
Allocating Virtual and Physical Flows for
Multiagent Teams in Mutable, Networked

Environments
Steven Okamoto
CMU-CS-12-129

August 2012

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Katia Sycara, Chair
Srinivasan Seshan

Paul Scerri
Milind Tambe, University of Southern California

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Steven Okamoto

This research was funded in part by the AFOSR MURI grant FA9550-08-1-0356, in part by ONR MURI
N000140811186, and in part by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under
Agreement Number W911NF-06-3-0001.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government.

Keywords: multiple source network flow, partial centralization, network augmentation,
network security game

iv

Abstract
The movement of information, agents, and resources is a crucial part of co-

operative multiagent systems: decision makers must receive data in a timely
manner to make good decisions, while agents and resources must be provided
at appropriate locations for tasks to be completed. Flow allocation meets these
conditions by computing paths through the environment, be it the communica-
tion network (for data or software agents) or the physical world (for embodied
agents or physical resources). This thesis addresses the problem of allocating
flows when the environment is mutable, either by the agents or by a malicious
adversary.

In this thesis I represent the environment as a graph with agents and tasks
represented by source and sink nodes, respectively. The agents are partitioned
into groups, and the flows from members of a group must be sent to the same
sink, reflecting cases where a task requires multiple agents to work together
or a decision requires multiple inputs. Capacity and cost constraints on the
graph reflect environmental factors affecting the feasibility and quality of al-
locations. I prove that even relatively simple problems of allocating flows for
groups in graphs are not just hard to solve optimally, but also hard to approx-
imate.

In some cases the agent team can add additional nodes and edges to the
graph, for instance by deploying unmanned aerial vehicles (UAVs) as commu-
nication relays to supplement a ground-based wireless ad hoc network. I prove
that augmenting the network optimally is intractable, and provide algorithms
for solving it heuristically.

In other cases an adversary can impair the agents by choosing attacks that
increase costs to the agents. Agents must then choose their paths through
the network strategically, reasoning not just about the environmental costs
but also about the behavior of the adversary. I formalize this interaction as
a game between the agent team and the adversary, and provide polynomial
time algorithms for computing equilibrium strategies in simultaneous zero-
sum games, simultaneous non-zero-sum games where each player unilaterally
incurs costs to play their strategies, and sequential non-zero-sum games where
the sender can commit to a strategy.

vi

Acknowledgments

My path to completing my thesis has been a long and twisting one but I’ve been fortunate
to have had many mentors, colleagues, and friends accompany me along the way. I am
grateful to my advisor, Katia Sycara, who has been with me the whole way offering guid-
ance and unflagging support; to Paul Scerri and Milind Tambe for their keen insights and
advice that they have offered me through the years, even before serving on my committee;
and to Srinivasan Seshan who brought a fresh and valuable perspective as a member of my
committee outside of my usual area of expertise.

I want to acknowledge all of the talented researchers I’ve had the opportunity to work
with while here at CMU, including Noam Hazon, Praveen Paruchuri, Roie Zivan, Nathan
Brooks, Robin Glinton, Sean Owens, Nilanjan Chakraborty, and Joseph Giampapa. Some
of these collaborations bore academic fruit, others yielded only intellectual stimulation,
and others were just a pleasant way to pass a spare afternoon. I am grateful for all of them.

My heartfelt thanks also goes out to those who have kept things running smoothly in the
background, especially Deb Cavlovich and Marliese Bonk.

I would never have made it without the love and support of my family and friends. My
parents, Alan and Charlene Okamoto, and sister, Amy Maneki, never stopped believing in
me ... or asking when I would next visit. Their constant encouragement, inspiration, and
humor kept me going. My friends — Taiki Esheim, Natasha Capellas, Jennifer Salcedo,
Beccy Aldrich, Anna Grauerholz, Amy Fernandez, Matt Hessing, and many others — kept
me sane through the years. Most of all, I want to thank Amanda Mitchell, whose love is
still the greatest thing I’ve earned.

vii

viii

Contents

Acknowledgments vii

1 Introduction 1
1.1 Flow Allocation for Multiagent Teams 2
1.2 Flow Allocation in Capacitated Environments 4
1.3 Network Augmentation . 5
1.4 Flow Allocation in Adversarial Environments 7
1.5 Contributions . 8

2 Flow Allocation in Capacitated Environments 11
2.1 Flow Allocation . 11

2.1.1 Alternative Capacity Models . 17
2.2 Flow Allocation on Trees . 19
2.3 Unsplittable Flow Allocation . 23

3 Network Augmentation and Flow Allocation 29
3.1 Network Augmentation . 30
3.2 Network Augmentation and Flow Allocation 35
3.3 Solving MaxSG-NA and MinDep . 36

3.3.1 Optimal Algorithms . 36
3.3.2 Heuristic Algorithms . 39

3.4 Experiments . 42

4 Flow Allocation in Adversarial Environments: Zero-Sum Games 49
4.1 Zero-Sum Path Game (ZS-PG) . 52
4.2 Harm matrices . 53
4.3 Zero-Sum Network Flow Game (ZS-NFG) 56
4.4 Computing Network Flow Equilibrium 62

ix

4.5 Using ZS-NFG to Solve ZS-PG . 64
4.6 Experiments . 65

4.6.1 Simulation setup . 65

5 Flow Allocation in Adversarial Environments: Non-Zero-Sum Games 71
5.1 Network Flow Game with Costs (NFG) 71
5.2 Computing Nash Equilibrium . 74

5.2.1 Computing the Adversary’s Strategy 77
5.3 NFG Example Problem . 80

5.3.1 Comparison of Approaches . 84
5.4 Network Flow Game with Multiple Sinks (NFG-MS) 90
5.5 Network Flow Game with Multiple Groups (NFG-MG) 91
5.6 Bayesian Games: Dealing with Uncertainty 93

5.6.1 Uncertain k . 93
5.6.2 Uncertain Payoffs . 96
5.6.3 Experiments . 97

5.7 Stackelberg Games . 105
5.7.1 Model . 105
5.7.2 Inducing Locally Optimal Equilibria 110

6 Related Work 115
6.1 Flow Allocation . 115
6.2 Network Augmentation . 116
6.3 Security in Adversarial Environments 118

7 Conclusion and Future Work 123
7.1 Summary . 123

7.1.1 Capacitated Environments . 123
7.1.2 Network Augmentation . 124
7.1.3 Adversarial Environments . 125

7.2 Future Work . 125
7.2.1 Generalized Task Structures . 126
7.2.2 Dynamic Teams, Tasks, and Environments 126
7.2.3 Partially Distributed Algorithms 127

x

List of Figures

2.1 Transforming a network with outgoing edges from a sink node to one with-
out outgoing edges from that sink node. A new sink node is added with
an edge with unlimited capacity from the old sink node. This adds at most
|T | additional nodes and edges. 13

2.2 MaxSG-Dec is strongly NP-complete: Reduction from the Bin Packing
decision problem. 14

2.3 Transforming a network with node capacities to one with edge capacities. 18
2.4 MaxSG-UF-Dec is strongly NP-complete: Reduction from 3-Partition. . . 24
2.5 MaxSG-UF is hard to approximate: Reduction from 2DIRPATH. 26

3.1 Average deployment sizes found by Algorithm 3 44
3.2 Running times for solving MinDep using MILP 3 and Algorithm 3. . . . 45
3.3 Proportion of MinDep instances solved optimally by MILP 3 within two

hours. 45
3.4 Average number of groups satisfied by Algorithm 4 as a percentage of the

optimal found by MILP 2. 46
3.5 Running times for solving MaxSG-NA using MILP 2 and SG-LF-H. . . . 47

4.1 Harm as a function of network size and number of source nodes 67
4.2 Running times for increasing network size and source nodes 67
4.3 Length of solution pathways for RANGER, shortest paths (SP), and LP 2

with varying communication cost. 69

5.1 An example of a network with two possible paths. 74
5.2 Graph of Kabul streets near the Hotel Inter-Continental Kabul. 81
5.3 Equilibrium solution of NFG approach with k = 2. 85
5.4 Equilibrium solution of budgeted NFG approach with k = 2. 87
5.5 Equilibrium solution of normal-form approach with k = 2. 88

xi

5.6 Equilibrium solution of (a) NFG approach and (b) budgeted NFG ap-
proach with k = 10. 89

5.7 Equilibrium solution of (a) NFG approach and (b) budgeted NFG ap-
proach with k = 20. 90

5.8 Graph of the road network of Afghanistan. 98
5.9 Running time of LP 10 vs. number of source nodes as the number of

number of groups and number of source nodes per group is varied for the
grid network . 98

5.10 Running time of LP 10 vs. number of source nodes as the number of
number of groups and number of source nodes per group is varied for the
disk network. 99

5.11 Running time of LP 10 vs. number of nodes. 100
5.12 Running time of LP 10 vs. number of edges. 101
5.13 Total costs to the sender when playing an equilibrium (EQ), minimum

harm (MH), or shortest paths (SP) strategy against an adversary playing a
worst case equilibrium strategy on a grid. 102

5.14 Total costs to the sender when playing an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy against an adversary playing a
worst case equilibrium strategy on a disk network. 103

5.15 Total costs to the sender when playing an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy against an adversary playing a
worst case equilibrium strategy on the Afghanistan road network. 104

5.16 Total costs to the sender when playing an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy against an adversary playing a
worst case best response strategy on a grid. 105

5.17 Total costs to the sender when playing an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy against an adversary playing a
worst case best response strategy on a disk network. 106

5.18 Total costs to the sender when playing an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy against an adversary playing a
worst case best response strategy on the Afghanistan road network. 107

5.19 Relative security gap when the sender plays an equilibrium (EQ), mini-
mum harm (MH), or shortest paths (SP) strategy on a grid network. 107

5.20 Relative security gap when the sender plays an equilibrium (EQ), mini-
mum harm (MH), or shortest paths (SP) strategy on a disk network. . . . 108

5.21 Relative security gap when the sender plays an equilibrium (EQ), mini-
mum harm (MH), or shortest paths (SP) strategy on the Afghanistan road
network. 108

xii

5.22 A network topology in which the sender cannot induce a strong Stackel-
berg equilibrium. 110

6.1 Graph for counter-example of NFG as a security game. 120

xiii

xiv

List of Tables

2.1 Summary of notation for Chapter 2 . 12

3.1 Summary of notation for Chapter 3 . 31

4.1 Summary of notation for Chapter 4 . 51
4.2 Effect of varying k on harm and runtime. 68

5.1 Summary of notation for Chapter 5 . 72

xv

xvi

Chapter 1

Introduction

A key feature of cooperative multiagent systems is the movement of agents, information,
and resources in order to facilitate task execution. Performing each task requires a combi-
nation of agents, information, and resources, and these elements must generally be brought
to a single location for the task to be performed successfully. For example, in a disaster re-
sponse application, extinguishing a fire (the task) requires bringing fire trucks (the agents)
and water (the resource) to the location of the fire. In a sensor network application, sensor
readings (information) from multiple sensors (the agents) must be sent to a base station
(the resource) for data fusion to track a target (the task). Different paths can impose dif-
ferent costs to task execution, for example by draining more battery power in the sensor
network or delaying arrival of the fire trucks to the fire. The problem of choosing paths
for the movement of agents, information, and resources is thus crucial because it governs
both what tasks can be performed as well as the quality with which they are performed.

Network flows provide a natural way to represent this problem. The environment is repre-
sented as a finite, directed graph with nodes representing locations and edges representing
allowable transitions between locations. This graph may model the external, physical en-
vironment, such as the buildings and road network of a city, or the rooms and corridors of a
building, or it may model the communication network between agents or some other inter-
nal structure of the team. Source nodes represent the initial locations of things that must
move through the graph, such as agents or information, while sink nodes represent the
locations of task execution. Capacity and cost constraints on edges reflect environmental
factors that affect feasibility and quality of allocations, with capacitated graphs best suited
for modeling communication networks and costly graphs appropriate for both physical
and communication environments. For example, in a physical environment costs may
model distances traveled by robots, while in a communication environment costs reflect

1

the battery usage for transmitting needed data over communication links, while capacity
constraints represent limited available bandwidth on those links. The problem of meeting
the requirements for task execution then becomes the problem of allocating flows from the
source nodes to the sink nodes.

This thesis addresses the problem of flow allocation in multiagent teams when the environ-
ment is mutable, either by the agents or by a malicious adversary. The type of modification
depends on whether the environment is capacitated or costly. In capacitated environments
agents may relieve bottlenecks or provide connectivity to disconnected parts of the envi-
ronment by augmenting the environment with additional nodes and edges. For example,
in a communication network this may be achieved by deploying unmanned aerial vehicles
to act as communication relays to supplement a ground-based ad hoc wireless network.
In costly environments, an adversary can impose additional costs, for example by deploy-
ing cameras to observe the movements of agents, placing obstacles to delay agents, or
jamming a communication network to force retransmissions.

1.1 Flow Allocation for Multiagent Teams

A common approach to designing multiagent teams is to separate domain-level task knowl-
edge from domain-independent coordination ability. Domain-level knowledge is typically
represented using hierarchical task networks (HTNs) [18] that explicitly specify depen-
dencies betweens tasks, including the requirements for execution. Tasks in an HTN may
be primitive tasks that can be directly executed, goal tasks that describe desired states of
the world, or compound tasks that are made up of other tasks. In multiagent systems,
multiple agents must often work together to achieve goal tasks and compound tasks, in-
troducing additional constraints between tasks not found in task networks designed for
single agent planning. This shortcoming has been addressed by task networks specifically
tailored to multiagent teams, such as TAEMS [16], SharedPlans [24], and team-oriented
programs [53].

Domain-independent multiagent infrastructures such as GPGP [37], RETSINA [60], or
Machinetta [58] provide reusable software components implementing algorithms to ad-
dress problems such as planning and scheduling, subteam formation, and task and resource
allocation. Planning identifies the domain-level tasks the team will execute in order to
achieve high level goals, based on the requirements for task execution and their effects
represented in the task networks. Most tasks require only a small fraction the agents and
resources of the full team, and so the agents are organized into subteams that coordinate
closely. Task allocation is the problem of choosing the specific tasks for agents to execute.

2

Flow allocation has a great deal of overlap with these problems. The plan determines the
sink nodes on which flow allocation depends. Conversely, knowing how or even if task
requirements can be met, for example if data from sensor nodes can be transmitted to a
base station for fusion, is crucial for planning. Subteam formation affects the choice of
source nodes while task allocation affects which sink nodes the flows should go; it is clear
that the choice and quality of flows through the environment will depend on the both of
these factors. However, this overlap with other multiagent problems is not unique to flow
allocation; instead, the extent to which flow allocation interacts with the other problems
just reflects the degree to which those problems interact with each other.

While there is no universally accepted way to resolve these interdependencies, in this the-
sis we assume that flow allocation occurs after planning and subteam formation. As a
consequence, the set of source nodes and sink nodes are known, and the source nodes are
partitioned into disjoint groups corresponding to the subteams partitioning the agents. All
source nodes in a group must send flow to the same sink. This corresponds to the subteam
being assigned a single task, which may be a compound task for a subteam with multiple
agents. For example, in a disaster response domain [35], a subteam may be composed of
several fire trucks and ambulances assigned the task of responding to a burning building.
This compound task in turn has component tasks assigned to each individual fire truck or
ambulance to put out the fire and to rescue survivors. From the flow allocation perspec-
tive it is sufficient to consider the compound task that involves a single location for task
execution of all members of the subteam.

We do allow for overlap with a limited form of task allocation. In many of the problems
we consider the flow allocation problem includes choosing a sink for each group as well
as choosing the flow from the members of the group to that sink. This corresponds to
choosing a task execution location for each group. With physical tasks, sinks represents the
location of the task in the physical environment, like the burning building in the stricken
city; agents must physically move through the environment to reach the task location. Thus
choosing a sink represents assigning the task of responding to a particular burning building
to the subteam. With computational tasks, the source nodes represent the locations of input
data, while the sinks represent locations where the computation can be performed, and the
flows correspond to streams of data through the communication network. For example,
any base station could perform the data fusion task for a group of sensor nodes provided it
receives all of the sensor readings. Selecting a sink corresponds to selecting a base station
to perform the data fusion.

In addition to facilitating execution of domain-level tasks, flow allocation may also be
applicable to control-level computational tasks that arise from the team’s coordination al-
gorithms. A number of multiagent coordination algorithms require groups of agents to

3

transmit data to a single location for computation. Examples of such control-level compu-
tational tasks include winner selection for auction-based algorithms [22], partial central-
ization in distributed constraint optimization [41, 51], and automated monitoring of team
plan execution [57]. Flow allocation can be used to optimize the choice of auctioneer,
centralization point, or plan monitor.

1.2 Flow Allocation in Capacitated Environments

We first address the problem of flow allocation for task execution in capacitated environ-
ments. These are most natural for computational tasks in communication networks where
the amount of data that can be transmitted is limited, but can also model physical environ-
ments with transportation limitations.

The environment is modeled as a directed graph with edge capacities, sink nodes represent
task execution locations, and groups of source nodes represent subteams of agents. The
source nodes of each group have an amount of flow that they must transmit to the sinks, and
the flow for all members of the same group must go to the same sink. This corresponds to
all of the required data for a computational task being sent to the same node for processing.
The total amount of flow on each edge is subject to the capacity limit for that edge, and it
may not possible for all groups to transmit their full amounts of flow to sinks. The flow
allocation problem we address is to maximize the number of groups able to transmit their
full amounts of flow. This corresponds to enabling the maximum number of subteams to
execute their assigned tasks, a problem we formalize as the Maximum Satisfied Groups
(MaxSG) problem.

Many well-known flow problems such as maximum flow or minimum cost flow can be
solved efficiently by exploiting the divisibility of flows among multiple paths to meet
capacity constraints. However, we show that MaxSG is intractable even when flows are
divisible. The reason for this are two integral constraints. First, the source nodes in a
group must all send their flow to the same sink. Choosing a sink for each group is part
of the MaxSG problem, and it corresponds to selecting a single processing node on which
to perform a computational task for a subteam of agents. Second, all of the flow from the
source nodes of a group must be available at the selected sink in order for task execution
to occur. We provide an algorithm for solving MaxSG optimally by expressing these
constraints in a mixed integer linear program (MILP).

We also consider two variations the basic flow allocation problem. In the first, we restrict
the graph of the environment to be a directed, rooted tree with a single sink at the root. This
kind of functional topology arises from several proposed algorithms designed to simplify

4

or improve the efficiency of ad hoc wireless networks. We provide a pseudo-polynomial
time algorithm (the running time depends polynomially on the magnitude of the largest
capacity) for optimally solving MaxSG in such an environment.

In the second variation we require that the flows be unsplittable; that is, flow from a source
node cannot be divided on multiple paths to the sink. This is useful for modeling physical
agents like robots that may have a fixed size that restricts their ability to move through the
environment, and cannot divide themselves into multiple smaller parts when confronted
with a bottleneck. We show that MaxSG for unsplittable flows is also intractable, and
moreover we prove that there is not a non-trivial guaranteed approximation algorithm un-
less P=NP.

1.3 Network Augmentation

The agents’ ability to modify the environment is motivated by approaches to augment
communication networks by the addition of supplemental nodes to improve connectivity
and capacity [68, 38, 61]. Establishing and maintaining effective wireless communication
networks is a major challenge for many multiagent domains, such as future military oper-
ations and disaster response teams. In these applications, agents often do not have access
to established communication infrastructure, and so must rely on an ad hoc network to
meet their communication needs. Limited communication ranges, communication capac-
ity constraints, signal obstruction (by terrain, foliage, and buildings), agent mobility, and
wireless interference restrict the effectiveness of ad hoc networks in such settings. Aug-
menting the network through the addition of additional nodes is one way to address these
issues.

These supplemental nodes will often be large enough and have sufficient power resources
that they can be equipped with sophisticated communication hardware with longer range
and higher capacity than those carried by people on the ground or in low-power robots and
sensors. For example, unmanned aerial vehicles (UAVs) and unmanned ground vehicles
(UGVs) can be used for outdoor environments, small robots can be used for indoor set-
tings, and additional base stations can be deployed in sensor networks, all with dedicated
hardware with superior capabilities to the other nodes in the network. UAVs in particular
have received attention because they possess additional advantages such as operating in
largely obstruction-free airspace, which increases range, capacity, and reliability of com-
munication among UAVs, often having clearer lines of sight between UAVs and agents on
the ground, and being able to travel more quickly and freely than ground- based agents,
which allow them to respond to agents’ movements.

5

The central problem of network augmentation is determining where the supplemental
nodes should be positioned. The supplemental nodes can be used in a variety of ways,
for instance by providing connectivity between two disconnected parts of the network, im-
proving capacity in parts of the network with heavy traffic, and even acting as processing
nodes for computational tasks, due to their superior capabilities. The optimal positioning
of supplemental nodes will therefore depend on the communication needs of the network.
At the same time, the communication needs will be affected by the positioning, as new
flows may become possible and sink locations change. Network augmentation thus adds
an additional and interdependent level of optimization to the flow allocation problem.

Network augmentation therefore involves partial knowledge of both the topology and the
communication needs. In considering flow allocation, we assumed a known topology but
partial knowledge of the communication needs: we knew the source groups but not the
sink assigned to each source group. Other work in network design typically assumes full
knowledge of the communication needs in the form of flow demands for specific source-
sink pairs, but only partial knowledge of the topology. In addressing network augmentation
for flow allocation we must simultaneously address both forms of partial knowledge to find
optimal solutions.

We represent the initial network without supplemental nodes as a graph with capacity
constraints on edges. This can represent the effects of obstructions, interference, signal
attenuation, and other factors in the properties of the network. In addition, we restrict the
deployment of supplemental nodes to a finite set of possible locations whose connectivity
properties are known, which is represented by the potential network. These locations
may be pre-selected as desirable or acceptable, or generated as a finite approximation. In
practice, these graphs can be generated in real-time if the relevant properties of the wireless
network are known.

Flow allocation for source groups is performed on the actual network determined by a
deployment of supplemental nodes to possible locations in the potential network, where
possible locations (and incident edges) in the potential network that have not been filled by
a supplemental node are removed. The supplemental nodes are able to act as sinks as well
as relays, and we consider two related problems, the first of maximizing the number of
satisfied groups given a fixed number of supplemental nodes and the second of finding the
minimum number of supplemental nodes required for all groups to be able to be satisfied.
We prove that these problems are intractable and provide optimal and heuristic algorithms
for solving them.

6

1.4 Flow Allocation in Adversarial Environments

Some of the most common multiagent domains, those in military and law enforcement
settings, are inherently hostile. The agents must operate in an environment that is not just
the result of neutral processes but is influenced by a purposive adversary whose interests
are opposed to those of the agents. This creates a very different setting for flow allocation
than a neutral environment or one that can be affected through network augmentation by
the agents. In those contexts, the problem is one of straightforward if computationally
difficult optimization. In adversarial settings, flows must be chosen strategically even as
the adversary is actively and rationally attempting to counter their efforts.

We consider costly environments where there are no capacity limitations, but transmitting
flow on each edge incurs a cost for the agents that is proportional to the amount of flow
sent. This can be represented by defining a cost vector over the edges of the graph and
computing the total costs as the scalar product of the cost vector and the flow vector de-
scribing the amount of flow sent on each edge. This setting is widely applicable to both
physical environments and communication environments. For example, costs may reflect
the time it takes for a vehicle to move through a city, or battery depletion used to transmit
across a communication link. The agent team seeks to minimize the total costs required to
execute their tasks.

In the absence of an adversary, it is straightforward to compute satisfying flows for the
source groups that minimize the total costs incurred by the agents, and this can be done
in polynomial time. In an adversarial environment, the adversary can carry out a num-
ber of attacks, each of which adds special costs called harm to the graph, equivalent to
adding a new cost vector to the graph. For example, with one attack the adversary may
jam a specific region of the communication network, forcing nearby nodes to use more
battery power due to higher transmission power or a greater number of retransmissions.
In a physical environment, the adversary may place an obstacle on a road that slows the
movement of vehicles over that road. When the adversary carries out multiple attacks, the
cost vectors for each attack are summed and used to compute the total harm suffered by
the agents in addition to the neutral environmental costs.

This interaction is naturally modeled using the theoretical framework of game theory. The
harm depends on both the flows used by the agents and the attacks carried out by the
adversary, and so the agents must reason about what attacks the adversary will carry out,
even as the adversary contemplates what flows the agents will use. Assuming that both
sides are rational, self-interested actors, game theory provides a rigorous framework for
reasoning strategically about their behaviors. In particular, the game theoretic concept of
Nash equilibrium is a solution in which both sides are playing optimally given the behavior

7

of the other side.

We model flow allocation in adversarial environments as a two-player game played on a
directed graph. One player, the sender, represents the team of agents and chooses satis-
fying flows through the network for the source groups. The other player, the adversary,
chooses a set of attacks from a set of possible attacks. The players choose their strategies
without being able to observe the strategy chosen by the other player, but they are able to
reason about what the other player would do based on common knowledge about the pay-
offs. We consider both zero-sum games, where the players receive payoffs that are exactly
opposite (based on the harm suffered by the agents), and non-zero-sum games where the
payoff to the sender is based on the harm and the environmental costs, while the payoff to
the adversary is based on the harm and costs of playing each attack.

These games are challenging to solve using traditional game theory because the players
have very large strategy spaces: the continuous space of all satisfying flows for the sender,
and the exponential space of subsets of possible attacks based on the maximum number
of attacks that can be carried out simultaneously. However, we show how the structure
of the games can be used to efficiently find equilibrium solutions in polynomial time. We
also show how various types of uncertainty about payoffs and adversary capabilities can
be modeled as Bayesian games and extend our algorithm to solving these.

Finally, we consider games where the sender must commit to a strategy that can be ob-
served by the adversary. Although the Nash equilibrium strategies can be used, we show
that this may lead to very bad payoffs for the sender due to indifference on the part of the
adversary. In a security setting, the sender cannot leave the difference between success
and disaster up to the whims of the adversary. Instead, we show how the sender can devi-
ate by an arbitrarily small amount from an equilibrium strategy in order to induce even a
worst-case adversary to play a strategy that results in the most favorable expected payoff
for the sender.

1.5 Contributions

This thesis makes the following contributions:

• a formulation of the flow allocation problem in capacitated environments and a proof
that it is strongly NP-hard (Chapter 2);

• a pseudo-polynomial time algorithm for flow allocation on trees (Chapter 2);

• a proof that flow allocation on general graphs where flows cannot be split is strongly
NP-hard to solve optimally and cannot be meaningfully approximated in polynomial

8

time unless P = NP (Chapter 2);

• a proof that network augmentation is NP-hard to solve optimally, and algorithms for
solving it heuristically (Chapter 3);

• a linear programming formulation for finding equilibrium strategies in zero-sum
flow allocation games (Chapter 4);

• a linear programming formulation for finding equilibrium strategies in non-zero-sum
flow allocation games with costs (Chapter 5);

• a new equilibrium refinement, inducible Stackelberg equilibrium, for non-zero-sum
flow allocation games with commitment, and an algorithm for computing the opti-
mal inducible Stackelberg equilibrium (Chapter 5).

9

10

Chapter 2

Flow Allocation in Capacitated
Environments

We begin by considering the problem of allocating flows in a capacitated environment.
Communication networks are natural examples of these kinds of environments, as many
multiagent systems use wireless networks that are tightly constrained in the amount of data
that can be sent between agents. Despite these limitations, groups of agents must often
transmit streams of data to a single location in the network as input to a computational
task. For example, locating, recognizing, and tracking an object with a sensor network
requires fusing data streams from multiple sensor, while plan monitoring requires access
to status information from agents in the subteam executing the plan. Because of capacity
constraints, it may not be possible for all tasks to be executed. The fundamental flow
allocation problem is to choose the task locations and flows so that the maximum number
of tasks can be performed. We formalize this problem next.

2.1 Flow Allocation

In this section we formalize the flow allocation problem. A problem instance has three
parts: a graph, sink nodes, and groups of source nodes. These correspond to the environ-
ment, task execution locations, and agent subteams.

