normal coordinates, but Mosher’s algorithm is nonetheless important
from a theoretical perspective and provides an interesting application of normal coordinates.

Algorithm 4 FlipTo¹T2•=º

Input: A triangulation T2 = ¹V2•E2•F2º, equipped with
normal coordinates= : E2 ! Z encoding a second
triangulation T1 of the same vertex set.

Output: Perform edge flips on T2 to transform it into T1,
i.e. all normal coordinates equal �1.

1: for < 2 V2 do •Iterate over edges of T1 incident on <
2: for crossing ¹™89 • ?º emanating from < do
3: curveEnded False

• Flip each edge of T2 which this edge crosses

4: while not enddo
5: : OppVertex¹Twin¹™89ºº

• Before getting next crossing, record which
• edge we mean to flip

6: edgeToFlip 89
• Get next crossing on curve (à la Figure 3.6)

7: if ? Ÿ 2: 9
8 then

8: ¹™89 • ?º ¹ ™8:• ?º
9: else if ? � =89� 28:

9 then
10: ¹™89 • ?º ¹ ™:9•=: 9 ¸ ? � =89º
11: else
12: curveEnded True •curve ends at :
13: T2•= Flip¹T2•=•edgeToFlipº
14: return T2

Suppose we have a triangulation T2 equipped
with normal coordinates = : E2 ! Z encoding
another triangulation T1 sitting atop it. Our goal
is to flip a sequence of edges on T2 to transform it
into T1. The idea underlying the algorithm is quite
simple: we identify any edge 89of T1 (the target
triangulation) which is not already contained in
T2, and we flip the first edge of T2 intersecting
this edge. Then we check if any more edges of T2
intersect 89. If they do, we continue flipping the
first edge ofT2 intersecting89until none remain. At
this point, edge 89is shared by both triangulations.
We repeat for some other edge of T1 until all edges
are shared, and both triangulations are the same.

The one difficulty lies in identifying which
edges of T2 are crossed by some edge of T1—but
this is essentially the “tracing” problem discussed
in Section 3.2.1. Starting at any vertex of T2, we
can use our normal coordinates to identify how many edges of T1 emanate from this vertex, and
to locate their first crossings with other edges à la Equation (3.1). And once we have the first
crossing along an edge, we can find all subsequent crossings à la Algorithm 2. We just have to
flip each edge of T2 as we cross it. Algorithm 4 provides pseudocode for this procedure.

24

Modifying the Vertex Set Chapter 3 Integer Coordinates

An important caveat is that Mosher’s algorithm is formulated in the combinatorial setting6,
where one can flip any edge as long as it is not incident on a degree-1 vertex. In particular, the
edge flips performed in Algorithm 4 are often impossible if T2 is a Euclidean polyhedron, since
its edges also have to satisfy a convexity condition in order to be flipped. Analyzing the behavior
of this algorithm in the Euclidean setting, and determining whether a version can be used to flip
between any two Euclidean triangulations would make for interesting future work.

0 2000 4000 6000 8000 10000
total number of crossings

0

2000

4000

nu
m

be
r o

f f
lip

s

Number of flips used to change triangulations

6000 8000 10000

Figure 3.8: Theoretically, we only know that
Mosher's algorithm terminates in finite time. But
in practice, its cost seems to scale sublinearly with
the total number of intersection between the two
triangulations,i.e. with

Í
892E2

=89. Here we plot
the number of flips used byAlgorithm 4 to flip
from a mesh of the bunny to a randomly-chosen
triangulation of the same surface.

Termination. Analyzing Algorithm 4 is tricky.
In order to prove that it terminates, Mosher
defines a particular quantity]¹E2• 89º as the to-
tal number of intersections between some edge
892 E1 and all edges of E2 except for the first
edge intersected by 89, and shows that]¹E2• 89º
decreases with each flip made as we try to incor-
porate 89into triangulation T2. Note that]¹E2• 89º
is at most the total number if intersections be-
tween 89and E2, so we can bound the number
of flips required by this total number of inter-
sections. However, each flip used to incorporate
89into E2 could create many more intersections
between E2 and other edges of T1, so this anal-
ysis does not directly yield a useful quantitative
bound on the number of flips required. In the
end, much like the case of flipping to Delaunay,
the flip algorithm is known to terminates in a finite amount of time, but not even guaranteed to
have polynomial complexity (although runtimes are quite reasonable in practice—see Figure 3.8).

