
Chaining For Flexible And High-Performance
Key-Value Systems

Amar Phanishayee
CMU-CS--
September 2012

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

esis Committee:
David G. Andersen, Chair

Garth A. Gibson
Timothy Roscoe, ETH Zurich

Srinivasan Seshan

Submitted in partial fulĕllment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2012 Amar Phanishayee

is researchwas sponsored by theNational Science Foundationunder grant numbersCNS0546551, CNS0716287,
and CCF0964474; by the Defense Advanced Research Projects Agency under grant number HR00110710025;
by an IBM Ph.D. Fellowship award; and by gis from Network Appliance, Intel, and Google.

e views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. gov-
ernment or any other entity.

Keywords: Key-Value Systems, Replication Protocols, Data Consistency, Flash

For K. Shantha (Amma) and S.D. Phanishayee (Appa):
my most inĘuential teachers,
inspirational role models,

and my best friends.

And for Laura:
my constant source of enthusiasm, creativity, and love.

: astA� mA sdgmy।
tmsA� mA >yA�Etg
my।
m� (yA�mA
 am� t\ gmy।
: fAE�t fAE�t fAE�t॥

From ignorance, lead me to truth; From darkness, to light; From death, to immortality.
Let there be peace. AUM

(Brhadāranyaka Upanishad 1.3.28)

vi

Abstract

Distributed key-value (KV) systems are a critical part of the infrastructure at many large

sites such as Amazon, Facebook, Google, and Twitter. e ĕrst research question this dis-

sertation addresses is: How should we design a cluster-based key-value store that is fault toler-

ant, achieves high performance and availability, and offers strong data consistency? We present

a new replication protocol, Ouroboros, which extends chain-based replication to allow fast,

non-blocking node additions to any part of the replica chain, and guarantees provably strong

data consistency. We use Ouroboros to implement a distributed key-value system, FAWN-KV,

designed with the goal of supporting the three key properties of fault tolerance, high perfor-

mance, and generality. We present a formal proof of correctness of Ouroboros, and evaluate

FAWN-KV on clusters with Flash storage.

FAWN-KV is, still, only a speciĕc KV solution that offers strong data consistency and is

optimized for clusters that have storage devices with slow randomwrites. e current diversity

in hardware and application requirements have resulted in a plethora of KV systems today, with

no one system meeting the needs of all applications. e second, and ĕnal, research question

this dissertation addresses is therefore: Is it possible for a KV architecture to be easily conĕgured

to support many points along the KV system design continuum? We present a generalization of

chain-based replication, Ouroboros+, which extends Ouroboros to effectively support a wide

range of application requirements by (a) selecting from different update protocols between

replicas, and, (b) selecting a query node in a replica chain. We describe Flex-KV, which uses

Ouroboros+ with different datastores that expose a common storage interface to form hetero-

geneous replica chains. Flex-KV can support DRAM, Flash, and disk-based storage; can act as

an unreliable cache or a durable store; and can offer strong or weak data consistency. e value

of such a system goes beyond ease-of-use: We enable new choices for system designs that offer

some applications a better balance of performance and cost than was previously available.

viii

Acknowledgments

I am forever indebted to my advisor, David Andersen, who was the perfect mentor through

my six years of graduate school at CMU. Dave’s creativity, emphasis on intuition & visual

aids, and his contagious excitement to tackle interesting research problems drew me to him

even before accepting to join the Ph.D. program at Carnegie Mellon. Dave has been an

inspirational teacher, always leading by example and never sermonizing. ere are many

things I learnt from Dave: the art of systems building; the rigorous science of evaluating

systems; and the cra of precise, yet simple and concise, technical communication. I also

learnt from Dave the fearlessness and persistence of questioning to tease out the core of a

research idea. Dave was supportive of everything I did, both academically and otherwise,

at CMU. He also got me all the resources I might have needed without batting an eyelid.

Dave has been central in improving the technical quality of every part of this thesis. For

these, and much more, I express my utmost gratitude to him.

Garth Gibson, Srinivasan Seshan, and Timothy Roscoe were kind enough to serve on

my dissertation committee and to guideme along theway all these years. Garth’s propensity

to identify important research problems has le me in a state bordering reverential respect

for his intellect; for me, Incast will always serve as a reminder of Garth’s vision. Similarly,

ix

I have always been in awe of Srini’s unique ability to be a couple of reasoning steps ahead

of everyone else in the room, of asking clear questions that get straight to the point, and of

his mastery of popular networking protocols like TCP (and all its variants). Finally, Mothy

was kind enough to host me at ETH Zurich for six months. I learnt, and reasoned, more

about research operating systems from Mothy than I ever had before; I don’t think I will

ever forget our discussion on naming. Garth, Srini, and Mothy have always been kind and

friendly to me, and I thank them.

I also owe a great deal of gratitude to Ken Birman, my mentor at Cornell; I would not

have been in graduate school without Ken’s guidance. Ken encouraged and funded me–a

masters student with no research experience–to help design and build the next generation

of reliablemulticast protocols. It was always a thrill to hear Ken’s vision of clustered systems.

His ability to constantly generate new ideas still amazesme. I was also equally struck by how

easily approachable Ken was, and by how well he treated all his students (as an extended

family). Paul Francis, P. Venkat Rangan, and Sin-Mei Tsai also encouraged me to apply to

grad school; I thank them for their kindness.

Mahesh Balakrishnan initiated me into graduate school life, but more importantly, he

taught me the intricacies of systems research and paper writing. It was refreshing to be

aroundMahesh: always creative, always funny. Pranam Pitamah. Incidentally, Mahesh was

also my host when I ĕrst landed at Cornell and was looking for a place to live; hopefully, I

repaid him later by spotting a “burglar” entering his house at midnight.

My work as a Ph.D. student was made possible, and constantly enjoyable, due to the

collaboration with one of my closest friends, Vijay Vasudevan; we spent a lot of time to-

gether thinking about research problems, arguing about impact, spending sleepless nights

x

writing class reports and papers on Incast & FAWN, hacking large code bases, running ex-

periments, and, needless to say, gooĕng off. Without Vijay, grad school would have been

nowhere close to this much fun.

I also had loads of fun working on Ditto with Fahad Dogar and Olatunji Ruwase. I

clearly remember our euphoria when Ditto reconstructed chunks of data using overheard

TCP streams. I also remember gawking at Zen master TJ’s crazy gdb skills.

Building the FAWN cluster was no mean feat; apart from hacking on FAWN-KV, Jason

Franklin was my partner in crime for many long days that included splitting and soldering

wimpy power cables, conĕguring PXE boot for a non-standard hardware conĕguration,

and visiting the CMU School of Art’s Woodshop to get help in building a FAWN rack.

Kanat Tangwongsan helped me get into my office aer I had locked myself out on my

ĕrst weekend at CMU. But his kindness did not stop there; Kanat’s help was critical in help-

ing prove the correctness of Ouroboros.

I considermyself very fortunate to have worked with some incredibly bright student co-

authors and collaborators at CMU: Elie Krevat, Himabindu Pucha, Hiral Shah, Lawrence

Tan, Jack Ferris, AnkurGoyal, David Sontag, andYang Zhang. You guys rock. So do, for the

lack of a better group name, fellow fawn-dev hackers: Bin Fan, Iulian Moraru, Hyeontaek

Lim.

I also shared office space with some super smart students, working in areas other than

systems at CMU. Juri Leskovec, Anna Goldenberg, Runting Shi, Adam Wierman, David

McWherter, Deepak Garg, Michael De Rosa, and Henry DeYoung: each one of you taught

me something new and useful.

xi

A shout-out to my in-school-by-default fellow students at CMU. Vyas Sekar, Varun

Gupta, Avijit Kumar, Gaurav Veda, Hetunandan Kamisetty, and Swapnil Patil: you guys

inspire me by working and playing hard. Milo Polte, Jiri Simsa, Stephen Oney, Jim Mc-

Cann, Ronit Slyper: our social interactions have enriched my CMU experience.

Being a doctoral student at CMU has been a superlative experience. e Reasonable

Person Principle, this department’s Prime Directive, is incredibly effective. At times, it is

difficult to tell the difference between students and faculty; students face no bureaucracy,

and are offered the freedom and the resources to pursue their creative dreams. e people

who make the magic happen are part of an elite group of superheroes; Deborah Cavlovich,

Sharon Burks, Angela Miller, Karen Lindenfelser, Joan Digney, Jennifer Landefeld, and

Kathy McNiff: I can’t thanks you enough for what you have done for me, not only when I

yelled out for help, but especially in those occasions when I was oblivious to the fact that

you were working hard to ensure that we were comfortable and could concentrate on our

work.

e Parallel Data Lab (PDL) taught me the importance of practicing & polishing tech-

nical talks. Greg Ganger, PDL’s fearless leader, taught me two of the most important lessons

in technical communication: (a) Early graph; and (b) ‘Higher is better & Red is us’. PDL,

also, gave me the opportunity to interact with industry experts at least once a year. It was

in one such meeting that John Wilkes introduced me to Kent Beck’s, simple yet compelling,

How to Get a Paper Accepted at OOPSLA. I have beneĕtted greatly by my many interactions

with CMU’s faculty, including those outside the PDL. Alyosha Efros, taught me, by exam-

ple, to stay simple and work hard. He also challenged me to make presentations on systems

research fun by using only graphics and animations. Do you really need to guess his ĕeld

xii

of research? Mor Harchol-Balter and Kayvon Fatahalian gave me invaluable feedback on

my job application material and job talk.

My research was supported by the National Science Foundation, CMU, and an IBM

Ph.D. Fellowship award. Many thanks to all for making my research possible.

My parents, Shantha and S. D. Phanishayee, are my most inĘuential teachers, and the

primary reason I have made it this far. ey are inspirational role models, always prodding

me to “do something earth shattering” and to “change the world for the better”. eir sup-

port and unconditional love has helped me weather many a storm. Laura is my constant

source of enthusiasm, creativity, and love; all this while plotting to take over the world with

compelling human-like animated minions.

ank you everyone, named and unnamed, who helped me get here.

xiii

xiv

Contents

1 Introduction 1

2 FAWN-KV:

The FAWN Key-Value System 7

2.1 Design Overview Of The FAWN-KV System 9

2.2 Consistent Hashing: Mapping key ranges to nodes 11

2.3 Replication and Consistency . 14

2.4 Support for multiple front ends . 18

2.5 Node Joins In Ouroboros . 19

2.6 Node Removals In Ouroboros . 27

3 Ouroboros Correctness Proof 33

3.1 Ouroboros Guarantees . 33

3.2 Assumptions . 34

xv

3.3 Proof Of Correctness . 35

4 Empirical Evaluation Of FAWN-KV 57

4.1 FAWN-KV System Benchmarks . 58

4.2 Impact of Ring Membership Changes 61

5 Flex-KV 67

5.1 Motivation . 68

5.2 KV Design Space . 69

5.2.1 New options in the design space: A Memory-efficient Alternative 70

5.3 Flex-KV – A Flexible KV System . 73

6 Flex-KV Evaluation 79

6.1 Key-Value systems as caches . 79

6.2 Key-Value systems as stores . 81

6.3 Flex-KV Performance Evaluation . 83

7 Related Work 91

7.1 Flash in Databases and Filesystems 91

7.2 High-throughput Storage and Analysis 92

7.3 Distributed Hash Tables . 93

7.4 Examples of systems designed to provide flexibility to end users . . . 94

xvi

7.5 Logging in Distributed Databases. 95

7.6 Cluster-based “NoSQL” systems. 96

8 Conclusion 97

Bibliography 101

xvii

xviii

List of Figures

2.1 FAWN-KV Architecture. 9

2.2 FAWN-KV Interfaces—Front-ends route requests and cache responses.

Back-ends use FAWN-DS to store key-value pairs. 10

2.3 Consistent Hashing with 5 physical nodes and 2 virtual IDs each. . . 13

2.4 A new node C added to the cluster is represented by two virtual nodes

C1 and C2. The new virtual node C1 when added to the ring results

in movement of data for the new R3 range from its successor D1. . . 14

2.5 Non-Overlapping Chains on the Ring. 15

2.6 Overlapping Chains in the Ring – Each node in the consistent hashing

ring is part of R = 3 chains. 16

2.7 Lifecycle of a put with chain replication—puts go to the head and are

propagated through the chain. Gets go directly to the tail. 17

2.8 Gets go directly to the tail of the chain as in Chain Replication. . . . 17

2.9 Phases of the join protocol on node arrival. 19

xix

2.10 Phase 1 of Join: Datastore pre-copy. For every chain it is a part of,

a joining node, C1 in this case, has the datastore streamed to it from

the tails of those ranges. 21

2.11 Phase 2 of Join: Flush. The Flush protocol ensures that a new node

can join R chains at appropriate locations while maintaining strong

consistency, and does so with minimal blocking. The Flush message

for the case where the new node joins as the head, Range R3 in the

example above, also has a flag indicating that D1, E1, and F1 can

split the range from B1–D1 into B1–C1 and C1–D1. 22

2.12 When Flush is in progress, puts generated after the flush message was

sent to the head of the chain, also go through the new node C1. These

puts are stored at a temporary datastore for each range at C1, and

can be applied (appended) to the datastore once the log flush for these

ranges complete. 23

2.13 Phase 3 of Join: Truncate restores the replication factor back to R by

discarding the tail replica as a node in the replica chain. 25

2.14 The detailed join protocol showing the order of messages exchanged

between the Manager and the joining node. 26

2.15 A simplified view of the process of restoring the replication factor of

a chain when a node fails. 27

xx

2.16 When a node leaves, all chains that it was a part of are repaired

to route around the failure. This process also ensures that pending

updates (due to the node failure) are propagated down the chain, and

pending acks are propagated up the chain aiding in garbage collection. 28

2.17 To restore the replication factor, a node departure results in new tail

nodes for all chains it was part of. The datastore for these ranges is

streamed to these new tails. 29

2.18 The flush protocol ensures all updates sent before the flush message

reached the head of the chains are propagated to new tail nodes. . . . 30

2.19 During flush, interim tails serve get requests. Puts issued after the

flush message reached the head of the chains are propagated to the new

tail, but these messages are stored in a temporary store corresponding

to these ranges. Once log flush is complete, the temporary store can

be merged into the flushed store at the new tails. 31

3.1 Replication factor state machine. 37

3.2 Chain invariant cases. 38

3.3 History at nodes y and z at time t. 40

3.4 If the tail node has not changed since the last UPDATE ACK, the

QUERY RESPONSE returns the value corresponding to the LSU . . . 44

3.5 Cases when tail node changes. 46

xxi

4.1 Query throughput on 21-node FAWN-KV system for 1 KB and 256 B

entry sizes. 58

4.2 Overall throughput as the number of back-end nodes increases from

10 to 85 under different access patterns such as uniformly random,

Zipf, and Zipf with a front-end cache 61

4.3 Get query rates during node join for max load (top) and low load

(bottom). 62

4.4 Query latency CDF for normal and split workloads. 63

5.1 Disk backed replicas offer better tradeoffs between memory overhead

and performance availability compared to options available today. . . 72

5.2 Three options for propagating updates through a chain of replicas. . . 74

5.3 Flex-KV supports many different key-value system configurations us-

ing four simple knobs. 76

6.1 Memcached query throughput at a single server instance as we vary

the number of clients threads issuing requests. 84

6.2 Memcached query throughput at a single server instance as we vary

the number of server threads. We use a single client with 50 concurrent

threads for this test. 85

xxii

6.3 Memcached query throughput at a single server instance as we vary

the number of clients issuing requests. Individual clients issue 50 out-

standing query requests. 85

6.4 Median query latencies when using Flex-KV in the “M” configuration

on the Core2 cluster. 87

6.5 Median and 99%-ile query latencies when using Flex-KV in the “M”

configuration on the Core2 cluster. 88

6.6 Memory overhead, put latency, and recovery time for different key-

value configurations when using Flex-KV. The size of the points in-

dicate memory overhead: M–M uses twice as much memory as its

unreplicated counterpart. 89

xxiii

xxiv

List of Tables

1.1 Today’s KV space consists of many point solutions. This table shows

some examples of existing KV systems. 3

1.2 A broad outline for this thesis document. 5

4.1 Specifications of front-end and backend nodes 60

6.1 KV configurations with a backing database providing durability. We

show configurations with one secondary replica, but the characteristics

hold true for similar configurations with n secondary replicas. 80

6.2 Comparison of different KV configurations without a backing database,

all supported by Flex-KV. 82

6.3 Comparison of specifications of individual backend nodes of 3 different

test clusters that Flex-KV runs on. 86

6.4 Queries/second for two different Flex-KV configurations on 3 hard-

ware platforms. 89

xxv

xxvi

List ofeorems

3.1 Theorem (Query Guarantee) . 33

3.2 Theorem (Update Guarantee) . 33

3.3 Theorem (Replication Guarantee) . 34

3.4 Definition (Successful Update) . 35

3.5 Definition (Segment (π)) . 35

3.6 Definition (Replica Chain) . 35

3.7 Definition (<t) . 35

3.8 Invariant (Tailk) . 36

3.9 Invariant (Tail’s successor) . 36

3.10 Definition (Backend Node State) . 36

xxvii

3.11 Definition (History of updates (H)) 36

3.12 Invariant (LA <= LU) . 36

3.13 Invariant (Tail Has No Unacknowledged Updates) 36

3.14 Invariant (Chain Property) . 37

3.15 Definition (Last Successful Update (LSU)) 43

3.16 Lemma (Update ACK) . 43

3.17 Lemma (Query Response) . 43

xxviii

List of listings

1 Backend Event Loop. 52

2 Event Loop at Master Node. 55

xxix

xxx

Chapter 1

Introduction

Systems that deal with large amounts of data have traditionally used relational database

management systems (RDBMS) [30] to store structured data and to easily access and ma-

nipulate this data using high-level languages like SQL [26]. Recently, however, both large

and small web services havemoved towards simpler solutions. Tomeet their needs for cost-

effective high performance data access and analytics, many sites use simpler data model

“NoSQL” systems. ese systems store and retrieve data only by a primary key, do not pro-

vide the combined ACID guarantees (Atomicity, Consistency, Isolation, Durability) [45,

96], and do not require the complex querying and management functionality offered by an

RDBMS [39].

High-performance distributed key-value (KV) storage systems—one popular type of

NoSQL solution—are growing in both size and importance; they now are critical parts of

major Internet services such as Amazon (Dynamo [39]), LinkedIn (Voldemort [85]), and

Twitter & Facebook (memcached[72]). e workloads these systems support share sev-

1

eral characteristics [8, 10, 18]: they are I/O, not computation, intensive, requiring random

access over tens of terabytes to petabytes of datasets; they are massively parallel, with thou-

sands of concurrent, mostly-independent operations; their high load requires large clus-

ters consisting of tens of thousands of individual servers to support them; and the size of

objects stored is typically small, e.g., 1 KB values for thumbnail images, 100s of bytes for

wall posts, Twitter messages, etc. Unfortunately, large clusters have more frequent fail-

ures [44], and a challenge faced by many large scale distributed KV systems is maintaining

high performance-availability [42, 86]: they must continue to offer high performance even

in the presence of failures.

e ĕrst research question this dissertation addresses is: How should we design a cluster-

based key-value store that is fault tolerant, achieves high performance and availability, and

offers strong data consistency? Strong consistency asserts that (a) operations to query and

update individual key-value pairs are executed in some sequential order, and, (b) the effects

of update operations are necessarily reflected in results returned by subsequent query opera-

tions [4, 99, 102, 104]. We presentOuroboros Ƭ, a new generalization of chain-based replica-

tion for fault tolerance that offers provably strong consistency (per-key linearizability [53]).