The environment is represented as a directed graphG = (V,E) where V is the set of nodes
and E is the set of edges; following convention we refer to such a graph as a network. The
number of nodes and edges are denoted by n = |V | and m = |E|, respectively. Each
edge e ∈ E has a weight w(e) ∈ [0,+∞] representing the capacity of that edge. The

11

Symbol Description

b(s), bs source requirement of s ∈ S
E set of edges
f ie the amount of flow on edge e ∈ E for group Si
G = (V,E) directed graph of the environment
K number of groups
m number of edges
n number of nodes
p(v) parent of node v
S ⊂ V set of source nodes
S = {S1, . . . , SK} set of groups partitioning S
t ∈ V \ S sink node
Tr = (V,E, t, w) TREE-IN input tree with nodes E, edges E, root t ∈ V , and edge

capacities w
V set of nodes
w(e) capacity of edge e ∈ E

Table 2.1: Summary of notation for Chapter 2

capacity of an edge may either be a non-negative real number (in which case the edge has
limited capacity), or positive infinity (in which case the edge has unlimited capacity). As
we will see later the inclusion of positive infinity as a value for w(e) is convenient but not
necessary as any in any instance a suitable large finite value could be substituted instead.

The set of sink nodes T ⊂ V \ S represent the possible locations of task execution in the
environment. With physical tasks, each sink represents the location of a task in the physical
environment. For example, in the disaster response domain a sink may represent a burning
building. With computational tasks, each group is assumed to have an implicit task, and the
sinks represent processing nodes where the computation can be performed. For example,
in a distributed sensor network each group corresponds to a set of sensor nodes that require
data fusion of their sensor readings, and sinks correspond to base stations where this fusion
can occur. We assume without loss of generality that sink nodes have no outgoing edges;
if there is a sink node t with outgoing edges we can add a new sink node t′, add an edge
from t to t′ with unlimited capacity, and remove t from T . An example of this process is
shown in Figure 2.1.

The source nodes S ⊂ V represent the agents in the environment. The source nodes are
partitioned into K groups denoted S = {S1, . . . , SK} reflecting the organization of the

12

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
+∞

Figure 2.1: Transforming a network with outgoing edges from a sink node to one without
outgoing edges from that sink node. A new sink node is added with an edge with unlimited
capacity from the old sink node. This adds at most |T | additional nodes and edges.

agents into non-overlapping subteams, with each source node in exactly one group. The
group index group(s) of a source node s ∈ S is the index i such that s ∈ Si.
The flow requirement is a function b : S → [0,+∞) mapping source nodes to the amount
of flow that must be sent from that source node to a sink. Because all source nodes in
a group must send their flow to the same sink, it is often convenient to index the flow
requirements both by the source node and the source group, denoted by bis = b(s) for
s ∈ Si. When convenient we may extend the domain of b to all nodes, not just those in S,
with the understanding that b(v) = 0 for all v /∈ S and similarly biv = 0 for all v /∈ Si.
A solution to the flow allocation problem has three components: a set of groups for which
flow has been allocated, the assignment of sinks to these groups, and the flows that have
been allocated. We let X ⊆ S denote the set of groups for which flow has been allocated.
For each Si ∈ X we let xi ∈ T denote the sink assigned to group Si.

A multicommodity network flow for X is a function f : E → [0,+∞]|X | that maps edges
to a non-negative amount of flow on that edge for each group in X . For convenience we
usually denote the flow for the ith group on an edge e = (u, v) ∈ E by f ie or f iuv, and in
cases where there is a single group (i.e., S = {S}) we sometimes omit the superscript. A
flow must satisfy the flow capacity and flow conservation constraints:∑

Si∈X

f ie ≤ w(e) ∀e ∈ E (flow capacity) (2.1)

biv +
∑

(u,v)∈E

f iuv =
∑

(v,u)∈E

f iuv ∀v ∈ V \ T, Si ∈ X (flow conservation) (2.2)

The capacity requirement constraint in Equation (2.1) requires that the total flow for all

13

�
�

�
�

�
����

�
�

�
����

�
�

�
����

�

�

�
�
��

�

�
�
��

�

�
��������

Figure 2.2: MaxSG-Dec is strongly NP-complete: Reduction from the Bin Packing deci-
sion problem.

groups on each edge must be no greater than the capacity of that edge. The flow conser-
vation constraint in Equation (2.2) requires that the amount of flow of each type that exits
a node is equal to the sum of the amount of flow of that type originating at that node (i.e.,
the flow requirement) and the amount of flow of that type entering the node, for all nodes
other than the sink. From these two constraints it is clear that no edge can receive a total
amount of flow that exceeds B =

∑
s∈S bs, and so the weights w(e) could be limited to

the interval [0, B].

The flow for each group Si ∈ X should be sent to the sink xi assigned to it. This is
expressed in the sink flow constraint:∑

(u,xi)∈E

f iuxi =
∑
s∈Si

bis ∀Si ∈ X (sink flow) (2.3)

If a flow satisfies the sink flow constraint in Equation (2.3) we say that the flow is a sat-
isfying flow for X and that the groups in X are satisfied. Satisfied groups correspond to
agent subteams that are able to proceed with task execution. A natural problem is to en-
able as many subteams as possible to execute tasks. This is the problem of maximizing
the number of satisfied groups, MaxSG.
Problem 1. Maximum Satisfied Groups (MaxSG). Given graphG = (V,E) with capac-
itiesw, source groups S, source requirements b, and sinks T , findX ⊆ S, sink assignment
x and satisfying flow f for X such that |X | is maximized.

The decision version of this problem, MaxSG-Dec, is to decide whether it is possible to
allocate flows to satisfy at least k groups.
Theorem 1. MaxSG-Dec is strongly NP-complete.

14

Proof. To show that MaxSG-Dec is in NP we observe we can verify in polynomial time if
|X | ≥ k and f is a satisfying flow for X .

We prove NP-hardness by reduction from Bin Packing, which is known to be strongly
NP-complete [21]. The Bin Packing decision problem is the NP-complete problem of
deciding if a set of nBP items of different size can be placed into kBP bins. Formally,
it is the problem of deciding if a set of numbers {a1, . . . , anBP } with ai ∈ (0, 1] can be
partitioned into kBP sets Bin1, . . . , BinkBP such that

∑
a∈Bini ≤ 1 for 1 ≤ i ≤ kBP .

From a Bin Packing instance we construct an instance of MaxSG-Dec, as illustrated in
Figure 2.2. First, create nBP source nodes s1, . . . , snBP and set the flow requirements
bi = ai. Place each source node in its own group. Next create kBP nodes v1, . . . , vkBP and
add edges from each source node to each of these newly created nodes. Set the capacity
of these edges to positive infinity. Add kBP sink nodes, t1, . . . , tkBP and add an edge with
unit capacity between vi and ti for 1 ≤ i ≤ kBP . Finally set k = nBP so that the decision
is whether it is possible to allocate flow for all of the groups.

Suppose that there is a flow satisfying all nBP groups. Because each group is a singleton,
this means that the flow from each source node can be sent to sinks. Let Yi ⊆ S be the set
of all source nodes sending flow to sink ti, that is, Yi = {sj ∈ S : xj = ti}. From the flow
capacity constraint for edge (vi, ti), it follows that∑

sj∈Yi

aj ≤ 1 ∀i ∈ [1..kBP]

Because all groups are satisfied and each group is a singleton, it follows that the {Yi}
partition S into at most kBP sets. Thus there is a bin packing using at most kBP bins.

Conversely, suppose that there is a bin packing using at most kBP bins. For each aj ∈ Bini
we set xj = ti and f jsjvi = f iviti = aj (and 0 for other edges). By the bin packing
constraints we know that the flow capacity constraints on the edges (vi, ti) must be satisfied
and hence all nBP groups are satisfied.

The answer to a Bin Packing instance is YES if and only if the answer to the MaxSG-Dec
instance is YES, so MaxSG is strongly NP-hard, and therefore strongly NP-complete.

We solve MaxSG by formulating it as a mixed integer linear program (MILP) and using
existing algorithms for solving MILPs to compute a solution. Solving a MILP is known
to be NP-hard, but this is acceptable given Theorem 1. Our formulation for MaxSG is
MILP 1. We must specify the flow capacity, flow conservation, and sink flow constraints
as a set of constraints that are linear in the variables being solved for. At first glance, it
may appear that Equations (2.1) – (2.3) are of this form as they are linear in terms of f .

15

MILP 1 MILP formulation of MaxSG.

Maximize
f,X

K∑
i=1

∑
t∈T

Xit (2.4)

subject to:

biv
∑
t∈T

Xit +
∑

(u,v)∈E

f iuv =
∑

(v,u)∈E

f iuv ∀v ∈ V \ T, i ∈ [1..K] (2.5)

K∑
i=1

f ie ≤ w(e) ∀e ∈ E (2.6)∑
(u,t)∈E

f iut = Xit

∑
s∈Si

bis ∀t ∈ T, i ∈ [1..K] (2.7)

∑
t∈T

Xit ≤ 1 ∀i ∈ [1..K] (2.8)

Xit = 0 ∀i ∈ [1..K], t ∈ T (2.9)

f ie ≥ 0 ∀e ∈ E, i ∈ [1..K] (2.10)
Xit ∈ {0, 1} ∀i ∈ [1..K], t ∈ T (2.11)

16

However, the output X is also used in all three: to determine the sum in the flow capacity
constraint, and to determine the presence or absence of constraints for different values of i
in the flow conservation and sink flow constraints. We linearize these constraints through
the addition of integer indicator variables Xit for 1 ≤ i ≤ K and t ∈ T . Each variable
can take the value 1 or 0, with Xit = 1 if t is the sink assigned to Si (that is, if xi = t)
and Xit = 0 otherwise. Because each group is assigned at most one sink, it follows that at
most one Xit for each i is non-zero. This is expressed by the constraint in Equation (2.8).
If the sum equals 0, then no sink has been assigned to group Si and so Si /∈ X . In this
way the integer collectively represent X in addition to the sink assignment x. As a result,
the objective of maximizing |X | is equivalent to maximizing the sum of the Xit variables,
which is the objective of MILP 1 as shown by Equation (2.4).

Flow conservation is expressed as Equation (2.5), which requires that flow originates at v
for group Si if and only if a sink has been assigned to Si. As a result, for all e ∈ E, it
follows that f ie > 0 if and only if a sink has been assigned to Si, and so we can express the
flow capacity constraint by summing over all possible groups as shown in Equation (2.6),
knowing that there will only be a positive amount of flow for groups in X . Finally, the
sink flow constraint is captured by Equation (2.7), which requires that the total amount of
flow for group Si entering a sink t must be

∑
s∈Si b

i
s if t is the sink assigned to Si and 0

otherwise.

2.1.1 Alternative Capacity Models

We consider flows that are limited by capacities on the edges. In this subsection we de-
scribe how to accommodate some other types of capacities.

Node Capacities

With node capacities the amount of flow that can pass through each node v ∈ V is limited
to a maximum amount w(v) > 0. In communication networks this arises when the ability
of a node to process communication is limited. One way this can arise is when the team
includes humans who must manually relay the information.

A graph G = (V,E) with node capacities can be transformed into a new graph G′ =
(V ′, E ′) with an additional |V | nodes and edges. This construction is illustrated in Fig-
ure 2.3. For each node v ∈ V we add two nodes vin and vout to V ′, and an edge (vin, vout)
to E ′ with edge capacity w(vin, vout) = w(v). This edge represents the limitation in the
node v’s ability to process flow. To preserve the overall topology of the original network,

17

� �
��

����

�
���

����

Figure 2.3: Transforming a network with node capacities to one with edge capacities.

for each edge (u, v) ∈ E we add an edge (uout, vin) to E ′.

In the MILP formulation we can more easily incorporate node capacities by adding a new
constraint: ∑

(u,v)∈E

f iuv ≤ w(v) ∀v ∈ V (node capacities).

Wireless Interference

Many multiagent teams utilize wireless networks that share the same channel for commu-
nication. In such cases, individual capacity limitations on each link are often far less im-
portant than the effect of wireless interference. Most nodes use omnidirectional antennas
and the transmissions from a node are heard by all nearby nodes, causing interference. A
simple way to model this to a first approximation in the MILP formulation uses adjacency
in G as an indication of which nodes can interfere, on the premise that if the transmis-
sion from a node can be used to communicate with another node, it can also interfere
with that node. More sophisticated approaches may use a neighbors-of-neighbors model
to reflect the rule-of-thumb that the interference range is generally twice the transmission
range [65], or conflict graphs that explicitly describing which links interfere [31].

We assume that transmissions use a shared channel and the edge capacities reflect full
utilization of that channel in the absence of other transmissions. When a node v ∈ V
transmits on multiple edges, it divides time transmitting to each recipient, with the fraction
of time equal to fvu/w(v, u). This leads to the following constraint on outgoing flow:∑

(v,u)∈E

fvu
w(v, u)

≤ 1 ∀v ∈ V

To receive a transmission, v must have an open time slot to receive the transmission.
However, due to interference time slots are filled with all transmissions from neighbors

18

of v, not just those intended for v. We first consider the available time slots without
considering interference. We add a binary decision variable Zv for each v ∈ V to indicate
whether v can receive flow. If Zv = 1 then flow is allowed to be sent to v; if Zv = 0 then
no flow can be sent to v. Thus we get the constraint∑

(u,v)∈E

fuv
w(u, v)

≤ Zv ∀v ∈ V.

Next we consider the effect of interference. If flow is sent to v, the total time slots must
be used between received transmissions and interference. If flow is not sent to v we don’t
care how much time slots are suffer from interference. This is achieved by using a suitably
large constant M in the following constraint:∑

(u,v)∈E

∑
(u,v′)∈E

fuv′

w(u, v′)
≤ 1 +M(1− Zv) ∀v ∈ V.

When Zv = 1, the right-hand side becomes 1, so at most all of the time slots can be used.
When Zv = 0 the right-hand side becomes M + 1, removing the limit on the amount of
interference for suitably large M . However, v cannot receive any flow due to the previous
constraint.

2.2 Flow Allocation on Trees

We turn now from environments modeled as general directed graphs with multiple sinks
to environments with a more limited topology and a single sink. In communication net-
works, simple network structures, and trees in particular, are often favored for reasons of
efficiency and scalability. Trees greatly simplify routing, while also arising naturally as a
result of power-conserving mechanisms such as hierarchical routing [28, 29], data aggre-
gation [1], and topology control [49]. If flow allocation for computational tasks is done in
these kinds of networks, the functional network topology used as input will be a tree.

In this section we consider a special case, the TREE-IN case, in which G = Tr = (V,E, t)
is a directed tree with a single sink t at the root and all edges directed toward the root.
In addition, we assume that the source nodes are each in their own group, so that S =
{{s} : s ∈ S}. Because of this assumption, in this section we find the set of source nodes
S ′ ⊆ S whose flows can be allocated, with the understanding that this is equivalent to
finding X = {{s} : s ∈ S ′}.

19

We denote the subtree rooted at a node v (including the node v itself) by Trv = (Vv, Ev).
We also use p(v) to denote the parent of any nodes v ∈ V other than the root. Without loss
of generality we can assume that there are no leaf nodes in Tr that are not source nodes; if
there are, we can remove them without affecting the problem because they cannot be on a
flow path from any of the sources to the sink. Furthermore, we can assume that all source
nodes are leaves in Tr ; for an interior source node s, we can add a new leaf node s′ with
edge (s′, s), designate s′ as a source node with bs′ = bs, and remove s from S. Together
these assumptions mean that we can assume a node is a leaf if and only if it is a source
node.

The key characteristic of the tree topology is that there is a unique path from v to the root
t for any v ∈ V . Because of this, the flow conservation constraint requires that all of
the flow that originates in a subtree Trv (for v 6= t) must be transmitted over the edge
(v, p(v)). If S ′ is the set of source nodes whose groups are satisfied, it follows that Vv ∩S ′
are the satisfied source nodes in the subtree rooted at v, and so

∑
s′∈Vv∩S′ bs′ is the total

amount of flow on edge (v, p(v)). For the TREE-IN case, the flow capacity constraint is
equivalent to requiring that that amount of flow is no greater than w(v, p(v)) for all v other
than the root.

The following formalizes the TREE-IN case of the MaxSG problem.
Problem 2. (TREE-IN case of MaxSG.) Given a directed tree Tr = (V,E, t) with root
t ∈ V , integral edge capacities w, and source nodes S with integral source requirements
b, find S ′ ⊆ S such that

1. |S ′| is maximized; and

2.
∑

s′∈Vv∩S′ bs′ ≤ w(v, p(v)) for all v ∈ V \{t}.
The first condition is equivalent to maximizing the number of satisfied source groups as
each source node is in its own group. The second condition is equivalent to the flow
capacity constraint, as described above.

Recall from the proof Theorem 1 that a Bin Packing instance was reduced to an instance
of MaxSG where each source node was in its own group. Thus, MaxSG is still strongly
NP-hard even when restricted to source groups that are singletons, and so there are no
known pseudopolynomial-time algorithms for solving these instances. A natural question
is whether this remains true in the TREE-IN case, where there is a single sink and the graph
is a tree.

The answer is no. Algorithm 1 is a multi-layer dynamic programming algorithm that
solves the TREE-IN case optimally in pseudo-polynomial time. It proceeds by computing
two functions, one for the value of an optimal solution and one for an optimal solution
itself, in a bottom-up fashion. The first function is Fv(y), the maximum number of source

20

nodes in the subtree rooted at v (including v itself) that can have their flow requirements
satisfied if the total amount of flow sent to v is at most y. The second function is Sv(y), a
maximum set of source nodes in the subtree rooted at v (including v itself) that can have
their flow requirements satisfied if the total amount of flow sent to v is at most y.

For each v ∈ V , we must compute Fv(y) and Sv(y) for values of y ∈ [0..Bv], where
Bv =

∑
s∈S∩Tv b(s), the sum of flow requirements in the subtree rooted at v. As we

move up the tree, we compute Fv(y) and Sv(y) based on the values for the children of v.
The optimal substructure that we exploit is that Fv(y) is determined exactly by the values
Fu(z) for its children u, and that we can compute Fv(y) sequentially by iterating over the
children of v.

We begin Algorithm 1 by initializing Bv for all v (line 1). These values will be used later
in the algorithm. In line 2 we then order the nodes according to their depth-first post order.
This guarantees that all children of a node v will be processed before v is processed, so
that we can recursively use the F values for the children in computing the F value for v.
We then iterate through the nodes to compute the Fv and Sv values (lines 3–22). The base
case applies when v is a source (i.e., leaf) node. In this case we can satisfy the source
node if and only if we use flow at least equal to bv. Thus, if y < b then Fv(y) = 0 and
Sv(y) = ∅, while if y = bv then Fv(y) = 1 and Sv(y) = {v} (lines 5–6). Note that Fv and
and Sv do not depend on the capacity of the edge (v, p(v)); this constraint will be taken
into account when we compute the values for interior nodes.

For an interior node v, we recursively compute Fv(y) based on the values Fu(z) for chil-
dren u of v. If y total flow is allowed to be sent to v, this flow must come from the children
of v and hence we would like search the space of all possible ways of dividing the y flow
for v among the children of v. However, naively enumerating these takes exponential time.
Instead, we use another level of dynamic programming. The optimal substructure that we
exploit is that the optimal way to divide y flow among l children must be some combina-
tion of optimally dividing between z flow among the first l − 1 children and reserving the
remaining y − z flow for the lth child, for some z ∈ [0..y].

In lines 13–21 we iterate through the children. At the beginning of iteration l, we have
F l−1
v (y), the Fv values computed by considering the first l − 1 children, and the corre-

sponding Sv values; we compute the values for the lth iteration for all possible y (the inner
loop on lines 14–20). For a given value of y, we compute F l

v(y) by exhaustively consid-
ering all ways to divide the y units of flow into z units of flow for the first l − 1 children
and the y − z units of flow for the lth child (the loop from lines 16 – 20); we choose the
division that maximizes the number of satisfied groups. It is at this stage that we check for
capacity constraints on line 17. the amount of flow that can be obtained from the child u
is bounded by the capacity of the edge w(u, v) and Bu.

21

Algorithm 1 TREE-IN

Input: Tr = (V,E, t); edge capacities w; source nodes S ⊂ V with bs for all s ∈ S.
Output: Maximum S ′ ⊆ S that satisfies all flow constraints.

1: Set Bv to be the sum of flow requirements in the subtree rooted at v, for all v ∈ V
2: Order V by the depth-first post order
3: for all v ∈ V do
4: if v is a source node then
5: Fv(y)← 0 for 0 ≤ y < bv
6: Sv(y)← ∅ for 0 ≤ y < bv
7: Fv(bv)← 1
8: Sv(bv)← {v}
9: else if v is an interior node then

10: F 0
v (y)← 0 for 0 ≤ y ≤ Bv

11: S0
v(y)← ∅ for 0 ≤ y ≤ Bv

12: l← 1
13: for all child u of v do
14: for y ← 0 to Bv do
15: F l

v(y)← 0
16: for z ← 0 to y do
17: ∆← min(y − z, w(u, v), Bu)
18: if F l

v(y) < F l−1
v (z) + Fu(∆) then

19: F l
v(y)← F l−1

v (z) + Fu(∆)
20: Slv(y)← Sl−1v (z) ∪ Su(∆)
21: l← l + 1
22: Fv(y)← F l−1

v (y) for 0 ≤ y ≤ Bv

23: Sv(y)← Sl−1v (y) for 0 ≤ y ≤ Bv

24: return St(Bt)

22

After we have looped through all children, we take Fv and Sv to be the values of we
computed in the final iteration (lines 22 and 23), as these are the values after considering
all of v’s children. Note that it is important that we compute Fv(y) and Sv(y) for all
possible values of y. This is because we will need to use them when considering the
parent of v, which must consider all possible ways to divide its flow between its children
(i.e., v and v’s siblings).

The running time of Algorithm 1 is pseudo-polynomial. It is clear that we can compute
lines 1 and 2 in O(n+m) time. Observe that Bt = maxv Bv. Within the main body of the
algorithm, the innermost loop (lines 16–20) takes at most O(Bt) time and it is repeated at
most O(Bt) time in the loop from lines 14 – 20. As this loop in turn is repeated for each
child of interior node, the innermost loop is repeated at mostO(n) times in total, for a time
of O(nB2

t). The rest of the outermost loop body in lines 4–23 take at most O(Bt) time, so
the total running time is O(nB2

t + m), which is pseudo-polynomial in the size input due
to its polynomial dependence on the magnitude of Bt.

2.3 Unsplittable Flow Allocation

In this section we consider the case where the flows cannot be divided over multiple paths
as they could be in the previous problem formulations. Instead, the flow from each source
node must be routed along a single path to the sink node. This assumption may be the
case for some communication networks and is also applicable when the flows represent
the movement of physical agents (such as a robot) that cannot be divided. We consider
consider general directed graph inputs and seek to maximize the number of source groups
that can fully transmit their required flows to the sink.
Problem 3. (MaxSG-UF) Given a directed graphG = (V,E) with integral edge capacities
w(e) > 0 for all e ∈ E, source groups S, integral source requirements b, and sink nodes
T , find X ⊆ S, sink assignment x, and satisfying unsplittable flow f for X such that |X |
is maximized.

The decision problem associated with this optimization problem, MaxSG-UF-Dec, is to
decide whether a MaxSG-UF instance has a solution with |X | ≥ k.
Theorem 2. The MaxSG-UF-Dec decision problem is strongly NP-complete.

Proof. Given a flow f from the source nodes to sinks, it is straightforward to check in
polynomial time whether they meet the flow requirements for at least k groups, so this is
clearly in NP.

We prove strong NP-hardness by reduction from 3-Partition, which is known to be strongly

23

�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�
�

�

�

�
������ �

���������
�������

�������
������

Figure 2.4: MaxSG-UF-Dec is strongly NP-complete: Reduction from 3-Partition.

NP-complete [21]. The 3-Partition decision problem is as follows: Given a set A =
{a1, . . . , a3m} of 3m positive integers where

∑
a∈A a = mC, and C/4 < a < C/2 for all

a ∈ A, decide whetherA be partitioned intom subsetsA1, . . . , Am such that
∑

a∈Ai a = C
for all Ai.

Given a 3-Partition instance, we construct a MaxSG-UF-Dec instance, as illustrated in
Figure 2.4. We create a sink node t, then addm intermediate nodes v1, . . . , vm and connect
each one to twith edge (vi, t) with capacity w(vi, t) = C. We then create 3m source nodes
s1, . . . , s3m and for all source nodes si and intermediate nodes vj , we add an edge (si, vj)
with capacityC. We set the source requirements bsi = xi for 1 ≤ i ≤ 3m, and ask whether
it is possible to satisfy all k = 3m source groups.

Suppose that the 3-Partition decision is YES. Then for eachAi = {aki1 , aki2 , aki3}we have
that aki1 + aki2 + aki3 = C and therefore we can route the flow from ski1 , ski2 , and ski3 to t
via node vi. Because theAi coverA, it is possible to satisfy the source requirements for all
source nodes. Because the Ai are pairwise disjoint, each aj ∈ A is in exactly one Ai and
hence it is possible for sj ∈ S to send its flow only to vi. Thus the flow for each source
node can be routed on a single path to t, and so the MaxSG-UF-Dec decision is YES.

Conversely assume that the MaxSG-UF-Dec decision is YES. From the construction of

24

capacities and source requirements, each intermediate node must receive flow from ex-
actly three children {ski1 , ski2 , ski3}, and their combined flow must equal C. Further-
more, no source node sends flow to more than one intermediate node. Hence the sets
Ai = {aki1 , aki2 , aki3} satisfy the 3-Partition requirements, and so the 3-Partition decision
is YES.

Thus the 3-Partition decision is YES if and only the constructed MaxSG-UF-Dec decision
is YES, and so MaxSG-UF-Dec is strongly NP-complete.

By Theorem 2 there is no known pseudopolynomial-time algorithm for solving MaxSG-
UF optimally. We next show that this problem is hard to even approximate.
Theorem 3. It is NP-hard to approximate MaxSG-UF within a factor of K1−ε for any
ε > 0 where m is the number of edges of the graph in the MaxSG-UF problem.

Proof. The proof is by reduction from the NP-hard problem 2DIRPATH [26]. An in-
stance of 2DIRPATHis a directed graphH = (VH , EH) and distinct nodes x1, x2, y1, y2 ∈
VH . The problem is to decide whether there exist directed paths from x1 to y1 and x2 to y2

such that the paths share no common edges (i.e., they are edge-disjoint).

The reduction is a modified version of the one used in [26]. Given any ε > 0, we construct
a directed graph G from H . Figure 2.5 provides an illustration of the construction.

Let N = |VH |d1/εe. We first create N source nodes si for i ∈ [1..N], with source require-
ments bsi = i. We place each source node in its own group so that S = {{s} : s ∈ S}.
We then create N sink nodes ti for i ∈ [1..N]. Place source nodes from right to left on
horizontal axis, si at position n− i+ 1 and sink nodes from bottom to top on vertical axis,
ti at position i, where 1 ≤ i ≤ N . As in Figure 2.5, we connect si to ti by draw a line
from si, then going up until a node di,i at height i, then going left until connecting ti.

For each pair 1 ≤ j < i ≤ N we create a modified version of H that we denote Hij

by adding a capacity of i to each edge. The nodes corresponding to x1, x2, y1, y2 in H
are denoted x1ij, x

2
ij, y

1
ij, y

2
ij , respectively, in Hij . Suppose we wish to send j′ < j units

of unsplittable flow from x1ij to y1ij and i units of unsplittable flow from x2ij to y2ij . This
is possible if and only if there exist edge-disjoint paths in H from x1 to y1 and x2 to y2,
because each edge e in Hij can only carry flow from one of x1ij or x2ij due to the capacity
constraint w(e) = 1, and the flows from each of x1ij and x2ij cannot split and must therefore
follow single paths.

Returning now to our construction of G, we place the graph Hij at the intersection of the
path from si to ti and the path from sj to tj where 1 ≤ j < i ≤ n. We connect the path
from si to x2ij and y2ij to the path to di. We also connect the path from dj to x1ij and y1ij to
the path to tj . Formally this is achieved in the following way. For i ∈ [1..N] we add edges

25

�

�
�

��

����

����

��

��

��

����

����

��

��

�

����

����

��
���

�� ���� ���� �� �� �
�

� ��

�

��

�
�

��

�
�

	

�

	
����

����

��� �
����� ���
����� ���
��� �
��� 	
��� �
Figure 2.5: MaxSG-UF is hard to approximate: Reduction from 2DIRPATH.

26

(si, x
2
i1) and (y2i(i−1), di) with capacities i. For j ∈ [1..N] we add edges (dj, x

1
(j+1)j) and

(y1Nj, tj) with capacities j. For all 2 ≤ j < i ≤ N − 1, we add edges (y2i(j−1), x
2
ij with

capacity i and (y1(i−1)j, x
1
ij) with capacity j.

CLAIM 1. If there exist edge-disjoint paths from x1 to y1 and x2 to y2 in H , then all
source groups in G can be satisfied.

