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Abstract

Given oracle access to some boolean function f, how many queries do
we need to test whether f is linear? Or monotone? Or whether its output
is completely determined by a small number of the input variables? This
thesis studies these and related questions in the framework of property testing
introduced by Rubinfeld and Sudan (’96).

The results of this thesis are grouped into three main lines of research.

I. We determine nearly optimal bounds on the number of queries required
to test k-juntas (functions that depend on at most k variables) and k-
linearity (functions that return the parity of exactly k of the input bits).
These two problems are fundamental in the study of boolean functions
and the bounds obtained for these two properties lead to tight or im-
proved bounds on the query complexity for testing many other properties
including, for example, testing sparse polynomials, testing low Fourier
degree, and testing computability by small-size decision trees.

II. We give a partial characterization of the set of functions for which we
can test isomorphism—that is, identity up to permutation of the labels of
the variables—with a constant number of queries. This result provides
some progress on the question of characterizing the set of properties of
boolean functions that can be tested with a constant number of queries.

III. We establish new connections between property testing and other areas
of computer science. First, we present a new reduction between testing
problems and communication problems. We use this reduction to obtain
many new lower bounds in property testing from known results in com-
munication complexity. Second, we introduce a new model of property
testing that closely mirrors the active learning model. We show how test-
ing results in this new model may be used to improve the efficiency of
model selection algorithms in learning theory.

The results presented in this thesis are obtained by applying tools from var-
ious mathematical areas, including probability theory, the analysis of boolean
functions, orthogonal polynomials, and extremal combinatorics.
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Chapter 1

Overview

This thesis is concerned with testing properties of boolean functions. The subject of this
topic is best introduced with an illustrative example.

1.1 Black boxes

Imagine that we are given some box with n switches (each of which can be either “on” or
“off”) and a lightbulb that lights up on some of the configurations of the switches. This
box can be said to compute a boolean function f : {0, 1}n → {0, 1}, where we define
f(x1, . . . , xn) = 1 iff the bulb is lit when we set switch i to the “on” position iff xi = 1
for i = 1, 2, . . . , n.

The first thing we might want to do with such a box is to figure out what function it
computes. If we don’t want to open up the box, the only way we can do this is to go through
all 2n configurations of the switches and see for which configurations the light is on. Even
if we are given a user’s manual that purports to identify the function computed by the box,
verifying that the user’s manual is correct still requires checking all 2n configurations.

Imagine now that we are again given the user’s manual that describes the function
computed by the box and that the user’s manual also has one extra promise:

Due to manufacturing limitations, some boxes may not behave as described
in this manual. However, the manufacturing process guarantees that faulty
boxes will disagree with the table above on at least 10% of the possible con-
figurations.
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With this promise, we can now test the box much more efficiently. To do so, we simply
verify that the box is consistent with the definition in the user manual on 100 different
switch configurations each chosen at random. When the box is correct, it will agree with
the user’s manual definition on all the configurations. When the box is faulty, the manufac-
turer’s promise guarantees that for each such configuration, the box’s output will disagree
with the user’s manual with probability 1

10
. So the probability that the box is faulty but

passes all of the tests is (1− 1
10

)100 < 1
20000

.

This example is elementary and the result not too surprising, but it hints at a rather
remarkable truth: for some decision problems, there may be “approximate” formulations
of the problem that are extremely easy to solve. (In this case, the decision problem was the
function identity testing problem, and the “approximation” aspect was the “gap promise”
that any function that did not satisfy the identity condition was “far” from satisfying it.)

The generalization can again be formulated in terms of our example. Instead of identi-
fying the function, we may receive a user’s manual that only describes some of the proper-
ties of the function computed by the black box. For example, we may read the following:

Congratulations on buying the ACME JuntaBox! The JuntaBox, like our tra-
ditional box, contains n switches. For your convenience, however, we have
built the JuntaBox in a way that the behavior of the light is entirely controlled
by at most 10 of the switches.

This user’s manual does not identify the function computed by the box, but it makes a
strong claim regarding how this function should behave. As before, if we want to verify
that the claim is correct, we may have to check all 2n switch configurations. Once again,
however, the testing task may be significantly simplified by a promise:

Due to manufacturing limitations, some JuntaBoxes may not behave as de-
scribed in this manual. However, the manufacturing process guarantees that
faulty boxes will disagree with any valid JuntaBox on at least 10% of the
switch configurations.

Unlike in the function identity problem discussed earlier, it is not immediately clear whether
we can make use of this promise to create a very efficient test for the “junta” property
promised in the user’s manual. At the very least, the naı̈ve strategy of checking random
switch configurations does not appear to be very helpful since in this case we don’t have
a single target function to test against. Nevertheless, as we will see in Chapter 5, the
promise is indeed very helpful, and under this promise we can test the junta property very
efficiently.
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1.2 Property testing

The function identity and junta testing problems described in the last section are only two
of many properties that one may want to test on black boxes. For example, we might
want to test if the box’s function is linear, if it is monotone, or if it is computed by a
small boolean circuit. The testing problem (and the “approximate” decision model) for
all these properties—and many more—can be described in the property testing framework
first introduced by Rubinfeld and Sudan [90]. A thorough presentation of this framework
is presented in Chapter 3. Let us also offer a quick and informal introduction to the frame-
work here.

A property P of boolean functions {0, 1}n → {0, 1} is a subset of all these functions.1

The function f has property P if f ∈ P . Conversely, we say that the function f is ε-far
from P if |{x ∈ {0, 1}n : f(x) 6= g(x)}| ≥ ε2n for every g ∈ P .

A q-query ε-tester for P is a randomized algorithmA that, given oracle access to some
function f : {0, 1}n → {0, 1}, queries the value of f on at most q elements from {0, 1}n
and satisfies two conditions:

1. When f has property P , A accepts f with probability at least 2
3
.

2. When f is ε-far from P , A rejects f with probability at least 2
3
.

The query complexity of the property P is the minimum value of q for which there is
a q-query ε-tester for P . A principal goal in property testing is to determine the query
complexity for all natural properties of boolean functions.

1.3 Results

In its most general form, the goal of determining the query complexity for all properties
of boolean functions is unattainable with the current (mathematical and algorithmic) tools
at our disposal. In order to make some progress on it, therefore, we must restrict our
attention to some class of properties of boolean functions. Ideally, we would like this
class to include all—or almost all—the properties of boolean functions that we consider
“natural”.

1While we will generally focus on “natural” properties that can be described easily, the definition applies
equally well to any arbitrary set of functions.
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In this thesis, we restrict our attention to the class of properties of boolean functions
that are closed under the relabeling of the input variables. This class includes most of
the properties of boolean functions that we may consider “natural”, including linearity,
representability by low-degree polynomials, symmetric functions, juntas, representability
by small decision trees or by small circuits, monotonicity, submodularity, halfspaces, low
Fourier degree, etc.

While these properties have been extensively studied, three main questions remain
largely open. First, what is the exact query complexity of these properties? When we
began this research, there were large gaps between the best upper and lower bounds for
the query complexity of most of these properties. Our results, as covered in Chapters 5–7
improve the upper and lower bounds for a number of these properties and close a number
of these gaps.

The second question that remains largely open is: why are some properties testable
efficiently? Or, in other words, what characteristics of properties are necessary or suffi-
cient to guarantee, for example, that the query complexity of a property is independent
of the domain size of the input functions? Over the last few years, there has been a lot
of progress on this question when restricted to the class of algebraic properties of func-
tions [18, 72, 95]—i.e., on properties of boolean functions that satisfy stronger invariance
requirements such as invariance under linear or affine transformations. In this thesis, we
take a different approach and instead study the important sub-problem of testing function
isomorphism. These results are presented in Chapters 8–10.

The third and final main open question that we examine in this thesis is: what connec-
tions can we establish between property testing and other areas of computer science? In
Chapters 11 and 12, we describe new connections to communication complexity and to
learning theory.

The following subsections describe the results in this thesis in more detail.

1.3.1 Part I: Exact query complexity

We begin by examining the query complexity for some of the most fundamental properties
of boolean functions. Specifically, we study juntas and k-linearity. These two classes of
functions play a particularly fundamental role in property testing and, as we will discuss
in the later chapters, new bounds on the query complexity for these problems improve the
bounds for the query complexity of a number of other properties.

In Chapter 5, we begin by studying the problem of testing k-juntas—or, in other words,
of testing whether a boolean function has at most k relevant variables. While it was known

6



previously that it is possible to test k-juntas with a number of queries that depends only on
k and ε [52], the exact dependence on k was not known. We present a new algorithm that
settles this question up to logarithmic factors.

Besides the improved query complexity, the main contributions of the new algorithm
are twofold. First, the algorithm itself is conceptually very simple, and closely parallels the
optimal algorithm for learning juntas with membership queries [29]. Second, the analysis
of the algorithm uses results on intersecting family, illustrating a new and potentially useful
connection between the analysis of algorithms and extremal combinatorics.

In Chapter 6, we examine the problem of testing partially symmetric functions: that
is, of testing whether there is a set S of at most k variables such that the input function is
invariant to any relabeling of the variables outside S. (See Chapter 6 for a more detailed
introduction to partially symmetric functions.) Every junta is also partially symmetric, but
the converse is not true; the set of partially symmetric functions is much larger. The main
result of Chapter 6 is that the junta tester from the previous chapter can be extended to test
partial symmetry with roughly the same query complexity.

The motivation for the study of partially symmetric functions was to better understand
how the invariance structure of juntas is responsible for the fact that the property is ef-
ficiently testable. An important contribution of this chapter, required for the analysis of
the tester, is the introduction and analysis of a new measure of influence, which we call
symmetric influence. This notion may be of independent interest.

In Chapter 7, we turn to the problem of proving lower bounds for the query complex-
ity of properties of boolean functions. Specifically, we examine the problem of testing
k-linearity—or testing whether the function returns the parity of exactly k of its variables.
We show that roughly min{k, n − k} queries are required for this task. This confirms a
conjecture of Goldreich [57] and also gives new lower bounds for a number of other prop-
erties, including juntas, functions of low Fourier degree, sparse polynomials, and functions
computable by small decision trees.

The result in Chapter 7 is obtained by reducing the problem of testing k-linearity to a
purely geometrical problem on the hypercube. One interesting aspect of this result is that,
unlike most results in property testing, the lower bound we obtain is not just asymptotically
linear in k—it is equal to k − o(k).

1.3.2 Part II: Testing function isomorphism

The second part of the thesis examines property testing from a more qualitative point
of view. Instead of seeking to determine the exact query complexity for some specific

7



properties of boolean functions, the motivating question behind the research presented
here is: can we characterize the set of properties of boolean functions that can be tested
with a constant number of queries?2

An important sub-goal of this research direction is to characterize the set of functions
for which we can test isomorphism—that is, for which we can test identity up to relabeling
of the input variables—with a constant number of queries. This problem was first raised
by Fischer et al. [52] but until recently this problem was largely open, with only three
exceptions: all symmetric functions and all juntas on a constant number of variables were
known to be isomorphism-testable with a constant number of queries, and it was known
that testing isomorphism to parity functions on ω(1) ≤ k ≤ o(

√
n) variables required a

super-constant number of queries.

In Chapter 8, we begin by unifying and extending the results concerning the isomorphism-
testability of symmetric functions and juntas. As we have seen above, the set of partially
symmetric functions encompasses the set of juntas. Clearly, this set also includes the set
of symmetric functions. (It also includes many other functions as well.) In this chapter,
we show that we can test isomorphism to any partially symmetric function with a constant
number of queries.

