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Abstract

Market makers are unique entities in a market ecosystem. Unlike other participants that have
exposure (either speculative or endogenous) to potential future states of the world, market making
agents either endeavor to secure a risk-free profit or to facilitate trade that would otherwise not
occur. In this thesis we present a principled theoretical framework for market making along with
applications of that framework to different contexts. We begin by presenting a synthesis of two
concepts—automated market making from the artificial intelligence literature and risk measures
from the finance literature—that were developed independently. This synthesis implies that the
market making agents we develop in this thesis also correspond to better ways of measuring the
riskiness of a portfolio—an important application in quantitative finance. We then present the
results of the Gates Hillman Prediction Market (GHPM), a fielded large-scale test of automated
market making that successfully predicted the opening date of the new computer science buildings
at CMU. Ranging over 365 possible opening days, the market’s large event partition required new
advances like a novel span-based elicitation interface. The GHPM uncovered some practical flaws
of automated market makers; we investigate how to rectify these failures by describing several classes
of market makers that are better at facilitating trade in Internet prediction markets. We then shift
our focus to notions of profit, and how a market maker can trade to maximize its own account. We
explore applying our work to one of the largest and most heavily-traded markets in the world by
recasting market making as an algorithmic options trading strategy. Finally, we investigate optimal
market makers for fielding wagers when good priors are known, as in sports betting or insurance.
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Chapter 1

Introduction

Automated market makers are algorithmic agents that provide liquidity in electronic markets. In
many markets, there may not be enough organic liquidity to support active trade, or the market may
encompass enough events that buyers and sellers have trouble matching their orders. With only
two events, a bet for one event serves to match against a bet for the other. Consequently, traders
submitting bets have no problem finding counterparties: they are just traders betting on the other
event. But consider a market with hundreds of events. In this case, a bet for one event serves to
match against the set of every other event. Two traders with divergent views will not directly be each
others’ counterparties. Instead, the market will only clear if a set of orders spanning the totality of
events—possibly consisting of hundreds of distinct orders—can be matched. So, even clearing a
single order could require hundreds of competitive orders placed and waiting. In fact, the problem
is even worse than what has been described here. In practice, if traders do not see feedback on
their bets, they will likely withdraw from the market entirely, meaning that the hundreds of primed
orders required to clear the market will never be present, and the market will fail. Furthermore,
if agents are allowed to submit orders on arbitrary combinations of events, the market clearing
problem becomes NP-hard (Fortnow et al., 2003). Automated market makers solve these problems
by automating a counterparty to step in and price bets for traders. The tradeoff is that this automated
agent can, and generally will, run at a loss. This loss can be though of as a subsidy to elicit their
information (Hanson, 2003; Pennock and Sami, 2007; Chen and Pennock, 2010).

Markets mediated by automated agents have successfully predicted the openings of buildings (Oth-
man and Sandholm, 2010a), provided detailed point spreads in sports matches (Goel et al., 2008),
anticipated the ratings of course instructors (Chakraborty et al., 2011), etc. Automated market
makers are also used by a number of companies (e.g., Inkling Markets) that offer private corporate
prediction markets to aggregate internal information. For instance, a company could run an inter-
nal market to estimate when a new product line will ship, or whether a new initiative will increase
profitability. Automated market makers are generally a necessity for this type of setting, because
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CHAPTER 1. INTRODUCTION

these corporate markets are populated by non-experts and run over an arbitrary event space.
Internet prediction markets are just one application of automated market making. The market

makers we describe in this thesis are appropriate for use with any assets that trade off a binary payoff
structure, in which the future can be partitioned into a number of states, exactly one of which will
be realized. For instance, companies like WeatherBill (weather insurance) and Bet365 (sports bet-
ting) are beginning to use proprietary automated market makers to offer instantaneous price quotes
across thousands or millions of highly customizable assets. These kinds of binary payout struc-
tures are also becoming more prominent within traditional finance. The Chicago Board Options
Exchange (CBOE) now offers binary options on the S&P and Volatility indices. While currently
lightly traded relative to standard options, the integration of these contracts into the largest options
exchange in the U.S. augurs well for their future. Credit default swaps (CDS), which resemble
insurance on bonds, have this kind of binary payout structure as well, in which the underlying bond
either experiences a default event or does not. The total size of the CDS market was recently es-
timated at about 28 trillion dollars, making it one of the largest markets in the world (Williams,
2009).

Automated market makers are related to the discipline of mechanism design, but the setting is
not fully analogous. Even though a market as a whole is a multi-agent system, automated market
making centers on the design of a single agent. This reduced focus means that certain concerns
are no longer relevant. Most notably, why counterparties choose to trade with the market maker
is bracketed out of the design of market making agents. However, some analogues to conditions
in traditional mechanism design do affect the design of market makers. For instance, we want
the trades offered by our market maker to not violate individual rationality, and we would like to
incentivize traders to move directly to their desired allocations, without taking on a roundabout
path of intermediate allocations.

Intriguingly, many of the structures and results of the artificial intelligence (AI) literature were
developed independently by the academic finance community. In that literature, automated market
makers are known as risk measures, and rather than used constructively to create agents, they are
described as regulatory controls to determine whether a portfolio is acceptable or not. While the AI
literature grew out of the need to provide automated pricing in a huge variety of markets, the finance
literature grew out of experiences with the failure of naïve techniques to fully comprehend risk. For
instance, one of the simplest risk control techniques is VaR (Value at Risk). VaR assesses a portfolio
by its expected performance measured at its 10th (or 1st, or 5th) percentile. This unsophisticated
technique was one of the failures of risk management blamed for facilitating the recent financial
crisis (Nocera, 2009). By advancing the state of the art in automated market making, this thesis
also creates sophisticated tools for measuring and assessing risk.

The automated market makers of the AI literature generally function in public contexts, and
so it is easy to see and track their adoption. In contrast, risk controls are normally firewalled at
proprietary desks at large institutions like banks. Consequently, it is difficult to gauge the current
level of acceptance and importance of these techniques within applied finance from the outside.
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Our personal communications with academics working inside banks suggest that these techniques
currently play some role, but not a crucial one, in generating trading decisions (Carr, 2010; Madan,
2010).

In the traditional automated market maker setting, the future state of the world is divided into
a finite event partition. Interacting traders then make bets with the market maker that pay out
various amounts depending on the realized future state of the world. Three examples will help to
elucidate the flexibility of the setting:

• A baseball match played between the Red Sox and Yankees. Here, there are two events—
“Red Sox Win” and “Yankees Win”—and a trader might request a ten dollar bet if the Red
Sox win.

• A political nominating process, where the events are a range of named candidates and then an
otherwise-encompassing “Field” candidate, which pays off if none of the named candidates
win the nomination. In this setting, a trader might make a ten dollar bet that none of the
named candidates will win the nomination.

(Observe that in this setting, the “Field wins” event can split off into multiple named can-
didates, as long as traders that have made bets on this event also get shares in the split off
candidate. For instance, consider a trader that holds a ten dollar payout if the Field candidate
wins. If candidate X is split from the Field, that trader should also get a ten dollar payout on
candidate X.)

• Insurance on a bond, where the events are if a bond experiences a default event in year one,
two, three, four, or five, or does not experience a default event. A bet in this setting could be
a trader requesting a payout equal to the bond’s face value if the bond experiences a default
event in the next five years. This bet would be roughly equivalent to a credit default swap on
the underlying bond. (The event space could also be extended to cover the possibility that the
bond defaults but is not completely recoverable; for instance, the event space could include
events of the form “The bond defaults in year three with 57% recovery”.)

In their simplest form, automated market makers work by summing the bets the market maker
has made with traders (the market maker’s portfolio or inventory), and mapping that vector of pay-
outs in possible future states in the world to a single value. The market maker then prices a bet by
charging the trader the difference between evaluating their current portfolio and evaluating their
portfolio if the trader were to take the offered bet. Consequently, in this simple incarnation, the
design of an automated market maker is just given by the behavior of a single function, a cost func-
tion, that maps from vectors of payouts to a single value. Immediately, there are several reasonable
desiderata we would want the cost function to have. For instance, we would not want the corre-
sponding automated market maker to be able to lose an arbitrary amount of money. We formally
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describe the traditional setting from both the artificial intelligence and finance literature perspec-
tives in Chapter 3. We then extend the standard model in several ways in Chapter 5, including
relaxing the finite event partition into infinite event spaces.

As we have discussed, one of the advantages of automated market makers is their ability to me-
diate markets with a large event space. In Chapter 4, we present the Gates Hillman Prediction Market
(GHPM), which at the time featured the largest event partition ever to appear in a prediction mar-
ket: 365 events, generating a complete distribution over the probability the new computer science
buildings at CMU would open on each day of a year. Our study is split between two parts. First, we
describe the advances required to facilitate a market running over such a large event space. Second,
we perform an in-depth analysis of how the market worked and how traders behaved, leveraging
both the large corpus of identity-linked trades generated by the market as well as interviews with
participants.

Since we ran the GHPM, prediction markets over much larger event spaces have been created.
Most notably, Predictalot, a project from Yahoo! Research that we had the pleasure of consulting
on, was a prediction market that ran over all 263 outcomes of the annual Men’s NCAA basketball
tournament. We view the GHPM as a bridge between markets running over a small number
of events, mediated by humans, and the later development of exponentially larger combinatorial
markets, mediated with automated market makers.

In addition to enabling larger event spaces, automated market makers can also be used as an al-
gorithmic alternative to the human (or human-constructed) market makers that currently populate
existing markets. While effective on average, the worst-case performance of these agents is ques-
tionable (e.g., in the recent “Flash Crash” (U.S. Commodity and Futures Trading Commission and
U.S. Securities & Exchange Commission, 2010)). Human-controlled market makers often with-
draw from uncertain or volatile markets, yielding catastrophic consequences (MacKenzie, 2006;
Taleb, 2007). In contrast, the market makers we construct in this thesis have well-defined per-
formance characteristics, including bounds on loss independent of the behavior of counterparties,
and need not panic in the face of uncertainty. Providing an algorithmic alternative to more fickle
human-mediated market makers should be considered a long-term goal of this line of research.

One obstacle that has held this line back is that algorithmic market making agents generally
do a poor job of matching many attributes of human market makers, particularly those related
to profitability. To put it bluntly, the AI agents of the literature are virtually assured of losing
money. As we have mentioned, automated market making agents have been employed where the
goal is information elicitation, and the market maker’s losses can be rationalized as subsidies to
induce elicitation. However, real markets seldom run at a loss. The agents of the literature have
not been successfully employed in any real-money markets where profit and loss is an important
consideration.

In addition to poor average-case profitability, the most popular market making agents are bur-
dened by a fixed market depth that is set a priori. In practice, this means that there may not be
enough money invested in unpopular markets to reach their correct marginal prices, and that even
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small bets in popular markets may result in enormous changes in marginal prices.
The market makers we introduce in Chapters 5 and 6 provide solutions to these concerns about

profitability and liquidity. In Chapter 5 we introduce an extension to a class of market makers from
the literature that can expand market depth and produce a profit. In Chapter 6 we introduce a
new class of market makers that trade according to the relative amounts wagered on the events
in question. Consequently, with these market makers it takes a small amount of money to move
marginal prices in lightly traded markets and a large amount of money to move marginal prices in
heavily traded markets.

The differences between the market makers presented in the two chapters is subtle. The market
makers in Chapter 5 have more descriptive power (e.g., they are able to stop increasing market
depth or stop taking an additional profit cut on top of quoted prices), but the market makers in
Chapter 6 are simpler to configure in existing markets. In fact, we present a market maker in
Chapter 6 that has a closed-form price response, which makes it simple to implement in practice
even by unsophisticated market administrators.

In the traditional model of automated market making, the market maker offers prices on the
bets presented to market makers. But this same pricing logic can be used to decide whether the bet
a market maker could take is profitable. For instance, imagine that a market maker would price the
addition of a bet x to their portfolio at a price of p. If an agent offers to sell them the bet x at a price
less than p, the market maker could take that bet and book a (subjective) profit in the amount of
the difference. In this way, we can view market makers as trading agents that take or reject offered
orders by comparing them to computed, subjective, fair prices.

We apply this logic to the widely traded options markets in Chapter 7. In that chapter we sim-
ulate the performance of automated traders on a large database of recent options data. Two traders
we consider in that chapter are from the finance literature and price options contracts based on some
distribution over the future expiration price. Another agent prices contracts based only on the in-
ventory it holds from past trades. The key insight of this chapter is that these notions—having good
priors, and learning from past actions—are not oppositional. We combine the two ideas to create
a trading agent that acts based on both factors. We show that this synthesized trading agent has
higher performance over our dataset measured along a number of axes, and is the Condorcet winner
among our trading agents over the dataset, beating each other trader we consider in head-to-head
matchups.

The significance of this chapter is not that the synthesized trading agent is the best possible
options trading agent. Rather, it is the more general point that an agent’s performance is enhanced
by paying attention to its past actions. In contrast to this finding, models of pricing in the finance
literature are generally based around the notion of autarky that puts prices as philosophically prior
to the agents that trade on them. Put another way, in an autarky model the prices of options
exist platonically, even without a market to trade on them. Since these prices exist without agents
trading on them, the holdings of those agents are immaterial. But our results in Chapter 7 show
that incorporating past actions into good forecasts of the future can increase performance without
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adding any new information into the trading process—just by paying attention to the information
that autarky models ignore.

In the automated market making models we have discussed so far, our view of the setting is
self-consciously uninformed. We are cognizant that traders could be better informed than the
market maker, and that an arbitrary future event could be the one that is realized. Consequently,
considerations like worst-case loss play an important role in the design of our agents. However,
if we have more advanced information over our trading counterparties and over the probabilities
of the realization of each outcome, our pricing policy can become much more sophisticated and
aggressive in its pursuit of profits.

Chapter 8 explores this setting by contrasting the optimal policy of a logarithmic-utility agent
and a linear-utility agent. In that chapter, we consider a two-event setting where the market maker
has accurate priors over the probabilities that each event is realized and how traders respond to the
bets a market maker offers. We show that while a linear-utility agent follows a simple policy that
does not depend on time or the market maker’s past history, the logarithmic-utility agent follows
a sophisticated policy that depends on both. Surprisingly, we show that it can be optimal for a
logarithmic-utility agent to offer bets that are myopically irrational (e.g., selling a contract for less
than it is worth according to the market maker’s beliefs) for the entire trading period. In contrast, a
risk-neutral agent never offers such a bet. Computing the optimal policy of the logarithmic-utility
agent is challenging and requires extending advanced techniques from the computational economics
literature.

Aside from the contrast over an uninformed versus well-informed setting, there are several other
tensions in the thesis. One is over the kind of utility function used. We leverage properties of log-
arithmic utility in Chapters 3, 5, and 7. In contrast, we show in Chapter 7 that logarithmic utility is
not appropriate for trading options because it produces undefined prices for simple contracts. An-
other contrast is between path-independent and path-dependent market makers. In the standard
setting of Chapters 3, 4, and 7, the market makers we consider are path independent. Chapter 5
presents a path dependent market maker, and in Chapter 6 we introduce market makers that could
function either as path independent or path dependent. Path independent market makers allow
an agent to buy and then immediately sell back a bet without cost. This is an unrealistic condition
for trading in a market, because such an atomic buy-and-sell operation generally costs the trader
a small amount through a bid/ask spread. However, path independence makes more sense in the
context of risk measurement, because a firm is exposed identically to risk no matter how that risk
was obtained.
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Chapter 2

Related work

In this chapter we contextualize the thesis by providing links, comparisons, and contrasts to the
literature.

General overviews

Probably the most extensive survey of the prediction market literature, and the computer science
literature’s relation to it, is given by Pennock and Sami (2007). Chen and Pennock (2010) is a high-
level survey, focusing in particular on more recent results. Surveys of prediction markets specifically
are given by Tziralis and Tatsiopoulos (2007); Wolfers and Zitzewitz (2004) and Berg and Rietz
(2003), which contain extensive literature reviews of the successes and failures of prediction mar-
kets in practice. From the finance literature, Carmona (2009) is a compilation of recent research on
theoretical aspects of indifference pricing. O’Hara (1995) provides a review of the theoretical market
making literature and provides cogent illustrations of the foundational models in that literature.

Three popular science books cover topics related to the thesis. Surowiecki (2004) discusses the
power of prediction markets for forecasting and decision making. Abramowicz (2008) advocates an
extrapolation of prediction markets, suggesting their use as a new, more accountable way to make
government policy. Finally, Poundstone (2006) is an accessibly-written introduction to the Kelly
criterion, a key concept in the last chapter of the thesis, and its use in practice by the mathematician
and hedge fund manager Ed Thorpe.

Empirical studies

Chapter 4 describes our work designing and analyzing the Gates Hillman Prediction Market. We
were motivated in that study by the success of the Iowa Electronic Markets (IEM) in practice. The
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IEM are the longest-running electronic prediction markets. It was originally designed for use in
the 1988 presidential election, and has participated in every presidential election, and many other
political events, since then. Berg et al. (2001) is a survey of the results of the IEM produced by its
administrators.

Of particular significance to the study of trader behavior in Chapter 4 are the studies of trader
behavior in the IEM (Forsythe et al., 1992, 1999; Oliven and Rietz, 2004). Those surveys promulgate
and promote the Marginal Trader Hypothesis (MTH), the idea that the IEM is so successful because
a small group of rational, well-informed traders (the marginal traders) essentially arbitrage the much
larger pool of poorly informed traders. Of course, the IEM is not always successful in its predictions,
like in the 1996 markets when prices for the Clinton contract became unmoored from accurate
predictions in the final weeks of the election (Berg et al., 2001). Othman and Sandholm (2010b)
propose an alternative mechanism, based around agent ordering, in an effort to explain the IEM’s
success and failure. Because there are so few large-scale laboratory prediction market studies with
identity-linked trades, and no publicly available data on those studies, studying the MTH was a
major goal of the GHPM.

We also make the claim in Chapter 4 that the Gates Hillman Prediction Market was, at the time,
the largest event partition ever elicited in a prediction market. Ledyard et al. (2009) and Healy et al.
(2010) feature combinatorial markets with 256 events (the GHPM had 365) but the markets are not
comparable in their scope, and intent. The markets described in both of those works featured fewer
than ten traders participating in a laboratory environment, while the GHPM featured hundreds of
traders and was publicly observable.

Chapter 7 studies options trading agents. In that chapter we simulate trading agents placing
orders in options markets every 15 minutes for complete options chains. Other empirical studies
have also looked at options in the context of large datasets moving through time. Schwert (1990)
examines the 1987 stock market crash using a dataset of close to a hundred years of stock market
data as well as options prices around the crash itself, using daily prices. Dumas et al. (1998) study the
predictive power and performance of an options pricing methodology over several years of weekly
pricing data. This makes it very close in form to our own study, as the profit or loss of a trading
agent is directly tied to its predictive ability.

One of the central components of Chapter 7 is the study of risk-averse trading agents. This focus
on risk aversion is closely related to the studies of Jackwerth and Rubinstein (1996) and Jackwerth
(2000), which discuss how to back out the overall level of risk aversion embedded in the market
from options prices. Specifically, those works model underlyings as having some risk-neutral dis-
tribution, which is then subjectively distorted by every trader having the same level of risk aversion.
Put another way, risk aversion divorces a trader’s beliefs from their actionable beliefs. This is closely
related to our own design of risk-averse traders, but rather than studying the effect of all market
participants having the same level of risk aversion, we instead examine the effect of a single trader’s
risk aversion on the way the trader prices options (which then determines the contracts that the
trader finds profitable).
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Cost-function-based market maker design

Most of the agents we explore in the thesis are extensions and derivations of the same automated
market making methodology, cost function market makers. These market makers work by having
a scalar field C that maps payout vectors (the amount the market maker owes to traders in each
possible future state) to a real number; when a trader makes a bet that changes the market maker’s
payout vector from x to y that trader is charged the difference C(y)− C(x).

The original cost function market maker is the Logarithmic Market Scoring Rule (LMSR), de-
veloped in Hanson (2003, 2007). The market maker was originally developed as an extension to
proper scoring rules, which are ways of rewarding agents for making accurate forecasts (Winkler,
1969; Savage, 1971; Winkler, 1994; Gneiting and Raftery, 2007). Lambert et al. (2008b) provides a
formal mathematical treatment of the links between scoring rules and cost functions.

The work of Chen and Pennock (2007) is foundational for this thesis. That work developed
constant-utility cost functions, market makers that price contracts to maintain constant utility. We
utilize constant-utility cost functions in several ways in this thesis:

• In Chapter 5, we relax the constraint that the event partition is finite, allowing arbitrary
separable measure spaces instead. A major concern in this setting is that the market maker
has unbounded loss. For instance, extending the LMSR over a continuous space produces
a market maker with unbounded loss (Gao et al., 2009). However, by using constant-utility
cost functions equipped with a special class of utility functions, barrier utility functions that
go to negative infinity as their arguments get close to zero, we are able to produce market
makers that retain bounded loss.

• We leverage barrier utility functions in constant-utility cost functions another way in Chap-
ter 5, when we produce a market maker that expands market depth and takes a profit cut on
offered prices. Here, the concern is that when we expand market depth, we could expand
it too fast, producing unbounded losses. By using barrier utility functions, we are able to
expand market depth in a controlled and precise way.

• We use the fact that the LMSR is equivalent to a constant exponential utility cost function in
Chapter 7 in order to create a continuous version of the LMSR that operates with a specific
prior belief distribution

An alternative to constant-utility cost functions as a cost function framework are Sequential
Convex Pari-mutual Mechanisms (SCPMs), which are intimately related to optimized certainty equiv-
alents (Ben-Tal and Teboulle, 2007). SCPM market makers include the market makers in Peters
et al. (2007), Agarwal et al. (2008), and their more general expansion in Agrawal et al. (2009). Here,
the term pari-mutual is a misnomer; the term implies a mechanism in which the market maker does
not risk loss, but in general, SCPMs do run at a risk of loss. One of the advances in Agrawal et al.
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(2009) is the integration of limit orders within an automated market maker. In contrast, the mar-
ket makers we develop here generally work only with market orders. An earlier precursor to the
SCPM idea is developed in Bossaerts et al. (2002), who present what they call a “combined value”
mechanism. Their mechanism is a basic version of the SCPM where the center periodically clears
pooled limit orders and the market maker does not take on risk.

One of the most intriguing recent developments in automated market making is the link be-
tween cost functions and experts algorithms from learning theory, specifically between cost func-
tions and online follow-the-regularized-leader experts algorithms. This link first appeared in a
supporting role in Chen et al. (2008), and was significantly expanded in later work by those au-
thors (Chen and Vaughan, 2010; Abernethy et al., 2011). Formally, cost functions whose marginal
prices form a probability distribution are equivalent to the the class of no-regret experts algorithms.
In this context, the loss of a market maker is equivalent to the regret of the experts algorithm, and
the marginal price on each event is equal to the weight placed on each expert in the online learning
algorithm. These online learning algorithms are conventionally expressed not as cost functions (or,
in the machine learning literature, potential functions), but rather in dual space (Shalev-Shwartz
and Singer, 2007). The dual-space formulation is a powerful way of interpreting and constructing
automated market makers that we will leverage in Chapters 3 and 6.

However, cost functions and online learners are not fully analogous, and it is only a particular
class of cost functions that are analogous to online expert algorithms (specifically, only convex risk
measures, a class we explore in detail in Chapters 3 and 5). More general concepts from the online
learning literature do not have analogues in cost functions. For instance, consider that in the stan-
dard online learning setting, it is impossible for an experts algorithm to have zero regret, but it is
easy to construct an automated market maker that has zero worst-case loss—simply charge a trader
more than they could win in every state of the world for each bet. This argument implies that there
is no way to fit market makers whose marginal prices do not form a probability distribution (like
those in Chapters 5 and 6) into the standard experts algorithm framework.

Alternative mechanisms

There are several other approaches to market making in the recent literature that we do not extend
or further consider in the thesis. However, it is valuable to contrast these mechanisms with the
automated market makers we do develop.

Lambert et al. (2008a) consider pari-mutual mechanisms in which participants report a prob-
ability distribution and a wagered amount, and are paid according to the amount they wager and
the accuracy of their forecast. This mechanism is truly pari-mutual, because the amount it pays out
is equal to the amount that is paid in by all agents. The contrast between this work and our own is
that the market making agents we consider here price bets that have fixed payouts at the time the
agents make them.
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The Dynamic Pari-mutual Mechanism introduced in Pennock (2004) is a hybrid mechanism,
part-way between the fixed-odds bets the market makers in this thesis offer and a fully variable-
payout pari-mutual setting. Traders participating in this mechanism receive more “shares” when
they invest in currently-unpopular outcomes, but these shares do not correspond to a fixed payout.
Furthermore, the market maker can run at a loss because it must seed the initial amount of liquidity
on each event.

Bayesian market makers offer an alternative way to price bets that are not related to cost func-
tions. These market makers use Bayes rule to compute optimal bid and ask prices with traders over
time, using trader interactions to learn appropriate values. One of the fundamental contrasts be-
tween these market makers and the market makers in this thesis is that Bayesian market makers
essentially function by heuristics, without any worst-case guarantees on performance or behav-
ior. Das (2008) and Das and Magdon-Ismail (2009) explore how Bayesian market makers can learn
correct values from interactions with traders. Brahma et al. (2010) and Chakraborty et al. (2011) ex-
amine the relative performance of Bayesian market makers and the LMSR, finding that Bayesian
market makers are generally much more profitable.

Risk measures and indifference pricing

The parallels between automated market makers and a relatively new branch of the finance literature,
risk measures, are manifold. Essentially, both fields aim to price assets that take on different values
in different future states of the world. Whereas the AI literature motivates these applications in
the creation of trading agents, the finance literature motivates these applications by suggesting that
these techniques are to be used to value untradeable assets. In these incomplete markets, risk can
be priced but not fully hedged. We formally contrast the relationship between cost functions and
risk measures in Chapter 3.

Despite this similarity in outward appearance, the different motivations of the two disciplines
leads to very different presentations in the literature. The finance literature stresses what this the-
sis (and the prediction market literature broadly) refers to as the dual, price-space form of a cost
function. This dual form features an explicit optimization, while cost functions themselves do not.
Combined with natural differences in terminology and notation, this difference can make even
close readings of the risk measure literature look unrelated to the prediction market literature.

However, in the process of examining the dual problem (to the finance literature’s orientation,
which recall is itself dual to the prediction market literature’s orientation, and is therefore equiva-
lent to the primal perspective of the prediction market literature), Elliott and van der Hoek (2009)
explicitly develop several constant-utility cost functions. For instance, those authors solve for what
the AI literature would call the LMSR as the solution to a constant-exponential-utility cost func-
tion.

In our reading, the closest that the financial literature on risk measures came to creating the
automated market makers of the prediction market literature was in Carr et al. (2001). The last
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section of that work discusses how trading agents operating from risk measures would endogenously
produce a bid/ask spread. Barrieu and Karoui (2009) also (somewhat skeptically) discuss the link
between the two concepts, writing (after defining ρ as some risk measure) that

[W]hen paying the amount−ρ(X), the new exposureX−(−ρ(X)) does not carry any
risk with positive measure, i.e., the agent is somehow indifferent using this criterion
between doing nothing and having this “hedged” exposure.

The foundational work on risk measures is Artzner et al. (1999), who introduce coherent risk
measures, with an eye on applications to regulatory policing of risk. As we will discuss in Chapter 3,
the requirements of a coherent risk measure are very stringent and can be relaxed meaningfully. One
particular relaxation led to the development of convex risk measures in Carr et al. (2001), Föllmer and
Schied (2002a), and Föllmer and Schied (2002b) a class that includes the LMSR. Observe that these
were developed independently from, and several years before, their corresponding construction as
agents in the prediction market literature.

As we have mentioned, the LMSR is the most commonly used cost function in the AI liter-
ature. Interestingly, the risk measure analogue to the LMSR, the entropic risk measure formed by
examining constant exponential utility, is the most frequently used risk measure in the finance lit-
erature (Barrieu and Karoui, 2009). The relationship here appears to be coincidental; the LMSR is
popular in practice because of its closed-form expression and its simple bound on worst-case loss,
while the entropic risk measure is popular in the finance literature because exponential utility cor-
responds to agents which operate in a wealth-independent manner. Examples of studies using the
entropic risk measure include Delbaen et al. (2002), who provide a rigorous mathematical derivation
of the duality between exponential utility and its entropic dual, Musiela and Zariphopoulou (2004),
who suggest using the entropic risk measure to price assets, and Mania and Schweizer (2005), who
examine using the entropic risk measure in a dynamic setting.

In this thesis, we consider only a single time period. Much of the more recent finance literature
concerns dynamic risk measures, with explicit dependence on time, and on changing values and
preferences over time, leading to studies that involve heavy use of stochastic calculus. Surveys of
this literature are given by Henderson and Hobson (2009) and Barrieu and Karoui (2009).

Market microstructure theory

O’Hara (1995) divides the finance literature on market microstructure into the older study of inventory-
based market makers, and the more recent study of information-based market makers. Inventory-based
models center around the idea of a market maker clearing or balancing orders in an attempt to match
the opposing views of traders. Information-based models center around the idea that the trades an
agent makes with a market maker contain information about the underlying being traded. We
contend that the automated market markets we develop in this thesis fall somewhere between the
two models and have characteristics of both.
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Stoll (1978) presents a foundational inventory-based model that has several parallels to this the-
sis. In the Stoll model, just as in much of this thesis, the market maker has some static true beliefs
over the future state of the world, and has an exposure cost to taking on inventory. The Stoll
model, however, involves making markets simultaneously on several stocks with known (to the
market maker) rates of return. Furthermore, the exposure cost in the model of Stoll (1978) is ex-
ogenously defined, while this thesis involves the literal use of a cost function which satisfies desirable
properties.

Two information-based models are especially relevant to this thesis. Glosten and Milgrom (1985)
defines the basic framework for a market maker interacting sequentially with an anonymous pool
of traders. In their model, the market maker sets prices so that they are exactly equal to the expec-
tation of the market maker’s posterior belief provided they are accepted. One important difference
between the model of Glosten and Milgrom (1985) and this thesis is that the Glosten and Mil-
grom model assumes that there is competition between market makers, and so the policy of a
single market maker is given by solving for behavior with zero expected profit. In contrast, Kyle
(1985) considers an interaction between a monopolistic market maker and a mix of noise traders
and informed traders. Our setting in Chapter 8 is similar, in that we consider utility-maximizing
pricing by a monopolistic market maker. Another more general link between our thesis and the
work of Kyle (1985) is that both of the models are perhaps best described as quasi game theoretic. We
have already mentioned that the market makers in this thesis are sensitive to some game theoretic
concerns, e.g., they would like to disincentivize myopic traders from taking on roundabout inter-
mediate allocations. Furthermore, with the exception of the more informed setting in Chapter 8,
the market makers in this thesis do not directly map to any simple utility function or maximization
problem with explicit economic intuition. Similarly, Kyle writes that his “model is not quite a game
theoretic one because the market makers do not explicitly maximize any particular objective”.

We consider the market makers in this thesis to derive from both inventory-based as well as
information-based models. On the one hand, a cost-function-based market maker is literally a
mapping between inventories and prices. This would suggest that the market makers in this thesis
are primarily inventory-based. On the other hand, as we have discussed, there are close links be-
tween cost-function-based market makers and online learning algorithms. We therefore consider
the market makers in this thesis to be derived from both inventory-based as well as information-
based precepts. Perhaps it is most accurate to say that the automated market makers in this thesis
learn the correct values for the underlying event space through their inventories.

In Chapter 8, we solve for the pricing policy of a rational monopolistic market maker endowed
with some utility function as it faces a series of traders. This setting can be considered a discrete
version of the continuous-time model originally considered by Ho and Stoll (1981). In order to
arrive at an analytical solution, that model used many (possibly unrealistic) simplifications, such as
symmetric linear supply and demand, and also only considers the final time period of the market
maker’s optimization. The most challenging part of that chapter involves computing the policy of a
risk-averse market maker. The notion of an explicitly risk-averse, rather than risk-neutral, market
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maker was introduced in Rock (1996).

Numerical dynamic programming

Chapter 8 features the computation of optimal policy of a rational market maker with probabilistic
knowledge. In order to solve for the optimal policies of a Kelly criterion market maker through
time, we use backwards induction to approximate the value function, working from the explicit,
closed-form termination state.The backwards induction process is far from straightforward, because
it carries the concern that any approximation errors are amplified—that a small error in the first
approximation becomes a larger error in the next approximation, eventually causing the entire value
function to be massively inaccurate.

Gordon (1995) provides a formal and experimental treatment of the problem of the expansion
of error caused by approximation. That work emphasizes that any approximation needs to not
expand the maximum error between the actual function and its approximation in each iteration,
and that traditional approximation techniques, like a regression that minimizes sum-of-squared-
distance, fail in this regard. Guestrin et al. (2001) explores using these non-expansive approximations
to solve factored MDPs, while Stachurski (2008) experiments with non-expansive approximations
for dynamic programming problems with continuous state, similar to the setting we consider in
Chapter 8.

The technique we use to approximate the value function is Constantini shape-preserving interpo-
lation, originally developed by Constantini and Fontanella (1990). The most prominent use of this
technique in the literature is in Wang and Judd (2000), who study portfolio allocation over time
between a risky stock and a risk-free bond. Similar to our approach in Chapter 8, those authors use
Constantini shape-preserving interpolation to approximate the value function in each time step of
a dynamic program.
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Chapter 3

Theoretical background

This chapter introduces the mathematical framework we will use in the rest of the thesis. We begin
by formally treating the differences and similarities between cost functions from the artificial intel-
ligence literature and risk measures from the finance literature. Then we explore a set of desiderata
from both literatures and examine the simple forms that these desiderata take in Legendre-Fenchel
dual space. Finally, we explore combinations of these desiderata, producing an impossibility result
that motivates Chapters 5 and 6.

3.1 Cost functions and risk measures

We consider a general setting in which the future state of the world is exhaustively partitioned
into n events, {ω1, . . . , ωn}, so that exactly one of the ωi will occur. This model applies to a wide
variety of settings, including financial models on stock prices and interest rates, sports betting, and
traditional prediction markets. For instance, the events could be which of two sports teams will win
their next match, or which candidate from an exhaustive set of candidates (i.e., including a “Field”
candidate) will win their party’s presidential nomination. In Chapter 7 the events we consider are
the possible expiration prices of an underlying stock. In Chapter 5 we relax the finite nature of the
partition and explore an extension to market making over an infinite number of events.

In our notation, x is a vector and x is a scalar, 1 is the n-dimensional vector of all ones, 0 is
the n-dimensional vector of all zeros, and ∇if represents the i-th element of the gradient of a
function f . (More traditionally, this would be denoted as ∂

∂xi
.) Occasionally, and with obvious and

clear distinction, we will abuse notation and instead let ∇i be a subgradient operator that takes an
arbitrary function and returns its set of subgradients along the i-th coordinate. The non-negative
orthant is given by Rn

+ ≡ {x | mini xi ≥ 0}.
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At its most abstract, this thesis involves looking at a distribution of payouts over these events
and evaluating whether or not that payout is acceptable to take on (a binary, ordinal, qualitative
question) and evaluating the value of that payout (a continuous, cardinal, quantitative question).
Both the artificial intelligence and finance literature independently built their own frameworks for
discussing these questions. The finance literature has focused on the former question through a
device called risk measures. The artificial intelligence literature has focused on the latter question
through cost functions.

We suggest that the reason the two concepts have been developed independently is a funda-
mental philosophical difference motivated by their respective applications. Unlike cost functions in
the AI literature, which are directly oriented towards creating agents in markets, risk measures in
the financial literature are concerned with assessing the riskiness of a portfolio. Cost functions are
explicitly a cardinal measure—the values they produce matter a great deal to the resulting market
maker, in that they determine the prices charged to participating traders. In contrast, risk measures
are often used as binary measures: a consistent way to determine if a risk is acceptable or not, or
which risk profile from a set of options is most acceptable. This binary orientation is emphasized
by Artzner et al. (1999) in their foundational paper on risk measures:

It has been pointed out to us that describing risk “by a single number” involves a great
loss of information. However, the actual decision about taking a risk or allowing one
to take it is fundamentally binary, of the “yes or no” type...this is the actual origin of
risk measurement.

The notation traditionally used in risk measures and cost functions differs slightly but in an
ultimately inconsequential way.

• Risk measures are conventionally defined as operating on a random variable X , rather than a
vector. Over discrete event spaces the conversion between the two is straightforward because
we can arbitrarily label the random variable’s underlying set of events as ω1, . . . , ωn and assign
each vector index xi to the value of the random variable if the event corresponding to that
index is realized (i.e., xi ≡ X(ωi)).

• Risk measures have traditionally (although not exclusively, cf. Barrieu and Karoui (2009))
considered positive arguments as gains, while cost functions have considered positive argu-
ments as losses (amounts that need to be paid out). Therefore, a cost function C(x) would be
equivalent to a risk measure −C(−x).

In this thesis, we will use the cost function notation of the prediction market literature, and
we will use the terms cost function and risk measure interchangeably, generally using cost function
to denote a market maker using the function as a tool for automated pricing and risk measure to
denote classes of such functions.
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3.2 Cost function market makers

Let U be a convex subset of Rn. Our work concerns functions C : U 7→ R which map vector
payouts over the events to scalar values. We sometimes refer to the market maker’s current vector
of payouts as its state.

Traders make bets with the market maker by changing the market maker’s state. To move the
market maker from state x to state x′, traders pay C(x′)−C(x). For instance, if the state is x1 = 5
and x2 = 3, then the market maker needs to pay out five dollars if ω1 is realized and pay out 3
dollars if ω2 is realized. If a new trader wants a bet that pays out one dollar if event ω1 occurs, then
they change the market maker’s state to be {6, 3}, and pay C({6, 3}) − C({5, 3}). Arbitrary bets
by traders can be represented by changing the market maker’s state. The market maker starts from
some initial state x0, generally taken to be 0 (no payouts on any event).

The prices or marginal prices of a cost function are given by the gradient of the cost function:
pi(x) = ∇iC(x). These values are the instantaneous cost of a bet on each event.