Proof of Claim 1. Suppose there exist such edge-disjoint paths in H . By our earlier ob-
servation, it follows that it is possible to route j units of flow from x1ij to y1ij and i units of
flow from x2ij to y2ij in Hij for all 1 ≤ j < i ≤ N . By construction of the other edges of
G, for each si ∈ S it is therefore possible to send bsi = i units of flow on the path from si
to di by taking edges “up” in Figure 2.5, then from di to ti by going “left.” Since each si
forms its own group in S, it follows that all source groups can be satisfied.

CLAIM 2. If there do not exist edge-disjoint paths from x1 to y1 and x2 to y2 in H , then
at most one source group in G can be satisfied.

Proof of Claim 2. We prove this claim by contradiction. Suppose that two source groups
{si} and {sj} can be satisfied, with j < i. Observe that by the construction of capacities,
the flow from si must pass through di, and the flow from sj must pass through dj . Because
j < i, it follows that the flow from sj must “cross” the flow from si at some Hij′ with
j ≤ j′ < i. That is, there exists j′ with j ≤ j′ < i such that i units of flow from si enters
x2ij′ and exits y2ij′ and j units of flow from sj enters x1ij′ and exits y1ij′ . By assumption H
does not contain edge-disjoint paths from x1 to y1 and x2 to y2 and so by our previous
observation, it is not possible to route the desired flows through Hij′ . But this means that
it is not possible to satisfy both {si} and {sj}, which is a contradiction, thus completing
our proof of the claim.

By the above two claims, YES instances of 2DIRPATHare mapped to instances of MaxSG-
UF where allN source groups can be satisfied, while NO instances are mapped to instances
of MaxSG-UF where at most one source group can be satisfied. Suppose we had an ap-
proximation algorithm with a ratio K1−ε. Then given an instance of 2DIRPATH, we
could construct an instance of MaxSG-UF with N source groups as described above in
polynomial time. We know that it must be possible to either satisfy all the source groups,
or satisfy at most one of them. We then run the approximation algorithm.

If all N source groups can be satisfied, the approximation ratio guarantees that we would
be able to find a solution with at least N/N1−ε = N ε groups satisfied. Because N =
|V |d1/εe, we are thus guaranteed to find a solution with at least |V | groups satisfied. By

27

assumption |V | ≥ 4 (the starting and ending nodes in the 2DIRPATHmust all be distinct)
so we can satisfy at least 4 groups.

If, on the other hand, at most one source group can be satisfied, the approximation algo-
rithm will also only be able to find a solution that satisfies at most one group. Therefore,
by seeing if the approximation algorithm can satisfy more than one group we will be able
to decide 2DIRPATH. But 2DIRPATHis NP-hard, and so approximating MaxSG-UF
within K1−ε is also NP-hard. This completes the proof of Theorem 3.

Theorem 3 essentially rules out any non-trivial approximation algorithm with a provable
performance guarantee. The best that we can hope to do, unless P = NP , is to consider
each group in isolation and try to find a satisfying flow, even when each group contains
only a single source node. In that case, finding a satisfying flow reduces to finding a
directed path from the source node s to a sink, using only edges with capacity w(e) ≥ bs.

28

Chapter 3

Network Augmentation and Flow
Allocation

In this chapter we consider environments that the agents can modify by adding nodes
and edges to improve connectivity and increase capacity, a process we term network aug-
mentation. This is primarily motivated by the challenge of maintaining effective wire-
less communication networks for multiagent teams. Agents must often operate in noisy,
obstacle-filled environments equipped with communication hardware that is size- and
power-limited, leading to poor network performance. One way to remedy this is to sup-
plement the agent-based network by deploying additional nodes to act as relays.

Agents can also affect physical environments, such as the road network in an urban dis-
aster response domain. For example, police officers may be deployed to direct vehicular
traffic, thereby reducing congestion and effectively increasing the road network’s capacity
to transport resources. In another example, robots may be deployed to restore edges in the
transportation network by clearing away debris from obstructed roads.

The key problem in network augmentation is to determine where to best deploy the addi-
tional nodes. This partly depends on factors intrinsic to the environment: which agents will
be in range if a relay is placed in a specific spot, for example, or what roads are currently
obstructed but can be cleared. It also depends on the flows through the environment: low
capacity only becomes a bottleneck if it is being used. But the choice of flows also depends
on the environment, and hence on the choice of network augmentation. This highlights the
interdependence of the network augmentation and flow allocation problems. Because of
this interdependence, in this chapter we simultaneously optimize both the placement of
supplemental nodes and the allocation of flows.

29

As in the previous chapter, we represent the environment as a directed graph with ca-
pacities on edges. We consider the initial network to be the graph of the environment
without any supplemental nodes. We explicitly represent the ways in which the agents can
augment the network by the potential network, which adds to the initial networks a set
of nodes representing the locations where supplemental nodes can be deployed to, along
with additional edges indicating the connectivity that would result if supplemental nodes
were deployed to those locations. The potential locations are chosen a priori possibly by
domain specialists or domain-specific algorithms (such as identifying feasible locations
for airborne relays, or the locations obstructed roads), or as finite approximations (in the
case of relays positioned in a continuous space).

In this chapter we formalize the problem of network augmentation and flow allocation,
analyzing its complexity and providing algorithms for its solution. A summary of the
notation used in this chapter is provided in Table 3.1. Portions of the work in this chapter
was originally published in Okamoto and Sycara [48].

3.1 Network Augmentation

We know that the problem of network augmentation and flow allocation is NP-hard, be-
cause the flow allocation problem formulated in the previous chapter is a special case
where the initial and potential networks are identical. However, in this section we con-
sider a form of “pure” network augmentation that removes as many of the features of flow
allocation as possible in order to focus on the issues inherent to the network augmenta-
tion side of the problem. We show that even this simplified pure network augmentation
problem is NP-hard.

In pure network augmentation, we are given an initial network topology, a finite set of
potential locations where supplemental nodes can be deployed, and groups of source nodes
representing agents that need to communicate. The simplest case of network augmentation
arises when all edges have unlimited (i.e., positive infinity) capacity and are symmetric.
The problem is to deploy supplemental nodes to the potential locations in order to satisfy
group requirements. In this case, group satisfaction reduces to connectivity, so a group of
source nodes is satisfied if all the nodes in the group are connected to each other once the
supplemental nodes have been deployed.

Let the initial network topology be represented as an undirected simple graph G = (V,E),
where V is the set of nodes, and there exists an edge (u, v) ∈ E if and only if u and v
can directly communicate. Denote the potential network by the undirected simple graph
G′ = (V ′, E ′) = (V ∪ P,E ∪ EP). The set of possible locations where supplemental

30

Symbol Description

Auv binary indicator variable that potential edge (u, v) ∈ EP is
in the actual network so (u, v) ∈ ED

bis source requirement of s ∈ Si
D ⊆ P deployment of supplemental nodes
Dp binary indicator variable that p ∈ D
E set of edges
EP set of potential edges, i.e., edges with at least one endpoint

in P
G = (V,E) initial network with nodes V and edges E
G′ = (V ∪ P,E ∪ EP) potential network with initial nodes V , potential nodes P ,

initial edges E, and potential edges EP
GD = (VD, ED) actual network for a deployment D: the subgraph of G′ in-

duced by V ∪D
h maximum number of supplemental nodes allowed in

MaxSG-NA
K number of source groups
m number of edges
n number of nodes
S ⊂ V set of source nodes
Si ∈ S ith group of source nodes
S = {S1, . . . , SK} set of groups of agents that partitions the agents
T ⊂ V ∪ P \ S set of sink nodes
V set of initial nodes
xi ∈ T sink node assigned to group i, if any
Xit binary indicator variable that sink t ∈ T is assigned to group

Si ∈ S

Table 3.1: Summary of notation for Chapter 3

31

nodes be deployed is denoted by P , with V P = ∅, and the set of potential communication
links is denoted by EP , with EP E = ∅. For each edge (u, v) ∈ EP , either u ∈ P or
v ∈ P or both. If u ∈ P and v /∈ P , then (u, v) ∈ EP represents that a supplemental
node positioned at u can communicate with node v; similarly, if u /∈ P and v ∈ P , then
(u, v) ∈ EP means that a supplemental node positioned at v can communicate with node
u; and finally, if both u, v ∈ P , then if supplemental nodes were deployed to both u and v,
they would be able to communicate.

We represent a deployment of supplemental nodes byD ⊆ P , the set of potential locations
where we have deployed supplemental nodes. We denote the actual network instantiated
by D by the undirected simple graph GD = (VD, ED) that is the subgraph of G′ induced
by V ∪D.

Let S be the set of source nodes, and S = {S1, S2, . . . , SK} be the set of source groups,
where Si ⊆ S for i = 1, . . . , K. We would like all of the nodes within a group Si ∈ S to
be connected to each other in GD. We refer to this property as group connectivity, and say
that the group Si is connected (or is a connected group).

There are two related network augmentation optimization problems, depending on the
objective function. The Minimum Deployment Connected Groups problem seeks to min-
imize the number of supplemental nodes required to satisfy all groups. The Maximum
Connected Groups problem seeks to maximize the number of satisfied groups given a
fixed number of supplemental nodes.
Problem 4. Minimum Deployment Connected Groups (MinDepCG). Given an initial
network G = (V,E), potential network G′ = (V ∪ P,E ∪ EP), and source groups S =
{S1, . . . , SK}, find a deployment D with minimum |D| such that all of the groups are
connected in GD.
Problem 5. Maximum Connected Groups (MaxCG). Given an initial network G =
(V,E), potential network G′ = (V ∪ P,E ∪ EP), source groups S = {S1, . . . , SK}, and
integer constant h ≥ 1, find a deploymentD with |D| ≤ h such that the maximum number
of groups are connected in GD.

The decision problem related to MinDepCG and MaxCG is the Connected Groups prob-
lem:
Problem 6. Connected Groups (CG). Given an initial network G = (V,E), potential
network G′ = (V ∪ P,E ∪ EP), agent groups S = {S1, . . . , SK}, and integer constants
h ≥ 1 and k ≥ 1, is there a deployment D with |D| ≤ h such that at least k groups are
connected in GD?

We next show that the Connected Groups problem is NP-complete, even for a single group.
Theorem 4. CG is NP-complete.

32

Proof. To show this we must show that CG is in NP and is NP-hard. It is clearly in NP,
as we can easily verify in polynomial time whether a set of possible locations D ⊆ P is a
solution or not.

Proof of NP-hardness is done by reduction from the graph Steiner tree (ST) decision prob-
lem with unit-weight edges, which is known to be NP-complete [20]. The input to ST is
an undirected graph GST = (VST , EST), a set of terminals XST ⊆ VST , and a maximum
cost kST . The problem is to decide whether there exists a tree TST = (WST , FST) which
is a subgraph of GST with XST ⊆ WST and at most kST edges. Such a tree TST is called
a Steiner tree.

From an ST input instance GST , XST , kST for ST, we construct the following CG input
G,G′,S, h:

• G = (V,E) where V = XST , and E = {(u, v) ∈ EST |u ∈ XST and v ∈ XST}.
• G′ = (V ∪ P,E ∪ EP), where P = VST \ XST and EP = {(u, v) ∈ EST |u /∈
XST or v /∈ XST}.
• S = {S1}, where S1 = XST .

• h = kST + 1− |XST |.
• k = 1.

We now show that GST has a Steiner tree with at most kST edges if and only if the con-
structed CG instance has a solution.

Suppose first that GST has a Steiner tree TST = (WST , FST) with at most kST edges.
We will show that there is a deployment that satisfies the solution conditions for the CG
instance. Set D = WST \XST . Then clearly

D = WST \XST

⊆ VST \XST (XST ⊆ VST)

= P (by construction)

Note that S1 = XST is connected in the subgraph of G′ induced by V ∪D, since XST is
connected in TST .

We also get that

|WST | = |FST |+ 1 (TST is a tree)
≤ kST + 1 (by assumption)

33

so that

|D| = |WST \XST |
= |WST | − |XST | (XST ⊆ WST)

≤ kST + 1−XST

= h (by construction)

Thus D is a solution to CG.

Assume now instead that there is a solution D to a CG instance as constructed above. We
will show that there must then be a Steiner tree with at most kST edges for the Steiner
instance. Let GD = (VD, ED) denote the subgraph of G′ induced by D. Then

|VD| = |VD ∩XST |+ |VD \XST |
= |XST |+ |VD \XST | (XST ⊆ VD)

= |XST |+ |VD ∩ P | (P = VST \XST)

= |XST |+ |D|
≤ |XST |+ h (D is a solution to CG)
= |XST |+ kST + 1− |XST | (by construction)
= kST + 1.

Because D is a solution to CG, the nodes in S1 = XST are connected in GD. Let TD =
(VD, ETD) denote a spanning tree of GD. Because the nodes in XST are connected in GD,
it follows that they are also connected in TD, and so TD is a Steiner tree. Now we get that

|ETD = |VD| − 1 (TD is a tree)
≤ kST + 1− 1 (by above)
= kST

Thus TD is a Steiner tree with at most kST edges.

Hence GST has a Steiner tree with at most kST edges if and only if the constructed CG
instance has a solution. Therefore CG is NP-complete.

Because other variations of the Network Augmentation problem with the maximum group
or minimum deployment objective functions are generalizations of this simple case, it
follows that they too are NP-complete.

34

3.2 Network Augmentation and Flow Allocation

We now consider the full problem of network augmentation and flow allocation. This is
the problem of choosing a deployment and selecting a sink and satisfying flow for each
group. It is a generalization of both the pure network augmentation and flow allocation
problems.

As in pure network augmentation, we are given an initial network G = (V,E) and poten-
tial network G′ = (V ′, E ′) = (V ∪ P,E ∪ EP), but these are now capacitated, directed
graphs, with the capacity of each edge e ∈ E ′ denoted by we, as in the flow allocation
problem. Capacities may be either positive, real values (representing limited capacity),
or may be positive infinity (representing unlimited capacity). A deployment D ⊆ P is
the set of potential location where supplemental nodes are deployed. The actual network
for a deployment D is the graph GD = (VD, ED) that is the subgraph of G′ induced by
VD = V ∪D.

As in pure flow allocation, source nodes S ⊂ V are partitioned into groups S = {S1, . . . , SK},
each of which must send flow to a single sink. The flow requirement bis is the amount of
flow that must be sent by source node s ∈ Si. The set of sinks is denoted by T ⊂ V ∪ P .
If v ∈ T ∩ V , it means that the node v can act as a sink, while if p ∈ T ∩ P , it means that
a supplemental node deployed to p can act as a sink. The set of groups for which flow has
been allocated is X ⊆ S, and the sink assigned to group Si ∈ X is xi ∈ T . The amount
of flow on edge (u, v) for group Si is denoted f iuv.

A feasible solution is a deployment D, sink assignments x, and flow f such that f is a
satisfying flow for X in the actual network GD. This means that none of the groups can be
assigned to sinks that are not in GD, and no flow can be transmitted on any potential edge
that is not in GD. Formally, these constraints are

xi ∈ T ∩ (V ∪D) ∀Si ∈ X (3.1)

f iuv = 0 ∀(u, v) /∈ ED,∀Si ∈ X . (3.2)

These constraints must be met in addition to the usual constraints in Equations (2.1) – (2.3)
for satisfying flows.

As in pure network augmentation, there are two optimization problems depending on the
choice of objective function. Maximum Satisfied Groups with Network Augmentation
(MaxSG-NA) is the problem of satisfying the greatest number of groups with a fixed num-
ber of supplemental nodes. The Minimum Deployment (MinDep) problem is to satisfy all
of the groups using the fewest number of supplemental nodes possible.
Problem 7. Maximum Satisfied Groups with Network Augmentation (MaxSG-NA).

35

Given initial network G = (V,E), potential network G′ = (V ′, E ′) = (V ∪ P,E ∪ EP),
capacities w, source groups S = {S1, . . . , SK}, source requirements b, sinks T ⊂ V ∪ P ,
and number of supplemental nodes h > 0, find a deployment D, subset of groups X ⊆ S,
sink assignment x, and satisfying flow f for X in GD such that |X | is maximized
Problem 8. Minimum Deployment (MinDep). Given initial network G = (V,E), po-
tential network G′ = (V ′, E ′) = (V ∪ P,E ∪ EP), capacities w, source groups S =
{S1, . . . , SK}, source requirements b, and sinks T ⊂ V ∪ P , find a deployment D, sink
assignment x, and flow f for X in GD and satisfying flow f for S in GD such that |D| is
minimized.
Theorem 5. MaxSG-NA and MinDep are NP-hard.

Proof. This follows from MaxSG-NA and MinDep generalizing MaxSG and CG, both of
which are NP-hard.

3.3 Solving MaxSG-NA and MinDep

In this section we present algorithms for solving MaxSG-NA and MinDep. To solve the
problems optimally we use a MILP formulation.

3.3.1 Optimal Algorithms

We optimally solve MaxSG-NA and MinDep by formulating the problems as MILPs
which can then be solved using standard MILP solvers. This approach simultaneously
optimizes both the network augmentation and flow allocation parts of the problems. The
central issue is to convert the constraints in Equations (3.1) and (3.2) into linear constraints.
To represent the deployment D, we use binary indicator variables Dp for p ∈ P , where
Dp = 1 if p ∈ P and Dp = 0 otherwise. As in MILP 1 for flow allocation, we represent
sink assignments using binary indicator variablesXit for all Si ∈ S, t ∈ T , whereXit = 1
if t is the sink for group Si and Xit = 0 otherwise.

In representing the constraint in Equation (3.1), note that the definition of theXit variables
already constrains xi to be in T , and furthermore if t ∈ V then there is no need for an
additional constraint. For t ∈ P , we would like to express the constraint that Xit can take
the value 1 only if Dt = 1. This can be expressed by the constraint Xit ≤ Dt for all
t ∈ T ∩ P . We must also ensure that at most one sink is assigned to each group; this is
expressed as

∑
t∈T Xit ≤ 1 for all i ∈ [1..K], just as in MILP 1. There is no need to

36

explicitly represent X , because that the composition of X is already determined by theXit

variables: X contains group Si if and only if Xit = 1 for some t ∈ T ∩ VD.

The constraint in Equation (3.2) requires that flow only be sent on edges in the actual
network GD. There is no need to modify the flow capacity constraint for edges in the
initial network, as they are always included in the actual network. For each potential edge
e = (u, v) ∈ EP , we add a binary indicator variable Auv (also denoted Ae) that will be 1
if (u, v) is present in GD, and 0 otherwise. We then constrain the total amount of flow on
(u, v) to be no more than wuvAuv, which is equal to wuv if (u, v) ∈ ED and 0 otherwise,
as desired. This expression is linear as wuv is an input parameter.

We can distinguish two kinds of potential edges: those that have a potential location at
only one end point, and those that have potential locations at both end points. An edge
with a potential location at only one end point has the form e = (u, p) ∈ EP where u ∈ V
and p ∈ P , or e = (p, v) ∈ EP where v ∈ V and p ∈ P . In either of these cases, the
presence of the e in GD is indicated by the presence of p in GD, and so we constrain Ae to
equal Dp.

An edge with potential locations at both end points is slightly trickier to represent. In this
case the edge has the form (p, q) ∈ EP where both p and q are in P . Thus the expression
for the presence or absence of e in the actual network is DpDq, which is 1 if they are both
present and 0 otherwise. Unfortunately, DpDq is not linear but quadratic, and so it cannot
be used in a MILP constraint. Instead we introduce a binary indicator variable Apq for
(p, q) ∈ EP with both p, q ∈ P . We constrain Apq ≤ Dp and Apq ≤ Dq; this ensures that
Apq must be 0 unless both p, q ∈ D, in which case it can be 1. We further add a constraint
Apq ≥ Dp + Dq − 1; this ensures that when p, q ∈ D then Apq must be 1, and it can be
0 otherwise. Together these guarantee that Apq is 1 when both p, q ∈ D, and 0 otherwise.
Now we can constrain the total flow on (p, q) to be at most wpqApq.

MILP 2 solves MaxSG-NA by extending MILP 1 for flow allocation to include the network
augmentation constraints of Equations (3.1) and (3.2) as described above. The objective
in Equation (3.3) is to maximize the number of assigned groups, while Equation (3.15)
limits the number of supplemental nodes that can be used to at h. The constraint in Equa-
tion (3.1) is captured by Equation (3.13), while the constraint in Equation (3.2) is captured
by Equations (3.7) – (3.12).

MILP 3 modifies MILP 2 to solve the MinDep problem instead. The objective in Equa-
tion (3.20) is to minimize the number of supplemental nodes deployed. The MaxSG-NA
constraint in Equation (3.15) limiting the deployment size is removed from MILP 3, and
the MaxSG-NA constraint in Equation (3.14) limiting at most one sink to be assigned to
each group is changed to the constraint that each group must have exactly one sink as-

37

MILP 2 MILP formulation of MaxSG-NA.

Maximize
f,X,D,A

k∑
i=1

∑
t∈T

Xit (3.3)

subject to:∑
(u,v)∈E

f iuv −
∑

(v,u)∈E

f ivu = biu
∑
t∈T

Xit ∀u ∈ V, i ∈ [1..K] (3.4)

∑
(u,v)∈E

f iuv −
∑

(v,u)∈E

f ivu = Xit

∑
v∈V

biv ∀t ∈ T, i ∈ [1..K] (3.5)

K∑
i=1

f ie ≤ we ∀e ∈ E (3.6)

K∑
i=1

f ie ≤ weAe ∀e ∈ EP (3.7)

Apv = Dp ∀(p, v) ∈ EP , p ∈ P, v /∈ P (3.8)
Aup = Dp ∀(u, p) ∈ EP , p ∈ P, u /∈ P (3.9)
Apq ≤ Dp ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.10)
Apq ≤ Dq ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.11)
Apq ≥ Dp +Dq − 1 ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.12)
Xip ≤ Dp ∀p ∈ P, i ∈ [1..K] (3.13)∑
t∈T

Xit ≤ 1 ∀i ∈ [1..K] (3.14)∑
p∈P

Dp ≤ h (3.15)

f ie ≥ 0 ∀e ∈ E, i ∈ [1..K] (3.16)
Auv ∈ {0, 1} ∀(u, v) ∈ EP (3.17)
Dp ∈ {0, 1} ∀p ∈ P (3.18)
Xit ∈ {0, 1} ∀i ∈ [1..K], t ∈ T (3.19)

38

signed to it as shown in Equation (3.31), so that all groups are satisfied in the MinDep
problem.

The number of variables and constraints in both MILP 2 and MILP 3 is polynomial in
the size of the potential network G′. However, because mixed integer programming is
NP-hard, there is no known polynomial-time algorithm for solving these formulations and
running times are likely to be exponential in general.

3.3.2 Heuristic Algorithms

To help cope with the exponential running times of solving MaxSG-NA and MinDep opti-
mally, we develop heuristic algorithms that iterate through the groups and deploy supple-
mental nodes as necessary to satisfy the groups.

Most of the work is done by the subroutine SolveGroup, shown in Algorithm 2. This
extends a partial solution by finding a minimum deployment needed to satisfy a group Sj
given the partial solution for previously considered groups F \{Sj}. It does this by solving
a modified version of the MinDep MILP but with the following changes:

1. Variables are only solved for the groups in F , with constraints updated accordingly.

2. A new constraint to extend the previous deployment: D′p = 1 for all p ∈ D (Equa-
tion (3.49)).

3. A new constraint to extend the previous sink assignment: Xit = 1 for all Si ∈ F
where xi = t (Equation (3.48)).

The basic iterative heuristic for MinDep is shown in Algorithm 3. The while loop in
lines 4 – 7 iterates through the source groups. In each iteration, one of the groups that
has not yet been processed is selected (line 5) and the current solution extended by calling
SolveGroup (line 7).

We consider three variations on this heuristic that depends on the choice of the next group
to process in line 5:

1. MD-Rand-H. The next group is chosen at random.

2. MD-MF-H. The group that requires largest increase in the deployment size is chosen
next. The intuition behind this “most first” heuristic is that this group will only
become harder to satisfy on future iterations and so it should be satisfied as soon as
possible.

3. MD-LF-H. The group that requires the smallest increase in the deployment size is
chosen next. The intuition behind this “least first” heuristic is that greedily choos-

39

MILP 3 MILP formulation of MinDep.

Minimize
f,X,D,A

∑
p∈P

Dp (3.20)

subject to:∑
(u,v)∈E

f iuv −
∑

(v,u)∈E

f ivu = biu
∑
t∈T

Xit ∀u ∈ V, i ∈ [1..K] (3.21)

∑
(u,v)∈E

f iuv −
∑

(v,u)∈E

f ivu = Xit

∑
v∈V

biv ∀t ∈ T, i ∈ [1..K] (3.22)

K∑
i=1

f ie ≤ we ∀e ∈ E (3.23)

K∑
i=1

f ie ≤ weAe ∀e ∈ EP (3.24)

Apv = Dp ∀(p, v) ∈ EP , p ∈ P, v /∈ P (3.25)
Aup = Dp ∀(u, p) ∈ EP , p ∈ P, u /∈ P (3.26)
Apq ≤ Dp ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.27)
Apq ≤ Dq ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.28)
Apq ≥ Dp +Dq − 1 ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.29)
Xip ≤ Dp ∀p ∈ P, i ∈ [1..K] (3.30)∑
t∈T

Xit = 1 ∀i ∈ [1..K] (3.31)

f ie ≥ 0 ∀e ∈ E, i ∈ [1..K] (3.32)
Auv ∈ {0, 1} ∀(u, v) ∈ EP (3.33)
Dp ∈ {0, 1} ∀p ∈ P (3.34)
Xit ∈ {0, 1} ∀i ∈ [1..K], t ∈ T (3.35)

40

Algorithm 2 SolveGroup
Input: MaxSG Instance I, current group index j, set of processed groups F , current

deployment D, current sink assignments x
Output: Extended deployment D′, extended sink assignment x′, flow f

1: Solve MILP:

Minimize
f,X,D′,A

∑
p∈P

D′p (3.36)

subject to:∑
(u,v)∈E

f iuv −
∑

(v,u)∈E

f ivu = biu
∑
t∈T

Xit ∀u ∈ V, Si ∈ F (3.37)

∑
(u,v)∈E

f iuv −
∑

(v,u)∈E

f ivu = Xit

∑
v∈V

biv ∀t ∈ T, Si ∈ F (3.38)

∑
Si∈F

f ie ≤ we ∀e ∈ E (3.39)∑
Si∈F

f ie ≤ weAe ∀e ∈ EP (3.40)

Apv = D′p ∀(p, v) ∈ EP , p ∈ P, v /∈ P (3.41)

Aup = D′p ∀(u, p) ∈ EP , p ∈ P, u /∈ P (3.42)

Apq ≤ D′p ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.43)

Apq ≤ D′q ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.44)

Apq ≥ D′p +D′q − 1 ∀(p, q) ∈ EP , p ∈ P, q ∈ P (3.45)

Xip ≤ D′p ∀p ∈ P, Si ∈ F (3.46)∑
t∈T

Xit = 1 ∀Si ∈ F (3.47)

Xit = 1 ∀Si ∈ F where xi = t (3.48)
D′p = 1 ∀p ∈ D (3.49)

f ie ≥ 0 ∀e ∈ E, i ∈ [1..K] (3.50)
Auv ∈ {0, 1} ∀(u, v) ∈ EP (3.51)
D′p ∈ {0, 1} ∀p ∈ P (3.52)

Xit ∈ {0, 1} ∀i ∈ [1..K], t ∈ T (3.53)

2: Set D′ ← {p ∈ P : D′p = 1}
3: Set x′ with x′ ← x and x′j ← t for Xjt = 1
4: return (D′, x′, f) 41

Algorithm 3 MD-Iter-H: Basic iterative heuristic for MinDep.

Input: Instance I = (G,G′, w,S, b, h): initial network G = (V,E), potential network
G′ = (V ∪ P,E ∪ EP), capacities w, sinks T , groups S = {S1, . . . , SK}, source
requirements b.

Output: Solution O = (D, x, f): deployment D, sink assignments x, and flows f .
D ← ∅ (set of deployed positions)
Initialize x as empty assignment
F ← ∅ (set of processed groups)
while F 6= S do

Choose Sj ∈ S \ F
F ← F ∪ {Sj}
(D, x, f)← SOLVEGROUP(I, j, F,D, x)

return (D, x, f)

ing the smallest increase in deployment size is a good way to minimize the total
deployment size.