In Chapter 9, we show that the set of functions for which we cannot test isomorphism
with a constant number of queries extends far beyond the set of k-linear functions for some
values of k. In fact, we show that for almost all boolean functions, testing isomorphism
to those functions requires Ω(n) queries. Since O(n log n) queries are sufficient to test
isomorphism to any function, the result of this section shows that the universal upper
bound is nearly tight for almost all functions.

The result in Chapter 9 is non-constructive. In Chapter 10, we give a large explicit class
of functions for which testing isomorphism requires a super-constant number of queries.
Specifically, we answer a question of Fischer et al. [52] by showing, roughly, that testing
isomorphism to k-juntas that “strongly depend” on nearly all of the relevant variables
requires at least log k queries.

1.3.3 Part III: Connections

In the third part of the thesis, we explore some connections between property testing and
other areas of computer science.

Chapter 11 presents a connection between property testing and communication com-

2I.e., with a number of queries that does not depend on the size of the domain of the functions.
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plexity. Communication complexity has been remarkably successful in proving lower
bounds in many areas of computer science. The research presented in this chapter was
motivated by a simple question: might communication complexity be useful for proving
lower bounds in property testing as well? The results in this chapter show that the answer
to this question is an emphatic “yes”. We present the basic reduction that connects the
two areas in the chapter and show how it can be used to prove lower bounds for testing
k-linearity, monotonicity, and computability by small decision trees.

In Chapter 12, we examine the connection between property testing and learning the-
ory. It has long been known that the two areas are closely connected. (We review some
of the details of this connection in Section 3.2.) This connection, however, is largely con-
cerned with the connection between property testing and the membership query learning
model—where the learner can query the target function on any input of its choosing.

In many applications of learning theory, the membership query model is not realistic.
An alternative model, called active learning, where the learner can query any input of its
choosing among those that exist in the real-world is often more realistic. As a result, this
model is of great interest to the learning community. In Chapter 12, we introduce a new
model of property testing, which we call active property testing, with the same relation
to active learning as the standard property testing model has to membership query learn-
ing. We describe the active testing model and present results concerning the testability of
dictator functions and halfspaces in this model.

9
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Chapter 2

Boolean Functions

The main object of study in this thesis is the boolean function. The goal of this section is
to introduce the basic definitions and some fundamental tools we will use throughout the
rest of the thesis. We will also examine two classes of boolean functions that will appear
repeatedly in later chapters: juntas and parity functions.

Readers familiar with boolean functions are encouraged to quickly skim this chapter
to become acquainted with the notation. Conversely, for readers who would appreciate a
more thorough introduction to boolean functions and the tools used to analyze them, we
recommend the surveys [80, 45] and the book [81].

2.1 Boolean hypercube

Before examining boolean functions, let us first take a moment to establish some basic
facts regarding their domains: the boolean hypercube {0, 1}n.

Given an element x ∈ {0, 1}n, we write x1, . . . , xn to refer to the individual coordi-
nates of x. When discussing boolean functions, we refer to the set [n] := {1, . . . , n} as the
set of variables of f . In this terminology, the value of the ith variable in x is xi.

The elements e1, . . . , en ∈ {0, 1}n are defined by setting the ith coordinate of ei to 1
and all other coordinates to 0. More generally, for every set S ⊆ [n], the characteristic
vector for S, denoted by eS ∈ {0, 1}n, is defined by setting eSi = 1 for every i ∈ S and
eSi = 0 for every i ∈ [n]\S. We also use 0 and 1 to denote the all-zero and all-one vectors.
(Note that e∅ = 0 and e[n] = 1.)

Given two bits a, b ∈ {0, 1}n, there are three basic binary operators that we use:

11



AND (∧), OR (∨), and XOR (⊕). They are all defined in the standard way.

a ∨ b =

{
1 if a = 1 or b = 1

0 otherwise.

a ∧ b =

{
1 if a = b = 1

0 otherwise.

a⊕ b =

{
1 if a 6= b

0 otherwise.

We define the same operators to apply bit-wise for the elements in {0, 1}n. E.g., three
elements x, y, z ∈ {0, 1}n satisfy z = x⊕ y iff zi = xi ⊕ yi for each i ∈ [n].

The set {0, 1}n with the bit-wise XOR operator ⊕ forms a group. This group, com-
bined with the the trivial scalar multiplication operator defined by 1 · x = x and 0 · x = 0,
forms a vector space over the field F2. With some abuse of notation, we use {0, 1}n to
refer to the set, the group, and the vector space, depending on the context.

We can define the inner product of elements in {0, 1}n by setting

〈x, y〉 =
n∑
i=1

xi ∧ yi

for every x, y ∈ {0, 1}n. The norm obtained with this inner product is

‖x‖ = 〈x, x〉 =
n∑
i=1

xi,

which is also known as the Hamming weight of x.

For every S ⊆ [n], we define the projection operator P S : {0, 1}n → {0, 1}n by
setting P S(x) = x∧ eS . We will use the shorthand notation xS to represent the projection
P S(x). We will often use the projection operator to combine two or more boolean vectors.
For example, the element z = xS ∨ yS̄ is the “hybrid” vector that is identical to x on all
coordinates in S and is identical to y on all the other coordinates.

Remark 2.1. In some settings, it is more convenient to consider the boolean hypercube as
the vector space over {−1, 1}n or as Fn2 . The three representations of the hypercube are
isomorphic. In the following, we will mostly use the {0, 1}n representation.

12



2.2 Boolean functions

Most of the boolean functions we consider in this thesis are of the form f : {0, 1}n →
{0, 1}. In order to analyze these functions, it is convenient to consider the larger class of
functions mapping the boolean hypercube {0, 1}n to the set of real numbers R.

The set of boolean functions {0, 1}n → R, with the standard notions of function ad-
dition and scalar multiplication of functions, forms a vector space over R. We can define
the inner product of two functions f, g : {0, 1}n → R in this vector space by setting

〈f, g〉 = E
x∈{0,1}n

[f(x) · g(x)]

where the expectation is over the uniform distribution on {0, 1}n. The inner product can
be used to define the (L2) norm of f as

‖f‖2 =
√
〈f, f〉.

A fundamental tool in the analysis of boolean functions is the Cauchy-Schwarz in-
equality, which bounds the inner product of two functions by the product of theirL2 norms.

Theorem 2.2 (Cauchy-Schwarz Inequality). For any functions f, g : {0, 1}n → R,

〈f, g〉 ≤ ‖f‖2 · ‖g‖2.

Another useful tool in the analysis of boolean functions is Fourier analysis. We intro-
duce this tool in the next section.

2.3 Fourier Analysis

To describe the Fourier representation of boolean functions, we must first introduce the
notion of characters for the boolean hypercube.

Definition 2.3. A character of the vector space {0, 1}n is a function χ : {0, 1}n →
{−1, 1} that satisfies

χ(x⊕ y) = χ(x) · χ(y)

for every x, y ∈ {0, 1}n.

In other words, a character χ is a group homomorphism between {0, 1}n and {−1, 1}.
The following proposition identifies the set of characters for {0, 1}n.
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Proposition 2.4. For every α ∈ {0, 1}n, the function χα : {0, 1}n → {−1, 1} defined by

χα(x) = (−1)〈α,x〉

is a character of {0, 1}n.

Proof. For any x, y ∈ {0, 1}n,

χα(x+ y) = (−1)〈α,x+y〉 = (−1)〈α,x〉+〈α,y〉 = (−1)〈α,x〉 · (−1)〈α,y〉 = χα(x) · χα(y).

Fact 2.5. For any α ∈ {0, 1}n, we have Ex[χα(x)] =

{
1 if α = 0

0 otherwise.

We are now ready to introduce the Fourier transform and Fourier representation of
boolean functions.

Definition 2.6 (Fourier transform). The Fourier transform of the function f : {0, 1}n → R
is the function f̂ : {0, 1}n → R defined by f̂(α) = 〈f, χα〉.

Definition 2.7 (Fourier representation). The Fourier representation (or Fourier decompo-
sition) of the function f : {0, 1}n → R is

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x).

A fundamental property of the Fourier transform is that it preserves the squared L2

norm of the function.

Theorem 2.8 (Parseval’s identity). For any function f : {0, 1}n → R,

E
x

[f(x)2] = ‖f‖2
2 =

∑
α∈{0,1}n

f̂(α)2.

A useful consequence of Parseval’s identity is that the distance between two boolean
functions has a nice representation in terms of the Fourier transform of the functions.

Lemma 2.9. For any boolean functions f, g : {0, 1}n → {0, 1},

Pr
x∈{0,1}n

[f(x) 6= g(x)] =
∑

α∈{0,1}n
(f̂(α)− ĝ(α))2.
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Proof. Since f and g are {0, 1}-valued, Prx[f(x) 6= g(x)] = Ex[(f(x) − g(x))2]. By
Parseval’s identity, this means that

Pr
x

[f(x) 6= g(x)] = E
x

[(f(x)− g(x))2] =
∑

α∈{0,1}n
f̂ − g(α)2.

The proof is completed by noting that for any α ∈ {0, 1}n,

f̂ − g(α) = 〈f − g, α〉 = 〈f, α〉 − 〈g, α〉 = f̂(α)− ĝ(α).

In Chapter 7, we shall also make use of a basic fact regarding the Fourier transform of
the pushforward of boolean functions.

Definition 2.10 (Pushforward). Fix a subspace W ⊆ {0, 1}n. The pushforward of the
function f : {0, 1}n → R by the linear function g : {0, 1}n → W is the function g∗(f) :
W → R defined by

(g∗(f))(x) :=
1

2n

∑
y∈g−1(x)

f(y) = E
y∈{0,1}n

[I[g(y) = x] · f(y)].

Fact 2.11. Fix W ⊆ {0, 1}n. For any function f : {0, 1}n → R and any linear function
g : {0, 1}n → W , the Fourier transform of g∗(f) satisfies

ĝ∗(f)(α) =
1

|W |
f̂(χα ◦ g).

2.4 Influence

Another important tool in the analysis of boolean functions is the notion of “influence”
of the variables in the function. This section defines the notion formally and proves some
basic properties of influence. As a first step, let us define what we mean by “relevant” and
“irrelevant” variables.

Definition 2.12 (Relevant variables). The variable i ∈ [n] is relevant in the boolean func-
tion f : {0, 1}n → {0, 1} if there exists an element x ∈ {0, 1}n such that f(x) 6= f(x⊕ei).
If no such element exists, we say that i is irrelevant in f .

The definition of relevance extends in a natural way to sets of variables. We can do so
by defining a set S ⊆ [n] to be relevant in the function f if some variable i ∈ S is relevant
in S. Equivalently, we can define relevant sets directly as follows.
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Definition 2.13 (Relevant sets of variables). The set of variables S ⊆ [n] is relevant in
f : {0, 1}n → {0, 1} if there exists two elements x, y ∈ {0, 1}n such that xS̄ = yS̄ and
f(x) 6= f(y).

We can refine the notion of relevance to measure to take into account the fraction of
elements x ∈ {0, 1}n for which f(x) 6= f(x⊕ei). The result is our definition of influence.

Definition 2.14 (Influence of a variable). The influence of the variable i ∈ [n] in the
boolean function f : {0, 1}n → {0, 1} is

Inff (i) = 1
2

Pr
x

[f(x) 6= f(x⊕ ei)]

where the probability is taken over the uniform distribution of x in {0, 1}n.

We can also introduce a similar definition to measure the influence of sets of variables.

Definition 2.15 (Influence of a set of variables). The influence of the set S ⊆ [n] of
variables in the boolean function f : {0, 1}n → {0, 1} is

Inff (S) = Pr
x,y

[f(x) 6= f(xS̄ ∨ yS)]

where the probability is taken over the uniform distribution of x and y in {0, 1}n.