Ouroboros is designed to allow node additions to any part of the replica chain, and to min-

imize blocking during node additions and deletions for high performance. Ouroboros uses

log-based replication for high performance on storage devices with slow randomwrite per-

formance, such as Flash. Chapter 3 presents a formal proof of correctness ofOuroboros. We

describe Ouroboros in the context of the FAWN-KV, a newKV system that uses Ouroboros

on a consistent hashing ring. We use the FAWN (“Fast Array of Wimpy Nodes”) hardware

ƬOuroboros is an ancient symbol depicting a serpent or dragon eating its own tail. [3]

2

Conĕguration Hardware Application Needs
Mem Disk Flash Durability Fault Tolerance Consistency

Cache Store Strong Eventual or Weak

memcached • •

repcached • • • •

memcachedb • •

Dynamo • • • •

Hibari • • • •

Table 1.1: Today’s KV space consists of many point solutions. is table shows some ex-
amples of existing KV systems.

architecture as a motivating hardware conĕguration to evaluate FAWN-KV. We ĕnd that

Ouroboros and FAWN-KV together achieve our goals of high performance, availability,

and consistency.

FAWN-KV is, still, only a speciĕc KV solution designed to offer strong data consis-

tency and optimized for clusters that have storage devices with slow random write per-

formance. e current diversity in storage technology, cluster hardware, and application

requirements have resulted in a plethora of key-value systems to choose from today, with

no one system meeting the needs of all applications. Consider ĕrst the diversity in stor-

age technology: Amazon uses disk-based KV stores [39] and has recently started offering

a Flash-based alternative [16]; Google maintains its entire index in tens to hundreds of

terabytes of DRAM [37]; and Facebook caches over 90% of their data in massive farms of

3

memory caches with mean cache hit rates of around 90% [18, 22]. ese storage choices

offer dramatically different tradeoffs between sequential and random read & write perfor-

mance, durability, and power consumption. Next, there is diversity in cluster hardware;

many applications use conventional, “brawny” platforms to provide computational head-

room to contain soware development costs [54]; others may use racks of “wimpy node”

hardware such as that becoming available from startups like SeaMicro and Calxeda to min-

imize their energy consumption [94]. Finally, there are also trade-offs to consider when it

comes to application requirements: some applications or operations demand synchronous,

durable replication for high availability; for others, the cost of such safety is orders of mag-

nitude too expensive, making it impossible to meet latency or throughput requirements.

ese system and application requirements sit on amulti-dimensional continuum, with

the breadth of NoSQL systems testifying to the value of ĕnding a design and implementa-

tion well matched to one’s requirements. Table 1.1 shows some examples of existing KV

systems and the hardware & application requirements they target. Unfortunately, this de-

mand places system designers in a bind: Do they run multiple stores, each operating at

maximum efficiency, or do they optimize instead for system complexity by avoiding the

need for multiple codebases, vendors, and so on? We argue that placing systems designers

in this bind is unreasonable and unnecessary.

e second, and ĕnal, research question this dissertation addresses is therefore: Is it

possible for a key-value architecture to be easily conĕgured to support many points along the

KV system design continuum, from weakly-consistent, non-replicated caches [72] to strongly-

consistent, durable disk-backed key-value stores [48]? We present a generalization of chain-

based replication, Ouroboros+, which extends Ouroboros to effectively support a wide

4

Contents Location

FAWN-KV – the design and implementation Chapter 2
of a high-performance strongly-consistent cluster key-value store

Proof of correctness of the Ouroboros protocols described in § 2 Chapter 3

Empirical evaluation of FAWN-KV Chapter 4

Flex-KV – the design and evaluation of a Chapter 5
Ęexible key-value system Chapter 6

Related Work Chapter 7

Table 1.2: A broad outline for this thesis document.

range of application requirements by (a) selecting from different update mechanisms be-

tween replicas, and, (b) selecting a query node in a replica chain. We describe Flex-KV,

a Ęexible key-value storage system, which uses Ouroboros+ with different datastores that

expose a common storage interface to form homogeneous or heterogeneous replica chains.

Flex-KV can support DRAM, Flash, and disk-based storage, can act as an unreliable cache

or a durable store, and operate consistently or inconsistently. e value of such a system

goes beyond ease-of-use: While exploring these dimensions of durability, consistency, and

availability, we ĕnd new choices for system designs, such as a cache-consistent memcached,

that offer some applications a better balance of performance and cost than was previously

available.

5

6

Chapter 2

FAWN-KV:

e FAWNKey-Value System

We begin our search for a key-value storage system that works well on a variety of cluster

hardware choices and sizes by designing the FAWN-KV distributed key-value storage sys-

temƬ. FAWN-KV is designed to work on cluster hardware ranging from small clusters with

fast processors and large disk-based storage per node, to large clusters with slow proces-

sors and smaller Flash based storage per node. FAWN-KV is designed with the following

four principles, with the goal of supporting the three key properties of fault tolerance, high

performance, and generality:

1. Sequential writes for high performance and generality. Appending sequentially to stor-

age can support the highest throughput available on a variety of storage devices, from

ƬIn contrast, the focus of the thesis work of Vijay Vasudevan, who also worked on FAWN, is on the energy
efficiency and on batching work to effectively use newer SSD storage devices.

7

memory, to Flash, to disk drives, and even older technologies such as tape drives or

emerging technologies such as phase-changememory. Small randomwrites perform

poorly on many of these devices and hence should be avoided. All update operations

in FAWN-KV are append-only.

2. Replication for fault tolerance: FAWN-KV tolerates node failures by using replica-

tion [20, 93]. But replication brings with it the issue of data consistency. For simplic-

ity, FAWN-KV supports only the “highest common denominator” of strong consis-

tency ƭ; Section 5 addresses support for Ęexible consistency models.

3. Protocols with minimal blocking for high performance under churn: As large clusters

have more frequent failures, a cluster-based key-value system must handle churn in

the system. FAWN-KVuses a new variant of chain replication on a consistent hashing

ring, called Ouroboros. Ouroboros is designed to minimize blocking during node

additions and deletions while maintaining provably strong data consistency. Fur-

thermore, node additions and removals involve splitting/merging and transferring

datastores; these operations avoid time consuming random writes to the datastore

and instead use only single-pass sequential scans and sequential writes.

4. Load balancing for high performance: FAWN-KV partitions data storage and request

handling responsibilities among backend nodes. FAWN-KV also limits the global

work done in the system on a node addition and removal, while avoiding dispropor-

tionately increasing the load on a single node.

ƭWe formally deĕne and prove the guarantees offered by FAWN-KV in Section 3

8

E2

B2

F2

A2

D2 F1

E1

D1

A1

B1

FE1

FE2

FE3

C1

C2

C3

C4

C5

C6

Clients
Front-ends

with
Membership Cache

Membership
Managers

Backend
Nodes

Data (Request, Response)
Membership Messages

Figure 2.1: FAWN-KV Architecture.

In the following sections we describe the design, implementation, and evaluation of

FAWN-KV using FAWN [17] as a motivating hardware conĕguration. FAWN-KV not only

targets Flash-based clusters, but is generic enough to be applied to other cluster designs,

such as those with hard disk drives; FAWN is only one design point, optimized for energy

efficiency, in that space. We provide a brief overview of the system, followed by a detailed

description of the FAWN-KV distributed system, including partitoning, replication, and

consistency in the face of node arrivals and failures.

2.1 Design Overview Ofe FAWN-KV System

Figure 2.1 depicts an overview of the entire FAWN system. Client requests enter the sys-

tem at one of several front-ends. FAWN-KV balances load by partitioning data storage and

request handling responsibilities among a large number of back-end storage nodes. e

9

front-end nodes forward the request to the back-end FAWN-KV node responsible for serv-

ing that particular key. e back-end node serves the request from its FAWN-DS datastore

and returns the result to the front-end (which in turn replies to the client). Writes proceed

similarly.

FAWNback-endnodes use Flash storage. Flash provides fast randomreads (� 1ms) [75,

84], but small random writes on Flash are very expensive [77]. is performance problem

motivates the need for log-structured techniques to write data to Ęash [58, 60, 76, 77, 89].

FAWN-DS is a simple log-structured data store for key-value pairs. e data associated

with each virtual ID is stored on Ęash using FAWN-DS.

Figure 2.2: FAWN-KV Interfaces—Front-ends route requests and cache responses. Back-
ends use FAWN-DS to store key-value pairs.

Figure 2.2 depicts FAWN-KV request processing. Client applications send requests to

front-ends using a standard put/get interface. Clients link against a front-end library and

send requests usingri RPC [15]. Front-ends send the request to the back-end node that

owns the key space for the request. e back-end node, with associated queues and threads

to make parallel use of Flash using a staged execution model similar to SEDA [105, 106],

satisĕes the request using its FAWN-DS and replies to the front-ends.

10

FAWN-KV caches data using a two-level cache hierarchy. Back-end nodes implicitly

cache recently accessed data in their ĕlesystem buffer cache. e FAWN front-end main-

tains a small, high-speed query cache that helps reduce latency and ensures that if the load

becomes skewed to only one or a few keys, those keys are served by a fast cache instead of

all hitting a single back-end node.

2.2 Consistent Hashing: Mapping key ranges to nodes

A typical FAWN cluster will have several front-ends and many back-ends. How should

storage and request processing responsibilities be partitioned among the backend nodes?

If we have a cluster of n back-end nodes (0 to [n− 1]), a naive approach might store the

key-value pair (k, v) on back-end node [h(k) mod n], where h() is a hash function. A

good hash function implies [h(k) mod n] is uniform across 0, . . . , (n−1) for a reasonable

distribution of keys, thus spreading the load evenly across the back-end nodes. eproblem

with this scheme is key redistribution due to a node addition to the cluster: n/(n+1), nearly

all the keys, end-up being remapped affecting all the nodes in the cluster.

Consistent hashing [59], popularized by the Chord Distributed Hash Table [95], solves

this problem. Like the previous scheme, consistent hashing spreads data evenly across the

cluster. But in contrast to the naive scheme described earlier, on a node addition, consistent

hashing requires only the data that resides on that node, a relatively small amount of data,

to be moved there. By using consistent hashing, only K/n keys need to be remapped on

average, where K is the number of keys, and n is the number of back-end nodes.

11

In FAWN-KV the key space is represented as a ring. e large number of back-end

storage nodes are organized into this ring using consistent hashing. As in systems such

as Chord, keys are mapped to the node that follows the key in the ring (its successor). To

balance load and reduce failover times, each physical node joins the ring as a small number

(V) of virtual nodes, each virtual node representing a virtual ID (“VID ”) in the ring space.

Each physical node is thus responsible for V different key ranges. FAWN-KV does not use

DHT routing—instead, front-ends maintain the entire node membership list and directly

forward queries to the back-end node that contains a particular data item.

Each front-end node uses the backend VID membership list and handles queries for a

large contiguous chunk of the key space; in other words, the circular key space is divided

into pie-wedges, each owned by a single front-end. A front-end receiving queries for keys

outside of its range forwards the queries to the appropriate front-end node. is design

either requires clients to be roughly aware of the front-end mapping, or doubles the traf-

ĕc that front-ends must handle, but it permits front ends to cache values without a cache

consistency protocol.

A single manager node is responsible for maintaining the membership and key space

allocations for both the front-ends & back-ends; this node can be replicated using a small

Paxos cluster [23, 55, 63, 112] to mask single management node failures.

When a back-end node joins, it sends its request to the manager node. On receiving

the VIDs it represents from the manager, each of its virtual nodes joins the ring, one VID at

a time. e back-end virtual node identiĕer (and thus, what keys it is responsible for) is a

deterministic function of the back-end node ID. e manager node notiĕes the front-end

nodes of a change in ring membership.

12

e FAWN-KV ring uses a 160-bit circular ID space for VIDs and keys. Virtual IDs are

hashed identiĕers derived from the node’s address. Each VID owns the items for which it is

the item’s successor in the ring space (the node immediately clockwise in the ring). As an

example, consider the cluster depicted in Figure 2.3 with ĕve physical nodes, each of which

has two VIDs. e physical node A appears as VIDs A1 and A2, each with its own 160-bit

identiĕers. VID A1 owns key range R1, VID B1 owns range R2, and so on.

OwnerofRangeR3

RangeR1

RangeR2=(210,220]

RangeR3=(220,255]

E2
A1

B1

D1

E1

F1
D2

A2

F2

B2

Figure 2.3: Consistent Hashing with 5 physical nodes and 2 virtual IDs each.

Consistent hashing provides incremental scalabilitywithout global datamovement: adding

a new VID moves keys only at the successor of the VID being added. For example, in Fig-

ure 2.4 adding a virtual node with identiĕer C1 causes the old R3 range (from 220 to 255)

to be split, making C1 the owner of the new R3 range (from 220 to 235) and D1 the owner

of R4 (from 235 to 255). C1 gets the new R3 range from node D1 that initially owned it.

FAWN-KV uses single-pass sequential scans and sequential writes to datastores to handle

such changes efficiently.

13

Figure 2.4: A new node C added to the cluster is represented by two virtual nodes C1 and
C2. e new virtual node C1 when added to the ring results in movement of data for the
new R3 range from its successor D1.

2.3 Replication and Consistency

FAWN-KV offers a conĕgurable replication factor for fault tolerance. Items are stored at

their successor in the ring space and at the R− 1 following virtual IDs.

FAWN-KV uses a new generalization of chain replication [102], called Ouroboros, to

provide strong consistency on a per-key basis [4, 99, 104]. Updates are sent to the head of

the chain, passed along to each member of the chain via a TCP connection between the

nodes, and queries are sent to the tail of the chain. Traditional chain replication only allows

new nodes to join as tail nodes in a replica chain. Our variant of chain replication allows

node additions, with minimal locking, to any position in a replica chain while ensuring

strong data consistency (per-key linearizability [53]).

One way to implement chain replication on a consistent hashing ring is shown in Fig-

ure 2.5. In this approach each node is part of one chain. e ĕrst important issue to address

in this approach is: how does one support the addition of one physical node? Here, one

14

X

E2

B2

F2

A2

D2 F1

E1

D1

A1

B1

C1

C2

A1''

B1'

B1''

A1'

C1'
C1''

D1''

E1''

F1''D2''

A2''

C2''

F2''

B2''

E2''

D1'

E1'

F1'D2'

A2'

C2'

F2'

B2'

E2'

Figure 2.5: Non-Overlapping Chains on the Ring.

physical node should have a multiple of R virtual nodes. is avoids the naive approach

of having R − 1 other physical nodes join for every new physical node. e next issue to

address is: where do these virtual nodes join in the chain? e naive approach would be to

determine the location of the new virtual node on the ring, and have it join the tail of the

chain at that location. is approach risks increasing the load imbalance in the system; ifN

is the total number of physical nodes, onlyN/R physical nodes are tails and serve queries.

FAWN-KV uses a simple, yet effective technique, to solve this problem. By mapping

chains to the consistent hashing ring, each virtual ID in FAWN-KV is part of R differ-

ent chains: it is the “tail” for one chain, a “mid” node in R − 2 chains, and the “head”

for one. is replica selection strategy is similar to that used in systems like CFS [32, 33],

DHash++ [34], Dynamo [39], and PAST & Pastry [41, 90, 91]. However, none of these

systems use chain based replication and they provide weaker consistency guarantees. Fig-

ure 2.6 depicts a ring with six physical nodes, where each has two virtual IDs (V = 2), using

15

Range R1

Range R2

Range R3

E2
A1

B1

D1

E1

F1
D2

A2

F2

B2

C1

C2

A1 B1 C1

D1B1 C1

D1 E1C1

C1 is tail
for R1

C1 is mid for R2

C1 is head for R3

Figure 2.6: Overlapping Chains in the Ring – Each node in the consistent hashing ring is
part of R = 3 chains.

a replication factor of three (R = 3). In this ĕgure, node C1 is thus the tail for range R1,

mid for range R2, and tail for range R3.

Figure 2.7 shows a put request for an item in range R1. e front-end routes the put

to the key’s successor, VID A1, which is the head of the replica chain for this range. Aer

storing the value in its datastore, A1 forwards this request to B1, which similarly stores

the value and forwards the request to the tail, C1. Aer storing the value, C1 sends the put

response back to the front-end, and sends an acknowledgment back up the chain indicating

that the response was handled properly.

For reliability, nodes buffer put requests until they receive the acknowledgment. Be-

cause puts are written to an append-only log in FAWN-DS and are sent in-order along the

chain, this operation is simple: nodes maintain a pointer to the last unacknowledged put in

their datastore, and increment it when they receive an acknowledgment. By using a purely

log structured datastore, chain replication with FAWN-KV becomes simply a process of

streaming the growing datastore from node to node.

16

A1

B1

C1

Front-end
&

Cache

1. put(key, value, id)

2. put(key, value, id)

3. put(key, value)

4. put

5. put

6a. put_resp(key, id)
6b. put_cb(key, id)

8. put_ack

7. put_ack

Figure 2.7: Lifecycle of a put with chain replication—puts go to the head and are propagated
through the chain. Gets go directly to the tail.

Gets proceed as in chain replication. Figure 2.8 shows a get request for an item in Range

R1—the front-end directly routes the get to the tail of the chain for range R1, node C1,

which responds to the request. Chain replication ensures that any update seen by the tail

has also been applied by other replicas in the chain.

Figure 2.8: Gets go directly to the tail of the chain as in Chain Replication.

17

2.4 Support for multiple front ends

Asmentioned earlier, each front-end node uses the backend VID membership list and han-

dles queries for a large contiguous chunk of the key space; in other words, the circular key

space is divided into pie-wedges, each owned by a single front-end. is permits front ends

to cache values without a cache consistency protocol.

Each back-end replica chain is associated with a monotonically increasing chain-view-

id. Any change to the back-end membership is handled by the manger node appropriately,

and the new membership view, along with the chain-view-id, is communicated to the ap-

propriate back-ends and to all the front-ends. e chain-view-id is incremented only when

the head or a tail of a replica chain changes.

Similarly, any change to the front-end membership is handled by the manger node ap-

propriately, and the new front-end membership view, along with the fe-view-id, is com-

municated to all the front-end and back-end nodes. e combined membership ID, fe-

view-id.chain-view-id, is stamped in all requests sent from the front-ends and all responses

sent by the back-ends. Requests or responses that do not match the local membership ID

are dropped. Also, updates directed at back-end nodes that are not the head, and queries

directed at backend nodes that are not the tail, are dropped.

With multiple front ends, tail nodes wait for an acknowledgment to put responses sent

to the front-end, before propagating their acknowledgment for the put back up the chain.