3.2.1 Desiderata

In this section we introduce five desiderata for cost functions: Convexity, Monotonicty, Translation
invariance, Positive homogeneity, and Bounded loss. Interestingly, each of these properties has been
acknowledged as desirable in both the prediction market and finance literatures (with the exception
of bounded loss in the finance literature). Table 3.1 shows the appearance of these desiderata in the
two literatures.

Desideratum Finance literature Prediction market literature
Convexity Föllmer and Schied (2002a) Agrawal et al. (2009)

Monotonicity Artzner et al. (1999) Hanson (2003); Othman et al. (2010)
Translation invariance Artzner et al. (1999) Hanson (2003); Agrawal et al. (2009)
Positive homogeneity Artzner et al. (1999) Othman et al. (2010)

Bounded loss (does not appear) Hanson (2003)

Table 3.1: Five desiderata for risk measures and their respective expositions in the two literatures.

We proceed to formally define all five properties and briefly describe why they should be con-
sidered valuable.

Desideratum 1 (Monotonicity). For all x and y such that xi ≤ yi, C(x) ≤ C(y).

Monotonicity prevents simple arbitrages like a trader buying a zero-cost contract that never
results in losses but sometimes results in gains. Monotonicity also ensures that myopic traders
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(provided they have sufficient capital) are incentivized to directly trade with the market maker until
the market maker offers no bets they find agreeable, because the marginal price of a bet never
decreases.

Desideratum 2 (Convexity). For all x and y and λ ∈ [0, 1]

C(λx + (1− λ)y) ≤ λC(x) + (1− λ)C(y).

Convexity can be thought of as a condition that encourages diversification. The cost of the blend
of two payout vectors is not greater than the sum of the cost of each individually. Consequently, the
market maker is incentivized to diversify away its risk. The acknowledgment of diversification as
desirable goes back to the very beginning of the mathematical finance literature (Markowitz, 1952).

A risk measure that is not convex can produce bizarre degeneracies. For instance, Artzner et al.
(1999) point out that a non-convex risk measure can produce cases of intra-firm arbitrage. If a
firm uses a non-convex risk measure, it can be advantageous for two traders to report their specific
portfolios x and y separately, rather than to report their desk’s common exposure as x+ y. Since the
firm itself exists as (and is exposed to) the sum total of its risks, this division should be discouraged.

Desideratum 3 (Bounded loss). supx [maxi (xi)− C(x)] <∞.

A market maker using a cost function with bounded loss can only lose a finite amount to inter-
acting traders, regardless of the traders’ actions and the realized outcome.

A useful notion that quantifies bounded loss is the cost function’s worst-case loss.

Definition 1. The worst-case loss of a cost function C which begins from initial payout vector x0 is

sup
x

(
max

i
xi − C(x) + C(x0)

)
.

If a cost function has bounded loss, it has finite worst-case loss.

Desideratum 4 (Translation invariance). For all x and scalar α,

C(x + α1) = C(x) + α.

Translation invariance ensures that adding a dollar to the payout of every state of the world will
cost a dollar.

Desideratum 5 (Positive homogeneity). For all x and scalar γ > 0, C(γx) = γC(x).

Positive homogeneity ensures a scale-invariant, currency-independent price response. From a
risk measurement perspective, positive homogeneity ensures that doubling a risk doubles its cost.
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3.2.2 Dual space equivalences

The desiderata are global properties that need to hold over the entire space the cost function is
defined over. It is often difficult to verify that a given cost function satisfies these desiderata di-
rectly, and inversely, it is difficult to construct new cost functions that satisfy specific desiderata.
Remarkably, each of these desiderata have simple representations in Legendre-Fenchel dual space.

Definition 2. The Legendre-Fenchel dual (aka convex conjugate) of a convex cost function C is a
convex function f : S 7→ R over a convex set S ⊂ Rn such that

C(x) = max
y∈S

[x · y− f(y)]

We say that the cost function is “conjugate to” the pair S and f . Convex conjugates exist uniquely
for convex cost functions defined over Rn (Rockafellar, 1970; Boyd and Vandenberghe, 2004).

We will refer to the convex optimization in dual space as the “optimization” or “optimization
problem”, and the maximizing y as the “maximizing argument”.

One way of interpreting the dual is that it represents the “price space” of the market maker, as
opposed to a cost function which is defined over a “quantity space” (Abernethy et al., 2011). The
only prices a market maker can assume are those y ∈ S, while the function f serves as a measure
of market sensitivity and a way to limit how quickly prices are adjusted in response to bets. As
we have discussed, in the prediction market literature “prices” denote the partial derivatives of the
cost function (Pennock and Sami, 2007; Othman et al., 2010). When it is unique, the maximizing
argument of the convex conjugate is the gradient of the cost function, and when it is not unique,
then the maximizing arguments represent the subgradients of the cost function. Consequently, the
unique maximizing argument provides the market maker’s marginal prices over the events. A fuller
discussion of the relation between convex conjugates and derivatives is available in convex analysis
texts (Rockafellar, 1970; Boyd and Vandenberghe, 2004).

With these interpretations in mind, we proceed to show the power of the dual space: we can
represent desiderata simply and easily by the respective properties of their convex conjugates. The
relations between convex and monotonic cost functions, convex and positive homogeneous cost
functions, and their respective duals are a consequence of well-known results in the convex analysis
literature (Rockafellar, 1966, 1970).

Proposition 1. A risk measure is convex and monotonic if and only if the set S is exclusively within the
non-negative orthant.

Proposition 2. A risk measure is convex and positive homogeneous if and only if its convex conjugate has
compact S and has f(y) = 0 for every y ∈ S.
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Desideratum Conjugate Equivalence
Convexity (C) Automatic
Monotonicity (M) C,M⇔ Only defined in non-negative orthant
Translation invariance (TI) C,M,TI⇔ Only defined on probability simplex
Positive homogeneity (PH) C,PH⇔ f(y) = 0

Bounded loss (BL) C,BL⇔ Defined over whole probability simplex

Table 3.2: The equivalences between our desiderata and properties of the convex conjugate in Legendre-
Fenchel dual space.

The following results can be derived from convex analysis and the work of Abernethy et al.
(2011).

Proposition 3. A risk measure is convex, monotonic, and translation invariant if and only if the set S
lies exclusively on the probability simplex.

Proposition 4. A risk measure is convex and has bounded loss if and only if the set S includes the proba-
bility simplex.

We will use these dual spaces properties constructively in Chapter 6, where we build new cost
functions directly from their convex conjugates.

Cost functions can be classified by the desiderata they satisfy. We now proceed to describe
two particular classes of risk measures that have appeared in the literature, coherent risk measures
and convex risk measures. A third class of risk measure, homogeneous risk measures, are introduced in
Chapter 6.

3.2.3 Coherent risk measures

A cost function that satisfies all of the desiderata except bounded loss is called a coherent risk measure.
Coherent risk measures were first introduced by Artzner et al. (1999).

Definition 3. A coherent risk measure is a cost function that satisfies monotonicity, convexity, trans-
lation invariance, and positive homogeneity.

An impossibility result

Probably the most prominent concern after introducing our desiderata is the existence of proper-
ties of the set of functions which satisfy all five of them. In this section, we prove an important
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impossibility result: that only cost function which satisfies all five of our desiderata is max.

Proposition 5. The only coherent risk measure with bounded loss is C(x) = maxi xi.

Proof. Suppose there exists a coherent risk measure C and a vector x with maxi xi = x̄ but C(x) 6=
x̄. Since C is convex, it is continuous. Therefore C(0) = 0, because the function is positive
homogeneous and for every z

lim
γ↓0

C(γz) = 0

So by translation invariance:
C(x̄1) = x̄,

and so by monotonicity,
C(x) ≤ x̄.

However, if
C(x) < x̄

then the loss is unbounded, because

lim
k→∞

kx̄− C(kx) = lim
k→∞

kx̄− kC(x) = lim
k→∞

k (x̄− C(x)) =∞.

So since the loss must be bounded,
C(x) = x̄

which is a contradiction. �

The max market maker corresponds to an order-matching, risk-averse cost function that either
charges agents nothing for their transactions, or exactly as much as they could be expected to gain
in the best case. For instance, a trader wishing to move the max market maker from state {5, 3}
to state {7, 3} would be charged 2 dollars, exactly as much as they would win if the first event
happened—which means taking the bet is a dominated action. On the other hand, a trader wishing
to move the market maker from state {5, 3} to state {5, 5} pays nothing! These two small examples
suggest that max is a poor risk measure in practice, and therefore Proposition 5 should be viewed
as an impossibility result.

Remark. This result, in that only a single function with impractical properties satisfies a set of desiderata,
is similar in flavor to the canonical possibility/impossibility result of Arrow (1963).
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3.2.4 Relaxing desiderata

Now that we have hit an impossibility result by accumulating desiderata, it is straightforward to
begin examining what happens when we relax these desiderata.

We will explore two such relaxations. The first is to relax positive homogeneity. This produces
a class of risk measures known as convex risk measures. Convex risk measures were first introduced
in Carr et al. (2001).

Definition 4. A convex risk measure is a cost function which satisfies monotonicity, convexity, and
translation invariance.

The second relaxation is to relax translation invariance. This produces a class of risk measures
which we dub homogeneous risk measures.

Definition 5. A homogeneous risk measure is a cost function which satisfies monotonicity, convexity,
and positive homogeneity.

Both of these relaxations have intuitive interpretations in dual space.

Dual space interpretation

Consider the convex conjugate to max. Combining all of our dual-space equivalences, we have that
the conjugate of max is defined exclusively on the whole probability simplex, where it is identically
0. In dual price space, the maximizing argument to the max cost function can always be represented
as a point on one of the axes.

Recall that the conjugacy operation is

C(x) = max
y∈S

x · y− f(y)

and for the max cost function, Π = S and f is the zero map.
In dual space, the problem with using max in practice is that its maximizing argument does

not smoothly move with respect to the payout vector. It either stays at its current axis, or abruptly
jumps to another axis.

When we relax positive homogeneity to produce a convex risk measure, the result is that the f
function no longer needs to be the zero map. f can be a convex regularizing function which smooths
out the price response. Since the set of valid price vectors is still restricted to the probability simplex,
the prices of a convex risk measure will form a probability distribution.
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When we relax translation invariance to produce a homogeneous risk measure, the result is that
S no longer needs to be restricted to the probability simplex. As we show in Chapter 6, the cost
function will have a smooth price response if the set S is curved. (The probability simplex is planar
and is not curved.) Put another way, the shape of the space itself serves as an implicit regularizer
over the prices. Furthermore, by relaxing the set of valid pricing vectors away from the probability
simplex, the prices of the resulting homogeneous risk measure will not generally form a probability
distribution.

Convex risk measures feature prominently in both the artificial intelligence and finance litera-
tures. We proceed to provide a formal introduction to several of the more prominent risk measures
from the literature. We reserve a fuller discussion of homogeneous risk measures to Chapter 6.

3.2.5 Convex risk measures

Convex risk measures are prominent in both the artificial intelligence and finance literatures. They
were originally introduced in the finance literature by Carr et al. (2001). They feature very promi-
nently in the prediction market literature; virtually every cost function market maker is a convex
risk measure (Hanson, 2003; Ben-Tal and Teboulle, 2007; Hanson, 2007; Chen and Pennock, 2007;
Peters et al., 2007; Agrawal et al., 2009; Abernethy et al., 2011).

In this section, we formally discuss two convex risk measures that will be important for the
remainder of the thesis, the LMSR, and constant-utility cost functions.

The LMSR

The most popular cost function used in Internet prediction markets is Hanson’s logarithmic market
scoring rule (LMSR) (Hanson, 2003, 2007). There are at least three main reasons why the LMSR
is so widely used: (1) it was the first automated market maker for prediction markets, (2) it has a
simple analytical form, and (3) it has bounded loss.

The LMSR is defined as

C(x) = b log
(∑

i

exp(xi/b)

)
for fixed b > 0. b is called the liquidity parameter, because it controls the magnitude of the price
response of the market maker to bets. For instance, consider an agent wishing to move the market
maker from state {5, 3} to state {6, 3} (i.e., by making a bet that pays out one dollar if the first event
occurs). If the LMSR is used with b = 10, C({6, 3})−C({5, 3}) ≈ .56, and so the market maker
would quote a price of 56 cents to the agent for their bet. If b = 1, the same bet would cost 92 cents.
With b = 1, the LMSR is equivalent to the entropic risk measure of the finance literature (Föllmer
and Schied, 2002b).
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The LMSR has a finite bound in loss which increases in the liquidity parameter b. In particular,
the LMSR has a worst-case loss of b logn, achieved by setting the market maker’s initial payout
vector to a scalar multiple of 1.

The prices of the LMSR also have a very simple analytical form:

pi(x) =
exp(xi/b)∑
j exp(xj/b)

(3.1)

Since the LMSR is a convex risk measure, the prices in the LMSR sum to one.

Constant-utility cost functions

In this section we describe constant-utility cost functions, an existing framework for building cost
functions that was introduced by Chen and Pennock (2007). We apply and extend this framework
in both Chapter 5 and Chapter 7.

Definition 6. Let U ⊂ R be an open interval on the real line that includes all positive values. A
utility function is a strictly increasing, concave function u : U 7→ R.

A constant-utility cost function works by charging traders the amount that keeps the market
maker’s utility at a constant level. Put another way, the market maker prices each bet so that he is
indifferent between a trader declining and accepting it.

Definition 7. Let x0 ∈ dom u and πi be the market maker’s (subjective) probability that ωi will
occur. A constant-utility cost function C : Rn 7→ R is defined implicitly as the solution to∑

i

πiu(C(x)− xi) = u(x0)

Since the cost function is given implicitly by a root-finding problem, rather than explicitly as
a function of the vector x, it is not immediately clear that costs exist, are unique, and are easily
computable. However, because the utility function is strictly increasing, the cost function exists
for any input vector and is unique. Furthermore, because the utility function is increasing, we can
compute b bits of the value of the cost function in b steps of a binary search over possible values.

Constant utility cost functions start from the initial payout vector 0. Observe that C(0) = x0,
because ∑

i

piu(x
0 − 0) = u(x0)

Where u is differentiable the prices of a constant-utility cost function have a closed form (Jack-
werth, 2000; Chen and Pennock, 2007):
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pi(x) =
πiu

′(C(x)− xi)∑
j πju′(C(x)− xj)

. (3.2)

Observe that here the prices form a probability distribution because they sum to one and are
non-negative (the utility function is strictly increasing and so its derivative is always positive).

For completeness, we proceed to prove formally that constant-utility cost functions are indeed
convex risk measures.

Proposition 6. Constant-utility cost functions are convex risk measures.

Proof. Recall that in order to be a convex risk measure a cost function must satisfy monotonicity,
convexity, and translation invariance.

Monotonicity holds because the utility function is increasing. Consider y ≥ x. Then because
the utility function is increasing:∑

i

πiu(C(x)− xi) ≥
∑
i

πiu(C(x)− yi)

and so
C(y) ≥ C(x)

so the cost function is monotonic.

Translation invariance is straightforward. To prove translation invariance, observe that∑
i

πiu(C(x− xi)) =
∑
i

πiu((C(x) + α)− (xi + α))

and therefore
C(x + α1) = C(x) + α

Finally, the cost function is convex, which can be seen by noting that it corresponds to the iso-
utility graph of a concave utility function. Proofs of the convexity of such functions are well-known
and can be found in standard microeconomics texts (Varian, 1992). �

In some parts of the thesis we will be particularly concerned with a special class of utility func-
tions called barrier utility functions. These are functions which have a barrier to going into negative
wealths.
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Definition 8. A barrier utility function u is a utility function that has limx↓0 u(x) = −∞.

Examples of barrier utility functions include u(x) = log(x) and u(x) = −1/x, both of which
are defined over the open interval (0,∞).

Remark. There is nothing special about the lower bound of zero; all our results for barrier utility functions
still hold qualitatively as long as some lower bound exists. However, restricting the class to only those
functions with a barrier of zero is without loss of generality, because utility functions with a different
barrier (say, a function u with a barrier x) could be translated into a barrier function u′ with a barrier of
0 by the translation u′(z) = u(z + x).

One advantage of using constant-utility cost functions with barrier utility functions is that their
worst-case loss can be bounded simply.

Proposition 7. Let C be a constant-utility cost function that employs a barrier utility function. If πi > 0

for every i, the worst-case loss of the cost function is bounded by x0.

Proof. Suppose x0 were not an upper bound. Then there exists some x such that

max
i

xi − C(x)− C(0) > x0

and because C(0) = x0 by definition, this implies

max
i

xi > C(x)

but by definition ∑
i

πiu(C(x)− xi) = u(x0)

but then for the maximal i, this equation requires the evaluation of u(z) for z < 0. Since we are
using a barrier utility function, this value is undefined. Consequently, we have that x0 is an upper
bound.

�

Despite their different forms, the LMSR and constant-utility cost functions have much in com-
mon. In fact, it is possible to fully express the LMSR as a constant-utility cost function.
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Priors and constant utility in the LMSR

Equations 3.1 and 3.2 suggest that the LMSR, starting from initial payout vector 0, is equivalent
to a constant-utility cost function with πi = 1/n and u(x) = − exp(−x/b) (that is, exponential
utility). This link is for a prior-free, maximum-entropy LMSR. There are two equivalent ways to
incorporate a prior {π1, . . . , πn} into the LMSR.

The first way is to go back to the definition of marginal prices within constant-utility cost func-
tions:

∇iC(x) = πiu
′(C(x)− xi)∑

j πju′(C(x)− xj)

This equation gives an easy way to incorporate the prior into prices. Since in the LMSR, u(x) =
− exp(−x/b), these prices correspond to the following cost function

C(x) = b log
(∑

j

πj exp(xj/b)

)

The second way is based on the relation of the LMSR to the logarithmic proper scoring rule.
The connection between automated market makers and scoring rules is deep, and is the focus of
much prior literature (Hanson, 2007; Pennock and Sami, 2007; Lambert et al., 2008b; Chen and
Pennock, 2010).

Here, we initialize an initial payout vector q0 as the payouts implied by the logarithmic scoring
rule:

q0i = b log(πi)

Then the cost function proceeds as usual, but with the addition of the q0 vector of payouts, so
that

C(x) = b log
(∑

j

exp((xj + q0j )/b)

)

These two constructions are in fact equivalent because

πi exp(xi/b) = exp(log(πi)) exp(xi/b) = exp((xi + b log(πi))/b) = exp((xi + q0i )/b)

Now that we have introduced the LMSR formally, we proceed to discuss a practical application
of the cost function.
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Chapter 4

The Gates Hillman Prediction Market

Prediction markets are powerful tools for aggregating information. Most prediction markets in use
today, however, only generate a single data point. For simple binary events, like the probability
of a sports team winning its next match, this is entirely satisfactory. However for more complex
events this can be inappropriate. Consider a prediction market to estimate the expected number
of US casualties in Afghanistan over the next year. Conceivably, market participants could be split
between a very low estimate and a very high estimate. The resulting consensus of a middle value
could be an accurate estimate of the expectation, but would be misleading to design policy around.

Recent theoretical work has suggested that eliciting interesting distribution properties (like the
element that has maximum probability) is as difficult as eliciting an entire distribution (Lambert
et al., 2008b). In this paper, we discuss the design of a market, the Gates Hillman Prediction Market
(GHPM), that generated a complete distribution over a fine-grained partition of possibilities, while
retaining the interactivity and simplicity of a traditional market.

The GHPM market was designed to elicit the opening day of the new computer science build-
ings at Carnegie Mellon University, from a universe of 365 potential days. At any snapshot in time,
the market forecast a probability distribution over the building opening on each of these days. At a
high level, we were motivated to build the GHPM to answer three kinds of questions. Two of them
are specific to the GHPM: (1) What extensions are necessary to traditional theory in order to run a
market over a large number of possible events? and (2) What breaks in practice when a market runs
over hundreds of events, hundreds of traders, and hundreds of days? The third question is common
to any market case study: How did the market work?

Fundamental to our design is an automated market maker (Hanson, 2003). It has three primary
benefits. First, the market maker provides a rich form of liquidity: it guarantees that participants
can make any self-selected trade at any time. Second, it allows instant feedback to traders, rather
than delayed, uncertain, potential feedback. A trader can always get actionable prices both on any
potential trade she is considering and on the current values of the bets she currently holds. Third,
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the automated market maker obviates the need to match combinations of user-generated buy and
sell orders—a problem that can be combinatorially complex (Fortnow et al., 2003; Chen et al.,
2008)—making a large event space computationally feasible.

Equally important to the success of the GHPM was the user interface of the trading platform.
Interfaces with the same expressive power in theory can perform quite differently in practice, partic-
ularly given well-documented shortcomings in human reasoning. In particular, a large event space
implies that the average probability of an event is small, and people have great difficulty discrim-
inating between small probabilities (e.g., Ali (1977)). To solve this problem, the GHPM used a
span-based interface with ternary elicitation queries, which we discuss in Section 4.1.3.

As the first test of automated market making in a large prediction market, the GHPM allowed
us to discover two flaws in current automated market makers, which will help focus future design
of market makers. Section 4.2 discusses the two flaws, spikiness and liquidity insensitivity, in detail
and explores their theoretical roots.

Traditional laboratory experiments are generally small due to practical constraints like subject
payments, training effort, and the viable duration of an experiment. For example, Healy et al.
(2010) study behavior and prices in laboratory prediction markets in detail, but their experiment
only had three traders. The Gates Hillman Prediction Market involved hundreds of traders mak-
ing thousands of trades, and so provides an unusually rich data set, particularly when combined
with interviews with traders about the strategies they employed. Sections 4.3 and 4.4 use the data
generated by the market to examine its performance and characteristics in depth.

4.1 Market design

The GHPM used a raffle-ticket currency tied to real-world prizes, an automated market maker,
and a novel span-based ternary elicitation interface. In the following sections we discuss each of
these in turn.

4.1.1 Incentives and setup

Due to legal concerns, the GHPM used raffle tickets as currency rather than real money. Thanks to
generous grants from Yahoo! and other sources, we secured the equivalent of about $2,500 in prizes
to distribute. At the close of the market, prize selection slots were allocated randomly, in proportion
to the number of tickets each user amassed. Traders then selected their prizes in descending order
until all the prizes were exhausted. This gives (risk-neutral) participants the same incentives as if
real money were used—unlike the approach where the best prize is given to the top trader, the
second-best prize to the second-best trader, etc.
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The GHPM was publicly accessible on the web at whenwillwemove.com, but trading accounts
were only available to holders of Carnegie Mellon e-mail addresses. For fairness, we did not allow
people with direct control over the building process (e.g., members of the building committee) to
participate. Upon signup, each user received 20 tickets, and each week, if that user placed at least
one new trade, she would receive an additional bonus of two tickets. In a market with real money,
we would expect that traders more interested or knowledgeable would stake more of their personal
funds in the market. However, in a fake-money setting, we do not have this option. For instance,
a mechanism that asked users if they were “very interested” in the market, and promised to give
them extra tickets if they answered affirmatively would obviously not be incentive compatible. The
two ticket weekly bonus was intended to give more interested traders more influence in the market
and to encourage traders to be more involved in the market over time.

One of the most challenging parts of running a prediction market over real events is defining
contracts so that it is clear which bets pay out. For example, InTrade, a major commercial prediction
market, ran into controversy over a market it administered involving whether North Korea would
test missiles by a certain date. When North Korea putatively tested missiles unsuccessfully, but the
event was not officially confirmed, the market was reduced to a squabble over definitions. We set
out to study when the Computer Science Department would move to its new home in the Gates
and Hillman Centers (GHC), but move is a vague term. Does it indicate boxes being moved? Some
people occupying new offices? The last person occupying a new office? The parking garage being
open? From discussions with Prof. Guy Blelloch, the head of the building committee, we settled
on using “the earliest date on which at least 50% of the occupiable space of the GHC receives a
temporary occupancy permit”. Temporary occupancy permits are publicly issued and verifiable,
must be granted before the building is occupied, and are normally issued immediately preceding
occupancy (as was the case in the GHC).

The market was active from September 4th, 2008 to August 7th, 2009. On this latter date,
the GHC received its first occupancy permit, which covered slightly over 50% of the space in the
building. The price of a contract for August 7th, 2009 converged to 1 about five hours before the
public announcement that the building had received its permit.

In total, 210 people registered to trade and 169 people placed at least one trade. A total of 39,842
bets were placed with the market maker, with about two-thirds of the trades in the market being
placed by a single trading bot (further discussed in Section 4.4.4). Following the conclusion of the
market, we conducted recorded interviews with traders we deemed interesting about their strategies
and their impressions of the GHPM. Excerpts of some of these conversations appear in Section 4.3.

4.1.2 The LMSR in the GHPM

We began by partitioning the event space into n = 365 events, one for each day from April 2,
2009 to March 30, 2010 with the addition of “April 1, 2009 and everything before” and “March
31, 2010 and everything after”, to completely cover the space of opening days. At the time, the
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GHPM was by far the largest market (by event partition size) ever conducted. The largest prior
prediction markets fielded in practice were, to our knowledge, markets over candidates for political
nominations, where as many as 20 candidates could have contracts (of course, only a handful of
candidates in these markets are actively traded). Previous laboratory studies have involved limited
trials with as many as 256 events (Ledyard et al., 2009), but those studies involved very few traders
and are not commensurable with the GHPM, which was designed as a publicly visible mechanism.
Since the GHPM concluded, markets with much larger event spaces have been fielded. Predictalot,
a product of Yahoo! Research, was a public prediction market that fielded bets on the 2010 and
2011 NCAA men’s basketball tournament, a setting with 263 events. As the first large-scale test
of automated market making, the GHPM is the link between smaller, human-mediated markets
and the later development of exponentially larger combinatorial markets, mediated with automated
market makers.

Recall that the cost function for the LMSR is

C(q) = b log
(∑

i

exp(qi/b)
)

where b > 0 is a constant fixed a priori by the market administrator. As Pennock and Sami (2007)
discuss, the b parameter can be thought of as a measure of market liquidity, where higher values
represent markets less affected by small bets. In the GHPM we fixed b = 32, and since the LMSR
has worst-case loss of b logn (Hanson, 2003, 2007), at most about 190 surplus tickets would be won
from the market maker by participating traders. (This is indeed the amount actually transferred
from the market maker to the participants because probability mass converged to the correct day
before the market ended.) The ad hoc nature of selecting the liquidity parameter is an intrinsic
feature of using the LMSR, as it comes with little guidance for market administrators (Othman
et al., 2010). The parameter we selected turned out to be too small, which led to some problems in
the market (see Section 4.2.2).

Recall that prices are defined by the gradient of the cost function, so that

pi(q) =
exp(qi/b)∑
j exp(qj/b)

is the price of the i-th event. We call these pi pricing rules. Recall that the LMSR is a differentiable
convex risk measure, and so the prices can also be directly thought of as event probabilities, because
they define a probability distribution over the event space: they sum to unity, are non-negative, and
exist for any set of events.

4.1.3 Span-based elicitation with ternary queries

In this section, we present the novel elicitation mechanism used in the GHPM. A similar inter-
face was developed independently and contemporaneously by Yahoo! Research for Yoopick, an
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application for wagering on point spreads in sporting events that runs on the social network Face-
book (Goel et al., 2008).

The major problem in implementing fine-grained markets in practice is one of elicitation: they
are too fine for people to make reliable point-wise estimates. Consider the GHPM, which is di-
vided into 365 separate contracts, each representing a day of a year. Under a traditional interaction
model, traders would act over individual contracts, specifying their actionable beliefs over each day.
But with 365 separate contracts, the average estimate of each event is less than .3%. People have
great difficulty reliably distinguishing between such small probabilities (Ali, 1977), and problems es-
timating low-probability events have been observed in prediction markets (Wolfers and Zitzewitz,
2006).

We solve this problem by simple span-based elicitation, which makes estimation of probabilities
easy for users. In our system, the user can select a related set of events and gauge the probability for
the entire set. Spans are a natural way of thinking about large sets of discrete events: people group
months into years, minutes into hours, and group numbers by thousands, millions, or billions. The
key here is that spans use the concept of distance between events that is intrinsic to the setting.

For example, let the market be at payout vector q0 = {q01, . . . , q0n}. A user’s interaction begins
with the selection of an interval from indices s to t. This partitions the indices into (at most) three
segments of the contract space: [1, s), [s, t], and (t, n]. The user then specifies an amount r to risk.
Our market maker proceeds to offer the following alternatives to the user:

• The “for” bet. The agent bets for the event to occur within the contracts [s, t]. The user’s
payoff if he is correct, πf , satisfies

C
(
q01, . . . , q

0
s−1, q

0
s + πf , . . . q

0
t + πf , q

0
t+1, . . . , q

0
n

)
= C(q0) + r

• The “against” bet. The agent bets against the event occurring within the contracts [s, t]. The
user’s payoff if he is correct, πb, satisfies

C
(
q01 + πb, . . . , q

0
s−1 + πb, q

0
s , . . . , q

0
t , q

0
t+1 + πb, . . . , q

0
n + πb

)
= C(q0) + r

As long as the cost function is strictly increasing, as is the case for the LMSR, these values
uniquely exist. However, solving for πf and πb is not generally possible in closed form. These
equations can be solved numerically using, for example, Newton’s method. Depending on the
specific cost function and numerical solution method, there might be issues with solution instability
that should be addressed; for instance, the GHPM used Newton’s method with a bounded step size
at each iteration to discourage divergence.

Given a selected set of events, the simplest way to represent a bet for that set is to have each
event in the set pay out an identical amount if the event is realized, as we do in the two equations
above. This simplicity means we can significantly condense the language we use when eliciting a
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Figure 4.1: A screenshot of the elicitation query for a user-selected span in the GHPM. The query is ternary
because it partitions the user’s probability assessment into three parts. The GHC is the Gates and Hillman
Centers, the new computer science buildings at Carnegie Mellon. Because of legal concerns, the market
used raffle tickets rather than money.

wager from a trader. Instead of asking the trader whether he would accept an n-dimensional payout
vector, we need only present a single value to him. A screenshot of the elicitation process in the
GHPM appears as Figure 4.1.

Yahoo! Research’s Yoopick does not have “against” bets, but the GHPM does. From discus-
sions with traders in the GHPM, against bets were used frequently to bet against specific (single)
contracts they feel are overvalued. Several successful traders had a portfolio consisting solely of bets
against a large number of single contracts. The success of these traders was likely a combination
of the misjudging of small probabilities by other traders as well as the spiky price phenomenon
discussed in the next section.

There are several relevant pieces of information the market administrator could provide the users
for each potential bet:

• The agent’s direct payout if he is correct, πf (or πb). This is the amount a trader wins if he
bets on a span including the event that occurs and he holds the contract through to expiry.
Both Yoopick and the GHPM display this information.

• The averaged payout probability on the span, r/πf or 1 − r/πb. This value is the actual
odds at which a bet is being made. The GHPM displays this as a ternary (three-way) query,
where traders can select whether their probability estimate lies in one of three partitions, as
in Figure 4.1. (Yoopick does not display this information.) Faced with the ternary query,
the user selects whether his probability for the span is less than 1− r/πb, greater than r/πf ,
or in-between. (If the prices are increasing in quantities, as they are in the LMSR, then
r/πf ≥ 1 − r/πb, with equality in the limit as r → 0.) If a trader’s belief lies in the middle
partition, presumably they could reduce their bet size or find another span on which to wager.

• The marginal payout probability, which is the sum of the prices on the relevant span after
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the πf or πb of additional quantity. Since agents who are acting straightforwardly will not
want to move marginal prices beyond their private valuation, marginal prices could be more
informative to decision making. Neither the GHPM nor Yoopick displays this informa-
tion. Early trials of the GHPM included marginal prices in the interaction interface, but
testers found the information confusing when combined with the averaged payout probabili-
ties and so we removed the marginal payout probabilities from later versions of the interface.
Even though they were not explicit in the interface, sophisticated traders could still produce
marginal prices either by explicitly knowing the pricing rule or by making small tweaks in
the number of tickets risked and observing how prices changed. We believe that for a market
exclusively populated by mathematically adept traders, explicit marginal prices would be a
helpful tool.

Finally, even though it simplifies interactions, the span-based elicitation scheme is arbitrarily
expressive. If the users are sophisticated enough to make discriminating judgments over small
probabilities, to the point that they can express their actionable beliefs over every contract, then
they can still express this sophistication using spans—e.g., by trading spans that contain only one
element (one day in the case of the GHPM).

4.2 Problems revealed

There are two key findings from our study. The first is a large and interesting data set of trades,
which we analyze in Sections 4.3 and 4.4. The second is that we discovered two real-world flaws in
the automated market-making concept. These were the spikiness inherent in prices and the liquidity
insensitivity that made prices in the later stages of the market change too much. We proceed to
discuss each of these flaws.

4.2.1 Spikiness of prices across similar events

A phenomenon that quickly arose in the GHPM was how spiky the prices were across events
at any snapshot in time. There was extraordinary local volatility between days that one expects
should have approximately the same probability. This volatility is far more than could be expected
from a rational standpoint—e.g., weekends and holidays could be expected to have much lower
probability than weekdays—and it persisted even in the presence of profit-driven traders whose
inefficiency-exploiting actions made for less pronounced, but still evident, spikes. (These traders’
strategies are discussed in detail in Section 4.3.2.) Figure 4.2 is a screenshot of the live GHPM where
spiky prices are evident. Spikiness here refers to the exaggerated sawtooth pattern of prices in a fixed
snapshot in time, not to how prices moved or changed over time. It is a distinct phenomenon from
both real markets with sharply rising or falling prices (e.g., electricity spot markets) or from the
“mirages” observed in laboratory studies of the LMSR (Healy et al., 2010).
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Figure 4.2: A screenshot of the GHPM that shows the spikiness of prices. The x-axis ranges over a set of
potential opening days. The y-axis displays prices (as percentages; e.g., 1% means a price of 0.01).

Spikiness in theory

Why did spikiness occur? Is there an automated market maker with a different pricing rule that
would have resulted in a market where prices were not spiky? In this section, we show that a large
class of market makers will tend to induce spiky prices. Specifically, our result concerns pricing
rules which satisfy three conditions: differentiability, non-negativity, and a technical condition we
call pairwise unboundedness.

Definition 9. When n ≥ 3, a pricing rule is pairwise unbounded if, when enough is bet against any
pair of events, the prices on both of those events goes to zero. Formally, let the set I consist of any
two events i and j, and let I be the indicator vector for the set I , so that Ii = Ij = 1 and I6=i∨j = 0

otherwise. Then for any x

lim
k→∞

pi(x− kI) = lim
k→∞

pj(x− kI) = 0

Of the three properties, non-negativity and pairwise unboundedness are the most natural. A
negative price would make the marginal prices not form a probability distribution, and would imply
a trader could arbitrage the market maker by buying the event with a negative price. The pairwise
unbounded condition also is also natural, because a market maker that is not pairwise unbounded
will keep non-vanishing prices on pairs of events no matter how much is bet against them by traders.
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To our knowledge, every market maker in the literature satisfies both non-negativity and pairwise
unboundedness. In contrast, there do exist market makers that do not have a differentiable price
response (such as max). However, a smooth price response is desirable for interacting traders (Oth-
man and Sandholm, 2011b), and the bulk of market makers from the literature do have differentiable
prices. It is easy to see that the LMSR satisfies all three conditions.

What does it mean for a market maker to produce spiky prices? From examining transactions
in the GHPM, we found that spiky prices arose most often from tiny differences in the prices
of nearby days being amplified by a bet span that included both of them. These tiny initial price
differences seem to arise endogenously from traders selecting slightly different intervals to bet on,
although there is no guarantee that they will be present. With this in mind, consider a bet placed
for the interval I = {i and j}, when pi > pj . Recall that the derivative of a differentiable function
g : Rn 7→ R along a vector x (the vector derivative) is given by the scalar ∇x = ∇g · x. The vector
derivative ∇I of the price functions pi and pj is

∇Ipi = ∇ipi +∇jpi

and
∇Ipj = ∇jpj +∇ipj

The market maker has spike-inducing behavior if betting on the bundle that consists of both i
and j amplifies the difference between the prices on those events, that is, if

∇Ipi > ∇Ipj

By the symmetry of second derivatives, ∇jpi = ∇ipj . Therefore we have spike-inducing behavior
for this bet if

∇ipi > ∇jpj

This leads us to the following definition.

Definition 10. In a setting where n ≥ 3, a market maker induces spikes if

∇ipi(x) > ∇jpj(x)

for some x and some i and j such that

pi(x) > pj(x)

Proposition 8. Every differentiable, non-negative, and pairwise unbounded pricing rule induces spikes.
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Proof. Suppose there is a pricing rule satisfying the three conditions that does not induce spikes.
Then, for every x, i, j tuple we have

∇ipi(x) ≤ ∇jpj(x)

Select some x, some indices i and j, and some ε > 0 such that

pi(x) ≥ pj(x) + ε

Because the market maker has differentiable, pairwise unbounded prices, such an x, i, j tuple must
exist.

Now consider the vector I which will be the indicator vector for indices i and j. Because the
market maker does not induce spikes we have that, for k ≥ 0

pi(x− kI) ≥ pj(x− kI) + ε

But because the market maker has pairwise unbounded prices,

lim
k→∞

pi(x− kI) = 0

Consequently there exists some K > 0 such that

pi(x−KI) ≤ ε/2

But then at this K,

pj(x−KI) ≤ −ε/2

so the market maker has prices that are negative, but this is a contradiction, because we assumed
the pricing rule was non-negative. �
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The impact of spikiness

Traders were aware of spikiness and this knowledge affected their behavior. In Section 4.3, we
discuss and analyze interviews with traders which suggest that spikiness played a large role in de-
termining the way agents behaved in the GHPM.

Spiky prices are a problem because they create a disconnect between the user and the elicitation
process. Users feel that the spiky prices they observe after interacting with the market maker do
not reflect their actual beliefs. This is because users agree only to a specified bet rather than to
an explicit specification of prices after their interaction. Moreover, because the difference between
spiky prices and (putatively) efficient prices is so small, traders have little incentive to tie up their
capital in making small bets to correct spikiness; there is almost certainly another interval where
their actionable beliefs diverge more from posted prices. Our interview with Brian, a PhD student
in the Machine Learning Department and the market’s best-performing trader, was informative.
He described a sophisticated strategy where he would check the future prospects of his current
holdings against what he viewed as a risk-free rate of return—for instance, by betting against the
building opening on a weekend. If the risk-free rate of return was higher, he would sell his in-the-
money holdings and buy into the risk-free asset. So once a spike is small enough, damping it out
can be less lucrative than other opportunities. (This argument also implies that spikiness could be
diminished by supplying traders with more capital.)