The reader may find it slightly puzzling that the definition of influence of variables
includes a factor of 1

2
. This is done so that the influence of a variable is equal to the

influence of a singleton set containing that variable.

Fact 2.16. For any function f : {0, 1}n → {0, 1} and any variable i ∈ [n], we have
Inff (i) = Inff ({i}).

An immediate observation that follows from our definitions of relevance and influence
is that the variables that are relevant in a function are exactly the variables with non-zero
influence in that function.

Fact 2.17. The variable i ∈ [n] is relevant in f : {0, 1}n → {0, 1} iff Inff (i) > 0.
Similarly, the set S ⊆ [n] of variables is relevant in f iff Inff (S) > 0.

A less obvious—but much more useful—observation is that the notions of influence
have a natural representation in terms of the Fourier transformation of a boolean function.
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Lemma 2.18. For every function f : {0, 1}n → {0, 1} and every variable i ∈ [n], the
influence of i in f satisfies

Inff (i) = 2
∑

α∈{0,1}n :αi=1

f̂(α)2.

More generally, for every set S ⊆ [n], the influence of S in f satisfies

Inff (S) = 2
∑

α∈{0,1}n : ‖αS‖>0

f̂(α)2.

Proof. By Fact 2.16, it suffices to prove the latter identity.

Since f is {0, 1}-valued, we have

Pr
x,y

[f(x) 6= f(xS̄ ∨ yS)] = E
x,y

[(f(x)− f(xS̄ ∨ yS))2]

= 2E
x

[f(x)2]− 2 E
x,y

[f(x)f(xS̄ ∨ yS)].

The Fourier representation of f and linearity of expectation yield

E
x,y

[f(x)f(xS̄ ∨ yS)] =
∑

α,β∈{0,1}n
f̂(α)f̂(β) E

x,y
[χα(x)χβ(xS̄ ∨ yS)].

By the identity χβ(xS̄ ∨ yS) = χβS̄(x)χβS(y), we can rewrite the right-most term as
Ex,y[χα(x)χβ(xS̄ ∨ yS)] = Ex[χα⊕βS̄(x)]Ey[χβS(y)]. Applying Fact 2.5, this means that
Ex,y[χα(x)χβ(xS̄∨yS)] takes the value 1 when α = βS̄ and βS = 0 (or, equivalently, when
αS = 0 and β = α) and it takes the value 0 otherwise. This observation and Parseval’s
identity imply that

Pr
x,y

[f(x) 6= f(xS̄ ∨ yS)] = 2E
x

[f(x)2]− 2 E
x,y

[f(x)f(xS̄ ∨ yS)]

= 2
∑
α

f̂(α)2 − 2
∑

α :αS=0

f̂(α)2 = 2
∑

α : ‖αS‖>0

f̂(α)2.

The monotonicity and subadditivity properties of influence follow directly from the
lemma.

Theorem 2.19 (Monotonicity and subadditivity of influence). For any boolean function
f : {0, 1}n → {0, 1} and any two sets S, T ⊆ [n],

Inff (S) ≤ Inff (S ∪ T ) ≤ Inff (S) + Inff (T ).
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Proof. Any α ∈ {0, 1}n that satisfies ‖αS‖ > 0 also satisfies ‖αS∪T‖ > 0. Therefore, by
Lemma 2.18,

Inff (S) = 2
∑

α : ‖αS‖>0

f̂(α)2 ≤ 2
∑

α : ‖αS∪T ‖>0

f̂(α)2 = Inff (S ∪ T ).

Similarly, any α ∈ {0, 1}n that satisfies ‖αS∪T‖ > 0 must satisfy at least one of the two
inequalities ‖αS‖ > 0 and ‖αT‖ > 0. So

Inff (S ∪ T ) = 2
∑

α : ‖αS∪T ‖>0

f̂(α)2

≤ 2
∑

α : ‖αS‖>0

f̂(α)2 + 2
∑

α : ‖αT ‖>0

f̂(α)2

= Inff (S) + Inff (T ).

2.5 Juntas

Juntas figure prominently in the rest of this thesis. In this section, we define the term more
formally and provide a basic fact about functions that are “far” from being juntas for later
use. A more complete introduction to juntas and their role in property testing is deferred
to Chapter 5.

Definition 2.20 (Junta). Fix 0 ≤ k ≤ n. The function f : {0, 1}n → {0, 1} is a k-junta iff
it contains at most k relevant variables.

Note that when we say that f is a junta (without specifying k), we mean that f is a
k-junta for some k = O(1). (I.e., for some k independent of n.)

A simple characterization of the influence of variables in functions that are far from
juntas is as follows.

Lemma 2.21. Fix 0 < k < n. Let f : {0, 1}n → {0, 1} be ε-far from all functions that
are k-juntas. Then every set J ⊆ [n] of size |J | ≤ k satisfies Inff (J) ≥ ε.

Proof. Fix any set J ⊆ [n] of size |J | ≤ k. Define h : {0, 1}n → {0, 1} to be the function
obtained by setting

h(x) =

{
1 if Ez[f(xJ ∨ zJ)] ≥ 1

2

0 otherwise
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for every x ∈ {0, 1}n. The variables that are relevant in h are contained in J , so h is a
k-junta. By the assumption in the lemma statement, we must therefore have that

Pr
x

[f(x) 6= h(x)] ≥ ε.

For each w ∈ {0, 1}n, define

pw := Pr[f(x) 6= h(x) | xJ = wJ ].

By the definition of h, for every w we have pw ≤ 1
2
. We also have that

Pr
x

[f(x) 6= h(x)] = E
x

[pxJ ]

and that
Inff (J) = Pr

x
[f(x) 6= f(xJ ∨ zJ)] = 2E

x
[pxJ (1− pxJ )].

Combining the above results, we get

Inff (J) ≥ 2E
x

[1
2
pxJ ] = Pr

x
[f(x) 6= h(x)] ≥ ε.

2.6 Parity functions

Another class of functions that appears prominently throughout this thesis—and, indeed,
that often appears in almost any study of boolean functions—is the set of parity functions.

Definition 2.22 (Parity). Fix S ⊆ [n]. The parity function corresponding to S is the
function ParityS : {0, 1}n → {0, 1} defined by

ParityS(x) =
⊕
i∈S

xi.

The parity functions are linear functions since they satisfy the identity

ParityS(x⊕ y) = ParityS(x)⊕ ParityS(y)

for every x, y ∈ {0, 1}n. When |S| = k, we also say that the function ParityS is k-linear.

The parity functions have a simple Fourier representation.
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Proposition 2.23. Fix S ⊆ [n]. The Fourier coefficients of the parity function ParityS :
{0, 1}n → {0, 1} are defined by

P̂arityS(α) =

{
1
2

if α = 0 or α = eS

0 otherwise.

We can use the Fourier decomposition of parity functions to establish the following
useful facts.

Proposition 2.24. Fix 0 < k < n and let S ⊆ [n] be a set of size |S| > k. Then the parity
function ParityS : {0, 1}n → {0, 1} is

i. 1
2
-far from ParityT for every T 6= S,

ii. 1
2
-far from every k-linear function,

iii. 1
2
-far from every k-junta, and

iv. 1
2
-far from all functions of Fourier degree at most k.

Proof. By Lemma 2.9 and Proposition 2.23,

Pr
x

[ParityS(x) 6= ParityT (x)] =
∑
α

(
P̂arityS(α)− P̂arityT (α)

)2
= 2(1

2
)2 = 1

2
.

This completes the proof of i. It also immediately implies ii since k-linear functions are
necessarily parity functions on some set T 6= S. To prove iii and iv, it suffices to prove the
latter statement, since k-juntas have Fourier degree at most k.

Let f : {0, 1}n → {0, 1} be a function of Fourier degree at most k. Since |S| > k, we
can again apply Lemma 2.9 and Proposition 2.23 to obtain

Pr
x

[f(x) 6= ParityS(x)] =
∑
α

(
f̂(α)−P̂arityS(α)

)2
= (f̂(0)− 1

2
)2+

∑
0<‖α‖≤k

f̂(α)2+(1
2
)2.

By Parseval’s identity and the Fourier degree of f ,∑
0<‖α‖≤k

f̂(α)2 =
∑
‖α‖>0

f̂(α)2 = ‖f‖2
2 − f̂(0)2.

The function f is {0, 1}-valued, so ‖f‖2
2 = Ex[f(x)2] = Ex[f(x)] = f̂(0). As a result,

Pr
x

[f(x) 6= ParityS(x)] = (f̂(0)− 1
2
)2 + (f̂(0)− f̂(0)2) + 1

4
= 1

2
.
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Chapter 3

Property Testing

This section presents a brief introduction to property testing. We introduce all the neces-
sary definitions, then explore two fundamental topics that we will use in later sections: the
connection between property testing and learning theory, and a main lemma for proving
lower bounds on the query complexity for testing properties via Yao’s Minimax Lemma.
For a more thorough introduction to property testing, we recommend the surveys [87, 89]
and the collection [58].

3.1 Definitions

Definition 3.1 (Property). A property of boolean functions is a subset of all boolean func-
tions.

When f : {0, 1}n → {0, 1} is in P , we say that f has property P . We say that f is
“far” from P when every function in P disagrees with f on a large fraction of the inputs
in {0, 1}n. To make this notion precise, we introduce measures of distance for functions
and for properties of boolean functions.

Definition 3.2 (Distance between functions). Fix a distribution D over {0, 1}n. The dis-
tance between the two functions f, g : {0, 1}n → {0, 1} under D is

distD(f, g) := Pr
x∼D

[f(x) 6= g(x)].

When D is the uniform distribution over {0, 1}n, we omit the subscript and write simply
dist(f, g).
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Definition 3.3 (Distance between properties). Fix a distribution D over {0, 1}n. The dis-
tance between two properties P ,Q ⊆ {0, 1}n → {0, 1} is

distD(P ,Q) := min
f∈P,g∈Q

distD(f, g).

Once again, we omit the subscript when D is the uniform distribution over {0, 1}n.

Our main measure of interest is the distance between a function and a property. We
define this measure using the distance between properties.

Definition 3.4 (Distance between functions and properties). Fix a distribution D over
{0, 1}n. The distance between the function f : {0, 1}n → {0, 1} and the property
P ⊆ {0, 1}n → {0, 1} is

distD(f,P) := distD({f},P).

As above, we omit the subscript when D is the uniform distribution over {0, 1}n.

When distD(f,P) ≥ ε, we say that f is ε-far from P (under the distributionD). When
distD(f,P) ≤ ε, then f is ε-close to P .

We are now ready to present the notion of property testers, as originally defined by
Rubinfeld and Sudan [90].

Definition 3.5 (Property tester). Fix a property P ⊆ {0, 1}n → {0, 1} and a distribution
D over {0, 1}n. A q-query ε-tester for P over D is a randomized algorithm that queries an
unknown function f : {0, 1}n → {0, 1} on at most q inputs and

(i) Accepts with probability at least 2
3

when f has property P; and

(ii) Rejects with probability at least 2
3

when f is ε-far from P .

Remark 3.6. Note that the tester is free to accept or reject f when 0 < distD(f,P) < ε.

Remark 3.7. The choice of 2
3

for the acceptance and rejection probabilities is somewhat
arbitrary. More generally, we could require those probabilities to be 1− δ for any 0 < δ <
1
2
. Standard boosting arguments show that the two settings are essentially equivalent, so

we do not bother with the more general definition in this thesis.

Definition 3.8 (One-sided error). A q-query ε-tester for P that is guaranteed to always
accept functions with property P (instead of only accepting them with probability at least
2
3
) is said to have one-sided error. Otherwise, P has two-sided error.
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Definition 3.9 (Non-adaptive testers). A q-query ε-tester for P that determines all of its q
queries before observing the value of f on any of those queries is non-adaptive. Otherwise,
the tester is adaptive.