3.5 Modifying the Vertex Set
We now extend the integer coordinates data structure to allow the addition of new vertices into
T2. The main idea remains the same—we still store normal coordinates and roundabouts on the
edges of T2—but we also explicitly track where the new vertices lie on T1. Letting V¢ := V2 nV1
denote the set of inserted vertices, our complete correspondence data structure consists of

(1) normal coordinates = : E2 ! Z, counting how many times T1 crosses each edge of T2.

(2) roundabouts A: H2 ! Z, giving the ordering of halfedges of T1 and T2 about each vertex7.

(3) locations @: V¢ ! T1, recording where on T1 each new vertex of T2 is located.

Each location @< is encoded by storing the face 89:2 F1 in which vertex < 2 V¢ lies, along
with the barycentric coordinates ¹18•19•1: º describing the exact location of < in face 89:. And
of course, as we modify T2, we also update the edge lengths used to encode its intrinsic metric.

6or equivalently, in the setting of hyperbolic geometry
7for halfedges 89emanating from inserted vertices 82 V¢ , we set A89= 0.

25

Chapter 3 Integer Coordinates Modifying the Vertex Set

3.5.1 Vertex Insertion
Suppose we want to insert a new vertex at a point Gon T2 expressed as barycentric coordinates
Erelative to a face 89:2 F2. To do so, we insert a new vertex < into face 89:, and must compute
edge lengths, normal coordinates, and roundabouts for the new edges <8•<9•<:, as well as the
positions @< of < on triangulation T1. Note that similar operations have been described in the
topological setting (e.g. by Schaefer et al. [2002, Section 5.4]), but they do not provide the ability
to insert a point at a particular geometric location, which is essential in many applications (e.g.
Section 3.6).

Mesh Update We first insert < into T2, splitting 89:into three new triangles. The new edge
lengths can be computed directly from the barycentric coordinates—in particular, any tangent
vector F expressed in barycentric coordinates has length

kF k2 = � � 2
89F8F 9 � � 2

9:F 9F : � � 2
:8F : F8 (3.7)

(see [Schindler & Chen 2012, Section 3.2] or [Sharp et al. 2021, Sections 2.3.2 and 2.3.7]). We can
hence compute �8< = k¹18•19•1: º � ¹ 1•0•0ºk, and similarly for � 9<, �:< .

2
2

2
1

1
1

R
R m

i mi

j j

k kNormal Coordinates & Roundabouts Unlike edge flips, where
the new normal coordinates depend solely on the old ones, normal
coordinates resulting from a vertex insertion depend on the particular
geometric region ' containing the inserted point < (see inset). We
hence compute geometric crossings for all curves passing through
face89:, then determine the region ' via line-side tests (implemented
via a simple cross product). If < is extremely close to a region
boundary we may pick the wrong region (due to floating-point error), but will still produce
valid connectivity for a nearly identical vertex location. Moreover, barycentric coordinates E
arising from, say, Delaunay refinement (Section 3.6) will not be exact anyway. New roundabouts
emanating from vertices in f8• 9• :g \ V1 are set via Equation (3.5).

Position on T1 The geometric crossings at ' ’s corners provide barycentric coordinatesDand E
relative to T1 and T2 resp. Hence, to get @< we simply express Gas a linear combination of the
corners’ E� coordinates (i.e. their barycentric coordinates in face 89:), then take the same linear
combination of the corners’D-coordinates.

Explicitly, each corner of the region ' is either a vertex 8of T2 (in which case we know its
location @8 on T1), or it is an intersection between an edge of T1 and an edge of T2, in which
case we can work out its position on T1 during the geodesic tracing routine. And by definition,
' is the intersection of 89:with some face 0122 F1, so we can write all of these positions in
barycentric coordinates on 012.