In the case of a front-end failover, the tail resends all the put responses that were not ac-

knowledged by the previous front-end. is ensures that clients always receive a response

for their put request.

18

2.5 Node Joins In Ouroboros

When a node joins a FAWN-KV ring:

1. e new virtual node causes one key range to split into two.

2. e new virtual node must receive a copy of theR ranges of data it should now hold,

one as a primary and R− 1 as a replica.

3. e front-end must begin treating the new virtual node as a head or tail for requests

in the appropriate key ranges. e replication factor goes up by one (to R + 1).

4. Virtual nodes down the chain may free space used by key ranges they are no longer

responsible for. e replication factor goes down by one and is restored to R.

B1 D1 E1

C1

puts gets responses

Pre-copy

Tail for
Range R2

precopy

B1 D1 E1C1

puts gets responses

Chain insertion, Log Flush

Tail for
Range R2

log flush

Figure 2.9: Phases of the join protocol on node arrival.

e ĕrst step, key range splitting, can occur concurrently with the rest (split and data

transmission can overlap). For clarity, we describe the rest of this process as if they were

separate.

19

Each virtual node must become a working member of R chains. For each of these

chains, the nodemust receive a consistent copy of the datastore ĕle corresponding to the key

range. One way to achieve this is by blocking all updates and queries to all the chains where

the new replica is being added, and to resume processing requests once the new replica

has received a consistent copy of the datastore ĕle. is is similar to the stop and transfer

techniques used in Internet Suspend & Resume [62] and µ-Denali [107].

e ĕrst important issue to address in the above approach is availability: is method

canmake the replica chains unavailable for long durations of time; time proportional to the

size of the datastore. e duration of unavailability can beminimized by repeatedly copying

new data over, not blocking requests to the chain, and blocking all requests at the “end” to

ensure that the new replica has a consistent view of the datastore. is is a technique similar

to that used in distributed databases and live migration of virtual machines [29, 67, 80],

and still results in a period of unavailability due to request blocking. e second important

issue to address is: how does one decide that the new replica has a consistent copy of the

datastore? A naive approach approach could involve a two phase commit with all replicas

agreeing that the copy at the new replica is consistent with their copy of the datastore. is

technique, once again, results in a period of unavailability for updates and queries.

Our protocol, described below, is a non-blocking protocol for node additions and en-

sures that if the node fails during the data copy operation, the existing replicas are unaf-

fected. We illustrate this process in Figure 2.9 where nodeC1 joins as a new middle replica

for range R2.

Phase 1: Datastore pre-copy. Before any ring membership changes occur, the current

tail for the range (VID E1) begins sending the new node C1 a copy of the datastore log

20

ĕle. e pre-copy phase is the most time-consuming part of the join, potentially requiring

hundreds of seconds. At the end of this phase, C1 has a copy of the log that contains all

records committed to the tail. If the replication factor isR, pre-copy takes place inR replica

chains, as depicted in Figure 2.10 forR = 3. Pre-copy does not change the structure of the

replica chain; a failure of a non-tail node does not affect pre-copy, and the failure of any

replica (non-tail, tail, new node) does not affect the membership state maintained at the

manager.

A1 B1 D1

C1

Range R1

puts gets responses

B1 E1

C1

Range R2

gets responsesputs

D1

E1

C1

Range R3

gets responses
D1 F1

puts

Pre-copy

Tail for Range R1

Tail for Range R2

Tail for Range R3

Figure 2.10: Phase 1 of Join: Datastore pre-copy. For every chain it is a part of, a joining
node, C1 in this case, has the datastore streamed to it from the tails of those ranges.

Phase 2: Chain insertion, log Ęush and play-forward. Aer C1’s pre-copy phase has

completed, the front-end sends a Flush message through the chain. is message plays two

roles: ĕrst, it updates each node’s neighbor state to add C1 to the chain; second, it ensures

that any in-Ęight updates (sent aer the pre-copy phase completed) are Ęushed to C1.

21

A1 B1 D1

C1

Range R1

B1 E1

C1

Range R2 D1

E1

C1

Range R3 D1 F1

Flush propagation

1
2

3 4

5. log flush

5. log flush
1

2

3 4

1

2 3 4

5. log flush

Figure 2.11: Phase 2 of Join: Flush. e Flush protocol ensures that a new node can join
R chains at appropriate locations while maintaining strong consistency, and does so with
minimal blocking. e Flush message for the case where the new node joins as the head,
RangeR3 in the example above, also has a Ęag indicating thatD1,E1, and F1 can split the
range from B1–D1 into B1–C1 and C1–D1.

More speciĕcally, in Figure 2.9, thismessage propagates toC1 and then in-order through

B1, D1, and E1, and ĕnally back to C1 aer a log Ęush from E1. Nodes B1, C1, D1, and

E1 update their neighbor list, and nodes in the current chain forward the message to their

successor in the chain. Updates arriving at B1 aer the reception of the Flush message at

the head of the chain now begin streaming to C1, and C1 relays them properly to D1. At

this point,B1,D1, andE1 have correct, consistent views of the datastore, butC1may not:

A small amount of time passed between the time that the pre-copy ĕnished and when C1

was inserted into the chain. To cope with this, C1 logs updates from B1 in a temporary

datastore, not the actual datastore ĕle for range R2, and does not update its in-memory

hash table. During this phase, C1 is not yet a valid replica.

22

All put requests sent toB1 aer it received the Flush message are replicated atB1, C1,

D1, andE1. On receiving the Flush message,E1 pushes all entries that might have arrived

in the time aerC1 received the log copy and beforeC1was inserted in the chain. C1 adds

these entries to theR2 datastore. ese messages have a special Ęag indicating that they are

part of the log Ęush operation. At the end of this process,E1 sends the Flush message back

to C1, conĕrming that all in-Ęight entries have been Ęushed. C1 then merges (appends)

the temporary log to the end of the R2 datastore, updating its in-memory hash table as it

does so. e node brieĘy locks the temporary log at the end of the merge to Ęush these

in-Ęight writes.

A1 B1 D1C1Range R1

puts gets responses

B1 E1C1Range R2

puts

D1

E1C1Range R3 D1 F1

Chain state during log flush

Tail for Range R1

Tail for
Range R2

Tail for
Range R3

log flush

log flush

gets responses

log flush

puts gets responses

Figure 2.12: When Flush is in progress, puts generated aer the Ęush message was sent
to the head of the chain, also go through the new node C1. ese puts are stored at a
temporary datastore for each range at C1, and can be applied (appended) to the datastore
once the log Ęush for these ranges complete.

Aer phase 2, C1 is a functioning member of the chain with a fully consistent copy of

the datastore. is process occursR times for the new virtual node—e.g., ifR = 3, it must

23

join as a new head, a new mid, and a new tail for one chain. Figures 2.10, 2.11, and 2.12

show the process for C1 joining three chains: tail for rangeR1, mid for rangeR2, head for

range R3. Figure 2.11 shows the propagation of the Flush message in the three different

replica chains that node C1 is joining. For the case where the new node joins as the head,

Range R3, the range from B1–D1 is split into two ranges at all the replicas, B1–C1 and

C1–D1. Figure 2.12 shows the propagation of puts and gets during Flush. Pre-copy, log

Ęush, split, and merge all involve sequential scans of the data store and append only update

operations.

Joining as a head or tail: e process for joining as a head or tail node is identical to

that of a new mid. When a node joins as a new head node, new updates arrive at it before

propagating through the replica chain. But a new node never joins as a tail node directly

during node additions. To join as a tail, a node joins before the current tail. It does not

serve get requests until the replication factor for the chain is restored (end of Phase 3).

Although the manager always has the correct view of the head and the tail of the chain

being Ęushed, it can never be certain of the precise structure of the chain during Flush. e

manager is always certain of the structure of the chain before a node addition, and aer

Ęush completes; during Flush, however, the manager does not know the “current” location

of Flush in the replica chain and hence does not know the state of successor and predecessor

links at individual nodes in the replica chain. A node failure during Flush results in the

master locking the chain state and repairing the chain (node removal). e new replica’s

addition to the chain is redone once the replica chain is fully repaired. Phase 1, Pre-copy,

minimizes the amount of time that the master is uncertain of the precise structure of the

chain.

24

A1 B1 D1C1Range R1

truncate truncate_ack

B1 E1C1Range R2 D1

E1C1Range R3 D1 F1

Chain state after "truncate" at Tail

Old Tail for
Range R1

Old Tail for
Range R2

Old Tail for
Range R3

truncate_tail

truncate_tail

truncate_ack

truncate_tail

truncate

truncate truncate_ack

Figure 2.13: Phase 3 of Join: Truncate restores the replication factor back toR by discarding
the tail replica as a node in the replica chain.

Phase 3: Truncate. At the end of Phase 2 (Flush), the replication factor of each of the

replica chains goes up by one (R → (R + 1)). Figure 2.13 shows the ĕnal phase of the

protocol that restores the replication factor by truncating the chain and discarding the tail

replica.

Putting it all together. Figure 2.14 shows the detailed timing digram of the join pro-

tocol, with the contents of messages exchanged between the Manager and the joining node

where appropriate. e new node (Q) sends a join request to the manager node, and for

each of the virtual nodes it represents goes through the three phases described so far.

25

Manager New Node

Join Req

Init Response

(vnode list) send vnode_prejoin_requests

one vnode at a time

VnodePrejoinReq

VnodePrejoin

Response

vnode id

...

Precopy Thread

a) create DB for all ranges

b) send precopy request to all tail nodes

Each tail node sends

a) Data

b) precopy responseAll Tails

Done
tail nodes continue

getting updates

until Flush message

all these messages

are received by the

new node on Flush

VnodeJoinReq

update ring state

to include new node

(but not considered

tail yet)

Flush

(one per range)

Q-n1-n2-n3-Q
hop = #R + 2

Range:

<StartId, EndID>

forwarding path:

Q-n1-n2-n3-Q

neighbour list:

n1-n2-Q-n3

update neighbours

and

send flush message along

forwarding path

buffer "new" puts

in tmpDB

after first view

of Flush message

for this range

Flush-puts from tail

Flush message

returned from tail

merge tmpDB

for this range

Flush Response

(one per range)

vnode has joined

once the flush message

for all the ranges

have come back.

vnode can be

considered tail.

1. Range1:

<StartId, EndID>

2. Tail <IP, Port>

3. Replica Type

1. Range2:

<StartId, EndID>

2. Tail <IP, Port>

3. Replica Type

Truncate

Truncate_ACK

create tmpDB for this range

Figure 2.14: e detailed join protocol showing the order of messages exchanged between
the Manager and the joining node.

26

2.6 Node Removals In Ouroboros

e effects of a voluntary or involuntary (failure-triggered) leave are similar to those of a

join, except that the replicas must merge the key range that the node owned. As above,

the nodes must add a new replica into each of the R chains that the departing node was a

member of.

is process is shown in Figure 2.15 where node C1 leaves a chain of three replicas

where it is the mid replica for range R2. Node D1 takes over as the tail for this range for

gets, until E1 catches up with D1.

B1 D1 E1

puts gets put responses

Log Copy

New Tail for
Range R2

precopy

B1 D1 E1

puts gets responses

New Tail Takes Over

Tail for
Range R2

C1

responses
get

Figure 2.15: A simpliĕed view of the process of restoring the replication factor of a chain
when a node fails.

Following are the steps to handle a node departure:

1. Detect that a node has failed. Nodes are assumed to be fail-stop [92]. A recent

study indicated a MTTF for nodes to be between 4 to 5 months [44]; a 100 node clus-

ter would experience 1 node failure every day, even if it is a transient failure. e

manager node exchanges heartbeat messages with its back-end nodes every thb sec-

27

A1 B1Range R1

1. repair_tail

B1Range R2

1. repair_mid

D1

E1Range R3 D1

1. repair_head

Chain Repair

C1

2. put acks

C1

C1

2. repair_mid_pred

3. last put#, ack
4. puts

Figure 2.16: When a node leaves, all chains that it was a part of are repaired to route around
the failure. is process also ensures that pending updates (due to the node failure) are
propagated down the chain, and pending acks are propagated up the chain aiding in garbage
collection.

onds. If a node misses fdthreshold heartbeats, the manager considers it to have failed

and initiates the Leave protocol. Because the Join protocol does not insert a node

into the chain until the majority of log data has been transferred to it, a failure dur-

ing join results only in an additional period of slow-down, not a loss of redundancy.

In addition to assuming fail-stop, we assume that the dominant failure mode is a

node failure or the failure of a link or switch, but our current design does not cope

with a communication failure that prevents one node in a chain from communicat-

ing with the next while leaving each able to communicate with the front-ends and

managers. We also do not consider problems associated with data corruption in the

28

storage stack [19], and leave it up to interested applications to verifying data integrity

during client reads.

2. Repair the affected replica chains. Figure 2.16 shows this chain repair process for

node C1 leaving a system conĕgured with R = 3. Apart from routing around

the failed node, chain repair ensures that pending updates are propagated down the

chain, and garbage collection can be performed by propagating put-acks up the chain.

In the case where a tail is lost, e.g. Range R1 in Figure 2.16, the new tail (B1) sends

responses for all pending puts to the front-end.

A1 B1 D1Range R1

puts

B1 E1Range R2

puts

D1

E1Range R3 D1 F1

puts

Pre-copy

Standby Tail
for Range R1

Standby Tail
for Range R2

Standby Tail
for Range R3

C1

gets responses

gets responses
C1

gets responses
C1

Figure 2.17: To restore the replication factor, a node departure results in new tail nodes for
all chains it was part of. e datastore for these ranges is streamed to these new tails.

3. Prepare new replicas to join the affected chains as tails. is is done by copying

data to the successor of the current tail of each of the R chains. Figure 2.17 shows

this pre-copy process for D1, E1, and F1 for ranges R1, R2, and R3 respectively.

29

4. Chain insertion, log Ęush and play-forward. is is similar to Phase 2 in join, ex-

cept that the Ęush message propagates in order through the chain. Figure 2.18 shows

this step for C1 leaving the system. Until the log Ęush process completes, an interim

tail serves gets. For example, in Figure 2.19, B1 is the interim tail for range R1 until

the log Ęush to D1 completes.

5. Integrate new replica into ring. is is when log Ęush completes and the new tail

can start processing get requests.

A1 B1 D1Range R1

B1 E1Range R2 D1

E1Range R3 D1 F1

Flush propagation

2

3

4. log flush

3

C1

4. log flush

C1

3

C1
4. log flush

1. Flush

1. Flush

1. Flush

2

2

Figure 2.18: e Ęush protocol ensures all updates sent before the Ęush message reached
the head of the chains are propagated to new tail nodes.

30

A1 B1 D1Range R1

puts gets

B1 E1Range R2

puts

D1

E1Range R3 D1 F1

Chain state during log flush

New Tail for
Range R1

New Tail for
Range R2

New Tail for
Range R3

log flush

get
 responses

gets

gets

put responses

C1

C1

C1

puts

get
 responses

get
 responses

log flush

log flush

put responses

put responses

Figure 2.19: During Ęush, interim tails serve get requests. Puts issued aer the Ęush mes-
sage reached the head of the chains are propagated to the new tail, but these messages are
stored in a temporary store corresponding to these ranges. Once log Ęush is complete, the
temporary store can be merged into the Ęushed store at the new tails.

31

32

Chapter 3

Ouroboros Correctness Proof

We evaluate FAWN-KV in two parts. In this section we formally state the guarantees pro-

vided by Ouroboros and we prove that the protocol described in Section 2.5 correctly pro-

vides these guarantees. In Section 4, we empirically evaluate FAWN-KV on a 2008-era

FAWN cluster built from commodity PCEngine Alix 3c2 devices [81] with CF cards and on

a newer FAWN cluster built from Intel Atom D510 processors [56] with Intel SSDs.

3.1 Ouroboros Guarantees

Ouroboros provides the following three guarantees:

eorem 3.1 (Query Guarantee) :

Query(K) either gets the value corresponding to the last successful update for K, or fails.

33

eorem 3.2 (Update Guarantee) :

If Put(K, V) succeeds, then this update is registered by the system, unless the replication

factor is zero.

eorem 3.3 (Replication Guarantee) :

Ouroboros maintains a replication factor R for all keys provided that in the face of failures

there is at least one working replica and N >= R.

3.2 Assumptions

We make the following assumptions for the proof of correctness:

• Fail-stop node failures [92].

• ere is a singlemanager node which does not fail. A Paxos replicated set of manager

nodes can be used to emulate a single manager node to relax this assumption. e

master event loop in Listing 2 consisting of the manager’s role and the data routing

role of the front-end.

• ere are R replicas in steady state.

• Reliable and in-order message channels: All network channels offer FIFO ordering,

maintainmessage integrity, do not deliver duplicate messages, and have bounded de-

lays. Neighboring nodes of a replica chain are linked by TCP channels. TCP channels

also link individual backend nodes to the master and the frontend nodes.

34

• We consider one chain at a time for the proof. A node is part of multiple chains,

but we consider only one chain at at time for the correctness proof. Chains (and key

ranges) are independent of one another. e proofs provided here are for key ranges;

as keys are part of a keyrange the properties we prove hold true for individual keys

too.

3.3 Proof Of Correctness

Deĕnition 3.4 (Successful Update) Anupdate, update(k, v), is successful if the correspond-

ing UPDATE_ACK message has been received at the master node.

Deĕnition 3.5 (Segment (π)) For a given key, the segment, π(x), at a given node ‘x’ is de-

ĕned as:

• π(null) = ∅

• π(x) = x⊕ π(x.Successor), where ⊕ is sequence concatenation.

Deĕnition 3.6 (Replica Chain) A replica chain for a given key is the segment that contains

all of the active replica nodes for that key. is deĕnition excludes nodes that have failed, are

inactive, or are in the process of joining the system. e ĕrst node of the chain is called the

head, and the last node the tail. e replica chain is π(head). e length of the replica chain

is called the replication factor. A chain becomes irreparable iff its replication factor drops to 0.

Deĕnition 3.7 (<t) For a replica chain containing nodes x and y, if x appears before y in π(x)

at time t then x <t y

35

Invariant 3.8 (Tailk) Every key ‘k’ has a corresponding query node Tailk, the tail node of

the replica chain, unless the replication factor is 0.

Invariant 3.9 (Tail’s successor) At tail T, T.Successor = null

Deĕnition 3.10 (Backend Node State) Abackendnode can be in one of four states: INACTIVE,

JOINING, ACTIVE, and FAILED. A new node goes from INACTIVE to JOINING to ACTIVE.

A node that is pre-copying data while attempting to join a replica chain is in the INACTIVE

state. When Flush is in progress, this node is in the JOINING state. Upon completion of Flush

the node transitions to the ACTIVE state (see FLUSH case in Lisitng 1).

Deĕnition 3.11 (History of updates (H)) e History of updates at a backend node for a

key ‘k’ consists of all the updates for that key. is includes all the updates that have been

acknowledged as well as all the updates with pending acknowledgments not yet processed by

the tail; i.e. H = H_acked ∪H_unacked

Invariant 3.12 (LA <= LU) At a backend node, the Last Acknowledged Update (LA) is

always <= Last Update (LU)

LA = LU to begin with. LA is modiĕed either on receiving an UPDATE_ACK, or, in the

case of a tail, before sending the UPDATE_ACK. LU is only modiĕed at a backend node when

an update is received (UPDATE case in Lisitng 1). As there can never be an UPDATE_ACK for

an update not received at a node, LU >= LA.