A well-known folkloric result in property testing states that the most query-efficient
non-adaptive tester for a property P has query complexity that is at most exponential in
the query complexity of the best adaptive tester for P .

Proposition 3.10. Fix a property P ⊆ {0, 1}n → {0, 1}. If there is an adaptive q-query
ε-tester for P , then there is a non-adaptive 2q-query ε-tester for P .

Proof. Let A be the adaptive q-query ε-tester for P . The behavior of A is determined by
a decision tree of depth d. By fixing the randomness in advance, we can simulate A with
a non-adaptive algorithm by making all the (at most) 2d queries that are present in the tree
then following the path that A would have traversed in making its d adaptive queries.

3.2 Testing and Learning

The connection between property testing and learning theory that we describe in this sec-
tion was first established by Goldreich, Goldwasser, and Ron [59]. Before describing the
connection itself, let us first define the concept of a “proper learner”.

Definition 3.11 (Proper learner). An algorithmA with query access to a boolean function
is an (ε,δ,q) proper learner for property P over the distribution D if for every function
f : {0, 1}n → {0, 1} in P , the algorithm A queries f on at most q inputs from {0, 1}n
then outputs a function h : {0, 1}n → {0, 1} in P such that with probability at least 1− δ,
the distance between f and h is bounded by distD(f, h) ≤ ε.

Remark 3.12. We emphasize that the learner is free to output any function h ∈ P when
f /∈ P .

Our definition corresponds to the concept of a proper learner in the membership query
learning model. We will examine other learning models in Chapter 12. Also, the common
terminology in the learning theory community refers to learners over classes of functions
instead of over properties; the two definitions are identical.

Proper learners can be used to test properties, as the following lemma shows.

Lemma 3.13. If P has a ( ε
2
,1
6
,q) proper learner over D, then P can be tested with q +

O(1/ε) queries.
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Proof. LetA be a ( ε
2
,1
6
,q) proper learner over D for P . We can useA to test P by running

the following simple testing algorithm:

1. Run A on f to obtain the hypothesis function h : {0, 1}n → {0, 1}.

2. Query f on s = O(1/ε) samples drawn independently at random from D.

3. Let d̃ be the fraction of inputs chosen in the last step on which f and h disagree.

4. Accept iff d̃ ≤ 3ε
4

.

Let us now examine why this algorithm is a valid tester for P . First, when f ∈ P , with
probability at least 5

6
, A returns a function h that satisfies distD(f, h) ≤ ε

2
. Conversely,

when f is ε-far from P , then no matter what hypothesis function h ∈ P is returned by
the learner, distD(f, h) ≥ ε. Since d̃ is an unbiased estimator for distD(f, h), we can pick
s to be large enough to guarantee that Pr[|d̃ − distD(f, h)| ≥ ε

4
] < 5

6
and the resulting

algorithm is a valid tester for P .

When the property P is small, there is a simple but query-efficient proper learning
algorithm for target functions in P: draw O(log |P|) random samples, and output any
hypothesis in P that is consistent with the function on all the samples. As a result,
Lemma 3.13 has the following widely-applicable corollary.

Corollary 3.14. Fix P ⊆ {0, 1}n → {0, 1}. There is an ε-tester for P that requires only
O(log(|P|)/ε) queries.

Proof. By Occam’s Razor (see, e.g. [73, §2]), there is an ( ε
2
, 1

6
, q) proper learner for P

that makes q = O(log(|P|)/ε) queries to the target function.1 The corollary then follows
immediately from Lemma 3.13.

3.3 Lower Bounds via Yao’s Minimax Principle

We use the following standard property testing lemmas in the following sections.

1In fact, as discussed above, the proper learner only needs to receive q random samples drawn from
{0, 1}n.
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Lemma 3.15. Let Dyes and Dno be any two distributions over functions {0, 1}n → {0, 1}.
If for every set X ⊆ {0, 1}n of size |X| = q and any vector r ∈ {0, 1}q we have that∣∣∣∣ Pr

f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ < 1
36

2−q,

then any algorithm that distinguishes functions drawn from Dyes from those drawn from
Dno with probability at least 2

3
makes at least q + 1 queries.

Proof. Define D to be the distribution obtained by drawing a function from Dyes or from
Dno, each with probability 1/2. By Yao’s Minimax Principle[100], to prove the lemma
it suffices to show that any deterministic testing algorithm needs at least q + 1 queries to
distinguish functions drawn from Dyes or from Dno with probability at least 2/3.

A deterministic testing algorithm can be described by a decision tree with a query
x ∈ {0, 1}n at each internal node and a decision to accept or reject at every leaf. Each
boolean function f defines a path through the tree according to the value of f(x) at each
internal node.

Consider a testing algorithm that makes at most q queries. Its decision tree has depth
at most q and it has at most 2q leaves. Let us call a leaf ` negligible if the probability that
a function f ∼ D defines a path that terminates at ` is at most 1

12
2−d. The total probability

that f ∼ D defines a path to a negligible leaf is at most 1
12

.

Fix ` to be some non-negligible leaf. This leaf corresponds to a set X ⊆ {0, 1}n of q
queries and a vector r ∈ {0, 1}q of responses; a function f defines a path to the leaf ` iff
f(X) = r. Since ` is non-negligible, Prf∼D[f(X) = r] > 1

12
2−d. So by the hypothesis of

the lemma,∣∣∣∣ Pr
f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ ≤ 1
36

2−d < 1
3

Pr
f∼D

[f(X) = r].

Then by Bayes’ theorem∣∣∣∣ Pr
f∼D

[f ∈ P | f(X) = r]− Pr
f∼D

[f ε-far from P | f(X) = r]

∣∣∣∣
=

∣∣∣∣Prf∼Dyes [f(X) = r]− Prf∼Dno [f(X) = r]

2 Prf∼D[f(X) = r]

∣∣∣∣ < 1

6
.

Therefore, the probability that the testing algorithm correctly classifies a function f ∼ D
that lands at a non-negligible leaf ` is less than 7

12
. So even if the algorithm correctly

classifies all functions that land in negligible leaves, it still correctly classifies f with
probability less than 11

12
· 7

12
+ 1

12
< 2

3
, so it is not a valid tester for P .
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Chapter 4

Mathematical Tools

This section introduces the mathematical tools that we use in subsequent chapters to an-
alyze property testing algorithms and to establish lower bounds on the query complexity
for different property testing tasks.

Many of the tools that we use are taken from probability theory and statistics. We
introduce those tools first. In the subsequent sections, we then introduce the results from
combinatorics and from the theory of orthogonal polynomials that we will require in the
following chapters.

4.1 Probability theory

We adopt most of the standard terminology of probability theory as found, for example,
in [50, 51].

Many of our in later chapter require us to show that two related distributions are
“close”. We formalize this concept with the total variation distance between distributions.

Definition 4.1. Given two random variables X, Y defined on a common discrete sample
space Ω, the total variation distance between X and Y is

dTV(X, Y ) =
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| .

The most basic statistics of a random variable x drawn from some distribution D are
its mean E[x] and variance Var[x] = E[(x−E[x])2]. When x = (x1, . . . , xn) is a random
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variable drawn from a multivariate distribution D′, we define its mean to be the vector
E[x] = (E[x1], . . . ,E[xn]) and we define the covariance matrix of x to be the n × n
matrix Cov[x] whose (i, j)th entry is defined by

Cov[x]i,j = E[(xi − E[xi])(xj − E[xj])] = E[xixj]− E[xi]E[xj].

4.1.1 Hypergeometric Distribution

Consider the experiment where we have n balls, r of which are red, and we draw d balls
uniformly at random without replacement. The distribution on the number w of balls
drawn that are red is called the hypergeometric distribution. We write Hn,r,d to represent
this distribution.

Intuitively, when n ≈ n′ and r ≈ r′, the distributions Hn,r,d and Hn′,r′,d should be
close. The following lemma confirms and formalizes this intuition.

Lemma 4.2. Let n, r, n′, r′, d be non-negative integers with d, n′ ≤ γn for some γ ≤ 1
2
.

Suppose that |r − n
2
| ≤ t
√
n and |r′ − n′

2
| ≤ t
√
n′ hold for some t ≤ 1

100γ
. Then,

dTV(Hn,r,d,Hn−n′,r−r′,d) ≤ c(1 + t)γ .

holds for some universal constant c.

Proof. Our proof uses the connection between hypergeometric distribution and the bino-
mial distribution, which we denote by Bn,p (for n experiments, each with success proba-
bility p). Specifically, we use the following two lemmas.

Lemma 4.3 (Example 1 in [94]). dTV(Hn,r,d,Bd, r
n
) ≤ d

n
.

Lemma 4.4 ([1]). Let 0 < p < 1 and 0 < δ < 1− p. Then,

dTV(Bn,p,Bn,p+δ) ≤
√
e

2

τn,p(δ)

(1− τn,p(δ))2

provided τn,p(δ) < 1 where

τn,p(δ) = δ

√
n+ 2

2p(1− p)
.
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The lemma trivially holds when k = 0 so from now on we assume k ≥ 1. By the
triangle inequality,

dTV(Hn,r,d,Hn−n′,r−r′,d) ≤ dTV(Hn,r,d,Bd,p)
+ dTV(Hn−n′,r−r′,d,Bd,p′) + dTV(Bd,p,Bd,p′) (4.1)

where p = r
n

and p′ = r−r′
n−n′ .

Now, we assume p ≤ p′ (the other case can be treated in the same manner). Let
δ = p′ − p, then

δ =
mn′ − nm′

n(n− n′)
≤ 1

n(n− n′)

((n
2

+ t
√
n
)
n′ − n

(
n′

2
− t
√
n′
))

=
t(n
√
n′ +

√
nn′)

n(n− n′)
≤

2t
√
γn3/2

(1− γ)n2
≤ 4t

√
γ

n
(from γ ≤ 1

2
) .

Then, τk,p(δ) in Lemma 4.4 is

τk,p(δ) ≤ 4t

√
γ

n

√
k + 2

2p(1− p)
≤ 4t

√
2γ(k + 2)

n
(from

1

p(1− p)
≤ 4)

≤ 4t

√
6γk

n
(from k ≥ 1)

≤ 4
√

6tγ (from k ≤ γn)

Note that, from the assumption, we have τk,p(δ) ≤ 1
2
. From Lemmas 4.3 and 4.4, we have

(4.1) ≤ k

n
+
k

n
+

√
e

2

τk,p(δ)

(1− τk,p(δ))2

≤ 2γ + 2
√
e · 4
√

6tγ (from τk,p(δ) ≤
1

2
)

≤ c(1 + t)γ

for some universal constant c.

4.1.2 Random permutations

A permutation π : [n]→ [n] is a bijection on [n]. The set of permutations on [n] is denoted
by Sn. Fix i ∈ [n]. When π(i) = i, we say that i is a fixed point of π. We write ST to
represent the set of permutations π where each element i ∈ [n] \ T is a fixed point in π.
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A permutation π ∈ Sn acts on vectors in {0, 1}n in the natural way: for x ∈ {0, 1}n,
we define

πx = (xπ(1), . . . , xπ(n)).

In Chapter 6, we will be interested in bounding the total variation distance between per-
muted strings under slightly different choices of random permutations. The following
lemma shows that this distance is equal to the total variation distance between related
hypergeometric distributions.

Lemma 4.5. Fix J,K ⊆ [n] and x ∈ {0, 1}n. LetDπJ∪Kx andDπJπKx be the distributions
on πJ∪Kx and πJπKx, respectively, when πJ∪K , πJ , πK are drawn uniformly at random
from SJ∪K ,SJ ,SK , respectively. Then

dTV(DπJ∪Kx, DπJπKx) = dTV(H|J∪K|,|xJ∪K |,|K\J |,H|K|,|xK |,|K\J |).