Algorithm 4 is the basic iterative heuristic for MaxSG-NA. It is identical to the heuristic
for MinDep, except that on each iteration it only extends the solution if this does not
exceed the limit on the number of supplemental nodes (lines 8 – 9). As with MD-Iter-H,
we consider three variations of SG-Iter-H depending on the choice in line 5: SG-Rand-H,
SG-MF-H, and SG-LF-H.

3.4 Experiments

In this section we present results of empirical evaluation of our algorithms. We randomly
generated input instances and ran the algorithms on them. Each data point reported here is
the average over 50 input instances.

Input instances were generated based on a disk graph model. In the results presented
here, 100 initial nodes and 64 potential locations were uniformly distributed over a square
region of the plane measuring 250 × 250. All initial nodes had a range of 25, and all
supplemental nodes had a range of 50. The initial network G = (V,E) was formed
by adding an edge between two initial nodes if the distance between them was at most
the range (25). The bandwidth of all edges in E was 10. The potential network G′ =
(V ∪ P,E ∪EP) was formed by adding an edge between a potential location and another
node (initial node or another potential location) whenever the distance between them was

42

Algorithm 4 SG-Iter-H: Basic iterative heuristic for MaxSG-NA.

Input: Instance I = (G,G′, w,S, b, h): initial network G = (V,E), potential network
G′ = (V ∪ P,E ∪ EP), capacities w, sinks T , groups S = {S1, . . . , SK}, source
requirements b, number of supplemental nodes h.

Output: Solution O = (D, x, f): deployment D, sink assignments x, and flows f .
1: D ← ∅ (set of deployed positions)
2: Initialize x as empty assignment
3: F ← ∅ (set of processed groups)
4: while F 6= S do
5: Choose Sj ∈ S \ F
6: F ← F ∪ {Sj}
7: (D′, x′, f ′)← SOLVEGROUP(I, j, F,D, x)
8: if |D′| < h then
9: D ← D′, x← x′, f ← f ′

10: return (D, x, f)

at most the supplemental node range (50). This reflects cases where supplemental nodes
have longer ranges due to factors such as higher-gain antennas or environmental factors
less path loss due to reflection and obstructions between airborne supplemental nodes. The
capacity of all edges in EP was 50.

Group sizes were independently and uniformly distributed between 2 and 7, inclusive, and
each input instance could have groups of different sizes. Group membership was chosen
independently and uniformly at random from all possible groups of the appropriate size.

The source requirements of each group member was a real number independently and
uniformly distributed between 10 and 30. Deployments up to a maximum size of 4 sup-
plemental nodes were considered in these experiments.

To solve the MILPs, we used CPLEX 10.0, a commercial solver, running on a computer
with a 3 GHz Pentium IV processor and 1 GB of RAM.

We solved MinDep problems both optimally using the exact MILP formulation and heuris-
tically using MD-Rand-H, MD-MF-H, and MD-LF-H. All algorithms were run for a max-
imum of 2 hours on each instance. The average deployment sizes found by the optimal
and heuristic algorithms for 1 to 6 groups is plotted in Figure 3.1. The three heuristics
found deployments of similar sizes, although the greedy heuristics significantly outper-
formed the random heuristic for larger numbers of groups. The optimal algorithm found
significantly smaller deployments than the heuristics, with the difference in deployment
sizes increasing with the number of groups. However, even for 6 groups, MD-Rand-H

43

Figure 3.1: Average deployment sizes found by Algorithm 3

found solutions within 25% of optimal on average, while the MD-MF-H and MD-LF-H
found solutions within 14% of optimal on average.

The improvement in MinDep solution quality of the optimal algorithm over the heuristics
comes at the cost of increased running time. The average running times are shown in Fig-
ure 3.2, along with the standard errors. While the running times of the optimal algorithm
and the heuristics are very close for 1 or 2 groups, they quickly diverge for larger number
of groups as the running time of the optimal algorithm increases dramatically. The error
bars show that the variability in running times of the optimal algorithm also increases with
the number of groups, while the iterative heuristic exhibits less variability that increases
more slowly than the optimal algorithm. This suggests that heuristics may be better suited
in cases where the highly variable running times is undesirable.

The running time of the optimal algorithm increases with the number of groups, and this
rate increases from 1 to 5 groups, then seems to decrease from 5 to 6 groups. However,
this is an artifact resulting from the maximum cut-off time of 2 hours, which introduces
an artificial cap on the running time of MILP 3. As the number of groups increases, the
proportion of instances that can be solved optimally within 2 hours decreases from 100%
for 1 and 2 groups down to about 50% for 6 groups, as shown in Figure 3.3. The heuristics
all terminated within 2 hours and so are not plotted on that figure.

We also compared the SG-LF-H to the optimal solution computed by MILP 2 for 1 to 5
groups. Figure 3.4 shows the number of groups satisfied by deployments of up to 4 sup-
plemental nodes found by SG-LF-H, normalized to the optimal number of groups satisfied

44

Figure 3.2: Running times for solving MinDep using MILP 3 and Algorithm 3.

Figure 3.3: Proportion of MinDep instances solved optimally by MILP 3 within two hours.

45

Figure 3.4: Average number of groups satisfied by Algorithm 4 as a percentage of the
optimal found by MILP 2.

as determined by MILP 2. As can be seen, SG-LF-H initially performs well, but solution
quality decreases relative to the optimal as the number of groups increases. A comparison
of the running times of the optimal MILP and SG-LF-H is given in Figure 3.5. Both algo-
rithms require similar amounts of time for problems with 1 and 2 groups, but the running
time of the optimal algorithm for increases sharply thereafter, while the running time of
SG-LF-H increases much more slowly.

46

�������

Figure 3.5: Running times for solving MaxSG-NA using MILP 2 and SG-LF-H.

47

48

Chapter 4

Flow Allocation in Adversarial
Environments: Zero-Sum Games

In the previous chapter we saw how the agents could augment the environment in order
to improve the quality of flow allocation for task execution by improving connectivity and
reducing capacity bottlenecks. In this chapter we shift from the capacitated environments
examined in the previous chapters and consider costly environments, where there is no
limit on the amount of flow that can be transmitted on each edge, but flows instead incur
costs proportional to their amounts. We shift our attention also from environments that can
be changed by the agents to improve performance, to one that can be changed by a hostile
adversary to decrease the performance of the agents by increasing their costs.

We start by considering the extreme case where the interests of the agents and the adver-
sary are diametrically opposed. In this case the adversary is truly malicious because its
only interest is to impose greater costs on the agents. For example, in an urban robot set-
ting robots can avoid locations that might be observed by cameras placed by the adversary,
but doing so causes them to take more circuitous routes and thus suffer higher travel costs.
The robots balance the tradeoff between not being observed with the higher travel costs.
A truly malicious adversary does not merely care about observing the robots but also the
travel costs of the robots, and is only interested in forcing the robots’ tradeoff to be as bad
as possible, even if the robots’ best course of action ends up avoiding observation by the
adversary completely. This kind of strictly competitive payoffs arises very naturally in the
sensor network domain where the adversary jams nodes in order to force them to use more
precious battery power in stronger transmissions or a greater number of retransmissions.
The sensor nodes want to minimize total battery depletion while the adversary seeks to
maximize it, and it doesn’t matter if this battery depletion occurs because nodes transmit

49

through the jamming or around it.

This strictly competitive setting is naturally modeled as a two-player zero-sum game
played on a graph. We assume that the agents work together cooperatively, and there-
fore represent them by a single player, called the sender. The other player is the adversary.
In this chapter we formally describe two zero-sum games.

In the path game, the sender’s pure strategies are combinations of paths (unsplittable flows)
from multiple known starting locations to a common, known destination. In the multirobot
domain, these represent paths taken by the robots through the environment. The adversary
chooses a subset of attacks to play from a set of possible attacks. In the multirobot domain
where the adversary has k cameras, each attack corresponds to the placement of a single
camera, while a pure strategy is a particular deployment of k cameras to locations in the
environment to observe the robots’ movements. The payoffs for the players are quantified
by the harm suffered by the sender and is computed by a harm function mapping strategy
profiles to harm. Although zero-sum games can be solved in polynomial time, this is
polynomial in size of the pure strategy spaces. In the path game, the strategy space of the
sender can be exponential in the size of the graph, while the strategy space of the adversary
may be exponential in the number of simultaneous attacks. This makes a direct application
of the traditional linear programming techniques for zero-sum games impractical for the
path game.

The network flow game addresses this difficulty. This game differs from the path game in
the sender’s strategy space. Rather than choosing discrete paths, the sender chooses divis-
ible network flows from source nodes to a common sink node. This naturally represents
domains where the quantity moving through the graph can be divided. For example, in
wireless sensor networks traffic can be divided over multiple paths. We further show in
Section 4.3 that the network flow game is equivalent to the path game for a class of harm
functions that can be represented using harm matrices. Intuitively, the attacks for these
harm functions correspond to a set of costs on the edges of the graph, with the harm for
multiple attacks additively combined. In such cases the network flows represent marginal
probabilities of edges being included in mixed sender strategies of the path game. By
using a compact representation based on the marginal probabilities of sender and adver-
sary strategies, rather than full probability distributions over the pure strategies of the path
game, we are able to find equilibria in polynomial time. We describe a simple technique
for sampling a pure strategy for the path game from the network flow representation. In the
next chapter we show how this approach can be leveraged to solve non-zero sum games
that include both attack costs and movement costs.

A summary of the notation used in this chapter is provided in Table 4.1. Portions of the
work in this chapter was originally published in Okamoto, et al. [47].

50

Symbol Description

A set of possible attacks for the adversary
A adversary strategy space, {A′ ⊆ A : |A′| ≤ k}
bs source requirement of s ∈ S
∆(·) the categorical probability distribution over its argument, a finite set
E set of edges
f sender strategy, a flow with fuv being the amount of flow on edge (u, v) ∈

E
F zero-sum network flow game sender strategy space, the set of feasible

flows from S to t
G = (V,E) network with nodes V and edges E
HPG harm function for the zero-sum path game
k number of attacks that the adversary can play simultaneously
m number of edges
M harm matrix with Mij the harm from sending 1 unit of flow on ej ∈ E

when the adversary plays ai ∈ A
n number of nodes
P zero-sum path game sender strategy space, P1 × P2 × . . .P|S|
Pi set of all paths from si ∈ S to t
q an adversary mixed strategy, often expressed as a vector of marginal prob-

abilities over A
S set of source nodes
t the sink
V set of nodes
ζ ∈ A adversary pure strategy, a set of attacks

Table 4.1: Summary of notation for Chapter 4

51

4.1 Zero-Sum Path Game (ZS-PG)

We first consider the normal form of the zero-sum game. The zero-sum path game (ZS-
PG) is played between a sender and an adversary taking actions on a directed1 graph
G = (V,E) with n = |V | nodes and m = |E| edges. A subset of the nodes S ⊂ V are the
source nodes while another of the nodes t ∈ V \ S is the sink. Without loss of generality,
we assume that there are no incoming edges to any source node. (If there is such a source
node s, add a new source node s′ to S and an outgoing edge (s′, s) to E, and remove s
from S.) Each source node has a weight bs > 0 representing the value of that source node.
The sender chooses a path πs from each source s ∈ S to the sink t (we assume that such a
path exists for every s ∈ S), and his pure strategy space is set of all combinations of paths
from S to t, P .

The adversary has a finite set of attacks A, and can carry out up to k attacks from A
simultaneously. Thus the adversary’s set of pure strategies A is the set of all subsets
of A of size at most k, which has size Θ(|A|k). We assume that both players have full
knowledge of G, S, t, A, and k.

The payoff in this game is quantified by the harm suffered by the sender as a result of one
or more of his paths being attacked. As a zero-sum game, we assume that the sender seeks
to minimize the harm suffered, while the adversary seeks to maximize the harm inflicted.
In general, harm may be an arbitrary functionHPG : P ×A → [0,+∞) mapping from the
sender’s choice of paths and the adversary’s choice of attacks to a non-negative number.
For convenience, we overload the notation to extend the harm function to mixed strategies,
with

HPG(p, q) =
∑
π∈P

∑
ζ∈A

pπqζHPG(π, ζ)

representing the expected harm when the sender plays mixed strategy p ∈ ∆(P) and the
adversary plays mixed strategy q ∈ ∆(A).

We can now give the normal form of the zero-sum path game.
Definition 1. The zero-sum path game is a game (2, (P ,A), (−HPG,HPG)) where

• P = P1 × P2 × · · · × P|S| with Pi the set of all paths from si ∈ S to t.

• A = {A′ : A′ ⊆ A ∧ |A′| ≤ k}.
• HPG is the harm function.

1The model and algorithms can be applied to undirected graphs in a straightforward manner.

52

We are interested in finding a mixed strategy Nash equilibrium strategy profile for the
sender and adversary. Because this is a zero-sum game, this corresponds to the minimax
and maximin strategies. The sender’s minimax problem is shown below, where p ∈ ∆(P)
and q ∈ ∆(A).

min
p

max
q
HPG(p, q) (4.1)

subject to∑
π∈P

pπ = 1 (4.2)∑
ζ∈A

qζ = 1 (4.3)

pπ ≥ 0 ∀π ∈ P (4.4)
qζ ≥ 0 ∀ζ ∈ A (4.5)

We can use the well-known linear programming techniques for finding such strategy pro-
files for zero-sum games in time polynomial in the size of P and A, but these are prob-
lematic because P is exponential in n and |S|, and |A| =

(|A|
k

)
= Θ(nk) in the worst

case.

Instead, we exploit the structure of a broad class of harm functions to decompose the pay-
off function into a polynomially-sized representation, called a harm matrix. This reduces
the computational time of finding equilibria, while still being able to represent the payoffs
for a wide variety of harm functions that have not been considered using other representa-
tions. Although the algorithm we describe here is specific to the zero-sum game of strictly
competitive payoffs, in Chapter 5 we will leverage the network flow approach to solving
certain kinds of non-zero-sum games for different types of harm matrices that we present
in the next section.

4.2 Harm matrices

Harm matrices are applicable when the harm function can be decomposed so that harm
can be computed independently for each pair of edge and attack, then summed to calculate
the total harm. The harm matrix M is a matrix with n rows and m columns, where Mij

is the amount of harm suffered by the sender if the adversary plays attack ai ∈ A and the
sender chooses a path with edge ej . Intuitively, each attack specifies non-negative weights
on the edges, the length of an edge is the sum of the weights from the attacks, and harm is

53

the sum of the lengths of the paths. The following provides the precise conditions required
of the harm function decomposition.

Let π ∈ P be a pure strategy of the sender with πs denoting the path from source node
s to t, and let ζ ∈ A be a pure strategy of the adversary. Many interesting and realistic
harm functions can be decomposed in the following way. First, the total harm is the sum
of harm for the individual paths from each source to the sink:

HPG(π, ζ) =
∑
s∈S

h(πs, ζ) (4.6)

Second, the harm for a set of attacks is the sum of harm for the individual attacks in ζ:

h(πs, ζ) =
∑
a∈ζ

h(πs, a) (4.7)

Finally, the harm for πs is the sum of the harm for the individual edges in πs, and this harm
is a linear function of the weight of s, with the specific linear function depending on the
edge e and attack a through a constant value αae:

h(πs, a) =
∑
e∈πs

αaebs. (4.8)

For harm functions that satisfy these properties, we construct a harm matrix M with |A|
rows and m edges where entry Mij = αaiej .

We now turn our attention to several interesting harm functions and their harm matrix
representation. For the purposes of exposition we consider a radio jamming attack, in
which the adversary transmits radio signals to disrupt the sender’s communications. This
attack increases latency because packets need to be retransmitted. If multiple points on
a pathway are disrupted by the attack, additional latency is suffered, resulting in additive
harm.

Consider the simple path intersection harm function, where uniform harm is suffered if
and only if a node on the pathway is attacked, as arises if the adversary must directly jam
a node on a pathway to disrupt communication, and each attack causes the same increase
in latency. In this case the attacks correspond to nodes in V and the harm is represented
by the following harm matrix:

M path int
ij =

{
1 if ej = (u, vi) for some node u ∈ V
0 otherwise

(4.9)

54

More generally, different nodes may be more or less susceptible to jamming, leading to
different amounts of harm being suffered when the sender routes through an attacked node.
This is represented by a harm matrix with heterogeneous values:

M gen path int
ij =

{
ci if ej = (u, vi) for some node u ∈ V
0 otherwise

(4.10)

Jamming is not the only cause of latency. Latency is also incurred on every transmission
on an edge on the path chosen by the sender. This is an example of costly transmission in
which the sender incurs a cost every time he utilizes an edge, irrespective of which nodes
the adversary has attacked; examples include latency or battery power usage. By using
a harm matrix that includes both the harm suffered from the adversary’s attacks and the
transmission costs, the sender can rationally reason about the tradeoff between them. Such
a harm matrix may use homogeneous cost values (biasing toward pathways with fewer
hops) or heterogeneous cost values that depend on the edge, representing characteristics
such as requiring more battery power to transmit to more distant nodes or to nodes in high
noise areas. In the following harm matrix, harm cj (cost of transmission) is incurred for
every unit of flow transmitted on edge ej .

M cost trans
ij =

{
1 + cj if ej = (u, vi) for some node u ∈ V
cj otherwise

(4.11)

There is also no requirement that paths must intersect the attacked nodes for harm to be
suffered. In the jamming example, attacking a node in a wireless network may also jam
neighboring nodes, even if those nodes are not communicating with the attacked node.
Thus transmissions on all edges to neighbors of an attacked node incur increased latency.

M nonlocal
ij =

{
cj if ej = (u, v) and (v, vi) ∈ E
0 otherwise

(4.12)

In then next subsection we describe the network flow game that explicitly uses the harm
matrix structure along with marginal probability distributions to efficiently represent the
strategy spaces of the sender and adversary.

55

4.3 Zero-Sum Network Flow Game (ZS-NFG)

In the zero-sum network flow game, the sender chooses flows from the source nodes to
the sink, sending bs units of flow from each source s ∈ S to the sink t. The flows are
represented by an m × 1 column vector f , where fuv is the amount of flow sent on edge
(u, v); when denoting an edge simply as e ∈ E, we also use the notation fe. The sender’s
strategy space F is the set of all feasible flows from the source nodes to the sink, that is,
all f such that ∑

(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \ {t} (4.13)

fuv ≥ 0 ∀(u, v) ∈ E. (4.14)

Equation 4.13 is the flow conservation constraint requiring outgoing flow for all nodes
(other than the sink) to be equal to the source requirement of the node plus the sum of
the incoming flow. Equation (4.14) ensures that the flow on each edge is non-negative2.
Flows may be divided on alternate paths from the source nodes to the sink, leading to a
continuous strategy space for the sender if there are at least two paths from any source
node to the sink. The adversary’s strategies in ZS-NFG are exactly the same as those in
ZS-PG, with his pure strategy set A being all subsets of A of up to k attacks, for a total of
Θ(|A|k) pure strategies.

The payoffs in ZS-NFG are quantified by the harm as in ZS-PG, but in ZS-NFG we only
consider harm functions that can be represented using harm matrices. For a harm matrix
M , sender pure strategy f ∈ F , and adversary pure strategy ζ ∈ A the harm is

H(f, ζ) =
∑
a∈ζ

rowa[M]f (4.15)

where rowa[M] is the 1×m row vector corresponding to the row of M for attack a ∈ A.
For convenience, we also overload this notation to finite mixed strategies of the sender and
adversary, with the expected harm

H(p, q) =
∑
f∈F

∑
ζ∈A

pfqζH(f, ζ),

2Other network flow formulations sometimes represent the net flow between nodes, which requires that
fuv = −fvu. Our formulation instead uses the actual, non-negative amount of flow sent on each directed
edge.

56

where p ∈ ∆(F) for finite F ⊂ F and q ∈ ∆(A).

We are interested in finding Nash equilibrium, which, because of the zero-sum payoffs, are
strategy profiles where the sender plays a strategy that minimizes the maximum harm (i.e.,
the sender plays a minimax strategy) and the adversary plays a strategy that maximizes
the minimum harm (i.e., the adversary plays a maximin strategy). We consider equilibria
where the sender is a playing a pure flow strategy (i.e., some f ∈ F) while allowing the
adversary to play a mixed strategy q ∈ ∆(A). Before continuing, we must prove that such
an equilibrium must exist.

We first prove that for any mixed sender strategy over a finite set of flows there exists a
pure sender strategy with the same expected payoff when played against any adversary
pure strategy.
Lemma 1. Given a finite set of flows F ⊂ F , a mixed sender strategy p ∈ ∆(F), and an
adversary pure strategy ζ ∈ A, there exists a flow f ∈ F such that

H(f, ζ) =
∑
f ′∈F

pf ′H(f ′, ζ).

Proof. We prove this by construction. Set the amount of flow fe on each edge e to be the
expected amount of flow under the mixed strategy p. This is easily shown using vector
addition:

f ,
∑
f ′∈F

pf ′f
′ (4.16)

We can now verify that the payoff with f is equal to the expected payoff with p.

H(f, ζ) =
∑
a∈ζ

rowa[M]f

=
∑
a∈ζ

rowa[M]
∑
f ′∈F

pf ′f
′

=
∑
f ′∈F

pf ′
∑
a∈ζ

rowa[M]f ′

=
∑
f ′∈F

pf ′H(f ′, ζ).

As a corollary, the lemma is applicable to mixed adversary strategies, due to the linearity

57

of expectation and the harm function.
Corollary. Given a finite set of flows F ⊂ F , a mixed sender strategy p ∈ ∆(F), and an
adversary mixed strategy q ∈ ∆(A), there exists a flow f ∈ F such that

H(f, q) =
∑
f ′∈F

pf ′H(f ′, q).

Theorem 1. Consider a zero-sum path game with a harm function that can be represented
by a harm matrix, and a zero-sum network flow game with the same harm matrix. Then
the following must hold:

1. For all sender mixed strategies p ∈ ∆(P) of the ZS-PG there exists a sender pure
strategy f ∈ F of the ZS-NFG such that for all adversary mixed strategies q ∈
∆(A), the expected harm in the two games is the same.

2. For all sender pure strategies f ∈ F of the ZS-NFG there exists a sender mixed
strategy p ∈ ∆(P) of the ZS-PG such that for all adversary mixed strategies q ∈
∆(A), the expected harm in the two games is the same.

Proof. We prove the first claim by construction. Let p ∈ ∆(P) and q ∈ ∆(A). Recall the
definition of P from Definition 1: P = P1×· · ·×P|S| where Pi is the set of all paths from
si ∈ S to t. Without loss of generality we restrict the Pi to include only simple paths. For
each path πsi ∈ Pi we construct a corresponding flow, fπi that sends the full amount of
flow bsi from si to t along the edges of πi:

fπie ,

{
bs if e ∈ πi
0 otherwise

∀e ∈ E. (4.17)

For each π = (π1, . . . , π|S|) ∈ P , we then construct a flow fπ that sends the full amount of
flow bs along πi for each si ∈ S. This is achieved by summing the flows from each source:

fπe ,
∑
si∈S

fπie ∀e ∈ E (4.18)

We can now define a set F of flows in the ZS-NFG that correspond to the ZS-PG pure
strategies:

F , {fπ : π ∈ P}

Because P is finite, F must be finite as well. We extend the ZS-PG mixed strategy p to a

58

ZS-NFG mixed strategy p′ ∈ ∆(F) by setting p′fπ , pπ for all π ∈ P . We then show that
the expected harm of (p, q) in the ZS-PG is the same as the expected harm of (p′, q) in the
ZS-NFG. The expected harm in the ZS-PG is

HPG(p, q) =
∑
π∈P

∑
ζ∈A

pπqζ
∑
s∈S

∑
ai∈ζ

∑
ej∈πs

Mijbs

=
∑
π∈P

∑
ζ∈A

pπqζ
∑
ai∈ζ

∑
s∈S

∑
ej∈πs

Mijbs

=
∑
π∈P

∑
ζ∈A

pπqζ
∑
ai∈ζ

∑
ej∈E

Mijf
π
ej

=
∑
π∈P

∑
ζ∈A

pπqζ
∑
ai∈ζ

rowai [M]fπ

=
∑
π∈P

∑
ζ∈A

pπqζH(fπ, ζ)

=
∑
fπ∈F

∑
ζ∈A

p′fπqζH(fπ, ζ)

= H(p′, q),

which is the expected harm in the ZS-NFG.

By Lemma 1, there exists a pure ZS-NFG sender strategy f ∈ F with the same expected
harm as p′, and thus with the same expected harm as p in the ZS-PG. Thus the first claim
is proved.

We prove the second claim by construction as well. Let f ∈ F and q ∈ ∆(A). For each
πsi ∈ Pi we set

Pr(πsi) ,
∏

(u,v)∈πsi

fuv
bu +

∑
(u′,u)∈E fu′u

(4.19)

and for π ∈ P we set

pπ ,
∏
si∈S

Pr(πsi). (4.20)

Theorem 1 establishes a very close relationship between ZS-PG and ZS-NFG: in essence,
the two games model the same strategic interaction. In other words, ZS-NFG can be seen

59

as an alternate representation for the normal form representation used by ZS-PG. As we
will see, this representation can be solved more efficiently than the normal form of ZS-PG.
We explore this connection further in Section 4.5, but for the moment we note an important
corollary of Theorem 1, the existence of an equilibrium for ZS-NFG.
Corollary. The zero-sum network flow game has a Nash equilibrium (f, q) where the
sender plays a pure strategy f ∈ F and the adversary plays a mixed strategy q ∈ ∆(A).

Proof. This follows from Theorem 1 and the existence of a Nash equilibrium for ZS-PG
as a finite strategy game.

Note that the corollary guarantees the existence of an equilibrium where the sender plays
a pure flow strategy, allowing us to restrict our search to pure strategies for the sender.
Although there may be multiple equilibria, the game is zero-sum and so we know that
there are no equilibrium selection issues: the payoffs (i.e., the harm) in all equilibria are
the same, and the equilibria are all interchangeable. Moreover, we know that the equilibria
must satisfy the minimax conditions: the sender’s flow must minimize the maximum harm
over all possible pure strategies played by the adversary, and the adversary’s mixed strategy
must maximize the minimum harm over all possible pure strategies played by the sender.
We can write the sender’s network flow minimax problem as

Minimize
f∈F

max
ζ∈A

∑
a∈ζ

rowa[M]f (4.21)

subject to∑
u:(v,u)∈E

fvu = bv +
∑

u:(u,v)∈E

fuv ∀v ∈ V \ {t} (4.22)

fuv ≥ 0 ∀(u, v) ∈ E. (4.23)

Equation (4.22) is the flow conservation constraint requiring outgoing flow for all nodes
(other than the sink) to be equal to the source requirement of the node plus the sum of the
incoming flow. Equation (4.23) requires all flows to be non-negative.

It is helpful to gain some intuition into the structure of the network flow game equilibria.
Assume that we are using the homogeneous path intersection harm matrix (so that attacks
correspond to nodes). From the sender’s perspective, his choice f is a best response to the
adversary if he can’t improve it by changing some of the flow from one of the current paths
to a better path, i.e., a path with lower probability of intersecting a node under attack. Note
that if the sender is sending flow on a path πs from s ∈ S to t, and there is a path with
lower probability π′s from s to t, then he should move all of the flow from πs to π′s. Let πs
be a path from one of the s ∈ S to t, and let f ∗πs denote the best response amount of flow

60

sent on πs. We can write the sender’s best response property:

f ∗πs > 0 =⇒
∑
v∈π

qv = min
π′
s from s to t

∑
v∈π′

s

qv (4.24)

Thus, the adversary should evenly distribute probability among nodes so that all paths
from one or more source nodes to the sink have equal probability of being attacked.

Now for the adversary, a distribution q is a best response if he can’t improve it by choosing
a different distribution q′ with greater harm. Fixing the sender’s strategy f , the adversary’s
payoff for q is qMf and so a rational adversary will choose to put all of her probability on
the nodes with the corresponding greatest harm. Let (Mf)v denote the element for node
v in column vector Mf , then

p∗v > 0 =⇒ (Mf)v = max
v′∈V

(Mf)v′ (4.25)

Hence, the sender should minimize the maximum (Mf)v in order to minimize the max-
imum harm that will be caused by the adversary. We call the term (Mf)v the potential
harm because it represents the amount of harm that could be suffered if the adversary
attacked node v.

As a consequence of these two properties, the sender will route flows to distribute the
potential harm (Mf)v as evenly as possible. When we are considering the path intersection
harm matrix M path int, the sender’s equilibrium strategy effectively performs network load
balancing. Furthermore, the set of nodes with maximum (Mf)v form a vertex cut in the
network separating a subset of the source nodes from the sink. While graph theoretic
approaches (e.g., [66]) can find such vertex cuts for the case of a single source and single
sink and the simple path intersection harm function, they are incapable of handling more
complex problems. Our approach is unique in balancing the potential harm rather than just
the network flow.