Finally, to bet against a spike, a trader accepts an equal payout on every other day. But increasing
the quantity on events by the same amount is what caused spiky prices in the first place. Put
another way, betting against a spiky price will have the tendency to create spiky prices elsewhere
in the probability distribution. Consequently, when using a differentiable market maker, while it
might be possible for savvy traders to diminish spikiness, it seems unlikely that it could ever be fully
eliminated.

4.2.2 Liquidity insensitivity

Recall that the LMSR is translation invariant and differentiable. Consequently

pi(q) = pi(q + α1)

for scalar α. A practical interpretation of this result is that the market maker is liquidity insen-
sitive, so that quoted responses do not respond to the level of activity seen in the market. This
implies that prices change exactly the same amount for a one dollar bet placed at the start of
the market (say, at q = (0, 0, . . . , 0)) as after the market maker has matched millions of dollars
(q = (1000000, . . . , 1000000)).

This is not the way we think of markets in the real world, operated by humans, as working.
As markets grow larger with more frequent trading, they become deeper so that small bets have
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vanishingly small impact on prices. When using the LMSR, because the liquidity parameter b is a
constant, the market’s reaction to bets at increasing levels of volume is constant, too.

Impact on trader behavior

Liquidity insensitivity had an impact on traders in the GHPM, but unlike spikiness, which was
publicly visible and a source of frequent consternation in our interviews, it appears that only the
most active and savvy traders were aware of liquidity insensitivity. Brian, the market’s best trader,
said this about the way he approached the market in its final weeks:

One thing I noticed was that at the end, these small bets would still make big jumps in the
prices. So I would try to keep the amount that I bet really small...to try and minimize what
would happen to the prices.

So, at least the savviest traders were aware of the disconnect between the automated market
maker and the way a traditional market would function.

Relation to spikiness

Although spikiness and liquidity insensitivity appear quite different, they are actually related. A
market maker that is sensitive to liquidity would be able to temper spikiness, because in more
liquid (deeper) markets, the market maker could move prices less per each dollar invested. Since
spikes are the product of discrepancies in the amount that prices move, if prices move less, spikiness
will be diminished.

4.3 Effective trader strategies

In this section, we discuss the strategies employed by profitable traders. We found these strategies
can be grouped into three categories, spike dampening, relative smoothing, and information gathering.
We begin by performing a cluster analysis of the set of profitable traders to identify the qualitative
attributes of successful strategies.

4.3.1 Cluster analysis

There were 49 traders who ended the market with more than 20 tickets and who made at least five
trades (the median number over the whole set of traders). Consider grouping those traders along
two criteria: First, the fraction of bets they made which were negative (i.e., against the span they
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selected, as in Figure 4.1), and the number of total trades they made. Figure 4.3 shows the results
of clustering these successful traders into two groups.

Figure 4.3: A cluster analysis of profitable traders. The y axis is log-scaled.

The large stars shows the centroid of each group, suggesting two groups of traders: one that
made a large number of negative bets, and another that made roughly an order of magnitude fewer
bets, most of them positive.

The negative and positive bets themselves were also quite different. The mean negative bet was
over 16.3 days and the median negative bet was on just 1 day. The mean positive bet was over 20.3
days and the median positive bet was on 4 days. (Here, the means are much larger than the medians
because the samples were skewed by large outliers.) So the negative bets were over much smaller
intervals than positive bets.

This analysis suggests that successful traders followed one of two distinct strategies. One group
of traders made large numbers of negative bets over very small intervals; and the other made smaller
numbers of positive bets on larger intervals. We call the former strategy spike dampening and the
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latter strategy relative smoothing. We proceed to discuss these strategies in the context of interviews
with key traders we conducted immediately after the market concluded.

4.3.2 Spike dampening

Recall that in Section 4.2.1 we discussed how and why the observed market prices were spiky, with
unjustifiably large variance in the prices of putatively similar individual days. Several successful
traders based their strategies entirely around betting against spikes. Rob, a PhD candidate in the
Computer Science Department, ended with about 256 tickets and finished in fourth place overall.
In our interview with him, he described his strategy as follows:

I knew that the market was presumably figuring out the probabilities of events, and early
on, those predictions were very uneven. I supposed some people were setting all their money
down on a single day or small set of days, and that this was causing the probability graph to
be very “spiky.” I bet against the spikes.

Presuming (and I was correct) that as new people entered the market, the spikes would
change radically and I’d cash out on the old spikes (making money) and bet against the new
spikes.

Of course, on the other side of Rob’s actions were traders like Jeff (a pseudonym). Jeff is another
PhD student in the Computer Science Department with a background in finance; he worked as
a quantitative analyst at a hedge fund before coming to graduate school. A frequent trader, Jeff
finished with enough tickets to place himself in the top 15 traders. Of his experience, he said:

It seemed like every time I would make a trade the value [of the bet] would fall a little bit...it
was frustrating, like everything I was doing was wrong.

Jeff ’s bets would fall in value because they would create spikes, which speculators like Rob would
quickly sell.

4.3.3 Relative smoothing

While spike dampening involves betting against spikes, relative smoothing involved betting for
undervalued spans. Alex, a Mathematics PhD student that was one of the market’s top traders,
explained his strategy as follows:
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My main strategy was to purchase time periods that were given <10% opening probability
by the market yet I felt had at least a 25% or 30% chance of containing the opening date.

Most of my gains came as the market started to believe in the summer opening. After
moving up to the top five and then into the top two on the leaderboard, I was actually pretty
conservative. I sold many of my successful positions for hefty gains and sat on a lot of tickets.
At this point, I didn’t feel like I had a lot more information that the market so I made small
opportunistic trades but held on to most of the gains.

Brian, the market’s top trader, employed both spike dampening as well as relative smoothing.
He said:

I was mostly just betting against [spikes], but I’d also bet for anything that was abnormally
low probability...I was kind of like a regularizer.

One example Brian gave of an opportunity like this was a series of three weeks, the first and
third of which have higher probability than the middle one. Brian would then buy the middle span,
wait for the prices to converge, and then sell at a profit.

The strategy employed by the trading bot that made the majority of the market’s trades (further
discussed in Section 4.4.4) was also designed to smooth market prices. That bot attempted to fit a
mixture of Gaussian distributions to the current prices, and trade off of deviations from the fit.

4.3.4 Information gathering

One strategy that was not identified in the cluster analysis but emerged from interviews with traders
was information gathering. Consider that both spike dampening and relative smoothing are con-
trarian strategies—betting against prevailing price trends and waiting for further price movements
to validate their trades. Because these strategies are both based around the relative prices of vari-
ous spans (without regard to what the days actually represented), they can be considered technical
trading strategies. In contrast, information gathering attempts to find the actual values associated
with spans.

Elie, a PhD student in the Computer Science Department, invested a great deal of effort in
finding out the real opening day. He became a regular at the construction site, getting updates
on progress through discussions with the lead foreman, and even got the cell phone number of
the building inspector who issued the temporary occupancy permit. On the morning of August
7th, the correct opening day, he visited the work site and got confirmation that the inspector had
indeed signed off on the occupancy permit. He pushed the price of August 7th very high, to about
50% of the probability mass, and tried to get spike-dampening traders to move against him so he
could extract additional profit. When, instead, this high price held, he drove the price up to almost
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100% of the probability mass. Elie was the trader that ended up with the highest Information
Addition Ratio (see Section 4.4.5), a measure of how much traders raised the price of the correct
opening day. One of the desirable properties of markets is that they reward traders that acquire
good information, and indeed information acquisition was extremely profitable for Elie. In the last
several weeks of trading, he moved from being in around 100th place to finish as the fifth-ranked
trader in the market.

4.4 Analysis of empirical market performance

The large data set of trades linked to user accounts is a valuable product of the GHPM. In this
section, we use this data set to explore questions related to trader behavior and performance, and
its impact on prices and information aggregation.

4.4.1 Official communications and the GHPM

The market had a complicated reaction to official communications about the opening day. We
provide evidence that the market reacted to official communications, but that it correctly anticipated
an officially unexpected delay in opening. (Recall that the GHPM was designed to test existing
automated market makers over large event spaces, large numbers of participants, and long market
durations. It was not designed to out-predict technical project completion forecasts from experts.)

Figure 4.4 shows how the distribution of prices changed over time and Table 4.1 shows the
officially communicated moving dates. As we explained earlier, the moving day provides an upper
bound on the issuance of the occupancy permit because people are not allowed to move into a
building without a permit.

Date of Communication Moving Day Medium
October 15, 2008 July Blog
February 14, 2009 August 3rd E-mail
July 23, 2009 August 3rd E-mail
July 28, 2009 Approximately August 10th E-mail

Table 4.1: Officially communicated moving dates.

We can provide a rough narrative of the market from these two sources. Following some initial
skepticism, market prices moved towards the correct prediction, becoming very prescient by the end
of November. By then, the exterior framing of the buildings was complete. Over the next several
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months, the outside appearance of the buildings did not improve measurably, and there were no
official communications during this period. Prices reflected this seeming lack of progress.

The weather may have further reinforced traders’ beliefs in a delay; the winter of 2008-09 was
particularly cold in Pittsburgh and featured the lowest temperatures in fifteen years. Pittsburgh’s
average temperature in January 2009 was 22 degrees, six degrees colder than the historic average of
28 degrees. As Figure 4.5 shows, the market’s probabilities for the building opening in the correct
span peaked in late November and fell throughout December and January.
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Figure 4.5: The amount of probability mass around the correct opening day. The x-axis ranges over days the
market was open. The lines indicate the mass of spans around the opening day on each trading day; upper
line is for August 2 to 12, the lower line for August 5 to 9.

Did market prices anticipate or lag public disclosures? To test this, we simulated the perfor-
mance of a trader with inside information of the public announcements. (Recall that the mem-
bers of the building committee that made these announcements were not allowed to trade in the
GHPM.) How well would the official-information trader have done?

We considered two different schemes for how such an inside trader could operate:

• In the Sell-quickly scheme, the official trader spends some fraction of his wealth the day before
making a public announcement, and then sells it the day after making the announcement.
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• In the Buy-and-hold scheme, the official trader spends some fraction of his wealth the day
before making a public announcement, and holds that position until the day before the next
announcement is made (in the case of the final announcement, we assume he holds the po-
sition until the building opens).

There is some ambiguity inherent in the official statements. We interpreted “July” as meaning
the whole month of July, and we interpreted “Approximately August 10th” as meaning the range
August 7–13th, a one week range centered on August 10th. Observe that this span includes the
correct opening day, August 7th.

The returns from both the Buy-and-hold and the Sell-quickly schemes depend on the fraction of
wealth invested at each announcement. Figure 4.6 shows the final wealth of the inside-information
trader for each scheme. Both schemes finish with more than their 20 initially allotted tickets as long
as the fraction of wealth invested with each announcement is positive.

Our simulation suggests that the inside-information trader would have profited from his better
information by participating in the GHPM. Qualitatively, the official trader out-performed the
market. As a counterfactual, however, our simulation could be wrong quantitatively. Specifically,
our simulation is probably optimistically biased towards the returns of the official communications
trader. Had the official trader actually participated in the markets, he would have driven up the
prices of his desired spans, and so other traders probably would have been less inclined to drive up
the prices of those spans even more. However, it is also possible trend-following traders might have
driven the prices on those spans up even higher. This would result in higher quantitative returns
for the inside-information trader.

Looking at the returns made by the schemes before each announcement helps us contextualize
how much each announcement was anticipated. Table 4.2 displays this information, both in terms
of total tickets after each action and percent return. The data in the table comes from each trader
investing all of their wealth before each announcement, and so the final row of Table 4.2 corresponds
to the rightmost values in Figure 4.6.

Communication date Sell-quickly % Return Buy-and-hold % Return
October 15, 2008 23.83 19 55.40 177
February 14, 2009 43.33 82 81.80 48
July 23, 2009 68.17 57 21.80 -73
July 28, 2009 71.16 4 40.39 85

Table 4.2: Tickets and percent returns from following the two strategies after each announcement, where
each agent invests all of his wealth in every action.

Positions in the Sell-quickly scheme are liquidated a day after the official announcement is
made. Therefore, the returns from the Sell-quickly scheme indicate how much the market moved
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Figure 4.6: The simulated final returns of a trader with inside information of official communications, start-
ing with 20 tickets. The trader either holds their position until immediately before making a new commu-
nication (“Buy-and-hold”) or closes their position the day after making an official communication (“Sell-
quickly”).

in the short-term in response to the official information. Positions in the Buy-and-hold scheme
are held until immediately before the next public communication. As a result, the returns from the
Buy-and-hold scheme indicate how valuable each announcement was over the longer term.

Several of the values in the table merit further discussion.

• The highest-value trade in Table 4.2 is holding the “July” position from October 14th to Febru-
ary 13th. This produced a return of 177% for the Buy-and-hold scheme, nearly tripling the
Buy-and-hold trader’s tickets. We attribute the success of this position to the announcement
being nearly correct at a very early stage of the market.

• The highest return from the Sell-quickly strategy was the 82% return from buying “August
3rd” on February 13th and selling it on February 15th. This exceptionally large return suggests
that the market reacted quickly and dramatically to the announcement on February 14th.

• All the values in Table 4.2 are positive with the exception of the Buy-and-hold strategy buying
“August 3rd” on July 22nd and selling the position on July 27th. In just five days, this position

48



CHAPTER 4. THE GATES HILLMAN PREDICTION MARKET

loses almost three-quarters of its value. This result, combined with the very modest returns
of only 4% from the Sell-quickly trader’s last action, suggests that the market anticipated the
building would be delayed beyond August 3rd. However, the strongly positive returns (85%)
for the last action of the Buy-and-hold trader suggests that the market was anticipating a
much longer delay than actually occurred. So, even though the probability of the building
opening on August 3rd had fallen in the five days between announcements, the probability
mass did not shift to the correct day, August 7th, but rather to later in August. This is con-
firmed by observing the skew of the probability distribution in Figure 5.1 at the end of the
market.

Both the Sell-quickly and the Buy-and-hold strategies produced positive earnings, which argues
against the market fully anticipating every official communication. However, the losses of the
Buy-and-hold strategy in the five days between denying and confirming a delayed opening suggest
that the market correctly anticipated that the building would be delayed. However, the market
appeared to anticipate a significantly longer delay than actually occurred.

4.4.2 Self-declared savviness

When traders signed up, they were asked “How savvy do you think you are relative to the average
market participant?”. They were given five choices, “Much less savvy”, “Less savvy”, “About the
same” (the default selection), “More savvy”, and “Much more savvy”. Participants were informed
that their answer to this question would not impact their payouts or the way they interacted with
the market.

Because people are usually over-confident in various settings—and in prediction markets in
particular (Forsythe et al., 1999; Graefe and Armstrong, 2008)—it was our expectation that traders
would be over-confident in their own abilities relative to others. Instead, we found the opposite.

Reported under-confidence

Based on prior studies of over-confidence in markets, we would expect to see most traders rate
themselves as at least comparable to the average trader in the market. Table 4.3 shows our survey
results. 77 traders described themselves as less or much less savvy than average, while only 13 traders
described themselves as more savvy than average. Surprisingly, not a single trader listed themselves
as much more savvy than the average trader.

Why did we find traders under-confident, instead of over-confident, in their own abilities?
Recent research by Moore and Healy (2008) on confidence sheds some light on this issue. They
find that
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Self-Declared Savviness Number of Traders
Much Less than Average 30 (17.8%)
Less than Average 47 (27.8%)
Average 79 (46.7%)
More than Average 13 (7.7%)
Much More than Average 0

Table 4.3: Counts of self-assessed savviness.

On difficult tasks, people...mistakenly believe that they are worse than others; on easy tasks,
people...mistakenly believe they are better than others.

A novel market setting, such as the web-based automated market maker with span-based elicita-
tion we used in the GHPM, is unfamiliar enough to a new trader as to seem potentially difficult.
Prior market studies, because they have used traditional market interfaces that even the most casual
participant is familiar with, would seem potentially less difficult and therefore would be susceptible
to overconfidence.

Traders poorly predicted their own performance

We found that traders’ self-reported savviness relative to other traders had little bearing on their
relative performance. Table 4.4 groups traders by self-reported savviness and displays the group
medians. The median over all traders was 17.46 tickets, identical to the least-savvy group and within
a ticket of the two next-savvy groups. Ironically, traders identifying themselves as more savvy than
the average trader had a median return more than 10 tickets lower than any other group.

Self-Declared Savviness Median Tickets
Much Less than Average 17.46
Less than Average 16.78
Average 18.36
More than Average 6.05
Much More than Average N/A

Table 4.4: Traders who self-identified as “more savvy than the average participant” in the market had dra-
matically lower median performance than other traders, while those traders identifying as “much less savvy
than the average participant” had the same overall median performance as the trading population as a whole.
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4.4.3 Trade frequencies suggest a power law

The numbers of bets made by traders appear to closely fit a power law distribution. Figure 4.7
shows the relationship in terms of the probability of a trader having more than a certain number of
trades from our data set, and the best-fitting power law distribution. (We also tried a log-normal
distribution and the fit was poor.)
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Figure 4.7: A log-log plot showing the relationship between traders and the number of trades they placed.
The straight line shows a power law fit for α = .51.

Unfortunately, with only 169 traders we can not assert an appropriate level of statistical signifi-
cance, so we cannot rule out the data being generated by other distributions. However on a log-log
plot the data do appear to snugly fit the canonical straight line of a power law distribution.

Why might one expect a power law distribution of trade frequency? It seems reasonable to
suggest that a trader both makes new bets and sells old bets in proportion to the number of bets
she has currently outstanding, with the constraint that she never go under one bet outstanding (in
order to collect her two free tickets each week). As Mitzenmacher (2004) discusses, this type of
generative model yields a power law distribution.

4.4.4 Trading by a bot

Conventionally, when we think about prediction markets, we think about a collection of individ-
uals making probability judgments. This is a quality distinct from traditional exchanges, in which
automated trading is common and frequent. But as Berg et al. (2001) discuss, trading bots make up
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a large fraction of the observed volume in the Iowa Electronic Markets (IEM), the longest-running
prediction market, and must be considered in any sort of qualitative summary of the properties of
prediction markets. We found that trade in the GHPM was also dominated by a bot.

This was surprising because we did not make automated trading easy. The GHPM did not use
an API, so any trading bot would have to come up with a way to parse the web page and simulate
its user’s actions on the page. Jim, a graduate student in the Computer Science Department, took
two days to write a trading bot. The bot fit the current prices to a mixture of Gaussian distributions
and identified trading opportunities based on deviations from the fit.

The bot made 68.5% of the trades in the market (27,311 of 39,842). The median number of trades
placed for all traders was five.

Jim’s bot did well in the market; at its peak it was the second-highest-valued trader. Jim turned
his bot off after the e-mail of February 14th and began trading manually. He ended up losing the
bulk of his tickets by betting on the building opening earlier than it actually did, finishing 158th of
the 210 registered users and 117th out of the 169 traders.

4.4.5 Trader-level data is consistent with Marginal Trader

Hypothesis

Prediction markets have been demonstrated to be at least as accurate as, and in many cases more
accurate than, predictive techniques like polls (Berg et al., 2001; Goel et al., 2010). How do markets
incorporate information and generate good prices? A line of research from the administrators of the
IEM has suggested that a small group of so-called marginal traders are responsible for producing
accurate results in prediction markets (Forsythe et al., 1992, 1999; Berg et al., 2001; Oliven and
Rietz, 2004). This group, which appears to be about 10% of the traders in the IEM, essentially
arbitrage the remainder of the market participants. This theory of how markets function is called
the Marginal Trader Hypothesis.

In this section, we show that the GHPM is consistent the Marginal Trader Hypothesis. To
our knowledge this is the first experimental consistency of the Marginal Trader Hypothesis within
a market that used an automated market maker. This finding is significant because using an auto-
mated market maker prevents less-sophisticated agents from making many of the errors that could
be thought to drive the lopsided distribution of performance that the Marginal Trader Hypothe-
sis predicts. We also argue that the GHPM rejects one of the most intriguing hypotheses of the
literature: that marginal traders are disproportionately male.

Why isn’t it easy to identify marginal traders?

The techniques from the IEM literature do not apply to our market setting. In Forsythe et al. (1992)
marginal traders were identified by the particular kinds of trades they placed. Specifically, marginal
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traders were those traders that provided liquidity and set prices by placing limit orders (orders with
a limiting price, e.g., “I will buy 10 contracts at a price-per-contract of no greater than 60 cents”),
rather than market orders (“I will buy 10 contracts”). Put another way, marginal traders served as
market makers. In later work, this connection was made more explicit. Oliven and Rietz (2004)
classify traders as either marginal, price-setting, market makers, or as non-marginal price takers.

One of the key findings of this literature is that non-marginal traders violated the law of one price.
To illustrate what the law of one price is, consider the example of the Red Sox and Yankees playing a
baseball game with a traditional prediction market not equipped with an automated market maker.
Imagine that the current order books on the events are given in Table 4.5.

Contract Best bid Best ask
Red Sox .34 .40
Yankees .63 .65

Table 4.5: Hypothetical prices in a baseball game prediction market.

Now consider two actions at these prices: buying a share of Red Sox stock, or selling a share
of Yankees stock. If a trader buys a share of Red Sox stock, his payoffs are {0.6,−0.4}, where
ω1 = Red Sox win and ω2 = Yankees win. If a trader sells a share of Yankees stock, his payoffs are
{0.63,−0.37}. Observe that this payoff vector strictly dominates the payoff from buying a share
of Red Sox stock—no matter whether the Red Sox or Yankees win the game, the trader receives a
higher payoff from the latter action. Consequently, if a trader were to do the former action and buy
a share of Red Sox stock, he is said to be violating the law of one price. More formally, violations
of the law of one price occur when an agent takes on a strictly-worse payoff vector than one that
could be constructed at the current market prices. Interestingly, even though violating the law of
one price is a dominated action, the IEM literature has found that non-marginal traders perform
these actions frequently (Oliven and Rietz, 2004).

In summary, the literature from the IEM gives us two trade-level ways of distinguishing be-
tween marginal and non-marginal traders: marginal traders place limit orders, and non-marginal
traders violate the law of one price. Unfortunately, when using the LMSR, neither of these dis-
tinguishing characteristics are available to us. First, the LMSR only uses market orders, so agents
cannot place limit orders. Therefore, traders cannot be price setters, only price takers. Second, the
LMSR precludes any violation of the law of one price, because the LMSR maintains a probability
distribution over the different states of the world. This probability distribution enforces the condi-
tion that equivalent bets for the set of states “A” and against the set of states “not A” have equivalent
payoff vectors.

An example will be helpful in seeing why this is the case. Consider our example of the Red
Sox-Yankees baseball game again. “Buying the Red Sox” is equivalent to taking on the contract
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{1, 0}. “Selling the Yankees” is equivalent to taking on the contract {0,−1}. For the payoff vector
associated with the former contract, we subtract the amount we must pay for the contract from
the vector {1, 0}. For the payoff vector associated with the latter contract, we add the money we
receive from selling the contract to the vector {0,−1}. We will show that for any initial x and any
translation-invariant cost function C, the payoff vector formed by these two bets is equivalent.

The two bets are equivalent if

{1, 0} − (C(x + {1, 0})− C(x)) 1 = − (C(x + {0,−1})− C(x)) 1+ {0,−1}

By re-arranging, we see that this condition is

(C(x + {1, 0})− C(x))− (C(x + {0,−1})− C(x)) = 1

C(x + {1, 0})− C(x + {0,−1}) = 1

C(x + {1, 0}) = C(x + {0,−1}) + 1

C(x + {1, 0}) = C(x + {0,−1}+ {1, 1})
C(x + {1, 0}) = C(x + {1, 0})

Here the penultimate step relies on the translation invariance of the cost function (i.e., C(x) +
1 = C(x + 1)).

Given that we cannot identify marginal traders in the ways suggested by prior literature, in the
next section we discuss how we employed the spirit of the original work of the IEM to select a
candidate set of marginal traders.

Identifying marginal traders in the GHPM

The IEM researchers made their criteria for selected marginal traders on the basis of informative
trading patterns. They then showed that their set of marginal traders had better performance and
more frequent trade than their set of non-marginal traders. Here, we take a similar approach. We
start by describing a way of gauging the information content of the bets a trader makes, and how
this metric produces an intuitive way to isolate a set of marginal traders.

We dub the metric we used to assess the information content of a trader’s bets the Information
Addition Ratio (IAR). This measure attempts to separate a trader’s return from speculative activities
from a trader’s return from information-adding activities. It answers the question “If we see a trader
making a one-ticket bet, what is her expected return if she were to hold that bet until the market
closes?”. A return of one ticket on each ticket invested is always available to a trader by betting on
the entire range of exhaustive contracts. Traders who inject valuable information into the market
will have an IAR greater than one, while traders who have a deleterious impact on information will
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have an IAR of less than one. Essentially, IAR measures how much each trader increased the price
of August 7th, the correct opening day. IAR is an attempt to compress a complex concept into
a scalar, and such an enormous dimensionality reduction is inherently lossy. IAR places a focus
exclusively on rewarding traders for making bets that raised the price of the correct opening day.
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Figure 4.8: The distribution of IAR of traders ordered by rank. The straight line shows an IAR of 1 (one
ticket expected per ticket wagered).

Figure 4.8 displays the distribution of IARs. It is heavily skewed and unequal. The median
trader had a return of .16 tickets per ticket bet, and 79 traders (47%) placed all their bets on losing
intervals, i.e., spans that did not include the correct date, August 7th. This is surprising for several
reasons. First, a return of one ticket per ticket bet was always available to traders by betting on the
entire span. Second, in the ternary elicitation interface, one of the bets offered will always include
August 7th, and the other will not, so there was no inherent bias against traders making correct
bets. Finally, the median number of bets per trader was five, meaning that the bulk of traders made
poor judgements several times, not just once.

We can gauge how skewed a distribution is at a glance by measuring its Gini coefficient, a
standard measure of inequality. Assuming we have the data points x1 ≤ x2 ≤ . . . ≤ xn, the Gini
coefficient, G, of the sample is given by

G =
2
∑

i ixi

n
∑

i xi

− n+ 1

n
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The Gini coefficient ranges from zero to one and can be thought of as a measure of how unequal
drawn samples are, with particular sensitivity to large outliers. Table 4.6 displays the Gini coeffi-
cients for the GHPM in context with other distributions. The Gini coefficients of both final tickets
and IARs is very high, which indicates the underlying distributions are skewed. Taken as a whole,
these results indicate that the majority of market participants consistently made judgments that
hurt the accuracy of the GHPM.

Data Set Gini Coefficient
Normal Distribution µ = 5, σ = 1 .113

Denmark Income .247
Uniform Distribution .333
United States Income .408

Log-normal Distribution µ = 5, σ = 1 .521
GHPM Tickets .700
Namibia Income .743
GHPM IARs .762

Table 4.6: Gini coefficients are a standard measure of the degree of inequality of a distribution. As this table
shows, the distribution of both information (IARs) as well as overall performance (tickets) were extremely
unequal. For reference, we include country income inequality coefficients from the United Nations (2008);
Denmark had the lowest coefficient and Namibia the highest.

On the other side, there was clearly a small and select group of traders responsible for actually
making the GHPM produce meaningful prices. Only 37 traders (22%) had an IAR of more than
one, and only 13 traders (8%) had an IAR of more than two. A trader with an IAR of greater
than two was making sophisticated judgements to bet correctly on less than half of the market’s
probability mass. A trader could achieve an IAR of more than one by making not-very-nuanced
bets with the market maker (e.g., by betting on all but the earliest day), but there is no way a trader
could have an IAR of more than two without making nuanced judgements. Consequently, we
advance these 13 traders as our candidate set of marginal traders.

Comparison of marginal and non-marginal traders

In this section, we will compare the group we selected as candidate marginal traders to the group
we selected as non-marginal traders. We show that, just like in the IEM literature, the performance
and level of involvement of the marginal traders was much higher than the non-marginal traders.
Thus, we argue that the GHPM is consistent with the Marginal Trader Hypothesis.
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Table 4.7, taken from Forsythe et al. (1992), displays the performance of traders in the 1988 IEM
presidential election market. Their set of marginal traders were about ten percent of participants,
and the marginal traders had a much higher percent return and invested much more in the market
than the non-marginal traders.

IEM marginal IEM non-marginal
Fraction of traders .11 .89
Median percent return 9.6 0.0
Average total investment 56 21

Table 4.7: The performance of marginal and non-marginal traders in the 1988 IEM presidential mar-
ket (Forsythe et al., 1992)).

Table 4.8 displays the performance of our candidate set of marginal traders relative to non-
marginal traders in the GHPM. Just like in the IEM, about 10% of traders are classified as marginal.
Additionally, the marginal traders in the GHPM were a much more active presence than non-
marginal traders. The median marginal trader made almost 30 times more bets than the median
non-marginal trader.

Finally, just like in the IEM, the performance of the marginal traders was much better than
the performance of the non-marginal traders. However, whereas the median marginal trader in
the IEM had a rate of return of 9.6%, the median marginal trader in the GHPM had a rate of
return of almost 300%. We attribute this discrepancy to the weekly ticket handout, as well as the
subsidy given up by the market maker (recall that the LMSR runs at a loss). We conjecture that
had the IEM awarded traders for participation and had the IEM used a market making agent that
subsidized traders, then most of these rewards would have gone to the marginal traders because
they were the most active participants.

GHPM marginal GHPM non-marginal
Fraction of traders .08 .92
Median tickets 79.2 16.3
Median trades 147 5

Table 4.8: The relative performance of our candidate set of marginal traders in the GHPM.

One possible criticism is that the results of this section were a foregone conclusion, and that our
criteria for classifying a trader as marginal necessitated that they end up being an active, profitable
participant. But just like in Forsythe et al. (1992), we used trade-level attributes to decide whether
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or not a trader would be classified as marginal, and there was no guarantee that a trader selected as
marginal would end up with the most tickets or the most trades. It is easy to imagine, in fact, traders
who could qualify as marginal by our definition that would not be active or involved participants;
such a trader could merely have placed a single small bet on the market opening in July, August,
or September soon after the market’s initiation. While this bet would have been smart, it would
have produced an IAR of greater than two for that trader without significant involvement in the
market and without that trader amassing a large number of tickets. Furthermore, IAR need not
have any correspondence to a trader’s actual returns from the bets they placed; if they were to sell
their correct bets before the market’s expiration, they would earn fewer tickets or, depending on
short-term prevailing market prices, could even lose tickets on those bets.

However, our results show that this was not the case, and that traders whose bets raised the
price of the correct opening day tended to be by far the most profitable and active traders in the
GHPM as a whole. In terms of tickets, our set of marginal traders included the top trader, four of
the top five, and six of the top ten. In terms of trades, our set of marginal traders included the top
trader, four of the top five, and seven of the top ten.

Are only men marginal traders?

One of the most curious findings of Forsythe et al. (1992) was that their pool of marginal traders
was exclusively male. In contrast, our pool of marginal traders was not statistically significantly
different in gender composition from our pool of traders as a whole. Table 4.9 compares the results
of the two prediction markets. (These results are not an artifact of using IAR to select marginal
traders, because women were also well-represented under alternative selection criteria. By final
ticket count, three of the top ten traders were women. By number of trades, two of the top ten
traders were women.)

IEM marginal IEM non-marginal GHPM marginal GHPM non-marginal
Number 22 170 13 156
Fraction Male 1.00 0.68 0.77 0.74

Table 4.9: The gender composition of the marginal trader pools in our study and in the IEM (as reported
in Forsythe et al. (1992)).

For the null hypothesis that the GHPM marginal and non-marginal traders are drawn from the
same gender distribution, we get a p-value of 0.60. Since p > 0.05, this means it is not statistically
significant to reject the null hypothesis.

Consequently, we reject the hypothesis that the gender composition of the marginal traders
differs from the gender composition of non-marginal traders. Since there does not seem to be any
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causal reason that women should be worse traders than men, and Forsythe et al. (1992) do not justify
any mechanism for their gender findings, we contend that the hypothesis of women being less likely
to be marginal traders should probably be broadly dismissed, or at the least, merits further study
before acceptance.

4.5 Extensions

Our experience with the liquidity insensitivity that led to substantial price volatility in the mature
stages of the GHPM motivates Chapters 5 and 6. In both of those chapters we develop liquidity-
sensitive market makers that make prices “stiffer” (i.e., the price changes less as a function of the
amount that is bet) in markets where lots of trade volume has been observed.

The GHPM featured a new interaction interface that enabled participation by both sophisti-
cated and unsophisticated users over a very large event space. Perhaps other interaction interfaces
could be developed that lead traders to place bets that might better reflect their beliefs while still
being simple enough for unsophisticated users. One suggestion would be to have users wager on
payout vectors, with the default being an equal payout on each day for simplicity, as in the GHPM.
This could be a way to avoid the spikiness in prices observed in the market, as presumably traders
would not consent directly to very spiky prices.
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Chapter 5

Extensions to convex risk measures

Recall from Chapter 3 that a convex risk measure is a cost function that satisfies monotonicity,
convexity, and translation invariance. In this chapter, we introduce two separate sets of extensions
to convex risk measures. First, we relax the setting from a finite discrete event space to either a
countably or uncountably infinite event space and describe how constant-utility cost functions can
be used to create market makers that satisfy several desirable properties over these much larger
event spaces. Second, we describe a new family of market makers (for the standard setting) that
qualitatively replicate the behavior of real human-mediated market makers, while still retaining
the desirable bounded loss property of the algorithmic agents of the prediction market literature.
Recall that convex risk measures do not have the property of positive homogeneity, and lack the
simple recourse to expanding liquidity that homogeneity provides. The market makers in Section 5.2
possess alternative means to expand liquidity and are the most realistic trading agents derived from
convex risk measures in the literature.

5.1 Market making over infinite spaces

What makes infinite event spaces challenging is the tension between loss boundedness and some-
times offering traders bets that would be irrational to accept regardless of what event materializes.
It is easy to create market makers with bounded loss if they charge agents as much as they could
possibly win. On the other hand, it is also easy to create market makers that only offer bets a rational
agent could accept, but have unbounded loss. For instance, the most popular automated market
maker in practice is the LMSR, which for n events has worst-case loss Θ(logn). Over infinite
event spaces, however, it has unbounded loss (Gao et al., 2009).

Because of this tension, it has been an open problem whether there can exist market makers
with bounded loss over infinite event spaces that never offer agents bets which are immediately bad.
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In this section, we construct such market makers, first for countably infinite event spaces, and then
for uncountably infinite event spaces. We begin by first discussing prior work on large and infinite
event spaces.

5.1.1 Prior work

The difficulty of constructing a market maker with both bounded loss and bets which are not im-
mediately bad is informed by the impossibility result of Gao and Chen (2010). That work con-
cerned automated market makers operating over continuous spaces (i.e., the unit interval). The
result of Gao and Chen (2010) is that a convex risk measure over this space that satisfies a certain
continuity-monotonicity condition cannot have bounded loss. This result would, at first glance,
seem to explicitly preclude the existence of the market makers we construct in this chapter.

However, the market makers in this section subvert this impossibility result in a technical, but
natural, way. Consider a bet of arbitrary size over some interval (A,B)withA < B, and let π(A,B)
denote the cost of the bet to the trader. The continuity-monotonicity condition of Gao and Chen
(2010) has two parts:

1. That decreasing the size of the betting interval results in a continuous decrease in the cost of
the bet.

2. That the limit of this process is a zero-cost bet. Formally, limA→B π(A,B) = 0.

The market makers we develop in this section satisfy the first property, but not the second, and
so circumvent the impossibility result. Observe that the first condition is more natural than the
second, because a market maker satisfying the second condition would price arbitrarily large bets
over sufficiently small intervals at epsilon cost to a trader.

It is simple to construct a market maker with bounded loss over infinite event spaces. The sup
cost function (which can be thought of as an infinite-dimensional max)

C(x) = sup
ω

x(ω)

accomplishes this goal. This is easy to see because a trader is charged as much as she could possibly
gain from the realization of any event. However, sup is one example of a cost function that offers
bets which are immediately bad, meaning that it offers some bets that could never benefit a rational
agent. (We will formalize this property in each of the next two sections.)

Agrawal et al. (2009) present several convex risk measures with a worst-case loss of Θ(1−1/n),
which implies bounded loss as n gets large. However, they achieve their bounded worst-case loss
by offering good bets only up to a certain amount of uncovered exposure. After reaching this limit
(which is controlled by a parameter set a priori by the market administrator) the price of some events
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is set to zero, implying that the other events form a proper subset with unit marginal price. A bet
on this subset would then be immediately bad. (Furthermore, the market makers in Agrawal et al.
(2009) rely on solving a relatively complex convex optimization, so it is not immediately clear how
to generalize their technique over infinite-dimensional spaces, or whether such a generalization is
even possible.)

5.1.2 Countable event spaces

In this section, we consider how to take bets on a countably large event space {ω1, ω2, . . .} with
both bounded loss and without offering bets which are immediately bad. We begin by discussing
the changes in framework necessary to move from a discrete, finite event space to a discrete, infinite
event space.

Translation of qualities to countable spaces

Unlike in the finite case, here we can no longer take arbitrary bets over the event space. This is
because degeneracies can arise with respect to the sums of infinite series that can lead the market
maker to have undefined expected utility from bets. For example, consider a market maker with
beliefs pi = 1/2i employing a constant-utility cost function to price the bet xi = (−3)i. The market
maker’s expected utility for accepting this bet at cost c is∑

i

1

2i
(
c− (−3)i

)
which does not converge for any c, and so the payout vector xi = (−3)i has undefined cost.

To avoid these infinite summation problems, we allow traders to only make bets that correspond
to valid payout vectors.

Definition 11. A payout vector x is valid for a constant-utility cost function having utility function
u and a belief distribution p if there exists a cost for x for all initial utility levels. Formally, for all
x′ ∈ dom u there exists a c such that∑

i

piu(c− xi) = u(x′)

Here, x′ is an initial amount of wealth and so u(x′) is the market maker’s initial (constant) utility
level.