Invariant 3.13 (Tail Has No Unacknowledged Updates) If themaster node considers node

T as a tail, then T.H_unacked = ∅.

36

e TRUNCATE and CR_TAIL cases in Lisitng 1 are the only cases when a node becomes

a tail. In both cases before the node sends TRUNCATE_ACK or CR_TAIL_DONE to the master,

it acknowledges all pending updates present in H_unacked.

R r + 1 r

(2) failures

(1) steady state (1) no failures

(3) add node

Figure 3.1: Replication factor state machine.

Invariant 3.14 (Chain Property) For a replica chain containing nodes x and y, if x <t y,

then Hy
t ⊆ Hx

t

We prove that the above invariant is maintained by induction on the structure of the

replica chain. Figure 3.1 shows the events that modify the replica chain and the effect of

these events on the chain replication factor. Let us systematically consider the events that

change the structure of the replica chain.

• Case 1: Steady state (no failures or node additions).

Proof by contradiction. Consider a replica chain containing nodes x and y, where

x <t y and there is no other node between x and y as shown in Figure 3.2 (case 1).

Let u be an update that was seen at node y and not at node x. y could have received

37

X Y

X Y D

Case 1: steady state

A B C

X Y D

X Z Y

X

Z

Y

Case 2: node failures

Case 3: node additions

Figure 3.2: Chain invariant cases.

this update only from its predecessor (x), and so this update must also be present at

x. Furthermore, as x and y are connected by a reliable FIFO channel, the updates at

y are applied in the same order as the updates at x. Hence, there can be no update u

at y that is not present at x. Node x, though, might have some updates that it has not

yet sent to y. Hence Hy
t ⊆ Hx

t . By transitivity, this property holds for any two pairs

of nodes in the replica chain irrespective of whether they are adjacent or not.

• Case 2: Node Failures (single or multiple failures).

Consider the case of node failures irrespective of their position in the chain (head,

mid, or tail) as shown in Figure 3.2 (case 2). Failures could be single node failures or

multiple failures with groups of nodes dispersed across the replica chain failing.

38

e CR_HEAD, CR_MID, CR_TAIL messages change the successor and predecessor

links so as to skip over the failed nodes. e replica chain, during and aer these

operations, is a subsequence, albeit not a contiguous subsequence, of the replica chain

before the failures. Because the relative ordering of the nodes in the replica chain has

not changed, if x <t y then Hy
t ⊆ Hx

t (from Case 1).

We can also make the following (stronger) claim based on this observation: For a

replica chain containing two nodes x and y, in which x is still active and y failed at

time tf , if x <t y, t ≤ tf , and t′ > tf , then Hy
t ⊆ Hx

t′

• Case 3: Node Addition.

eĕnal case to consider is node additions. Figure 3.2 (case 3) shows a node z joining

a replica chain between nodesx and y. Wemust prove that the following two relations

hold true on completion of Flush at time t:

1. x <t z =⇒ Hz
t ⊆ Hx

t

Consider all updates at node z. Hz
t is depicted in Figure 3.3. e updates can be

classiĕed as: (a) all updates before Flush reaches the head of the chain (Hzold

t);

and (b) all updates aer Flush reaches the head of the chain (Hznew

t).

First, consider Hzold

t . z received these updates from the tail either as part of

precopy or during the subsequent Flush. erefore, Hzold

t ⊆ HTail
t .

Also, x <t Tail =⇒ HTail
t ⊆ Hx

t .

Hence, Hzold

t ⊆ Hx
t .

39

History of updates at node z (Hz)

Hzold

Updates after
FLUSH@head
Hznew

History of updates at node y (Hy)

Hyflushed

Updates after
FLUSH@y
HynewHyprecopy

Figure 3.3: History at nodes y and z at time t.

Next, considerHznew

t . ese updates at z are all the updates following the FLUSH

message at the head of the chain; the FLUSH message is sent ĕrst to the joining

node and then propagates through the current chain before returning back to

the joining node. During Flush, these updates are stored at z in a temporary log

corresponding to the key range. ese updates must have been received from

node x, as FLUSH at x would make it set z as its successor. us, for updates

in Hznew

t , x <t z, and using the argument from Case 1 we can conclude that

Hznew

t ⊆ Hx
t .

40

On receiving FLUSH from the tail, z merges its two update sets;

i.e. Hz
t = Hzold

t ∪Hznew

t .

Using our earlier observations that Hzold

t ⊆ Hx
t and Hznew

t ⊆ Hx
t , we can

conclude that Hz
t ⊆ Hx

t

2. z <t y =⇒ Hy
t ⊆ Hz

t

Consider all the updates at node y. Hy
t is depicted in Figure 3.3. e updates

can be classiĕed as: (a) all updates that reached the tail before precopy begins at

the Tail (Hyprecopy

t); (b) all updates between Flush at y and the previous precopy

event (Hyflushed

t); and (c) all updates aer FLUSH is received at y (Hynew

t).

First, consider Hyprecopy

t . ese are updates that z received from the tail as part

of precopy. By deĕnition, these are all the updates (and no more) at y that the

Tail transfers to z. If the Tail had these updates then y deĕnitely had these

updates.

erefore, y <precopy Tail =⇒ HTail
precopy = Hyprecopy

t = Hzprecopy

t .

Next, consider Hyflushed

t . From the arguments in Cases 1 and 2, we know that

due to the FIFO nature of channels between nodes and by transitivity, all of

these updates arrive at y in the same order , and before FLUSH, as they arrive at

Tail.

erefore, HTail
flushed = Hyflushed

t = Hzflushed

t .

Last, consider all the updates at y aer it receives FLUSH:Hynew

t . Looking at the

FLUSH case in Listing 1 we conclude that y must have got the FLUSH message

41

from x. On receiving FLUSH at x, it would have updated its Successor to z. All

updates at x aer the FLUSH message therefore would be relayed to z. z, the

ĕrst node to get the FLUSH message would have already set its Successor to y,

and relays these new updates to y. Hence updates in Hynew

t must have arrived

at y from node z.

erefore, Hynew

t ⊆ Hznew

t .

It is worth pointing out that y does not process, and instead queues, updates it

might receive from z in the short time interval that z is not its Predecessor (the

time between when FLUSH was processed at x and then y). is can be seen in

the UPDATE case in Listing 1. Once FLUSH is processed at y and z is its Prede-

cessor, y can then process the queued messages from z (see the FLUSH case in

Listing 1). is scheme ensures that messages relayed by z (aer FLUSH at x)

are not processed out of order (before FLUSH) at y.

e history of updates at node z(Hz
t) = Hzprecopy

t ∪Hzflushed

t ∪Hznew

t .

Using our earlier observations:

Hyprecopy

t = Hzprecopy

t ,

Hyflushed

t = Hzflushed

t ,

and Hynew

t ⊆ Hznew

t .

erefore, we can conclude that Hy
t ⊆ Hz

t .

42

A node failure during node addition (Flush) results in the Master ensuring that the

predecessor and successor of the joining node are directly linked as was before Flush,

and notifying them (and the tail) to ignore the FLUSH message. Each FLUSH message

therefore is identiĕed by a unique sequence number. eMaster locks the chain state

during this repair process. On completion of repair, the master unlocks the chain

state and triggers the removal of the failed nodes from the replica chain. e new

node’s addition to the replica chain is redone once the replica chain is fully repaired.

Deĕnition 3.15 (Last Successful Update (LSU)) :

master.Recv(UPDATE_ACK(k,v)) =⇒ LSU [k] = v.

e Last Successful Update for a key k (LSU [k]) is the value corresponding to the last

update(k, v) for which the corresponding UPDATE_ACK message was received at the master

node. We denote the node that sent this UPDATE_ACK as the tail corresponding to theLSU .

• LSU [k] at time t0 (start): LSU [k]t0 = ∅.

• LSU [k] at time t: LSU [k]t = LSU [k]t−1 if no UPDATE_ACKs for key k were received

at the master node between (t− 1) and t.

Lemma 3.16 (Update ACK) At tail node T, if T.send(master, UPDATE_ACK(k,v)) at

time t, then T.value[k] = v at time t.

is follows from the fact that in the UPDATE case in Listing 1, the update is logged to

the datastore before the UPDATE_ACK is sent.

43

Lemma 3.17 (Query Response) At time t, if

master.Recv(T, QUERY_RESPONSE(k,v)) and T = Tailtk, then v = LSU [k].

Master

Tail

time

UP
DA

TE
_A

CK

UP
DA

TE
_A

CK

QUERY

Q
UE

RY
_R

ES
P

t0t1t2t3

t'0t'1t'2
= possible LSU

Figure 3.4: If the tail node has not changed since the last UPDATE_ACK, the
QUERY_RESPONSE returns the value corresponding to the LSU .

We prove the above lemma by considering two possible cases for the tail node that sent

the QUERY_RESPONSE:

• e current tail that sent the QUERY_RESPONSE is the same as the tail node corre-

sponding to the LSU .

Assume that for aQuery(k) it sent out at t2, theMaster node receives aQUERY_RESPONSE

from the tail node at time t0. is scenario is depicted in Figure 3.4. e QUERY

must have been received, and a QUERY_RESPONSE sent, by the tail node at some time

t′0 < t0. ere are two possibilities for the LSU at the Master: (a) the LSU was

updated on receiving an UPDATE_ACK at time t1 such that t2 < t1 < t0; or (b)

44

the LSU was updated on receiving an UPDATE_ACK at time t3 such that t3 < t2.

In both of these cases, the corresponding UPDATE_ACK must have been sent by the

tail node at some time t′ (either t′1 or t′2) such that t′ < t′0. From Lemma 3.16,

Tail
t′1
k .value[k] = LSU [k]t1 .

By the deĕnition of LSU , LSU [k]t1 = LSU [k]t0 .

Also, Tailt
′
1
k .value[k] = Tail

t′0
k .value[k]. is is true because there is no update at

the tail between t′1 and t′0; if there was an update in this time range, the LSU should

have been present between t1 and t0 at theMasterwhich follows from the FIFOnature

of the channel between the tail and the Master (a contradiction).

By transitivity, Tailt
′
0
k .value[k] = LSU [k]t0 .

• e current tail that sent the QUERY_RESPONSE has changed since the Last Successful

Update; i.e. the current tail is different from the tail node corresponding to theLSU .

Consider the events at the Master. Speciĕcally, in the time interval between receiving

the QUERY_RESPONSE and receiving the LSU (the last UPDATE_ACK was from node

T), there are three possible events pertaining to changing the chain tail: CR_TAIL_DONE,

TRUNCATE_ACK, FLUSH_ACK.e tail node could have changed due to one of two rea-

sons:

1. Tail node failure or truncation (Figure 3.5 Case 1).

Assume thatT0 is the new tail that sent a QUERY_RESPONSE.is implies that for

T0 to be considered a tail by the Master, the Master must have received either a

CR_TAIL_DONEorTRUNCATE_ACKmessage fromT0 before theQUERY_RESPONSE.

45

erefore, T0 < T =⇒ HT ⊆ HT0 . Furthermore, as T0 is the new tail, it

should have sentUPDATE_ACKsbefore sendingCR_TAIL_DONEorTRUNCATE_ACK

(see cases for these messages in Listing 1). As there are no UPDATE_ACK mes-

sages from T0 to the Master (we are considering the LSU aer all),HT = HT0 .

Hence, T0k.value[k] = LSU [k].

2. Addition of a new tail node to restore the replication factor (Figure 3.5 Case 2).

Let us assume T1 is the new tail that sent a QUERY_RESPONSE. From the above

case, we know that HT = HT0 . CR_TAIL_DONE must have been received at the

Master from T0, followed by restoration of the replication factor with precopy

and Flush for T1 resulting in a FLUSH_ACK from T1. Similar to the earlier case,

the lack of an UPDATE_ACK from either T0 or T1 implies that T1k.value[k] =

LSU [k].

X T0 T

X T0

X T0 T1

Case 1:
tail failure or truncate

Case 2:
re-replicate (new tail)

Figure 3.5: Cases when tail node changes.

Proof foreorem 3.1 Query(K) either gets the value corresponding to the last success-

ful update for K or fails. is follows from Lemma 3.17 and the check at the Master to en-

46

sure that the QUERY_RESPONSE is always from the current tail node (see QUERY_RESPONSE

in Listing 2). A query could also fail if the replica chain is irreparable (R = 0).

Proof foreorem 3.2 is follows from Lemma 3.16 and Invariant 3.14. If Put(K, V)

succeeds, then this update is maintained by the system, unlessR = 0. e update could be

overridden by another successful update for the same key K.

Proof foreorem 3.3 Node failures trigger CR_HEAD, CR_MID, and CR_TAIL messages.

Node additions trigger FLUSH.e structure of a replica chain changes at theMaster when it

receives theACKs for these events being processed to completion: CR_HEAD_DONE,CR_MID_DONE,

CR_TAIL_DONE,FLUSH_ACK. In all of these cases (see Listing 2)restore_replication_factor()

ensures that if the current replication factor (r) > R, the chain in truncated, and if r < R

then a tail node is added (resulting in Flush). is ensures that the replication factor qui-

esces at r = R.

47

1 /* Per node per range state at backend node N.

2 1. Predecessor, the predecessor of N

3 2. Successor, the successor of N

4 3. Set of the history of updates H = H_acked ∪ H_unacked

5 4. Queue of updates representing H_unacked and some parts of H_acked

6 5. LA: last update for which N got an ACK from Successor

7 6. LU: last update got from Predecessor

8 7. State: one of INACTIVE, JOINING, ACTIVE

9 */

10 void Recv(mesg)

11 {

12 switch (mesg) {

13

14 // precond: N is a replica for mesg.key

15 case UPDATE:

16 if (State == JOINING) {

17 // at a joining node data goes to ``tmp'' store

18 ds.tmp.log(mesg.key, mesg.val)

19 }

20 else (State == ACTIVE) {

21 if (mesg.sender != Predecessor) {

22 pending_queue(mesg.sender).enqueue(mesg)

23 }

24 else {

25 ds.log(mesg.key, mesg.val)

26 H_unacked := Union(H_unacked, {<mesg.seq, mesg.key, mesg.val>})

27 if (Successor == null) {

28 // send asks to master and along pathway

29 send(master, UPDATE_ACK(mesg))

30 send(Predecessor, ACK(mesg.seq))

31 LA = mesg.seq

32 }

33 else {

34 // forward to next replica

48

35 send(Successor, mesg)

36 LU = mesg.seq

37 }

38 }

39 }

40

41 case FLUSHED-UPDATE:

42 ds.log(mesg.key, mesg.val)

43

44 // precond: Successor = null, N is a replica for mesg.key, H_unacked = {}

45 // only ACTIVE nodes get query requests

46 case QUERY:

47 v = ds.get(mesg.key)

48 send(master, QUERY_RESPONSE(mesg.key, v, mesg.continuation))

49

50 // precond: mesg is in H

51 // cumulative ACKs are used to acknowledge the receipt of updates among backend nodes

52 // UPDATE_ACK is used acknowledge the receipt of an update to the Master

53 case ACK:

54 LA := max(mesg.seq, LA)

55 // send ack back (towards head) along the replica chain

56 if (Predecessor != null) {

57 send(Predecessor, ACK(LA))

58 }

59

60 case CR_HEAD:

61 Predecessor := null

62 send(master, CR_HEAD_DONE(mesg.range))

63

64 // sent to the node just before the failed node

65 case CR_MID:

66 Successor := mesg.NewSuccessor

67 // blocking call

68 <NewSuccessor.LA, NewSuccessor.LU> = getRepairInfo(N, LA, NewSuccessor)

69 if (<NewSuccessor.LA, NewSuccessor.LU> != null) {

49

70 // catch-up on the acks NewSuccessor might have sent

71 if (NewSuccessor.LA > LA) {

72 LA := NewSuccessor.LA

73 if (Predecessor != null) {

74 // cumulative ACK

75 send(Predecessor, ACK(LA))

76 }

77 }

78

79 // send NewSuccessor updates it might have missed

80 while (update u: [u in H_unacked] and [u.seq > NewSuccessor.LU]) {

81 send(NewSuccessor, u)

82 }

83

84 send(master, CR_MID_DONE(mesg.range))

85 }

86

87 case CR_MID_REPAIR:

88 // new predecessor is the node that sent the mesg

89 Predecessor := mesg.NewPredecessor

90 if (LA == null) {

91 LA := mesg.NewPredecessor.LA

92 }

93 send(Predecessor, REPAIR_INFO(LA, LU))

94

95 // this is sent to the new tail

96 case CR_TAIL:

97 Successor := null

98

99 // send pending acks to master and along pathway

100 if (Predecessor != null) {

101 while (update u: [u in H_unacked] and [u.seq > LA]) {

102 // send asks to master and along pathway

103 send(master, UPDATE_ACK(u))

104 send(Predecessor, ACK(u.seq))

50

105 }

106 }

107

108 send(master, CR_TAIL_DONE(mesg.range))

109

110 case FLUSH:

111 // contains:

112 // (a) range

113 // (b) forwarding path (JoiningNode-n1-n2-...-nTail-JoiningNode),

114 // (c) chain member list (n1-n2-n3-JoiningNode-...-nTail)

115

116 // set Predecessor, Successor as per the chain membership view

117 New_Predecessor := getPredecessor(mesg.chain_member_list)

118 if (New_Predecessor != Predecessor) {

119 Predecessor = New_Predecessor

120 event_loop_queue.enqueue(pending_queue(mesg.sender))

121 }

122 Successor := getSuccessor(mesg.chain_member_list)

123

124 if (N == nTail) {

125 // at Tail node (second-last on the forwarding path)

126 // asynch copy of log to new node, at the end of which

127 // the flush mesg is forwarded

128 log_flush(JoiningNode, mesg)

129 }

130 else if (N == JoiningNode) {

131 if (State == INACTIVE) {

132 // flush is seen the first time

133 State = JOINING

134 create_tmp_store() // for updates that follow flush

135 // Queue, LA, LU are all associated with this tmp store

136 send(getNextNode(forwarding_path), mesg)

137 }

138 else if (State == JOINING) {

139 State = ACTIVE

51

140 // flush is seen the second time

141 merge(tmp, ds) //merge tmp store into copied store

142 send(master, FLUSH_ACK(mesg.payload))

143 }

144 }

145 else {

146 // forward mesg at an intermediate node

147 send(getNextNode(forwarding_path), mesg)

148 }

149

150 // when a node joins the mid/head of a chain, once flush is complete,

151 // TRUNCATE is sent to the new tail

152 case TRUNCATE:

153 if (Successor != null) {

154 send(Successor, mesg)

155 Successor := null

156

157 // send pending acks to master and along pathway

158 if (Predecessor != null) {

159 while (update u: [u in H_unacked] and [u.seq > LA]) {

160 // send ACKS to master and along pathway

161 send(master, UPDATE_ACK(u))

162 send(Predecessor, ACK(u.seq))

163 }

164 }

165 }

166 else {

167 send(master, TRUNCATE_ACK)

168 }

169

170 } // switch

171 }

Listing 1: Backend Event Loop.