Then we recover barycentric coordinatesD for Gwithin face 012by solving a small linear
system. In principle one could use any 3 corners of ' to determine the desired barycentric
coordinates, but we make use of all corners of ' for numerical stability. To be precise, let
3 � d � 6 denote the number of corners of ' . Let the < th corner of ' have barycentric

26

Modifying the Vertex Set Chapter 3 Integer Coordinates

coordinatesD¹< º
0 •D¹< º

1 •D¹< º
2 on 0122 F1 and barycentric coordinates E¹< º

8 • E¹< º
9 • E¹< º

: on 8 9:2 F2,
all of which are know. We also know the barycentric coordinates E8 for Gin 89:. We then want
to solve for the correspondingD0 on 012. We proceed in two steps: first, we express Eas a linear
combination b of the E¹< º. Then, we apply this same linear combination to theD¹< º to obtainD.
Concretely, we first solve for the minimum-norm solution of the underdetermined system

©
­
­
«

E¹0º
8 E¹1º

8 � � � E¹dº
8

E¹0º
9 E¹1º

9 � � � E¹dº
9

E¹0º
: E¹1º

: � � � E¹dº
:

ª
®
®
¬

©
­
­
­
­
«

b0
b1
”””

bd

ª
®
®
®
®
¬

= ©
­
«

E8
E9
E:

ª
®
¬

• (3.8)

and then set
D0 :=

Õ

<

D¹< º
0 b< • D1 :=

Õ

<

D¹< º
1 b< • D2 :=

Õ

<

D¹< º
2 b< ” (3.9)

Note that while one often seeks a nonnegative b, any solution will suffice here: we only use b to
interpolate in Equation (3.9).

3.5.2 Flat Vertex Removal

Generally, a vertex of the original triangulation cannot be removed without distorting the
intrinsic metric: any curvature at that vertex would be lost. However, inserted vertices are
intrinsically flat (i.e. have no Gaussian curvature), and can hence be removed safely. In fact this
operation is necessary for Delaunay refinement of domains with boundary (Section 3.6).

interior

flip
rem

ove

boundaryTo remove an interior vertex 8with zero Gaussian curvature, we
perform edge flips until 8has degree 3 and then replace the three
triangles 801•812•820incident on 8with the single triangle 012(inset,
left). Since the vertex is intrinsically flat, this change preserves the
surface geometry. And we do not have to update any edge lengths,
normal coordinates, or roundabouts beyond the updates required to
perform the edge flips. We can remove a boundary vertex 8with zero
geodesic curvature by an analogous procedure: we perform edge flips
until deg8= 3 and replace the two resulting triangles 801•820with the
single triangle 012(inset, right). Note that when 8is an ear vertex (i.e.
a degree-2 boundary vertex), its degree can easily be increased to 3
by flipping the opposite edge. Again, the surface geometry remains
unchanged, since 8has no geodesic curvature. Theorem 1 and Theorem 2 prove the correctness
of this procedure for removing interior and boundary vertices respectively, under the assumption
that the neighborhood of 8remains a simplicial complex throughout. We hence find that a useful
heuristic is to first flip any self-edges (8= 9); if there are none, we flip the edge 89with largest
angle sum \ 89

: ¸ \ 98
; (which are, in some sense, the “most convex”). Schaefer et al. [2002, Section

5.4] also suggest a similar flipping procedure for removing interior vertices, but do so in the
topological setting where the necessary edge flips are always valid—they do not consider the
convexity condition (Section 2.3.3).

27

Chapter 3 Integer Coordinates Modifying the Vertex Set

Theorem 1. If an intrinsically-flat vertex 8in the interior of a simplicial complex has degree 3 ¡ 3,
then some incident edge can be flipped to decrease the degree of 8.

Proof. Recall that an edge can be flipped if both endpoints will have degree at least 1 after the
flip, and the edge is contained in a convex quadrilateral (Section 2.3.3). As always, the convex
quadrilateral is defined in the sense of the intrinsic geometry determined by edge lengths. The
endpoint degree constraint is automatically satisfied on a simplicial complex, so we only need
to show that the geometric convexity constraint is satisfied, which is equivalent to showing that
all angles of the edge’s quadrilateral are at most c .