We can also formalize the notion of immediately bad bets.
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Definition 12. A differentiable convex risk measure C offers bets which are immediately bad if there
exists an event i with zero marginal price.

The reasoning here is that, because C is a convex risk measure and an event has 0 marginal
price, a bet on the rest of the events (a proper subset of the event space) sums to 1. Then, as the
name implies, trade with a cost function of this sort can sometimes be a dominated action: a trader
pays at least as much as she could possibly make from any contract, but there also exists at least one
event for which the trader loses her bet.

Bounded loss and no bad bets over countable spaces

With the theoretical framework in place for fielding bets over a countably large event space, we can
present our main result of this section.

Proposition 9. Let u be a differentiable barrier utility function, let the market maker have belief dis-
tribution p with pi > 0, and let x0 > 0. Then for every valid payout vector x, the constant-utility cost
function given by the solution to ∑

i∈{1,2,...}

piu (C(x)− xi) = u(x0)

loses at most x0 and never offers bets which are immediately bad.

Proof. To prove the specified loss bound, suppose that the market maker lost more than x0 when
event ωi occurred. Then xi + x0 − C(x) > x0, and so by re-arranging, C(x) − xi < 0. Therefore
since u is a barrier utility function, we have u(C(x)− xi) = −∞. But since the pi > 0, this means
the expected value of the market maker’s utility is −∞, rather than u(x0) > −∞, a contradiction.

To prove the resulting cost function never offers bets which are immediately bad, we must show
that for every valid payout vector x,

pi∇iC(x) > 0

for which (because pi > 0) it suffices to show that ∇iC(x) > 0. Recall from Chapter 3 that the
equation for the gradient of a constant-utility cost function is

∇iC(x) = piu
′(C(x)− xi)∑

j pju
′(C(x)− xj)

Because the utility function is strictly increasing and differentiable, its derivative is strictly pos-
itive. Coupling this with the fact that pi > 0, and we have that the terms in the integrand of both
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the numerator and denominator are positive. Thus ∇iC(x) > 0 and so the cost function never
offers bets which are immediately bad. �

Proposition 9 relies on the existence of a belief distribution p such that pi > 0. One distribution
of this sort is to assign pi = 1/2i.

5.1.3 Uncountable event spaces

In this section, we consider how to take bets on the unit interval [0, 1]. At first glance this might
seem like a very restricted domain of inquiry. However, traditional notions of dimensionality do not
strictly apply to the spaces where probability measures live. In fact, atomless probability distribu-
tions over the unit interval are isomorphic to atomless probability measures over any measurable
space that satisfies mild technical conditions (Malliavin, 1995, Section 6.4). Consequently, the re-
sults of this section also extend to settings like the real number line and geometric shapes, with the
caveat that the notion of a sub-interval that we use in the results of this section needs to be trans-
lated to match the dimension of the space under consideration. For instance, in making markets
over a rectangle, a sub-interval could translate to be a proper sub-rectangle with corners (x1, y1)
and (x2, y2), and in making markets over the surface of a sphere, a sub-interval could consist of a
rectangular or triangular patch on the surface.

Translation of qualities to the unit interval

On the unit interval the events are ω ∈ [0, 1], and bets still map from events to how much the
trader gets paid based on what event materializes. However, bets and payout vectors (which were
represented as points in Rn in the finite case) are now functions over the event space; formally,
x : [0, 1] 7→ R.

For example, we might have a prediction market for forecasting where on Florida’s coastline the
next hurricane will hit. The events ω could then be represented as points over the unit interval (i.e.,
with Pensacola to the west and Jacksonville to the east representing the interval’s endpoints). An
example bet a trader might make is one that demands a uniform payoff over the coastline. Another
potential bet could pay off as a triangle distribution centered around Miami. Both of these bets x
can be expressed as functions over the interval.

Cost functions now generalize to be functionals which map these functions x to scalar values,
i.e., C : ([0, 1] 7→ R) 7→ R. Furthermore, instead of the market maker having subjective probability
distribution p over the event space, the market maker instead uses some probability distribution F ,
with some corresponding density f .

Similar to the countable case considered in Section 5.1.2, we cannot field arbitrary bets from
traders. Even over the unit interval, degeneracies arise with respect to pricing arbitrary bets that
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can lead the market maker to have undefined expected utility. For instance, suppose a market
maker had utility function u(x) = logx and uniform beliefs over the interval, and was attempting
to calculate the cost for the payout vector x(ω) = sin(1/ω)21/ω. Observe that this payout vector
oscillates wildly near 0. Since for any c the expected utility integral∫ 1

0

log
(
c− sin(1/ω)21/ω

)
dω

diverges, there is no cost that can be associated with this payout vector. To ensure that costs are
always well defined, we allow traders to only make bets that correspond to valid payout vectors.

Definition 13. A payout vector x is valid for a constant-utility cost function using utility function u

and a belief distribution F if, at all initial utility levels, there exists a cost for x that is well defined.
Formally, for all x′ ∈ dom u there exists a c such that∫ 1

0

u(c− x(ω)) dF (ω) = u(x′)

Here, x′ is an initial amount of wealth and so u(x′) is the market maker’s initial (constant) utility
level.

Observe that all bounded and measurable (and therefore continuous, because continuous func-
tions over compact intervals using a Borel sigma-algebra are bounded and measurable) payout vec-
tors are valid. This is because for bounded payout vectors there exists a C such that for all c > C
and all ω ∈ [0, 1], c− x(ω) > 0. This implies that the integral is finite and can be adjusted to u(x0)
by selecting the appropriate cost.

Recall that over discrete, finite spaces, the market maker solves for the cost C(x) of a payout x
implicitly through ∑

i

piu(C(x)− xi) = u(x0)

Over the unit interval this equation becomes the more general∫ 1

0

u (C(x)− x(ω)) dF (ω) = u(x0)

for every valid payout vector, where once again the terms on the left represent the market maker’s
(subjective) expected utility, with subjective beliefs here expressed through the probability distribu-
tion F , and the term on the right representing the market maker’s initial utility.

Observe that monotonicity carried over from the finite case. Let x and y be valid and select
some initial u(x0). Then if x ≥ y, we have that C(x) ≥ C(y), because the utility function is strictly
increasing and at all ω ∈ [0, 1], x(ω) ≥ y(ω).
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Translation invariance also holds. Consider the relation between C(x) and C(x + α1), and in
particular the arguments to the utility function inside the integral. Since at any point ω, C(x) +
α− x(ω)− α = C(x)− x(ω), we have that C(x) + α = C(x + α1).

For continuous x, it is easy to see the C is continuous with respect to the sup norm. Let Nε(x)
represent the neighborhood of all continuous functions ε-close to x, that is,

Nε(x) = {y | y continuous and sup
ω∈[0,1]

|x(ω)− y(ω)| < ε}

but then for all y ∈ Nε(x)
|C(y)− C(x)| < ε

by translation invariance and monotonicity.
Solving for C(x) requires solving an integral equation, and so the feasibility of our scheme relies

on how easy it is to accurately evaluate the integral. While it is possible to describe degenerate cases
where the integral cannot be computed effectively, there are many natural domains where the inte-
gral can be accurately computed using numerical techniques in a straightforward manner. Consider,
for instance, taking bets on the real line using a Gaussian prior distribution. Then if payout vec-
tors are simple polynomials the market maker’s cost function can be solved using Gauss-Hermite
quadrature (Judd, 1998).

Recall that in the discrete setting, we needed every pi > 0, or else the price of a contract on ωi

occurring would always cost nothing. Consequently, a trader could make an arbitrarily large bet on
ωi for nothing, and then the market maker would have unbounded loss if ωi were to occur.

This property is not directly meaningful when we talk about probability densities instead of
probability masses. Instead, it generalizes to the unit interval through the notion of strictly positive
density.

Definition 14. A probability density function f is strictly positive if f(ω) > 0 for all ω.

The unit interval admits many distributions with strictly positive probability density, the uni-
form distribution being an example. Of course, the notion of strictly positive density is not just
restricted to the unit interval. Over R an example of a strictly positive density function is a Gaus-
sian distribution.

Bounded loss and no bad bets over the unit interval

Before we can give the main result of this section, we need to rigorously define what bounded loss
and bad bets mean on the unit interval. This is far from simple because of the inherent degeneracies
of dealing with measure zero sets. To simplify our analysis, we choose to define our relations relative
to sub-intervals of the unit interval.
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Definition 15. A cost function C on [0, 1] has bounded loss over every interval if the average loss
over any sub-interval is bounded. Formally, if for all valid payout vectors x and all intervals [a, b] ⊆
[0, 1], a < b, we have ∫ b

a

C(x)− x(ω) dω > −∞

We can also define what an immediately bad bet looks like over an interval.

Definition 16. A cost functionC on [0, 1] never offers bets which are immediately bad over any interval
if an agent is always offered a bet over a proper sub-interval for less than unit cost. Formally, if for
all valid payout vectors x, all proper intervals [a, b] ⊂ [0, 1], and α > 0 we have

C(x + αIa,b)− C(x) < α

where Ia,b is the indicator function over the interval [a, b].

If this definition is not satisfied, the trader could be offered a bet that pays out α on the selected
interval, but costs at least α. Therefore, the trader would pay at least as much as she could possibly
make from the bet, but there also exist events not in the interval for which the trader loses her bet.

With our framework in place for fielding bets over the unit interval, we can present our main
result of this section.

Proposition 10. Letu be a differentiable barrier utility function, and let f be a strictly positive probability
density function on [0, 1] with F its corresponding distribution function, and let x0 > 0. Then for every
valid payout vector x, the constant-utility cost function given by the solution to∫ 1

0

u (C(x)− x(ω)) f(ω) dω = u(x0)

has bounded loss over every interval and never offers bets which are immediately bad over any interval.

Proof. To prove the specified loss bound, suppose that the market maker lost more than x0 on a
average on some interval [a, b]. Because the market maker is using a barrier utility function, at
every point ω at which the market maker loses more than x0 we must have that the amount paid
out minus the amount paid in is greater than x0, or that

x(ω) + x0 − C(x) > x0
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because x(ω) is the amount paid out by the market maker and C(x) − x0 is the amount paid in
(recall x(0) = 0). By simplifying, we get that C(x) − x(ω) < 0. Consequently, because u is a
barrier utility function at those ω

u(C(x)− x(ω)) ≤ u(0) = −∞

Then because f is strictly positive, the distribution has positive measure over the interval, so∫ b

a

u (C(x)− x(ω)) f(ω) dω = −∞

and consequently the market maker’s expected utility is −∞ rather than u(x0) > −∞, a contra-
diction.

To prove the resulting cost function never offers bets which are immediately bad over any inter-
val, consider some arbitrary x, α > 0, and proper sub-interval [a, b]. First, because C is translation
invariant, we have

C(x) + α1− C(x) = α

and because C is monotonic,
C(x + αIa,b)− C(x) ≤ α

Now consider that ∫ 1

0

u(C(x + αIa,b)− x(ω)− α1(ω)) dF (ω) < u(x0)

which holds because the utility function is strictly increasing, x + α1 ≥ x + αIa,b at every point
in [0, 1] and x + α1 > x + αIa,b on 1 − Ia,b, which is a set of positive measure (recall that f is a
strictly positive density function). But because the utility function is strictly increasing, this implies
C(x + α1) > C(x + αIa,b).

Bringing together our relations we have

C(x + αIa,b)− C(x) < C(x + α1)− C(x + αIa,b) + C(x + αIa,b)− C(x)
= C(x + α1)− C(x)
= α

which proves the cost function never offers bets which are immediately bad over any interval. �
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5.2 Adding profit and liquidity to convex risk measures

In this section, we develop market making agents that provide a principled way to extend the worst-
case results of the literature to incorporate desirable, realistic features in practice. These are the first
agents to include three human properties: the ability to make a profit, and (provided sufficient
trading volume) unlimited market depth, and a vanishing bid/ask spread. At the same time, our
agents retain the bounded loss property of the algorithmic agents in the literature. Furthermore,
our agents incentivize myopic traders to directly reveal their private beliefs. In addition to these
desirable theoretical properties, our new market making agents have other key practical properties .
Just like in real markets, but unlike most agents in the literature, our market making agents are not
path independent: a trader that buys from and then sells to our market making agents will incur
a small loss. Additionally, our market making agents provide a straightforward way to incorporate
the principal’s subjective belief over the future into the quoted prices, and those quoted prices can
be computed efficiently and simply.

5.2.1 Desirable properties for a market maker

In this section, we use a real example to demonstrate how liquidity is provisioned in real markets.
We then use the insights gleaned from the example to motivate four desiderata for automated
market makers. Finally, we give an overview of market makers from the literature to show that,
while they can achieve every combination of three of the desiderata, no existing approach satisfies
all four.

Our study of stock and prediction markets

The word liquidity in financial markets is burdened with several connotations. O’Hara (1995) mem-
orably quips: “liquidity, like pornography, is easily recognized but not so easily defined”. She goes
on to describe several perspectives on what liquidity means: the volume in the market; the size of
the marginal bid/ask spread (i.e., the spread for the smallest possible quantity); and the degree to
which large bets move prevailing prices (equivalent to the volume of bets placed near the marginal
bid/ask spread, the market depth). In traditional markets, all the senses of the term liquidity are
conflated because these characteristics tend to accompany each other. We proceed to illustrate the
conflation of these several views of liquidity using live, current markets as examples.

In real markets as the volume of trade increases, the bid/ask spread falls. This implies both that a
fixed size bet moves the market less and that the marginal bid/ask spread decreases. Although there
can be exceptions—such as the Flash Crash—this relationship holds broadly and was discussed at
least as early as 1968 (Demsetz, 1968).

To provide an example of the effect of volume on bid/ask spreads, we collected values from five
live markets. Table 5.2.1 shows the total cost to buy and then sell a thousand dollars of underlying
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contracts (without regard to any trading fees imposed by the exchange or brokers). We took these
values from a snapshot of the relevant order books at 3pm on September 8th, 2011.

Market Difference ($)
Approximate Daily

Volume ($)
NWS stock 0.61 140 million
NYT stock 1.51 18 million
MNI stock 14.41 1.2 million
Obama 2012 31.58 900

Higgs Boson 2011 970 1.20

Table 5.1: The difference in bid and ask prices for $1,000 dollars of the underlying in several markets. “Obama
2012” is the Barack Obama re-elected contract on Intrade, and “Higgs Boson 2011” is the discovery of the
Higgs Boson in 2011 contract on Intrade.

To illustrate how we calculated these values, imagine a certain security had the following order
book: bid orders for 200 shares at both 2 and 3 dollars, and ask orders for 250 shares at 4 dollars.
Then the bid/ask spread would be calculated as 300 dollars: 250 shares would be purchased at 4
dollars, exhausting the thousand dollar budget. Then, 200 shares would be resold at 3 dollars for a
1 dollar loss each, and the remaining 50 shares would be re-sold at 2 dollars for a 2 dollar loss each.

NWS, NYT, and MNI are all equities in news companies. The Obama 2012 Intrade contract,
which pays off if the President is re-elected, is one of the most popular contracts on what is probably
the most popular Internet prediction market. The Higgs Boson 2011 contract pays out if the Higgs
Boson is discovered before the end of 2011 and is a very sparsely traded Intrade contract. The NWS
contract is very liquid—well over a hundred million dollars worth is exchanged each day and sizable
positions can be exited at almost no spread (the bid/ask spread on each share of NWS is one cent,
the smallest possible value). In contrast, the Higgs Boson contract is very illiquid, seeing almost
no trade each day. The bid/ask spread on a sizable position is large: buying and then selling a
1,000-dollar position results in an immediate loss of 970 dollars.

5.2.2 Four oppositional desiderata in the literature

The observations of the previous section suggest that real markets have a shrinking bid/ask spread
for fixed-size bets as the volume gets large. This, combined with the profit motives of real market
makers and the algorithmic worst-case guarantees of the market makers from the literature, yields
four desiderata for market making agents:
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1. Bounded worst-case loss.

2. The ability to enter a state where the market maker books a profit regardless of which future
state of the world is realized.

3. A marginal bid/ask spread that approaches zero in the limit as volume gets large.

4. The price of any fixed-size transaction approaches the marginal bid or ask price, so that there
is unlimited depth in the limit as volume gets large.

In addition to their self-evident desirability, all four combinations of exactly three of these properties
already exist in the literature. Satisfying all four characteristics is challenging because several of the
qualities are oppositional; for instance, making a profit involves charging extra, but charging extra
means that the bid/ask spread may not vanish. As another example, a market maker that is very
deep must not move prices very much in the face of large bets, but if prices are not moved enough
then worst-case loss can become unbounded. To illustrate the challenge involved in satisfying all
four of these desiderata, we proceed to provide a quick survey of the relevant constructions from
the literature. (The next sections will define the desiderata formally.)

Fixed prices

Probably the simplest automated market maker is to determine a probability distribution over the
future states of the world, and to offer to make bets directly at those odds. This scheme offers
unlimited depth and no marginal bid/ask spread, but has unbounded worst-case loss and no ability
to book a profit.

Fixed prices with profit-taking

Adding a profit cut on top of the fixed odds gives the market maker the ability to make a profit
and retains the unlimited depth of the fixed pricing scheme. However, this market maker has
unbounded worst-case loss and a non-vanishing bid/ask spread.

Fixed prices with shrinking profit cuts

If we allow the profit cut to diminish to zero as trading volume increases, the resulting market
maker has three of the four desired properties: the ability to make a profit, a vanishing marginal
bid/ask spread, and unbounded depth in limit. However, it still has unbounded worst-case loss
because a trader with knowledge of the true future could make an arbitrarily large winning bet with
the market maker.
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Convex risk measures

Convex risk measures are the general class of market makers (Agrawal et al., 2009; Othman and
Sandholm, 2011b) featured in much of the prediction market literature (Chen and Pennock, 2007;
Peters et al., 2007; Agrawal et al., 2009; Chen and Vaughan, 2010; Othman and Sandholm, 2010a;
Abernethy et al., 2011), including the most widely-used automated market maker in practice, the
Logarithmic Market Scoring Rule (LMSR) (Hanson, 2003, 2007). These market makers can offer
bounded worst-case loss and no marginal bid/ask spread. However, they do not offer the ability for
the market maker to book a profit, and they offer a fixed market depth that does not increase with
volume. (For instance, in the LMSR, the depth of the market is fixed by the parameter b which is
an exogenous constant set a priori.)

Convex risk measures with profit-taking

Adding a fixed charge on top of a convex risk measure gives the market maker the ability to make
a profit, but the marginal bid/ask spread will not vanish.

Convex risk measures with shrinking profit cuts

If we allow the profit cut to shrink to zero as trading volume increases, the resulting market maker
can have bounded loss, the ability to make a profit, and a marginal bid/ask spread that vanishes.
However, the depth of the market is still an exogenous constant, and a fixed size bet will always
diverge in price from the marginal.

Extended constant-utility cost functions

Othman and Sandholm (2011a) describe a market maker that has unbounded depth in the limit,
bounded loss, and vanishing bid/ask spread in the limit. However, it has no ability to book a profit.
The market making agents of Othman and Sandholm (2011a) are a restricted special case of the
market makers we develop in this work, where the utility function and liquidity function are both
logarithmic functions and there is no profit function.

Liquidity-sensitive automated market makers

The market maker described in Othman et al. (2010) has three of the desired properties. While it
does have unbounded depth in the limit, bounded loss, and the ability to make a profit, the marginal
bid/ask spread never goes to zero.
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5.2.3 How bets are taken

In this section, we describe how to calculate the prices an agent sees when she trades with our
market makers. We denote a market maker by M and we denote M(x, y) to be the total price
charged to agents for moving the market maker from payout vector x to payout vector y.

Let u be a utility function and x0 ∈ dom u. Let f and g be non-decreasing functions R+ 7→ R
with the property that f(0) = g(0) = 0. For reasons that will shortly become clear, we call f the
liquidity function and g the profit function. Let d : Rn × Rn 7→ R+ be a distance function (metric).
The state s is an internal scalar initialized so that s = 0. s can be thought of as a measure of the
cumulative volume transacted in the market.

In order to price a bet, the following steps are taken:

1. A trader wishes to place a bet that would move the market maker from payout vector x to
payout vector y. The market maker’s current state is s.

2. The cost function C(y) is solved implicitly for∑
i

piu (C(y)− yi + f(s+ d(x, y))) = u(x0 + f(s+ d(x, y)))

This equation incorporates the liquidity function f but not the profit function g. Just as in
constant-utility cost functions, C will be uniquely defined because u is strictly increasing, and
it can be calculated efficiently through a binary search.

3. The total cost quoted to the trader for the bet is the sum of the changes to the cost function,
liquidity function, and profit function

M(x, y) ≡ C(y)− C(x) + f(s+ d(x, y))− f(s) + g(s+ d(x, y))− g(s)

4. If the bet is taken, the state changes: s← s+ d(x, y), and the new value of the cost function
C(y) is saved for the next transaction.

We will call a market making agentM that prices bets this way a constant-utility profit-charging
market maker.

The values involved in calculatingM all telescope from their initial values. Consider a transaction
that first moves from payout vector x to payout vector y, ending at payout vector z. The total amount
paid into the market maker is

M(x, y)+M(y, z) = C(z)−C(x)+f(s+d(x, y)+d(y, z))−f(s)+g(s+d(x, y)+d(y, z))−g(s)

Observe that the terms from the intermediate payout vector y (i.e., C(y), f(s+ d(x, y)), and g(s+
d(x, y))) cancel out and so do not appear in this expression. We will use this telescoping property
to simplify some of the proofs in Section 5.2.4.
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5.2.4 Theoretical properties

In this section, we show that our market makers satisfy several desirable properties. We begin by
showing that they have bounded loss. As a step toward this result, we show that they have no
money pumps, so they incentivize agents to directly acquire their desired portfolios (rather than
taking a roundabout path). We then show that our agents have unlimited depth and no bid/ask
spread in the limit. Finally, we formalize the notion of profit-taking and describe how our agents
can enter a state of unconditional profit, in which no matter what the realized outcome is or what
the future actions of the traders are the market maker will book a profit.

Bounded loss

One particularly undesirable property for a market making agent is to be in possession of a money
pump.

Definition 17. A market makerM has a money pump if there exists a sequence of payout vectors
x1, . . . , xn and some terminal state x0 such that

M(x0, x1) + · · ·+M(xn−1, xn) +M(xn, x0) < 0

When a market maker has a money pump a trader can keep arbitraging the market maker
for unbounded riskless profit. Perhaps the most prominent difference between our work and the
prior literature is that the total prices charged by our market making agents are not necessarily path
independent, that is, different paths through quantity space may correspond to different costs being
charged by our market making agents. With a path-independent market maker, buying a contract
and then immediately selling it is without cost. This is in contrast to both real-world markets and
our market making agents, where buying and then immediately selling is costly to the trader (see,
e.g., Table 5.2.1).

Every cost function-based market maker is path independent, and path independence is suffi-
cient for a market maker to have no money pumps (Othman et al., 2010). However, path inde-
pendence is not necessary for a market maker to have no money pumps; having a path-dependent
market making agent simply means that it is not immediate that the market maker has no money
pumps.

Definition 18. A market makerM obeys the triangle inequality if, for all payout vectors x, y, and z

M(x, y) +M(y, z) ≥M(x, z)

By inductive argument, it is easy to see that a market maker that obeys the triangle inequality
cannot have a money pump.
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Proposition 11. LetM be a constant-utility profit-charging market maker. ThenM obeys the triangle
inequality.

Proof. Consider M(x, y) +M(y, z) − M(x, z). In terms of the triangle inequality, this is the
difference between taking the “long way” around the triangle versus the direct way; we seek to
show that it is non-negative for all x, y, and z.

Because all the values associated with the calculation ofM telescope, this difference is just

C1(z)+f(s+d(x, y)+d(y, z))+g(s+d(x, y)+d(y, z))−(C2(z)+f(s+d(x, z))+g(s+d(x, z))) (5.1)

where C1(z) solves∑
i

piu(C1(z)− zi + f(s+ d(x, y) + d(y, z))) = u(x0 + s+ d(x, y) + d(y, z))

and C2 solves ∑
i

piu(C2(z)− zi + f(s+ d(x, z))) = u(x0 + s+ d(x, z))

We will divide the terms in Equation 5.1 and deal with them each in turn. First, we will show
that

C1(z) + f(s+ d(x, y) + d(y, z))− (C2(z) + f(s+ d(x, z))) ≥ 0

Since u is strictly increasing and d is a distance function, we have

u(x0 + s+ d(x, y) + d(y, z)) ≥ u(x0 + s+ d(x, z))

and so∑
i

piu(C1(z)− zi + f(s+ d(x, y) + d(y, z))) ≥
∑
i

piu(C2(z)− zi + f(s+ d(x, z)))

which, because u is strictly increasing and the pi form a probability distribution, implies

C1(z) + f(s+ d(x, y) + d(y, z)) ≥ C2(z) + f(s+ d(x, z))

so
C1(z) + f(s+ d(x, y) + d(y, z))− (C2(z) + f(s+ d(x, z))) ≥ 0 (5.2)
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Now consider the other set of terms in Equation 5.1,

g(s+ d(x, y) + d(y, z))− g(s+ d(x, z))

Because d satisfies the triangle inequality, d(x, y) + d(y, z) ≥ d(x, z). Therefore, the argument
to the g(·) function on the left is at least as large as the argument to the g(·) function on the right.
Since g(·) is a non-decreasing function in its arguments

g(s+ d(x, y) + d(y, z))− g(s+ d(x, z)) ≥ 0 (5.3)

Putting together Equations 5.1, 5.2, and 5.3, we have thatM(x, y) +M(y, z) −M(x, z) ≥ 0, or
rewritten,M(x, y) +M(y, z) ≥M(x, z), and soM obeys the triangle inequality. �

The proof also provides the intuition that, with an increasing profit function, an agent is charged
strictly greater prices when he does not acquire inventory on the path directly to his desired alloca-
tion. This is because the market maker will collect more money from the profit function, while not
losing any additional money from the potential added liquidity from taking a longer path. Conse-
quently, myopic agents are incentivized to directly acquire their desired allocation.

Because the total prices charged by a constant-utility profit-charging market maker obey the
triangle inequality, we also have the following result.

Corollary 1. LetM be a constant-utility profit-charging market maker. ThenM has no money pumps.

Recall that a constant-utility cost function employing a barrier utility function has a worst-case
loss of the x0 originally used to seed the utility function. BecauseM has no money pumps, we
have the following result.

Corollary 2. Let u be a barrier utility function. Then if pi > 0 for every i, a constant-utility profit-
charging market makerM that uses u loses no more than the x0 originally used to seed the utility function,
regardless of the trades made by agents or the realized future state of the world. (This result holds even if
the liquidity function f and the profit function g are zero.)

5.2.5 Profit, liquidity, and market depth

We begin this section by showing that, under certain conditions, a constant-utility profit-charging
market maker has a vanishing bid/ask spread. Then, we show that under more stringent conditions,
constant-utility profit-charging market makers also have unbounded market depth.

Throughout this section, to simplify the proofs, we assume d is a distance function implied by
any Lp norm. However, the results of this section hold for any continuous distance function.
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Vanishing bid/ask spread

In this section, we show that if the profit and liquidity functions are diminishing, a constant-utility
profit-charging market maker has a vanishing bid/ask spread.

Definition 19. For a market maker M with a differentiable price response, let Mi denote the
marginal cost of a bet on the i-th event. A market maker has a vanishing bid/ask spread if

∑
iMi =

1.

Proposition 12. Let the liquidity function f and profit function g have the property that lims→∞ f ′(s) =

lims→∞ g′(s) = 0. Then a constant-utility profit charging market maker has a vanishing bid/ask spread
as s gets large. Formally, lims→∞

∑
iMi = 0.

Proof. At any x and s, by definition we have

Mi = ∇iC(x) +∇if(s) +∇ig(s) = ∇iC(x) + f ′(s) + g′(s)

Since, by construction, both f ′(s) and g′(s) go to zero as s gets large, the interesting term is∇iC(x).
From the definition of constant-utility profit-charging market makers we have

∇i

(∑
j

pju(C(x)− xj + f(s))

)
= ∇iu(x

0 + f(s))

∇ipiu(C(x)− xi + f(s)) +∇i

∑
j 6=i

pju(C(x)− xj + f(s)) = u′(x0 + f(s))f ′(s)

(∇iC(x) + f ′(s))

(∑
j

pju
′(C(x)− xj + f(s))

)
= piu

′(C(x)− xi + f(s)) + u′(x0 + f(s))f ′(s)

solving for ∇iC(x), we get

∇iC(x) = piu
′(C(x)− xi + f(s)) + u′(x0 + f(s))f ′(s)∑

j pju
′(C(x)− xj + f(s))

− f ′(s)

=
piu

′(C(x)− xi + f(s)) + f ′(s)
(
u′(x0 + f(s))−

∑
j pju

′(C(x)− xj + f(s))
)

∑
j pju

′(C(x)− xj + f(s))
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=
piu

′(C(x)− xi + f(s))∑
j pju

′(C(x)− xj + f(s))

because by construction

u(x0 + f(s)) =
∑
j

pju(C(x)− xj + f(s))

and so their derivatives are also equal. Therefore

∑
i

∇iC(x) =
∑

i piu
′(C(x)− xi + f(s))∑

j pju
′(C(x)− xj + f(s))

= 1

and so
lim
s→∞

∑
i

Mi =
∑
i

∇iC(x) + nf ′(s) + ng′(s) = 1 + 0 + 0 = 1

�

Unbounded depth

In this section, we show that under additional, somewhat stronger, conditions a constant-utility
profit-charging market maker also has unbounded depth. This result is similar to the one in Othman
and Sandholm (2011a). However, that market maker only showed unbounded depth when both u
and f were logarithmic functions. Our result in this section is for a much broader class of utility,
liquidity, and profit functions.

The first condition we require is that the utility function employed has vanishing absolute risk
aversion. To our knowledge this concept was first defined in Caballé and Pomansky (1996).

Definition 20. A utility function has vanishing absolute risk aversion if it is twice-differentiable and

lim
c→∞
−u′′(c)

u′(c)
= 0

Most utility functions that are standard in the literature have this property. For instance, every
utility function that has Constant Relative Risk Aversion (CRRA) (Mas-Colell et al., 1995) also
has vanishing absolute risk aversion. An example of a utility function that does not have vanishing
absolute risk aversion is u(x) = −e−x.

As we have discussed, the depth of a market is the degree to which large bets move marginal
prices. A very deep market will clear large orders without moving the marginal price. This leads us
to the following definition.
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Definition 21. Consider a market makerM with a twice-differentiable price response, and letMii

denote the marginal change in the marginal price of a bet on the i-th event. We say thatM has
unlimited depth ifMii = 0 for all i.

Proposition 13. Let f be a liquidity function with the property that lims→∞ f(s) = ∞. Then in any
constant-utility profit-charging market maker, the arguments to the utility function grow arbitrarily large
with s. Formally, for any x and i

lim
s→∞

C(x)− xi + f(s) =∞

Proof. Suppose not. Then there exists some finite bound B such that, for all i

lim
s→∞

C(x)− xi + f(s) < B

but then, because u is strictly increasing,

lim
s→∞

∑
i

piu(C(x)− xi + f(s)) < u(B)

But by construction, ∑
i

piu(C(x)− xi + f(s)) = u(x0 + f(s))

and lims→∞ x0 + f(s) =∞. Therefore, there exists some S such that for all s > S,

x0 + f(s) > B

At such s, we have ∑
i

piu(C(x)− xi + f(s)) < u(B) < u(x0 + f(s))

but this is a contradiction because these values must be equal by construction. �

Proposition 14. Let u be a utility function with vanishing absolute risk aversion, and let f be a liquidity
function with the property that lims→∞ f(s) =∞, and let the liquidity function f and profit function g

have the property that
lim
s→∞

f ′(s) = lim
s→∞

f ′′(s) = lim
s→∞

g′′(s) = 0

Then the constant-utility profit charging market maker formed by u, f , and g has unlimited depth as s
gets large. Formally, lims→∞Mii = 0.
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Proof. By definitionMii = ∇2
iiC(x) + f ′′(s) + g′′(s). Just as in the proof of Proposition 12, since

lim
s→∞

f ′′(s) = lim
s→∞

g′′(s) = 0

the interesting term as s gets large is the cost function term.

For notational simplicity, define si ≡ C(x)− xi + f(s). Then

∇iC(x) = piu
′(si)∑

j pju
′(sj)

and taking the partial derivative with respect to i of both sides yields

∇2
iiC =

piu
′′(si)s

′
i

(∑
j pju

′(sj)
)

(∑
j pju

′(sj)
)2 −

piu
′(si)

(∑
j pju

′′(sj)s
′
j

)
(∑

j pju
′(sj)

)2 (5.4)

We need to show that this approaches zero as s gets large.

First, C(x) is a convex function because it is implicitly defined as an argument to equalize a
concave utility function (Boyd and Vandenberghe, 2004). Therefore ∇2

iiC(x) ≥ 0.

Now consider the s′i terms. By construction s′j 6=i = ∇jC(x)+f ′(s) and s′i = ∇iC(x)−1+f ′(s).
Therefore 1 ≥ lims→∞ s′j 6=i ≥ 0 ≥ lims→∞ s′i ≥ −1. Thus we can bound the second derivative in
the limit:

lim
s→∞
∇2

iiC(x) ≤ lim
s→∞
−

piu′′(si)
(∑

j pju
′(sj)

)
(∑

j pju
′(sj)

)2 +
piu

′(si)
(∑

j pju
′′(sj)

)
(∑

j pju
′(sj)

)2


where we have replaced all the s′i in the first term of Equation 5.4 with -1 and all the s′j in the second
term of Equation 5.4 with 1, in order to make all of the positive terms as large as possible. (Recall
that u is concave, and so u′′ ≤ 0.)

We will deal with the two terms of Equation 5.2.5 in succession, showing that the limit of each
as s gets large is 0. We can simplify the first term immediately by canceling out the like term from
the numerator and denominator, leaving

lim
s→∞
− piu

′′(si)∑
j pju

′(sj)
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but then
lim
s→∞
− piu

′′(si)∑
j pju

′(sj)
≤ lim

s→∞
−piu

′′(si)

piu′(si)
= 0

because u has vanishing absolute risk aversion and because by Proposition 13, we have that lims→∞ si =

∞.

Now, we address the second term of Equation 5.2.5

lim
s→∞
−
piu

′(si)
(∑

j pju
′′(sj)

)
(∑

j pju
′(sj)

)2
We will split this term into the product of two terms. First

piu
′(si)(∑

j pju
′(sj)

)
is just ∇iC(x), and is therefore no larger than 1. Then because u has vanishing absolute risk

aversion, and because as s gets large the sj get large

lim
s→∞
−

(∑
j pju

′′(sj)
)

(∑
j pju

′(sj)
) = 0

Consequently,

lim
s→∞
−
piu

′(si)
(∑

j pju
′′(sj)

)
(∑

j pju
′(sj)

)2 = lim
s→∞

piu
′(si)(∑

j pju
′(sj)

) · −
(∑

j pju
′′(sj)

)
(∑

j pju
′(sj)

) ≤ 1 · 0 = 0

Putting together all of our relations, we have

0 ≤ lim
s→∞
∇2

iiC(x) ≤ 0

and so lims→∞∇2
iiC(x) = 0, and therefore

lim
s→∞
Mii = lim

s→∞
∇2

iiC(x) + f ′′(s) + g′′(s) = 0 + 0 + 0 = 0

�
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Revenue bounds

To our knowledge, the only previous formal study of profit-charging behavior within the standard
automated market making framework is Othman et al. (2010). The automated market maker in
that paper could enter a state of outcome-independent profit, which means that regardless of the
realized outcome, the agent would book a profit. However, this condition only holds if the market
terminates in that state. It is entirely possible, and in some settings virtually assured, that the market
will leave the outcome-independent profit state and cause the market maker to run at a net loss.

To explore this notion further, recall that the market maker in Othman et al. (2010) is defined
by the cost function

C(x) = b(x) log
(∑

i

exp(xi/b(x))
)

where b(x) = α
∑

i xi. To see how outcome-independent profit works, consider a simple two-
event market where α = 0.05 and the market starts from x0 = (1, 1). Imagine that the mar-
ket maker takes two bets, the first a 50 dollar payout on the first event and the second a 50 dol-
lar payout on the second event. The market maker is therefore in the state (51, 51) and is in a
state of outcome-independent profit, because no matter whether ω1 or ω2 is realized, the market
maker books a profit of C(51, 51)− 51− C(x0) ≈ 2.5 > 0. However, imagine that another trader
comes along and places an additional 50 dollar payout bet on the first event. Now the market
maker is in state (101, 51). If the market terminates and ω1 is realized the market maker clears
C(101, 51)− 101−C(x0) ≈ −1.1 < 0. So, the final bet has made the market maker exit the state
of outcome-independent profit.

This problem is especially likely to arise in practice in settings where more information is re-
vealed over time. For instance, consider a sports game in which betting is left open as the game
proceeds. Once a clear winner emerges, traders will likely buy many shares from the market maker
in that team, causing the market maker to exit the state of unconditional profit.

There is an important loophole to this argument though. If the automated market maker is not
designated with a formal, contractual role that necessitates its activity in a market, e.g., if it is being
employed as the automated agent of a trader, then the market maker can circumvent this failure by
simply ceasing to trade once it enters a state of outcome-independent profit, or alternately refusing
to take any bet that would cause it to exit the state of outcome-independent profit.

In many settings, however, market makers are required to keep a presence in the market, e.g.,
if they are a designated market maker. For these settings, the notion of unconditional profit is more
important. We say that a market maker enters a state of unconditional profit if it will make money
regardless of the realized outcome and the future actions of traders. What is important to note
about unconditional profit, as opposed to outcome-independent profit, is that once a market maker
enters a state of unconditional profit it can never exit that state.

For example, consider a constant-utility profit-charging market maker using a barrier utility
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function. If the market maker’s prior is strictly positive, and if the profit function has collected
more money than the initial value used to seed the liquidity function (i.e., if for all i, pi > 0 and
g(s) > x0), then the market maker has entered the state of unconditional profit. This is because
the market maker has no money pumps, loses no more than x0, and has collected a profit of more
than this worst-case loss.