52

1 /* State at Master/Frontend.

2 1. Ring

3 2. The replication group (G) for every key range.

4 G is a tuple of the form:

5 <chain_membership_list, state(JOINING/STEADY), joining_node>

6 3. last_successful_update_map

7 */

8 void Recv(mesg)

9 {

10 switch (mesg) {

11

12 case QUERY:

13 client_map[continuation++] = <mesg.client, mesg.client_continuation>

14 send(getQueryNode(mesg.key), QUERY(mesg.key, continuation))

15

16 case QUERY_RESPONSE:

17 // accept only if it is from the current tail

18 if (mesg.sender == get_tail(mesg.key)) {

19 <client, client_continuation> = client_map.remove(mesg.continuation)

20 send(client, QUERY_RESPONSE(mesg.key, mesg.val, client_continuation))

21 }

22

23 case UPDATE:

24 client_map[continuation++] = <mesg.client, mesg.client_continuation>

25 send(getUpdateNode(mesg.key), UPDATE(mesg.key, mesg.value, continuation))

26

27 case UPDATE_ACK:

28 // accept only if it is from the current tail

29 if (mesg.sender == get_tail(mesg.key)) {

30 <client, client_continuation> = client_map.remove(mesg.continuation)

31 send(client, UPDATE_SUCCESS(client_continuation))

32 last_successful_update_map[mesg.key] = mesg.value

33 }

34

53

35 case JOIN:

36 Ring.add(mesg.new_node, joining, 0)

37 replica_groups = getReplicaGroups(mesg.new_node)

38 forall groups G in replica_groups {

39 send(mesg.new_node,

40 FLUSH(G.key_range, //<start_id, end_id>

41 G.forwarding_path, //<new_node, n1, n2, n3, new_node>

42 G.chain_member_list //<n1, n2, new_node, n3>

43)

44)

45 }

46

47 case FLUSH_ACK:

48 if (allFlushCollected(mesg.new_node)) {

49 Ring.add(mesg.new_node, normal) // adds only if not already present

50 } else {

51 flush_count := Ring.getFlushCount(mesg.new_node) + 1

52 // if added to Ring "normally" earlier, Ring.add ignores op

53 Ring.add(mesg.new_node, flush_count)

54 }

55

56 // restore replication factor by

57 // 1. adding tail when replication factor is under limit

58 // or 2. removing tail (TRUNCATE sent to tail's pred) when over limit

59 restore_replication_factor(mesg.range)

60

61 case NODE_FAILURE:

62 replica_groups = getReplicaGroups(mesg.failed_node)

63 forall groups G in replica_groups {

64 if(failed_node == G.chain_member_list.first) {

65 // head failure

66 new_head = getNextWorkingHead(G.chain_member_list)

67 send(new_head, CR_HEAD(G.range))

68 }

69 else if(failed_node == G.chain_member_list.last) {

54

70 // tail failure

71 new_tail = getNextWorkingTail(G.chain_member_list)

72 send(new_tail, CR_TAIL(G.range))

73 }

74 else {

75 // mid failure

76 // send CR_MID to predecessor of failed node

77 pred = getPredecessor(G, mesg.failed_node)

78 new_neighbor = getNextWorkingNode(G.chain_member_list, pred)

79 send(pred, CR_MID(G.range, new_neighbor))

80 }

81 }

82 Ring.remove(failed_node)

83

84 case CR_HEAD_DONE:

85 case CR_MID_DONE:

86 case CR_TAIL_DONE:

87 // restore replication factor by adding tail when required

88 restore_replication_factor(mesg.range)

89

90 } // switch

91 }

Listing 2: Event Loop at Master Node.

55

56

Chapter 4

Empirical Evaluation Of FAWN-KV

We study a prototype FAWN-KV system running on a 21-node cluster built from com-

modity PCEngine Alix 3c2 devices [81], commonly used for thin-clients, kiosks, network

ĕrewalls, wireless routers, and other embedded applications. ese devices have a single-

core 500 MHz AMD Geode LX processor, 256 MB DDR SDRAM operating at 400 MHz,

and 100 Mbit/s Ethernet. Each node contains one 4 GB Sandisk Extreme IV CompactFlash

device. A node consumes 3 W when idle and a maximum of 6 W when deliberately using

100% CPU, network and Ęash. e nodes are connected to each other and to a 27 W Intel

Atom-based front-end node using two 16-port Netgear GS116 GigE Ethernet switches.

We also use a newer 85-node FAWN cluster for front-end cache experiments. is clus-

ter has nodes with dual-core 1.66 GHz Intel Atom processors, 1 GBDRAM, and Intel SSDs.

EvaluationWorkload: FAWN-KV targets read-intensive, small objectworkloads forwhich

key-value systems are oen used. e exact object sizes are, of course, application depen-

57

 0

 10000

 20000

 30000

 40000

 0 10 20 30 40 50 60Q
u

e
ri
e
s
 p

e
r

s
e

c
o

n
d

Time (seconds)

256 B Get Queries

1 KB Get Queries

Figure 4.1: Query throughput on 21-node FAWN-KV system for 1 KB and 256 B entry
sizes.

dent. In our evaluation, we showquery performance for 256 byte and 1KB values. We select

these sizes as proxies for small text posts, user reviews or status messages, image thumb-

nails, and so on. ey represent a quite challenging regime for conventional disk-bound

systems, and stress the limited memory and CPU of our wimpy nodes.

4.1 FAWN-KV System Benchmarks

In this section, we evaluate the query rate of our 21-node FAWN-KV system, and the impact

of ringmembership changes on query throughput and latency. We present results from our

2009 SOSP paper [17].

System roughput: To measure query throughput, we populated the KV cluster with

20 GB of values, and then measured the maximum rate at which the front-end received

query responses for random keys. We disabled front-end caching for this experiment. Fig-

ure 4.1 shows that the cluster sustained roughly 36,000 256-byte gets per second (1,700 per

second per node) and 24,000 1-KB gets per second (1,100 per second per node). A single

58

node serving a 512 MB datastore over the network could sustain roughly 1,850 256-byte

gets per second per node, while it could serve the queries locally at 2,450 256-byte queries

per second per node. us, a single node serves roughly 70% of the sustained rate that a

single FAWN-DS could handle with local queries. e primary reason for the difference

is the addition of network overhead and request marshaling and unmarshaling. Another

reason for difference is load balance: with random key distribution, some back-end nodes

receive more queries than others, slightly reducing system performance.Ƭ

Impact of a front-end cache. We show the impact of having a front-end cache on query

performance using the new FAWN-KV cluster consisting of one high-performance front-

end node and 85 low-powerAtom-based backend nodes. e front-end and backend node’s

speciĕcations are shown in Table 6.3. All nodes are connected to a switch; the front-end

node uses a 10 GbE link, while back-end nodes use 1 GbE links. e backend nodes each

have Intel SSDs [57], but not every backend node is equipped with an SSD. A single node

serves approximately 10,000 128-byte queries/second queries from its SSD. We then em-

ulate the SSD I/O behavior by having the backends serve data at 10,000 requests/second

from a rate-limited memory-based disk to scale our experiments to more nodes than we

have SSDs.

Figure 4.2 shows the overall query throughput as the number of backend nodes in-

creases for three different scenarios:

Ƭis problem is fundamental to random load-balanced systems. Terrace and Freedman [98] devised a
mechanism for allowing queries to go to any node using chain replication; direct queries to the least-loaded
replica can improve load balance.

59

Front-end node Back-end node

CPU: 2× Intel Xeon L5640 Intel Atom D510 [56]
2.27 GHz 1.66 GHz

cores: 2×6 2
CPU cache: 2×12 MiB (L3) 512 KiB (L2)

DRAM: 2×24 GiB 1 GiB

Table 4.1: Speciĕcations of front-end and backend nodes

• a uniform distribution across n ∗ 100, 000 key-value pairs, where n is the number of

backend nodes in the system

• a Zipf distribution with parameter 1.01

• a Zipf distribution with parameter 1.01 with a front-end cache.

e experiment with a front-end cache was done by Bin Fan [43]. Bin’s work addresses

the problem of sizing the front-end cache. ey prove an O(n logn) lower-bound on the

necessary cache size and show that this size depends only on the total number of back-end

nodes (n), not the number of items stored in the system. e cache size for this experiment

was set to 8 ∗ n ∗ log (n+ 1).

e throughput of the uniform workload scales linearly as the number of nodes grows.

e throughput of the Zipf workload grows slowly with diminishing returns with each ad-

ditional node. With Zipf, the workload is biased to a small set of keys, and the nodes serving

these keys become a bottleneck, limiting the overall throughput of the cluster. Zipf ’s bias

towards a small number of keys benefits from having a font-end cache; the system perfor-

mance even exceeds the aggregate raw throughput that the back-end nodes can provide.

60

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(K

Q
P

S
)

Number of nodes

uniform random
zipf

zipf (cache)

Figure 4.2: Overall throughput as the number of back-end nodes increases from 10 to 85
under different access patterns such as uniformly random, Zipf, and Zipf with a front-end
cache

4.2 Impact of Ring Membership Changes

Node joins, leaves, or failures require existing nodes to split, merge, and transfer data while

still handling puts and gets. In this section we evaluate the impact of node joins on sys-

tem query throughput and the impact of maintenance operations such as local splits and

compaction on single node query throughput and latency.

QueryroughputDuringNode Join: In this test, we start a 20-node FAWN-KVGeode

cluster populated with 10 GB of key-value pairs and begin issuing get requests uniformly

at random to the entire key space. At t=25, we add a node to the ring and continue to issue

61

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600
Q

u
e
ri
e
s
 p

e
r

s
e
c
o
n
d

Time (in seconds)

Join started Precopies
 finished

Join complete

Max Load

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 100 200 300 400 500 600

Q
u
e
ri
e
s
 p

e
r

s
e
c
o
n
d

Time (in seconds)

Join started Precopies
 finished

Join complete

Low Load

Figure 4.3: Get query rates during node join for max load (top) and low load (bottom).

get requests to the entire cluster. For this experiment, we set R = 3 and V = 1. Figure 4.3

shows the resulting cluster query throughput during a node join.

e joining node requests pre-copies for R = 3 ranges, one range for which it is the

tail and two ranges as the head and mid. e three nodes that pre-copy their datastores to

the joining node experience a one-third reduction in external query throughput, serving

about 1,000 queries/sec. Pre-copying data does not cause signiĕcant I/O interference with

external requests for data—the pre-copy operation requires only a sequential read of the

datastore and bulk sends over the network. e lack of seek penalties for concurrent access

on Ęash together with the availability of spare network capacity results in only a small drop

in performance during pre-copying. e other 17 nodes in our cluster are not affected by

this join operation and serve queries at their normal rate. e join operation completes

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

C
D

F
 o

f
Q

u
e

ry
 L

a
te

n
c
y

Query Latency (us)

Median 99.9%

No Split (Max)

Split (Low)

Split (High)

891us 26.3ms

863us 491ms

873us 611ms

Get Query Latency (Max Load)
During Split (Low Load)
During Split (High Load)

Figure 4.4: Query latency CDF for normal and split workloads.

long aer pre-copies ĕnished in this experiment due to the high external query load, and

query throughput returns back to the maximum rate.

e experiment above stresses the cluster by issuing requests at the maximum rate the

cluster can handle. But most systems offer performance guarantees only for loads below

maximum capacity. We run the same experiment above but with an external query load at

about 30% of themaximum supported query rate. e three nodes sending pre-copies have

enough spare resources available to perform their pre-copy without affecting their ability

to serve external queries, so the system’s throughput does not drop when the new node is

introduced. e join completes shortly aer the pre-copies ĕnishes.

Impact of Split on Query Latency: Figure 4.4 shows the distribution of query latency

for three workloads: a pure get workload issuing gets at the maximum rate (Max Load),

63

a 500 requests per second workload with a concurrent Split (Split-Low Load), and a 1500

requests per second workload with a Split (Split-High Load). A key range is split into two

when a node joins as the head of a chain.

In general, accesses that hit buffer cache are returned in 300µs including processing and

network latency. When the accesses go to Ęash, the median response time is 800 µs. Even

during a split, themedian response time remains under 1ms. emedian latency increases

with load, so the max load, get-only workload has a slightly higher median latency than the

split workloads that have a slightly lower external query load.

Many key-value systems care about 99.9th percentile latency guarantees as well as fast

average-case performance. During normal operation, request latency is very low: 99.9% of

requests take under 26.3 ms, and 90% take under 2 ms. During a split with low external

query load, the additional processing and locking extend 10% of requests above 10 ms. e

99.9%-ile response time during the low-activity split is 491 ms. For a high-rate request

workload, the incoming request rate is occasionally higher than can be serviced during the

split. Incoming requests are buffered and experience additional queuing delay: the 99.9%-

ile response time is 611 ms. Fortunately, these worst-case response times are still on the

same order as those worst-case times seen in production key-value systems [39].

Our investigation into this problem identiĕed that this high latency behavior can be at-

tributed to the background garbage collection algorithms implemented in the Flash trans-

lation layer in the Flash device. e sequential writes caused by a split, merge, or rewrite in

FAWN-DS can trigger the block erasure operation on the CompactFlash, which contains

only one programmable Flash chip. During this operation, all read requests to the device

are stalledwaiting for the device to complete the operation. While individual block erasures

64

oen only take 2 ms, the algorithm used on this Flash device performs a bulk block era-

sure lasting hundreds of milliseconds, causing the 99.9%ile latency behavior of key-value

requests to skyrocket. With larger values (1KB), query latency during Split increases fur-

ther due to a lack of Ęash device parallelism—a large write to the device blocks concurrent

independent reads, resulting in poor worst-case performance. Modern SSDs, in contrast,

support and require request parallelism to achieve high Ęash drive performance [84]; as-

suming they do not perform bulk block erasures that prevent access to the entire device, a

future switch to these devices could greatly reduce the effect of background operations on

query latency.

We also measured the latency of put requests during normal operation. With R=1,

median put latencywas about 500µs, with 99.9%ile latency extending to 24.5ms. WithR=3,

put requests in chain replication are expected to incur additional latency as the requests get

routed down the chain. Median latency increased by roughly three times to 1.58 ms, with

99.9%ile latency increasing only to 30 ms.

65

66

Chapter 5

Flex-KV

We are witnessing an explosion of “NoSQL” storage systems, used by companies ranging

from startups to industry giants including Amazon, Facebook, Google, and Twitter [39,

72, 85]. eir popularity has resulted in cloud service providers offering NoSQL key-value

(KV) systems as building blocks for applications. Each system provides slightly different

semantics or is optimized for subtly different use cases. is situation is tragic: It impedes

the Ęexibility of cloud providers and developers by forcing them to commit to a particular

model, which they can change only by switching to an entirely different system. It further-

moremisses numerous opportunities for worthwhile designs that fall “in-between” existing

storage system design choices. We argue that it is possible to create one storage system that

can meet the needs of all of these applications.

67

5.1 Motivation

Some applications or operations demand synchronous, durable replication; others favor

availability over consistency; and for yet others, the cost of such safety is orders of mag-

nitude too expensive, making it impossible to meet latency or throughput requirements.

ese requirements sit on a multi-dimensional continuum, with the breadth of NoSQL KV

systems testifying to the value of ĕnding a design and implementation well matched to one’s

requirements. Flash memory and purely in-memory datastores add yet more tradeoffs be-

tween sequential and random read/write performance, durability, and power consumption,

which further complicates the design space for data storage systems.

Unfortunately, this demand places system designers in a bind: Do they run multiple

stores, each operating at maximum efficiency, or do they optimize instead for system com-

plexity by avoiding the need formultiple codebases, vendors, conĕgurations, and so on? We

argue that placing systems designers in this bind is unreasonable and, our work suggests,

unnecessary. Instead, we show that a KV architecture designed right can easily be conĕg-

ured to supportmany points along this continuum, fromweakly-consistent, non-replicated

caches [72] to strongly-consistent, durable disk-backed key-value stores [48].

We argue that a design based on simple chain-based replication enables such a Ęexi-

ble architecture. Flex-KV [83] is a conĕgurable key-value storage system that uses chain-

based replication to effectively support a wide range of application requirements. Flex-KV

can support DRAM, disk, or Flash-based storage; can support homogeneous or heteroge-

neous replica chains that can act as an unreliable cache or a durable store; and can trade

strong data consistency for higher performance by varying the communication protocols

68

between the replicas in the chain and selecting the query replica. e value of such a system

goes beyond ease-of-use: While exploring these dimensions of durability, consistency, and

availability, we ĕnd new choices for system designs supported by replica chains, such as a

cache-consistent memcached, that offer some applications a better balance of performance

and cost than was previously available. e schemes and results we discuss here use a sim-

ple hash-style key-value system, but we believe that core design ideas apply to other storage

systems as well.

5.2 KV Design Space

Systems designers today must pick a particular implementation to meet their application’s

needs. Current key-value systems differ in three major ways:

Durability What happens to data when the entire KV system is rebooted? Many key-

value systems are used as a DRAM cache backed by relational databases or storage systems,

e.g., the popular memcached system. On a cache miss, data is fetched from the backend

and is then cached in the key-value system for future use. Updates (puts and deletes) are

committed to the backend storage to guarantee data durability.

Other key-value systems act as the primary persistent store without a backend database,

e.g., MemcacheDB [2] or Redis [87]. ere exist important differences in what data these

systems may lose upon failures: Some sacriĕce performance to write data synchronously to

disk, and others favor a higher-performing asynchronous model.

69

Consistency Some applications may tolerate trading consistency semantics for perfor-

mance and availability, e.g. Dynamo [39]. A strongly consistent system has the same value

across replicas for all keys. Weakly consistent systems allow replicas to return older or dif-

ferent values for any key. For notational clarity, we permit a strongly consistent system that

does not guarantee durability, in the face of failures, to either return “failure” or an older

value for a key, if it correctly informs the client that the value is stale.

Availability in thepresenceof failures Failures affect data recoverability, system response

time, and throughput. We classify availability as:

1. Data Availability (DA): What fraction of nodes can fail before data loss, with a given

replication factor?

2. Performance Availability (PA): On a failure, how long does it take until performance

is back to that when there were no failures?

5.2.1 New options in the design space: AMemory-efficient Alternative

Existing KV caches offer two extreme options: non-replicated conĕgurations are mem-

ory efficient but suffer from poor performance availability; in-memory replicated schemes

have higher memory overhead but better performance availability. To bridge this extreme

divide, we propose a new design choice: ADRAM-based key-value store that provides high

performance availability in the face of failures without the memory overhead of the simple

replication strategies used today.