We denote the neighboring vertices of 8by 9: (with 9: ¸1 etc.

implicitly indexed modulo the vertex degree 3), as depicted in the
inset. The outer angles \ 8 9: � 19: and \ 8 9: ¸1 : are corners of Euclidean
triangles, and thus are necessarily at most c , so we need to find
an edge 89: for which the angles \ 9: � 18 9: ¸1 and \ 9: ¸1 9: 9: � 1 are also at
most c . First we consider the inner corners \ 9: � 18 9: ¸1 .

At most two of these angles can be greater than c . To see why, suppose there were three
\ 9: � 18 9: ¸1 ¡ c . Since the degree of 8is 3 ¡ 3, then some pair of those three large angles would
correspond to disjoint angular sectors around the vertex, and summing their angles yields a
value greater than 2c , which is impossible because the angle sum of 8is 2c . Thus all but at most
two of the edges incident on 8have inner corners with angle at most c . Likewise, at least three
of the outer corners \ 9: ¸1 9: 9: � 1 are at most c . This is because the sum of all 3 outer corners must
be ¹3 � 2ºc . Since they are nonnegative, at most 3 � 3 of them can be strictly greater than c ,
implying that at least 3will be less than or equal to c .

Thus at least three outer corners are at most c , and at most two of the inner corners are not
at most c , so there must be at least one edge for which both the inner and outer corners are at
most c . This edge can then be flipped, reducing the vertex degree. �

Theorem 2. If a vertex 8in the boundary of a simplicial complex has cone angle c and degree

3 ¡ 3, then some edge89incident on 8can be flipped to decrease the degree of 8.

candidate cornerscandidate cornersProof. Again, our goal is to find a neighboring quadrilateral whose
angles are all at most c . Since none of the inner angles \ 9: � 18 9: ¸1

can exceed c (after all, the sum of all angles incident on 8 is only
c), the only difficulty is showing that one of the 3 � 2 “candidate
corners” around the outside of the neighborhood must be at most c .
Since 8has angle sum c , we can view this neighborhood as a 3-sided
polygon—as noted above, such a polygon must have at least 3 corners
with angle less than or equal to c . Since there are 3 � 2 candidate corners, we conclude that at
least one candidate corner must have angle at most c , and hence we can find a flippable edge
incident on 8. as desired. �

Importantly, these proofs do not handle the full general case of a � -complex, where there
may exist self-edges which cause flips to not make progress. However, we note that Sharp &
Crane [2020b, Appendix A] proves that a similar flip-removal strategy works in the case of a
� -complex, and we conjecture that an analogous technique could be applied to generalize the

28

Delaunay Refinement Chapter 3 Integer Coordinates

Figure 3.9: Intrinsic Delaunay
refinement inserts new vertices
intrinsically into a mesh to im-
prove the triangle quality. We
show that (under a few assump-
tions), intrinsic Delaunay re-
finement is guaranteed to pro-
duce a mesh whose triangles all
have corner angles of at least
30� .

above theorems. Also, note that the “equality” case of Theorem 1 is a possibility, such as a degree
four cross configuration where all angles = c•2. Fortunately the resulting skinny triangle after
the edge is a non-issue, because the center vertex is about to be removed.

3.6 Intrinsic Delaunay Refinement
Algorithm 5 DelaunayRefinement¹T2• �• \min º

Input: An intrinsic triangulation T2 = ¹V2•E2•F2º,
equipped with edge lengths � : E2 ! R¡ 0, along
with a minimum allowed angle \ min .

Output: An intrinsic triangulation T2 whose corner angles
are all at least \ <8=

1: T2• � FlipToDelaunay¹T2• �º
2: while T2 has triangles with angles less than \ min do
3: 89: any triangle with an angle less than \ min

• Find the circumcenter of 89:using Equation (3.10)
• and Equation (3.11)

4: Ê8 � 2
9: ¹�

2
89¸ � 2

:8 � � 2
9:º

5: Ê9 � 2
:8 ¹� 2

89¸ � 2
9: � � 2

:8º

6: Ê: � 2
89¹�

2
9: ¸ � 2

:8 � � 2
89º

7: E 1
Ê8¸ Ê9¸ Ê:

¹Ê8•Ê9•Ê: º
• Barycentric offset from barycenter to circumcenter

8: XE E� ¹ 1•3•1•3•1•3º
• Evaluate exponential map from face barycenter

9: 2 Exp¹Barycenter¹89:º• XEº
10: if 2 lies inside the mesh then
11: T2• � InsertVertex¹T2• �•2º
12: else
13: ;< boundary edge separating 2 from 89:
14: < SplitEdge¹;<• 0”5º