Because this vertex cut U will contain the nodes with maximum (Mf)v, the adversary will
only attack nodes in the vertex cut, and by virtue of it being a vertex cut, the adversary can
attack those nodes to guarantee that all paths from a subset of source nodes S ′ ⊆ S on the
other side of the cut must go through an attacked node. GivenU , there is a minimum subset
U ′ which is still a vertex cut. U ′ has the further property that it contains no redundant nodes
in the sense that no node can be removed and still guarantee that all paths from S ′ to t pass
through it. Thus the adversary will assign non-zero probability to the nodes in U ′, evenly
divided so that all paths have equal probability of being attacked.

61

4.4 Computing Network Flow Equilibrium

In this section we describe the linear program for finding the equilibrium strategies. When
the adversary can execute a single attack, the sender’s equilibrium strategy can be found
via a straightforward linearization of the sender’s network flow minimax problem, LP 1.
The harm is represented by the variable H and is constrained to be at least as great as the

LP 1 Network Flow LP for k = 1.

Minimize
f,H

H (4.26)

subject to:
H ≥ rowa[M]f ∀a ∈ A (4.27)∑
(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \ {t} (4.28)

fuv ≥ 0 ∀(u, v) ∈ E (4.29)

harm resulting from any single attack by Eq. (4.27). The term rowa[M] denotes the row
corresponding to attack a in matrix M . LP1 has |E|+ 1 variables and 2n− 1 constraints.
Thus it can be solved in polynomial time (with respect to n) [8].

We now extend LP 1 to allow the adversary to execute multiple attacks simultaneously.
This program introduces an additional |A| variables, the λa. We first observe that when

LP 2 Network Flow LP for general k ≥ 1

Minimize
f,H,λ

kH +
∑
a∈A

λa (4.30)

subject to:∑
(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \ {t} (4.31)

H ≥ rowa[M]f − λa ∀a ∈ A (4.32)
fuv ≥ 0 ∀(u, v) ∈ E (4.33)
λa ≥ 0 ∀a ∈ A (4.34)

62

k = 1, LP 2 reduces back to LP 1, as expected, with all λa = 0. When k > 1, the potential
harm for each attack a ∈ A is (Mf)a = rowa[M]f . As a best response the adversary will
attack a set Z ⊂ A of size k that causes maximum harm by choosing the k attacks with
greatest potential harm. If we let H denote the kth largest potential harm, it follows that
the total harm will be∑

a∈Z

rowa[M]f =
∑
a∈Z

(rowa[M]f −H) +H

= kH +
∑
a∈Z

(rowa[M]f −H).

LP 2 minimizes this total harm over all possible such Z by letting λa be the variable for
rowa[M]f −H .

The adversary’s equilibrium strategy can be found by solving LP 3, the dual program of
LP 2. There are |A| of the q variables, with qa for a ∈ A being the marginal probability

LP 3 Adversary Network Flow LP for general k ≥ 1

Maximize
r,q

∑
s∈S

bsrs (4.35)

subject to:

ru − rv ≤ qT col(u,v)[M] ∀(u, v) ∈ E, u 6= t, v 6= t (4.36)

− rv ≤ qT col(t,v)[M] ∀(t, v) ∈ E (4.37)

ru ≤ qT col(u,t)[M] ∀(u, t) ∈ E (4.38)∑
v∈V

qv = k (4.39)

0 ≤ qv ≤ 1 ∀v ∈ V (4.40)

of the adversary playing a strategy that includes attack a. By Eq. (4.39), the sum of these
marginal probabilities must equal k because the adversary can execute k attacks simulta-
neously. There is a variable rv for each v ∈ V \{t}, representing the least amount of harm
that the sender could suffer sending one unit of flow starting from v. This is constrained
by Eq. (4.36) which says that for an edge (u, v) ∈ E, the least harm the sender can suffer
starting from u can be no more than the harm suffered crossing the edge (u, v) added to the
least harm starting from v. The notation col(u,v)[M] denotes the column for edge (u, v) in
matrixM . The objective is to maximize the harm starting from the source nodes, weighted

63

by the amount of flow that must be sent from each source node.

4.5 Using ZS-NFG to Solve ZS-PG

The network flow game represents cases where the sender is moving divisible flow through
the network. This is applicable for cases where the assets moved through the network
really are divisible, as may be the case with communication traffic or large quantities of
physical goods in transportation convoys. Despite the infinite strategy space for the sender,
LP 2 provides a way to find an equilibrium strategy in polynomial time with respect to G
and A.

In addition to modeling cases of divisible flow, the zero-sum network flow game models
the strategic interactions in the zero-sum path game with a harm matrix, as shown in
Theorem 1: every mixed strategy p ∈ ∆(P) in the ZS-PG has a corresponding pure
strategy f ∈ F in the ZS-NFG that has exactly the same payoff behavior against the
adversary, and vice versa. Thus we can use LP 2 to find an equilibrium sender strategy
for ZS-NFG, and we know that there is a corresponding equilibrium sender strategy p for
ZS-PG.

To see why the ZS-NFG flow-based representation is so much more efficient than the ZS-
PG normal form representation, we turn to the properties of harm functions that can be
represented by harm matrices, and to the proof of Theorem 1. By Equation (4.6), the harm
for each source node can be computed independently, with the total harm being the sum
over all source nodes. Likewise, in the proof of the first claim of Theorem 1 for each ZS-
PG pure strategy π ∈ P we compute a flow fπi for each source si using Equation (4.17),
then sum them to get the total flow fπ as shown in Equation (4.18). The amount of flow
fπe on each edge e is is the number of paths that include e, weighted by the weights b of
the source nodes.

For a ZS-PG mixed strategy p ∈ P the flow is the sum of the flows for each pure strategy,
weighted by the probability of that pure strategy, as constructed by Equation (4.16). This
means that the amount of flow fe on each edge e is the expected value of the number of
paths that include e, weighted by the weights of the source nodes. When b = 1 this is
just the expected number of paths that include e, and by linearity the component f se due to
each source s is the marginal probability that e is on a path played from s to t. This is the
key to ZS-NFG providing an exponentially more efficient representation of the sender’s
strategy than ZS-PG: because of the harm matrix structure of the harm function, it suffices
to represent only the marginal probabilities of edges being used, instead of the full joint
probability distribution over all possible combinations of paths.

64

To find a mixed strategy p ∈ ∆(P) of ZS-PG that corresponds to a flow f , we can ex-
plicitly represent the probability of each π ∈ P with a variable pπ and write a system of
linear equations that relates the joint probability distribution p to the marginal probabil-
ity distribution f . In general there may be many possible mixed strategies of ZS-PG that
correspond to each flow f , which will result in this system of equations having multiple
possible solutions, but all of these solutions will have the same payoff behavior because
they are all equilibria. However, it is obvious that solving for p in this manner is impracti-
cal as the number of variables is |P|, which may be exponential in the size ofG in general.
In fact, just specifying p completely may require exponential time in general.

Thus, instead of explicitly solving for p given f , we instead sample a pure strategy π ∈ P
from the distribution p, without ever computing p directly. The construction of p in the
proof of the second claim of Theorem 1 is one specific mixed strategy of ZS-PG that
corresponds to f , and it is easy to use for sampling. According to Equation (4.20), we can
sample paths from each source node independently. This is convenient for applications, as
agents represented by the source nodes do not need to coordinate with each other once they
are provided with the flow f . The probability distribution of paths for each source node is
given by Equation (4.19) and is also very convenient. Starting from the source node, the
next edge to take is chosen probabilistically according to the fraction of the total outgoing
flow of the current node on each edge. Thus the agent starts at the source node and executes
a Markovian policy where the state is the current node, and the transition to the next state
is determined probabilistically by the fraction of outgoing flow to each neighbor. This
provides a very natural, polynomial time way to operationalize the equilibrium computed
by LP 2

An adversary pure strategy can also be sampled from the marginal probabilities computed
in LP3. This involves sampling sets of k attacks from A and can be accomplished in
polynomial time by using weighted random sampling [17] with the marginal probabilities
as weights, or comb sampling [62].

4.6 Experiments

4.6.1 Simulation setup

We simulated a multiagent system in which agents (nodes) were distributed uniformly at
random in a 50×50 region of the plane. The agents could communicate using a multi-hop
network, where agents within a Euclidean distance of 10 were neighbors in the network.
This resulted in a network with many paths between any two nodes on average, but where

65

the graph is not fully connected (in which case the problem is trivial). In this section, the
number of agents is denoted by n, the number of source nodes by s, and the number of
nodes that can be attacked by the adversary by k. Each source node had a flow distributed
uniformly at random between 5 and 20. Each point in the figures is an average over 100
randomly generated instances.

Results

We performed three sets of experiments using the CPLEX 10.0.1 solver on a Linux ma-
chine with a 2.40 GHz Intel Core 2 processor with 4GB of RAM. The first set of exper-
iments present the average harm found by LP 2 as we increase the network size and the
number of source nodes. Figure 4.1 shows the network size on the x-axis and the harm on
the y-axis. The 5 lines in the graph correspond to the number of source nodes s increasing
from 1 to 5. k was set to 1 in this experiment. From the graph we obtain that as the number
of nodes in the network increase and other parameters stay constant, the harm decreases.
This is expected because the sender can spread the flow across many more nodes thus
decreasing the harm caused by the adversary at any particular node. The same trend is
observed across all values of s.

For network sizes less than 500 nodes, the harm increases with the number of source nodes
because more source nodes imply more flow. For network sizes greater than 500, there is a
very small difference in the harm for varying source nodes because the sender can spread
the flow across a large number of paths, thus decreasing the ability of the adversary to
cause harm at any single node.

Figure 4.2 studies the effect on running times of LP 2 as the network size and number of
source nodes increase. The number of nodes in the network is shown on the x-axis and
the average running times in seconds is plotted on the y-axis. The 5 lines in the figures
correspond to the various source node settings. The plot shows that as the number of source
nodes increase the running time increases, but even at 1000 nodes the running time is on
the order of a second. This shows that LP 2 is a fast algorithm for finding the equilibrium
in large networks.

Our next experiment studies the solution quality and runtime results for LP 2 for k = 1
and for k between 10 to 50 in increments of 10, as shown in Table 4.2. Note that n = 600
and s = 3 for this experiment. From the table we obtain that as k increases the harm
caused in the network increases as expected. In fact, for each jump of 10 nodes in k, the
harm caused also increases fairly uniformly i.e. about 5 units. However, the running time
is unaffected by an increasing k.

66

Figure 4.1: Harm as a function of network size and number of source nodes

Figure 4.2: Running times for increasing network size and source nodes

67

k Harm Runtime
1 .583 .344

10 5.825 .343
20 11.651 .337
30 16.960 .339
40 21.950 .338
50 26.212 .373

Table 4.2: Effect of varying k on harm and runtime.

Our last experiment highlights ability of LP 2 to balance harm and network performance.
We evaluated LP 2 with the costly communication harm matrix, and measured the average
number of hops in the resulting pathways. We compared to the RANGER algorithm [62],
an algorithm that maximizes security but does not take network performance into account,
and a shortest paths (SP) algorithm that optimizes for network performance without regard
for security. The results are shown in Figure 4.3, for RANGER, SP, and varying values of
the parameter c with larger values indicating more costly communication. RANGER finds
paths two orders of magnitude greater than LP 2 because it optimizes only for spreading
the flow as evenly as possible. Because it is insensitive to the network performance, it will
perform arbitrarily bad as c increases. In contrast, LP 2 tends to find short paths when
communication is costly, and when communication is very costly (c = 1 means a single
hop is as harmful as an adversary’s attack), LP 2 converges to the shortest paths strategy.

68

Figure 4.3: Length of solution pathways for RANGER, shortest paths (SP), and LP 2 with
varying communication cost.
.

69

70

Chapter 5

Flow Allocation in Adversarial
Environments: Non-Zero-Sum Games

In many domains, playing a strategy incurs a cost to the player that depends only on the
strategy he played. For example, in an urban robot scenario, robots must expend limited
energy or fuel in moving along paths, while the cost of deploying a camera for surveillance
imposes an attack cost on the adversary. In this chapter we extend the game to consider
these kinds of costs, using these paths costs and attack costs as concrete examples. We
prove that these kinds of non-zero-sum games are similar to zero-sum games where these
costs are factored into both players’ payoffs, allowing us to extend our linear programming
algorithm to finding equilibria in the non-zero sum games as well. We also consider several
further variations on the basic game with multiple sinks and groups of source nodes.

A summary of the notation used in this chapter is provided in Table 5.1. Portions of the
work in this chapter was originally published in Okamoto, et al. [46].

5.1 Network Flow Game with Costs (NFG)

We start with the network flow game with costs. This is identical to the zero-sum network
flow game described in the previous section, but each player now incurs a cost that depends
only on his own strategy, which is subtracted from his payoff. Thus we have the following

71

bs source requirement of s ∈ S
Cadversary(q) cost to the adversary of playing q
Csender(f) cost to the sender for playing f
c attack cost vector for the adversary, with ca being the cost of play-

ing attack a ∈ A
E set of edges
f sender strategy, a flow with f suv being the amount of flow on edge

(u, v) ∈ E for source node s ∈ S
k number of attacks that the adversary can play simultaneously
G = (V,E) network with nodes V and edges E
m number of edges
M harm matrix with Mij the harm from sending 1 unit of flow on

ej ∈ E when the adversary plays ai ∈ A
n number of nodes
q an adversary mixed strategy, often expressed as a vector of

marginal probabilities over A
S set of source nodes
S = {S1, . . . , SK} set of groups of source nodes that partitions the source nodes
T set of sink nodes
t a sink node
V set of nodes
we environmental per-unit-flow cost to sender of using edge e ∈ E

Table 5.1: Summary of notation for Chapter 5

72

payoff functions:

Usender(f, q) = −qMf − Csender(f)

Uadversary(f, q) = qMf − Cadversary(q)

where Csender(·) and Cadversary(·) are the cost functions for the sender and adversary, respec-
tively.

As concrete examples of these cost functions, we consider path costs for the sender and at-
tack costs for the adversary. The path costs represent things such as expenditure of energy
for robot movement or communication in a multi-hop sensor network. These costs reduce
the payoff for the sender but do not affect the payoff to the adversary. Note that this differs
from the costly transmission harm matrix of Section 4.2, which is applicable when the
adversary does explicitly care about the path costs of the sender. Path costs are computed
in the usual way, by associating each edge e ∈ E with a weight we representing the cost
of using that edge, and summing the weights of edges in each path. By representing the
weights as a 1×m vector, we can express the sender cost function as

Csender(f) = wf.

The adversary suffers attack costs that represent things such as the monetary cost of de-
ploying cameras to conduct surveillance in an area or the cost in resources to conduct an
ambush. These costs reduce the payoff of the adversary and are incurred irrespective of
whether the attack causes the sender any harm; this may cause the adversary not to utilize
some attacks if the costs exceed the benefits. We represent the costs by a |A| × 1 vector c
where ca is the cost of the adversary executing attack a. If we assume the costs are additive
for multiple attacks (as in the case of deployment costs of cameras, for instance), we can
represent the adversary’s cost function as

Cadversary(q) = qc.

To illustrate the importance of the attack costs on the Nash equilibrium, consider the net-
work in Figure 5.1. Assume that bs = 1 and k = 1 and that the adversary can choose to
attack the top path or the bottom path with harm matrix

M =

[
102 0 0 0
0 3 0 0

]
Let fi denote the amount of flow on edge ei and note that the sender’s strategy is fully

73

s

v1

v2

t

e1

e2

e3

e4

Figure 5.1: An example of a network with two possible paths.

specified by f1 as f2 = 1 − f1. Let q1 and q2 denote the probability of attacking the top
and bottom paths respectively.

When attack costs are zero, the adversary never has incentive not to attack, so q1 + q2 = 1.
In equilibrium the adversary is indifferent between the two attacks so 102f1 = 3(1 − f1)
and so f1 = 3/105. Similarly, the sender is indifferent between the two paths so 102q1 =
3(1 − q1) and so q1 = 3/105. An intuitive interpretation is that the sender sends most of
his flow on the bottom path because of the lower potential for harm, while the adversary,
being able to deduce this, attacks the bottom path with high probability because that’s
where most of the flow is.

Now suppose that attacking the top path has a cost c1 = 100. The adversary’s equilibrium
strategy remains the same because the sender’s payoff hasn’t changed, but now for the
adversary to be indifferent it must be that 102f1 − 100 = 3f2 so that f1 = 103/105. An
intuitive explanation is that the adversary attacks the top path with low probability because
of the high attack cost, and the sender, deducing this, sends most of the flow on the top
path despite the high potential for harm because the adversary is unlikely to attack there.

The attack costs can also cause the adversary to not execute his maximum number of
attacks because the cost outweighs the harm. For example, if c1 > 102 then the sender can
set f1 = 1 and a best response by the adversary is to choose q1 = q2 = 0.

5.2 Computing Nash Equilibrium

Finding Nash equilibria in general non-zero-sum games is computationally more expen-
sive than finding equilibria in zero-sum games. In addition, there may be multiple equi-
libria with different payoffs for both players, which can complicate the matter of choosing
a strategy. In this section we show that these concerns do not arise in the network flow

74

game with strategy costs, because the Nash equilibria in this game correspond to those of
the zero-sum game where both payoffs are affected by costs.

To prove this we will make use of the following function that includes the harm and costs
to both players:

U(f, q) = qMf + Csender − Cadversary (5.1)

and the following lemma:
Lemma 2. Let q be an adversary’s strategy and let f be a sender’s strategy. Then

1. f is a best response to q if and only if f minimizes U(f, q).

2. q is a best response to f if and only if q maximizes U(f, q).

Proof. We start with claim 1. By definition, f is a best response to q if and only if f
maximizes Usender(f, q). This happens if and only if f minimizes −Usender(f, q) + α for
any α that is constant (with respect to f). In particular, f is a best response to q if and only
if it minimizes Usender(f, q)− Cadversary(q) = qMf + Csender(f)− Cadversary(q) = U(f, q).

The proof of claim 2 is similar.

We can now prove the theorem:
Theorem 2. (f, q) is a Nash equilibrium for the network flow game with strategy costs if
and only if f minimizes maxq′ U(f, q′) and q maximizes minf ′ U(f ′, q).

Proof. We start with the backward direction. Assume that f minimizes maxq′ U(f, q′)
and q maximizes minf ′ U(f ′, q). We wish to show that (f, q) is a Nash equilibrium for the
network flow game with strategy costs. To see this, observe that f is a minimax strategy
in a zero-sum game where the payoff is determined by U(·), and q is a maximin strategy
in the same game. Thus, by the Minimax Theorem, f maximizes U(f, q) and q minimizes
U(f, q). Thus by Lemma 2, f and q are mutual best responses in the network flow game
with strategy costs, and hence (f, q) is a Nash equilibrium for the network flow game with
strategy costs.

We proceed next to the forward direction. Suppose that (f, q) is a Nash equilibrium for
the network flow game with strategy costs. We prove that f must minimize the maximum
U(f, q′) by contradiction. Suppose that f is not a minimax strategy and let f ′ be a minimax
strategy. Then there exists a marginal probability vector q′′ such that for all marginal

75

probability vectors q′, U(f ′, q′) < U(f, q′′). In particular, for q′ = q, we get

U(f ′, q) = qMf ′ + Csender(f
′)− Cadversary(q)

< q′′Mf + Csender(f)− Cadversary(q
′′)

≤ qMf + Csender(f)− Cadversary(q) because q is a best response to f
= U(f, q)

But qMf ′ + Csender(f
′) − Cadversary(q) < qMf + Csender(f) − Cadversary(q) implies that

Usender(f
′, q) = qMf ′ + Csender(f

′) < qMf + Csender(f) = Usender(f, q), which means that
f is not a best response to q for the sender, contradicting (f, q) being a Nash equilibrium
for the network flow game with strategy costs. Hence f must minimize maxq′ U(f, q′).

Assume now for the purposes of contradiction that q is not a maximin strategy. Let u =
minf ′ U(f ′, q) and f ′′ ∈ arg minf ′ U(f ′, q). Let q′ be a maximin strategy, that is, q′ ∈
arg maxq′′ minf ′ U(f ′, q′′), and let u′ = minf ′ U(f ′, q′). Because q′ is maximin and q is
not, it follows that u′ > u. Note that by definition U(f ′, q′) ≥ u′ and U(f ′, q) ≥ u for all
f ′, and in particular for f ′ = f we get that U(f, q′) ≥ u′ > u = U(f ′′, q). Thus,

U(f, q′) = q′Mf + Csender(f)− Cadversary(q
′)

> qMf ′′ + Csender(f
′′)− Cadversary(q)

≥ qMf + Csender(f)− Cadversary(q) because f is a best response to q
= U(f, q)

But this implies that q′Mf−Cadversary(q
′) > qMf−Cadversary(q), that is, thatUadversary(f, q

′) >
Uadversary(f, q). This contradicts the assumption that q is a best response to f in the network
flow game with strategy costs. Thus q must be a maximin strategy.

Because of Theorem 2, finding an equilibrium sender strategy reduces to finding a mini-
max strategy. We can extend the network flow LP we used in the previous section to get
the linear program LP 4. This LP differs from LP 2 in that the costs are explicitly factored
in to objective function. The attack costs are subtracted from the harm that would be in-
flicted by an attack in Eq. 5.3, reflecting the fact that the adversary’s payoff is reduced by
the attack cost. The effect of edge costs on the sender is directly represented by adding the
edge costs to the objective function that is being minimized.

76

LP 4 Equilibrium Sender Strategy with Costs
Input: G, b, t, M , c, k
Output: f , H , λ

Minimize
f,H,λ

kH +
∑
a∈A

λa + wf (5.2)

subject to:
H ≥ rowa[M]f − ca − λa ∀a ∈ A (5.3)

bv +
∑

(u,v)∈E

fuv =
∑

(v,u)∈E

fvu ∀v ∈ V \ {t} (5.4)

f ≥ 0 (5.5)
λ ≥ 0 (5.6)

5.2.1 Computing the Adversary’s Strategy

We can compute an equilibrium strategy for the adversary using LP 5, which is the dual of
LP 4. The q variables represent the adversary’s mixed strategy in the usual way. The vari-
able rv represents the minimum per-unit-flow harm plus edge costs that the sender would
suffer if he played optimally against q while starting from v ∈ V . The main constraint
is in Equation (5.8): for an edge (u, v), the sender can do no worse from u than he does
from v plus the harm and edge costs of sending flow across (u, v). The objective in Equa-
tion (5.7) is to maximize the total harm and costs (weighted by the amount of flow) from
each source node, less the attack costs. By Theorem 2 this finds an equilibrium strategy
for the adversary in the NFG.

However, it only finds an equilibrium strategy. What if we want to find an equilibrium
strategy for the that gives the sender the worst payoff?

Let a solution to LP 5 be (q∗, r∗) with objective function valueX∗. We know that any other
solution must also have objective function valueX∗, but this may result in different payoffs
to the sender in the non-zero-sum NFG. We want to find an equilibrium strategy for the
adversary that yields the worst payoff to the sender in NFG. This worst case equilibrium
strategy depends on the sender’s strategy f , which we previously computed with LP 4.

We use LP 6, which maximizes the harm to the sender while ensuring that all constraints
of LP 5 are satisfied and that the solution would also be optimal for LP 5.

Let a solution to LP 6 be qworst, rworst. Things to note:

77

LP 5 Equilibrium Adversary Strategy with Costs
Input: G, b, t, M , c, w, k
Output: q, r

Maximize
q,r

(∑
s∈S

bsrs

)
−
∑
a∈A

caqa (5.7)

subject to:

ru ≤ qT col(u,v)[M] + rv + w(u,v) ∀(u, v) ∈ E (5.8)
rt = 0 (5.9)
qa ≤ 1 ∀a ∈ A (5.10)∑
a∈A

qa ≤ k (5.11)

q, r ≥ 0 (5.12)

LP 6 Worst Case Equilibrium Adversary Strategy with Costs
Input: G, b, t, M , c, w, k, X∗, f
Output: q, r

Maximize
q,r

qMf (5.13)

subject to:

X∗ =

(∑
s∈S

bsrs

)
−
∑
a∈A

caqa (5.14)

− qT col(u,v)[M] + ru − rv ≤ w(u,v) ∀(u, v) ∈ E (5.15)
rt = 0 (5.16)
qa ≤ 1 ∀a ∈ A (5.17)∑
a∈A

qa ≤ k (5.18)

q, r ≥ 0 (5.19)

78

• qworst, rworst is also a solution to LP 5. (Any feasible solution to LP 6 is a feasible
solution to LP 5, and by Eq (5.14), qworst, rworst maximizes the objective function
of LP 5.)

• LP 6 always has a solution. (LP 5 always has a solution, so LP 6 must have a
solution.)

• Although the sender’s payoff in the NFG includes transmission costs, this is not
included in the objective function of LP 6 as the term is wf which is constant in this
program. The weights w do appear in the constraints.

Let EQadv be the set of equilibrium adversary strategies. Let WEQadv(f) be the set of
worst case equilibrium adversary strategies for an equilibrium sender strategy f . That is

WEQadv(f) = {q ∈ EQadv : qMf = max
q′∈EQadv

q′Mf} (5.20)

Note that WEQadv(f) is non-empty.
Theorem 3. LP 6 computes a worst case equilibrium adversary response to f .

We can show that this is also a worst case for all equilibrium sender strategies, not just the
particular choice of f . Let EQsend be the set of equilibrium sender strategies. We start by
noting the interchangeability of equilibria in the zero-sum game related to NFG:
Lemma 3. Let f ∈ EQsend and q ∈ EQadv. Then (f, q) is an equilibrium strategy for the
zero-sum game with payoff function U(f, q) = qMf +Csender−Cadversary for the adversary
and −U(f, q) for the sender.

Proof. From the minimax theorem.

We then use this to show the interchangeability of equilibria in NFG:
Lemma 4 (Interchangeability of equilibria of NFG). Let f ∈ EQsend and q ∈ EQadv.
Then (f, q) is an equilibrium strategy for the non-zero-sum NFG.

Proof. From Lemma 3 and Theorem 2.

We are now ready to prove that the adversary’s worst case equilibrium strategies for NFG
do not depend on the specific equilibrium strategy played by the sender.
Theorem 4. Let f, f ′ ∈ EQsend. Then WEQadv(f) = WEQadv(f

′).

Proof. We prove this by contradiction. Let q ∈ WEQadv(f) and q′ ∈ WEQadv(f
′).

Assume that q /∈ WEQadv(f
′).

79

By interchangeability, (f, q), (f ′, q), (f ′, q′), and (f, q′) are all equilibria. Thus, Usender(f, q) =
Usender(f

′, q) and Usender(f, q
′) = Usender(f

′, q′) so that the sender is indifferent between f
and f ′ when the adversary plays q or q′. Thus we get the following system:{

−q′Mf ′ − Csender(f
′) = −q′Mf − Csender(f)

−qMf ′ − Csender(f
′) = −qMf − Csender(f)

(5.21)

=⇒ − q′Mf ′ + qMf ′ = −q′Mf + qMf (5.22)

Because q /∈ WEQadv(f
′), it must be that qMf ′ < q′Mf ′. Thus with Eq (5.22) we get

− q′Mf + qMf = −q′Mf ′ + qMf ′ < −q′Mf ′ + q′Mf ′ = 0 (5.23)
=⇒ qMf < q′Mf (5.24)

Because q ∈ EQadv(f), it follows that q′Mf ≤ qMf , and thus with Eq (5.24) we get the
contradiction that qMf < qMf .

Therefore q ∈ WEQadv(f
′) and soWEQadv(f) ⊆ WEQadv(f

′). By symmetry it follows
that WEQadv(f

′) ⊆ WEQadv(f) and so WEQadv(f) = WEQadv(f
′).

By Theorem 4 and Theorem 3, we have shown that LP 6 finds an equilibrium strategy for
the adversary that yields the worst payoff for the sender in NFG.

5.3 NFG Example Problem

In this section we work through an example of modeling a real world problem as a net-
work flow game with costs. In this example we consider the problem of police officers in
Kabul, Afghanistan responding to an incident at the Hotel Inter-Continental Kabul, one of
Kabul’s best known hotels and among the most frequently visited by foreigners, especially
westerners. On June 28, 2011, it was the target of a 6-hour-long attack by armed terrorists
that left at least 21 dead, including all 9 attackers, after a siege by Afghanistan police and
NATO forces [55]. In a future incident, terrorists may try to delay the arrival of security
forces by obstructing roads leading to the hotel. These roadblocks must be placed in a
limited amount of time as they must be set up before the police use the roads, but erecting
them too early may tip off the security forces to the impending attack on the hotel.