70

Sites such as LiveJournal, Facebook, and Twitter use memcached to support a read-

mostly workload of millions of page views every day. Because of the huge performance

gap between the cache (100,000s of queries per second) and the backing database (1,000s

of queries per second), they devote terabytes of DRAM so that nearly all queries are served

from cache. Writes invalidate entries in memcached, and directly update the database for

persistence. Subsequent queries are then cached in memcached aer being fetched from the

database.

e large gap between cache and DB performance means that a cache node failure im-

poses a sudden high load on the backend database—higher than it can handle, degrad-

ing performance or even causing an entire site failure [42, 86]. ese sites require high

performance-availability: they must continue to serve queries at in-memory speeds in the

presence of failures.

Non-replicated and in-memory replicated systems offer two extremeoptions, with trade-

offs between recovery time andmemory overhead, shown as the “M” and “M-M” conĕgura-

tions in Figure 5.1. In-memory replication, supported by systems such as memcached [71],

repcached [88], and Gear6 [47], improves performance availability at the cost of at least

twice as much DRAM, already measured in terabytes. e non-replicated system suffers

long recovery time because it must read all data into cache from the backend database,

potentially requiring random reads from disk.

Disk-backed cache with fast restore (M–D). Instead of naively replicating in-memory,

an alternate design logs updates to disk on the replica (“M-D” conĕgurations in Figure 5.1).

If the primary fails, the system can rapidly stream the logged cache contents from disk to

71

memory. Synchronous updates can be sped up by buffering updates at the replica before

Ęushing them to disk asynchronously, giving rise to a variantM–(Mb . . . D) – amechanism

used in RAMCloud [79]. Alternatively, when used merely as a cache, it is acceptable to lose

a small recent window of writes, and so updates can be propagated asynchronously to the

disk replicas. To avoid inconsistency, however, it is necessary to synchronously invalidate

entries on the replica (in-memory for speed). is combination is memory efficient while

still serving both reads and writes at memory speeds – a cache consistent memcache.

M

M-M

M-M-M

Recovery
Time

Memory
Overhead

2

1

0

r
 (random access

 from DB)

r/d
 (seq access

 from disk)

 r/m
(from mem)

M-D
Disk Backed

Figure 5.1: Disk backed replicas offer better tradeoffs between memory overhead and per-
formance availability compared to options available today.

72

5.3 Flex-KV – A Flexible KV System

To implement all the conĕgurations described in the previous section, a KV architecture

must be able to: support heterogeneous replicas (e.g., disk, Flash, memory, etc.); direct

queries and inserts appropriately (e.g., both to the in-memory replica for high performance,

or queries to the tail and updates to the head for strong consistency); send invalidations

and updates as conĕgured; Ęexibly choose whether to send them synchronously or asyn-

chronously; and optionally consult an invalidation table while applying updates on recov-

ery.

Chain-based replication provides an effective mechanism to implement these options.

Flex-KV uses replica chains on a consistent hashing ring. Consistent hashing with virtual

nodes balances load across the backends and reduces repair time when nodes fail or new

nodes join the system. Our prior work, FAWN-KV, uses a similar approach, but it supports

only synchronous, durable, and consistent updates to Flash-based replicas, while routing

queries to the tail of a replica chain. Flex-KV supports the range of application require-

ments, listed in the previous section, by supporting:

Replica types: Flex-KV supports different replica types that expose a common storage in-

terface; examples include in-memory replicas (M), disk based logs (D), and buffered logs

(Mb . . . D). Flex-KV supports the addition of new datastores as long as they adhere to the

storage interface. On each node, it is easy to combine different types of datastores by chain-

ing their interfaces together, as is done in Anvil [69]. All update operations in Flex-KV are

log-structured thereby ensuring high performance on different storage devices.

73

M D DUpdates

M D D

M D D
Updates

Updates

M D D

(a)

(b)

(c)

Synch
Updates

Synch
Invalidates

Asynch
Updates

Asynch
Updates

Figure 5.2: ree options for propagating updates through a chain of replicas.

Heterogeneous replica chains: Chaining of replicas [102] provides the basis for a variety

of system options (e.g., creating M–D replica chains). Figure 5.2 shows several example

conĕgurations. Updates arrive at the head of the chain and propagate through the chain

to the tail, as in chain replication. For performance, queries may need to be served not

from the tail, but instead from the highest-performing replica (e.g., a memory replica).

Flex-KV allows queries to go to different nodes in each replica chain. For example, a high-

performance conĕguration may wish to direct reads and writes to a memory-based replica

irrespective of its position in the replica chain. is Ęexibility “breaks” the simple structure

of chain replication to also support a more conventional primary-backup replication style.

74

Supporting synchronous insertions with read-from-head behavior requires more Ęexible

conĕguration of when nodes will respond to queries they have already processed, marking

un-acknowledged but received writes as tentative. Flex-KV hides the work of allocating

replicas and managing the topology, and separates these functions from, e.g., the imple-

mentation of the replica’s per-node storage.

Flexible update “plumbing” between replicas: e system separates update propagation

and invalidation, and allows each to be delivered synchronously or asynchronously. We

examine three ways to “plumb” replicas together. Key to these options are the ability to add

asynchrony between purely memory-based replicas and disk replicas, to allow the system

to operate with memory latency, not disk latency. Flex-KV can send updates using:

• Synchronous Updates (SU): Figure 5.2(a) shows synchronous update propagation

through a chain, creating three consistent replicas. Updates succeed only if all replicas

are updated.

• Asynchronous Updates with Synchronous Invalidations (AUSI): An update suc-

ceeds only if the primary commits the updated value and all secondary replicas re-

ceive invalidations (Figure 5.2(b)). Secondary replicas maintain an in-memory in-

validation map. Updates are sent in batches from the primary to secondary replicas.

Secondary replicas can clear their invalidation map aer applying a batch of updates.

is scheme enables coherent memory caches that recover from disk (e.g., the exam-

ple in the previous section).

75

• Asynchronous Updates (AU): An update succeeds if the primary replica commits

the updated value. Secondary replicas receive either individual updates or a batch of

updates asynchronously. (Figure 5.2(c))

Replication factor: Flex-KV allows conĕguring the system with an arbitrary replication

factor. Flex-KV maintains this replication factor as long as it is possible to do so. On a

node addition the replication factor of the chain it joins goes up by one and it is restored by

relinquishing the current tail replica. On a node failure, the replication factor of the affected

chain goes down by one and it is restored by recruiting a new tail for this chain. To ensure

high performance, node additions and removals are non-blocking operations.

B1 D1 E1C1

updates Front
End

queries

Individual Replica Types
(M, D, Mb...D, etc.)

Query Node Selection
(Tail, Mid, Head)

Update Type
(SU, AU, AUSI)

Replication Factor (R)

Figure 5.3: Flex-KV supports many different key-value system conĕgurations using four
simple knobs.

76

Ouroboros+ is this newgeneralization of chain-based replication, which extendsOuroboros

to effectively support a wide range of application requirements by (a) selecting from differ-

ent update mechanisms between replicas, and, (b) selecting a query node in a replica chain.

Flex-KVusesOuroboros+with different datastores that expose a common storage interface

to form homogeneous or heterogeneous replica chains. Flex-KV supports creating many

different key-value system conĕgurations using four simple knobs:

1. Replication Factor;

2. Replica Type: Memory, Disk, Flash, Buffered Log, etc.;

3. Update mechanism: SU, AUSI, and AU;

4. Query node: Replica to issue a read request to.

77

78

Chapter 6

Flex-KV Evaluation

In the next two sections, we systematically vary the knobs exposed by Flex-KV (Tables 6.1, 6.2).

Each cell in those tables represents a unique KV design, to illustrate the coverage of de-

sign options provided by Flex-KV’s conĕgurability—some choices are similar to currently

available point solutions, and some offer new tradeoffs. Furthermore, we compare these

design options to highlight the tradeoffs they offer. In Section 6.3 we evaluate Flex-KV’s

performance on different hardware conĕgurations and compare its performance to a pop-

ular existing system, memcached.

6.1 Key-Value systems as caches

We start with KV systems with a backing database. When used with an external database,

a key-value storage system (e.g., memcached) does not need to write synchronously to disk

for persistence. It may, however, need replication for high performance-availability. Ta-

79

Synchronous Updates Async Updates, Synch Invalidations Asynchronous Updates
Conĕguration (SU) (AUSI) (AU)

Consistent Consistent Weakly Consistent

In-memory Replication Updates: Fast Updates: Faster for large values Updates: Fast
M–M (slower than non-replicated systems)
+Backing Database(D) PA: Instant recovery PA: Nearly Instant PA: Instant
Memory inefficient (some cache misses)

Example: Gear6 Example: repcached

Disk backed cache Updates: Slow due to disk Ęush at replica Updates: Faster for large values Updates: Fast
M–D (buffer for speed: M–(Mb . . . D)) (quick in-memory invalidations)
+Backing Database(D) PA: Disk scan PA: Disk scan PA: Disk scan
Memory efficient (some cache misses)

Table 6.1: KV conĕgurations with a backing database providing durability. We show con-
ĕgurations with one secondary replica, but the characteristics hold true for similar conĕg-
urations with n secondary replicas.

ble 6.1 compares systems constructed with different replica types and update propagation

mechanisms using four metrics: Read speed, update speed, memory overhead, and perfor-

mance availability.

e horizontal axis in table 6.1 compares the results of using different plumbing be-

tween replicas. In general, synchronous updates provide consistency: A replica can fail and

the data is still available in cache, but they bound the system performance to that of the

slowest replica in the chain. Asynchronous updates lack consistency, but allow the system

to perform at the speed of the fastest replica. AUSI updates provide consistency without

data-loss, and decouple performance, making them the best choice when acting as a cache.

Durability: A backing database in all conĕgurations ensures data durability across the

board.

80

Memoryoverhead: All conĕgurationswith in-memory replication have high overhead. M-

–D conĕgurationswith synchronous invalidations need only store invalidations inmemory,

and so their overhead is determined by the frequency of the asynchronous updates and the

workload’s update rate.

Update performance: Asynchronous updates are faster than synchronous updates, but

this speed advantage also depends on the write cost at the next replica; even memory-to-

memory replicas may be faster using AUSI updates if the updates are large. Disk-based

replicas beneĕt more from asynchrony.

Performance Availability (PA): Conĕgurations with both SU and AU recover almost in-

stantaneously on failure. M–M recovers almost instantaneously. M–D is slower than M–M

but is still much faster than random queries to the backing DB. e reason these conĕgura-

tions are not as rapid as M–M during recovery is because M–D involves a sequential scan

of the log on the disk. e performance availability of conĕgurations with AUSI are sightly

worse than the corresponding conĕgurations of SU or AU, because they involve applying

invalidations and might incur cache misses for accesses of those key-value pairs that are in-

validated. Figure 6.6, for example, shows the best case recovery time for the AUSI scheme

where there are hardly any cache misses on recovery.

6.2 Key-Value systems as stores

Without a backing DB, most conĕgurations retain the same properties, with one crucial

difference: Durability. Conĕgurations using only DRAM are not durable (Table 6.2), but

neither does a conĕguration with a disk replica guarantee durability: In the table, only

81

Synchronous Updates Async Updates, Synch Invalidations Asynchronous Updates
Conĕguration (SU) (AUSI) (AU)

Consistent Consistent Weakly Consistent

M–M Not Durable Not Durable Not Durable
Memory Inefficient Example: Gear6, scalaris Example: repcached

M–(Mb . . . D) Window-loss Durable Window-loss Durable (Cognizant of loss) Window-Loss Durable
Memory Efficient Example: RAMCloud

M–D Durable Window-loss Durable (Cognizant of loss) Window-Loss Durable
Memory Efficient Example: Redis

Disk or Flash based Durable Window Loss Durable (Cognizant of loss) Window Loss Durable
D–D Example: FAWN-KV, Hibari Example: Tokyo Tyrant

Table 6.2: Comparison of different KV conĕgurations without a backing database, all sup-
ported by Flex-KV.

conĕgurations with synchronous disk writes, either by starting with a disk, e.g., D–D, or

using SU propagation to disk, e.g., M–D, are fully durable.

Conĕgurations using AU and AUSI schemes with a disk replica have window loss dura-

bility: the system might have an older version of the value for some key, or no value at all,

if there is a failure of a primary before updates are propagated to replicas. AUSI invalida-

tions only provide correct durability if the invalidations are written synchronously to disk;

this does not matter in the cache case, because if both the memory and disk replica fail, the

system can recover from the database with some loss of performance. Conĕgurations us-

ing AUSI can inform clients that the system lacks the latest update in case of such a failure.

Using fully asynchronous updates risks undetected inconsistency.

82

Window loss durability may suffice for situations in which rare instance of stale data

could be acceptable, e.g., for data such as web counters or “last visitors” lists, but where

complete data loss over all time would not.

6.3 Flex-KV Performance Evaluation

Memcached Baseline Evaluation. Before we evaluate the performance of the different

conĕgurations of Flex-KV, we ĕrst benchmark memcached (version 1.4) so that we can put

the performance on Flex-KV in perspective. In the following experiments we try to extract

the maximum query throughput from a single memcache server. Our benchmarking uses

a modiĕed memslap [73] client that in turn uses the standard libMemcached [1] client li-

brary. Our modiĕcations to memslap ensure query request randomization and additional

reporting of performance statistics.

We ran memcached on 3 clusters. Here we report results from the cluster on which

memcached performed the best; the ‘Core2’ cluster nodes have dual core 2.4 GHz CPUs,

with 1 GB DRAM, and 500 GB Hard Disks. We use 100-byte values to be certain that

network bandwidth is not a bottleneck in our experiments. e memcache client is closed-

loop, waiting make the next query until it receives a response to the current request. We

increase the concurrency of requests at the server by increasing the number of client in-

stances and by increasing the number of client threads issuing requests in parallel. Our

tests do no batch requests; we request individual key-value pairs using TCP as the trans-

port layer and avoid memcached’s multiget call interface.

83

Figure 6.1 shows that increasing the number of concurrent requests to the server, by

increasing the number of client threads, steadily improves the memcache server’s lookup

throughput until it peaks at 100,000 to 110,000.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 0 10 20 30 40 50 60 70 80 90 100

q
p
s
 (

1
0
0
B

 v
a
lu

e
s
)

client threads

Figure 6.1: Memcached query throughput at a single server instance as we vary the number
of clients threads issuing requests.

A single memcached server instance can perform 100,000 to 110,000 lookups per sec-

ond irrespective of the number of server threads we use (Figure 6.2). Figure 6.3 shows that

increasing the number of outstanding requests by increasing the number of clients, each

with 50 threads, querying the server does not change the lookup throughput of the server.

Memcached is CPU bound at this stage and this can be attributed to the locking overhead

on the read path in memcached’s implementation.

84

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4 5 6 7 8

qp
s

(1
00

B
 v

al
ue

s)

server threads

Figure 6.2: Memcached query throughput at a single server instance as we vary the number
of server threads. We use a single client with 50 concurrent threads for this test.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4 5 6

qp
s

at
 s

er
ve

r
(1

00
B

 v
al

ue
s)

number of clients

Figure 6.3: Memcached query throughput at a single server instance as we vary the number
of clients issuing requests. Individual clients issue 50 outstanding query requests.

85

Evaluating Flex-KV on Different Hardware Platforms. We evaluate Flex-KV on 3 dif-

ferent test clusters. Table 6.3 shows the speciĕcation of individual backend nodes on these

three clusters. Geode21 is our 2008-era FAWN cluster with 21 nodes,Atom85 is a 2010-era

FAWN cluster with 85 Atom-based nodes, and Core2 is small cluster of server-class ma-

chines. We use 128-byte values in our experiments. Queries requests are asynchronous

and are sent in an open loop. We log the end-to-end latency of each request to report me-

dian and 99%-ile latencies where appropriate.

Memcached comparison: We ĕrst benchmark Flex-KV on the Core2 cluster to com-

pare its performance to memcached. Flex-KV is conĕgured to match memcached by using

only memory-based backends with no replication (“M” conĕguration). Flex-KV achieves

a maximum of 100,000 queries/second, closely matching memcache throughput on the

Core2 cluster. e limit here is primarily due to network, kernel, and ri RPC process-

ing overheads; benchmarking a “null” RPC call using Flex-KV results in a limit of 100,000

calls/second.

Geode21 Atom85 Core2

CPU: AMD Geode LX Intel Atom D510 Intel Core2
500 MHz 1.66 GHz 2.40 GHz

cores: 1 2 2
CPU cache: 128 KB (L2) 512 KB (L2) 4096 KB

DRAM: 256 MB SDRAM at 400 MHz 1 GB 1 GB
Storage: 4 GB Sandisk Extreme IV CF Intel SSD (520 Series) 500GB Hard Disk

Table 6.3: Comparison of speciĕcations of individual backend nodes of 3 different test clus-
ters that Flex-KV runs on.

86

Figure 6.4 shows that at low load the median latency is between 250 to 300 µ-seconds,

but at high load themedian latency shoots up close to 600µ-seconds. Because themeasure-

ment is open-loop, latency increases at high load; Figure 6.5 shows the 99%-ile query la-

tency is 6.5mswhen operating at the highest query throughput of 100,000 lookups/second.

 0

 200

 400

 600

 800

 1000

 50 100 150

L
a

te
n

c
y
 (

in
 u

s
)

K Queries/sec

128B Key-Value Lookups

Figure 6.4: Median query latencies when using Flex-KV in the “M” conĕguration on the
Core2 cluster.

Flex-KV on different hardware conĕgurations: Next, we evaluate two simple Flex-

KV conĕgurations, M and D, on the three different hardware conĕgurations. Table 6.4

shows the query throughput on these clusters averaged across 5 different runs. All the M

conĕgurations achieve a query throughput that closelymatch the “null” RPC call using Flex-

KV on the respective clusters. e disk and Flash based conĕgurations are limited by the

performance of the storage device: the slowest conĕguration is the hard disk based Core2s

that incur a high seek latency; the Compact Flash conĕguration on Geode21 is around 6x

87

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50 100 150

L
a

te
n

c
y
 (

in
 u

s
)

K Queries/sec

128B Key-Value Lookups

Figure 6.5: Median and 99%-ile query latencies when using Flex-KV in the “M” conĕgura-
tion on the Core2 cluster.

faster than the Core2s; and the Intel SSD-based conĕgurations on Atom85 offer a further

order of magnitude higher throughput.

Comparing the tradeoffs of different Flex-KV conĕgurations: Each conĕguration of

our Flex-KV implementation trades between durability, memory overhead, performance,

and recovery time. Figure 6.6 shows this tradeoff for ĕve different Flex-KV conĕgurations.

In this experiment each Core2 backend node stores 15,000 KV pairs with 1KByte values.

In-memory replication (M–M) uses twice asmuchmemory as its unreplicated counterpart,

but recovers instantly from a node failure. Heterogeneous replica chains (e.g., M–D) are

memory efficient and recover more rapidly from node failures than an unreplicated node,

and their recovery time is bound by sequential disk scan speeds. Schemeswith synchronous

updates (SU) are slow when they involve synchronous disk writes.

88

Conĕguration Geode21 Atom85 Core2

M 14,028 36,000 100,000

Disk or Flash 1,850 10,000 289

Table 6.4: Queries/second for two different Flex-KV conĕgurations on 3 hardware plat-
forms.