Proof. Since both distributions DπJ∪Kx and DπJπKx only modify coordinates in J ∪ K,
we can ignore all other coordinates. Moreover, it is in fact suffices to look only at the
number of ones in the coordinates of K \ J and J ∪ K, which completely determines
the distributions. Let Dz denote the uniform distribution over all elements y ∈ {0, 1}n
such that |y| = |x|, yJ∪K = xJ∪K and |yK\J | = z. (This also fixes the number of
ones in yJ .) Notice that this distribution is well defined only for values of z such that
max{0, |xJ∪K | − |J |} ≤ z ≤ min{|xJ∪K |, |K \ J |}.

Given this notation, DπJ∪Kx can be looked at as choosing z ∼ H|J∪K|,|xJ∪K |,|K\J | and
returning y ∼ Dz. This is because we apply a random permutation over all elements of
J∪K, and therefore the number of ones insideK\J is indeed distributed like z. Moreover,
the order inside both sets K \ J and J is uniform.

The distributionDπJπKx can be looked at as choosing z ∼ H|K|,|xK |,|K\J | and returning
y ∼ Dz. The number of ones in K \ J is determined already after applying πK . It is
distributed like z as we care about the choice of |K \ J | out of the |K| elements, and |xK |
of them are ones (and their order is uniform). Later, we apply a random permutation πJ
over all other relevant coordinates, so the order of elements in J is also uniform.

Since the distributions Dz are disjoint for different values of z, this implies that the
distance between the two distributions DπJ∪Kx and DπJπKx depends only on the number
of ones chosen to be inside K \ J . Therefore we have

dTV(DπJ∪Kx, DπJπKx) = dTV(H|J∪K|,|xJ∪K |,|K\J |,H|K|,|xK |,|K\J |)

as required.
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4.1.3 U-statistics

Many of the statistics on functions f : {0, 1}n → {0, 1} that we need to evaluate in this
thesis are of the form τ = Ex[ψ(f(x))] for some function ψ : R → R. These statistics
can be estimated efficiently by sampling inputs x1, . . . , xm independently at random and
evaluating τ̃ = m−1

∑m
i=1 ψ(f(xi)). The error of τ̃ can then be controlled by the Chernoff

bound or other similar concentration inequalities.

In Chapter 12, we need to estimate a slightly different kind of statistic: one that is of
the form τ = Ex,y[ψ(f(x), f(y))] for some ψ : R×R→ R. The best way to estimate this
statistic is by using U-statistics, a tool first introduced by Halmos [64] and Hoeffding [66].

Definition 4.6. The U-statistic (of order 2) with symmetric kernel function g : Rn×Rn →
R is the function Um

g : Rn → R defined by

Um
g (x1, . . . , xm) :=

(
m

2

)−1 ∑
1≤i<j≤m

g(xi, xj).

Tight concentration bounds are known for U-statistics with well-behaved kernel func-
tions. The specific result that we use in Chapter 12 is a Bernstein-type inequality due to
Arcones [9].

Theorem 4.7 (Arcones [9]). For a symmetric function h : Rn × Rn → R, let Σ2 =
Ex[Ey[h(x, y)]2] − Ex,y[h(x, y)]2, let b = ‖h − Eh‖∞, and let Um(h) be a random
variable obtained by drawing x1, . . . , xm independently at random and setting Um(h) =(
m
2

)−1∑
i<j h(xi, xj). Then for every t > 0,

Pr[|Um(h)− Eh| > t] ≤ 4 exp

(
mt2

8Σ2 + 100bt

)
.

For details on U-statistics, Arcones’ theorem and other related topics, see [44].

4.1.4 Random matrices

Our study of the active testing model in Chapter 12 and, more specifically, the lower
bounds on the query complexity for testing linear threshold functions in this model, rely
on the non-asymptotic analysis of random matrices. In this short section, we introduce
the definitions and results we will need for our intended application. For a more thorough
introduction to the subject, see [98].
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We begin with some basic matrix definitions. Given an n × m matrix A with real
entries {ai,j}i∈[n],j∈[m], the adjoint (or transpose – the two are equivalent since A contains
only real values) of A is the m × n matrix A∗ whose (i, j)-th entry equals aj,i. Let us
write λ1 ≥ λ2 ≥ · · · ≥ λm to denote the eigenvalues of

√
A∗A. These values are the

singular values of A. The matrix A∗A is positive semidefinite, so the singular values of A
are all non-negative. We write λmax(A) = λ1 and λmin(A) = λm to represent its largest
and smallest singular values. Finally, the induced norm (or operator norm) of A is

‖A‖ = max
x∈Rm\{0}

‖Ax‖2

‖x‖2

= max
x∈Rm:‖x‖22=1

‖Ax‖2.

For more details on these definitions, see any standard linear algebra text (e.g., [93]). We
will also use the following strong concentration bounds on the singular values of random
matrices.

Lemma 4.8 (See [98, Cor. 5.35]). LetA be an n×mmatrix whose entries are independent
standard normal random variables. Then for any t > 0, the singular values of A satisfy

√
n−
√
m− t ≤ λmin(A) ≤ λmax(A) ≤

√
n+
√
m+ t (4.2)

with probability at least 1− 2e−t
2/2.

The proof of this lemma follows from Talagrand’s inequality and Gordon’s Theorem
for Gaussian matrices. See [98] for the details. The lemma implies the following corollary
which we will use in the proof of our theorem.

Corollary 4.9. Let A be an n×m matrix whose entries are independent standard normal
random variables. For any 0 < t <

√
n −
√
m, the m × m matrix 1

n
A∗A satisfies both

inequalities

∥∥ 1
n
A∗A− I

∥∥ ≤ 3

√
m+ t√
n

and det
(

1
n
A∗A

)
≥ e

−m
(

(
√
m+t)2

n
+2
√
m+t√
n

)
(4.3)

with probability at least 1− 2e−t
2/2.

Proof. When there exists 0 < z < 1 such that 1 − z ≤ 1√
n
λmax(A) ≤ 1 + z, the identity

1√
n
λmax(A) = ‖ 1√

n
A‖ = max‖x‖22=1 ‖ 1√

n
Ax‖2 implies that

1− 2z ≤ (1− z)2 ≤ max
‖x‖22=1

∥∥∥ 1√
n
Ax
∥∥∥2

2
≤ (1 + z)2 ≤ 1 + 3z.

32



These inequalities and the identity ‖ 1
n
A∗A − I‖ = max‖x‖22=1 ‖ 1√

n
Ax‖2

2 − 1 imply that

−2z ≤ ‖ 1
n
A∗A − I‖ ≤ 3z. Fixing z =

√
m+t√
n

and applying Lemma 4.8 completes the
proof of the first inequality.

Recall that λ1 ≥ · · · ≥ λm are the eigenvalues of
√
A∗A. Then

det( 1
n
A∗A) =

det(
√
A∗A)2

n
=

(λ1 · · ·λm)2

n
≥
(
λ 2
m

n

)m
=

(
λmin(A)2

n

)m
.

Lemma 4.8 and the elementary inequality 1 + x ≤ ex complete the proof of the second
inequality.

4.2 Combinatorics

4.2.1 Intersecting families

A family F of subsets of [n] is t-intersecting if for every pair of sets S, T ∈ F , their
intersection size is at least |S ∩ T | ≥ t. The family F is called s-uniform if all sets in
the family have size s Erdős, Ko, and Rado [49] asked: what is the maximum size of a
t-intersecting s-uniform family? They gave the answer to this question when t = 1, and a
sequence of later works led to a complete solution for this question [49, 53, 99, 2].

More recently, Dinur and Safra [47] and Friedgut [55] considered a variant on the
original question of Erdős, Ko, and Rado. For a fixed 0 < p < 1, define the p-biased
measure of a family F of subsets of [n] to be

µp(F) = Pr
J

[J ∈ F ]

where J is a random subset of [n] obtained by including each element i ∈ [n] in J inde-
pendently with probability p. We can now ask: for a fixed p, what is the maximum p-biased
measure of a t-intersecting family? Dinur and Safra [47] showed that 2-intersecting fam-
ilies have small p-biased measure and Friedgut [55] showed how the same result also
extends to t-intersecting families for any t > 2. Specifically, they obtained the following
bound on the maximum biased measure of intersecting families.

Theorem 4.10 (Dinur and Safra [47]; Friedgut [55]). Let F be a t-intersecting family of
subsets of [n] for some t ≥ 1. For any p < 1

t+1
, the p-biased measure of F is bounded by

µp(F) ≤ pt.
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The original motivation of Dinur and Safra [47] in the study of intersecting families
was an application in hardness of approximation for the vertex cover problem. As we
will see in Chapters 5 and 6, Theorem 4.10 is also particularly useful for the analysis of
algorithms for testing juntas and partial symmetry.

4.2.2 Graph colorings

The topic of graph coloring—of assigning colors to the vertices of a graph G = (V,E)
such that no two neighboring vertices share the same color—has developed into a broad
area of research with many interesting problems and results [67, 78]).

In Chapter 9, we make use of a celebrated theorem of this area due to Hajnal and Sze-
merédi [60]. Recall that the degree of a vertex in a graph is the number of edges adjacent
to that vertex. Hajnal and Szemerédi’s theorem states that graphs with small maximum
vertex degree can be colored with very few colors and, furthermore, that this coloring can
be done in a way that each color is assigned to approximately the same number of vertices.

Theorem 4.11 (Hajnal–Szemerédi [60]). Let G be a graph on n vertices with maximum
vertex degree ∆(G) ≤ d. Then G has a (d + 1)-coloring in which all the color classes
have size

⌊
n
d+1

⌋
or
⌈

n
d+1

⌉
.

4.3 Orthogonal polynomials

The last tools that we introduce in this section are orthogonal polynomials. The Krawtchouk
polynomials, which have been quite useful in coding theory [97], will be used in Chapter 7
to give a strong lower bound on the query complexity for testing k-linearity. The Hermite
polynomials, which we introduce afterwards, are used in Chapter 12 in the analysis of
testers for linear threshold functions.

4.3.1 Krawtchouk polynomials

For n > 0 and k = 0, 1, . . . , n, the (binary) Krawtchouk polynomial Kn
k : {0, 1, . . . , n} →

Z is defined by

Kn
k (m) =

k∑
j=0

(−1)j
(
m

j

)(
n−m
k − j

)
.
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The generating function representation of the Krawtchouk polynomial Kn
k (m) is

Kn
k (m) = [xk] (1− x)m(1 + x)n−m.

Krawtchouk polynomials have a number of useful properties (see, e.g., [96]). We make
use of the following identities in our proofs:

Fact 4.12. Fix n > 0. Then

i. For every 2 ≤ k ≤ n, Kn
k (m)−Kn

k−2(m) = Kn+2
k (m+ 1).

ii.
∑n

k=0K
n
k (m)2 = (−1)mK2n

n (2m).

iii. For every 0 ≤ d ≤ n
2
,
∑d

j=0

(
d
j

)
(−1)jKn

n
2
(2j + 2) = 22dKn−2d

n
2
−d (2).

iv. For every−n
2
≤ k ≤ n

2
, Kn

n
2

+k(m) =
2n−1im

π

∫ 2π

0

sinm θ cosn−m θei2kθ dθ.

v. K2n
n (2m + 1) = 0 and (−1)mK2n

n (2m) is positive and decreasing in
min{m,n−m}.

Proof. We prove each statement individually.

i. The first statement follows directly from the generating function representation of
Krawtchouk polynomials.