We model this situation as a network flow game with the sender representing the police
and the adversary representing the terrorists trying to delay the arrival of the police at the

80

Figure 5.2: Graph of Kabul streets near the Hotel Inter-Continental Kabul.

81

hotel. The sender chooses paths through city streets for the police to take from their police
stations to the hotel. The adversary chooses roads for the terrorists to obstruct to delay
the police. Thus the adversary “attacks” edges (corresponding to roadblocks on individual
roads), and harm is calculated using a form of path intersection harm matrix where the
sender incurs harm if and only if the police use a road that has been obstructed by the
terrorists. We assume that the terrorists start from a known location, thus restricting which
roads they can obstruct in the amount of time they have available.

Figure 5.2 shows the graph of the roads in a roughly 6.5 km by 6.5 km section of west-
ern Kabul, constructed from GIS data from the Metro Extracts 1 of the OpenStreetMap
database. This graph has 3655 nodes and 8704 edges. The square near the center of the
graph depicts the location of the Hotel Inter-Continental Kabul and is the sink node for the
network flow game. The upper and lower squares depict the locations of the two nearest
police stations and are the source nodes for the network flow game. The last square, on the
right, is on a major road running through the area and is the entry point into the region for
the terrorists. We assume that the terrorists have time to travel up to 5 km along city streets
to place obstructions, and that they do not place roadblocks within 1 km of the hotel or the
police stations, as these are the most securely patrolled locations. This limits the adversary
to choosing from 5324 edges to attack, shown in bold in Figure 5.2. Attack costs to rep-
resent the risk of detection and the use of men and materials in placing roadblocks, with
the attack costs proportional to the distance the terrorists must travel to reach the attacked
edge from their starting location.

We consider three ways of representing and solving this problem as a network flow game,
using different models for the adversary. The first, the NFG approach, directly uses the
formulation developed in Section 5.2, with the adversary’s pure strategies being any subset
of up to k attacks on edges within range, and seeking to maximize his expected payoff of
the harm minus the attack costs. In the second approach, the budgeted NFG approach,
the attack costs do not factor into the adversary’s payoff, but he is instead provided with a
budget that he must meet in expectation. The third approach, the normal-form approach,
also uses a budget but the adversary must satisfy the stronger condition of meeting the
budget with every pure strategy, where the attacked edges in a pure strategy must lie along
a single path. We describe these approaches in more detail next.

NFG approach. This approach directly uses the approach from Section 5.2, calculating
the sender’s equilibrium strategy using LP 4 and the adversary’s equilibrium strategy using
LP 5. The adversary’s choice of strategies is constrained by the number of edges k that
he can simultaneously attack and by the costs of the attacks, which are deducted from his
payoff. These reflect a situation where there are k terrorists at the starting location, each

1http://metro.teczno.com/

82

LP 7 Budgeted NFG: Equilibrium Adversary Strategy with Budgeted Costs
Input: G, b, t, M , c, w, k, X∗, f
Output: q, r

Maximize
q,r

∑
s∈S

bsrs (5.25)

subject to:

ru ≥ qT col(u,v)[M] + rv + w(u,v) ∀(u, v) ∈ E (5.26)
rt = 0 (5.27)
qa ≤ 1 ∀a ∈ A (5.28)∑
a∈A

qa ≤ k (5.29)∑
a∈A

caqa ≤ C (5.30)

q, r ≥ 0 (5.31)

one capable of deploying a single road block, and the terrorists collectively choose roads
to obstruct on order by balancing the expected travel time of the police with the costs of
erecting road blocks.

Budgeted NFG approach. In this approach, the attack costs do not directly factor into
the adversary’s payoff. Instead, the adversary has a fixed budget C which he uses to cover
attack costs. We solve this problem using a modified version of the NFG approach. The
adversary’s equilibrium strategy is computed using LP 7. This is identical to LP 5 except
that the expected attack costs have been removed from the objective (Equation (5.25)), and
there is a new constraint requiring the expected attack costs to be no more than the budget
(Equation (5.30)). Note that this only guarantees that the budget is met in expectation,
which means that some pure strategies selected from a mixed strategy may exceed the
budget, even if the mixed strategy itself meets the budget constraint.

The sender’s equilibrium strategy is computed using the dual of LP 7, shown in LP 8. This
LP has a new variable X that corresponds to the budget constraint of Equation 5.30 in the
adversary’s LP.

Normal-Form approach. In this approach a single terrorist vehicle begins at the starting
location and moves through the road network, placing up to k road blocks in the desired
locations. The attack costs, which are proportional to the distance the terrorists must

83

LP 8 Budgeted NFG: Equilibrium Sender Strategy with Budgeted Costs
Input: G, b, t, M , c, k
Output: f , H , λ

Minimize
f,H,λ,X

kH +
∑
a∈A

λa + wf +XC (5.32)

subject to:
H ≥ rowa[M]f − λa − caX ∀a ∈ A (5.33)

bv +
∑

(u,v)∈E

fuv =
∑

(v,u)∈E

fvu ∀v ∈ V \ {t} (5.34)

f ≥ 0 (5.35)
λ ≥ 0 (5.36)
X ≥ 0 (5.37)

travel, depends on the specific path taken by the terrorists to reach the blockaded roads.
In addition, we require that the budget constraint is met by every pure strategy, not just in
expectation for mixed strategies.

As a result of these assumptions, not all subsets of A of size at most k are feasible pure
strategies for the adversary. For example, two edges may be individually within range of
the terrorists’ starting location, but are too far for the terrorists to blockade both of them
while staying under budget. These constraints cannot be represented compactly using the
NFG approach of relying solely on the marginal probabilities qa of each attack a ∈ A.
Instead we use the more general but less efficient normal form representation by explicitly
enumerating the subsets of A of size at most k, checking which ones meet the budget
constraint to determine the feasible pure strategies, then explicitly computing the payoffs.
We then solve this normal form game using a standard minimax LP approach.

This approach uses a strategy space for the adversary that is exponentially larger than
the strategy space used by the other two approaches. Because of this, the normal-form
approach scales poorly with k.

5.3.1 Comparison of Approaches

We first compare the three approaches for k = 2. Figure 5.3 shows the equilibrium solution
for the NFG approach. The sender’s flows are shown using dark blue lines (near-black lines

84

Figure 5.3: Equilibrium solution of NFG approach with k = 2.

85

in black-and-white), with thicker lines indicating a greater amount of flow. The adversary’s
attacks are shown using red lines (gray lines in black-and-white) on attacked edges, with
thicker lines indicating a higher marginal probability of attack. Most of the adversary’s
attacks involve edges from the northern police station. This is because they are closer
to the adversary’s starting location and hence cheaper for the adversary, and in the NFG
approach the attack costs are deducted from the adversary’s payoff. The adversary does
attack an edge on a path from the southern police station, but only with low probability.

There is also relatively little branching of the sender’s flows because any reduction in harm
from the adversary’s attacks would not compensate for the increase in travel time from
taking longer paths. For example, police from the northern police station could head west
before turning south to approach the hotel, joining with the flow from the southern police
station and approach the hotel from the west. This would greatly reduce the probability of
encountering a terrorist roadblock, but would also greatly increase the travel time due to
the longer routes.

Note also that the edges attacked by the adversary form a cut in the flow from the northern
police station but not for the southern police station. Because in equilibrium the sender
is indifferent between the paths he has chosen to send flow on, this means that the effect
of the southern attack is to decrease the value of the shorter path with the attacked edge,
to make it equally valuable as the longer path that is not attacked. All paths with flow
from the northern police station include at least one edge that is attacked by the adversary
with non-zero probability, and the marginal probabilities of attack are balanced to make
the sender indifferent.

Figure 5.4 shows the equilibrium solution for the budgeted NFG approach. The main
difference from the NFG approach is that the adversary is much more likely to attack
edges near the southern police station. This is because the attack costs do not factor into
the adversary’s payoff. Thus a high cost of attack will not dissuade the adversary from
playing that attack if there remaining budget left and no better alternative.

Figure 5.5 shows the equilibrium solution for the normal-form approach. The result for the
adversary is similar to the budgeted NFG approach. Like the budgeted NFG approach and
unlike the NFG approach, the attack costs do not directly factor into the adversary’s payoff,
possibly enabling the adversary to attack edges near the southern police station. However,
the strict budget constraint requires that both attacks on edges in a pure adversary strategy
must be reachable from the start node in the same path. Thus, when the adversary travels
to attack near the southern police station, it chooses to blockade two edges.

We next compare the NFG and budgeted NFG approaches for k = 10. Because of its
poor scalability, the normal-form approach was not able to be used. Figure 5.6 shows

86

Figure 5.4: Equilibrium solution of budgeted NFG approach with k = 2.

87

Figure 5.5: Equilibrium solution of normal-form approach with k = 2.

88

(a) (b)

Figure 5.6: Equilibrium solution of (a) NFG approach and (b) budgeted NFG approach
with k = 10.

the equilibrium solution for the NFG and budgeted NFG approaches. Compared to the
solutions for k = 2, the sender’s flows are much more extensively branched. This is
because the adversary is able to attack five times as many edges as in the k = 2 setting,
providing a stronger incentive for the sender to reduce the amount of flow on any single
edge. Note that as in the k = 2 case, the adversary under the budgeted NFG approach
is much more likely to attack edges near the southern police station than he is under the
NFG approach. The corollary of this is that the adversary is more likely to attack near the
northern police station for the NFG approach than for the budgeted NFG approach. As a
result, with the NFG approach the sender has greater incentive to reduce the flow on any
single edge, leading to even more branching in the flows from the northern police station
than seen in the budgeted NFG approach.

These differences are brought out even further for k = 20, as shown in Figures 5.7. With
the NFG approach, the adversary’s attacks in the north provide the sender with incentive
to branch further, even using the long counter-clockwise path around the hotel to approach
the hotel from the west. Similarly, with the budgeted NFG approach, the adversary’s
attacks in the south provide the sender with incentive to use a long path to approach the
hotel from the east.

89

(a) (b)

Figure 5.7: Equilibrium solution of (a) NFG approach and (b) budgeted NFG approach
with k = 20.

5.4 Network Flow Game with Multiple Sinks (NFG-MS)

In the games that we have considered so far there is a single known sink. This models
domains like a robot team where there is a single known location (e.g., the location of a
joint task) that all robots must travel to, or a sensor network where there is a single base
station capable of performing data fusion. However, in many domains there are multiple
sinks that the source nodes must chose from: there are multiple joint tasks that the robot
team can perform, or multiple base stations that the sensors could transmit their data to.

The network flow game with multiple sinks (NFG-MS) extends the network flow game
with costs from a single sink t ∈ V \S to a set of sinks T ⊂ V \S. For each sink t ∈ T there
is a reward rt > 0 that the sender receives for using that sink. This models heterogeneity
between sinks, such as some tasks being more important or some base stations having more
battery power or computational power. In the absence of an adversary the optimal behavior
for the sender is to choose a sink that maximizes utility (the reward minus the costs).
However, this kind of deterministic behavior is vulnerable to attack. Thus, in adversarial
environments the agents will have to balance reward, costs, and harm by randomizing over
both the sink to use and the paths to the sink. When the flows are interpreted as mixed
strategies in the path game, the sender in each pure strategy must choose paths for each

90

source node to the same sink. This is achieved by requiring that for each sink t ∈ T , the
source nodes all send the same fraction of their flow to t. For convenience we assume that
the sources all must transmit unit flow, that is, bs = 1 for all s ∈ S.

LP 9 computes an equilibrium sender strategy for the network flow game with multiple
sinks. In contrast to the previous LPs which used a single flow approach, this LP uses
multicommodity flows, with a separate type of flow for each source. The flow for source
s ∈ S is denoted by f s. For readability we use placeholder variables to represent the
various components of the payoff: R for the expected reward, H for the expected harm
(less attack costs), and Cedge for the expected edge costs. For each t ∈ T , the variable dt
represents the marginal probability of t being chosen as the sink. The expected reward is
thus dr (Eq. (5.39)). The harm is calculated as before except with the sum over all types of
flows, as shown in Eqs. 5.40 and 5.41. The edge costs are also calculated as before except
with the sum over all types of flows in Eq. 5.42. The flow conservation requirements have
been extended to each individual type of flow, and dt explicitly models the amount of flow
that is deposited in sink t. By using a single variable dt for all types of flow, we ensure
that the the source nodes all use t as a sink for the same fraction of their flow.

Note that in the previous network flow LPs, the source nodes were required to transmit all
of their flow to the sink. In NFG-MS, the source nodes may end up only sending some of
their flow to the sinks. This is reflected in Eq. (5.46), where the sum of the d variables is
required to be less than or equal to one, rather than equal to one. This is because in some
cases the sum of the expected costs and harm may exceed the expected reward for using a
sink.

5.5 Network Flow Game with Multiple Groups (NFG-MG)

In NFG-MS, all source nodes are required to send to the same sink in a pure strategy.
This makes sense when the source nodes correspond to a cooperative group like a team of
robots performing a joint task or a set of sensors tracking the same object. However, in
most domains there are multiple groups: multiple subteams performing different tasks or
different sensors tracking different objects.

The network flow game with multiple groups (NFG-MG) extends NFG-MS to handle these
cases and is solved (for the sender) by LP 10. The source nodes are partitioned into groups
S = {S1, . . . , S|S|}. The reward, edge costs, and harm matrix are indexed by group, rit,
wie, and M i for all i ∈ {1, . . . |S|}, t ∈ T , and e ∈ E. All source nodes within a group
must send flow to the same sinks in the same proportions. Furthermore, sinks can only
be used by a single group at a time; this corresponds to each task only being able to be

91

LP 9 Equilibrium Sender Strategy with Multiple Sinks
Input: G, b, T , M , c, k
Output: f , H , λ

Maximize
f,R,H,H′,Cedge,d,λ

R−H − Cedge (5.38)

subject to:
R = dr (5.39)

H = kH ′ +
∑
a∈A

λa (5.40)

H ′ ≥ rowa[M](
∑
s∈S

f s)− ca − λa ∀a ∈ A (5.41)

Cedge = w
∑
s∈S

f s (5.42)

bv +
∑

(u,v)∈E

f suv ≥
∑

(v,u)∈E

f svu ∀v ∈ V \ {t}, ∀s ∈ S (5.43)

∑
(u,t)∈E

f sut ≥ dt +
∑

(t,u)∈E

f stu ∀t ∈ T,∀s ∈ S (5.44)

dt ≤
∑

(u,t)∈E

f sut ∀t ∈ T,∀s ∈ S (5.45)

∑
t∈T

dt = 1 (5.46)

f ≥ 0 (5.47)
λ ≥ 0 (5.48)
d ≥ 0 (5.49)

92

performed once, or each base station only able to perform fusion for a single object at a
time. This assumption can be relaxed either by modifying the constraints (Eq. (5.59)) of
LP 10 or by adding multiple copies of the sink nodes as desired.

5.6 Bayesian Games: Dealing with Uncertainty

In many security applications, it is unrealistic to assume that complete information on the
adversary is available because adversaries are hostile and usually secretive. In military and
law enforcement domains, intelligence analysts, criminologists, and other experts collect
relevant data on real and possible adversaries and develop inherently uncertain estimates
of their capabilities and motives. In this section we represent that uncertainty as proba-
bility distributions over the maximum number of attacks that they can execute, the harm
matrices, and the attack costs. We develop ways to reason strategically over this incom-
plete information by adopting the Bayesian game framework and find polynomial time
algorithms for finding equilibria.

For simplicity, we present our approach in the context of NFG, the single-group, single-
sink network flow game with costs solved by LP 4 and LP 5 for the case without uncer-
tainty. It is straightforward (although requiring more elaborate notation) to extend our
approach to NFG-MS and NFG-MG.

5.6.1 Uncertain k

In many situations it is not possible for the sender to know the adversary’s capabilities with
certainty. The sender can act as if he has the full knowledge, but he then might perform
badly. For example, suppose that the game is the same as in Figure 5.1, but now k = 2.
In equilibrium, the adversary strategy is q1 = 1/34 and q2 = 1, and the sender strategy is
q1 = 100/102 and q2 = 2/102. The expected harm for the sender will thus be 3. However,
if the sender does not know that k = 2 now, and continue to play his strategy for k = 1,
the adversary will exploit it and will always attack v1 and v2. The sender’s harm will
thus increase to 100.116. Therefore, when the sender does not sure about the exact value
of k, he will have to estimate it. We represent this by a probability distribution q over
possible values of k, which we assume is known to both players. Given this distribution,
we formulate the sender’s problem as a Bayesian game. A Bayesian game is one in which
information about characteristics of the other players is incomplete. There is a probability
distribution over possible types for each player, and the type of a player determines that
player’s payoff function. In our case, the sender has only one type, and the type of the

93

LP 10 Equilibrium Sender Strategy with Multiple Groups
Input: G, b, S, T , M , c, k
Output: f , H , λ

Maximize
f,R,H,H′,Cedge,d,λ

R−H − Cedge (5.50)

subject to:

R =

|S∑
i=1

∑
t∈T

ditr
i
t (5.51)

H = kH ′ +
∑
a∈A

λa (5.52)

H ′ ≥

 |S|∑
i=1

rowa[M
i]f i

− ca − λa ∀a ∈ A (5.53)

Cedge =

|S|∑
i=1

∑
e∈E

wief
i
e (5.54)

bsv +
∑

(u,v)∈E

f suv ≥
∑

(v,u)∈E

f svu ∀v ∈ V \ {t},∀s ∈ S (5.55)

∑
(u,v)∈E

f suv ≥ d
group(s)
t +

∑
(v,u)∈E

f svu ∀v ∈ T,∀s ∈ S (5.56)

d
group(s)
t ≤

∑
(u,t)∈E

f sut ∀t ∈ T,∀s ∈ S (5.57)

∑
t∈T

dit = 1 ∀i ∈ {1, . . . , |S|} (5.58)

|S|∑
i=1

dit ≤ 1 ∀t ∈ T (5.59)

f ≥ 0 (5.60)
λ ≥ 0 (5.61)
d ≥ 0 (5.62)

94

LP 11 Equilibrium Sender Strategy in a Bayesian game (uncertain k)

Input: G, M , A, c, k, Pr(k)
Output: f , {Rk}, {λk}

Minimize
f,{Rk},{λk}

wf +

|A|∑
k=1

Pr(k)

(
kRk +

∑
a∈A

λka

)
(5.63)

subject to:

Rk ≥ rowa[M]f − ca − λka ∀a ∈ A,∀k ∈ [1..|A|] (5.64)∑
(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \ {t} (5.65)

fuv ≥ 0 ∀(u, v) ∈ E (5.66)

λka ≥ 0 ∀a ∈ A,∀k ∈ [1..|A|] (5.67)

Rk ≥ 0 ∀k ∈ [1..|A|] (5.68)

adversary is determined by the value of k. We denote the probability that the adversary is
of type k as Pr(k).

The sender’s optimal equilibrium strategy can be computed using LP 11. This LP is sim-
ilar to LP 4, except that instead of minimizing maximum adversary expected payoff for a
specific value of k, it minimizes the weighted sum of the expected rewards of every pos-
sible k, weighted by their possibilities. The number of variables and constraints is still
polynomial in n and |A| and so this LP can be solved in polynomial time.

We must verify that in the Bayesian game, minimizing the adversary’s maximum expected
payoff also maximizes the sender’s expected payoff.
Lemma 5. Let f be a sender strategy, {qk} be an adversary strategy, and Pr(k) be a
probability distribution over values of k. Then f is a best response to {qk} if and only if f
minimizes expected reward relative to q and Pr(k).

Proof. Forward: Assume f is a best response to {qk}. Then f minimizes
∑|Z|

k=1 Pr(k)qkMf .
Therefore it also minimizes

∑|A|
k=1 Pr(k)qkMf − Pr(k)qkc because Pr(k)qkc is constant

with respect to f . Backward direction is similar.

Even though the adversary knows his type (i.e., the correct value of k) he cannot use LP ??
to find his equilibrium strategy because the sender does not know the exact value of k. The
adversary’s equilibrium strategy can instead be computed by the dual to LP 11.

95

LP 12 Equilibrium Sender Strategy in a Bayesian game (uncertain M and c)

Input: G, {M i}, {c}, k, L, Pr(i)
Output: f , {Ri}, {λi}

Minimize
f,{Ri},{λi}

wf +
L∑
i=1

Pr(i)

(
kRi +

∑
a∈A

λia

)
(5.69)

subject to:

Ri ≥ rowa[M
i]f − cia − λia ∀a ∈ A,∀i ∈ [1..L] (5.70)∑

(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \ {t} (5.71)

fuv ≥ 0 ∀(u, v) ∈ E (5.72)

λia ≥ 0 ∀a ∈ A,∀i ∈ [1..L] (5.73)

5.6.2 Uncertain Payoffs

Another way in which the sender may be uncertain of the adversary is by not knowing the
payoffs and costs. Suppose instead that he has a probability distribution over L possible
payoff matrices and attack costs (types of adversaries). For i ∈ [1..L], let Pr(i) be the
probability that the adversary is of type iwith a harm matrixM i and cost of attacks ci. The
sender’s optimal equilibrium strategy is computed by LP 12. As before, the adversary’s
strategy can be computed by taking the dual of this LP.

If we assign Pr(i) = 1 for every i ∈ [1..L] we get a linear program which solves an-
other interesting variant of our problem. Consider a game with one sender and multiple
adversaries. The adversaries choose their strategies independently of each other (i.e., no
colluding). The adversaries have different harm matrices and costs for attacking nodes and
the total harm to the sender is the sum of the harm resulting from each adversary’s attack.
The payoff to each adversary depends only on his own strategy and the sender’s strategy;
it does not depend on the strategies of any of the other adversaries. For now, let’s assume
that every adversary can attack k nodes. By assigning Pr(i) = 1 for every i ∈ [1..L] we
get that LP 12 computes the equilibrium strategy for the sender in the multiple adversaries
game too! As for the attacker’s equilibrium strategies, we get an interesting observation:
since the strategies can be computed by the dual of LP 12, they are in fact correlated.
Even though the adversaries choose their strategies independently of each other, due to the
strategic consideration they behave as if they coordinate their moves.

96

5.6.3 Experiments

In this section we experimentally evaluate our algorithms. We empirically evaluated our
approach through simulation of two multiagent systems, a multirobot team operating in an
urban environment and a sensor network transmitting through a multihop, ad hoc network.
Each data point is the average over 20 independent randomly generated instances.

Source nodes in the sensor network were sensor nodes that were generating data (for ex-
ample, readings from a target) that had to be transmitted back for fusion at one of several
base stations (the sink nodes). Other nodes in the network were used as relays between the
sensors and the base stations. Nodes were distributed uniformly at random in a 10 × 10
region of the plane. Edges were added between nodes within a Euclidean distance of 1 of
each other, yielding a unit disk graph, a commonly used abstraction of wireless network
topologies. This resulted in networks that on average had many paths between any two
nodes, but were still not fully connected (in which case the problem is trivial).

The graph in the robot team represented an urban road network, with source nodes repre-
senting the starting locations of the robots. We conducted experiments on both synthetic,
square grid graphs. We also used topologies extracted from GIS data 2 of the road network
of Afghanistan as recorded by the Afghanistan Information Management Service. The
graph is shown in Figure 5.8.

Source nodes were selected uniformly at random from among the nodes, and sink nodes
were selected uniformly at random from among the nodes excluding the source nodes. For
the presented experiments |T | = 10 and k = 10.

We used a commercial LP solver, Gurobi 4.6.1, running on a 64-bit Windows 7 computers
with a 2.8 GHz, second-generation Intel Core processor and 8 GB of RAM.

The first set of experiments examined the impact of varying the number and size of groups.
One might expect that having the source nodes divided into more groups would increase
the running time as there would be more possible combinations of sinks chosen for each
group. To investigate this, we varied the number of groups from one to four while inde-
pendently varying the size of each group from one to ten. This resulted in instances where
the total number of source nodes varied from one to forty.

Figures 5.9 and 5.10 show the average running times plotted for the total number of source
nodes, using log-log axes. Note that the points for all groups are roughly collinear. This
shows that it is the total number of source nodes, not the specific distribution of the source
nodes into groups, that affects running time. Also note that the points in both plots show
a linear trend, which because of the log-log plot indicates that the running time increases

2http://www.mapcruzin.com/free-afghanistan-roads-arcgis-maps-shapefiles.htm

97

Figure 5.8: Graph of the road network of Afghanistan.

���

�

��

���

����

� �� ���

�
�
�
�
��
�
��
��

	
�

�	
�

�
�
��

��������	�
����������

������	

�����	�

������	�

�����	�

Figure 5.9: Running time of LP 10 vs. number of source nodes as the number of number
of groups and number of source nodes per group is varied for the grid network

98

���

�

��

���

����

� �� ���

�
�
�
�
��
�
��
��

	
�

�	
�

�
�
��

��������	�
����������

������	

�����	�

������	�

�����	�

Figure 5.10: Running time of LP 10 vs. number of source nodes as the number of number
of groups and number of source nodes per group is varied for the disk network.

polynomially with the number of source nodes, as expected for a linear programming-
based approach. For the grid network, the best fit line has a slope of 2.0247 (with R2 =
0.9816) while for the disk network the best fit line has a slope of 2.0945 (with R2 =
0.9855), indicating that the effect of the number of source nodes on running time is close
to quadratic.

The next set of experiments looked at the impact of the size of the graph on running time
by varying the number of nodes for each type of graph. For the grid graph we varied the
size of the graph from 100 to 10,000 nodes. For the disk graph we varied the number of
nodes that we placed from 100 to 10,000 nodes as well; however, due to the stochastic
nature of network formation, not all nodes were connected in the every resulting instance
which could cause problems if source in the same group could not reach the same sink.
For each instance we extracted the largest connected component and used this as the graph
of the environment. The average number of nodes in these graphs varied from 81 to 9608.
For the graph of the road network of Afghanistan, we isolated rectangular geographical re-
gions of varying sizes around Kabul and extract the subgraph induced by the nodes within
the rectangular regions. Again this could result in some nodes being disconnected (for
example, because their connections in the road network extended outside of the specific
rectangular region we were considering) and so we took the largest connected component
for each region size as the graph. The number of nodes in the Afghanistan maps varied
from 123 to 12,459.

99

���

�

��

���

����

� �� ��� ���� ����� ������

�
�
�
�
��
�
��
��

	
�

��

��������	���
��

���� ��	
 ��
����	���

Figure 5.11: Running time of LP 10 vs. number of nodes.

The running times vs. the number of nodes for the three topologies are shown in Fig-
ure 5.11 using a log-log plot. The grid network has the highest average running times
overall, followed by the disk network, and then the Afghanistan network. The points show
a linear trend, with slopes ranging from 1.58 for grid network to 1.42 for the Afghanistan
network, indicating polynomial running time that is sub-quadratic. This shows that LP 10
is scalable for large numbers of nodes.

We also plot the running times against the number of edges. This is important as the
number of paths through the network depends not just on the number of nodes but also
on the number of edges. The results are shown in Figure 5.12, again using logarithmic
axes. We again see linear trends, this time with slopes ranging from 1.55 for the grid
network to 1.41 for the Afghanistan graph. Surprisingly, the running times on the disk and
Afghanistan graphs are roughly collinear, while the running times on the grid network are
significantly higher. This is interesting because the disk network has more edges overall,
from 90 to 53,893, while the grid network has between 360 and 39,600 edges and the
Afghanistan network between 308 and 33,846 edges.

Our final set of experiments compares our approach with two heuristics. Minimum Harm
(MH) minimizes the possible harm that can be caused by the adversary but does not con-
sider the sender’s environmental costs. Shortest Paths (SP) minimizes the environmental

100

���

�

��

���

����

� �� ��� ���� ����� ������

�
�
�
�
��
�
��
��

	
�

��

��������	�
���

���� ��	
 ��
����	���

Figure 5.12: Running time of LP 10 vs. number of edges.

cost but ignores any possible attack by an adversary. We vary the relative weight of the
harm and environmental costs in the sender’s payoff according to the formula

Usender(f, q) = −qMf − γwf, (5.74)

where γ > 0 is a constant sender cost factor that we vary from 2−6 to 22 in powers of 2.

Figures 5.13 –5.15 shows the total costs to the sender (the sum of the harm and envi-
ronmental costs) when the adversary plays a worst case equilibrium strategy on different
graph topologies. This adversary strategy does not depend on the sender’s choice of strat-
egy. Note that the sender plays off-equilibrium when he plays MH and SP, and hence the
strategy profiles are not in equilibrium. Indeed, the adversary’s strategy may not even be
a best response to the sender’s strategy, as it was chosen assuming that the sender would
play an equilibrium strategy.