0.001

0.01

0.1

1

10

100

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

R
ec

ov
er

y
T
im

e
(s

ec
on

ds
)

Average Put Response Time (seconds)

M-M (SU)

M

M-D (SU)M-D (AUSI)

M-D (AU)

Figure 6.6: Memory overhead, put latency, and recovery time for different key-value con-
ĕgurations when using Flex-KV. e size of the points indicate memory overhead: M–M
uses twice as much memory as its unreplicated counterpart.

89

90

Chapter 7

RelatedWork

is thesis work build upon a broad set of research work in distributed systems, storage and

database systems, and networking. In this section we summarize the prior work that this

dissertation builds upon.

7.1 Flash in Databases and Filesystems

Much prior work is examining the use of Ęash in databases, examining how database data

structures and algorithms can be modiĕed to account for Ęash storage strengths and weak-

nesses [64, 65, 75, 77, 101]. this work concluded that NAND Ęash might be appropriate

in “read-mostly, transaction-like workloads”, but that Ęash was a poor ĕt for high-update

databases [75]. Our work, like FlashDB [77] and FD-Trees [65], also notes the beneĕts

of a log structure on Ęash; however, in their environments, using a log-structured ap-

proach slowed query performance by an unacceptable degree. Prior work in sensor net-

91

works [36, 70] has employed Ęash in resource-constrained sensor applications to provide

energy-efficient ĕlesystems and single node object stores. In contrast to the above work,

FAWN-KV sacriĕces range queries by providing only primary-key queries, which elimi-

nates complex indexes and can having separate data and index can therefore support log-

structured access without reduced query performance. speed maintenance and failover

operations in a clustered, datacenter environment.

Several ĕlesystems are specialized for use onĘash. Most are partially log-structured [89],

such as the popular JFFS2 (Journaling Flash File System) for Linux. Our observations about

Ęash’s performance characteristics follow a long line of research [40, 75, 77, 84, 111]. Past

solutions to these problems include the eNVy ĕlesystem’s use of battery-backed SRAM to

buffer copy-on-write log updates for high performance [108], followed closely by purely

Ęash-based log-structured ĕlesystems [60].

7.2 High-throughput Storage and Analysis

Recent work such asHadoop [5, 12] orMapReduce [38] running onGFS [49] has examined

techniques for scalable, high-throughput computing on massive datasets. More specialized

examples include SQL-centric options such as themassively parallel data-mining appliances

from Netezza [78], AsterData [11], and others [6, 7, 13]. As opposed to the random-access

workloads we examine for FAWN-KV, these systems provide bulk throughput for massive

datasets with low selectivity or where indexing in advance is difficult.

92

7.3 Distributed Hash Tables

Related cluster and wide-area hash table-like services include Distributed data structure

(DDS) [51], a persistent data management layer designed to simplify cluster-based Internet

services. FAWN-KV’s major points of differences with DDS are a result of FAWN’s hard-

ware architecture, and the protocols for strong consistency with minimal blocking during

churn. ese same differences apply to systems such as Dynamo [39] and Voldemort [85]

which trade consistency for partition tolerance. Grapevine [24] was an important early

example of trading consistency for simplicity, and Bayou [82, 100] later explored trading

consistency for availability in application-specific ways. FAWN-KV trades partition toler-

ance for availability and strong consistency [25, 50]. Systems such as Boxwood [68] focus

on the higher level primitives necessary for managing storage clusters. Our focus was on a

simple key-value abstraction.

e replica selection strategy in Ouroborous is similar to that used in systems like

CFS [32, 33], DHash++ [34], Dynamo [39], and PAST & Pastry [41, 90, 91]. However,

none of these systems use chain based replication and they provide weaker consistency

guarantees. In Base DHash, each data block is stored as 14 erasure­coded fragments using

the IDA coding algorithm, one on each successors of the key, and any seven of which are

sufficient to reconstruct the block. Base DHash, used in CFS, was designed for the wide-

area, and does not guarantee strong consistency. Similarly, Dynamo, trades consistency

for partition tolerance of data stored across datacenters. Dynamo is optimized for write-

availability, and offers eventual data consistency with conĘict resolution, if any, on a read.

93

Ouroboros, generalizes chain replication to allow node additions to any position in the

chain, to offer provably strong consistency with minimal blocking.

7.4 Examples of systems designed to provide Ęexibility to

end users

Click [61] is a Ęexible soware router composed of conĕgurable elements responsible for

packet processing. Ensemble and JGroups are high-performance modularized protocol ar-

chitectures for replicated services that allow the construction of reliable multicast protocols

using basic building blocks [52, 103]. Similarly, PRACTI [35] and PADS [21] provide a pol-

icy based architecture for building distributed storage protocols. TACT [109, 110], designed

for small deployments of computers in the WAN, dynamically trades consistency for avail-

ability (and performance) based on system, network, and client characteristics, but assumes

that all nodes store all of the data and receive all updates. To provide strong consistency,

TACT switches from an anti-entorpy based model to a two phase commit protocol. Unlike

these systems, Flex-KV uses a single mechanism, Ouroboros+, which can be conĕgured

to support the different application requirements of consistency, durability, performance,

and cost.

WheelFS [97] is a wide-area user-level distributed ĕle system that allows applications to

choose a tradeoff between performance and consistency. WheelFS allows these adjustments

via semantic cues, which provide application control over consistency, failure handling, and

ĕle and replica placement. WheelFS uses primary-backup replication and provides close-

94

to-open consistency, while also supporting eventual consistency if requested. Yahoo!’s data

storage platform, PNUTS [31], offers a read-write interface to records of database like ta-

bles. Records are replicated across multiple data centers, and all replicas of a given record

apply all updates in the same order. PNUTS supports control of wide-area tradeoffs by al-

lowing applications to choose between reading the latest version of a record, any version of

a record, or a version of a record newer than a specified version. e tradeoffs offered by the

update mechanisms and selection of query nodes, in both WheelFS and PNUTS, is some-

what similar to Ouroboros+. Unlike WheelFS and PNUTS, Flex-KV can support different

replica types as part of the same replica group offering better tradeoffs between memory

overhead and recovery time. Flex-KV currently does not support cues to offer applications

different runtime guarantees; we leave this for future explorations.

7.5 Logging in Distributed Databases.

Distributed databases have long used logging for recovery to ensure that the database state

is not corrupted as a result of soware, system, or media failures, and to respect ACID

properties [46, 66, 74]. ese systems have to scan the log and perform undo and redo

operations on recovery. FAWN-KV and Flex-KV use a log as the data store for high per-

formance writes and replication; they don’t provide ACID guarantees and do not have to

rescan the log to undo or redo operations on recovery.

95

7.6 Cluster-based “NoSQL” systems.

We covered a wide range of key-value stores in Section 5. But NoSQL systems are not just

restricted to key-value store. Systems such as Redis [87] (a data structure server supporting

strings, hashes, lists, sets and sorted sets); BigTable [27] (column-oriented storage); and

MongoDB [28]) (document-based storage) all demonstrate the value of richer data models.

Extending Flex-KV beyond key-value storage without crossing a cliff of complexity is le

as a future undertaking; it is not the focus of this thesis.

96

Chapter 8

Conclusion

is dissertation demonstrates that it possible for a key-value architecture to be easily con-

ĕgured to support many points along the KV system design continuum, from weakly-

consistent, non-replicated caches to strongly-consistent, durable disk-backed key-value stores.

Our work made the following contributions:

• First, we presented a new replication protocol, Ouroboros, which generalized chain-

based replication to allow node additions to any part of the replica chain. Ouroboros

is designed to minimize blocking during node additions and deletions while guaran-

teeing strong data consistency (per-key linearizability [53]). We proved the correct-

ness of Ouroboros with regard to Query, Update, and Replication guarantees. We

also presented the design, implementation, and evaluation of a distributed key-value

storage system, FAWN-KV, with the goal of supporting the three key properties of

fault tolerance, high performance, and generality. FAWN-KV achieved these goals

97

using four principles: (a) sequential writes for high performance and generality; (b)

replication for fault tolerance; (c) use of Ouroboros with minimal blocking for high

performance when nodes are added or fail; and (d) load balancing for high perfor-

mance;

• Second, wepresented a generalization of chain-based replication,Ouroboros+, which

extends Ouroboros to effectively support a wide range of application requirements

by (a) selecting from different update protocols between replicas, and, (b) selecting a

query node in a replica chain. We described Flex-KV, which uses Ouroboros+ with

different datastores that expose a common storage interface to form homogeneous

or heterogeneous replica chains. Flex-KV can support DRAM, Flash, and disk-based

storage; can act as an unreliable cache or a durable store; and can offer strong or

weak data consistency. e value of such a system goes beyond ease-of-use: We en-

abled new choices for system designs, such as a cache-consistent memcached, that

offer some applications a better balance of performance and cost than was previously

available. Finally, we empirically evaluated Flex-KV on three different hardware con-

ĕgurations to show its effectiveness.

e battle for dominance in the “Big data” space rages on [9, 14, 96]; on one side are

the “NoSQL” adherents, on the other are “NewSQL” proponents. e core design ideas

described in this dissertation, though in the context of hash-style key-value systems, apply

to replicated storage systems in general, irrespective of the camp they are in. In this context,

our work raises some important questions for the future.

98

A ĕrst question our work raises is how users of storage systems should choose a conĕg-

uration. Although orthogonal to the arguments of this dissertation, this question needs to

be addressed in the future, not only for Flex-KV, but also for storage systems that provide

different guarantees and tradeoffs at large.

A second important question is how to extend the Flex-KV idea to encompass more

NoSQL designs. Two important axes to consider include partition tolerance (as in Dy-

namo [39], which trades consistency for partition tolerance), and a richer data model. Sys-

tems such as Redis [87] (a data structure server supporting strings, hashes, lists, sets and

sorted sets); BigTable [27] (column-oriented storage); and MongoDB [28]) (document-

based storage) all demonstrate the value of richer data models.

Creating “one store for all” is difficult, and it is likely that no one system can truly meet

the needs of all users. However, our progress designing Flex-KV suggests that the right

set of conĕguration and coupling primitives can make structured storage systems able to

satisfy a wide variety of performance, consistency, and durability requirements.

99

100

Bibliography

[1] libMemcached. http://libmemcached.org/libMemcached.html, . [Cited on

page 83.]

[2] memcachedb. http://memcachedb.org/, . [Cited on page 69.]

[3] Ouroboros. http://en.wikipedia.org/wiki/Ouroboros, . [Cited on page 2.]

[4] Eventually Consistent - Revisited. http://www.allthingsdistributed.com/

2008/12/eventually_consistent.html, 2008. URL retrieved August 2012.

[Cited on pages 2 and 14.]

[5] Cloudera. http://www.cloudera.com/, 2009. URL retrieved August 2009. [Cited

on page 92.]

[6] Greenplum: the petabyte-scale database for data warehousing and business intelli-

gence. http://www.greenplum.com/, 2009. URL retrieved August 2009. [Cited

on page 92.]

[7] Teradata. http://www.teradata.com/, 2009. URL retrieved August 2009. [Cited

on page 92.]

101

http://libmemcached.org/libMemcached.html
http://memcachedb.org/
http://en.wikipedia.org/wiki/Ouroboros
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.cloudera.com/
http://www.greenplum.com/
http://www.teradata.com/

[8] Velocity 2010. http://perspectives.mvdirona.com/2010/07/01/

Velocity2010.aspx, 2010. URL retrieved August 2012. [Cited on page 2.]

[9] Why Enterprises Are Uninterested in NoSQL. http://cacm.acm.org/blogs/

blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/

fulltext/, 2010. URL retrieved August 2012. [Cited on page 98.]

[10] Twitter’s New Search Architecture. http://engineering.twitter.com/2010/

10/twitters-new-search-architecture.html, 2010. URL retrieved August

2012. [Cited on page 2.]

[11] Aster data. http://www.asterdata.com, 2011. [Cited on page 92.]

[12] Hadoop. http://hadoop.apache.org/, 2011. [Cited on page 92.]

[13] Paraccel analytic platform. http://www.paraccel.com, 2011. [Cited on page 92.]

[14] Stonebraker trapped in Stonebraker ‘fate worse than death’. http://dom.as/2011/

07/08/stonebraker-trapped/, 2011. URL retrieved August 2012. [Cited on

page 98.]

[15] Apache ri. https://thrift.apache.org/, 2011. [Cited on page 10.]

[16] AmazonDynamoDB. http://aws.amazon.com/dynamodb/, 2012. URL retrieved

August 2012. [Cited on page 3.]

[17] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,

Lawrence Tan, and Vijay Vasudevan. FAWN: A fast array of wimpy nodes. In Proc.

102

http://perspectives.mvdirona.com/2010/07/01/Velocity2010.aspx
http://perspectives.mvdirona.com/2010/07/01/Velocity2010.aspx
http://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext/
http://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext/
http://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-uninterested-in-nosql/fulltext/
http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html
http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html
http://www.asterdata.com
http://hadoop.apache.org/
http://www.paraccel.com
http://dom.as/2011/07/08/stonebraker-trapped/
http://dom.as/2011/07/08/stonebraker-trapped/
https://thrift.apache.org/
http://aws.amazon.com/dynamodb/

22nd ACM Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Octo-

ber 2009. [Cited on pages 9 and 58.]

[18] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In SIGMETRICS Performance,

London, UK, June 2012. [Cited on pages 2 and 4.]

[19] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, Garth R. Goodson, and Bianca Schroeder. An analysis of data corruption

in the storage stack. Trans. Storage, 4(3):8:1–8:28, November 2008. ISSN 1553-3077.

doi: 10.1145/1416944.1416947. URL http://doi.acm.org/10.1145/1416944.

1416947. [Cited on page 29.]

[20] Joel F. Bartlett. A nonstop kernel. In Proceedings of the eighth ACM symposium

on Operating systems principles, SOSP ’81, pages 22–29, New York, NY, USA, 1981.

ACM. ISBN 0-89791-062-1. doi: 10.1145/800216.806587. URL http://doi.acm.

org/10.1145/800216.806587. [Cited on page 8.]

[21] N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and R. Grimm. PADS: A Policy Archi-

tecture for building Distributed Storage systems. In 6th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), April 2009. [Cited on page 94.]

[22] M. Berezecki, Eitan Frachtenberg, Mike Paleczny, and K. Steele. Many-core key-

value store. In Proceedings of the Second International Green Computing Conference,

Orlando, FL, USA, Aug. 2011. [Cited on page 4.]

103

http://doi.acm.org/10.1145/1416944.1416947
http://doi.acm.org/10.1145/1416944.1416947
http://doi.acm.org/10.1145/800216.806587
http://doi.acm.org/10.1145/800216.806587

[23] Kenneth P. Birman. e process group approach to reliable distributed computing.

Commun. ACM, 36(12):37–53, December 1993. ISSN 0001-0782. doi: 10.1145/

163298.163303. URL http://doi.acm.org/10.1145/163298.163303. [Cited

on page 12.]

[24] Andrew D. Birrell, Roy Levin, Michael D. Schroeder, and Roger M. Needham.

Grapevine: an exercise in distributed computing. Commun. ACM, 25(4):260–274,

April 1982. ISSN 0001-0782. doi: 10.1145/358468.358487. URL http://doi.acm.

org/10.1145/358468.358487. [Cited on page 93.]

[25] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the

nineteenth annual ACM symposium on Principles of distributed computing, PODC

’00, pages 7–, New York, NY, USA, 2000. ACM. ISBN 1-58113-183-6. doi: 10.1145/

343477.343502. URL http://doi.acm.org/10.1145/343477.343502. [Cited

on page 93.]

[26] DonaldD. Chamberlin and Raymond F. Boyce. SEQUEL: A structured english query

language. In ACM SIGFIDET (now SIGMOD) workshop on Data description, access,

and control, pages 249––264, New York, NY, USA, 1974. ACM. [Cited on page 1.]

[27] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

distributed storage system for structured data. In Proc. 7th USENIX OSDI, Seattle,

WA, November 2006. [Cited on pages 96 and 99.]

[28] Kristina Chodorow and Michael Dirolf. MongoDB: e Deĕnitive Guide. O’Reilly

Media, 2010. [Cited on pages 96 and 99.]

104

http://doi.acm.org/10.1145/163298.163303
http://doi.acm.org/10.1145/358468.358487
http://doi.acm.org/10.1145/358468.358487
http://doi.acm.org/10.1145/343477.343502

[29] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warĕeld. Live migration of virtual machines.

In Proceedings of the 2nd conference on Symposium on Networked Systems Design

& Implementation - Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005.

USENIX Association. URL http://dl.acm.org/citation.cfm?id=1251203.

1251223. [Cited on page 20.]

[30] Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks. 13:

377––387, June 1970. [Cited on page 1.]

[31] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.

Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288,

August 2008. ISSN 2150-8097. doi: 10.1145/1454159.1454167. URL http://dx.

doi.org/10.1145/1454159.1454167. [Cited on page 95.]

[32] Frank Dabek. A distributed hash table. Ph.D. esis, MIT, 2000. [Cited on pages 15

and 93.]

[33] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Wide-area cooperative storage with CFS. In Proc. 18th ACM Symposium on Op-

erating Systems Principles (SOSP), Banff, Canada, October 2001. [Cited on pages 15

and 93.]

[34] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and Robert

Morris. Designing a dht for low latency and high throughput. In Proceedings of

105

http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dx.doi.org/10.1145/1454159.1454167
http://dx.doi.org/10.1145/1454159.1454167

the 1st conference on Symposium on Networked Systems Design and Implementation -

Volume 1, NSDI’04, pages 7–7, Berkeley, CA, USA, 2004. USENIXAssociation. URL

http://dl.acm.org/citation.cfm?id=1251175.1251182. [Cited on pages 15

and 93.]

[35] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and J. Zheng.

PRACTI replication. In Proc. 3rd Symposium on Networked Systems Design and Im-

plementation (NSDI), San Jose, CA, May 2006. [Cited on page 94.]

[36] Hui Dai, Michael Neufeld, and Richard Han. ELF: an efficient log-structured Ęash

ĕle system for micro sensor nodes. In Proceedings of the ACM Conference on Embed-

ded Networked Sensor Systems (SenSys), Baltimore, MD, November 2004. [Cited on

page 92.]

[37] J. Dean. Challenges in building large-scale information retrieval systems: invited

talk. In Proceedings of the Second ACM International Conference on Web Search and

Data Mining (WSDM), 2009. [Cited on page 3.]

[38] JeffreyDean and Sanjay Ghemawat. MapReduce: Simpliĕed data processing on large

clusters. In Proc. 6th USENIX OSDI, San Francisco, CA, December 2004. [Cited on

page 92.]

[39] Guiseppe DeCandia, Deinz Hastorun, Madan Jampani, Gunavardhan Kakulap-

ati, Avinash Lakshman, Alex Pilchin, Swami Sivasubramanian, Peter Vosshall, and

Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proc. 21st

ACM Symposium on Operating Systems Principles (SOSP), Stevenson, WA, October

2007. [Cited on pages 1, 3, 15, 64, 67, 70, 93 and 99.]