• Flip to Delaunay before getting Dijkstra ball

15: T2• � FlipToDelaunay¹T2• �º
• Remove inserted vertices in ;< ’s diametral ball

16: B = f82V2 : DijkstraDist¹E2• 8•<º Ÿ �;< g
17: for 82 B do
18: T2• � RemoveVertex¹T2• �• 8º
19: T2• � FlipToDelaunay¹T2• �º

Delaunay refinement inserts vertices in order to
produce a Delaunay mesh whose triangles all sat-
isfy a minimum angle bound (Figure 3.9). Here we
modify Chew’s second algorithm to perform intrin-
sic Delaunay refinement [Chew 1993; Shewchuk
1997]. This problem has been extensively studied
in the plane, but an intrinsic (i.e. geodesic) scheme
was only recently proposed by Sharp et al. [2019,
Section 4.2]. However, they did not handle meshes
with boundary—here we resolve the essential diffi-
culties of the boundary case, and show how refine-
ment can be implemented using our integer-based
data structure.

In the plane, the basic algorithm is to greed-
ily pick any triangle which violates the minimum
angle bound, insert a vertex at its circumcenter,
then flip to Delaunay. This process continues until
all triangles satisfy the angle bound. If a trian-
gle’s circumcenter is outside the domain, then the
boundary edge 89separating the triangle from its
circumcenter is split at its midpoint; subsequently,
all interior vertices within at least a distance of
�89•2 are removed—though removing additional in-
terior vertices causes no issues (Section 3.6). One
can prove that this process succeeds for minimum angle bounds up to 25.65 degrees on planar

29

Chapter 3 Integer Coordinates Delaunay Refinement

domains with boundary angles at least 60� [Shewchuk 1997, Section 3.4.2]. More advanced
versions of this procedure can achieve better angle bounds, e.g. [Rand 2011], but here we restrict
our attention to the basic algorithm for simplicity.

Figure 3.10: Triangles in Delaunay meshes have
empty circumdisks, and thus well-defined cir-
cumcenters (le�). When necessary, we locate
a triangle's circumcenter by walking outwards
from its barycenter (right).

There are two difficulties in adapting this al-
gorithm to the intrinsic setting: locating circum-
centers and computing (geodesic) distances. As
mentioned earlier, intrinsic Delaunay triangula-
tions obey the empty circumcircle property; hence
each triangle has an intrinsically-flat circumdisk
with a well-defined center (Figure 3.10, left). So
long as this center corresponds to a point on the
surface, it can be found by walking from the tri-
angle’s barycenter (Figure 3.10, right). In practice,
we compute triangle89:’s circumcenter in homoge-
neous (i.e., unnormalized) barycentric coordinates
Ê8 via the following formula [Schindler & Chen
2012, Section 2.3]:

Ê8 := � 2
9:¹�

2
89̧ � 2

:8 � � 2
9:º• (3.10)

and then normalize to obtain barycentric coordinates

E8 := Ê8
Ê8̧ Ê9̧ Ê:

” (3.11)

To locate the circumcenter on the surface, we then evaluate the exponential map (Section 2.3.2)
starting at the barycenter F8 = F 9 = F : = 1•3, along the vectorE� F . If we hit a boundary
edge 89while tracing out this path, then the circumcenter is not contained in the surface, so
we split 89at its midpoint and flip to Delaunay. We must then remove all inserted interior
vertices within a geodesic ball of radius �89•2 centered at the inserted point. Computing geodesic
distance on a surface mesh is nontrivial, but Xia [2013, Corollary 1] shows that on a Delaunay
triangulation any vertex inside a geodesic ball of radius Awill also be inside the Dijkstra ball of
radius 2A(i.e. points whose distance along the edge graph are at most 2A). We hence remove
all interior inserted vertices within a Dijkstra distance of �89. While Xia considers only the
planar setting, their proof (which is based on triangle strips) applies without modification to
intrinsic Delaunay triangulations of surfaces. Observe also that, as in the planar case, Delaunay
refinement only ever removes previously-inserted vertices. Hence, as assumed in Section 3.5.2,
the original extrinsic vertex set V1 is still preserved.