Instantiating the theory

In this section we collect the complete set of conditions we require on the various parts of the
profit-charging automated market maker. We give several examples of functions that satisfy these
conditions; any mix of these choices will produce an automated market maker with desirable qual-
ities, differing only in the specifics of the initial amount of market depth, marginal bid/ask spread,
and so on.

The prior distribution should be strictly positive (pi > 0) or the market maker will have un-
bounded worst-case loss. The uniform distribution is one option, but if the market maker has beliefs
over the future these should be used, subject to never setting the probability of any event to zero.

The distance function d should be continuous. This is because a discrete distance function will
never be able to achieve a vanishing bid/ask spread. One simple suggestion is to have d be (a positive
multiple of ) the distance function implied by any Lp norm.

The utility function u should be a barrier utility function (in order to bound worst-case loss in a
simple way), and should have vanishing absolute risk aversion (in order to have unbounded depth).
One family of utility functions that satisfy both of these requirements is the standard CRRA utility
functions

u(x) =
x1−γ

1− γ

indexed by γ ≥ 1. (Here, log is the limit case for γ = 1.)
The liquidity function f should have f(0) = 0 and

lim
s→∞

f ′(s) = lim
s→∞

f ′′(s) = 0

and also lims→∞ f(s) = ∞, to ensure a vanishing bid/ask spread and unbounded depth. One
simple class of functions with both of these properties is f(s) = αs1/β for β > 1 and α > 0.
Another class of functions that has these properties is f(s) = α log(s+ 1), again for α > 0.

The profit function g should have g(0) = 0 and

lim
s→∞

g′(s) = lim
s→∞

g′′(s) = 0

for unbounded depth and vanishing bid/ask spread. Since the conditions on the liquidity function
f are a strict superset of the conditions on the profit function g, any liquidity function could also
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serve as a profit function. As an example of a valid profit function that would not be a valid liquidity
function is for the profit function to collect at most a certain amount more than the worst-case loss
bound, e.g., setting

g(s) = ξx0 (1− 1/(s+ 1))

for ξ > 1 so that the market maker will collect at most ξ times x0. Once the market maker has
collected more than x0, it is guaranteed to have entered the unconditional profit state.

To get a perspective on the operation of a representative market maker, consider Figures 5.1
and 5.2, which depict the prices charged by the market maker and the profit made by the market
maker, respectively. In this specific example, the number of events is n = 2 and the market maker’s
probability on each event is pi = 1/2. The distance function is implied by the 2 norm of the payout
vector. The utility function is u(x) = −1/x, the initial wealth is x0 = 10, the liquidity function is
f(s) = 100(log(s+10000)− log(10000)), and the profit function is g(s) = 0.6

(√
s+ 100− 10

)
.

These functions were chosen by experimenting with the classes of functions we suggested previously
until we found a combination that made particularly attractive plots.

In both plots, the x axis is the quantity the market maker holds on both events before the
interaction of the agents. That is, a value of 102 on the x axis indicates the market maker is at the
payout vector (100, 100) before the interaction of the trader.

Figure 5.1 shows the marginal price on the first event and the total price charged by the market
maker for a one-dollar payout on the first event as the quantity in the market increases. Observe
both that the cost of a fixed size bet approaches the marginal price and also that the marginal price
approaches a bid/ask spread of 0 (which, because p1 = 0.5 and the two events have equal payouts,
corresponds to a marginal price of 0.5).

Figure 5.2 shows the profit made by the market maker as the amount transacted increases. For
s & 600, the market maker enters a state of unconditional profit, because g(s) > x0 = 10. This
state is reached at a payout of at most about 430 on each event. If there is additional churn in the
market—traders that sell their bets back to the market maker—the state of unconditional profit can
be reached at smaller payout vectors. At an extreme, a state of unconditional profit can be made by
an agent buying and selling back a single bet to the market maker a large number of times, each
time paying a small amount into the profit function.

5.3 Extensions

Both of the extensions to convex risk measures discussed in this chapter merit further experimental
study. Measurable spaces with practical implications include notions of location and time. For
instance, a prediction market over where and when a hurricane will make landfall. Continuous
spaces could also be as tractable relaxations of a discrete space. An example of a setting like this
is in options trading, where the space of possible expiration prices for an underlying stock is very
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in the text. Observe that as the quantity transacted increases the bid/ask spread goes to zero (i.e., both lines
go to 0.5). The x axis is log-scaled.
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large and discrete (any non-negative one-cent delimited value). We explore this specific example
much further in Chapter 7.

The profit-charging constant utility cost functions developed in this chapter seem like a good fit
for virtually any prediction market or gambling setting, although care needs to be taken to deter-
mine an appropriate combination of utility, profit, and liquidity functions as well as the initial seed
value x0. Finally, it seems straightforward to combine the two extensions discussed in this chapter,
creating continuous profit-charging constant-utility cost functions. The risk measure analogues of
this class of market maker are likely to be useful in financial applications.

We have heard the argument that it could make more sense to have smaller bid/ask spreads at the
market’s initiation, to encourage participation, and widen the bid/ask spread as the market matures.
This scheme has an appealing intuition: essentially, early participants are being compensated for
providing liquidity at the more fragile beginning stages of the market. One way to produce this
effect with our market makers is to start s at a large value and decrement it over time (e.g., s ←
s−d(x, y) when the value is updated). This essentially runs the state variable s in reverse. However,
as discussed in Section 5.2.1, this is counter to the way real markets function, and so adopting this
methodology may be unintuitive for participants. There may be better ways of doing this, and we
believe that our framework of profit and liquidity functions can facilitate such study.

Another extension is to extend our agents to handle not only market orders, but also limit
orders—orders that execute only if certain price conditions are reached. Here, a possible direction
seems to be to extend the convex optimization framework of Agrawal et al. (2009). That work
provided a simple, computationally efficient way to turn a cost function that is capable of only
handling market orders into a cost function that can handle both market and limit orders. While
adding a profit function to the Agrawal framework is trivial, incorporating a liquidity function
appears to be more challenging, because the liquidity function is used in calculating prices. To be
explicit, the trading volume affects the liquidity function, which affects the cost function, which
affects the number of cleared orders, which affects the trading volume. Resolving this circularity
seems like the most direct solution for our market making agents to handle persistent limit orders.

An extension of a different flavor is to consider the values we captured from real markets in
Table 5.2.1. To our knowledge, that table represents the first comparison of the prevalent liquidity
in prediction markets versus equity markets. That table showed, somewhat surprisingly, that active
prediction market contracts have a bid/ask spread roughly comparable to small cap equities, despite
the fact that publicly traded equities have several orders of magnitude greater daily volume. This
suggests that popular prediction markets may be more robust than would be expected from their
small transaction volumes. It would be interesting to study whether this phenomenon holds more
broadly, and to understand why.
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Chapter 6

Homogeneous risk measures

In this chapter we develop the theory of homogeneous risk measures. Recall that homogeneous
risk measures are cost functions that satisfy monotonicity, convexity, and positive homogeneity. As
we motivate in this chapter, only homogeneous risk measures provide a proportional price response
to the actions of traders. Another way of thinking about homogeneous risk measures is that they
are currency independent, so that they function in a relatively identical way regardless of whether
the currency used is thousands of real dollars or dozens of raffle tickets. Practically, this suggests
the same homogeneous risk measure will perform adequately regardless of whether the market it
is making has a great deal of activity or not. This is in contrast to standard convex risk measures,
which have a fixed amount of liquidity set a priori.

We begin by illustrating in detail the OPRS market maker, a homogeneous-risk-measure-
analogue to the LMSR. We then use the dual space results from Chapter 3 to necessarily and
sufficiently classify the set homogeneous risk measures, and finally we use this dual space definition
to construct two new families of homogeneous risk measures.

6.1 The OPRS market maker

The OPRS market maker (an acronym of the authors’ names) is a cost function that is closely related
to the LMSR. It was originally developed in Othman et al. (2010).
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6.1.1 Defining the OPRS

The conventional LMSR cost function can be written as

C(q) = b(q) log
(∑

i

exp(qi/b(q))
)

where b(q) = b is an exogenously set constant. Instead, the OPRS uses the LMSR cost function,
but with a variable b(q) that increases with market volume as follows:

b(q) = α
∑
i

qi

where α > 0 is a constant. The valid region for the OPRS is the set of n-dimensional vectors with
all non-negative components (i.e., the positive orthant), omitting the origin. In order to stay in
this region we always move forward in obligation space.

6.1.2 Moving forward in obligation space

With a market maker using a path-independent cost function, if it costs more than one dollar
to acquire a dollar guaranteed payout, a trader could arbitrage the market maker by selling dollar
guaranteed payouts to the market maker for more than a dollar.

One way to get around this problem is to only allow the obligation space to move forward. In
this section we present two closely related ways to accomplish this goal.

No selling

In this scheme, traders always purchase shares on outcomes from the market maker. Formally, let
the market be at state q0, and let a trader attempt to impose an obligation q on the market maker,
where

min
i

qi < 0.

Let
q̄ ≡ −min

i
qi

Under the usual cost function scheme, that trader would pay

C(q0 + q)− C(q0)

but instead, in an always moving forward scheme, the trader pays

C(q0 + q + q̄1)− q̄ − C(q0)
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and the market maker moves to the new state

C(q0 + q + q̄1)

noting that the vector q + q̄1 consists of all non-negative components. This is what we mean by
the market maker always moving forward in obligation space.

This scheme is still fully expressive, because with an exhaustive partition over future events the
logical condition of betting against an event is equivalent to the logical condition of betting for its
complement. Essentially, traders can take on the same obligations as in a traditional scheme, only
they will cost more. Furthermore, if ∑

i

pi(q) > 1

then with this scheme when a trader imposes an obligation and then sells it back to the market
maker, the trader ends up with a net loss—just like the markets we see in the real world.

Covered short selling

In this scheme, traders are allowed to sell back to the market maker contracts that they have pur-
chased, but are not allowed to directly short sell contracts to the market maker.

Let qt represent the vector of payoffs held by trader t, so that qti represents the amount the
market maker will pay out to trader t if the i-th event occurs. In a covered short selling scheme,
the cost function operates as usual unless trader t suggests a trade that would result in

min
i

qti < 0

Then, similar to the no selling scheme discussed above, the trader’s payoff vector is translated
by t̄ ≡ −mini q

t
i , so that instead the trader acquires the vector

qt + t̄1

noting that for all events i,

(qt + t̄1)i ≥ 0

91



CHAPTER 6. HOMOGENEOUS RISK MEASURES

Discussion

Even though both schemes use the same cost function, they will produce distinct market makers
when paired with the homogeneous risk measures we develop in this chapter. A market maker that
allows covered short selling permits a trader to buy and then immediately sell at no net cost. With a
no selling scheme, that trader will incur a small loss. Which scheme is better depends on the setting;
if the set of traders is sophisticated and profitability is a concern, then the no selling scheme is a
better choice because it weakly dominates in terms of revenue for the same set of trades. However,
if some traders are unsophisticated and user experience is a concern, then the covered short selling
scheme could be a better choice because it will not punish users for mistaken bets that they quickly
cancel.

In contrast, convex risk measures operating with either scheme or with no scheme at all produce
exactly the same quoted costs. Let C be a Hanson market maker. Then because C is translation
invariant

C(q0 + q + q̄1)− q̄ = C(q0 + q + q̄1− q̄1) = C(q0 + q)

6.1.3 Properties of the OPRS

Even though our modification to the LMSR is simple, it results in a cascade of intriguing properties.

Prices

In a path-independent market maker, the price of state i is given by the partial derivative of the
cost function along i. With constant b, this expression is simply

pi(q) =
exp(qi/b)∑
j exp(qj/b)

When b(q) = α
∑

i qi, however, the expression becomes more complex, but still analytically ex-
pressible:

pi(q) = α log
(∑

j

exp(qj/b(q))
)

+

∑
j qj exp(qi/b(q))−

∑
j qj exp(qj/b(q))∑

j qj
∑

j exp(qj/b(q))

Figure 6.1 illustrates the liquidity sensitivity of these prices in a 2-event market. As the num-
ber of shares of the complementary event increases, the market’s price response for a fixed-size
investment becomes less pronounced.

Figures 6.2 and 6.3 show the price of a one-unit bet at various levels of liquidity in a two-event
market. Figure 6.2 shows the price of a one-unit bet when the two events have equal quantities
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Figure 6.1: In a two-event market with α = .05, this plot illustrates the relationship between qx and px for
qy = 250, 500, and 750, respectively. The liquidity sensitivity of the OPRS is evident in the decreasing slope
of the price response for increasing qy.

outstanding, while Figure 6.3 has the first event with proportionately higher quantities outstanding.
Thus, the unit bet is more expensive in the former than the latter. Though the two figures differ
quantitatively, they agree qualitatively: the price of a fixed-size contract shrinks as the level of
outstanding quantities increase.

Figures 6.2 and 6.3 also illustrate an important distinction in the OPRS between instantaneous
prices and cumulative prices. Even though, as we show in the next section, the sum of instantaneous
prices (i.e., the marginal price for a vanishingly small quantity) is bounded quite modestly for all
possible outstanding quantities, at low levels of liquidity these instantaneous prices increase quite
quickly. Thus at very small outstanding quantities the cost of a unit bet is more than 90 cents,
because the OPRS is very sensitive to bets of large size relative to the quantities outstanding. At
higher levels of outstanding quantities, an additional unit bet is relatively small and cumulative
prices do not increase much past instantaneous prices.
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Figure 6.2: In a two-event market withα = .05, this plot illustrates the cost of a unit bet on the first outcome
when both outcomes have the designated outstanding quantity.

Tight Bounds on the Sum of Prices

In this section, we establish tight bounds on the sum of prices. In particular, we show that

1 ≈ 1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
≤
∑
i

pi(q) ≤ 1 + αn logn

Prices achieve their upper bound only when q = k1 for k > 0. Recall that 1 is the vector where
each element is a 1, so the product k1 yields a vector where each element is a k. Prices achieve the
lower bound as qi →∞.

Proposition 15. Prices at k1, for all k > 0, sum to 1 + αn logn.

94



CHAPTER 6. HOMOGENEOUS RISK MEASURES

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 1  10  100  1000

C
os

t o
f U

ni
t B

et

Quantity Outstanding

Figure 6.3: In a two-event market withα = .05, this plot illustrates the cost of a unit bet on the first outcome
when the first outcome has ten percent greater quantity outstanding than the second outcome, where the
second outcome’s quantity is listed (i.e., a value of 10 corresponds to (11, 10)).

Proof. For q = k1, we have qi = qj for all i and j, which allows us to simplify considerably.

∑
i

pi(k1) =
∑
i

α log
(∑

j

exp(qj/b(q))
)

= nα log
(∑

j

exp(qj/b(q))
)

= nα log
(
n exp

(
1

αn

))
= nα log

(
exp
(

1

αn

))
+ nα logn

= 1 + αn logn

�
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Proposition 16. The maximum of the sum of prices is obtained at every point of the form k1, where k > 0.
Furthermore, these are the only points that achieve the maximum.

Proof. Consider the set of all quantity vectors that sum to b > 0. We will show that the quantity
vector where each event has equal quantity (each one having b/n) maximizes the sum of prices.

The sum of prices at quantity vector q is given by∑
i

pi(q)

Without loss of generality, take
∑

i qi = 1/α, so that the space of vectors we consider are those for
which b(q) = 1.

So without loss of generality we can rewrite the sum of prices as

1 + nα

[
log
(∑

j

exp(qj)
)
−
∑

j qj exp(qj)∑
j exp(qj)

]

We will show that

log
(∑

j

exp(qj)
)
−
∑

j qj exp(qj)∑
j exp(qj)

≤ logn,

with equality occurring only when q = k1. We can rewrite the above expression as

∑
j

qj exp(qj) ≥
(∑

j

exp(qj)
)

log
(∑

j exp(qj)
n

)

Take pj ≡ exp(qj). The expression then becomes

∑
j

pj log(pj) ≥
∑
j

pj log
(∑

j pj

n

)

Without loss of generality, we can scale the pj to define a probability distribution, to get

∑
j

pj log(pj) ≥ log
(∑

j pj

n

)
≥ − log(n)
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This is a result from basic information theory, which establishes that the uniform distribution has
maximum entropy over all possible probability distributions (Cover and Thomas, 2006). Therefore,
equality holds only in the case of a uniform distribution, which corresponds to the quantity vector
having equal components (q = k1). �

Proposition 17. At any valid q,
∑

i pi(q) ≥ 1.

Proof. Define
ri ≡

qi
b(q)

and
si ≡

exp(ri)∑
j exp(rj)

Observe that the si form a probability distribution. Then using the entropy operator H :

H(x) = −
∑
i

xi logxi

we can express prices as
pi(q) = si + αH(s) (6.1)

and therefore the sum of prices as∑
i

pi(q) = 1 + αnH(s) ≥ 1.

Because the entropy operator is bounded below by zero, the sum of prices is at least 1. �

There are two ways to produce a zero entropy distribution of the si in the above result.

• Were the OPRS defined over all of Rn, we could produce a zero entropy distribution by
sending qi →∞ and qj → −∞ for i 6= j. However, the OPRS is not defined over all of Rn,
but rather only in the positive orthant.

• As α ↓ 0, the entropy of the distribution of the si can approach 0. Letting qi be positive and
qj = 0 for j 6= i, we have

ri = 1/α and rj = 0

and therefore
si =

exp(1/α)
exp(1/α) + n− 1

sj =
1

exp(1/α) + n− 1

a distribution which, for fixed n, approaches a unit mass on si as α ↓ 0.

97



CHAPTER 6. HOMOGENEOUS RISK MEASURES

Consequently, for fixed positive α, the distribution of the si can have nearly zero entropy, but
cannot achieve absolutely zero entropy. Thus the minimum sum of prices is not unity but rather
very close to it, equal to unity to first order and well within machine precision for small values of
α. The following proof formalizes this.

Proposition 18. The minimum sum of prices is

1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
.

This minimum is achieved when qi > 0 and qj = 0 for i 6= j. For small α & 0,

1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
= 1 +O

(
α2
)
.

Proof. From our result above, the minimum sum of prices is achieved when the distribution of the
si has minimum entropy. When restricted to the positive orthant, the corresponding distribution
with largest entropy sets one qi to be positive and the other qj = 0 where j 6= i.

At these values, we have

pi(q) = α log(exp(1/α) + n− 1)

and
pj(q) = α log(exp(1/α) + n− 1) +

1− exp(1/α)
exp(1/α) + n− 1

Observe that pi ≈ 1 and pj ≈ 0.

Adding these terms together and simplifying we get that the sum of prices is

1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
.

Within the braces, the left term is larger than unity while the right term is smaller than unity,
meaning that the sum of prices as a whole is greater than unity, which is to be expected from our
previous result.

As we will discuss, it is natural for α to be set very small. Let

f(α) = α log(exp(1/α) + n− 1)− exp(1/α)
exp(1/α) + n− 1

.
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Then the Taylor series of the sum of prices on the axes, taken around α = 0, is given by∑
i

pi = 1 + f(0) + αf ′(0) +O
(
α2
)

Since
lim
α↓0

α log(exp(1/α) + n− 1)− exp(1/α)
exp(1/α) + n− 1

= 1− 1 = 0

the f(0) term of the expression is zero, meaning that the total deviation away from 1 for small α is
given by the term αf ′(0). The derivative is a complex expression that we give for completeness:

f ′(α) = n

(
e1/α

α2(n+ e1/α − 1)
− e2/α

α2(n+ e1/α − 1)2
− e1/α

α(n+ e1/α − 1)
+ log

(
n+ e1/α − 1

))
By taking the limit of this expression, we see that

lim
α↓0

f ′(α) = 0

Thus for small α the sum of prices is bounded below by

1 +O
(
α2
)

Put another way, to first order the lower bound of the sum of prices of the OPRS is 1. �

Figure 6.4 is a plot of the sum of prices in a simple two-quantity market. Prices achieve their
highest sum when qx = qy and are bounded below by 1.

Selecting α

A possible complaint about our scheme is that we have replaced one a priori fixed value, b, of the
LMSR with another a priori fixed value, our α. In this section, we discuss how the α parameter
has a natural interpretation that makes its selection relatively straightforward.

The α parameter can be thought of as the commission taken by the market maker. Higher
values of α correspond to larger commissions, which leads to more revenue. At the same time,
setting α too large discourages trade.

As we have shown, the sum of prices with the OPRS is bounded by 1+αn logn, and this value
is achieved only when all quantities are equal. This bound provides a guide to help set α.

How large should administrators set α within the OPRS? We can look to existing market mak-
ers (and bookies) for an answer. Market makers generally operate with a commission of somewhere
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Figure 6.4: Sum of prices where n = 2 and α = 0.05. The sum is bounded between 1 and 1 + αn logn ≈
1.07, achieving its maximum where qx = qy.

between 2 and 20 percent. To emulate a commission that does not exceed v in the OPRS, the mar-
ket administrator can simply set

α =
v

n logn
So, the larger the event space (larger n), the smaller α should be set to maintain a given percentage
commission.

Though the sum of prices increases in α, this provides no guidance as to the behavior of the cost
function itself—it is not immediate that the cost function increases in α, because it has conflicting
effects within the OPRS. Increasing α decreases the terms qi/b(q) in the cost function, but scales
up the output of the log function. However, the following proposition establishes that the OPRS
is non-decreasing in α. We are assisted in this result by the following lemma.

Lemma 1. For the OPRS
C(q) ≥ max

i
qi

Proof. Suppose there exists a valid q such that

C(q) < max
i

qi
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without loss of generality, let
q1 = max

i
qi

and define
ri =

qi
b(q) ≥ 0

then we have

log
(∑

i

exp(ri)
)

< r1∑
i

exp(ri) < exp(r1)∑
i 6=1

exp(ri) < 0

which is a contradiction because exp(x) is non-negative for all x. �

Proposition 19. The OPRS is non-decreasing in α.

Proof. This result follows if we can show

∂

∂α
C(q) ≥ 0

After taking the partial derivative of the OPRS and simplifying, we get(∑
i

exp(qi/b(q))
)
C(q) ≥

∑
i

qi exp(qi/b(q))

From Lemma 1 we have
C(q) ≥ max

i
qi

and so (∑
i

exp(qi/b(q))
)
C(q) ≥

(∑
i

exp(qi/b(q))
)(

max
i

qi

)
≥
∑
i

qi exp(qi/b(q))

which completes the proof. �

Recalling that the cost function defines the amount paid into the market maker, an informal
way to interpret this result is that the market maker’s revenue increases with the α parameter for
any given quantity vector. Of course, increasing α results in higher prices, which can affect trader
behavior, so the overall effect in practice might be ambiguous.
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Bounded Loss

Like the LMSR, the OPRS has bounded loss.

Proposition 20. The OPRS has bounded loss. Specifically, its loss is bounded by C(q0).

Proof. By Lemma 1
C(q) ≥ max

i
qi

and so
max

i
qi − C(q) ≤ 0 ⇒ C(q0) + max

i
qi − C(q) ≤ C(q0)

so the OPRS’s loss is bounded by
C(q0)

�

Since
lim
q→0

C(q) = 0,

setting the initial market quantities close to 0, the worst-case loss becomes arbitrarily small. But
reducing the initial vector too much comes at a cost, however, because

lim
q→0

b(q) = 0

so the market becomes arbitrarily sensitive to small bets in its initial stage.
In contrast, to get near-zero loss in the LMSR, one would have to set b near zero, which would

cause arbitrary sensitivity to small bets throughout the duration of the market. Since other convex
risk measures are not liquidity sensitive either, they suffer from the same problem. In the OPRS,
by setting the initial quantities close to zero, we achieve near-zero loss while containing the high
sensitivity to the initial stage only.

Worst-Case Revenue

In addition to always having bounded loss (and near-zero loss if desired), under broad conditions
on the final quantity vector of the market, we can guarantee that the OPRS actually makes a profit
(regardless of which event gets realized). The worst-case revenue is

R(q) ≡ C(q)−max
i

qi − C(q0)
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Figure 6.5: The shaded regions show where the market maker has outcome-independent profit in a two-
outcome market with initial quantity vector (1, 1) and various values of α. Figure (a) sets α equal to .01,
Figure (b) equal to .03, and Figure (c) equal to .06. The top black ray represents py = .95 and the bottom
black ray represents px = .95.
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Figure 6.6: The shaded regions show where the market maker has outcome-independent profit in a two-
outcome market with α = .03 and various initial quantity vectors. Figure (a) sets q0 equal to (.5, .5),
Figure (b) equal to (1, 1), and Figure (c) equal to (2, 2). The top black ray represents py = .95 and the
bottom black ray represents px = .95.

If R(q) > 0 when the market closes, the market maker will book a profit regardless of the out-
come that is realized. We say that in such states the market maker has outcome-independent profit.
Figures 6.5 and 6.6 show the set of market states for which R(q) > 0 for various values of α and
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initial quantity vectors q0.

Figure 6.5 shows varying values ofα. From Theorem 19, the cost function is non-decreasing inα,
which is reflected by the increasing areas of outcome-independent profit as α gets larger. Figure 6.6
shows varying initial quantity vectors. Since revenue is trivially decreasing in the cost of the initial
quantity vector, as the cost of our initial quantity vector increases, the area of outcome-independent
profit shrinks.

From the figures, it might appear that large portions of the state space will result in the OPRS
losing money. However, prices and quantities have a highly non-linear relationship: prices quickly
approach 1 as quantities become imbalanced. The straight black rays on the plane represent a price
of .95 for one of the two events. Therefore, the plots indicate that as long as markets are terminated
while events have reasonable levels of uncertainty, the market maker can book a profit regardless of
the realized future .

Figure 6.7 contrasts the revenue of the OPRS against the LMSR. In particular, the figure shows
the revenue surplus of the LMSR relative to the OPRS. Positive values represent how much more
the OPRS would collect if the market terminates in the each obligation state. The comparison
between the two market makers is valid because both the market makers have the same bound on
worst-case loss, set by aligning the α and q0 parameters in the OPRS with the b parameter in the
LMSR. What is especially notable is how large the revenue difference between the two market
makers becomes for lopsided obligation vectors, when the market maker has to pay out much more
if one event happens than if the other event happens. As Figures 6.5 and 6.6 showed, generally at
lopsided obligation vectors the OPRS does not book an outcome-independent profit. However, as
Figure 6.7 shows, the OPRS delivers significantly less loss than the LMSR for lopsided obligation
vectors.

Homogeneity

Recall that a positive homogeneous function f of degree k has

f(γx) = γkf(x)

for γ > 0. “Positive homogeneous functions of degree one” are often referred to as just “positive
homogeneous”. As it turns out, the cost function of the OPRS is positive homogeneous, and in
this section we prove and explore the implications of that result.

Proposition 21. The OPRS is positive homogeneous of degree one.

Proof. Let γ > 0 be a scalar and q be some valid quantity vector. Without loss of generality, we
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Figure 6.7: Revenue comparison between the OPRS and the LMSR. The z-axis is how much more the
OPRS makes than the LMSR. The parameters are aligned so that the two market makers have the same
worst-case loss (∼ 104.2), reflected by the zero revenue surplus at q0. In the OPRS, α = .03 and q0 =

(100, 100), and in the LMSR, b = 150.27.

can assume
∑

i qi = 1. Then

C(γq) = b(γq) log
(∑

i

exp(γqi/b(γq))
)

= γα log
(∑

i

exp
(
γqi
γα

))
= γC(q)

�

It is crucial that the cost function be positive homogeneous, because that allows the price re-
sponse to scale appropriately in response to increased quantities. One of the primary concerns about
using the LMSR is the relation of the fraction of wealth invested in the market to the displayed
prices. If the b parameter is set too low in the LMSR, that is, if the market is thick but the market
maker’s price response is too sensitive, then tiny fractions of the overall wealth in the market can
move prices a great deal. On the other hand, if the b parameter is set too high all the wealth in the
market would be insufficient to move prices significantly enough to reflect this skewed distribution
of bets.
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A market maker would ideally provide a price response proportional to the amount of wealth in
the market. Such a market maker would appropriately scale liquidity, requiring progressively larger
trades to achieve the same price response as the market accumulated more and more money. Scaling
price responses proportional to the state of the market is the correct liquidity-sensitive behavior
because it yields a relative price response that is the same regardless of whether the amount of
money in the market is tens, thousands, or millions of dollars. Another way of thinking about this
property is that a proportional-scaling market maker is currency independent: without any further
adjustment it will function equally as well regardless of whether trading is done in millions of yen
or fractions of a dollar, because only the relative, rather than absolute, amounts wagered affect the
market maker’s price response. This leads us to the following definition.

Definition 22. Prices scale proportionately if

pi(q) = pi(γq)

for all i, q and scalar γ > 0.

In fact, only homogeneous cost functions provide this price response.

Proposition 22. Prices scale proportionately if and only if the cost function is positive homogeneous of
degree one.

Proof. Proportional scaling is equivalent to the price functions being positive homogeneous of de-
gree zero. Since the k-th derivative of a positive homogeneous function of degree d is itself a positive
homogeneous function of degree d− k, if and only if the cost function is positive homogeneous of
degree one will prices scale proportionately. �

We can now prove that the OPRS is a homogeneous risk measure.

Proposition 23. The OPRS is a homogeneous risk measure (for vectors in the non-negative orthant).

Proof. We must prove that the OPRS satisfies positive homogeneity, convexity, and monotonicity.
Proposition 21 shows that the OPRS satisfies positive homogeneity.

Monotonicity also holds, because it is possible to write individual prices in the OPRS as the
sum of non-negative components (e.g., Equation 6.1), and a function with well-defined positive
partial derivatives satisfies monotonicity.
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Convexity of the OPRS follows from the relation of the OPRS to the perspective function of
the convex log-sum-exp function:

log
(∑

i

expxi

)
The perspective function g of a convex function f is defined as

g(z, t) ≡ tf(z/t)

for t > 0. The perspective function is convex in both z and t (Boyd and Vandenberghe, 2004).
Now let f be the log-sum-exp function, which is convex. Then consider the relation between
g(x, α

∑
i xi) and g(y, α

∑
i yi). Since the perspective function is convex in both of its arguments,

we have for all λ ∈ [0, 1]:

λg

(
x, α

∑
i

xi

)
+ (1− λ)g

(
y, α

∑
i

yi

)
≥ g

(
λx + (1− λ)y, α

∑
i

λxi + (1− λ)yi

)

But observe that

C(z) ≡ g

(
z, α

∑
i

zi

)
and so

λC(x) + (1− λ)C(y) ≥ C(λx + (1− λ)y)

which proves convexity of the OPRS. �

6.2 Dual space results

Recall from Chapter 3 that homogeneous risk measures have a particularly concise representation in
dual price space. Specifically, we can represent homogeneous risk measures with a compact convex
set S in the non-negative orthant that provides its support in dual space. The relations between
convex and monotonic cost functions, convex and positive homogeneous cost functions, and their
respective duals are a consequence of well-known results in the convex analysis literature (Rock-
afellar, 1966, 1970).

Proposition 24. A risk measure is convex and monotonic if and only if the set S is exclusively within the
non-negative orthant.
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Proposition 25. A risk measure is convex and positive homogeneous if and only if its convex conjugate
has compact S and has f(y) = 0 for every y ∈ S.

In the literature this latter result relates indicator sets (here, the set S) to support functions (here,
the cost function). Since f(y) = 0 for all y ∈ S, the cost function conjugacy is defined only by the
set S. Consequently, we will abuse terminology slightly and refer to the cost functions as conjugate
to the convex compact set alone. A necessary and sufficient condition on the set of homogeneous
risk measures follows.

Corollary 3. A cost function is a homogeneous risk measure if and only if it is conjugate to a compact convex
set in the non-negative orthant.

Only the convex conjugate set S of a homogeneous risk measure is responsible for determining
the market maker’s behavior, because the conjugate function f takes value zero everywhere in that
set. In this section, we explore two features of the conjugate set that produce desirable properties:
its curvature and its divergence from the probability simplex. We then discuss these properties in
relation to the OPRS in Section 6.2.3.

6.2.1 Curvature

We would like for the OPRS to always be differentiable (outside of 0, where a derivative of a positive
homogeneous function will not generally exist). The OPRS is differentiable in the non-negative
orthant (again, excepting 0) while max is differentiable only when the maximum is unique. In
this section, we show that only curved conjugate sets produce homogeneous risk measures that are
differentiable. (It might be argued that what we are really interested in, particularly if we claim
that curved sets act as a regularizer in the price response, is whether or not curved sets also imply
continuous differentiability of the cost function. Continuous differentiability would mean that prices
both exist and are continuous in the quantity vector. These conditions are in fact the same for convex
functions defined over an open interval (such as Rn\0), because for such functions differentiability
implies continuous differentiability (Rockafellar, 1970).)

Definition 23. A closed, convex set S is strictly convex if its boundary does not contain a non-
degenerate line segment. Formally, let ∂S denote the boundary of the set. Let 0 ≤ λ ≤ 1 and
x, x′ ∈ ∂S. Then λx + (1− λ)x′ ∈ ∂S holds only for x = x′.

Since strictly convex sets are never linear on their boundary they can be thought of as sets with
curved boundaries.

Proposition 26. A homogeneous risk measure is differentiable on Rn\0 if and only if its conjugate set is
strictly convex.
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Proof. First recall that the maximizing argument of the optimization for vector x 6= 0 is given by
an extreme hyperplane normal to x that intersects with the set S. It follows that the maximizing
argument is always on the boundary of S.

For the forward direction, consider a set that is convex but not strictly convex. Then there exists
a hyperplane H connecting two points x and x′ on the boundary of the set such that

λx + (1− λ)x′ ∈ ∂S

Now consider the set of points normal to H which go through 0. Observe that these points
lie in precisely two orthants. The points in one of those orthants will find that the set of points
between x and x′ are the maximizing arguments in the optimization, which means the subgradient
at those points is not unitary, and so the cost function is not differentiable.

Now consider a strictly convex set S. Since the optimization is convex, the maximizing argu-
ments must form a convex set. Therefore if more than one vector is in a maximizing argument, the
line connecting those vectors must be on the boundary of S. But then S is not strictly convex, a
contradiction. �

6.2.2 Divergence from probability simplex

The amount of divergence from the probability simplex governs the market maker’s divergence from
translation-invariant prices (i.e., prices that sum to unity). Recall that max is the homogeneous risk
measure that is defined only over the probability simplex.

Proposition 27. Let S be the dual set of a differentiable homogeneous risk measure. Then the maxi-
mum sum of prices (the most a trader would ever need to spend for a unit guaranteed payout) is given
by maxy∈S

∑
i yi, and the minimum sum of prices (the most the market maker would ever pay for a unit

guaranteed payout) is given by miny∈S
∑

i yi.

Proof. Recall that the maximizing argument in the maximization yields the gradient of the cost
function. The point in S with the largest sum of components (and therefore the largest sum of
prices) is selected as the maximizing argument for x = k1, k > 0. The minimum sum of prices
result holds by similar logic; the point in S with minimum sum of components is selected for
x = −k1. �
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Given any (efficiently representable) convex set corresponding to a differentiable homogeneous
risk measure, the extreme price sums can be solved efficiently, since it is a convex optimization over
a convex set.

It was shown in Proposition 16 that the OPRS achieved its maximum sum of prices for quantity
vectors that are scalar multiples of 1. A corollary of the above result is that this property holds for
every homogeneous risk measure. (Other vectors may also achieve the same sum of prices.)

Corollary 4. In a homogeneous risk measure every vector that is a positive multiple of 1 achieves the
maximum sum of prices.

In addition to maximum prices, the shape of the convex set also determines the worst-case loss
of the resulting market maker. The notion of worst-case loss is closely related to our desideratum of
bounded loss—a market maker with unbounded worst-case loss does not have bounded loss, and a
market maker with finite worst-case loss has bounded loss.

In homogeneous risk measures, the amount of liquidity sensitivity is proportional to the market’s
state. Since in practice there is some latent level of interest in trading on the event before the
market’s initiation, it is desirable to seed the market initially to reflect a certain level of liquidity.
It is desirable to have a tight bound on that worst-case loss, reflecting that in practice, market
administrators are likely to have bounds on how much the market maker could lose in the worst
case. Tight bounds on worst-case loss assure the administrator that that bound will be satisfied
with maximum liquidity injected at the market’s initiation.

Proposition 28. Let S be a convex set conjugate to a homogeneous risk measure that includes the unit axes
but does not exceed the unit hypercube. Then the worst-case loss of the risk measure is tightly bounded by
the initial cost of the market’s starting point.

Proof. First, note that any convex set that includes the unit axes is conjugate to a cost function that
is at least as large as max, because max is conjugate to the minimal convex set that includes the
unit axes and increasing the size of the feasible region never decreases the value of a maximization.
Therefore, the worst-case loss is bounded from above by C(x0). To show that this bound is tight,
we need to show that there exists a terminal state C(x) where

max
i

xi = C(x)

Such a terminal state is given by the axes. �

By bringing x0 as close as desired to 0, we have the following corollary, which is a generalization
of a similar result for the OPRS.

110



CHAPTER 6. HOMOGENEOUS RISK MEASURES

Corollary 5. Let S be a convex set conjugate to a homogeneous risk measure that includes the unit axes.
Then the worst-case loss of the risk measure can be set arbitrarily small.

A bound on prices also emerges from this result.

Corollary 6. Let S be a convex set conjugate to a homogeneous risk measure that includes the unit axes
but does not exceed the unit hypercube. Then the maximum price on any event is 1.

One of the most powerful features of the OPRS is that it can achieve an outcome-independent
profit, so that given a sufficient level of interaction the market maker would never lose money
regardless of realized outcome. This is not true generally for translation-invariant risk measures,
but it is a feature of homogeneous risk measures defined outside of the probability simplex, as we
proceed to show.

Proposition 29. Let S be a convex set conjugate to a homogeneous risk measure. Then if S includes any
element not on the probability simplex, the cost function can make an outcome-independent profit.