106

http://dl.acm.org/citation.cfm?id=1251175.1251182

[40] Fred Douglis, Frans Kaashoek, Brian Marsh, Ramon Caceres, Kai Li, and Joshua

Tauber. Storage alternatives for mobile computers. In Proc. 1st USENIX OSDI, pages

25–37, Monterey, CA, November 1994. [Cited on page 92.]

[41] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage

utility. InProc. HotOSVIII, pages 75–80, Schloss-Elmau, Germany,May 2001. [Cited

on pages 15 and 93.]

[42] Facebook Outage. More Details on Today’s Outage | Facebook, Sept. 2010. http:

//www.facebook.com/note.php?note_id=431441338919. [Cited on pages 2

and 71.]

[43] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. Small cache,

big effect: Provable load balancing for randomly partitioned cluster services. In Proc.

2ndACMSymposium onCloudComputing (SOCC), Cascais, Portugal, October 2011.

[Cited on page 60.]

[44] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh

Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in globally dis-

tributed storage systems. In Proceedings of the 9th USENIX conference on Operating

systems design and implementation, OSDI’10, pages 1–7, Berkeley, CA, USA, 2010.

USENIX Association. URL http://dl.acm.org/citation.cfm?id=1924943.

1924948. [Cited on pages 2 and 27.]

[45] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-based Scalable Network

Services. In Proc. 16th ACM Symposium on Operating Systems Principles (SOSP),

Saint-Malô, France, October 1997. [Cited on page 1.]

107

http://www.facebook.com/note.php?note_id=431441338919
http://www.facebook.com/note.php?note_id=431441338919
http://dl.acm.org/citation.cfm?id=1924943.1924948
http://dl.acm.org/citation.cfm?id=1924943.1924948

[46] Michael Franklin. Concurrency control and recovery. In A. B. TUCKER Ed., e

Computer Science and Engineering Handbook, pages 1058–1077, 1997. [Cited on

page 95.]

[47] Gear6. Cache replication with Gear6 Web Cache. http://www.gear6.com/

sites/gear6.com/files/Cache%20Replication%20Solution%20Brief%

20Final.pdf. [Cited on page 71.]

[48] Inc Gemini Mobile Technologies. Hibari: A Whitepaper. http:

//www.geminimobile.com/developers-center/white-papers/

hibari-whitepaper-v1.0.pdf. [Cited on pages 4 and 68.]

[49] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. e Google ĕle system.

In Proc. 19th ACM Symposium on Operating Systems Principles (SOSP), Lake George,

NY, October 2003. [Cited on page 92.]

[50] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

ISSN 0163-5700. doi: 10.1145/564585.564601. URL http://doi.acm.org/10.

1145/564585.564601. [Cited on page 93.]

[51] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable,

distributed data structures for Internet service construction. In Proc. 4th USENIX

OSDI, San Diego, CA, November 2000. [Cited on page 93.]

[52] Bela Ban (Red Hat). JGroups - A Toolkit for Reliable Multicast Communication.

http://www.jgroups.org/. [Cited on page 94.]

108

http://www.gear6.com/sites/gear6.com/files/Cache%20Replication%20Solution%20Brief%20Final.pdf
http://www.gear6.com/sites/gear6.com/files/Cache%20Replication%20Solution%20Brief%20Final.pdf
http://www.gear6.com/sites/gear6.com/files/Cache%20Replication%20Solution%20Brief%20Final.pdf
http://www.geminimobile.com/developers-center/white-papers/hibari-whitepaper-v1.0.pdf
http://www.geminimobile.com/developers-center/white-papers/hibari-whitepaper-v1.0.pdf
http://www.geminimobile.com/developers-center/white-papers/hibari-whitepaper-v1.0.pdf
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://www.jgroups.org/

[53] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condi-

tion for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July

1990. ISSN 0164-0925. doi: 10.1145/78969.78972. URL http://doi.acm.org/

10.1145/78969.78972. [Cited on pages 2, 14 and 97.]

[54] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. IEEE Micro, 2010.

[Cited on page 4.]

[55] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper:

wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX

Annual Technical Conference, USENIXATC’10, Berkeley, CA, USA, 2010. USENIX

Association. [Cited on page 12.]

[56] Intel. AtomProcessorD510. http://ark.intel.com/Product.aspx?id=43098.

[Cited on pages 33 and 60.]

[57] Intel Solid-State Drive. 520 Series. http://www.intel.com/content/www/us/

en/solid-state-drives/solid-state-drives-520-series.html. [Cited

on page 59.]

[58] JFFS2. e Journaling Flash File System. http://sources.redhat.com/jffs2/.

[Cited on page 10.]

[59] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and

Daniel Lewin. Consistent hashing and random trees: distributed caching protocols

for relieving hot spots on theworldwideweb. In STOC ’97: Proceedings of the twenty-

109

http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://ark.intel.com/Product.aspx?id=43098
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-520-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-520-series.html
http://sources.redhat.com/jffs2/

ninth annual ACM symposium on eory of computing, pages 654–663, New York,

NY, USA, 1997. ACM. [Cited on page 11.]

[60] Atsuo Kawaguchi, ShingoNishioka, andHiroshiMotoda. A Ęash-memory based ĕle

system. In Proc. USENIX Annual Technical Conference, New Orleans, LA, January

1995. [Cited on pages 10 and 92.]

[61] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.

e Click modular router. ACM Transactions on Computer Systems, 18(3):263–297,

August 2000. [Cited on page 94.]

[62] Michael Kozuch andM. Satyanarayanan. Internet suspend/resume. In Proceedings of

the Fourth IEEE Workshop on Mobile Computing Systems and Applications, WMCSA

’02, pages 40–, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-

1647-5. URL http://dl.acm.org/citation.cfm?id=832315.837557. [Cited

on page 20.]

[63] Leslie Lamport. e part-time parliament. ACM Transactions on Computer Systems,

16(2):133–169, 1998. ISSN 0734-2071. [Cited on page 12.]

[64] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo Kim.

A case for Ęash memory SSD in enterprise database applications. In Proc. ACM

SIGMOD, Vancouver, BC, Canada, June 2008. [Cited on page 91.]

[65] Yinan Li, Bingsheng He, Qiong Luo, and Ke Yi. Tree indexing on Ęash disks. In Pro-

ceedings of 25th International Conference on Data Engineering, March 2009. [Cited

on page 91.]

110

http://dl.acm.org/citation.cfm?id=832315.837557

[66] B. G. Lindsay, P. G. Selinger, C. Galtieri, J. N. Gray, R. A. Lorieand, T. G. Price, F. Put-

zolu, and B. W. Wade. Notes on distributed databases (Draffan and Poole, Eds.). In

Distributed Data Bases, pages 247–284. Cambridge Univ. Press, Cambridge, U.K.,

1980. [Cited on page 95.]

[67] David B. Lomet. High speed on-line backup when using logical log operations.

In Proceedings of the 2000 ACM SIGMOD international conference on Management

of data, SIGMOD ’00, pages 34–45, New York, NY, USA, 2000. ACM. ISBN 1-

58113-217-4. doi: 10.1145/342009.335378. URL http://doi.acm.org/10.1145/

342009.335378. [Cited on page 20.]

[68] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. ekkath, and

Lidong Zhou. Boxwood: abstractions as the foundation for storage infrastructure.

In Proc. 6th USENIX OSDI, San Francisco, CA, December 2004. [Cited on page 93.]

[69] Mike Mammarella, Shant Hovsepian, and Eddie Kohler. Modular data storage with

Anvil. In SOSP, pages 147–160, 2009. [Cited on page 73.]

[70] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. Capsule:

an energy-optimized object storage system for memory-constrained sensor devices.

In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (Sen-

Sys), Boulder, CO, October 2006. [Cited on page 92.]

[71] Memcache Failover FAQ. How does memcached handle failover? http://code.

google.com/p/memcached/wiki/FAQ. [Cited on page 71.]

111

http://doi.acm.org/10.1145/342009.335378
http://doi.acm.org/10.1145/342009.335378
http://code.google.com/p/memcached/wiki/FAQ
http://code.google.com/p/memcached/wiki/FAQ

[72] Memcached. A distributed memory object caching system. http://memcached.

org/, 2011. [Cited on pages 1, 4, 67 and 68.]

[73] memslap. Load testing and benchmarking a server. http://docs.libmemcached.

org/memslap.html. [Cited on page 83.]

[74] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries:

a transaction recovery method supporting ĕne-granularity locking and partial roll-

backs using write-ahead logging. ACM Trans. Database Syst., 17(1):94–162, March

1992. ISSN 0362-5915. doi: 10.1145/128765.128770. URL http://doi.acm.org/

10.1145/128765.128770. [Cited on page 95.]

[75] Daniel Myers. On the use of NAND Ęash memory in high-performance relational

databases. M.S. esis, MIT, February 2008. [Cited on pages 10, 91 and 92.]

[76] SumanNath and Phillip B. Gibbons. Onlinemaintenance of very large random sam-

ples on Ęash storage. In Proc. VLDB, Auckland, New Zealand, August 2008. [Cited

on page 10.]

[77] Suman Nath and Aman Kansal. FlashDB: Dynamic self-tuning database for NAND

Ęash. In Proceedings of ACM/IEEE International Conference on Information Process-

ing in Sensor Networks, Cambridge, MA, April 2007. [Cited on pages 10, 91 and 92.]

[78] Netezza. Business intelligence data warehouse appliance. http://www.netezza.

com/, 2006. [Cited on page 92.]

[79] D.Ongaro, S.M. Rumble, R. Stutsman, J. Ousterhout, andM. Rosenblum. Fast Crash

Recovery in RAMCloud. In SOSP, 2011. [Cited on page 72.]

112

http://memcached.org/
http://memcached.org/
http://docs.libmemcached.org/memslap.html
http://docs.libmemcached.org/memslap.html
http://doi.acm.org/10.1145/128765.128770
http://doi.acm.org/10.1145/128765.128770
http://www.netezza.com/
http://www.netezza.com/

[80] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. e design and im-

plementation of zap: a system for migrating computing environments. SIGOPS

Oper. Syst. Rev., 36(SI):361–376, December 2002. ISSN 0163-5980. doi: 10.1145/

844128.844162. URL http://doi.acm.org/10.1145/844128.844162. [Cited

on page 20.]

[81] PCEngines. PC Engines Alix3c2. http://pcengines.ch/alix3c2.htm. [Cited

on pages 33 and 57.]

[82] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. eimer, and Alan J.

Demers. Flexible update propagation for weakly consistent replication. In Proceed-

ings of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP ’97,

USA, 1997. ACM. [Cited on page 93.]

[83] Amar Phanishayee, David Andersen, Himabindu Pucha, Anna Povzner, and Wendy

Belluomini. Flex-KV: Enabling High-performance and Flexible KV Systems. In

Proceedings of the First Workshop on Management of Big Data Systems, San Jose, CA,

USA, Sept. 2012. [Cited on page 68.]

[84] Milo Polte, Jiri Simsa, and Garth Gibson. Enabling enterprise solid state disks per-

formance. In Proc. Workshop on Integrating Solid-state Memory into the Storage Hi-

erarchy, Washington, DC, March 2009. [Cited on pages 10, 65 and 92.]

[85] Project Voldemort. A distributed key-value storage system. http://

project-voldemort.com. [Cited on pages 1, 67 and 93.]

113

http://doi.acm.org/10.1145/844128.844162
http://pcengines.ch/alix3c2.htm
http://project-voldemort.com
http://project-voldemort.com

[86] reddit. May 2010 ”State of the Servers” report. http://blog.reddit.com/2010/

05/reddits-may-2010-state-of-servers.html. [Cited on pages 2 and 71.]

[87] Redis. A data structure server. http://redis.io/documentation. [Cited on

pages 69, 96 and 99.]

[88] repcached. Add data replication to memcached. http://repcached.lab.klab.

org/. [Cited on page 71.]

[89] Mendel Rosenblum and John K. Ousterhout. e design and implementation of a

log-structured ĕle system. ACM Transactions on Computer Systems, 10(1):26–52,

1992. [Cited on pages 10 and 92.]

[90] Antony Rowstron and Peter Druschel. Storage management and caching in past,

a large-scale, persistent peer-to-peer storage utility. In Proceedings of the eigh-

teenth ACM symposium on Operating systems principles, SOSP ’01, pages 188–201,

New York, NY, USA, 2001. ACM. ISBN 1-58113-389-8. doi: 10.1145/502034.

502053. URL http://doi.acm.org/10.1145/502034.502053. [Cited on

pages 15 and 93.]

[91] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-

tion and routing for large-scale peer-to-peer systems. In Proc. 18th IFIP/ACM In-

ternational Conference on Distributed Systems Platforms, November 2001. [Cited on

pages 15 and 93.]

114

http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html
http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html
http://redis.io/documentation
http://repcached.lab.klab.org/
http://repcached.lab.klab.org/
http://doi.acm.org/10.1145/502034.502053

[92] Fred B. Schneider. Byzantine generals in action: implementing fail-stop processors.

ACM Trans. Comput. Syst., 2(2):145–154, 1984. ISSN 0734-2071. [Cited on pages 27

and 34.]

[93] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: a tutorial. ACM Comput. Surv., 22(4):299–319, December 1990. ISSN 0360-

0300. doi: 10.1145/98163.98167. URL http://doi.acm.org/10.1145/98163.

98167. [Cited on page 8.]

[94] SeaMicro. Seamicro. http://www.seamicro.com, 2010. [Cited on page 4.]

[95] Ion Stoica, RobertMorris, David Karger,M. Frans Kaashoek, andHari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for Internet applications. In Proc.

ACM SIGCOMM, San Diego, CA, August 2001. [Cited on page 11.]

[96] Michael Stonebraker. Sql databases v. nosql databases. Commun. ACM, 53(4):10–11,

April 2010. ISSN 0001-0782. doi: 10.1145/1721654.1721659. URL http://doi.

acm.org/10.1145/1721654.1721659. [Cited on pages 1 and 98.]

[97] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li, M. Frans

Kaashoek, and Robert Morris. Flexible, Wide-Area Storage for Distributed Systems

with WheelFS. In 6th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), April 2009. [Cited on page 94.]

[98] Jeff Terrace and Michael J. Freedman. Object storage on CRAQ: High-throughput

chain replication for read-mostly workloads. In Proc. USENIX Annual Technical

Conference, San Diego, CA, June 2009. [Cited on page 59.]

115

http://doi.acm.org/10.1145/98163.98167
http://doi.acm.org/10.1145/98163.98167
http://www.seamicro.com
http://doi.acm.org/10.1145/1721654.1721659
http://doi.acm.org/10.1145/1721654.1721659

[99] Doug Terry. Replicated data consistency explained through baseball. MSR Technical

Report. [Cited on pages 2 and 14.]

[100] Douglas B. Terry, Marvin M. eimer, Karin Petersen, Alan J. Demers, Mike J. Spre-

itzer, and Carl H. Hauser. Managing update conĘicts in bayou, a weakly connected

replicated storage system. In Proceedings of the Fieenth ACM Symposium on Oper-

ating Systems Principles, SOSP ’95, USA, 1995. ACM. [Cited on page 93.]

[101] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L. Wiener, and

Goetz Graefe. Query processing techniques for solid state drives. In Proc. ACM

SIGMOD, Providence, RI, June 2009. [Cited on page 91.]

[102] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high

throughput and availability. In Proc. 6th USENIX OSDI, San Francisco, CA, Decem-

ber 2004. [Cited on pages 2, 14 and 74.]

[103] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and David Karr.

Building adaptive systems using Ensemble. Sow. Pract. Exper., 28:963–979, July

1998. ISSN 0038-0644. [Cited on page 94.]

[104] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.

ISSN 0001-0782. doi: 10.1145/1435417.1435432. URL http://doi.acm.org/10.

1145/1435417.1435432. [Cited on pages 2 and 14.]

[105] Matt Welsh. A retrospective on SEDA. http://matt-welsh.blogspot.com/

2010/07/retrospective-on-seda.html. [Cited on page 10.]

116

http://doi.acm.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432
http://matt-welsh.blogspot.com/2010/07/retrospective-on-seda.html
http://matt-welsh.blogspot.com/2010/07/retrospective-on-seda.html

[106] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-

conditioned, scalable Internet services. In Proc. 18th ACM Symposium on Operating

Systems Principles (SOSP), Banff, Canada, October 2001. [Cited on page 10.]

[107] Andrew Whitaker, Richard S. Cox, Marianne Shaw, and Steven D. Grible. Con-

structing services with interposable virtual hardware. In Proceedings of the 1st con-

ference on Symposium on Networked Systems Design and Implementation - Volume

1, NSDI’04, pages 13–13, Berkeley, CA, USA, 2004. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=1251175.1251188. [Cited on page 20.]

[108] M. Wu and W. Zwaenepoel. eNVy: A non-volatile, main memory storage system.

In Proc. 6th International Conf. on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), San Jose, CA, October 1994. [Cited on page 92.]

[109] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consistency

model for replicated services. In Proceedings of the 4th conference on Symposium

on Operating System Design & Implementation - Volume 4, OSDI’00, pages 21–21,

Berkeley, CA, USA, 2000. USENIX Association. [Cited on page 94.]

[110] Haifeng Yu and Amin Vahdat. e costs and limits of availability for replicated ser-

vices. SIGOPS Oper. Syst. Rev., 35:29–42, October 2001. ISSN 0163-5980. [Cited on

page 94.]

[111] Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dimitrios Gunopulos, and

Walid A. Najjar. MicroHash: An efficient index structure for Ęash-based sensor de-

vices. In Proc. 4th USENIX Conference on File and Storage Technologies, San Fran-

cisco, CA, December 2005. [Cited on page 92.]

117

http://dl.acm.org/citation.cfm?id=1251175.1251188

[112] Zookeeper. Apache ZooKeeper. http://hadoop.apache.org/zookeeper/.

[Cited on page 12.]

118

http://hadoop.apache.org/zookeeper/

	1 Introduction
	2 FAWN-KV: The FAWN Key-Value System
	2.1 Design Overview Of The FAWN-KV System
	2.2 Consistent Hashing: Mapping key ranges to nodes
	2.3 Replication and Consistency
	2.4 Support for multiple front ends
	2.5 Node Joins In Ouroboros
	2.6 Node Removals In Ouroboros

	3 Ouroboros Correctness Proof
	3.1 Ouroboros Guarantees
	3.2 Assumptions
	3.3 Proof Of Correctness

	4 Empirical Evaluation Of FAWN-KV
	4.1 FAWN-KV System Benchmarks
	4.2 Impact of Ring Membership Changes

	5 Flex-KV
	5.1 Motivation
	5.2 KV Design Space
	5.2.1 New options in the design space: A Memory-efficient Alternative

	5.3 Flex-KV � A Flexible KV System

	6 Flex-KV Evaluation
	6.1 Key-Value systems as caches
	6.2 Key-Value systems as stores
	6.3 Flex-KV Performance Evaluation

	7 Related Work
	7.1 Flash in Databases and Filesystems
	7.2 High-throughput Storage and Analysis
	7.3 Distributed Hash Tables
	7.4 Examples of systems designed to provide flexibility to end users
	7.5 Logging in Distributed Databases.
	7.6 Cluster-based ``NoSQL'' systems.

	8 Conclusion
	Bibliography