60On meshes with narrow cone vertices or boundary angles, it may be impossible
to find any triangulation satisfying a given angle bound. In such cases, we do not
insert circumcenters of intrinsic triangles incident on exactly one narrow vertex, or
are entirely contained in a triangle of T1 incident on a narrow vertex, and ignore such
triangles when computing the minimum corner angle of the output mesh. While the
final output may violate the angle bound, violations occur only near narrow vertices.
In analogy with the planar case, we set 60� as the minimum allowed angle sum (see
inset); in practice the vast majority of meshes obey this constraint at all vertices
(97.2% of Thingi10k), and we can obtain high-quality triangulations even on those which do not.

30

Delaunay Refinement Chapter 3 Integer Coordinates

Removing Extra Vertices When Chew’s second algorithm splits an edge, it removes all
inserted circumcenters within a geodesic ball centered at the edge’s midpoint. These vertices
must be removed, but it is okay to removes additional interior inserted vertices. Shewchuk [1997,
Section 3.4.2] observes that the algorithm can only perform finitely many edge splits. As long as
one removes all interior inserted vertices within the geodesic ball—and never removes vertices
along the boundary—the algorithm will still perform only finitely many edge splits. Hence, it
must terminate as usual following the final edge split, even if one removes extra circumcenters
during edge splits.

3.6.1 Refinement Results

As a stress test, we successfully compute an intrinsic Delaunay refinement and associated
subdivision for all manifold meshes in the Thingi10k dataset of Zhou & Jacobson [2016]; in turn,
these high-quality intrinsic triangulations allow users compute reliable and highly accurate
solutions to partial differential equations even on extremely low-quality meshes. In particular, we
usedMeshLab to convert each mesh to the PLY file format [Cignoni et al. 2008], resulting in 7696
valid manifold meshes. We begin by mollifying each mesh to a tolerance of 10�5 (Section 3.7).
For each model we compute the intrinsic Delaunay triangulation (Section 2.3.3), as well as an
intrinsic Delaunay refinement (Section 3.6) with a 25� angle bound. We verify that the algorithms
terminate with the expected conditions. Additionally, we successfully extract an explicit mesh
of the common subdivision in both cases, except for 1 model in the case of refinement whose
common subdivision contains around 30 million vertices (Figure 3.12, left).

signposts
[Sharp+ 2019]

integer
coordinates

common
subdivision

Figure 3.11: Signposts may fail to re-
cover the common subdivision on near-
degenerate inputs. By contrast, integer
coordinates always yield a valid com-
mon subdivision.

We compare against the explicit overlay representa-
tion of Fisher et al. [2006] and the signpost representation
of Sharp et al. [2019] (Table 3.1). The overlay represen-
tation similarly offers a guarantee of valid connectivity,
but does not provide a constant-time edge flip operation
(like normal coordinates do). More importantly it does
not support operations beyond edge flips and thus cannot
perform Delaunay refinement. Signposts support a wide
range of operations, but may not successfully recover the
common subdivision on degenerate inputs (Figure 3.11).
The statistic reported here differs from the result in Sharp
et al. [2019], because no preprocessing of meshes is per-

Method

Intrinsic
Delaunay

Triangulation

Intrinsic
Delaunay

Re�nement

Explicit Overlay 100 % not supported
Signpost Tracing 96.0 % 69.1 %

Integer Coordinates 100 % 100 %

Table 3.1: Success rate of integer coor-
dinates compared to other approaches
on the Thingi10k dataset. We construct
a Delaunay triangulation and Delaunay
refinement on each model, and attempt
to recover the connectivity of the com-
mon subdivision.

31

Chapter 3 Integer Coordinates Delaunay Refinement

Figure 3.12: We fail to compute an explicit mesh of the common subdivision following Delaunay refine-
ment on one Thingi10k model (le�). Its common subdivision would contain 34 million vertices and our
program runs out of memory. We succeed on a nearly identical model (right), whose common subdivision
contains merely 27 million vertices.

formed. For refinement Sharp et al. [2019] do not treat the boundary case, so we compare only
on models without boundary.