Proof. Let x be a vector for which y 6∈ Π is selected as a maximizing argument. Since the homo-
geneous risk measure is defined over all of Rn, such an x always exists. Then observe

C(x)−max
i

xi > 0

and because the cost function is positive homogeneous this implies that for every K > 0 there
exists a γ > 0 such that

C(γx)−max
i

γxi > K

so the gap betweenC(x) and maxi xi can be made arbitrarily large. SinceC(x0) is finite, there exists
a γx such that

C(γx)−max
i

γxi − C(x0) > 0

and so the cost function has outcome-independent profit at the payout vector γx. �

6.2.3 The OPRS and its conjugate set

For the OPRS, however, we already have a homogeneous risk measure, and in this section we will
explore how to produce its conjugate convex set.
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Recall that the OPRS is given by

C(x) = b(x) log
(∑

i

exp(xi/b(x))
)

where
b(x) = α

∑
i

xi

for α > 0 and x ∈ Rn
+.

Because the OPRS is monotonic and convex, recall that it must be conjugate to a convex set in
the non-negative orthant, S, so

C(x) = max
y∈S

x · y

Observe that we cannot solve for this convex set directly, because we only know x and C(x). How-
ever, we can solve for the set numerically. For every x, we can find a hyperplane on which at least
one point is the outer boundary of the convex set. We define h(x) as

h(x) ≡
{
p | p ∈ Rn

+ and x · p ≤ C(x)
}
.

For each x, this partition divides the non-negative orthant into two sets—those points that could
be part of the convex set (all the points in h(x), under the separating hyperplane), and those points
that could not be part of the convex set (or else C(x) would be larger).

In order to fully recover the convex set S, we need to take the intersection of every h(x):

S =
⋂

x∈Rn
+

h(x)

We can simplify this operation considerably, however. Since the OPRS is positive homogeneous,
we need only consider the intersection over the x in the probability simplex. This is because the
same point y ∈ S will solve the maximization problem for all γx, γ > 0. Therefore, it suffices to
only consider the intersection of a set of points X such that for all x′ ∈ Rn

+, there exists an x ∈ X
such that γx = x′ for some γ > 0. One such set X is the probability simplex. Using this result, we
proceed to plot the convex conjugate indicator set of the OPRS with α = .05 in two dimensions
as Figure 6.8. Observe that, just as theory suggests, the conjugate set is curved and bulges slightly
away from the probability simplex.

Because the OPRS is only defined in the non-negative orthant, it is only the outer boundary of
the convex set that is relevant to the price response. (This is not the case for cost functions defined
over all of Rn, because the outer boundary is never selected for vectors in the negative orthant.) In
order to show the divergence of the outer boundary, Figure 6.8 displays the inner boundary of the
conjugate set as the probability simplex.
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Figure 6.8: The convex set in dual space supported by the OPRS market maker in a simple two-event market.
Since that market maker was only defined over the non-negative orthant, it is represented by the curved outer
boundary of the set. The inner boundary of the set is drawn here as the probability simplex (i.e., x+ y = 1)
to show how the outer boundary diverges from it.

6.3 Using the dual space

In this section, we proceed to use our theoretical results constructively, to create two families of
homogeneous risk measures with desirable properties that the OPRS, the only prior homogeneous
risk measure, lacks. These include tight bounds on minimum sum of prices and worst-case losses.
Our new families of market makers are parameterized (in much the same way as the OPRS) by the
maximum sum of prices. The OPRS is not a member of either family.

6.3.1 Unit ball market makers

One family of homogeneous risk measures is to take as the dual set the intersection of two unit
balls in different Lp norms, one ball at 0 and the other ball at (2/n)1. At n = 2, the other ball is
centered at 1.

For 1 < p < ∞, the intersection of the two balls is a strictly convex set that includes the unit
axes but does not exceed the unit hypercube. (At p = 1, we get the probability simplex, which is
not strictly convex. At p =∞ we get a hypergeometric solid, which is also not strictly convex.)
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Let || · ||p denote the Lp norm. Then we can define the vectors in the intersections of the unit
balls, U(p), as

U(p) ≡ {y | y ∈ Rn
+, ||y− (2/n)1||p ≤ 1, ||y||p ≤ 1}

Figure 6.9 provides graphical intuition for the set U(p) in a simple two-event market. This set gives
us a cost function

C(x) = max
y∈U(p)

x · y

We dub this the unit ball market maker. Since we can easily test whether a vector is within both unit
balls (i.e., within U(p)), the optimization problem for the cost function can be solved in polynomial
time.
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Figure 6.9: The conjugate set of the unit ball market maker in dual space is given by the intersection of two
unit balls (the dark region) in a certain Lp norm. Here, n = 2 and p ≈ 1.08, so by the formula below the
maximum sum of prices is 1.05.

This family of market makers is parameterized by the Lp norm that defines which vectors in
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dual space are in the convex set. By choosing the value of p correctly, we can engineer a market
maker with the desired maximum sum of prices. The outer boundary of the set is defined by the
unit ball from 0 in Lp space. Its boundary along 1 is given by the k that solves p

√
nkp = 1. Solving

for k we get
k = n−1/p

and so the maximum sum of prices is

nk = n
(
n−1/p

)
= n1−1/p.

For prices that are at most 1 + v, we can set

1 + v = n1−1/p

Solving this equation for p yields

p =
logn

logn− log(1 + v)

Given any target maximum level of vigorish, this formula provides the exponent of the unit ball
market maker to use. Considering that only small divergences away from unity are natural to the
setting, the p we select for our Lp norm should be quite small. The norm increases in the maximum
sum of prices, and for larger n the same norm produces larger sums of prices.

One of the advantages of the unit ball market maker is that it is defined over all of Rn, as
opposed to just the non-negative orthant. Its behavior in the positive orthant is to charge agents
more than a dollar for a dollar guaranteed payout, because the outer boundary diverges outwards
from the probability simplex. Its behavior in the negative orthant, where its points on the inner
boundary are selected in the maximization, is to pay less than a dollar for a dollar guaranteed payout.
Its behavior in all other orthants is equivalent to max, as the unit axes are selected as maximizing
arguments. Finally, if we restrict the unit ball market maker to only the non-negative orthant (like
the OPRS), the sum of prices is tightly bounded between 1 and n1−1/p.

6.3.2 Optimal homogeneous risk measures

Now that we have given a necessary and sufficient characterization of homogeneous risk measures,
we might wonder which homogeneous risk measure is the best. In this section, we use the dual
space to construct the homogeneous risk measure that is optimal in a specific sense—it has the
minimum amount of price deviation as traders change the angle of the the market maker’s payout
vector. The resulting market maker has a shallower, more consistently curved support set than other
homogeneous risk measures.
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Parameterization

We assume that we are using an always-moving-forward scheme, as in the OPRS, and that so the
price response of the corresponding homogeneous risk measure is determined only by the outer
boundary of the convex set, as in Figure 6.8 of the OPRS. We denote by ∂S the outer boundary of
the convex set.

For simplicity, we assume in this section that n = 2. Consequently, the set of all valid payout
vectors is the positive quadrant. There are two natural coordinate systems on the space. One is
to parameterize the space by x ≥ 0 (the position on the first axis) and y ≥ 0 (the position on the
second axis). The second is to parameterize the space by r ≥ 0 (the distance from the origin) and θ ∈
[0, π/2] (the angle from the first axis). The latter parameterization is more natural for homogeneous
risk measures, because in a homogeneous risk measure prices are constant for constant θ (they do not
depend on r). In contrast, prices in a homogeneous risk measure for the former parameterization
would depend on both x and y.

Properties of optimality

There are two important properties an optimal homogeneous risk measure should have. First, it
should have bounded loss, and second, it should not feature marginal prices on any event that
exceed unity. In dual price space, this means the convex set S should include both (1, 0) and (0, 1),
but not exceed 1 along either dimension.

Now parameterize by x(θ) and y(θ) the point on ∂S selected by the price vector selected at
angle θ,

(x(θ), y(θ)) = arg max
(x,y)∈∂S

(x, y) · (cos θ, sin θ) (6.2)

If ∂S is strictly convex, then x and y are differentiable. Furthermore, x′(θ) ≤ 0 and y′(θ) ≥ 0.
Now we can turn to the definition of optimality. Recall that the fundamental problem with

the max cost function was that its prices very quickly changed from 0 to 1. For instance, in two
dimensions, the rate of change at θ = π/4 is undefined (and unboundedly large in the limit as
θ → π/4).

Considering this argument, what we would like is for prices to change as little as possible uni-
formly over the relevant θ.

∂S = arg min
∂S

max
θ ∈ (0, π/2)
x, y ∈ ∂S

|y′(θ)|+ |x′(θ)| = arg min
∂S

max
θ ∈ (0, π/2)
x, y ∈ ∂S

y′(θ)− x′(θ) (6.3)
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Observe that in this equation, we have begged the question that the optimizing x(θ) and y(θ)
are differentiable on θ ∈ (0, π/2). However, it is easy to see that if this is not the case, then the
value of the sup operation is undefined, as prices would change infinitely fast around the θ at which
∂S is not differentiable.

Simplifying the optimization equation

The functions x′ and y′ cannot be arbitrary; we must ensure that a given x′ and y′ are actually the
solution to the optimization in Equation 6.2. For any point (x, y) ∝ (cos θ, sin θ), the argument on
∂S that is optimal is the point of intersection with the line normal to tan θ farthest from the origin.

Observe that since tan θ = sin θ
cos θ , the line normal to it has a slope of − cos θ

sin θ
= − cot(θ). Conse-

quently, if ∂S is strictly convex the maximizing argument at θ is given by (x(θ), y(θ)) when

y′(θ)

x′(θ)
= − cot(θ) (6.4)

so that the slope of the curve at that point matches the slope of the line normal to the tangent.
A further condition we impose is that the solution x′ and y′ should be symmetric. In particular,

x′(θ) = −y′(π/2− θ) (6.5)

Combined with the boundary condition that x(0) = y(π/2) = 1, the symmetry condition implies
x(π/4) = y(π/4). Intuitively, we should expect a minimum curvature solution to be symmetric,
because in an asymmetric solution “too fast”. (Furthermore, both the OPRS and the unit ball
market maker are symmetric.)

Equation 6.4, combined with symmetry between x and y, allows us to dramatically simplify
the optimization. In particular, we can focus only on a single function, x′, over half the range of
the variable θ, θ ∈ (0, π/4). Let the maximum sum of prices of the homogeneous risk measure be
s > 1. Then three equations describe the optimization

• The first condition is that

∫ π/4

0

x′(θ) dθ = s/2− 1

which ensures that x(π/4) = y(π/4) = s/2.

• The second condition is that

∫ π/4

0

y′(θ) dθ =

∫ π/4

0

cot(θ)x′(θ) dθ = −s/2
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which ensures that the total change for both x′ and y′ is 1, and also embeds the tangency
relationship of Equation 6.4. Observe that cot(θ) > 1 for θ ∈ (0, π/4).

• The optimization is to find x′ that minimizes the largest instantaneous total curvature:

min
x,y∈∂S

max
θ∈(0,π/4)

y′(θ)− x′(θ) = min
x∈∂S

min
θ∈(0,π/4)

x′(θ) + x′(θ) cot(θ)

Once we have solved for x′ over θ ∈ (0, π/4), we can recover y′ over θ ∈ (π/4, π/2) through
the symmetry relation, Equation 6.5. Consequently, we have either x′ and y′ defined over the entire
interval θ ∈ (0, π/2). If we have either x′ or y′ at some θ we can recover the other value through the
tangent relationship, Equation 6.4. Finally, once we have the derivatives x′ and y′, we can recover
the original parametric functions x and y from the boundary conditions x(0) = 1 and y(0) = 0.

Solving the optimization equation

As is standard, we solve the integral constraints by approximating the continuous function x′ at a
set of nodes {k1, k2, . . . , kn} and associated weights {w1, w2, . . . , wn}, such that

∫ π/4

0

f(θ) dθ ≈
∑
i

wif(ki)

The optimization is to specify the function values x′(ki) ≡ fi at the nodes ki by solving the
following optimization for a given maximum sum of prices s:

max
f

(
min

i
fi + fi cot(ki)

)
such that

fi ≤ 0∑
i

wifi = s/2− 1∑
i

wi cot(ki)fi = −s/2

When we solved the optimization equation numerically for small s, we found that it had a very
specific, three-part structure:

• For θ ∈ [0, t], x(θ) = 1 and y(θ) = 0. That is, the maximal point along the x axis is selected,
so that the price on the first event is 1 and the price on the second event is 0. The rate of
change of prices in this region is zero.
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• For θ ∈ (t, π/2− t),
y′(θ)− x′(θ) = l (6.6)

where l > 0 is a constant rate of curvature.

• For θ ∈ [π/2− t, π/2], x(θ) = 0 and y(θ) = 1. That is, the maximal point along the y axis
is selected, so that the price on the first event is 0 and the price on the second event is 1. The
rate of change of prices in this region is zero.

Because of this specific structure, we can solve for the optimal x and y analytically, instead of
numerically. Equations 6.6 and 6.4 set up a system of two differential equations with two unknowns,
x and y. Solving these differential equations yields

x(θ) =
l

2
(log(sin θ + cos θ)− θ) + C1

y(θ) =
l

2
(log(sin θ + cos θ) + θ) + C2

By setting the boundary conditions on the parameters l, t, C1, C2 we will produce the desired
solution to Equation 6.3. Furthermore, just like the OPRS and unit ball market makers, we can
parameterize this family by the maximum sum of prices s.

First, we will use symmetry to eliminate the constant term C1. By Corollary 4, we know that
prices reach their maximum at π/4. By the symmetry constraint Equation 6.5

x(π/4) = y(π/4)

which means
l(log(2)/2− π/4) + C1 = l(log(2)/2 + π/4) + C2

this yields
C1 = C2 +

lπ

4

Now we will impose additional boundary constraints to solve for l and C2 (and therefore, C1)
as a function of t. The selection of any t ∈ [0, π/4) imposes two boundary conditions:

x(t) = y(π/2− t) = 1

and
x(π/2− t) = y(t) = 0

These two sets of equalities produce two independent equations
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l

2
(log(sin t+ cos t)− t) + C2 +

lπ

4
= 1

and
l

2
(log(sin t+ cos t) + t) + C2 = 0

And this system of two equations and two unknowns (l and C2) solves to

l =
1

π/4− t

C2 = −t+ log(cos(t) + sin(t))
2(π/4− t)

Again by Corollary 4, the maximum sum of prices is achieved at θ = π/4. Call that sum s

s ≡ x(π/4) + y(π/4) =
l log 2
2

+ C1 + C2 =
log(2)/2 + π/4− t− log(cos t+ sin t)

π/4− t

Figure 6.10 is a plot of this relationship. Observe that s→ 1 as t→ π/4.

1.1 1.2 1.3 1.4
Sum of Prices

0.2

0.4

0.6

0.8
t

Figure 6.10: The offset angle t required for a specified maximum sum of prices in the optimal homogeneous
risk measure.

Figure 6.11 is a graphical depiction of the boundary of the shell ∂S of the homogeneous risk
measure, selecting t so that the maximum sum of prices is 1.05. For comparison, Figure 6.11 also
features the probability simplex (i.e., the line y = 1− x in the positive orthant).

Figure 6.12 is a graphical comparison of the probability simplex, the unit ball market maker with
maximum price sum 1.05, and the optimal homogeneous risk measure with maximum price sum

120



CHAPTER 6. HOMOGENEOUS RISK MEASURES

0.2 0.4 0.6 0.8 1.0
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1.0

Figure 6.11: The outer shell of the convex set which supports the optimal homogeneous risk measure with
maximum sum of prices 1.05.

1.05. The plot is zoomed to the lower-righthand corner of the price space in order to more clearly
see the differences between the convex sets.

Intuitively, we would expect the optimal homogeneous risk measure to be as close to the proba-
bility simplex as possible while still retaining strict convexity and including the point corresponding
to the maximum sum of prices. It is evident from inspection that the unit ball market maker achieves
larger prices faster than the optimal homogeneous risk measure. But there is a limit to how large
the sum of prices can get (in this case, the line y = 1.05− x). Consequently, the boundary of the
set must necessarily be less curved for larger values of θ, and so the prices around those angles must
change faster.

6.4 Extensions

Because they automatically expand the depth of the market as more trades are made, homogeneous
risk measures seem like they would be a good fit for settings in which the level of interest is un-
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Figure 6.12: A comparison of the convex sets of the unit ball market maker and the optimal homogeneous
risk measure.

known a priori. Based on our experiences with the GHPM (detailed in Chapter 4), most Internet
prediction markets would seem to be characterized by this property. From a risk-measurement con-
text, homogeneous risk measures would be most appropriate for circumstances in which the ratio
of various payoffs is significant in determining the acceptability of a vector of risks.

In this chapter, we motivated and developed the optimal homogeneous risk measure for two
events. Recall that this cost function was optimal in the sense that it has the smallest uniform
change of prices while still retaining bounded loss. Under similar precepts, one extension would be
to develop optimal homogeneous risk measures for more than two events.

A further extension would be to add limit orders to homogeneous risk measures. Agrawal et al.
(2009) provide a framework to simply add functionality to handle limit orders (orders of the form
“I will pay no more than p for the payout vector x”) into a cost function market maker. That
framework relies on convex optimization and so would also be able to run in polynomial time,
a significant gain over naïve implementations of limit orders within cost function market makers.
However, that work relied heavily on simplifications to the optimization that could be made because
of translation invariance, so it is unclear how to embed a market maker whose convex conjugate is
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defined over more than the probability simplex into a limit order framework.
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Chapter 7

Option trading

Automated market makers are almost always used in fake-money applications, not with actual
money on the line. In a prediction market, the goal of a market maker is often to assist in infor-
mation elicitation, and so the losses that inevitably result from these market makers are viewed as
subsidies to encourage traders to participate and reveal their information (Hanson, 2003; Pennock
and Sami, 2007; Chen and Pennock, 2010). This reasoning provides a contrast between a mar-
ket maker in a prediction market, which has a designated role to provide liquidity and can lose
money acceptably, and a trading agent in a financial market which speculates for its own account.
We specifically study the latter in this chapter. A trading agent will make or lose money based on
whether its distribution over futures states of the world is better or worse than that of its counter-
parties, and an outcome-agnostic agent, the norm for making prediction markets, generally has too
much entropy in its prior over outcomes to profit.

The finance literature, and particularly the finance literature as it pertains to derivatives, has
taken a different modeling approach than the prediction market literature. The modern derivatives
literature started with the seminal work of Black-Scholes and Merton (BSM) (Black and Scholes,
1973; Merton, 1973). By providing a practical way to price options contracts effectively, BSM led to
the options markets that are the precursors of modern derivatives trading. Additionally, because the
formula for calculating prices is entirely self-contained, it provided the constructive groundwork
for the notion of autarky within finance theory. The BSM formula takes only three inputs—the
current price, volatility, and the risk-free rate of return—to produce an ensemble of options prices.
Although it is problematic to generalize over the entire finance literature, speaking broadly, most
models of asset pricing operate using autarky as a guiding principle. In an autarky model, prices
are philosophically prior to the agents that trade on them, so these models have no reliance on an
agent’s past actions in determining prices.

In this chapter, we synthesize ideas from the prediction markets and finance literatures to create
more successful trading agents than either literature on its own. The key insight in this chapter is
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that these two notions—having good priors, and learning from inventories—are not oppositional.
We combine them to create a trading agent that develops actionable prices based on both factors.
Interestingly, the combination of the two ideas is not straightforward, and there are significant
theoretical hurdles that serve to restrict the valid combinations of prior distributions and the utility
models that determine how an agent reacts to its inventory.

The principal contribution of our work is the experimental simulation of five different trading
strategies on a large body of recent options data:

1. A zero-intelligence agent, added as an experimental control, that trades randomly.

2. An orthodox BSM Log-normal distribution trader.

3. A Normal distribution trader, with mean and variance matched to the Log-normal trader.

4. The Logarithmic Market Scoring Rule (LMSR), the most popular automated market maker in
Internet prediction markets (Hanson, 2003, 2007; Pennock and Sami, 2007) which is equiv-
alent to an exponential utility trading agent with constant uniform priors.

5. A hybrid agent that combines exponential utility with normal distribution priors.

We find that by many different measures, including expected return and worst-observed per-
formance, the hybrid trader outperforms the other traders. Consequently, our results support the
hypothesis that a trader’s current exposure can be a profitable influence on future actions, and that
a trader can learn from their past actions to create a more accurate estimate of the future.

Even though the hybrid trader performs the best on several key metrics, it does not stochastically
dominate the performance of the parametric traders from the finance literature. This means it is
possible to construct a coherent utility function that would prefer the performance of the parametric
traders. However, the relative performance of the hybrid trader relative to the parametric traders
provides insights into the larger qualitative question of how the hybrid trader is able to perform
well. We believe our results are best interpreted by the hybrid trader profitably insuring against the
risk that its model of the future is inaccurate, a claim which we justify in detail.

It is important to clarify what we believe is significant about our results. We do not believe
that our hybrid trader is the best options trading agent that could be devised. Certainly, BSM can
be considered a theoretical model, rather than a practical trading agent, and there are likely other
agents that could be constructed that would have better performance on our dataset. These agents
could employ more sophisticated models about how prices move through time, detailed order book
information, or outside information like press releases and macroeconomic forecasts. But what is
significant about our work is this: by incorporating inventories into a Normal distribution trader, we
increase performance without incorporating any new or more sophisticated information into the trading
process. Instead, we achieve these performance gains simply by paying attention to information that
autarky models discard.
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We are particularly keen on interpreting our results within the intellectual framework of artificial
intelligence. Much of modern, optimization-based AI is grounded in the idea of modeling (or
actually constructing) a robot that can observe its environment, effect an action, and receive a reward
that depends on its state and the actions it has chosen (see Russell and Norvig, 2003, Chapter 2).
This model fits naturally into trading options, where the environment is the market, the actions are
the contracts to trade, and the rewards are literal monetary profits and losses. History-keeping is
vital to what constitutes a rational agent in the AI literature. In a general environment an agent that
does not retain its history cannot be rational. So in this context, our results are not surprising: agent
performance is enhanced by both built-in knowledge about the future and the ability to learn from
one’s past actions.

7.1 Options

In this section we introduce options and their associated terminology, as well as our dataset.

7.1.1 What are options?

Options contracts involve the future opportunity to buy or sell some kind of underlying instrument
(the underlying) at a set price (the strike price).

There are two types of option contracts. A call option gives its holder the right to buy an
obligation at a specified price, and a put option gives its holder the right to sell an obligation at a
specified price. These contracts have a hinged form of payouts.

Definition 24. Let the underlying expire at price π. A (European) call option with strike price s

has value max(π − s, 0). A (European) put option with strike price s has value max(s− π, 0).

Options that strike close to the current price of the underlying are known as at the money.
Options that are valuable at the current price of the underlying (high-strike puts or low-strike
calls) are known as in the money. Options that are worthless at the current price of the underlying
(low-strike puts or high-strike calls) are known as out of the money.

There are two principal ways that govern the exercise of options. European options expire in
cash at a certain date, the strike date. In contrast, American options can be exercised for delivery
of the underlying at any point before the strike date. The additional optionality of American op-
tions makes them necessarily at least as expensive as European options. However, this additional
optionality is rarely exercised, making American options essentially European in practice. Varian
(1987) provides a theoretical argument based on no-arbitrage principles for European and American
options having exactly the same prices. We examine both European and American options in our
dataset.
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Options with the same underlying and strike date form what is called an options chain. Chains
consist of an ensemble of contracts along with their associated prices. For instance, a chain might
consist of calls and puts with strikes of 900, 1000, and 1100 for the ^SPX underlying expiring on
December 22, 2007. Each of these contracts has a price at which they can be bought or sold (the
ask and bid prices, respectively), and theoretically all of these prices are based on some underlying
distribution over the expiration price. This distribution changes over time as the price of the under-
lying and the time until expiration changes. When we perform our experiments, we step through
simulating trading agents on snapshots of each options chain as it evolves over time, from initiation
until expiration.

7.1.2 Historical dataset

The dataset we use covers almost seven years of data on eleven underlyings, taken at 15-minute in-
tervals. It is comprised of nearly 300 million {underlying, expiration date, strike price, datetime,
best bid, best ask} tuples, and the corresponding {underlying, datetime, underlying best bid, un-
derlying best ask} tuples for the underlying. The data spans from January 2004 through September
2010. To our knowledge this is the one of the more-detailed datasets used in an academic study on
options—studies generally use data from daily closing prices, which is much less detailed (and one
of the most widely-cited papers on empirical option pricing, Dumas et al. (1998), uses weekly data).
Table 7.1 gives an overview of the dataset.

In order to provide a clean train/test separation, we divide the first two years ( January 2004
through December 2005) to learn the relevant parameters for our simulation, and only test on the
remaining data. A naïve split between training and testing data that randomly placed chains or
days into different partitions would be tainted, because the training and test sets would overlap
temporally. Consequently, only options chains that expire in 2006 and beyond are in our testing
set. The number of complete chains in the testing set for each underlying is noted in the “Testing
chains” column of Table 7.1.

7.2 Agents based on Log-Normal and Normal

distributions

In this section we introduce the first two traders we used in our experiments, the Log-normal and
Normal distribution traders. These traders are derived from existing work in the finance literature.
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7.2.1 The BSM model

Option pricing was revolutionized and popularized by the work of Black and Scholes (1973) and
Merton (1973) (BSM). Those authors described a parametric framework under which prices on the
underlying change according to a log-normal distribution, which was the solution to a differential
equation.

This framework was essentially unchallenged until “Black Monday” of 1987, where stock prices
dropped precipitously in a single day. After this, options now show a persistent “volatility smile”
or “volatility skew”, where out-of-the-money options are overpriced relative to BSM (MacKenzie,
2006). An interpretation of this phenomenon is that the log-normal distribution of future prices as
predicted by BSM is inaccurate, and the skew represents an effort to make the predicted distribution
heavier-tailed. Another interpretation is that investors use options to provide insurance against the
state of the world in which extremely low values of the underlying are realized.

7.2.2 Calculating contract values when the underlying is

log-normally distributed

We use a constant (daily) volatility parameter σ for each underlying. These values are learned from
our training data in order to assure a clean train/test separation. Table 7.2 shows the values we used
in our experiments.

In addition to the current price and the volatility parameter σ, the BSM model takes an ad-
ditional input, the so-called risk-free rate of return. This value reflects the time-cost of money. In
our exploratory data analysis over our training data we did not see significant changes in perfor-
mance for different realistic values of the risk-free rate (between zero and five percent annualized).
For consistency, in our tests we set this value equal to zero for all the trading agents. In practice,
banks, market makers, and large hedge funds will have small risk-free rates over short time hori-
zons. Furthermore, setting this rate equal to zero means that any returns generated are exclusively
from options trading, and not from interest on passive income.

Because of the popularity of the BSM model, the formulas to calculate prices from a log-normal
distribution are well-known. The so-called partial expectation of the log-normal distribution has
an analytic expression. Let f denote the density function and F the distribution function of a
log-normal distribution parametrized by µ and σ. Then the partial expectation formula is:

∫ ∞

s

xf(x) dx = eµ+σ2/2Φ

(
µ+ σ − log s

σ

)
where Φ(·) is the distribution function of the standard normal distribution.
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Underlying σ

^SPX .006814
^DJX .006781
^NDX .010448
^IRX .014504
^FVX .016970
^TNX .012679
^XAU .018846

X .027520
C .008436

GE .009329
MSFT .010200
XOM .012430

Table 7.2: The (daily) volatility parameters σ are learned by taking the MLE of the daily changes of each
underlying in the training set.

When this value is known, the price of a call option can be calculated, because the price of a
call option with strike s is

∫ ∞

s

(x− s)f(x) dx =

∫ ∞

s

xf(x) dx−
∫ ∞

s

sf(x) dx

= eµ+σ2/2Φ

(
µ+ σ − log s

σ

)
− s(1− F (s)).

By the use of the well-known put-call parity we can calculate the price of a put option at the same
strike. The parity says that the price of a call at a strike, plus that strike, equals the price of a put at
that strike, plus the value of the underlying. The justification for this formula is that buying a call
and selling a put at a strike is equal in payout to buying the underlying and holding the amount in
cash. (Throughout this work, when we buy or sell underlyings it is assumed that the position will be
closed when the options expire.) Once we have calculated the value of the call, the only unknown
value in the put-call parity equation is the value of the put.
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7.2.3 Calculating contract values when the underlying is normally

distributed

We also implemented a trader that models the underlying’s expiration price as a normal distribution,
instead of a log-normal. This trader sets the mean and variance of the normal distribution to match
that of the log-normal distribution.

Normal distributions are a feature of much of the literature on market making in both prediction
markets and finance. As O’Hara (1995) discusses, theoretical frameworks often model underlying
prices as normal distributions because the conjugate prior to a normal distribution (with known
variance) is another normal distribution. Consequently, it is common for agents to have a nor-
mal prior distribution and then update that distribution to a posterior normal distribution as more
(normally-distributed) information arrives. This allows agents in models to act rationally while still
retaining closed-form expressions for analytical tractability. Examples of models using normal dis-
tributions to project the future price of an asset include the classic models of Glosten and Milgrom
(1985) and Kyle (1985), as well as more recent models such as that of Das and Magdon-Ismail (2009).

In the context of options, however, normal distributions are conceptually much more problem-
atic than log-normal distributions. This is because they have support over the whole real line, rather
than just over positive values. Since negative values cannot exist as termination prices (shareholders
are not personally liable for the debts of a company), this makes the normal distribution inherently
unrealistic1. Recognition of this problem dates back to some of the earliest work on asset pric-
ing (Merton, 1971). Reflecting the intuition that a normal distribution is a worse match for the
setting than the log-normal distribution, our results showed that the normal distribution trader
generally performed worse than the log-normal distribution trader, even though the two traders
matched the mean and variance of their distributions.

To solve for prices using a normal prior, we used Gauss-Hermite quadrature (Judd, 1998). Let
Eµ,σ(f) denote the expectation of the function f under a normal distribution with mean µ and
standard deviation σ. Gauss-Hermite quadrature provides a set of nodes xi and weights wi such
that

Eµ,σ(f) ≈
∑
i

wif(xi)

by implicitly converting the function f to an approximation by orthonormal polynomials.

1One way to overcome this limitation is to instead deal with truncated normal distributions, where the probability
mass that exists below zero is re-distributed over the positive values (e.g., Chang and Shanker (1986)). However,
these concerns are more theoretical than practical, because in our simulations the total probability mass for negative
realization values appeared to be small enough that truncating the distribution would not have changed agent actions.
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7.3 The LMSR as an option trading agent

In this section we discuss how we implemented the LMSR, the de facto automated market maker
used in Internet prediction markets, as an options trading agent. Recall that the LMSR (which we
first introduced in Chapter 3) is given by the cost function

C(x) = b log
(∑

i

exp(xi/b)

)
Where b > 0 is an exogenous constant known as the liquidity parameter. Larger values of b

correspond to larger worst-case losses by the LMSR, which loses at most b logn. On the other
hand, larger values of b produce tighter bid/ask spreads.

7.3.1 Compressing the state space

For the log-normal and normal distributions, we took the view that the underlying would expire as
a continuous process. In reality, the space of expirations is countably infinite, delimited by one-cent
intervals.

It is natural, however, to reduce this infinite space to a finite range of possibilities. This is a
lossy operation; there is perhaps the chance the final outcome will fall outside the range we specify.
Therefore, we should take a wide range. Consider the ^SPX underlying, which tracks the S&P 500;
it has a value of around 1000. It is reasonable to assume that for near-term options, its expiration
price will be between 100 and 10,000. With one-cent discretization, this implies a space of about
n = 1 million events.

Very large event spaces like this pose two problems for the LMSR; one practical, and the other
theoretical. First, the LMSR is numerically unstable over large event spaces; we observed this
problem in the Gates Hillman Prediction Market, and numerical stability was also a problem in
Yahoo’s Predictalot (which ran over a combinatorially large event space). This numerical instability
makes implementing the LMSR over very large event spaces challenging, unwieldy, and potentially
inaccurate. The second problem with large event spaces is that they correspond to larger worst-case
losses; in order to maintain realistic worst-case losses the b parameter would need to be much
smaller, leading to a large bid/ask spread that would not facilitate much trade.

In full form, the size of the event space we would need to consider makes applying the LMSR
to options markets extremely challenging. Fortunately, we can achieve a significant lossless dimen-
sionality reduction that makes automated market making for options feasible. The key to com-
pressing the state space is to focus only on the strike prices, not the expiration prices. Let the set
of ordered strike prices be given by s = {s1, s2, . . . , sn} and the market maker have corresponding
payout vector x = {x1, x2, . . . , xn}. This idea, of compressing the state space only to relevant strike
prices, is a feature of many options trading models (e.g., Varian (1987)).
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Lemma 2. Let the expiration price be si < s < si+1, such that s = αsi + (1 − α)si+1. Then if
there exist no contracts written for a strike price between si and si+1, the market maker must pay out
αxi + (1− α)xi+1.

Proof. An options contract is piecewise linear with a joint at its strike price, underlyings are linear,
and our portfolio consists only of these contracts. Since a combination of linear functions is also
linear, if no contract has a strike price between si and si+1, our payoffs will move linearly with the
realized price between si and si+1. �

This linearity result allows us to, in effect, collapse the continuous state space of possible prices
[s1, sn] into the set of discrete prices {s1, . . . , sn} by bounding our realized loss.

Proposition 30. Let x = maxi xi represent the maximum value the market maker must pay out if
s ∈ {s1, . . . , sn} is realized. Then x is also the maximum value the market maker must pay out if
s ∈ [s1, sn] is realized.

If a value outside of the strike price range is realized, we might lose more than what would be
suggested by the xi. One way to solve this problem is to include two dummy strike prices: one at
zero, and another at an arbitrarily large value. This essentially prevents the final state from falling
outside of the span of the strike prices. While this is appropriate for more general settings (e.g.,
sparsely-traded underlyings) we did not implement these dummy strikes into our LMSR trading
agent. We found that for our underlyings the extreme strike prices of our option chains generally
gave reasonable bounds on the expiration price.

7.3.2 Implementation details

Recall that trades are priced in the LMSR based on the vector of payouts currently held by the mar-
ket maker. In this section we describe how to go from an inventory of options contracts to a payout
vector. Let {s1, . . . , sn} be the ordered set of strikes we are considering, and x = {x1, . . . , xn} be
the payout vector corresponding to the realization of each strike. Formally, selling a call at strike s
corresponds to the payout vector x = {xi}ni=1 where

xi =

{
si − s if si ≥ s
0 if si < s

Selling a put at strike s corresponds to the payout vector

xi =

{
0 if si > s
s− si if si ≤ s
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Selling the underlying corresponds to a payout vector of

xi = si

The payout associated with an event (i.e., xi) depends directly on the strike price associated with
that event (i.e., si). For example, selling a contract of the underlying corresponds to a payout of
30 dollars if the underlying expires at 30, and a payout of 50 dollars if the underlying expires at 50.
Selling a call at a strike of 20 corresponds to a payout of 0 if the underlying expires at 20 (or below),
but a payout of 30 if the underlying expires at 50.

Buying any contract induces the negative payout vector of selling that contract. Observe that
when we quote the price to buy a contract the value will be negative, suggesting that we need to
compensate our counterparty (i.e., pay out money for) the contract in question.

The set of strike prices we model for the LMSR trader is all the currently-offered strike prices,
plus any strike prices corresponding to contracts we traded in the past. Given an inventory I of
bought and sold contracts, we can calculate the payout pi at any strike si by doing an element-wise
sum for the payout vector x of each accumulated contract:

pi =
∑
x∈I

xi

This cumulative payout vector p is then used to price the available options in the chain; if a
prospective contract induces a payout vector y the LMSR trader prices the contract at

C(p + y)− C(p)

The final issue is how to set the liquidity parameter b. For our experiments we set b equal to
2500 times the initial underlying price, a value that yielded good performance over the training data.
Values much smaller than this resulted in sharply diminished trade because the bid/ask spread was
too large. Values much larger than this resulted in marginal prices which stayed close to a uniform
distribution for the entire trading period.

7.4 Trading agents based on constant exponential utility

We have presented two different ways of thinking about how to price options. The first is the tra-
ditional approach from finance, derived from projecting a distribution over the future and pricing
obligations based on this projection. The second approach is derived from automated market mak-
ing in prediction markets. It involves pricing obligations based only on trades previously made.
In this section, we explore how to achieve a synthesis between these two ideas, creating a market
maker with a good prior that also responds to past trades.
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This effort is immediately complicated by the fact that models from finance typically involve
generating continuous distributions over the final strike price, while the LMSR, as we discussed
in the previous section, is for discrete distributions. In order to synthesize these two models one
needs to either discretize a continuous distribution, or develop a continuous analogue to the LMSR.
Since the existing literature in financial options is based around continuous distributions, we choose
to do the latter in order to better align our work with that literature. (We study a version of the
LMSR with a good discrete prior in Section 7.9.2. We found that it performs better than the
maximum-entropy LMSR, but much worse than the trader developed in this section.)

We synthesize the two methodologies by developing a version of the LMSR over continuous
spaces by viewing it as a constant-utility cost function. Recall that we developed the theory of cost
functions over continuous spaces in Chapter 5. In the continuous setting, our payout vectors are
functions x : R 7→ R, and cost functions become functionals that map these functions to scalars,
C : (R 7→ R) 7→ R.

Definition 25. Let µ be a probability distribution over possible expiration prices, u : R 7→ R be
an increasing concave function, and x0 ∈ dom u. A continuous constant-utility cost function C(x) is
given implicitly by the solution to∫ ∞

0

µ(t)u(C(x(t))− x(t)) dt = u(x0)

Recall from Chapter 3 that the LMSR is equivalent to an agent with the exponential utility
function u(x) = − exp(−x/b). Given this framework, it seems like it would be straightforward to
combine the LMSR with the orthodox BSM forecasting model: simply set µ to be equal to the
appropriate log-normal and set u equal to exponential utility. Surprisingly, this approach does not
work as planned and instead produces undefined prices for simple actions.

7.4.1 The undefined prices phenomenon

In a nutshell, what produces undefined prices is the tradeoff between how quickly the tails of the
agent’s prior distribution fall off, and how severely the trading agent’s risk aversion reacts to extreme
losses. If the aversion to large losses is strong enough, it can outweigh the very small probabilities
associated with those large losses. The resulting trading agent would not offer to trade a contract
that could produce those losses at any price.