Kn
k (m)−Kn

k−2(m) =
(
[xk] (1− x)m(1 + x)n−m

)
−
(
[xk−2] (1− x)m(1 + x)n−m

)
= [xk] (1− x)m(1 + x)n−m(1− x2)

= [xk] (1− x)m+1(1 + x)n−m+1 = Kn+2
k (m+ 1).

ii. By some more elementary manipulation of generating functions, we have

Kn
k (m) = [xk] (1− x)m(1 + x)n−m

= [x−k] (1− 1
x
)m(1 + 1

x
)n−m

= [xn−k] (x− 1)m(x+ 1)n−m = (−1)mKn
n−k(m).

Therefore,
n∑
k=0

Kn
k (m)2 = (−1)m

n∑
k=0

Kn
k (m)Kn

n−k(m).
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The Cauchy product of two sequences {a0, a1, . . .} and {b0, b1, . . .} is(∑
n≥0

an

)(∑
n≥0

bn

)
=
∑
n≥0

( n∑
k=0

akbn−k

)
.

Let ak = bk = [xk] (1−x)m(1 +x)n−m. Then (
∑

n≥0 an) = (1−x)m(1 +x)n−m and

n∑
k=0

Kn
k (m)Kn

n−k(m) = [xn] (1− x)2m(1 + x)2(n−m) = K2n
n (2m).

iii. Considering generating functions and applying the binomial theorem, we get

d∑
j=0

(
d

j

)
(−1)jK2n

n (2j + 2) = [xn]
d∑
j=0

(
d

j

)
(−1)j(1− x)2j+2(1 + x)2n−2j−2

= [xn] (1− x)2(1 + x)2n−2d−2

d∑
j=0

(
d

j

)(
− (1− x)2

)j(
(1 + x)2

)d−j
= [xn] (1− x)2(1 + x)2n−2d−2(4x)d = 22dK

2(n−d)
n−d (2).

iv. By elementary manipulation of generating functions, we obtain

Kn
n
2

+k(m) = [x
n
2

+k] (1− x)m(1 + x)n−m

= [xk] ( 1√
x
−
√
x)m( 1√

x
+
√
x)n−m

= [x−2k] (x− 1
x
)m(x+ 1

x
)n−m.

Applying Cauchy’s integral formula to this expression, we get

Kn
n
2

+k(m) =
1

2π

∫ 2π

0

(eiθ − e−iθ)m(eiθ + e−iθ)n−mei2kθ dθ.

From the trigonometric identities sin θ = eiθ−e−iθ
2i

and cos θ = eiθ+e−iθ

2
, we get

Kn
n
2

+k(m) =
2n

2π
im
∫ 2π

0

sinm θ cosn−m θei2kθ dθ.

v. By the last statement, K2n
n (2m+ 1) is pure imaginary. Since it is also real, it must be

0.

36



The last statement also yields

(−1)mK2n
n (2m) =

22n−1

π

∫ 2π

0

sin2m(θ) cos2n−2m(θ)dθ

=
22n−2

π

∫ 2π

0

sin2m(θ) cos2n−2m + cos(θ)2m sin(θ)2n−2m(θ)dθ.

By AM-GM, for fixed n, the integrand is a decreasing function of min{m,n−m}.

Krawtchouk polynomials are widely used in coding theory (see, e.g.,[97]) and in our
proofs because of their close connection with the Fourier coefficients of the (Hamming
weight indicator) function IWk

: {0, 1}n → {0, 1} defined by IWk
(x) = 1[‖x‖ = k].

Fact 4.13. Fix n > 0, 0 ≤ k ≤ n, and α ∈ {0, 1}n. Then ÎWk
(α) = 2−nKn

k (|α|).

Proof. The Fourier coefficient of IWk
at α is

ÎWk
(α) = 2−n

∑
x∈{0,1}n:‖x‖=k

(−1)α·x = 2−n
k∑
j=0

(−1)j
(
|α|
j

)(
n− |α|
k − j

)
= 2−nKn

k (|α|).

4.3.2 Hermite polynomials

When considering the uniform distribution on {0, 1}n, we found that the set of linear func-
tions, via the Fourier transform, played an important role in the analysis of boolean func-
tions. When, instead, we consider the standard Gaussian distribution on Rn, the Hermite
polynomials play a similarly important role.

Definition 4.14. The Hermite polynomials are a set of polynomials

h0(x) = 1,

h1(x) = x,

h2(x) = 1√
2
(x2 − 1),

...

that form a complete orthogonal basis for (square-integrable) functions f : R → R over
the inner product space defined by the inner product 〈f, g〉 = Ex[f(x)g(x)], where the
expectation is over the standard Gaussian distribution N (0, 1).
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The Hermite decomposition and Hermite coefficients of a function are defined as fol-
lows.

Definition 4.15. For any S ∈ Nn, define HS =
∏n

i=1 hSi(xi). The Hermite coefficient of
f : Rn → R corresponding to S is f̂(S) = 〈f,HS〉 = Ex[f(x)HS(x)].

Definition 4.16. The Hermite decomposition of f : Rn → R is f(x) =
∑

S∈Nn f̂(S)HS(x).

Definition 4.17. The degree of the coefficient f̂(S) is |S| :=
∑n

i=1 Si. and the level-k
Hermite weight of f is

∑
S:|S|=k f̂(S)2.

The following basic lemma regarding the level-1 Hermite weight of functions will be
of fundamental importance in the analysis in Chapter 12.

Lemma 4.18. For any function f : Rn → R, we have

n∑
i=1

f̂(ei)2 = E
x,y

[f(x)f(y) 〈x, y〉]

where 〈x, y〉 =
∑n

i=1 xiyi is the standard vector dot product.

Proof. Applying the Hermite decomposition of f and linearity of expectation,

E
x,y

[f(x)f(y) 〈x, y〉] =
n∑
i=1

∑
S,T∈Nn

f̂(S)f̂(T )E
x

[HS(x)xi]E
y

[HT (y)yi].

By definition, xi = h1(xi) = Hei(x). The orthonormality of the Hermite polynomials
therefore guarantees that Ex[HS(x)Hei(x)] = 1 when S = ei; otherwise it takes the value
0. Similarly, Ey[HT (y)yi] = 1 iff T = ei.
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Part I

Exact Query Complexity
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Chapter 5

Testing Juntas

We begin by studying the problem of testing juntas—that is, of testing if a function has at
most k relevant variables for some fixed k. The motivation for studying juntas comes from
the fundamental role of these functions in different areas of computer science.

Motivation. In learning theory, juntas provide an elegant and useful framework for
studying the problem of learning in the presence of irrelevant attributes [27, 30, 29]. More
precisely, a target function is a k-junta when only k of the n possible attributes determine
the value of the function on all inputs. The problem of learning juntas is a fundamental
problem in learning theory [28, 79].

The important role of juntas in learning theory motivates the study of junta testing for
two reasons. First, the insights on the structure of juntas learned in the course of research
in testing juntas may lead to new learning algorithms as well. Second, junta testers may
be used in learning theory directly in the model selection framework. The idea of this
application is as follows: if we don’t know ahead of time whether a target function is
a k-junta or not, we can use a junta tester to quickly test the property and, if the target
function is far from being a junta, we may save ourselves the query and computational
cost that would have been wasted in trying to learn the target function under the erroneous
assumption that it is a junta. (We discuss model selection in more detail in Chapter 12.)

Juntas also play an important role in complexity theory. The special case of testing
dictator functions—1-juntas of the form f(x) = xi for some i ∈ [n]—in particular, has
been at the heart of the development of probabilistically checkable proofs (PCPs) and in
the corresponding advances in hardness of approximation [16, 17, 15, 65]. Juntas have
also appeared directly in some constructions for hardness of approximation results—most
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notably for the vertex cover [47] and satisfiability of linear equations [75] problems.

Let us also mention briefly that the importance of juntas is not limited only to computer
science: these functions are also fundamental objects of study in the analysis of boolean
function [32, 54] and in social choice theory [69].

Lastly, juntas are play a central role in property testing itself. In fact, in a remarkable
result, Diakonikolas et al. [46] showed that efficient junta testers, combined with the test-
ing by implicit learning method, lead to efficient testers for a large number of properties
of boolean functions such as low Fourier degree, computability by small decision trees,
computability by small boolean circuits, representability by DNFs with a small number of
terms, and sparse polynomials.

For many of the query complexity upper bounds obtained by Diakonikolas et al. [46],
the barrier to obtaining improved query complexities is the query complexity of the junta
test. This state of affairs suggested that improvements on the query complexity for testing
juntas was likely to lead to improved query complexities for a number of other properties.

Previous work. The first result on testing dictator functions was obtained by Bellare,
Goldreich, and Sudan [15] in the context of testing the “long code” for PCP constructions
and further generalized by Parnas, Ron, and Samorodnitsky [84]. These results showed
that it is possible to test dictator functions with O(1/ε) queries. This result also imme-
diately implies that 1-juntas can be tested with the same number of queries. (See [21]
for a more detailed discussion of testing 1-juntas and the other results mentioned in this
section.)

The first general results on testing k-juntas for any k ≥ 1 were obtained by Fischer
et al. [52], who showed that the query complexity for testing k-juntas is poly(k/ε). Most
importantly, this showed that juntas can be tested with a number of queries that is inde-
pendent of the size of the domain of the functions. In fact, they exhibited a number of
different algorithms for testing k-juntas, with the most efficient one requiring O(k2 log2 k)
queries.

Fischer et al. [52] also introduced the first lower bounds on the query complexity
for testing juntas. They showed that for k small enough, any non-adaptive tester for k-
juntas makes at least Ω(

√
k/ log(k)) queries. This lower bound translates to a Ω(log k)

lower bound for general testers. That lower bound was subsequently improved to Ω(k) by
Chockler and Gutfreund [41].
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Result. The main result of this chapter is a new algorithm for testing juntas with a num-
ber of queries that nearly matches Chockler and Gutfreund’s lower bound. Specifically,
we establish the following result.

Theorem 5.1. It is possible to ε-test the function f : {0, 1}n → {0, 1} for the property of
being a k-junta with O (k/ε+ k log k) queries.

The algorithm that we introduce for testing juntas is conceptually quite simple. The
main technical component of this chapter lies in the analysis of this algorithm.

5.1 The algorithm

The JUNTATEST algorithm is based on two simple but powerful ideas. The first idea,
initially presented by Fischer et al. [52], is that there is a very natural test for determining
whether a set S ⊆ [n] of coordinates contains a relevant variable in the function f :
{0, 1}n → {0, 1}. This test, which we call the RELEVANTTEST algorithm,1 picks x, y ∈
{0, 1}n independently and uniformly at random conditioned on xS̄ = yS̄ and tests whether
f(x) 6= f(y).

RELEVANTTEST(f , S)

1. Generate x, z ∈ {0, 1}n independently and uniformly at random.
2. Set y = xS̄ ∨ zS .
3. If f(x) 6= f(y), accept and return (x, y).
4. Else, reject.

When none of the variables in S ⊆ [n] are relevant in f , the RELEVANTTEST always
rejects. In fact, we can say more: the probability that the test accepts is equal to the
influence of S in f . (See Lemma 5.2 below.) When the RELEVANTTEST accepts, it
returns a witness to the fact that S contains a relevant variable in the form of two inputs
x, y ∈ {0, 1}n for which xS̄ = yS̄ and f(x) 6= f(y).

The second idea we use is an observation of Blum, Hellerstein, and Littlestone [29]
first made in the context of learning juntas: if we have two inputs x, y ∈ {0, 1}n such
that f(x) 6= f(y), then we can perform a binary search over the hybrid vectors between
x and y to find a coordinate that is relevant in f with O(log n) queries. We build on this

1 In [52], the test is called the INDEPENDENCETEST and reverses the accept and reject actions.
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observation by noting that if we have a partition of the coordinates into s parts and only
care to identify a part that contains a relevant coordinate (rather than the coordinate itself),
then we can optimize the binary search to only takeO(log s) queries. We call the algorithm
that implements this strategy FINDRELEVANTPART.