Performance and Complexity Our data structure is able to compute Delaunay refinements
for complex meshes in seconds8. For example, computing the Delaunay refinement in Figure 15
of Gillespie et al. [2021a] took 0.2s on a mesh with 3000 vertices, and the Delaunay refinement in
Figure 16 of the same paper took 0.6s on a mesh with 10,000 vertices. Because we lazily recover
intersection geometry from our integer coordinates when inserting vertices, routines such as
Delaunay refinement which perform many insertions may become moderately expensive on
large near-degenerate inputs. For instance we take 4 minutes to perform Delaunay refinement on
719791 (Figure 3.12, left) whereas signposts take only 1.5 minutes—but on such meshes signposts
generally fail to compute a valid common subdivision.

Our data structure is carefully constructed to ensure that edge flips can be performed in
constant time; each edge flip simply amounts to a few arithmetic operations. Removing a
vertex of degree 3 takes time $ ¹3º, since one must perform $ ¹3º edge flips before removing the
resulting degree-3 vertex. On the other hand, inserting a new vertex into face 89:of T2 requires
tracing geodesics for each edge of T1 which intersects face 89:, and takes time proportional to
the number of intersections between those geodesics and the edges of T2.

Similarly, the time and memory cost of computing the common subdivision scales linearly
with the number of intersections between edges of T1 and edges of T2—or equivalently, with
the size of the common subdivision. For most meshes, this does not pose an issue, but on one
model (depicted in Figure 3.12, left) we ran out of memory while trying to extract the common
subdivision. In such cases, it may be helpful to simplify the input mesh before running intrinsic
Delaunay refinement (Chapter 5).

8Timings are measured on a single core of an Intel i9-9980XE with 32 GB of RAM.

32

	Introduction
	Background & Related Work
	Notation & Conventions
	Manifolds
	Smooth Structure
	Riemannian Structure
	Embeddings

	Polyhedral Surfaces
	Triangulations
	Polyhedral Geometry
	Retriangulation
	Polyhedral Embeddings

	Integer Coordinates
	Correspondence Data
	Normal Coordinates
	Roundabouts

	Tracing Edges
	Topological Tracing
	Recovering Geodesics

	Common Subdivision
	Flipping to a Given Triangulation
	Modifying the Vertex Set
	Vertex Insertion
	Flat Vertex Removal

	Delaunay Refinement
	Refinement Results
	Proof of Correctness on Manifold Meshes without Boundary

	Robust Implementation

	Surface Parameterization
	Discrete Conformal Equivalence
	Discrete Uniformization
	Working with Hyperbolic Polyhedra

	Correspondence
	Integer Coordinates for Ideal Hyperbolic Polyhedra
	Common Subdivision of Three Triangulations
	Interpolation

	Planar Parameterization
	Variational Formulation
	Energy Evaluation
	Optimization
	Surfaces with Boundary
	Planar Layout

	Spherical Parameterization
	Modified Delaunay Flips
	Spherical Variational Principle
	Constraints
	Optimization
	Spherical Layout
	Spherical Interpolation

	Parameterization Results
	Planar Parameterization Results
	Spherical Parameterization Results
	Performance & Complexity

	Surface Simplification
	Intrinsic Vertex Removal
	Vertex Flattening
	Flat Vertex Removal

	Correspondence Tracking
	Mapping Points
	Mapping Edges
	Mapping Functions

	Measuring Distortion
	Flat Error Metric
	Intrinsic Curvature Error Metric

	Simplification Algorithm
	Simplification Results
	Comparison with Extrinsic Methods
	Geometric Algorithms
	Performance & Complexity

	Open Questions
	Bibliography
	A Brief Introduction to Hyperbolic Geometry
	Models of Hyperbolic Geometry
	Ideal Polyhedra
	Euclidean-Ideal Correspondence
	Ptolemy Flip
	Ideal Delaunay Triangulations

	Light Cone Formulas
	Vertex Scaling and Projective Interpolation
	Edge Flips
	Piecewise-Projective Interpolation
	Discrete Uniformization: Hyperboloid Model POV
	Layout in the Light Cone I: Placing the First Triangle
	Layout in the Light Cone II: Placing the Next Triangle