The specific failure of exponential utility and log-normal priors to produce always-defined prices
is known in the finance literature (Henderson, 2002), but working through a realistic example will
shed light on how and why this pairing fails. We will then generalize the intuition gained from
the example to multiple trades, distributions, and utilities, with a particular focus on what happens
with exponential utility.
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Example

For this example, we will assume a log-normal prior with µ = 5 and σ = 0.5. Now consider the
calculation involved in pricing the sale of the underlying. The sale of the underlying is given by the
payout vector (function) x(t) = t. With exponential utility, recall that the cost function solves, for
some v < 0: ∫ ∞

0

−e−
(

C(x)−x(t)
b

)
µ(t) dt = v

Because of the form of the utility function, we can uncouple the cost, which does not feature
the dummy integrating variable t, from the vector of payouts∫ ∞

0

−ex(t)/bµ(t) dt = veC(x)/b

which shows that the cost function is defined if and only if∫ ∞

0

−ex(t)/bµ(t) dt

converges. For our specific example, with the sale of the underlying and the log-normal distribution,
this integral is

∫ ∞

0

−et/b
(
e(log t−µ)2/2σ2

t
√
2πσ2

)
dt

Figure 7.1 shows a plot of the integrand. The x-axis is log-scaled. The integrand tends towards
zero for large expiration values (in the thousands, the median of the prior distribution is e5 ≈ 148).
However, for unrealistically extreme expiration values (more than 100 times the fictional current
price) the integrand explodes negatively, and the integral diverges.

Why does this occur? It is because for extremely large realization values our sensitivity to the
prospect of extreme loss (since we are selling the underlying we lose when it expires high) out-
weighs the extremely small probabilities that the log-normal distribution produces for those values.
We can show that this behavior holds regardless of the particular b, µ, σ parameterization chosen.
Again, consider the pricing integral corresponding to the sale of the underlying. With a log-normal
distribution and exponential utility, we have

µ(t) ∈ Θ(e− log2 t) and u(x(t)) ∈ Θ(et),

so
u(x(t))µ(t) ∈ Θ(et−log2 t).
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Figure 7.1: Because exponential utility increases faster than log-normal probability falls off, our sensitivity
to large losses grows unboundedly.

Since
lim
t→∞

et−log2 t 6= 0,

the pricing integral diverges. It is easy to see that this asymptotic analysis also applies to selling a
call, since when we sell a call with strike price s,

u(x(t)) ∈ Θ(et−s) ∈ Θ(et).

Consequently, there exists no amount of money an exponential utility cost function with a log-normal
prior would sell an underlying or a call for.

The theoretical basis of undefined prices

For any probability distribution, the density at extremely large realizations is very small, but our
utility function could react to these realizations in a pronounced way. Hence, we have a tension
between the density of the distribution at its tails and the response of the utility function. In this
section, we provide theoretical bounds for this phenomenon, motivated by demonstrating why using
exponential utility with normal priors succeeds, while with log-normal (and many other) priors it
fails. Geweke (2001) also explores diverging (undefined) prices, given certain priors and utilities,
but only for a specific family of utility functions.
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The following result rules out using utility functions like log and −1/x with infinite-domain
probability distributions.

Proposition 31. In a continuous constant-utility cost function, if the prior probability distribution is
positive over (0,∞) but the utility function is not defined over all of R, then there exists a transaction
with undefined price.

Proof. We will show that the utility function will be evaluated at an undefined value. Let x(t) = t

denote the function corresponding to selling an underlying. By assumption, the utility function is
not defined at v ∈ R. Now, consider C(0) > v. Because the utility function is increasing, the
cost function is increasing, and therefore C(x) > C(0). But because C(x) is finite and the prior
distribution is positive at every t ∈ (0,∞), there exists some t for whichC(x)−x(t) = C(x)−t = v,
so the utility function will be evaluated at v, producing an undefined value. This argument holds
by symmetry in the case where C(0) < v, in which case we would buy the underlying instead to
force the undefined evaluation. �

The following result shows that one way to achieve well-defined costs is to only consider finite
probability distributions.

Proposition 32. In a continuous constant-utility cost function, if the utility function is defined and finite
over all of R and the prior distribution with density µ is bounded, so that there exists a T such that for all
t > T, µ(t) = 0, then the cost function is well-defined.

Proof. The limits of integration are finite and the utility function is defined and finite for any argu-
ment. It follows that the integral to determine the cost function is always well-defined. �

One application of this result to the option trading problem is to consider a trading agent with
a log-normal prior distribution that is truncated above some upper boundary T . (The remaining
probability mass above the upper bound could be re-distributed below the bound.) Proposition 32
suggests then that the cost function would always be defined when using such a distribution.

However, this truncation scheme is numerically hazardous because it provides no guidance for
which upper bound of T to select. Consider again Figure 7.1, which shows the weighted utility of a
contract. Since the utility of the contract calculated without an upper bound on the prior diverges,
where the upper bound T is set will have a great effect on the calculated utility of taking on the
contract. To be concrete, it is clear from inspection that setting the upper bound at 1,000, 10,000,
or 100,000 will produce vastly different calculations for the utility of the trader, and therefore for
the fair price of the contract.
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Now specifically focusing on exponential utility, it turns out we must have very light tails for
the cost function to be well-defined.

Proposition 33. A continuous exponential-utility cost function is defined for every set of options transac-
tions if and only if ∫ ∞

0

ec·tµ(t) dt

is bounded for every c ≥ 0.

Proof. Recall we have defined prices if and only if∫ ∞

0

−e
x(t)
b µ(t) dt

is well-defined. By removing constant factors, we see that∫ ∞

0

ex(t)µ(t) dt

must be well-defined. Options contracts are continuous, piecewise-linear functions, so therefore
x(t) is a continuous, piecewise-linear function. Therefore there exists some c such that x(t) ≤ c · t,
where the bound is tight by selling c underlyings. Now since ex is an increasing function, this
implies ∫ ∞

0

ex(t)µ(t) dt ≤
∫ ∞

0

ec·tµ(t) dt

so if the right-hand equation is finite, the left-hand equation is finite also. �

Recall that the expression ∫ ∞

0

ec·tµ(t) dt

is also known as the moment generating function of the distribution corresponding to the density µ.
However, moment generating functions are generally used only for the values of their derivatives
at the argument c = 0, whereas for our result here the function must be defined for any positive c.

This result has the effect of significantly limiting what distributions we can use with exponential
utility. We have already discussed how we cannot use the log-normal distribution, but other dis-
tributions, like the chi-square, exponential, and Weibull are also ruled out. (This begs the question
of whether there is a theoretical or empirical reason to use these distributions.)

Now, consider that for the normal distribution,

µ(t) ∈ Θ(e−t2)
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This means that for arbitrary c the integrand is

Θ(ec·t−t2)

which results in a well-defined integral for any c. This means we can combine a normal distribution
prior with exponential utility and still get defined prices.

7.4.2 Our Exponential utility trader

For our Exponential utility trading agent, we use the same normal distribution prior as the Nor-
mal trader and the same b parameter as the LMSR trader. This is to better facilitate comparisons
between the traders.

7.5 Random agent as a control

In order to provide a performance benchmark for the effect of trading in the market, we introduce
a random trading agent as a control in our experiments. Random is a trading agent that performs a
uniform random action over the set of possible actions at each time step. That is, for all the bids and
asks on the relevant calls, puts, and the affiliated underlying, Random selects a bid or ask to trade
uniformly at random. Random can be thought of as a zero-intelligence agent (Gode and Sunder,
1993) that does not learn or optimize.

We would expect Random to consistently produce slightly negative returns. Consider that the
bid and ask prices are spread, so we should expect that an agent that takes either side of the market
at random should consistently “eat” this spread. That is, we can roughly think of the Random trader
as buying an option at price p+ ε and then selling it at p− ε, resulting in a guaranteed loss of 2ε.

7.6 Experimental setup

As we discussed in Section 7.1, we simulated the performance of the trading agents on each options
chain in our testing set. In our simulations, we step through 15-minute increments on each chain
from initiation to expiration. Figure 7.2 shows a flowchart of the simulation steps over each testing
chain (recall the number of testing chains for each underlying is listed in Table 7.1). Section 7.7
features a worked example of the simulation process with each trading agent on one snapshot of a
single option chain.

Any simulation on historical data is fraught with the risk of overfitting, producing an unrea-
sonably rosy picture of real-world performance. We took several steps to combat overfitting. These
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Figure 7.2: The steps taken by an agent over each option chain. Agents differ in the second step, the way
they determine the fair prices for the offered contracts.

limits are intended to give a more accurate picture of live performance than a naïve optimization
over the dataset.

It is, of course, impossible in hindsight to accurately produce a counterfactual answer to the
question of how well a trading bot would have performed. The bids and asks we fill could cause
changes in the behavior of other traders, which is an effect we cannot judge from past data. How-
ever, Even-Dar et al. (2006) suggest that, as long as agents in the market trade on absolute values
(fixed prices) rather than relative values (based on the current state of the order books), overall price
series will be resistant to the small changes produced by simulation. Options markets are driven
mainly by BSM-style models and often feature relatively large (compared to the underlying) bid/ask
spreads. Therefore, we believe that these markets are populated mostly by traders of the absolute,
rather than the relative type, making simulation by an agent trading a small amount of total volume
appropriate.

Another concern related to the difference between real trading and simulation involves the
effect of adding orders. In the real world, we would be able to add our own limit orders to the
order book so that we would both provide as well as consume liquidity. However, for robustness we
do not model this property within our data; we only take prices and do not simulate the effect of
adding limit orders to the dataset. Presumably, adding the ability to place limit orders at auspicious
prices would only help the performance of these trading agents in the real world, as well as limiting
slippage by contributing to, instead of subtracting from, market liquidity.

We take two more steps to handicap the performance of our trading agents to avoid overfitting
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to the historical data:

• We limit the frequency of trading to only a single contract every 15 minutes. We are concerned
about slippage—the tendency of prices to move against a trader’s actions as the trader absorbs
liquidity. Trading a single contract is a conservative measure of performance that avoids
slippage, because when a counterparty sets a price, the counterparty must sell at least one
contract at that price.

• We choose which contract to trade uniformly at random from the set of desirable contracts.
Say that our algorithm has identified purchasing an underlying, selling a call at 20, and buy-
ing a put at 30 to be beneficial trades given the current market prices. Then we will do only
one of these, each with probability one third. This is the case even if, say, our trading al-
gorithm thinks that buying the underlying would be better than selling the call at 20. This
restriction is designed so as to not overfit on our static snapshots of prices. In a real setting,
trading opportunities may arise and disappear quickly and we may not be able to trade the
best opportunity that exists at a given moment.
We contrast the results of trading a random contract with trading only the contract an agent
thinks is best in detail in Section 7.9.1. Our results show the former model disadvantages
the inventory-based traders more than the finance literature traders, so this restriction is
conservative, as desired, for the conclusions we will draw in Section 7.8.
Furthermore, when we examined the trading behavior that arose from only trading the best
contracts, we saw that it was biased towards trading the same contracts again and again. This
is unrealistic behavior, because presumably the liquidity associated with those contracts will
be exhausted if they are traded so frequently, and the prices would slip. Since a trading agent
generally has several contracts it is interested in trading at a given time step, trading uniformly
at random produced more realistic behavior in the simulation by spreading trading activity
among several contracts.

In the next section we work through the pricing behavior of each agent on a single snapshot of
an option chain, with the goal of giving the reader a better sense of what our experiments entailed
and how our trading agents worked.

7.7 Snapshot of a single option chain

We will consider the snapshot of the ^TNX option chain expiring December 19th, 2009, taken at
9:45 AM on October 22nd, 2009. This particular snapshot was chosen arbitrarily, but with attention
to having a relatively small number of relevant strike prices. Table 7.3 shows the option chain.

The actions of the Random trader are the simplest to describe. At this snapshot the Random
trader picks one of the possible actions to perform uniformly at random. Observe that not all
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Strike Call Bid Call Ask Put Bid Put Ask
17.5 15.6 20.4 X 1.5
20.0 13.1 17.9 X 1.5
22.5 10.6 15.4 X 1.5
25.0 9.0 12.0 X 1.5
27.5 6.6 9.6 X 1.5
30.0 4.6 7.0 X 1.5
32.5 2.6 5.0 X 1.5

Underlying: Current Price 34.34
35.0 1.45 2.95 0.9 2.4
37.5 0.35 1.85 2.15 3.9
40.0 X 1.5 3.7 6.1
42.5 X 1.5 5.6 8.6
45.0 X 1.5 8.0 11.0
47.5 X 1.5 10.5 13.5
50.0 X 1.5 12.1 16.9
52.5 X 1.5 14.6 19.4
55.0 X 1.5 17.1 21.9
57.5 X 1.5 19.6 24.4
60.0 X 1.5 21.9 26.9

Table 7.3: The example option chain at our snapshot. Contracts that do not have open interest are designated
by an “X”.

actions associated with the options chain are available. For instance, the Random trader cannot sell
the call at strike 60, because there is nobody in the market who is offering to buy that contract. The
randomization is only over the set of contracts with open interest.

Now consider the Log-normal and Normal trading agents. Based on the historical volatility
learned from the training set, the time until expiration, and the current price, the Log-normal
trader sets its µ = 3.54 and σ = .0959. Matching the mean and variance of this distribution, the
Normal trader sets its µ = 34.5 and σ = 3.32. From these values, by using the techniques we
described in Section 7.2, we generate the prices in Table 7.4.

By comparing the two tables, we see that the set of positive-expectation actions for both traders
is buying the underlying and selling the call at 32.5. As per our rules, only one of these actions is
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Strike Log-normal Put Log-normal Call Normal Put Normal Call
17.5 0.00 17.00 0.00 17.00
20.0 0.00 14.50 0.00 14.50
22.5 0.00 12.00 0.00 12.00
25.0 0.00 9.50 0.00 9.50
27.5 0.01 7.01 0.02 7.02
30.0 0.10 4.60 0.14 4.64
32.5 0.52 2.52 0.57 2.57

Underlying: Both value at 34.50
35.0 1.60 1.09 1.60 1.10
37.5 3.37 0.37 3.33 0.33
40.0 5.60 0.09 5.57 0.07
42.5 8.02 0.02 8.01 0.01
45.0 10.50 0.00 10.50 0.00
47.5 13.00 0.00 13.00 0.00
50.0 15.50 0.00 15.50 0.00
52.5 18.00 0.00 18.00 0.00
55.0 20.50 0.00 20.50 0.00
57.5 23.00 0.00 23.00 0.00
60.0 25.50 0.00 25.50 0.00

Table 7.4: The prices generated by the Log-normal and Normal traders for our example.

chosen at random to be performed in this time step.
The LMSR and Exponential utility traders both depend on the set of trades we have made in

the past. For a tractable exposition that still exhibits realistic quantities, imagine that we currently
hold the following portfolio:2

1. Long 200 underlyings

2. Short 200 puts at 50

2If we ran our trading agent on the chain over time, it is highly unlikely we would make 200 of the same trade, but
we simulate prices with such a portfolio here to balance the competing desires of having a small number of distinct
contracts with having a realistic-size portfolio.
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3. Short 200 puts at 45

4. Long 200 calls at 25

5. Short 200 calls at 35

This portfolio corresponds to the payout vector given in Table 7.5.

Strike Payout
17.5 8500.0
20.0 7000.0
22.5 5500.0
25.0 4000.0
27.5 2000.0
30.0 0.0
32.5 -2000.0
35.0 -4000.0
37.5 -5500.0
40.0 -7000.0
42.5 -8500.0
45.0 -10000.0
47.5 -11000.0
50.0 -12000.0
52.5 -12500.0
55.0 -13000.0
57.5 -13500.0
60.0 -14000.0

Table 7.5: The payout vector used in the LMSR for our example.

The b parameter used in the LMSR and in the Exponential utility agents is 52,875, which is
2500 times the initial underlying price at the first instance of the chain, 21.15. Starting from our set
of holdings, we can calculate the fair prices for the LMSR trader by incorporating a prospective
contract into our holdings and calculating the difference in cost. Unlike in the Log-normal and
Normal distribution traders, the LMSR prices the bid and ask of each contract separately, with a
spread. (Due to decimal truncation, the spread is not always visible in the displayed prices.)
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Strike Call Bid Call Ask Put Bid Put Ask
17.5 19.42 19.42 0.0 0.0
20.0 17.1 17.1 0.18 0.18
22.5 14.95 14.95 0.53 0.53
25.0 12.96 12.97 1.04 1.04
27.5 11.14 11.14 1.72 1.72
30.0 9.47 9.48 2.55 2.55
32.5 7.96 7.96 3.54 3.54
35.0 6.59 6.59 4.67 4.67

Underlying: Bid 36.92 Ask 36.92
37.5 5.36 5.36 5.94 5.94
40.0 4.26 4.26 7.34 7.34
42.5 3.3 3.3 8.88 8.88
45.0 2.46 2.47 10.54 10.54
47.5 1.75 1.75 12.33 12.33
50.0 1.17 1.17 14.24 14.24
52.5 0.7 0.7 16.27 16.28
55.0 0.35 0.35 18.42 18.43
57.5 0.12 0.12 20.69 20.69
60.0 0.0 0.0 23.08 23.08

Table 7.6: The option prices for the LMSR trader.

By comparing Tables 7.3 and 7.6, we find that the set of positive-expectation actions for the
LMSR trader is to buy the call at between 25 and 47.5 inclusive, buy the underlying, and buy the
puts between 27.5 and 42.5, inclusive.

For the Exponential utility trader, we use the same b parameter as the LMSR and the same µ, σ
tuple as the Normal distribution. Just like in the LMSR, but unlike in the Normal distribution, we
have separate bid and ask prices for contracts (though in this example the prices are close enough
that they are equal when truncated). Table 7.7 displays the option chain prices for the Exponential
utility trader.

The set of positive-expectation actions for the Exponential utility trader is to sell the call at
between 30 and 37.5 inclusive, and to buy the underlying.

Now that we have demonstrated the experimental setup, we proceed to present the results of
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Strike Call Bid Call Ask Put Bid Put Ask
17.5 16.85 16.85 0.0 0.0
20.0 14.35 14.35 0.0 0.0
22.5 11.85 11.85 0.0 0.0
25.0 9.35 9.35 0.0 0.0
27.5 6.88 6.88 0.03 0.03
30.0 4.51 4.51 0.16 0.16
32.5 2.47 2.47 0.62 0.62

Underlying: Bid 34.35 Ask 34.35
35.0 1.04 1.04 1.69 1.69
37.5 0.31 0.31 3.46 3.46
40.0 0.06 0.06 5.71 5.71
42.5 0.01 0.01 8.16 8.16
45.0 0.0 0.0 10.65 10.65
47.5 0.0 0.0 13.15 13.15
50.0 0.0 0.0 15.65 15.65
52.5 0.0 0.0 18.15 18.15
55.0 0.0 0.0 20.65 20.65
57.5 0.0 0.0 23.15 23.15
60.0 0.0 0.0 25.65 25.65

Table 7.7: The option prices for the Exponential utility trader.

our experiments.

7.8 Results

We begin by providing the numerical results from our experiments and then discussing those results
qualitatively.
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7.8.1 Quantitative results

In terms of real-world trading performance, it would be most appropriate to quantify performance
of trading agents in terms of net annualized return (e.g., “10% a year”). Of course, net return is a
function of both value generated as well as value risked. Because of the form of the options contracts,
determining the value risked is not straightforward. Single contracts, like selling a call, could lose
an unbounded amount of money in the worst case. Combinations of options could amplify or
hedge these losses. In practice, traders need to put up a certain fraction of their positions with the
exchange (the margin) in order to maintain those positions. The precise margin amount depends
on the rules of the particular exchange the options are traded on and is generally based around
historical models of how prices move over time.

While percent return is difficult to calculate and depends on a host of practical matters, net
performance (gain or loss) is simple to calculate. Therefore, we use net performance as a measure
of trading agent performance. To normalize net performance, we divide a trading agent’s gain or
loss for a chain by the initial underlying price and by the number of days the chain is active. The
resulting figure gives a meaningful way to compare chains where the underlying is in the thousands
(like ^SPX) or the ones (like C), over differing numbers of days. We refer to this normalized value
as net underlyings per day (NUPD).

Table 7.8 provides summary statistics for the performance of each trading agent over the 114
testing chains in terms of NUPD. The Exponential utility agent had the most positive instances,
highest mean, and best worst-observed performance. The Log-normal agent had the highest me-
dian performance. The Random trading agent had the worst performance along each of these
dimensions.

Agent Frac. positive Mean Median Worst
Log-normal .54 .15 .89 -6.6

Normal .54 .12 .85 -6.7
LMSR .46 -1.57 -.76 -37.8

Exponential utility .55 .32 .70 -3.6
Random .08 -1.58 -.82 -38.5

Table 7.8: A summary of comparing each trading agent along a number of dimensions. Mean, median, and
worst-observed trials are measured in terms of NUPD. Higher values are better.

To assess the significance of the values in Table 7.8, we performed a bootstrap analysis that simu-
lated running our experiments 10,000 times. Bootstrap analysis was a natural choice for this setting
because of the complexity of estimating e.g., worst-observed loss using standard techniques (Davi-
son and Hinkley, 2006). The head-to-head results of this analysis is given in Table 7.9. For instance,
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the first value in the table indicates that in 68% of our bootstrapped experiments the Exponential
utility trader had a higher fraction of positive runs than the Log-normal trader.

Trader Frac. positive Mean Median Worst Opponent
Exp. utility 68 93 26 99 Log-normal
Exp. utility 60 95 25 100 Normal
Exp. utilty 100 100 100 100 LMSR
Exp. utility 100 100 100 100 Random
Log-normal 48 57 56 98 Normal
Log-normal 100 100 100 100 LMSR
Log-normal 100 100 100 100 Random

Normal 100 100 99 100 LMSR
Normal 100 100 100 100 Random
LMSR 100 57 42 98 Random

Table 7.9: Percent of the bootstrapped experiments in which the trader on the left had a higher number of
positive instances, mean, median, and worst-observed loss relative to the trader on the right.

Table 7.10 shows the relative performance of each trading agent against the others. The values
are the number of testing chains in which the agent in the row beat the agent in the column. Our
results establish the strict transitive ordering Exponential utility > Log-normal > Normal > LMSR
> Random, where “a > b” means that trading agent a beat trading agent b in a majority of our
testing chains.

Log-normal Normal LMSR Exp. utility Random
Log-normal X 66 69 52 75

Normal 48 X 70 49 77
LMSR 45 44 X 41 62

Exp. utility 62 65 73 X 82
Random 39 37 52 32 X

Table 7.10: The number of times the agent in the row beat the agent in the column in our 114 testing chains.
Majority winners are denoted in bold.

Table 7.11 adds statistical significance context to the results observed in Table 7.10. Given the
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produced data, the hypothesis “Trader A has a higher NUPD than Trader B on this chain” was
tested for all traders and chains. If the probability that a trader outperforms the other was greater
than 0.99, it was recorded as a win for that trader and a loss for the other. All the chains in which
the probability lied between 1% and 99% are recorded as ties. Table 7.11 shows the resulting counts.
All of the conclusions from Table 7.10 still hold; in particular, the Exponential utility trader is still
the Condorcet winner.

Trader Wins Ties Losses Opponent
Exp. utility 41 40 33 Log-normal
Exp. utility 36 44 34 Normal
Exp. utility 71 5 38 LMSR
Exp. utility 75 12 27 Random
Log-normal 20 80 14 Normal
Log-normal 68 7 39 LMSR
Log-normal 68 13 33 Random

Normal 66 5 43 LMSR
Normal 71 8 35 Random
LMSR 57 9 48 Random

Table 7.11: Counts of head-to-head performance of traders taking into account statistical significance. If a
trader had > 99% chance of out-performing its opponent on a chain, it is recorded as a “Win”. If it had
< 1% chance, it is recorded as a “Loss”. All other significance levels are recorded as “Ties”.

Table 7.12 compares the performance of the Exponential utility trader against its “parents”, the
Normal distribution trader and the LMSR trader. The Exponential utility agent beats the perfor-
mance of both of these traders in 42 of the testing chains (37%) while losing to both in only 18 of
the chains (16%). It outperformed a blend composed of equal parts of Normal and LMSR traders
in 76 testing chains (67%).

The NUPD of each trading agent over our testing chains can be viewed as noisy realizations
of a continuous random variable. We can recover this variable by smoothing the realizations with
a kernel. Figure 7.3 shows the kernel-smoothed CDFs of these random variables for a likelihood-
maximizing Gaussian kernel. The figure plots the fraction of instances that had net performance
no better than the given value. Both the LMSR and Random trading agents had chains on which
they performed worse than -10 NUPD, and so the CDFs for those traders do not start 0 on the
plot. The Normal and Log-normal CDFs are indistinguishably close together for much of the plot.

Our 114 chains include a mix of bonds, indices, equities, and commodities. We did not ob-
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Relative Exponential utility performance Frequency
Beats both .37

Beats one, loses to one .47
Loses to both .16
Beats blended .67

Table 7.12: Distribution of the performance of the Exponential utility trader against the Normal and LMSR
traders. “Blended” refers to an equal parts mix of the Normal and LMSR traders.

serve a substantial difference between the relative performance of our trading agents in any of the
underlyings. This may be due to the fact that the volatility parameter σ is fit differently for each
underlying, allowing for appropriate responses to both volatile and stable underlyings.

One notable feature of the financial markets captured in our dataset was the financial collapse
of late 2008. Chains that expired in late 2008 and early 2009 showed the worst performance for
our parametric traders. In particular, the Log-normal and Normal traders delivered their worst
performances over the ^FVX chain that expired December 20th, 2008. The performance of the
underlying from the expiration of the prior chain on September 22nd to expiry is plotted in Fig-
ure 7.4. There are several days in which the underlying moved down or up more than 10%. The
collapse was not an “anomaly” in our dataset. It was a real event that our trading agents would have
been involved in and must be considered when evaluating trading agents on real data.

Finally, we did not see any significant difference in the total volume traded by each agent. We
attribute this to the diversity of contracts offered to the trading agents at each time step, all of
which generally have tight bid/ask spreads. In our simulation, an agent needs to find only one of
the dozens of possible actions desirable at each time step in order to trade. This result could be seen
as a consequence of selecting a b parameter for the inventory-based traders large enough to result
in small bid/ask spreads (e.g., the snapshot example in Section 7.7); substantially smaller b values
would have resulted in larger bid/ask spreads in the agents’ prices and consequently less trading
activity.

7.8.2 Qualitative results

In this section we attempt to distill our quantitative findings into qualitative facts about the perfor-
mance of our automated traders.
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Figure 7.4: The option chain expiring December 20th, 2008 was particularly volatile, leading to poor perfor-
mance by the parametric traders.

The Random and LMSR traders had the worst performance

Both the Random and LMSR traders were characterized by low mean and median performance
and terrifically bad worst-case losses. As Figure 7.3 shows, the LMSR was much more volatile than
Random. Random had its performance on the vast majority of the testing chains (about 80%) fall
between -2 and 0 NUPD, while the LMSR had many testing chains do better or worse.

As we have discussed, the LMSR is equivalent to an agent with exponential utility and a uniform
prior over the strikes. One interpretation of this uniform prior is that the LMSR neither has nor
relies on any domain knowledge. Our quantitative results with the LMSR are in line with the
recent findings of Brahma et al. (2010) that suggest the LMSR struggles in comparison to trading
agents with domain knowledge, and of Chakraborty et al. (2011), who compare the LMSR to a
Bayesian market maker that relies on both priors and inventory. Their lab experiments showed that
the Bayesian market maker was generally much more profitable than the LMSR. Furthermore, the
LMSR’s results are not unexpected; it is traditionally used to provide liquidity and subsidize a set
of traders for their information in Internet prediction markets. With its losses here, the LMSR did
the same thing in our experiments.

One dimension along which the LMSR was able to out-perform Random significantly was the
fraction of positive instances over the testing chains. Random recorded positive NUPD in fewer
than eight percent of our trials, while the LMSR was positive on about 47% of the trials. Table 7.9
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shows that in 100% of our bootstrapped experiments the LMSR trader had a higher fraction of
positive instances than the Random trader. This confirms our intuition that the Random trader
would “eat the spread” and lock in small losses. Interestingly, the performance of Random was the
best relative to the other traders on the highly volatile chains at the end of 2008. For instance,
the Random trader had the best performance of all the traders on the ^FVX chain that expired
December 20th, 2008, losing about 1.2 NUPD (better than its mean performance over the testing
set as a whole). We credit this to the fact that the Random trader is highly non-parametric, and so
its performance is not affected by the relative volatility of the underlying.

The LMSR learned plausible distributions

While the LMSR lagged in quantitative performance, that does not mean the concepts behind it
are unsound. Figure 7.5 shows an in-progress run of the LMSR (on an ^IRX chain). The implicit
probability distribution over strike prices in the LMSR closely matches the fit produced by the
Normal distribution trader. This is significant because the Normal trader knows the historical
volatility and the current underlying price, while the LMSR trader only knows the trades it has
made. This is made more remarkable by the fact that the trading agent has only six crudely-shaped
tools (buying or selling calls, puts, or the underlying) to create this distribution.
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Figure 7.5: In this capture of an in-progress run, the LMSR trader’s implied probability distribution (red
bars) closely matches the projection of the Normal distribution trader (green curve).

One perspective on what is happening is that the LMSR learns the correct distribution of prices
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because it is equivalent to a no-regret learning algorithm (Chen et al., 2008; Chen and Vaughan,
2010). Essentially, with each time step through the options chain the LMSR trader makes a small
correction to get its implicit probability distribution closer to the market’s distribution. This also
implies the similarity between the LMSR’s probabilities and the Normal distribution trader in
Figure 7.5 is partly fallacious, because the LMSR has not been learning from that specific snapshot
of the chain but rather making a series of small adjustments in probabilities over time.

A deeper perspective on this learning process is visible in Figure 7.6. This figure shows the
^IRX chain used above and three other (arbitrarily chosen) chains with nearby expiration dates, and
measures the K-L divergence of the LMSR trader’s marginal prices and the Log-normal trader’s
probability distribution.
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Figure 7.6: The K-L divergence of the LMSR from the log-normal distribution taken over four chains.

Recall that K-L divergence is a measure of how dissimilar two distributions are. (Decreasing
K-L divergence means the distributions are more similar.) Formally, letLN t denote the log-normal
probability density function at time t, and let πt

i be the marginal probability of the LMSR trader
at strike price si. Then the K-L divergence at time t, KLt, on the above plot is calculated as

KLt ≡
∑
i

πt
i log2

(
πt
i

LN t(i)

)
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One interpretation of the K-L divergence is the number of extra bits required for the log-normal
distribution to encode the LMSR marginal distribution.

Although the trend is not consistent, the K-L divergence between the two distributions seems to
decrease slowly until roughly 75 days before expiry, when it begins to increase significantly. We have
truncated the plot at an upper boundary of 10, but in the final days before expiry the K-L divergence
increases without bound. It appears to be accurate, then, to divide the LMSR’s behavior into two
regimes: the last 75 days, in which the K-L divergence becomes arbitrarily large, and the time
previous, in which the K-L divergence is stable or slightly falls. This earlier period represents the
LMSR’s “learning” process, as the marginal prices begin to approach the log-normal distribution.

The reason the K-L divergence increases so dramatically immediately before the market expires
is that the log-normal distribution becomes tighter and tighter around a single value (the current
price), eventually converging to a single unit mass at the expiration price in the final time step.
These progressively tighter distributions require huge numbers of additional bits to encode the more
spread out LMSR distribution, because the extreme strike prices have such a low likelihood when
the log-normal distribution is tight. Consequently, the K-L divergence between a tight, late-stage
log-normal distribution and a more diffuse LMSR distribution is large, and as the log-normal
distribution approaches a unit mass, it goes to infinity.

Log-normal slightly outperformed Normal

A log-normal distribution is intuitively a better and more-realistic fit for stock prices than a normal
distribution, because the former reflects that the stock price cannot go below zero. Reflecting this
intuition, the Log-normal trader performed better than the Normal trader in our experiments. The
Log-normal trader had a slightly higher mean and median performance than the Normal trader
and won the majority of head-to-head comparisons between the traders. However, the perfor-
mance characteristics on the whole were close, as can be seen visually by the overlapping density
lines in Figure 7.3. Table 7.9 shows that in our bootstrap analysis, neither trader had a higher frac-
tion of positive instances, mean NUPD, or median NUPD in more than 57% of the experiments.
Finally, Table 7.11 also shows that for the bulk of option chains (80 out of 114, or 70%), neither the
Log-normal or Normal trader produced higher values with 99% confidence. This similarity could
be considered as a likely consequence of the design of the two traders, because the Normal trader
matches the mean and standard deviation of the Log-normal trader at each timestep.

Exponential utility won but did not stochastically dominate

The Exponential utility trader was the winner in our trials by most of the measures we used. It had
the highest mean and fraction of positive testing instances, a much better worst-case loss, and only a
slightly lower median than the Log-normal and Normal traders. The bootstrap analysis in Table 7.9
suggests that the Exponential utility trader consistently outperformed the Log-normal and Normal
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traders in terms of mean performance and worst-case loss, but that neither the Exponential utility
trader’s higher fraction of positive trials nor the Normal and Log-normal traders’ higher median
performance were observed in more than 75% of the bootstrapped experiments. The Exponential
utility trader was also the Condorcet winner in head-to-head comparisons against the other traders,
beating each of them over a majority of the testing chains. Furthermore, the Exponential utility
trader outperformed a mix of the Normal and LMSR traders in two-thirds of our testing chains,
indicating that it is more sophisticated than a mere combination of the two techniques. However,
the Exponential utility agent did not stochastically dominate the finance literature agents, and so
it is possible for some utility functions to prefer the returns of the standard BSM model instead.
These utility functions would weight average- and better-case performance and discount worst-case
losses.

Exponential utility had more accurate actionable beliefs

One perspective on how the Exponential utility agent performed so well can be found by consider-
ing the areas of Figure 7.3 where its CDF diverges from the CDF of the Normal and Log-normal
traders. There is a large gap between the lines for negative NUPD, where the Exponential util-
ity trader out-performs the Log-normal and Normal traders, and a smaller gap between 1 and 2
NUPD, where the Log-normal and Normal outperform Exponential utility. What this implies
is that the Exponential utility trader is practicing a form of insurance against bad outcomes. It
transfers wealth between states of the world in which good things happen (the positive net return
realizations) into states of the world in which bad things happen (negative net return realizations).
As a result, the good cases become slightly worse (the gap between Normal/Log-normal and Ex-
ponential utility on the positive side) but the bad cases are severely reduced (the gap on the negative
side).

This interpretation makes sense when we consider that the Exponential utility trader is a risk-
averse analogue of the Normal trader. As a risk-averse trader the Exponential utility agent is more
willing to hedge future risk, trading off future profits to avoid large losses, and will not increase its
exposure to existing risks unless at the offered prices doing so seems exceptionally profitable.

One of the ways the Exponential utility trader accomplished this insurance is by having effec-
tively heavier tails (more probability mass) on extreme cases than its corresponding normal prior.
These tails make actions like buying a low-strike put or buying a high-strike call more desirable.
These contracts are out of the money, and so they would require significant price movement to not
expire worthless; consequently they are also priced cheaply. When a trading agent purchases one
of these contracts, a small amount of wealth is transferred from states where extreme events are not
realized to become a larger amount of wealth in states in which those extreme events are realized.

This insurance allowed the Exponential utility trader to outperform the Normal and Log-
normal traders, because those traders’ models were not correct but those agents traded as if they
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Figure 7.7: In this capture of an in-progress run, the heavier tails of the Exponential utility trader relative to
the Normal trader are evident. The y-axis is log-scaled.

were. Consider that, if a trader’s beliefs are indeed the correct model of the world, then a risk-
neutral agent trading on those beliefs will have a higher expected return than a risk-averse agent
trading on those beliefs. (This is because a risk-neutral agent maximizes his expected return by
definition.) Put another way, taking insurance should not increase a risk-neutral agent’s payout
if that agent was acting on correct beliefs. Since, in our experiments, the risk-averse Exponential
utility agent had higher expected returns than the risk-neutral parametric traders from the finance
literature, the latter traders’ models of the world were incorrect. Specifically, the heavier tails of the
Exponential utility agent could be a more accurate distribution over the expiration price if there is
a chance of large downward shocks to the price (e.g., in the financial crisis).

Figure 7.7 is an in-progress shot of heavy tails in a representative run (in this case, for a GE
chain). Here, the underlying price is about 38. The implied probability distribution of the Expo-
nential utility trader has about twice the density at low underlying realizations (the plot is log-scaled
to make this more clear). For a continuous constant-utility cost function with belief density µ, we
can calculate the implied probability density at t for vector x by

∇C(x)(t) = µ(t)u′(C(x)− x(t))∫∞
0

µ(k)u′(C(x)− x(k)) dk
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7.9 Modifying the experiments

In this section we examine two changes to the experiments we ran in the previous section. First,
we relax the random uniform trading restriction, allowing trading agents to trade only the contract
they think is most beneficial at each time step. Second, we examine the performance of an LMSR
trader that incorporates a better discrete prior.

7.9.1 On the random uniform trading restriction

Recall that our second constraint on trading simulations was to select a contract to trade uniformly
at random from the set of contracts identified as favorable. This was done to avoid overfitting on
the fact that our data comes in the form of static snapshots over the option chains. In a real trading
environment, favorable trades will come and go, possibly quickly enough to preclude our trading
on them. Therefore, selecting uniformly at random provides a more conservative measure of how
each trading agent would perform in real settings.

With this scheme, the performance of each trading agent on each testing chain becomes a
random variable. When the trading agent keeps state (as in the LMSR and Exponential utility
agents), then this random variable becomes quite complex as future actions depend on the actions
selected randomly in the past.

This randomization gives rise to two concerns: First, that the variance between different runs
(realizations of this random variable) is large enough to mitigate the significance of the differences
between agent performance. Second, that uniformly trading, rather than trading the best contract
from the set of actions, unfairly penalizes some agents over others. In this section, we study each
of these concerns in turn.

The difference between runs was generally small

We completed four runs over each agent over each testing chain. To measure volatility, we took
the maximum difference in NUPD between the four runs. This can be considered an adversarial
measure that is particularly sensitive to the outliers from each run. The resulting differences appear
in Table 7.13.