FINDRELEVANTPART(f , {I1, . . . , Is}, x, y)

1. Initialize ` = 0, u = s.
2. While u− ` > 1,

2.1. Set m = `+
⌈
u−`

2

⌉
and S =

⋃s
j=m+1 Ij .

2.2. Define z = xS̄ ∨ yS .

2.3. If f(x) = f(z), then update u = m.

2.4. Else, update ` = m.
3. Return Iu.

The JUNTATEST algorithm combines the two observations above in the obvious way.
It maintains a set S of coordinates that may or may not be relevant to the function, then it
runs the RELEVANTTEST a number of times to determine whether S contains a relevant
variable. If so, then it obtains a pair x, y ∈ {0, 1}n such that f(x) 6= f(y) and xS̄ = yS̄ . By
calling FINDRELEVANTPART with x and y, the algorithm identifies a part I that contains a
relevant variable. It then removes the variables in I from S and repeats the process. If this
algorithm identifies k + 1 different parts with relevant coordinates, it rejects the function;
otherwise it accepts the function as a k-junta. The details of the algorithm are presented in
Figure 5.1.

5.2 Analysis of the Algorithm

This section is dedicated to the analysis of the JUNTATEST algorithm. The first step in this
analysis is to determine the probability that RELEVANTTEST accepts.

Lemma 5.2. For any function f : {0, 1}n → {0, 1} and any set S ⊆ [n], a call to
RELEVANTTEST(f , S) accepts with probability Inff (S).

Proof. RELEVANTTEST(f , S) accepts iff f(x) 6= f(xS̄ ∨ zS), where x and z are picked
independently and uniformly at random from {0, 1}n. By Definition 2.15, the probability
that f(x) 6= f(xS̄ ∨ zS) is Inff (S).
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JUNTATEST(f , k, ε)
Additional parameters: s = 24k2, r = 12(k + 1)/ε

1. Randomly partition the coordinates in [n] into I = {I1, . . . , Is}.
2. Initialize S ← [n], `← 0.
3. For each of r rounds,

3.1. If RELEVANTTEST(f , S) accepts and returns (x, y), then
3.1.1. I ← FINDRELEVANTPART(f , I, x, y).
3.1.2. Update S ← S \ I and `← `+ 1.
3.1.3. If ` > k, then reject the function.

4. Accept the function.

Figure 5.1: The algorithm for ε-testing k-juntas.

This lemma will enable us to prove the correctness of the JUNTATEST algorithm if we
can show that when f is far from being a k-junta, every set that includes all but at most k
parts of the random partition I will have large influence. We formalize this statement and
prove it in the next sub-section.

5.2.1 Main Technical Lemma

We begin with a definition that extends the notion of juntas with respect to partitions of
the coordinates.

Definition 5.3 (Partition juntas). Let I be a partition of [n]. The function f : {0, 1}n →
{0, 1} is a k-part junta with respect to I if the relevant coordinates in f are all contained
in at most k parts of I. Conversely, f is ε-far from being a k-part junta with respect to I
if for every set J formed by taking the union of k parts in I, Inff (J) ≥ ε.

When f is a k-junta, it is also a k-part junta with respect to any partition of [n]. The
following lemma shows that when f is far from being a k-junta and I is a sufficiently fine
random partition, then with large probability f is also far from being a k-part junta with
respect to I.

Lemma 5.4. Let I be a random partition of [n] with s = 24k2 parts obtained by uniformly
and independently assigning each coordinate to a part. With probability at least 5

6
, a

function f : {0, 1}n → {0, 1} that is ε-far from being a k-junta is also ε
2
-far from being a

k-part junta with respect to I.
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Proof. For τ > 0, let Fτ = {J ⊆ [n] : Inff (J) < τ} be the family of all sets whose
complements have influence at most τ . For any two sets J,K ∈ F ε

2
, the sub-additivity of

influence implies that

Inff (J ∩K) = Inff (J ∪K) ≤ Inff (J) + Inff (K) < 2 · ε
2

= ε.

But f is ε-far from k-juntas, so by Lemma 2.21 every set S ⊆ [n] of size |S| ≤ k satisfies
Inff (S) ≥ ε. This implies that |J ∩K| > k and, since this argument applies to every pair
of sets in the family, that F ε

2
is a (k + 1)-intersecting family.

Let us now consider two separate cases: when F ε
2

contains a set of size less than 2k;
and when it does not. In the first case, let J ∈ F ε

2
be one of the sets of size |J | < 2k.

By the union bound, the probability that J is completely separated by the partition I is
at least 1 − 2k ·

(
2k
s

)
= 5

6
. For every set K ∈ F ε

2
, we have |J ∩ K| ≥ k + 1. So when

J is completely separated by I, no set K in F ε
2

is covered by the union of k parts in
I. Therefore, with probability at least 5

6
, the function f is ε

2
-far from k-part juntas with

respect to I, as we wanted to show.

Consider now the case where F ε
2

contains only sets of size at least 2k. Then we claim
that F ε

4
is a 2k-intersecting family: otherwise, we could find sets J,K ∈ F ε

4
such that

|J ∩K| < 2k and Inff (J ∩K) ≤ Inff (J) + Inff (K) < ε
2
, contradicting our assumption.

Let J ⊆ [n] be the union of k parts in I. Since I is a random partition, J is a random
subset obtained by including each element of [n] in J independently with probability p =
k
s

= 1
24k

< 1
2k+1

. By Theorem 4.10,

Pr
I

[Inff (J) < ε
4
] = Pr[J ∈ F ε

4
] = µ k

s
(F ε

4
) ≤

(
k
s

)2k
.

Applying the union bound over the possible choices of J , we get that f is ε
2
-close to a

k-part junta with respect to I with probability at most(
s

k

)(
k

s

)2k

≤
(es
k

)k (k
s

)2k

≤
(
ek

s

)k
<

1

6
.

5.2.2 Proof of Theorem 5.1

We are now ready to complete the analysis of the JUNTATEST algorithm.

Theorem 5.1 (Restated). It is possible to ε-test the function f : {0, 1}n → {0, 1} for the
property of being a k-junta with O (k/ε+ k log k) queries.
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Proof. We begin by determining the query complexity of the JUNTATEST algorithm. At
most 2r = 24(k + 1)/ε queries are made in the execution of line 3.2 of the algorithm, and
at most (k + 1) log s = (k + 1) log(24k2) queries are made in line 3.2.1 of the algorithm.
So the algorithm makes a total of O(k/ε+ k log k) queries to the input function.

The completeness of the JUNTATEST algorithm is easy to establish: when the input
function is a k-junta, it contains at most k parts with relevant coordinates, so the algorithm
always accepts the function. Therefore, the JUNTATEST algorithm has one-sided error.

Finally, we analyze the soundness of the JUNTATEST algorithm. By Lemma 5.4, with
probability at least 5/6 a function f that is ε-far from being a k-junta is also ε/2-far from
being a k-part junta with respect to the random partition of the coordinates. When this is
the case, the influence of S is at least ε/2 until k + 1 parts with relevant coordinates are
identified. So the expected number of rounds required to identify k+ 1 parts with relevant
variables is 2(k + 1)/ε. By Markov’s Inequality, the probability that the algorithm does
not identify k + 1 relevant parts in 12(k + 1)/ε rounds is at most 1/6, and the overall
probability that the JUNTATEST algorithm fails to reject f is at most 1/3.

5.3 Notes and Discussion

We conclude this chapter by discussing some implications of Theorem 5.1, the problem of
testing non-boolean functions for the property of being a junta, and non-adaptive testing
of juntas.

Implications. We mentioned in the introduction that one of the motivations for study-
ing the junta testing problem is the testing by implicit learning method of Diakonikolas
et al. [46], which uses junta testers to obtain efficient testing algorithms for a variety of
other properties. Our hope was that a more query-efficient junta test would lead to im-
proved upper bounds on the query complexity for a number of other properties of boolean
functions.

Chakraborty, Garcı́a Soriano, and Matsliah showed that the JUNTATEST algorithm pre-
sented in this section does indeed lead to improved upper bounds for the query complexity
of other properties of boolean functions [39]. Their work introduces an efficient “sample
extractor” for juntas that, combined with the JUNTATEST algorithm, improves the query
complexity for testing computability by small DNFs, decision trees, boolean circuits, or
branching programs, for testing low Fourier degree, and for testing sparse polynomials.
We summarize their results in Table 5.1.
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Property Upper bound Previous upper bound Lower bound

s-term DNFs O(s log s) Õ(s4) [46] Ω(log s) [39]

s-term monotone DNFs O(s log s) Õ(s2) [84] ?

Size-s boolean formulae O(s log s) Õ(s4) [46] sΩ(1) [39]

Size-s branching programs O(s log s) Õ(s4) [46] Ω(s) (§7)

Size-s decision trees O(s log s) Õ(s4) [46] Ω(log s) (§7)

Size-s boolean circuits O(s2) Õ(s6) [46] sΩ(1) [39]

s-sparse polynomials O(s log s) Õ(s4) [46] Ω(s) (§7)

Fourier degree ≤ d O(22d) Õ(26d) [46] Ω(d) [40]

Table 5.1: Results obtained by Chakraborty, Garcı́a Soriano, and Matsliah [39] by combining an
efficient sample extractor with the JUNTATEST algorithm.

Non-adaptive testing. The JUNTATEST algorithm presented in this chapter is adaptive—
indeed, adaptivity is the key component that enables the FINDRELEVANTPART algorithm
to require only O(log k) queries. A natural question to ask is whether we can also test
juntas non-adaptively with O(k log k) queries. That question remains open. The best al-
gorithm for testing juntas non-adaptively requires O(k3/2) queries [19], and the best lower
bound for non-adaptive testing of juntas is Ω(k log k) queries.

Testing general functions. Let X1, . . . , Xn, Y be arbitrary finite sets. The notion of
juntas can be extended to functions f : X1×· · ·×Xn → Y over general product domains,
and we may ask if such functions can also be tested efficiently for the property of being a
k-junta.

Indeed, they can. The JUNTATEST algorithm works essentially as-is in the more gen-
eral setting and, with the appropriate generalizations of the notion of influence, the same
analysis applies mostly as-is in the more general setting as well. For the details, we refer
the reader to [20].
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Chapter 6

Testing Partial Symmetry

The main result of the last chapter showed that juntas are efficiently testable. Looking
back on this result, we may ask: can we explain why the k-junta property is so efficiently
testable? In other words, what characteristics of the junta property did we use to obtain an
efficient tester?

Intuitively, it seems that the main characteristic of juntas that lets us test the corre-
sponding property efficiently is that all the irrelevant variables are “essentially the same”.
More precisely, juntas are invariant under any relabeling of the irrelevant variables. This
characteristic is useful, notably, in arguing that a partition of [n] is “good” when it com-
pletely separates the set of relevant variables.

It is not immediately clear, however, how accurate this intuition is. As a test for this
intuition, we examine in this section the problem of testing partially symmetric functions.
For a fixed 2 ≤ t ≤ n, the function f : {0, 1}n → {0, 1} is t-symmetric if there is a set
S of |S| = t coordinates for which f is invariant under all relabeling of the variables in
S. In the informal terms of the last paragraph, the function f is t-symmetric if it has t
variables that are “essentially the same”. The set of (n− k)-symmetric functions includes
all k-juntas as well as many other functions as well. (For example, the parity function
x1 ⊕ · · · ⊕ xn is t-symmetric for every 2 ≤ t ≤ n.)