From the figures it is clear that the EQ and SP strategies perform similarly, while the MH
strategy does increasingly poorly as the sender cost factor increases. This is to be expected,
as the MH strategy does not factor in the environmental costs at all, instead choosing to
divide the flow over as many paths as possible to reduce exposure to attack, even if those
paths are very long. As γ is increased, the environmental costs come to dominate the
sender’s costs and so MH does poorly. From these results it seems that SP is superior to

101

����

����

����

����

����

�
�
�
�
�
�
��
�
	

��
��

�
�

�����������	�
�����
��������	���������

����������
�
��������������

�� 	
 ��

�

���

����

����

���
 ��

�

�
�
�
�
�
�
��
�
	

��
��

�
�

���������	
���

����������
���
�

Figure 5.13: Total costs to the sender when playing an equilibrium (EQ), minimum harm
(MH), or shortest paths (SP) strategy against an adversary playing a worst case equilibrium
strategy on a grid.

MH.

However, there is also the issue of security. When playing MH or SP the sender is playing
off-equilibrium. If the adversary knows that the sender is playing off-equilibrium, there
is no reason for him to continue to play an equilibrium strategy of his own. Instead, he
will play a strategy that will maximize his own payoff against the sender’s off-equilibrium
play. We consider the adversary playing a worst case best response, that is, a best response
that has the worst payoff for the sender. This reflects the case where the adversary can
either observe the sender’s actual strategy or knows which type of strategy the sender is
playing (MH or SP). It also establishes the security of the game of the sender, that is, the
worst case outcome against a rational adversary.

The total costs to the sender when playing against an adversary playing worst case best
response is shown in Figures 5.16 –5.18. In Figure 5.16 we clearly see that the SP strategy
does very poorly compared to EQ and even MH except for high values of γ. The reason
for this is that SP is very vulnerable to attack: it chooses a single path through the network,
which means the adversary can choose a pure strategy that maximizes the harm.

This is effect still present for the disk and Afghanistan graphs, but it is more difficult to see

102

�����

�����

�����

�����

�����
�
�
�
�
�
�
��
�
	

��
��

�
�

�����������	�
�����
��������	���������

����������
�
��������������

�� 	
 ��

�

����

�����

�����

���
 ��

�

�
�
�
�
�
�
��
�
	

��
��

�
�

���������	
���

����������
���
�

Figure 5.14: Total costs to the sender when playing an equilibrium (EQ), minimum harm
(MH), or shortest paths (SP) strategy against an adversary playing a worst case equilibrium
strategy on a disk network.

due to the environmental costs dominating the total costs, especially for the MH strategy.
This makes the relative contribution from SP’s greater vulnerability to attack harder to
see. Careful examination of Figure 5.17 shows that there is a significant gap between the
curves for EQ and SP, but this cannot be visually seen in Figure 5.18.

A better way to visualize this vulnerability is to consider the relative security gap. The
security gap is the difference in payoffs to the sender when the adversary plays a worst
case equilibrium strategy and when the adversary plays a worst case best response. The
relative security gap then normalizes this to the sender’s payoff against the equilibrium ad-
versary. Thus, the relative security gap reflects the sender’s vulnerability as the percentage
difference in payoff between an equilibrium adversary and a best response adversary.

The relative security gap is plotted in Figures ?? – ?? for the three topologies; a more
negative value indicates worse performance. We can see that the SP strategy performs
poorly in all three topologies for small values of γ. As γ increases, the gap narrows as the
total costs, and hence the denominator, increase. Still, it is very clear from these graphs
that the increase in total costs for MH is due entirely to the rising environmental costs as
γ increases; MH has a small security gap and hence is not very vulnerable to attack, as is
expected.

103

������

������

�������

�������

�
�
�
�
�
�
��
�
	

��
��

�
�

�����������	�
�����
��������	���������

����������
�
����������
���������

�� �	
�

�

������

������

�
�� �
� � ��

�
�
�
�
�
�
��
�
	

��
��

�
�

���������	
���

����������
���
�

Figure 5.15: Total costs to the sender when playing an equilibrium (EQ), minimum harm
(MH), or shortest paths (SP) strategy against an adversary playing a worst case equilibrium
strategy on the Afghanistan road network.

From this set of experiments we can conclude that the equilibrium strategies found by
LP 10 offers the best of both heuristics: it provides the security of MH and the good
performance of SP, trading off the risks of harm and environmental costs in an intelligent
way. This is the goal of our work on flow allocation in adversarial environments, and our
approach meets that goal.

104

����

����

����

����

����

����

�
�
�
�
�
�
��
�
	

�
�
��

�
�

�����������	�
�����
��������	��������������

����	����
��������������

�	
� �

�

����

����

����

����

���� ��� � ��

�
�
�
�
�
�
��
�
	

�
�
��

�
�

���������	
���

����������
���
�

Figure 5.16: Total costs to the sender when playing an equilibrium (EQ), minimum harm
(MH), or shortest paths (SP) strategy against an adversary playing a worst case best re-
sponse strategy on a grid.

5.7 Stackelberg Games

In this section we consider the Stackelberg game in which the sender plays first, commit-
ting to a strategy. We show how two commonly used solution concepts, the strong and
weak Stackelberg equilibria, are inappropriate for sequential network security games, and
provide a polynomial time algorithm for finding a more nuanced equilibrium.

5.7.1 Model

In the previous section we described the simultaneous game where the sender and adver-
sary act without observing each other’s actions. However, in many settings this is not
the case. For example, convoys in support of persistent military or humanitarian relief
missions will operate over extended periods of time and the adversary can observe routes
taken over time to build up an estimate of the sender’s mixed strategy before choosing
which attacks to launch. These types of settings are commonly modeled as Stackelberg
games, a type of sequential game in which one player (the “leader”) moves first, commit-
ting to a mixed strategy. The second player (the “follower”) can then observe that mixed

105

�����

�����

�����

�����

�����

�
�
�
�
�
�
��
�
	

��
��

�
�

�����������	�
�����
��������	��������������

����	����
��������������

�� 	
 ��

�

����

�����

�����

���
 ��

�

�
�
�
�
�
�
��
�
	

��
��

�
�

���������	
 ����	����	������
��

Figure 5.17: Total costs to the sender when playing an equilibrium (EQ), minimum harm
(MH), or shortest paths (SP) strategy against an adversary playing a worst case best re-
sponse strategy on a disk network.

strategy and choose an appropriate response. It is known that in Stackelberg games the
leader can sometimes improve his equilibrium payoff (and cannot decrease it, under mild
assumptions) compared to his equilibrium payoff in the simultaneous move game [59].

In a two-player Stackelberg game the follower’s strategy is a function that maps mixed
strategies of the leader to mixed strategies of the follower. In the network flow security
game with attack costs, the adversary’s strategies are functions g : F → A that map
each flow to an adversary mixed strategy. Let G denote the set of all such functions.
A Stackelberg equilibrium is a refinement of subgame perfect Nash equilibrium where
(f ∗, g∗) are a Stackelberg equilibrium if they are mutual best responses, that is

g∗(f ∗)Mf ∗ = max
f∈F

g∗(f)Mf

g∗(f ∗)Mf ∗ − g∗(f ∗)c = max
g∈G

g(f ∗)Mf ∗ − g(f ∗)c.

both hold, and g∗(f) is a best response to f for all f ∈ F (the follower always plays
optimally, even off the equilibrium path). Computing a best response function g for the
adversary is straightforward: given f , greedily choose up to k attacks that have maximum

106

������

������

�������

�������

�
�
�
�
�
�
��
�
	

�
�
��

�
�

�����������	�
�����
��������	��������������

����	����
����������
���������

�� �	
�

�

������

������

�
�� �
� � ��

�
�
�
�
�
�
��
�
	

�
�
��

�
�

���������	
���

����������
���
�

Figure 5.18: Total costs to the sender when playing an equilibrium (EQ), minimum harm
(MH), or shortest paths (SP) strategy against an adversary playing a worst case best re-
sponse strategy on the Afghanistan road network.

��

����

��

����

�

���� ��� � ��

���������	
���

��

���������	�
����
����������

�� 	
 ��

��

�
��

�

����

��

����

��

Figure 5.19: Relative security gap when the sender plays an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy on a grid network.

107

����

����

����

����

�

���� ��� � ��

���������	
���

��

���������	�
����
����������

	
 ��
�

����

����

����

����

��

����

Figure 5.20: Relative security gap when the sender plays an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy on a disk network.

����

����

����

�

���� ��� � ��

���������	
���

��

���������	�
����
����������������

�� 	
 ��

���

����

����

����

����

����

Figure 5.21: Relative security gap when the sender plays an equilibrium (EQ), minimum
harm (MH), or shortest paths (SP) strategy on the Afghanistan road network.

108

payoff to the adversary, excluding any that would contribute negative payoff because the
attack cost is too high. Note that there will be multiple best response functions if there
is some f for which the set of k attacks yielding highest adversary payoff is not unique,
and that these best response functions may yield different payoffs to the sender because of
heterogeneous attack costs. Thus there may be multiple Stackelberg equilibria that have
the same sender strategy but different sender payoffs.

Traditionally two kinds of Stackelberg equilibrium are distinguished: strong Stackelberg
equilibrium (SSE), where the follower’s best response function always maps to a strategy
that maximizes the leader’s payoff; and weak Stackelberg equilibrium (WSE), where the
follower’s best response function always maps to a strategy that minimizes the leader’s
payoff [34]. The pessimistic WSE is the more natural solution concept for security appli-
cations, which tend to focus on worst case behavior. Despite this, SSE, which assumes
that the malicious adversary breaks ties in the leader’s favor, has been considered more
often in the literature for two technical reasons: (1) a SSE is guaranteed to exist in every
Stackelberg game, while a WSE may not; and (2) it is often claimed that the leader can
induce the adversary to play the desired best-case strategy by deviating by an arbitrarily
small amount from the equilibrium in order to break the adversary’s indifference [59]. We
will show that both of these arguments are inappropriate for the network security game,
but first illustrate several important concepts by example.

Recall the example in Figure 5.1 with c1 = 102. The adversary is indifferent when f1 =
103/105, prefers the top path when it is f1 > 103/105, and prefers the bottom path when
f1 < 103/105. Thus all best response functions g1 : [0, 1] → [0, 1] mapping f1 to the
probability of attacking the top path must satisfy g1(f1) = 0 when f1 < 103/105 and
g1(f1) = 1 when f1 > 103/105, and any value g1(f1) ∈ [0, 1] is acceptable for f1 =
103/105.

In the unique simultaneous Nash equilibrium, p1 = 3/105, so that the sender was in-
different between the top and bottom paths but sent f1 = 103/105 flow on the top path
and f2 = 2/105 flow on the bottom path, suffering harm on both paths. It follows that
f1 = 103/105 is a best response to the adversary’s best response function gNE1 with
gNE1 (103/105) = 3/105. Thus the simultaneous Nash equilibrium naturally gives rise
to a Stackelberg equilibrium strategy, the same payoff to the sender as in the Nash equilib-
rium, −306/105. In the SSE the adversary attacks the bottom path (gSSE1 (103/105) = 0),
resulting in a much higher payoff to the sender, −6/105. It is easy to see that there are
no other Stackelberg equilibria for this game. For example, there is no WSE because if
the adversary played the worst-case best response with gworst1 (103/105) = 1, then the the
sender would have incentive to deviate by decreasing f1.

The sender’s strategy is the same in both of these equilibria which means that his payoff

109

s v1 v2 t
e1 e2 e3

Figure 5.22: A network topology in which the sender cannot induce a strong Stackelberg
equilibrium.

ultimately depends on the choice of the indifferent adversary. However, note that the
sender can deviate slightly from his equilibrium strategy by playing f1 = 103/105− ε for
some small ε > 0, in order to incentivize the adversary to attack the bottom path. By doing
this the sender will receive a payoff of 6/105 + 3ε instead of the 6/105 that he would earn
in the SSE, but as ε is made arbitrarily small his strategy converges to the SSE strategy.

It is not always possible to induce the SSE by deviating from an equilibrium strategy.
Consider the network in Figure 5.22, and assume that A contains two attacks, one that
affects e1 and one that affects e2, with harm matrix

M =

[
5 0 0
0 3 0

]
and costs c1 = 3 and c2 = 1. The sender has no choice as his only pure strategy is to send
the full flow on the single path from s to t. At the same time, the adversary is indifferent
to the choice of attack as they both yield him a payoff of 2 and so might choose either of
them.

5.7.2 Inducing Locally Optimal Equilibria

Given that the WSE may not exist and the SSE might not be attainable, we solve the prob-
lem of how the sender can deviate from a Stackelberg equilibrium strategy f to induce a
Stackelberg equilibrium (f, g) that yields him maximum payoff. We call this equilibrium a
locally optimal induceable Stackelberg equilibrium (loptISE). It is locally optimal because
the value of the Stackelberg equilibrium that is induced depends on the starting equilibrium
strategy f . The starting strategy that we use is one that arises naturally from simultaneous
game Nash equilibrium strategy as solved for using LP 9, which can be shown to always
be a Stackelberg equilibrium:
Lemma 6. A strategy profile (f, p) is a Nash equilibrium for the network flow security
game with attack costs if and only if (f, g) is a Stackelberg equilibrium for the Stackelberg
network flow security game with attack costs for a best response function g with g(f) = p.

110

Algorithm 5 Computing deviation to find optimal inducible Stackelberg equilibrium
1: Find Nash equilibrium flow f using LP9
2: Set A′ to be the set of minimum adversary payoff candidate attacks.
3: Set k′ ≤ k to be the number of candidate attacks that must be chosen from A′.
4: if |A′| ≤ k′ then
5: Return.
6: Add dummy source s0 to G. Set I ′ ← ∅. Set f ε to be the empty flow.
7: while |I| < k′ do
8: Set F ← ∅.
9: for all a ∈ A′ do

10: Solve (fa, H,H ′)← LP13
11: if H −H ′ ≥ 0 then
12: F ← F ∪ {fa}
13: Set Y ← {a|fa ∈ F with minimum rowa[M]fa}.
14: Set Z ← {a|∃a′ ∈ Y s.t. rowa[M]fa = rowa′ [M]fa

′}
15: Set A′ ← A′ \ Z and I ← I ∪ Z.
16: Set f ε ← f ε +

∑
a∈Y f

a

17: Set f ← f + εf ε

18: for all s ∈ S do
19: Normalize outgoing flow.

Proof. Suppose (f, p) is a Nash equilibrium and construct g as a best response function
with g(f) = p. By definition of Nash equilibrium f and g(f) are are mutual best responses
because and so (f, g) is a Stackelberg equilibrium. Suppose (f, g) are a Stackelberg equi-
librium. Then by definition of Stackelberg equilibrium f and g(f) = p are mutual best
responses and hence (f, p) is a Nash equilibrium.

Algorithm 5 computes a deviation from equilibrium strategy that the sender can use to in-
duce a loptISE. We will first sketch the high level approach before delving into the details.
The algorithm starts from a Nash equilibrium flow f that will also be a Stackelberg equi-
librium strategy according to Lemma 6. It then computes the set A′ of candidate attacks
for the adversary. These are the attacks that might be chosen as part of a best response
to f . The sender will try to incentivize the adversary to choose certain of these candidate
attacks by adding small amounts of flow to certain paths. Intuitively this approach exploits
what we observed in the example: parallel paths allow the sender freedom to deviate and
bias the adversary; a sequential topology does not permit that flexibility. However, the
process is not as obvious when dealing with general attacks, each of which may affect

111

an arbitrary set of links with heterogeneous penalties. Instead of choosing a simple path,
the sender tries to find a flow for each candidate attack that will cause the adversary to
prefer to play that attack. If the attacks are “in parallel” this will be possible, if the attacks
are “in sequence” it will not be. When presented with multiple options, the sender will
choose the one that causes the least harm (i.e., increases his payoff the most). The process
repeats until the sender has guided all of the adversary’s attacks, or he has guided all the
attacks that are possible. The deviation flows (which may be made arbitrarily small) are
then superimposed on the original flow to generate the desired deviation.

Computing the candidate attacks is straightforward. Given f , we compute the payoff that
the adversary would receive for each attack a ∈ A as ρa = rowa[M]f . If there are k or
fewer attacks with ρa ≥ 0, then those are all candidate attacks. If there are more than k
such attacks, we compute A′ as the set of attacks with the highest k values of ρa (with
repetition). For example, if the set of ρa is {10, 10, 8, 7, 7, 7, 0,−2} and k = 4, then
A′ = {a ∈ A|ra ≥ 7}, giving us 6 candidate attacks. The adversary’s best response
will always choose the attacks with ρa strictly greater than the minimum, so we need only
consider A′ to be those with minimum ρa values. In the previous example, that means
that the best response always plays the two attacks with ρa = 10 and the one attack with
ρa = 8, so we are left to choose k′ = k − 3 = 1 candidate attacks from among the three
remaining with ρa = 7.

A dummy source node s0 is added to G and connected to each source in s ∈ S, allowing
deviant flows from any source. I , the set of induced attacks, is initialized as empty. The
overall deviant flow f ε is initially empty.

The algorithm then iterates up to k′ times in the loop starting at line 7. On each iteration
it attempts to greedily induce the adversary to choose attacks that maximally increase the
sender’s payoff. F is the set of best deviant flows, computed for each candidate attack
in the loop starting at line 9. The best deviant flow for a candidate attack a is computed
by LP13. This LP finds a flow that causes as great as possible an increase in harm for
attack a compared to any other candidate attack. For a deviation flow fa, the adversary’s
best response is an attack with maximum increase in harm (attack cost does not matter as
the adversary is already indifferent between candidate attacks due to the Nash equilibrium
sender strategy), so if the objective value is non-negative, the adversary can be induced to
play a (and possibly other candidate attacks as well). If the objective value is negative, the
adversary cannot yet be induced to play a in preference to other candidate attacks.

Of the attacks that can be induced on this iteration, the sender chooses those that cause
minimum increase in harm. These may not be unique, so Y is the set of all such candidate
attacks with minimum increase in harm that the adversary can be induced to attack on this
iteration. The deviation flows that are used to induce these attacks may also induce other

112

LP 13 Stackleberg deviating flow for a.

Input: G, M , A′, a
Output: fa, H , H ′

Maximize
f,H,H′

H −H ′ (5.75)

subject to:
H ′ ≥ rowa[M]fa (5.76)

H = rowa′ [M]fa
′ ∀a′ ∈ A′ \ {a} (5.77)∑

(v,u)∈E

fvu =
∑

(u,v)∈E

fuv ∀v ∈ V \ {s0, t} (5.78)

∑
(s0,u)∈E

fs0u = 1 (5.79)

fuv ≥ 0 ∀(u, v) ∈ E (5.80)
λa ≥ 0 ∀a ∈ A (5.81)

attacks (which have the same increase in harm), so the set Z contains all the attacks that
will be induced in the current iteration. These are removed from the candidate attacks
and added to the induced attacks in line 15, and the deviation flows for this iteration are
superimposed on the total deviation flow f ε before starting a new iteration.

The loop terminates when the requisite number of attacks have been induced. The case
when no more candidate attacks can be induced is handled by there being a single flow in
F which is trivially deviated from itself. For performance considerations this possibility
can be checked separately. It is also not possible for A′ to become empty prior to the
termination of the loop. Recall also that at the beginning of iteration, |A′| > k′ (lines 4 –
5) and on every iteration the same number of attacks are added to I as are removed from
A′. Thus, |I| ≥ k′ no later than the iteration when A′ = ∅.
In line 17 the deviation flow is scaled and superimposed on the equilibrium flow, and in
line 19 the amount of flow (which increased due to the addition of the deviation flow) is
normalized at each source node so that the total amount of flow is maintained with the
addition of the deviation.
Theorem 5. Algorithm 5 runs in time polynomial in the size of G and A.

Proof. Each line in the algorithm can clearly be executed in polynomial time. The for
loops in lines 9 – 12 and lines 18 – 19 iterate at most Θ(|A|) and Θ(n) time, respectively.

113

In each iteration of the main loop from lines 7 – 16 at least 1 attack is added to |I| and
therefore the loop cannot iterate more than |I| = Θ(|A|) times.

114

Chapter 6

Related Work

6.1 Flow Allocation

The issue of transmitting data to a central base station has received considerable attention
in ad hoc and especially sensor networks [29, 28, 39, 1]. The primary concern for many
algorithms operating in these kinds of networks is power usage, and to a lesser extent,
scalability and simplicity. This has led to many algorithms that give rise to tree or tree-like
topologies, such as through hierarchical or cluster-based routing [28, 39], data aggrega-
tion [1, 19], or topology control [49]. By focusing on tree topologies, we can address
partial centralization problems without committing to a specific network algorithm.

A number of well-known network design problems are also related to the flow allocation
problems we consider in this paper. Given an undirected graph, a root node, a set of
source nodes and their demands, and a uniform edge capacity, the capacitated minimum
Steiner tree problem (CMStT) is to find the minimum cost Steiner tree in which all source
nodes can route their flows to the root without violating the edge capacity constraints. A
(γρST + 2)-approximation was given in [33], where γ is the Steiner ratio and ρST is the
best achievable approximation algorithm for the Steiner tree problem. There are several
key differences from the flow allocation problem. First, CMStT seeks to minimize edge
costs for routing all flows, while our objective is to maximize the number of source nodes
whose full flows can routed to the sink. Second, CMstT assumes uniform edge capacities,
while in general we do not.

In the unsplittable flow problem (UFP) you are given a graph and source-sink pairs along
with a given demand, and the problem is to find a single path from each source node to its
sink along which its flow can be routed. There are three variants, all NP-hard: maximizing

115

the amount of flow transmitted, partitioning the sources into the minimum rounds such
that all sources within a round can transmit their flows simultaneously, and minimizing the
maximum congestion along an edge in the network. Several approximation algorithms for
these problems have been devised [36, 11]. However, none of these consider the problem
where groups of source nodes must transmit to a common sink. Our proof of Theorem 2
follows a proof from Guruswami, et al. [26] of the hardness of approximating the edge
disjoint paths problem (EDP) of finding a path from each source to its paired destination,
without any of the paths sharing an edge in common.

6.2 Network Augmentation

Network augmentation combines three fundamental problems: supplemental node deploy-
ment, the assignment of groups to sinks, and flow allocation on the edges. There has been
considerable research related to each of these problems individually, but never for all three
of them simultaneously. The network augmentation problem is very similar to facility
location problems that have been extensively studied in the operations research commu-
nity [40, 67, 5, 45]. Given a number of facilities and a set of sites with quantities of goods
demanded at each site, the facility location problem is to place the facilities in order to
satisfy the demand of the sites for minimum transportation costs of goods from facilities
to sites. Variants to the facility location problem include capacitated problems [14, 45]
in which there are capacity constraints on facilities or on transportation links, as well as
multiple commodity problems [54] where different facilities can provide different types of
goods. One major difference between facility location problems and the network augmen-
tation problem is that they assume a direct link between facility and site, while communi-
cation from group member to sink can be through a multihop network. Another is that the
flows from groups of source nodes must be transmitted to the same sink.

One area of networking research focuses on how to provide access between two initially
disconnected networks through the addition of additional hubs, routers, and bridges. The
problems addressed in that literature are similar to the network augmentation problem.
One approach is to partition the network into multiple local access networks (LANs) and
a backbone network [2, 56]. Each LAN has one node that is designated the access point
and is also part of the backbone network. Traffic between nodes in different LANs must
first be routed to the access point for the originating LAN, conveyed across the backbone
network, and then routed across the destination LAN. Links are considered costly and ca-
pacitated. The local access network design problem is to design the local access networks
by purchasing LAN edges between nodes so that the total cost is minimized and a known

116

amount of traffic can be routed to the access points, which has similarities to both network
augmentation and flow allocation. The access network design problem is NP-hard, but
it is known that there exist optimal solutions in which the LANs take the form of trees
with the access points as roots [2]. Linear programming formulations have been used to
approximately solve the access network design problem in [2] and more recently in [56].
Unlike the network augmentation problem considered here, however, all inter-LAN traffic
must be conveyed through the backbone network. In addition, the communication pattern
is single-source-single-destination, instead of the centralizing groups we consider here.

The formation of two-tiered communication networks has also been a focus in mobile ad
hoc networking [4, 23, 12]. In these networks, there is no pre-existing “backbone net-
work” and the problem is to dynamically create such a network from the underlying ad
hoc network. This is accomplished by partitioning the nodes into clusters, and selecting
a clusterhead node in each cluster to act as the access node for the backbone network.
As result, all intra-cluster traffic is conducted in multi-hop through the ad hoc network,
but inter-cluster traffic must pass through the clusterhead, which then relays it to other
clusterheads. The primary focus of research has been in developing techniques of clus-
ter formation and clusterhead selection, such as highest ID [4], highest degree [23], node
weight [6], and weighted clustering [12]. These techniques primarily focus on metrics
such as cluster stability and power conservation, and ignore communication costs, capac-
ities, and specific communication requirements. In addition, they assume that the nodes
(including the clusterheads) move exogenously, while we actively position of the supple-
mental nodes specifically to meet the demands of the network.

Virtual private network (VPN) provisioning [25] is one of the few areas that consider a
group communication pattern. In VPN provisioning, groups of nodes within a network
wish to form a subnetwork by reserving bandwidth from the underlying network. Given
bounds on the communication demands of the nodes that wish to form the VPN, the VPN
provisioning problem is to reserve bandwidth so that any traffic pattern respecting the
given bounds can be feasibly routed. Polynomial-time optimal and approximation algo-
rithms were found for some problems, but the capacitated version of the problem is NP-
hard [25]. The “group communication” in VPNs differ from that in this thesis because
VPN member communicate with each other, while centralizing group members transmit
data to the centralization point. Also, while VPN provisioning allocates bandwidth for a
group-oriented communication pattern, it does not address the issue of supplementing the
network through additional nodes.

117

6.3 Security in Adversarial Environments

Choosing paths through hostile environments have been studied in operations research [66,
30], robotics [27, 7], and multiagent systems [62, 32]. Many of these have also taken
the perspective of the player who selects nodes or edges in the network to impair the
other player who chooses paths through the network. The study of network interdiction
[66, 30] looks at problems where an interdictor chooses edges or nodes to damage or
destroy destroy (“interdict”) in order to impair the ability of an enemy moving through the
network, for example for by forcing it to take longer paths [30]. An early study of single
source, single sink zero-sum games where the interdictor interdicts a single edge found
that the equilibrium strategy is to only interdict edges in the minimum cut [66]. Similar
results were found in network routing settings [10], and more recently in games where
multiple edges can be interdicted[62, 32]. In evader-pursuer games [27, 7], both players
move through the network. In path disruption games [3] multiple cooperative agents work
together to interdict an adversary, in contrast to our setting where both sides are assumed
to be monolithic players.

In most of these related problems, the payoff depends on the probability that at least one
attack occurs on a pathway; multiple attacks on the same pathway either are not possible
or incur no additional penalty. This models situations like placing checkpoints to intercept
the sender; once caught, the sender cannot be caught again. In contrast, in our problem
the same pathway may be subject to multiple attacks or a single attack may affect multiple
edges on the same pathway, resulting in additional harm. This is useful for settings where
the sender continues after an attack, as when convoys fight their way through ambushes
or robots clear obstacles. Games with similar payoffs have been solved in the context of
Markov Decision Processes using oracle algorithms [43]. However, these approaches have
assumed only zero-sum games.

A class of security games between two players, an attacker and a defender, have recently
been proposed and studied in a variety of contexts [52, 64, 34, 69, 62, 32, 63]. The attacker
chooses targets to attack from a known set of targets. The defender attempts to foil attacks
by assigning defensive resources from a known set of defensive resources to a known set of
schedules, where there is a known subset of schedules that each resource can be assigned
to. Each schedule protects or covers a subset of the targets. For each target that is attacked,
the attacker and defender receive payoffs depending on whether the target is covered or
not, and when multiple targets are attacked the payoff is the sum of the payoffs for each
target. A key characteristic of these security games is that the defender receives a higher
payoff when a target is covered than when it is uncovered and the attacker receives a higher
payoff when a target is uncovered than when it is covered. Crucially to comparison with

118

this thesis, the payoffs for a target is the same if is attacked one or more times, or if it is
covered by one or more resources.