These results indicate that the runs were fairly robust over different realizations of trading strate-
gies. For all but the Random agent, about two-thirds of all runs had all four experimental runs fall
in a range less than 1/16 NUPD wide, and those agents had all of their runs fall within a 0.5 NUPD
band in more than 95% of the chains.

As could be expected, the Random agent showed particularly large volatility between different
runs. This is because the Random agent had the largest set of possible actions in each time step
(i.e., all the available contracts). The Random agent over the ^XAU chain expiring on 2009-09-30
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Percent with max difference smaller than
Agent 0.0625 0.125 0.25 0.5 1.0 2.0
Log-normal 64 83 96 99 99 99
Normal 66 83 92 97 97 98
LMSR 67 83 92 96 97 98
Exponential utility 68 82 92 97 97 98
Random 46 65 83 92 96 96

Table 7.13: We performed four runs over each trading agent in the dataset. The percent of chains with
difference between maximum and minimum NUPD is noted for each agent.

had the largest difference in trials overall, with NUPD of -0.10, -0.11, -10.3, and -10.4. This appears
to be due to a possible anomaly within the dataset: the best ask on a put option at 105 on September
28th, 2009 is listed in our data set at 200,000 dollars. When the Random agent buys this contract,
it induces a massive loss for the chain as a whole. It is unclear whether this contract was actually
listed at this price on the exchange, or if it is an error in the data set. Regardless, because this price
was so uncompetitive the other, intelligent, trading agents were able to avoid it.

Trading only the best contracts produces no qualitative changes

To see whether our results were significantly affected by trading uniformly at random from the
set of contracts they deemed favorable, we also simulated our trading agents trading only the best
(highest expected profit) contract from the set of contracts they deemed favorable. Observe that
this produces a deterministic trading agent. (Consequently, the Random trading agent is no longer
relevant in this setting and is omitted.) We are interested in testing whether our qualitative results
are merely an artifact of the restriction to trading uniformly or not. We want to examine how the
agents from the finance literature perform relative to the Exponential utility agent when only the
best contract is traded.

Table 7.14 shows the mean and median NUPD of the deterministic agents relative to trading
uniformly. They are phrased in terms of surplus NUPD, subtracting the deterministic NUPD for
each chain from the average NUPD of that chain when trading occurs uniformly at random.

As might be expected, trading only the best contracts produces slightly higher median NUPD
for all the deterministic agents. The LMSR agent is notable for having significantly higher mean
surplus NUPD than the other agents. This appears to be due to a combination of two factors:
trading only the best contracts allows the LMSR agent to avoid making some of the worst trades,
and furthermore, the LMSR agent’s performance was already poor enough to allow for a large
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Surplus NUPD
Agent Mean Median
Log-normal 0.00 0.04
Normal 0.04 0.09
LMSR 1.13 0.10
Exp. utility 0.26 0.13

Table 7.14: The difference in NUPD between deterministic agents that only trade the contracts they think
will deliver the best return versus trading uniformly at random from the set of agreeable trades, over the 114
testing chains.

boost. These results suggest that trading only the best contracts does not change the qualitative
performance ordering of the agents: the Exponential utility trader outperforms the Log-normal
trader, which does about as well as the Normal trader, which in turn outperforms the LMSR.

One feature of simulating only the best contract that we observed, especially for the parametric
finance literature traders, was the tendency to buy (or sell) exactly the same contract over and over
again. It is easy to see why this would be the case if there is not a tremendous amount of move-
ment in the market in-between 15 minute intervals; in this case, the most agreeable contract at the
current time step is likely to be the most agreeable contract 15 minutes later, as well. Particularly
for contracts at extreme strike prices, this kind of behavior is inherently unrealistic in a simulation
because sustained trade in a single contract is likely to move market prices. The Exponential utility
and LMSR agents are able to mitigate this phenomenon because as they trade a contract, further
expansion of that position becomes less desirable. However, our principal way of simulating in
the paper—taking a uniform sample from the set of favorable trades—is a more conservative sim-
ulation. As we have shown here though focusing on only the best contracts does not change our
qualitative conclusions.

7.9.2 The LMSR with a better discrete prior

Recall that there were two differences between the Exponential utility trader and the LMSR trader:
a better prior, and a continuous relaxation of the event space. To investigate which of these changes
was responsible for the improvement in performance, in this section we examine incorporating a
good discrete prior into the traditional LMSR.
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Recall from Chapter 3 that the LMSR with a discrete prior π corresponds to the cost function

C(x) = b log
(∑

j

πj exp(xj/b)

)

We form the Discrete-prior LMSR trader by setting

πi ∝ LN(xi)

where LN is the density function of the Log-normal trader for the same option chain at the same
snapshot in time. To facilitate comparison, we keep the b parameter the same as in the LMSR and
Exponential utility trading agents, and we use the same compression of the state space to strike
prices that we developed and motivated in Section 7.3.1.

Results

We replicated our experiments from Section 7.6 with the Discrete-prior LMSR trader. Table 7.15
compares the Discrete-prior LMSR trader against the LMSR, Log-normal, and Exponential util-
ity traders. The Discrete-prior LMSR trader outperforms the LMSR trader over 63% of the option
chains, but loses a similar frequency of head-to-head matchups against the Log-normal and Expo-
nential utility trader.

Comparison Trader Fraction
LMSR .37

Log-normal .61
Exponential utility .64

Table 7.15: Fraction of options chains on which the LMSR, Log-normal, and Exponential utility traders
out-performed the Discrete-prior LMSR.

Table 7.16 compares the performance of the Discrete-prior LMSR with the Log-normal, LMSR,
and Exponential utility traders. The Discrete-prior LMSR had performance that closely matches
the original LMSR, although with slightly better mean, median, and worst-case loss.

Discussion

While the Discrete-prior LMSR trader outperformed the LMSR trader, the difference was slight.
The common factor between the two agents was the compression of the state space to just the rele-
vant strike prices, and our results suggest this compression was the dominant factor in determining
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Agent Frac. positive Mean Median Worst
Discrete-prior LMSR .46 -1.54 -.73 -37.7

Log-normal .54 .15 .89 -6.6
LMSR .46 -1.57 -.76 -37.8

Exponential utility .55 .32 .70 -3.6

Table 7.16: Comparison of the Discrete-prior LMSR with other trading agents.

the performance of the traders. Since both the Log-normal and Exponential utility traders have
much better performance than the Discrete-prior LMSR, this suggests that as the number of events
(future expirations) considered increases, the performance of the discrete-prior LMSR would im-
prove. This is because as the number of events increases, the discrete market maker becomes a closer
approximation to these continuous market makers. However, as we have discussed, an increasing
number of events makes the computation of values much more challenging, and compressing the
state space to only the traded strike prices made a huge state space tractable without opening the
trader up to unbounded loss. Still, it seems that compressing the state space to strike prices, while
not affecting worst-case loss, does come with the hidden cost of a much less expressive prior.

One issue that should not be lost in this discussion is that using a discrete market maker with a
fine-grained prior does not provide a way to circumvent the impossibility results of Section 7.4.
Consider using the LMSR with a large number of expiration prices (events) with a prior that
matches the distribution of the Log-normal trader. The prior distribution that is actually being
generated is a log-normal distribution truncated at the upper bound of the event space (the largest
expiration price considered). This truncation scheme is covered by Proposition 32, which shows
that exponential utility will produce meaningful prices if the prior distribution is identically zero
above some upper bound. However, as we discussed in Section 7.4, this truncation is numerically
hazardous because its effect on prices is unpredictable and highly sensitive to the upper bound.

7.10 Extensions

In terms of practical impact, we acknowledge that there are considerable gaps between our exper-
iments and the actual implementation of a trading strategy. These include features like margin
rules, which dictate how much of our currently-held position we are required to stake, and trading
costs, which determine how expensive it would be to take on new positions. Of course, once these
practical hurdles are known they could be incorporated into the decision logic of a trading agent,
but regardless, they are likely to affect performance. However, we do believe that our experiments
are robust in terms of implementation, particularly because we handicapped the trading volumes
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and frequencies of our agents. This was done with the intention of producing experimental results
that would be more accurate reflections of the actual performance of those strategies in real mar-
kets. In summary, we are guardedly optimistic about the efficacy of this line of research in practice,
although implementing these strategies in a real market poses obstacles that could deleteriously
impact returns.

The framework we used to construct the Exponential utility trader, combining a utility function
with a probability distribution, is very general. We believe there are significant opportunities for
expanding and broadening the model in terms of each component.

Probability distribution In the time since the BSM model was first promulgated, other ways of
analyzing how prices move through time have also been proposed that better fit actual per-
formance. These include GARCH (Engle and Ng, 1993) and jump models (Kou, 2002), and
they imply probability distributions over future realizations that are not log-normal. Another
intriguing possibility for a prior distribution is the technique of Ait-Sahalia and Lo (1998)
that uses non-parametric techniques to fit a probability distribution to the prices in an option
chain.

Utility function On the other side, it would be interesting to explore other utility functions besides
exponential utility. We are particularly concerned that exponential utility’s extreme weighting
at large values has a tendency to produce undefined prices for many distributions. Perhaps a
utility function that had polynomial risk aversion, rather than exponential, would provide a
more intuitive price response and would allow for the use of a broader range of prior distri-
butions. Regardless of the utility function-prior distribution pairing, they must still obey our
results in Section 7.4.1. In particular, power-law utilities (including log utility, which could be
considered a standard choice) do not correspond to traders that produce meaningful prices.

Most well-established option trading strategies3 in the literature operate by trading multiple
contracts in a single chain. We modeled our experimental methodology after these approaches,
and in our experiments we treated each testing chain independently. But in practice, there is a
correlation between chains with different expiration dates for the same underlying. For instance,
if an underlying expires at a low realization, it is more likely that the chain expiring three months
later will also expire at a low realization. Another extension to our model is to explore how to
add a time dimension to incorporate information between the chains of different expiration dates
for the same underlying. In this view, the prior distribution would be over paths of prices over
time, and when contracts are traded at expirations it affects the probability distribution over those
paths. Furthermore, different expiration dates are linked through the underlying; a trading agent
may make plans to purchase an underlying now to sell at a specific date in the future, or to sell
conditional on how prices move over time.

3The Chicago Board Options Exchange (CBOE) operates http://www.cboe.com/Strategies, which features
popular options trading strategies.
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Finally, we have applied our techniques to options markets but the experimental success of the
Exponential utility trader suggests traders that take into account both a good prior distribution as
well as their previous trades could be successful in other real applications, too. There are many
settings where we have good priors over the future, and they often involve considerable financial
risk and reward; examples include a casino handling sports betting or a proprietary trading desk at
a bank. We are interested in adapting the synthesized model to other trading activities where we
have reasonable priors over the future and the ability to trade through time.
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Chapter 8

Rational market making with

probabilistic knowledge

The previous chapters of this thesis have taken a quasi-adversarial view of a market maker’s coun-
terparties and over the events themselves. The market maker’s goal is not to minimize worst-case
loss, and despite possibly having a subjective prior over the events, he is sensitive to the bets made
by counterparties although he is oblivious to what those bets will be.

In this chapter we consider a different setting in which the market maker has a good prior on
the future state of the world, and on how traders will bet for different prices the market maker
offers. This may be a more realistic setting for market making settings like Las Vegas sports betting
or a proprietary trading desk at a bank, where significant investment has been made in developing
knowledge over the future states of the world.

A complication arises when traders and the market maker have substantially different beliefs.
Then, the market maker must balance two competing factors: the desire to hedge bets for a certain
profit, and the desire to profit in expectation from wagers made at favorable prices. For instance, a
market maker could find itself in a situation where it could either increase its exposure to an event
it thinks will probably occur at a bargain price, or hedge out its current risk on that event in order
to guarantee a small but certain profit.

In this chapter, we compute the policy of a Kelly criterion market maker over a series of in-
teractions with traders. The Kelly criterion (Kelly Jr, 1956) is a way to make bets that mandates
maximizing the expected log utility of a setting. While simple as a guiding precept, the Kelly
criterion accomplishes a broad range of objectives: over a series of bets, it is the fastest way to
double an initial investment, produces the highest median wealth, and produces the highest mode
wealth (Poundstone, 2006).
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Our experimental results show that a Kelly criterion market maker follows a complex time-
dependent strategy. In the early stages of wagering, the market maker will attempt to match orders
to profit from the bid/ask spread. Towards the end of trading, the policy gradually shifts to myopic
optimization on the market maker’s private beliefs. Perhaps surprisingly, we show that in the early
stages of the market, profiting from the bid/ask spread dominates the desire to sell inventory at
agreeable prices, that is, if it facilitates more trade, a Kelly criterion market maker should buy obli-
gations at a price higher than, or sell obligations at a price lower than, its private beliefs. Moreover,
because the inventory a risk-averse market maker accumulates affects the prices it offers, the market
maker could offer bets that are myopically irrational for the entire trading period. This is in contrast
to a risk-neutral market maker that would never offer a myopically irrational bet.

8.1 Model

Following Glosten and Milgrom (1985), the setting is a repeated sequential interaction between the
market maker and a set of traders. In each period, the market maker sets prices for a finite set of
bets, and then a trader is drawn randomly from a large pool of potential traders. That trader enters
the market and selects one of the offered bets to make with the market maker (or none at all). After
a finite number of periods the process halts, one of the n events is realized, and the bets are settled
with the traders.

8.1.1 Traders

The traders have the following features:

• Traders are anonymous, so there is no way for the market maker to distinguish between traders.
Anonymity is a standard component of many models in the literature (for example, Feigen-
baum et al. (2003) and Das (2008)), because it is natural for settings where prices are posted
publicly, as is the standard in electronic markets.

• Traders are myopic, not strategic. They exist for only a single period: they enter the market,
perceive the prices offered by the market making agent, select a bet to take (or no bet), and
then exit. The traders do not learn from historical prices or strategize about their behav-
ior. Myopic traders (also known as zero-intelligence agents or sometimes noise traders) are a
feature of much of the literature (Glosten and Milgrom, 1985; Kyle, 1985; Othman and Sand-
holm, 2010b). Empirical studies of market microstructure have shown that the behavior of
these agents is qualitatively very similar to behavior observed in real markets with human
traders (Gode and Sunder, 1993; Othman, 2008). However, in some settings the simple be-
havior of these agents may be an unrealistic model (Chen et al., 2007; Dimitrov and Sami,
2008; Chen et al., 2010).
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• The number of trading periods is drawn independently of the market maker’s policy. Since
traders have the ability to decline to place a bet with the market maker if they do not find the
offered bets agreeable, this condition means that the number of traders placing bets with the
market maker is not a constant—instead, it will depend on the market maker’s policy. We
assume the market maker knows the true distribution of the number of trading periods.

8.1.2 Utility and the Bellman equation

The market maker’s state can be represented by a tuple (t,w) of the index of the participating agent
t ∈ {1, 2, . . .}, and the wealth vector w, where wi is the market maker’s wealth (payoff ) if state of
the world ωi ∈ Ω is realized. (Since exactly one trader appears in each period, the variable t can
be thought of as an index over discrete time.) There is a termination state (t̄,w), where the market
maker gets an expected utility payout based on his subjective beliefs p̂, which he believes to be the
correct distribution over the possible futures:

V (t̄,w) ≡
n∑

i=1

p̂iu(wi)

Without loss of generality, a risk-neutral market maker receives its expected linear utility on
termination:

V (t̄,w) ≡
n∑

i=1

p̂iwi

A Kelly criterion market maker receives its expected log utility on termination:

V (t̄,w) ≡
n∑

i=1

p̂i log(wi)

The bets a market maker offers can be expressed by vectors in payout space x ∈ Rn, so that xi is
the trader’s payoff (that is, the market maker’s loss) if ωi is realized. For instance, imagine that the
market maker is fielding bets on which of three horses will win a horse race. A bet that pays the
trader 10 dollars if the first horse wins, 5 dollars if the second horse wins, and nothing if the third
horse wins, is represented by the vector (10, 5, 0).

The market maker’s policy when interacting with trader t, π(t, ·) : Rn 7→ R, maps these vectors
to the amount the market maker would charge the agent for each bet. We denote by the zero-vector
bet 0 an agent declining to make a bet with the market maker, and set π(0) = 0. (This can be
interpreted as the intersection of the individual rationality constraint of the traders (who would
want π(0) ≤ 0) and of the market maker (who would want π(0) ≥ 0).) The market maker knows
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the probability that an agent will accept a bet given the prices. Because traders are anonymous, the
market maker has no way to distinguish between traders and so these probabilities are the same for
all traders.

In full generality, there is a chance δ(t) of the interaction terminating immediately before the
t-th trader participates. Consequently, the value of being in state (t,w) is

V (t,w) = (1− δ(t))
∑

x
P (Trader takes bet x at price π(x))

· V (t+ 1,w− x + π(x))
+δ(t)V (t̄,w)

In every state (t,w), a utility-maximizing market maker employs the optimal policy π∗ defined
by the Bellman equation

π∗(t,w) = arg max
π

(1− δ(t))
∑

x
P (Trader takes bet x at price π(x))

· V (t+ 1,w− x + π(x))
+δ(t)V (t̄,w)

with respective values V ∗ defined by

V ∗(t,w) = (1− δ(t))
∑

x
P (Trader takes bet x at price π∗(x))

· V (t+ 1,w− x + π∗(x))
+δ(t)V (t̄,w)

Solving these equations when the market maker has log utility is very challenging. We proceed
to discuss how we solve for the optimal policy and values in this case.

8.2 Computation of the policy of a Kelly criterion market

maker

When given a specification of the value function V ∗(t+ 1,w), it is simple to calculate the optimal
value V ∗ and policy π∗ of any state in the previous time step t. Thus, backward induction from the
termination state is a straightforward way to solve for optimal values and policy across every time
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step. A complication arises from the difficulty in representing arbitrary V ∗(t + 1,w). While the
termination state is closed form, the previous time steps will generally not have closed form rep-
resentations. In order to solve a Kelly criterion market maker’s problem with backward induction,
we must find a way to approximately represent the value function concisely.

8.2.1 Shape-preserving interpolation

While the value function for an arbitrary time step may have a complex, non-analytic form, we know
a great deal about its shape from the properties it inherits from the log utility of the terminating
state (Stokey et al., 1989). In particular: (1) it is increasing in wealth, (2) it is concave, and (3) it
goes to minus infinity as the wealth in any state goes to zero.

Since these properties are intrinsically linked to the logarithmic utility of the Kelly criterion
market maker, we choose to adopt an approximation technique that preserves these properties,
shape-preserving interpolation. Specifically, we employ the shape-preserving interpolation devel-
oped theoretically in Constantini and Fontanella (1990). By shape-preserving, we mean that the
technique retains the partial derivatives, concavity, and monotonicity of the original function, and
by interpolation, we mean that the approximated function precisely matches the actual function
at a set of interpolating points. While shape-preserving interpolation is well-known in the scien-
tific computing literature (Judd, 1998), this specific technique has been featured rarely. Perhaps the
most practical example is Wang and Judd (2000), who study a tax planning problem with stochastic
stocks and bonds.

Because the theory of shape-preserving interpolation developed in Constantini and Fontanella
(1990) is complete only for two dimensions, we focus only on settings with two events for the rest
of the paper. While it does appear possible to extend the interpolation into n dimensions, it would
suffer from the curse of dimensionality and take significantly longer to compute the approximate
value function. The restriction to two events is not as limiting as it might first appear, because many
realistic and popular settings involve wagers on binary events. An example from sports betting is
whether the Red Sox or Yankees will win their upcoming match. An example from finance is
credit-default swaps, where a bond either does or does not experience a default event.

In order to properly preserve the shape of the function, shape-preserving interpolation requires
computing the partial derivatives with respect to the wealth in each state at the interpolating points.
We compute these values by using the envelope theorem; since V ∗(t,w) is given by the maximizing
policy π∗, we calculate the partial derivatives with respect to wealth by numerically differentiating
the value function when the maximizing policy is followed (Mas-Colell et al., 1995; Wang and Judd,
2000).

We proceed to describe the interpolation procedure at a high level, first on a single rectangle
and then over the whole positive orthant. Figure 8.1 shows a sample expected utility function over
a single rectangle.
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Figure 8.1: The utility function u(x, y) = .6 logx+ .4 log y on the rectangle [2, 4]2.

After Constantini Step

Figure 8.2: The quilt which matches the function values and partial derivatives.

The first step to creating an approximate interpolating function on this rectangle is to generate a
three-by-three quilt (continuous, piecewise-linear approximation) of the function by matching the
function values and partial derivatives at the vertices of the rectangle. Figure 8.2 shows the quilt
that results from the utility function in Figure 8.1. This quilt retains the monotonicity, concavity,
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Figure 8.3: Evaluating the quilt using Bernstein bases produces a good approximation.

and partial derivatives at the vertices of the original function.
The final step is to evaluate the quilt using bivariate Bernstein basis functions. These are a

variation-minimizing set of functions that retain the monotonicity, concavity, and partial derivatives
at the vertices of the quilt. Of course, the quilt retained these properties from the original function
itself, and so the interpolation is shape preserving. By variation minimizing, we mean that the bases
are weighted to produce a polynomial that minimizes the sup (L∞) norm error over the quilt. It
is therefore accurate to think of the Bernstein bases as smoothing the piecewise linear quilt (Judd,
1998). Figure 8.3 shows the interpolated function that results from the process. Since the Bernstein
evaluation step works by directly interpolating on the quilt, the function is approximated concisely:
for each interpolating rectangle we only need to store the sixteen values that create the quilt.

Computing the shape-preserving interpolated function is more involved than a simple linear
interpolation (table lookup). However, the benefit of these extra steps is the dramatically improved
accuracy of the evaluated function or, put another way, a substantial decrease in the degree of grid
fineness required to compute the value function to the same level of accuracy. Table 8.1 compares the
accuracy of the shape-preserving interpolation versus a simple linear interpolation at an arbitrary
collection of wealth vectors for the representative utility function used in Figure 8.1.

The shape-preserving interpolation is between 72 and 895 times more accurate than a linear
grid at the example points. Perhaps unsurprisingly, we found that the inverse of this relation also
appeared to hold—to achieve the same level of accuracy as shape-preserving interpolation, the grid
used in linear interpolation would need to be roughly one thousand times finer. We estimate that the
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Wealth vector Shape-preserving error Linear error Ratio
(2, 2) .0020 .14 72

(5, 1.1) .0026 .36 135

(20, 25) 1.2× 10−6 .0011 895

(50, 10) 1.0× 10−5 .0021 210

Table 8.1: Relative errors for shape-preserving interpolation versus linear interpolation on identical rectan-
gles. At each wealth vector, the interpolating rectangle is (w1 ± 1, w2 ± 1), i.e., a square with side length 2
centered at the wealth vector.

running time of our experiments on a commodity PC using linear interpolation would take about
a week; in contrast, solving the dynamic program took about ten minutes using shape-preserving
interpolation.

8.2.2 Extending the technique

We have described how shape-preserving interpolation works on a single rectangle over which the
function to be approximated is finite. It is straightforward to extend this technique from a single
rectangle to a finite grid of rectangles over which the function to be approximated is finite. (In
this case, care must to be taken to ensure that the function approximation is continuous at the
boundaries of the individual interpolating rectangles, but this can be accommodated without too
much additional complexity, see Constantini and Fontanella (1990) for details.)

However, the value function we are approximating is not just a finite function over a finite grid:
it fails this in two separate ways. First, since limx↓0 logx = −∞, we have that at the lower boundary
of the positive orthant (i.e., values close to zero along either dimension) the value function goes to
−∞. Second, the value function has no finite upper bound on its input—it is defined over the entire
positive orthant. Consequently, we must extend the interpolation technique from the literature to
accommodate the specific properties of a Kelly criterion market maker. Our solution is to have a
large finite grid of interpolating rectangles on which we can apply the standard shape-preserving
technique, and then to employ custom extensions to approximate below the lower boundary and
above the upper boundary of the grid.

Beyond the lower boundary of the grid

We interpolate beyond the lower boundary of the grid as if the value were given by setting the value
of a state equal to its termination value plus a constant that ensures continuity at the boundary of
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the grid. Formally, to approximate the value of state w, with nearest point on the interpolating grid
wg, we set

V (t,w) ≈ V (t̄,w) + (V (t,wg)− V (t̄,wg))

(Observe that as w → wg, V (t,w) → V (t,wg)). This approximation ensures the monotonicity of
the value function and that it goes to negative infinity as the wealth of either state goes to zero, but, it
is only an exact approximation for the termination function itself. To ensure that this extension does
not change the overall value function substantially, in our experiments we start the interpolating
grid at a small value, so the additional interpolation is only relevant over a small fraction of the
state space. In our exploratory data analysis, we experimented with different lower bounds for the
interpolating grid and found that different small values did not noticeably affect calculated optimal
policies. We attribute this to states at the lower boundary of the grid having such low utility that
they will be avoided, and are therefore largely irrelevant to the optimization problem as a whole.

Beyond the upper boundary of the grid

Consider the market maker’s pricing problem at the upper boundary of the grid at time t. If the size
of the trader’s bet is bounded (say, to be no larger than c), then the market maker can approximately
compute the optimal pricing policy by using an interpolating grid at time step t + 1 whose upper
boundary is larger than the grid at time t by at least c. Using this insight, we eliminate the need
to calculate a value beyond the upper boundary of the grid by increasing the upper boundary of
the grid as time proceeds. (In fact, recalling that we solve the dynamic program through backward
induction, from an algorithmic perspective we are actually reducing the upper boundary of the grid
as we solve backwards through time.) In contrast to our extension to compute values below the lower
boundary of the interpolating grid that we discussed above, this extension uses the same mechanics
as the rest of the shape-preserving interpolation process and so suffers from no additional loss of
accuracy.

8.2.3 Alternative approaches

As an alternative to the gridded approach here, we also considered but rejected a global shape-
preserving approximation technique along the lines of De Farias and Van Roy (2003). This would
involve selecting basis functions φi that are each monotonic and concave, and representing the value
function in each time step as a conical combination of these functions:

V ∗(t,w) ≈
∑
i

γt
iφi(w), γt

i ≥ 0.

Such a representation retains the monotonicity and concavity properties of the value function
and is concise. We rejected this approach for two reasons. First, the heuristic selection of the basis
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provides little guidance. Which set of functions is a good choice, and why? Observe that many
standard basis function selections, such as radial basis functions, will not in general preserve the
monotonicity or concavity of the value function and so could lead to nonsensical policies.

The second reason we chose to reject this technique is the difficult optimization to select the
weights γt. In particular, a standard linear regression that maximizes the deviation from sum of
squares at a set of relevant nodes can create aberrant behavior and an approximation that deviates
significantly from the actual value function (Gordon, 1995; Guestrin et al., 2001; Stachurski, 2008).
The correct optimization to use to determine the weights is to minimize the sup norm (that is,
L∞, rather than L2), which is a significantly more challenging problem to solve numerically (Judd,
1998).

8.3 Experiments

With only two possible events, it is possible to characterize bets in terms of a single event. In
particular, setting p to be the probability that the first event occurs implies 1− p is the probability
that the second event occurs. Applying this logic to the market maker’s policy, we can without loss
of generality have the market maker buy and sell contracts on the first event only, because buying
(selling) a contract on the first event implicitly yields the sale (purchase) of a contract on the second.

The ask is the price at which the market maker will sell a contract, and the bid is the price at
which the market maker will buy a contract. For non-degenerate settings, ask prices will always be
higher than bid prices. In this section, we describe the optimal ask and bid prices for two different
settings.

8.3.1 Parameterization

Following Das (2008), in our experiments, traders have a belief drawn from a Gaussian with a mean
belief of p = 0.5 and standard deviation 0.05. The traders are zero-intelligence agents; a trader visits
the market maker exactly once and behaves myopically. They purchase a unit contract if they see an
ask price lower than their belief, sell a unit contract if they see a bid price higher than their belief,
and do not transact with the market maker otherwise.

In our experiments, we set 50 trading periods (that is, δ(t = 51) = 1, δ(t < 50) = 0), al-
though we found our results hold qualitatively for other distributions of traders. Recalling from
Section 8.2.2 that the upper boundary of the interpolating grid increases in each trading period, we
set the interpolating grid for trader t to [1, 1.5, 2, 3, . . . , 250, 250 + t]2.

In our experiments with Kelly criterion market makers, we consider only relatively small levels
of wealth (alternatively, large bets relative to the amount of wealth). This is because for bets with
large levels of wealth, a market maker maximizing expected log utility can be well-approximated
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by a risk-neutral, linear utility agent. To see why, consider the Taylor expansion of log utility at
wealth x:

log(x+ ε) = log(x) + ε

x
− ε2

x2
+Θ

(
ε3
)

If x is large enough that x2 � x, then 1/x2 � 1/x. Consequently, at large wealths, the impact
of small bets on the utility function can be well-approximated by the linear function log(x)+

(
1
x

)
ε,

with negligible higher-order effects.
We now turn our attention to how to calculate the optimal policy for a risk-neutral market

maker, and the qualitative properties of that policy.

8.3.2 Optimal risk-neutral policy

For this setting, a risk-neutral market maker’s optimization problem is significantly simpler than
the general case. Recall that in the two-event case, the market maker’s knowledge of the future, the
vector p̂, can be represented by a single scalar p̂ (e.g., “Team A has a 50 percent chance of winning
the game”). Then the termination state V (t̄,w) is

V (t̄,w) ≡ p̂w1 + (1− p̂)w2

Let the agents have beliefs on the first event distributed according to the cumulative density
function F with probability density function f . In the penultimate step t̄−1, a risk-neutral market
maker sets their bid and ask price to maximize their utility in the termination state, conditioning
on three cases: the bid being taken, the ask being taken, and neither offer being taken. Formally,

V ∗(t̄− 1,w) = max
b,a

F (b)V (t̄, (w1 − b+ 1, w2 − b))

+(1− F (a))V (t̄, (w1 + a− 1, w2 + a))

+(F (a)− F (b))V (t̄,w)

and since V (t̄,w) = p̂w1 + (1− p̂)w2 the right-hand side optimization simplifies to

max
b,a

F (b)(p̂(w1 − b+ 1) + (1− p̂)(w2 − b))

+(1− F (a))(p̂(w1 + a− 1) + (1− p̂)(w2 + a))

+(F (a)− F (b))(p̂w1 + (1− p̂)w2)
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which further simplifies to

max
b,a

V (t̄,w) + F (b)(p̂− b) + (1− F (a))(a− p̂) (8.1)

which implies

V ∗(t̄− 1,w) + C = V (t̄,w)
whereC is a constant that does not depend on t or w. Consequently, by inductive argument working
back from the terminal state the optimal policy for a risk-neutral market maker does not depend on
t or w. Equation 8.1 also makes it easy to see that the optimal arguments (b∗, a∗) have b∗ ≤ p̂ ≤ a∗,
because if not changing to a policy satisfying that inequality would yield a higher value. Thus,
a globally optimal risk-neutral market maker is always myopically rational. (This argument also
applies to the general setting discussed in Section 8.1.2 with more than two bets and events. In that
case, by similar reasoning, the result is that a risk-neutral market maker will always price a bet x
such that π(x) ≥ p̂ · x.)

We have shown that the optimal policy of a risk-neutral market maker is constant and invariant
to time and wealth. To actually compute the optimal b∗ and a∗, we can take the first-order condition
of the optimization in Equation 8.1 to get

F (b∗)(p̂− 1) + f(b∗)(p̂− b∗) = 0

(1− F (a∗))(1− p̂)− f(a∗)(a∗ − p̂) = 0

If p̂ ∈ (0, 1) and f(x) > 0 for all x ∈ (0, 1), the existence and uniqueness of optimal b∗ <
p̂ < a∗ are guaranteed. When F and f are well-behaved smooth functions (as is the case for
our experiments where F is a normal distribution), the optimal values can be solved quickly by
numerical root-finding techniques.

8.3.3 Optimal log-utility policy

Following the procedure outlined in Section 8.2, we computed the optimal value and policy func-
tions for several different parameterizations of wealths and beliefs for both Kelly and risk-neutral
market makers.

We begin by considering the case where the market maker’s private belief aligns with the beliefs
of the traders. Figure 8.4 shows the optimal bid and ask prices over the series of traders when the
market maker has wealth (100, 100) (thickest line), (50, 50) (medium line), and (25, 25) (thinnest
line). That is, the plot shows π(t, (w,w)) for t ∈ {1, . . . , 50} and w ∈ (25, 50, 100).

Here, prices throughout the interaction are very close to the myopic optimization for the last
trader, and the prices are very similar for all of the sampled wealths. In this scenario, the prices are
also essentially equivalent to the optimal policy of a risk-neutral market maker.
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Figure 8.4: When the market maker’s private beliefs align with those of the traders, the optimal ask prices
(top lines) and bid prices (bottom lines) do not change significantly over the course of the interaction period.

In contrast, Figure 8.5 shows the optimal policies when the market maker’s belief is p = 0.6
(shown by the cross-hatched line). This value is two standard deviations higher than the mean of
the traders’ beliefs. The policies are calculated at the same wealths as in Figure 8.4, that is, the
policy of a market maker with wealth of 25, 50, and 100 in both states at every time step.

Unlike in the previous figure, the optimal policies change over time and are wealth-dependent.
In this scenario, the optimal risk-neutral policy is a bid of 0.52 and an ask of 0.62. Because with
large wealth a logarithmic utility market maker making small bets can be approximated well by
linear utility, we know that as wealth increases, the market maker’s optimal policy throughout the
trading period will converge to be the optimal linear utility policy. However, at the smaller levels
of wealth in our experiments, for all except the last few traders, the asking price for a unit contract
is below the market maker’s belief that the event will occur. Thus, for much of the trading period,
from a myopic perspective the Kelly criterion market maker offers irrational bets.1

On the surface, this result seems confusing and even paradoxical. To see why it is the optimal
1One might think that this phenomenon could be explained by the market makers accumulating wealth from spread

profits, and therefore becoming absolutely less risk-averse over time. However, even market makers with considerably
larger endowments than could possibly be made through spread profits still display the same qualitative behavior.
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Figure 8.5: When the market maker’s private beliefs do not align with those of the traders, the optimal
policy is highly time and wealth dependent.

policy, consider Figure 8.6, which displays the probability of each trader taking the bets offered by a
market maker with a (constant) wealth of 25 in both states. It shows how the probability of a trader
selling at the bid price rises over time, while the probability of a trader buying at the ask price falls.
The first trader is about twice as likely to sell at the bid price than to buy at the ask price, while the
last trader is about 87 times more likely to sell than to buy.

For early traders, the market maker’s bid and ask prices are roughly centered around 0.5, just
like the distribution of agent beliefs. Consequently, the market maker has a reasonable chance of
matching traders’ bids and asks and thus profiting off the bid/ask spread. A market maker that
successfully matches the bids and asks of traders books a profit regardless of the personal beliefs
of the market maker, even if those beliefs are, as in this scenario, very different from the prices in
question. Of course, as fewer traders remain the setting more and more resembles a myopic opti-
mization where, with equivalent wealths in both states, the market maker will employ a myopically
rational strategy. This sophisticated policy emerges solely from the introduction of risk-aversion to
the termination state, because a risk-neutral market maker in an identical setting displays none of
this behavior.

Once the optimal policy is computed, we can simulate the behavior of the market maker against
the pool of traders. Figure 8.7 shows the simulated prices of wealth 25 market maker in a sample
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Figure 8.6: The probability of a trader taking each offered bet from a market maker with 25 wealth in each
state over the entire trading period.

interaction for the case where the the market maker has belief 0.6 and agents have belief mean of 0.5
(i.e., the setting for Figures 8.5 and 8.6). The thin lines, with values marked by the left axis, show the
ask (upper line) and bid (lower line) prices of the market maker. The thick black line, with values
market by the right axis, shows the market maker’s net inventory, i.e., the market maker’s payoff if
the event occurs. The values on Figure 8.7 show the prices faced by trader i but the inventory after
the participation of the trader. (The inventory line starts at 1 in this case because the first trader took
the market maker’s bid.) In this simulation, the market maker’s expected utility from their wealth
vector increases from 3.22 before any traders participate to 3.27 after all 50 traders participate.

Recall that in this setting the market maker has a significantly higher belief that the event will
occur than does the pool of agents, so it is natural for the market maker to accumulate inventory. As
the market maker accumulates inventory, its prices fall. This is because a risk-averse market maker
prefers to take a small sure profit (the bid/ask spread from matching orders) over a somewhat larger
speculative gain (from holding inventory). Consequently, the prices from the simulation are very
different than the prices in Figure 8.5, because the prices in Figure 8.5 captured the prices of a
market maker with constant wealth in both states over time. If the market maker were not taking
on inventory, its prices would rise, as in Figure 8.5, but because the market maker in our simulation
takes on inventory, that price rise is effectively dampened. Observe that in this simulation, because
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Figure 8.7: Simulating the prices (left axis; thin lines) and net inventory (right axis; thick black line) that
result from the interaction of an optimal log utility market maker starting with 25 wealth in both states. In
this figure, both the inventory and prices change over time.

the price rise is dampened, the market maker’s asking price is always less than 0.6 and therefore is
myopically irrational for the entire trading period!

8.4 Extensions

There are several extensions to consider to our framework. Our model assumed the market maker
was monopolistic, so that it could maximize profit without fear of competition. One extension
could be to examine a competitive setting between several risk-averse market makers.

Another extension would be to incorporate informed traders into the pool of trading agents.
These agents could have correct knowledge about the future, but, more importantly, the market
maker could know of and react to their existence. The presence of informed traders that influence
the market maker in this way would make our setting much closer to the Bayesian market maker
setting explored in Das and Magdon-Ismail (2009), but would be even more complex because of
the risk aversion of the market maker.
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While our framework applies to any number of events and bets, our computational experiments
focused on the binary case. An extension would be to develop algorithms to solve for optimal policy
with multiple events. The Constantini shape-preserving technique used in this paper could pre-
sumably be applied to more than two events, although it will suffer from the curse of dimensionality.
Perhaps an alternate approach to approximating the value function could be used in this case, such
as a spline of radial basis functions, although this would be unlikely to preserve the monotonicity
and concavity of the value function and so could lead to poor or unrealistic policies.
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