Yin et al. [69] studied the equilibrium properties of these types of security games, examin-
ing the relationships between minimax strategies, Nash equilibria, and strong Stackelberg
equilibria for Stackelberg games where the defender is the leader and the attacker is the fol-
lower. They proved that when the attacker can only attack a single target, the defender’s
minimax and Nash equilibrium strategies are identical, and that all Nash equilibria are
interchangeable. Furthermore, given the additional assumption that any subset of a de-
fender’s schedule is itself a schedule, they showed that the defender’s SSE strategies are
also Nash equilibrium strategies.

There are many similarities between these security games and the games considered in
this thesis. However, careful examination reveals that the games in this thesis do not sat-
isfy the assumptions of the security games as defined by Yin et al. and others. The key
difference is in the way payoffs are computed in the two models. In Yin et al., payoffs
are computed based on the binary conditions of whether the target is attacked or not at-
tacked, and covered or uncovered. In this thesis, the central component of the payoff, the
harm, depends on the specific attack and path chosen for the flow, with harm summed over
multiple attacks and paths.

We can demonstrate this fundamental difference with a simple example of a zero-sum
game. Because the security games of Yin et al. are played over finite strategy spaces, a
natural comparison is with the zero-sum path game (ZS-PG) of this thesis, with network
flows then understood to compactly represent mixed strategies over the combinations of
paths. Consider the graph with a single source node, a single sink node, and three paths
from the source to the sink, as shown in Figure 6.1. The sender has three pure strategies:
π1, the path through v1; π2, the path through v2, and π3, the path through the v3.

Suppose that the adversary has three attacks, A = {a1, a2, a3}, and that he can play a
single attack at a time (i.e., k = 1) so that he also has three pure strategies. Each attack
affects two edges, causing harm according to the following harm matrix:

H =

2 1 0 0 0 0
0 2 1 0 0 0
1 0 2 0 0 0

 (6.1)

Note that the effect on the harm is unequal between the two edges affected by each attack.
For example, when the adversary plays attack a1, the sender suffers 2 units of harm if he
plays π1 (which includes e1) and only 1 unit of harm if he plays π2 (which includes e2).

We can represent the payoffs explicitly using the normal form, where the sender is the row

119

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 6.1: Graph for counter-example of NFG as a security game.

player and the adversary is the column player. This gives us the following payoff table:−2, 2 0, 0 −1, 1
−1, 1 −2, 2 0, 0

0, 0 −1, 1 −2, 2

 (6.2)

These payoffs do not satisfy the structure of a security game as defined by Yin et al.
because it cannot be defined in terms of covered and uncovered targets that are either
attacked or not. For example, when the adversary plays a1, the sender can receive one of
three possible payoffs: -2, -1, or 0. That cannot be represented as an attacked target being
either covered or uncovered (which would lead to only two possible payoffs). Nor does
any pure strategy dominate any others, allowing us to effectively reduce the strategy spaces
to ones where we can represent this game as a security game. This example shows that the
games studied in this thesis, even the simplest zero-sum, single-source, single-sink games,
are not a subset of the security games previously addressed in the literature, and thus the
theoretical results that have been established in that literature is not directly applicable to
our games.

Instead we can look to the concept of strategically zero-sum games defined by Moulin
and Vial [44]. These are a generalization of zero-sum games that share many properties
of zero-sum games, such as equilibria strategies being minimax strategies and equilibria
being interchangeable. Lemma 2 of this thesis establishes that the non-zero-sum network
flow game is strategically equivalent (as defined by Moulin and Vial) to the zero-sum
game with payoffs defined by U(f, q) in Equation (5.1), thus meeting the definition of a
strategically zero-sum game.

120

Stackelberg games [50, 62] have recently been used to model security games where pat-
terns of behavior may be observed and learned by the adversary, as opposed to more tra-
ditional simultaneous games[10, 42]. Stackelberg games generally allow the leader to
find equilibrium strategies with higher payoff than in a simultaneous game, but only in
non-zero sum games [69, 59]. Computing the optimal strategies to commit to is solvable
in polynomial time in the normal form game [13], but this is not practical in our games
which have exponential-sized strategy spaces. The traditional solution concept considered
in all of these is the strong Stackelberg equilibrium, which is questionable for the worst-
case reasoning common in security settings and is not appropriate for the network security
games we consider.

121

122

Chapter 7

Conclusion and Future Work

This thesis addressed the problem of flow allocation to support multiagent task execution.
Performing tasks requires inputs to be brought to the task execution location: performing
a physical task requires agents and resources to move through the physical environment
to the location of the task, while performing a computational task requires input data to
be transmitted through the communication network to a computational platform where the
computation can occur. This thesis modeled the movement of these inputs as network
flows, formulated and analyzed problems in allocating flows in several kinds of environ-
ments, and presented algorithms for solving these problems. This chapter summarizes the
major results of this thesis and discusses some lines of future work.

7.1 Summary

This thesis addressed the problem of flow allocation in three environmental contexts.
Chapter 2 formulated the flow allocation problem for known, capacitated environments.
This approach was extended in Chapter 3 to capacitated environments that could be aug-
mented by the agents to add supplemental nodes and edges. Chapters 4 and 5 addressed
flow allocation in costly environments where costs were affected by an adversary.

7.1.1 Capacitated Environments

Chapter 2 formulated the flow allocation problem using a directed, capacitated graph for
the environment, groups of source nodes for agent subteams, and sink nodes for task ex-

123

ecution locations. The core flow allocation problem is to assign sinks to groups and find
flows from the source nodes to the sink assigned to their groups.

This thesis makes three main contributions:

1. Maximizing the number of groups transmitting their full amount of flow to their as-
signed sink is formulated as the Maximum Satisfied Group (MaxSG) problem. This
corresponds to maximizing the number of tasks that can be executed. When flows
can be divided on multiple paths, as arises with data streams in communication net-
works or some kinds of resources in physical networks, MaxSG on general graphs
is strongly NP-hard and so there are no pseudo-polynomial time algorithms known
for solving it optimally.

2. A pseudo-polynomial time algorithm for solving MaxSG with divisible flows for
graphs with tree topologies, as arise in some kinds of communication networks,

3. Proof that when flows cannot be divided among multiple paths, for example with
embodied agents that must take a single path from the source to the sink, flow al-
location is not only NP-hard to solve optimally, but NP-hard to approximate better
than satisfying the requirements of a single group.

7.1.2 Network Augmentation

Chapter 3 considered flow allocation in capacitated graphs where the agents could aug-
ment the network by adding supplemental nodes and edges. This models communication
networks that can be enhanced through the addition of additional dedicated relay nodes,
or physical environments where new movements can be enabled through the removal of
obstructions. The potential network represented the locations where supplemental nodes
could be deployed and the edges that would result if they were. Two main problems
were addressed: maximizing the number of satisfied groups with a fixed number of sup-
plemental nodes (MaxSG-NA) and minimizing the number of supplemental nodes while
satisfying all groups (MinDep). Solving either of these required finding deployments of
supplemental nodes to potential locations (network augmentation), as well as finding sink
assignments and flows from the source nodes to the assigned sinks (flow allocation).

This thesis makes three main contributions:

1. Augmenting a network to provide connectivity to source node groups is NP-hard.

2. Mixed integer linear programs for solving the NP-hard problems MaxSG-NA and
MinDep optimally.

3. Heuristics for MinDep and MaxSG-NA that iterate through the groups and extended

124

the supplemental node deployments and sink assignments as each group was con-
sidered. These heuristics were empirically shown to dramatically decrease running
time at the expense of a modest decrease in solution quality when compared to the
optimal algorithms.

7.1.3 Adversarial Environments

Chapters 4 and 5 considered flow allocation in costly graphs where the costs were partially
chosen by an adversary. In this setting divisible flows can directly represent the movement
of inputs that can be divided among multiple paths (like communication traffic), or may
represent probability distributions over the movements of indivisible inputs (like robots).
We modeled this setting as a two-player game between a sender (representing the agent
team) who chose sink assignments and flows, and an adversary who choose multiple at-
tacks that imposed flow costs on edges. The main problem addressed was to compute
equilibrium strategies for the sender.

This thesis makes three main contributions:

1. A polynomially-sized linear program to find equilibrium strategies in the zero-sum
setting where the payoffs for the sender and the adversary were directly opposed.

2. A proof that a similar approach can be used in a class of non-zero-sum games where
the players unilaterally incur costs based on their chosen strategies, and a linear
program for the generalized problem with multiple sinks and multiple groups with
these kinds of payoffs.

3. An example that existing solution concepts are inadequate for settings where the
sender must commit to a strategy that is then observed by the adversary, and a new
equilibrium refinement, the optimal inducible Stackelberg equilibrium, to address
this shortcoming, and an algorithm for computing a sender strategy for it.

7.2 Future Work

In this section we describe several areas of future work for flow allocation.

125

7.2.1 Generalized Task Structures

This thesis considered relatively simple task structures: each task required inputs from
a known set of agents and sets of agents performed a single task. In many multiagent
applications the task structures are considerably more complex. Computational tasks often
exhibit hierarchical structure, with the outputs of computations at lower levels being used
as inputs to computations at a higher level. For example, hierarchical team plans impose
a hierarchy on plan monitoring tasks. The plan monitoring task for a team of agents
executing a team plan does not need to know the exact status of each agent in the team.
Instead, it can use status information from the plan monitors for each subteam of agents
performing a subplan. In sensor networks, the output of a computational task like object
recognition can then be used as input to another computational task, like threat assessment.

With physical tasks, teams of agents may have to perform multiple tasks. Even if physical
tasks require the full attention of the agents performing them, precluding the agents from
carrying out multiple tasks simultaneously. However, the agents may still perform multiple
tasks over time as they complete a series of tasks, one at a time. For example, a team of
firefighters may work to put out a single burning building, but once that fire is extinguished,
they are able to move to the another burning building.

A direction for future research is to extend the flow allocation approach taken in this thesis
to these kinds of cases. One way could be to allow sink nodes that receive flow to act as
source nodes for new flows. For computational tasks, this new flow would represent the
output of the computation, and need not be equal to the amount of flow (i.e., input data)
that was consumed by the sink. For physical tasks, a new flow would need to be created
for each source node that transmitted to the sink, to represent the agent that moved to the
task location.

7.2.2 Dynamic Teams, Tasks, and Environments

Dynamism is a major challenge in many multiagent applications. All aspects of a multi-
agent system may change over time: the agents (or their organization into subteams), the
tasks, and the environment. In the context of flow allocation, this means that groups of
source nodes, the set of sink nodes, and the graph itself may change over time.

A crude way to deal with dynamism is to re-run the algorithms when things change, but
this is often unsatisfactory for many reasons. It can be computationally impractical to
repeatedly re-run the algorithms, especially when the changes may not result in a change
in the solution, as when the communication network changes slightly due to the movement

126

of the agents. When the solution does change, small changes in the inputs may result in
very large changes to the outputs, which impose hidden costs, as when a deployment of
supplemental nodes changes dramatically. Finally, such a scheme is inherently reactive
and myopic, which can decrease performance over time.

It may be possible to address these shortcomings by adapting the algorithms in this thesis.
Further research may determine what kinds of changes require a solution (or part of a solu-
tion) to be recomputed. It could also be possible to mitigate the costs of of changes in the
solution, perhaps by explicitly representing those costs in the optimization. A third pos-
sibility would be to make the algorithms more proactive, for example by using stochastic
programming [15, 9] to reason about the effects of dynamism provided probabilistic infor-
mation is available.

7.2.3 Partially Distributed Algorithms

The algorithms in this thesis are centralized approaches that rely on full knowledge of the
environment. A natural next step is to develop distributed, parallel algorithms to compute
flow allocations that do not require full knowledge of the environment at any single lo-
cation. This could result in more scalable algorithms that do not require the full graph
of the environment to be transmitted to, stored at, or computed over at any single loca-
tion. It could improve running time through parallel computation and reduced input sizes.
Although some degree of distribution is desirable, it is not necessary for approaches to
be fully distributed. In many distributed multiagent coordination algorithms (for example
distributed constraint optimization) it is beneficial to use some amount of centralization in
order to reduce communication and redundant computation.

Many multiagent applications feature strong locality. Agents are much more likely to have
relatively good knowledge of their local physical and communication environments than
they are to know the full environment. Agents are also often located near each other in
the environment, and nearby task execution locations are more preferable to more distant
ones, all other things being equal. Because of this, it may be possible to compute high
quality local solutions based primarily on local knowledge, with a need to communicate
global knowledge (in the form of agents, tasks, or topological information) only in a small
number of cases. The key will be to efficiently exploit the locality while also being able to
handle the rare but often (and often crucial) exceptions.

127

128

Bibliography

[1] Kemal Akkaya, Murat Demirbas, and R. Savas Aygun. The impact of data aggrega-
tion on the performance of wireless sensor networks. Wireless Communications and
Mobile Computing, 8:171 – 193, 2008. 2.2, 6.1

[2] Matthew Andrews and Lisa Zhang. The access network design problem. Foundations
of Computer Science, 1998. Proceedings.39th Annual Symposium on, pages 40–49,
8-11 Nov 1998. 6.2

[3] Yoram Bachrach and Ely Porat. Path disruption games. In Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: volume
1 - Volume 1, AAMAS ’10, pages 1123–1130, Richland, SC, 2010. International
Foundation for Autonomous Agents and Multiagent Systems. 6.3

[4] D. Baker and A. Ephremides. The architectural organization of a mobile ra-
dio network via a distributed algorithm. Communications, IEEE Transactions on,
29(11):1694–1701, Nov 1981. 6.2

[5] Francisco Barahona and Fabian A. Chudak. Solving Large Uncapacitated Facility
Location Problem. Kluwer Academic Publishers, 1999. 6.2

[6] Stefano Basagni. Distributed clustering for ad hoc networks. In ISPAN ’99: Pro-
ceedings of the 1999 International Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN ’99), page 310, Washington, DC, USA, 1999. IEEE Computer
Society. 6.2

[7] N. Basilico, N. Gatti, and F. Amigoni. Leader follower strategies for robotic pa-
trolling in environments with arbitrary topologies. In AAMAS‘09, 2009. 6.3

[8] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1997. 4.4

129

[9] John R. Birge and François Louveaux. Introduction to Stochastic Programming.
Springer Series in Operations Research and Financial Engineering. Springer, July
1997. 7.2.2

[10] S. Bohacek, J.P. Hespanha, and K. Obraczka. Saddle policies for secure routing in
communication networks. In Decision and Control, 2002, 2002. 6.3, 6.3

[11] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approxima-
tion algorithms for the unsplittable flow problem. Algorithmica, 47(1):53–78, 2007.
6.1

[12] Mainak Chatterjee, Sajal K. Das, and Damla Turgut. WCA: A weighted clustering
algorithm for mobile ad hoc networks. Journal of Cluster Computing (Special Issue
on Mobile Ad hoc Networks, 5:193–204, 2001. 6.2

[13] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit
to. In Proceedings of the 7th ACM conference on Electronic commerce, EC ’06,
pages 82–90, New York, NY, USA, 2006. ACM. 6.3

[14] Leon Cooper. The transportation-location problem. Operations Research, 20:94–
108, 1972. 6.2

[15] George B. Dantzig. Linear programming under uncertainty. Management Science,
1(3-4):197–206, 1955. 7.2.2

[16] K. Decker and V. R. Lesser. Quantitative Modeling of Complex Environments. In-
ternational Journal of Intelligent Systems in Accounting, Finance and Management.
Special Issue on Mathematical and Computational Models and Characteristics of
Agent Behaviour., 2:215–234, January 1993. 1.1

[17] Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reser-
voir. Information Processing Letters, 97(5):181 – 185, 2006. 4.5

[18] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and
expressivity. In In Proceedings of the Twelfth National Conference on Artificial In-
telligence (AAAI-94, pages 1123–1128. AAAI Press, 1994. 1.1

[19] V. Erramilli, I. Malta, and A. Bestavros. On the interaction between data aggregation
and topology control in wireless sensor networks. pages 557 – 565, oct. 2004. 6.1

[20] Shimon Even. Graph Algorithms. Computer Science Press, Rockville, Maryland,
1979. 3.1

130

[21] M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: Motivation,
examples, and implications. Journal of the ACM, 25(3):499–508, July 1978. 2.1, 2.3

[22] Brian P. Gerkey and Maja J. Mataric. Sold!: auction methods for multirobot coordi-
nation. IEEE Transactions on Robotics, 18(5):758–768, 2002. 1.1

[23] Mario Gerla and Jack Tzu chieh Tsai. Multicluster, mobile, multimedia radio net-
work. Journal of Wireless Networks, 1:255–265, 1995. 6.2

[24] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86(2):269 – 357, 1996. 1.1

[25] Anupam Gupta, Jon Kleinberg, Amit Kumar, Rajeev Rastogi, and Bulent Yener. Pro-
visioning a virtual private network: A network design problem for multicommodity
flow. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
2001. 6.2

[26] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd,
and Mihalis Yannakakis. Near-optimal hardness results and approximation algo-
rithms for edge-disjoint paths and related problems. Journal of Computer and System
Sciences, 67:473–496, November 2003. 2.3, 6.1

[27] E. Halvorson, V. Conitzer, and R. Parr. Multi-step Multi-sensor Hider-Seeker Games.
In IJCAI’09, 2009. 6.3

[28] Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks. In HICSS ’00, 2000. 2.2,
6.1

[29] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann,
and Fabio Silva. Directed diffusion for wireless sensor networking. IEEE/ACM
Trans. Netw., 11(1):2–16, 2003. 2.2, 6.1

[30] Eitan Israeli and R. Kevin Wood. Shortest-path network interdiction. Networks,
40:97–111, 2002. 6.3

[31] Kamal Jain, Jitendra Padhye, Venkata N. Padmanabhan, and Lili Qiu. Impact of
interference on multi-hop wireless network performance. In Proceedings of the 9th
annual international conference on Mobile computing and networking, MobiCom
’03, pages 66–80, New York, NY, USA, 2003. ACM. 2.1.1

131

[32] Manish Jain, Dmytro Korzhyk, Ondrej Vanek, Vincent Conitzer, Michal Pechoucek,
and Milind Tambe. A double oracle algorithm for zero-sum security games on
graphs. In International Conference on Autonomous Agents and Multiagent Systems,
2011. 6.3

[33] Raja Jothi and Balaji Raghavachari. Approximation algorithms for the capacitated
minimum spanning tree problem and its variants in network design. ACM Trans.
Algorithms, 1(2):265–282, 2005. 6.1

[34] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita, Fernando Ordez, and
Milind Tambe. Computing optimal randomized resource allocations for massive se-
curity games. In AAMAS’09, 2009. 5.7.1, 6.3

[35] Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi Taka-
hashi, Atsuhi Shinjou, and Susumu Shimada. Robocup rescue: Search and rescue
in large-scale disasters as a domain for autonomous agents research. In IEEE IN-
TERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, pages
739–746. IEEE Computer Society, 1999. 1.1

[36] J. M. Kleinberg. Single-source unsplittable flow. In FOCS ’96: Proceedings of the
37th Annual Symposium on Foundations of Computer Science, page 68, Washington,
DC, USA, 1996. IEEE Computer Society. 6.1

[37] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman,
R. Podorozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q Zhang.
Evolution of the GPGP/TAEMS Domain-Independent Coordination Framework. Au-
tonomous Agents and Multi-Agent Systems, 9(1):87–143, July 2004. 1.1

[38] Ning Li and Jennifer C. Hou. Improving connectivity of wireless ad hoc networks.
In MobiQuitous’05, 2005. 1.3

[39] S. Lindsey and C.S. Raghavendra. PEGASIS: Power-efficient gathering in sensor
information systems. volume 3, pages 3–1125 – 3–1130 vol.3, 2002. 6.1

[40] Robert E. Love, James G. Morris, and George O. Wesolowsky. Facilities Location.
North Holland, New York, 1988. 6.2

[41] Roger Mailler and Victor Lesser. Solving distributed constraint optimization prob-
lems using cooperative mediation. In AAMAS’04, 2004. 1.1

[42] M Mavronicolas, V. Papadopoulou, A. Philippou, and P. Spirakis. A network game
with attackers and a defender. Operation Research, 43(2):243–251, 1995. 6.3

132

[43] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the pres-
ence of cost functions controlled by an adversary. In Proceedings of the Twentieth
International Conference on Machine Learning, 2003. 6.3

[44] H. Moulin and J. P. Vial. Strategically zero-sum games: The class of games whose
completely mixed equilibria cannot be improved upon. International Journal of
Game Theory, 7:201–221, 1978. 10.1007/BF01769190. 6.3

[45] Robert M. Nauss. An improved algorithm for the capacitated facility location prob-
lem. The Journal of the Operational Research Society, 29:1195–1201, December
1978. 6.2

[46] Steven Okamoto, Noam Hazon, and Katia Sycara. Solving non-zero sum multi-
agent network flow security games with attack costs. In Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’12, pages 879–888, Richland, SC, 2012. International Foundation for
Autonomous Agents and Multiagent Systems. 5

[47] Steven Okamoto, Praveen Paruchuri, Yonghong Wang, Katia Sycara, Janusz
Marecki, and Mudhakar Srivatsa. Multiagent communication security in adversarial
settings. In Proceedings of the 2011 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT ’11, pages
296–303, Washington, DC, USA, 2011. IEEE Computer Society. 4

[48] Steven Okamoto and Katia Sycara. Augmenting ad hoc networks for data aggrega-
tion and dissemination. In Proceedings of the 28th IEEE conference on Military com-
munications, MILCOM’09, pages 2346–2352, Piscataway, NJ, USA, 2009. IEEE
Press. 3

[49] Jianping Pan, Y. Thomas Hou, Lin Cai, Yi Shi, and Sherman X. Shen. Topology
control for wireless sensor networks. In MobiCom ’03: Proceedings of the 9th annual
international conference on Mobile computing and networking, pages 286–299, New
York, NY, USA, 2003. ACM. 2.2, 6.1

[50] P. Paruchuri, J.P. Pearce, J. Marecki, M. Tambe, F. Ordoñez, and S. Kraus. Playing
games with security: An efficient exact algorithm for Bayesian Stackelberg games.
In AAMAS’08, 2008. 6.3

[51] Adrian Petcu, Boi Faltings, and Roger Mailler. PC-DPOP: a new partial centraliza-
tion algorithm for distributed optimization. In Proceedings of the 20th international

133

joint conference on Artifical intelligence, IJCAI’07, pages 167–172, San Francisco,
CA, USA, 2007. Morgan Kaufmann Publishers Inc. 1.1

[52] James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. Deployed AR-
MOR protection: the application of a game theoretic model for security at the Los
Angeles International Airport. In Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems: industrial track, AAMAS
’08, pages 125–132, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems. 6.3

[53] David V. Pynadath, Milind Tambe, and Nicolas Chauvat. Toward team-oriented pro-
gramming. In Intelligent Agents VI: Agent Theories, Architectures, and Languages,
pages 233–247. Springer-Verlag, 1999. 1.1

[54] R. Ravi and A. Sinha. Multicommodity facility location. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’04, pages
342–349, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathe-
matics. 6.2

[55] Alissa J. Rubin. Attack at Kabul hotel deflates security hopes in Afghanistan. New
York Times, June 29 2011. 5.3

[56] F. Sibel Salman, R. Ravi, and John N. Hooker. Solving the capacitated local access
network design problem. INFORMS Journal on Computing, 2008. 6.2

[57] Paul Scerri, Elizabeth Liao, Y. Xu, Michael Lewis, G. Lai, and Katia Sycara. Coor-
dinating very large groups of wide area search munitions. Theory and Algorithms for
Cooperative Systems, 2005. 1.1

[58] Paul Scerri, D. Pynadath, N. Schurr, A. Farinelli, S. Gandhe, and M. Tambe. Team
oriented programming and proxy agents: The next generation. In Proceedings of 1st
international workshop on Programming Multiagent Systems, 2004. 1.1

[59] Bernhard Von Stengel and Shmuel Zamir. Leadership with commitment to mixed
strategies. Technical report, London School of Economics, 2004. 5.7.1, 6.3

[60] Katia Sycara, Massimo Paolucci, Martin Van Velsen, and Joseph Andrew Giampapa.
The RETSINA MAS infrastructure. Autonomous Agents and Multi-Agent Systems,
7(1/2):29–48, July 2003. 1.1

134

[61] Jian Tang, Bin Hao, and Arunabha Sen. Relay node placement in large scale wireless
sensor networks. Computer Communications, 29(4):490 – 501, 2006. Current areas
of interest in wireless sensor networks designs. 1.3

[62] J. Tsai, Z. Yin, J. Kwak, D. Kempe, C. Kiekintveld, and M. Tambe. Urban security:
Game-theoretic resource allocation in networked physical domains. In AAAI’10,
2010. 4.5, 4.6.1, 6.3, 6.3

[63] Jason Tsai, Thanh H. Nguyen, and Milind Tambe. Security games for controlling
contagion. In Conference on Artificial Intelligence (AAAI), 2012. 6.3

[64] Jason Tsai, Shyamsunder Rathi, Christopher Kiekintveld, Fernando Ordez, and
Milind Tambe. IRIS - a tool for strategic security allocation in transportation net-
works. In The Eighth International Conference on Autonomous Agents and Multia-
gent Systems - Industry Track, 2009. 6.3

[65] Alex Varshavsky and Eyal de Lara. Alleviating self-interference in manets. In Pro-
ceedings of the 29th Annual IEEE International Conference on Local Computer Net-
works, LCN ’04, pages 642–649, Washington, DC, USA, 2004. IEEE Computer
Society. 2.1.1

[66] A. Washburn and K Wood. Two-person zero-sum games for network interdiction.
Operation Research, 43(2):243–251, 1995. 4.3, 6.3

[67] George O. Wesolowsky. Dynamic facility location. Management Science, 19:1241–
1248. 6.2

[68] Kaixin Xu, Xiaoyan Hong, and M. Gerla. An ad hoc network with mobile backbones.
In Communications, 2002. ICC 2002. IEEE International Conference on, volume 5,
pages 3138–3143 vol.5, 2002. 1.3

[69] Zhengyu Yin, Dmytro Korzhyk, Christopher Kiekintveld, Vincent Conitzer, and
Milind Tambe. Stackelberg vs. Nash in security games: Interchangeability, equiv-
alence, and uniqueness. In AAMAS’10, 2010. 6.3, 6.3

135

	Acknowledgments
	1 Introduction
	1.1 Flow Allocation for Multiagent Teams
	1.2 Flow Allocation in Capacitated Environments
	1.3 Network Augmentation
	1.4 Flow Allocation in Adversarial Environments
	1.5 Contributions

	2 Flow Allocation in Capacitated Environments
	2.1 Flow Allocation
	2.1.1 Alternative Capacity Models

	2.2 Flow Allocation on Trees
	2.3 Unsplittable Flow Allocation

	3 Network Augmentation and Flow Allocation
	3.1 Network Augmentation
	3.2 Network Augmentation and Flow Allocation
	3.3 Solving MaxSG-NA and MinDep
	3.3.1 Optimal Algorithms
	3.3.2 Heuristic Algorithms

	3.4 Experiments

	4 Flow Allocation in Adversarial Environments: Zero-Sum Games
	4.1 Zero-Sum Path Game (ZS-PG)
	4.2 Harm matrices
	4.3 Zero-Sum Network Flow Game (ZS-NFG)
	4.4 Computing Network Flow Equilibrium
	4.5 Using ZS-NFG to Solve ZS-PG
	4.6 Experiments
	4.6.1 Simulation setup

	5 Flow Allocation in Adversarial Environments: Non-Zero-Sum Games
	5.1 Network Flow Game with Costs (NFG)
	5.2 Computing Nash Equilibrium
	5.2.1 Computing the Adversary's Strategy

	5.3 NFG Example Problem
	5.3.1 Comparison of Approaches

	5.4 Network Flow Game with Multiple Sinks (NFG-MS)
	5.5 Network Flow Game with Multiple Groups (NFG-MG)
	5.6 Bayesian Games: Dealing with Uncertainty
	5.6.1 Uncertain k
	5.6.2 Uncertain Payoffs
	5.6.3 Experiments

	5.7 Stackelberg Games
	5.7.1 Model
	5.7.2 Inducing Locally Optimal Equilibria

	6 Related Work
	6.1 Flow Allocation
	6.2 Network Augmentation
	6.3 Security in Adversarial Environments

	7 Conclusion and Future Work
	7.1 Summary
	7.1.1 Capacitated Environments
	7.1.2 Network Augmentation
	7.1.3 Adversarial Environments

	7.2 Future Work
	7.2.1 Generalized Task Structures
	7.2.2 Dynamic Teams, Tasks, and Environments
	7.2.3 Partially Distributed Algorithms