We show that we can indeed test (n − k)-symmetry as efficiently as we can test k-
juntas.

Theorem 6.1. Fix n > 0 and 0 < k < n
10

. The property of being (n − k)-symmetric is
ε-testable with O(k log k + k/ε) queries.

The algorithm used to test partially symmetric functions is similar to the junta testing
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algorithm, but the analysis is more involved. An important ingredient of the analysis is a
new notion of influence, called “symmetric influence”, that we introduce in Section 6.2.

6.1 The Algorithm

To create an algorithm for testing partial symmetry, we extend the JUNTATEST algorithm
from the last chapter. The first component of the JUNTATEST was the RELEVANTTEST

algorithm that, given a function f and a set S of coordinates, aimed to determine if S
contained a variable that was relevant in f . The analogous algorithm for our present pur-
poses is the ASYMMETRICTEST that aims to determine whether f is invariant under all
relabeling of the variables in S or not.

ASYMMETRICTEST(f , S)

1. Generate x ∈ {0, 1}n uniformly at random.
2. Generate the permutation π on [n] uniformly at random condi-

tioned on π(i) = i for each i ∈ [n] \ S.
3. If f(x) 6= f(πx), accept and return (x, πx).
4. Else, reject.

When f is invariant under all permutations of the labels of the variables in S, ASYM-
METRICTEST always rejects. Furthermore, when the test accepts, it also returns a witness
(x, y) of the asymmetry of S in f . The probability that the test accepts when S is asym-
metric, however, is not immediately clear. As we will see in Lemma 6.7, this probability
is determined by the notion of symmetric influence that we define in the next section.

The second main component of the JUNTATEST was the FINDRELEVANTPART algo-
rithm. Once again, we can define a similar algorithm for finding a part that is asymmetric in
f . Recall that in the last chapter, the algorithm found a relevant part by performing a binary
search over the hybrid strings between a pair of elements x, y that satisfy f(x) 6= f(y).
In the present situation, our task is complicated by the fact that we must perform a binary
search over elements z with the same Hamming weight as x and y. We do so by treating
one of the parts as a “workspace” that we use to control the Hamming weight of the hybrid
strings. We then consider a binary search in which the hybrid strings we generate have
Hamming weight close to that of x and y. The following BALANCEDSPLIT algorithm is a
key component that lets us achieve this goal.
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BALANCEDSPLIT(S, a1, . . . , an, τmin, τmax)

1. Initialize T ← ∅.
2. While |T | < b |S|

2
c,

2.1. Find j ∈ S \ T that satisfies τmin ≤ aj +
∑

i∈T ai ≤ τmax.

2.2. Update T ← T ∪ {j}.
3. Return T .

We are now ready to complete the definition of the FINDASYMMETRICPART algo-
rithm. When (a) the part Is passed into this function is larger than the other parts and
contains no asymmetric variable and (b) x and y satisfy ‖x‖ = ‖y‖ and f(x) 6= f(y),
this algorithm identifies a part that contains an asymmetric variable. (The analysis of this
algorithm will be completed in Lemma 6.9 in Section 6.3.)

FINDASYMMETRICPART(f , x, y, I1, . . . , Is)

1. For i = 0, 1, . . . , |Is|,
1.1. Set wi to be a string satisfying ‖wiIs‖ = i and ‖wi

Is
‖ = 0.

2. Fix τmin = −‖xIs‖ and τmax = |Is| − ‖xIs‖.
3. For j = 1, . . . , s− 1,

3.1. Set aj = ‖xIj‖ − ‖yIj‖.
4. Initialize Jx ← ∅, Jy ← ∅, and J? ← [s− 1].
5. While |J?| > 1,

5.1. Set J ′ ← BALANCEDSPLIT(J?, a1, . . . , as−1, τmin, τmax).

5.2. Set S ←
⋃
j∈Jx∪J ′ Ij and T ←

⋃
j∈Jy∪(J?\J ′) Ij .

5.3. Set z ← xS ∨ yT ∨ w‖x‖−‖xS∨yT ‖.
5.4. If f(x) = f(z), then

5.4.1. Update Jx ← Jx ∪ J ′ and J? ← J? \ J ′.
5.5. Else

5.5.1. Update Jy ← Jy ∪ (J? \ J ′) and J? ← J ′.

6. Return Ij for the element j in the singleton set J? = {j}.

Finally, we obtain the PARTIALSYMMETRYTEST by combining the two components
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PARTIALSYMMETRYTEST(f , k, ε)
Additional parameters: s = Θ(k2/ε2), r = Θ(k/ε)

1. Randomly partition [n] into {I1, . . . , Is−1, I
′
s, I
′
s+1, I

′
s+2, I

′
s+3}.

2. Set Is ← I ′s ∪ I ′s+1 ∪ I ′s+2 ∪ I ′s+3.
3. If |Ii| > 1

2
|Is| for some i ∈ [s− 1], fail.

4. Initialize S ← [n] \W and `← 0.
5. For each of r rounds,

5.1. If ASYMMETRICTEST(f , S) accepts and returns (x, y), then
5.1.1. I ← FINDASYMMETRICPART(f , x, y, I1, . . . , Is).
5.1.2. Update S ← S \ I and `← `+ 1.
5.1.3. If ` > k, then reject the function.

6. Accept the function.

Figure 6.1: The algorithm for ε-testing (n− k)-symmetric functions.

ASYMMETRICTEST and FINDASYMMETRICPART in the natural way. That is, we gen-
erate random pairs of elements x, y ∈ {0, 1}n with the same Hamming weight and use
ASYMMETRICTEST to determine if x and y form an asymmetry witness for f . If so, we
use FINDASYMMETRICPART to identify one of the parts that contains an asymmetric vari-
able. We reject the function if we identify more than k parts with asymmetric variables.
The resulting algorithm is very similar to the JUNTATEST. It is presented in Figure 6.1.

In the rest of the chapter, we analyze the PARTIALSYMMETRYTEST algorithm to ver-
ify that it is indeed a valid ε-tester for (n − k)-symmetry. To complete this analysis,
however, we must first introduce a new measure of influence, which we call “symmetric
influence”.

6.2 Symmetric influence

Recall that our definition of influence of a set of variables measures the sensitivity of a
function to re-randomizing the values of the variables in that set. Similarly, we define
the symmetric influence of a set of variables to measure the sensitivity of a function to re-
ordering the values of the variables in that set—or, equivalently, to relabeling the variables
in that set.
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Definition 6.2 (Symmetric influence). The symmetric influence of a set J ⊆ [n] of vari-
ables in a Boolean function f : {0, 1}n → {0, 1} is defined as

SymInff (J) = Pr
x∈{0,1}n,π∈Sn

[
f(x) 6= f(πx)

∣∣ ∀i ∈ J̄ , π(i) = i
]
.

It follows from this definition that a function f is t-symmetric iff there exists a set J
of size |J | = t such that SymInff (J) = 0. In fact, we can establish a much stronger
statement.

Lemma 6.3. Given a function f : {0, 1}n → {0, 1} and a subset J ⊆ [n], let fJ be the
J-symmetric function closest to f . Then, the symmetric influence of J satisfies

dist(f, fJ) ≤ SymInff (J) ≤ 2 · dist(f, fJ) .

Proof. For every weight 0 ≤ w ≤ n and z ∈ {0, 1}|J |, define the layer Lw
J←z := {x ∈

{0, 1}n | ‖x‖ = w∧xJ = z} to be the vectors of Hamming weight w which identifies with
z over the set J (notice that some of these layers may be empty). Let pwz be the fraction of
the vectors in Lw

J←z that one has to modify in order to make the restriction of f over Lw
J←z

to be constant (notice that pwz ∈ [0, 1
2
] for every z, w).

With this notation, we can restate the definition of the symmetric influence of J as
follows.

SymInff (J) =
∑
z

∑
w

Pr
x∈{0,1}n

[x ∈ Lw
J←z] · Pr

x∈{0,1}n,π∈SJ
[f(x) 6= f(πx) | x ∈ Lw

J←z]

=
1

2n

∑
z

∑
w

(
|J |

w − |z|

)
2pwz (1− pwz ) .

This holds as in each such layer, the probability that x and πx would result in two different
outcomes is the probability that the x would be chosen out of the smaller part and πx from
the complement, or vise versa.

The function fJ can be obtained by modifying f at pzj fraction of the inputs in each
layer Lw

J←z, as each layer can be addressed separately and we want to modify as few inputs
as possible. By this observation, we have the following equality.

dist(f, fJ) =
1

2n

∑
z

∑
w

(
|J |

w − |z|

)
pwz .

But since 1 − pwz ∈ [1
2
, 1], we have that pwz ≤ 2pwz (1 − pwz ) ≤ 2pwz and therefore

dist(f, fJ) ≤ SymInff (J) ≤ 2 · dist(f, fJ) as required.
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An immediate corollary of Lemma 6.3 gives a characterization of the symmetric influ-
ence of functions that are far from partially symmetric.

Corollary 6.4. Let f : {0, 1}n → {0, 1} be a function that is ε-far from being t-symmetric.
Then for every set J ⊆ [n] of size |J | ≥ t, SymInff (J) ≥ ε holds.

Proof. Fix J ⊆ [n] of size |J | ≥ t and let g be a J-symmetric function closest to f . Since g
is symmetric on any subset of J , it is in particular t-symmetric and therefore dist(f, g) ≥ ε
as f is ε-far from being t-symmetric. Thus, by Lemma 6.3, SymInff (J) ≥ dist(f, g) ≥ ε
holds.

The analysis of the JUNTATEST relied crucially on the fact that the notion of influence
is both monotone and sub-additive (Theorem 2.19). The following lemma shows that
symmetric influence is also monotone.

Lemma 6.5 (Monotonicity). For any function f : {0, 1}n → {0, 1} and any sets J ⊆
K ⊆ [n],

SymInff (J) ≤ SymInff (K) .

Proof. Fix a function f and two sets J,K ⊆ [n] so that J ⊆ K. We have seen before that
the symmetric influence can be computed in layers, where each layer is determined by the
Hamming weight and the elements outside the set we are considering. Using the fact that
Var(X) = Pr[X = 0] ·Pr[X = 1], the symmetric influence is twice the expected variance
over all the layers (considering also the size of the layers). Using the same notation as
before,

SymInff (J) =
1

2n

∑
z

∑
w

(
|J |

w − |z|

)
2 ·Var

x
[f(x) | x ∈ Lw

J←z]

= 2 · E
y

[
Var
x

[f(x) | x ∈ L|y|
J←yJ

]
]
.

A key observation is that since K ⊆ J , the layers determined when considering J are
a refinement of the layers determined when considering K. Together with the fact that
Var(X) = Pr[X = 0] · Pr[X = 1] is a concave function in the range [0, 1], we can
apply Jensen’s inequality on each layer before and after the refinement to get the desired
inequality. More precisely, for every z ∈ {0, 1}|K| and 0 ≤ w ≤ n,

Var
x

[f(x) | x ∈ Lw
K←z] ≥ E

y

[
Var
x

[f(x) | x ∈ Lw
J←yJ

] | y ∈ Lw
K←z

]
.

Averaging this over all layers, we get the desired result.
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Finally, to complete the analogy with influence, we would like to show that symmetric
influence is also sub-additive. Unfortunately, that is not the case. Consider for example
the function f : {0, 1}6 → {0, 1} defined by

f(x) = (x1 ∨ x2 ∨ x3)⊕ (x4 ∨ x5 ∨ x6).

This function f is invariant under relabelings of the variables in {1, 2, 3} or in {4, 5, 6}
so SymInff ({1, 2, 3}) = SymInff ({4, 5, 6}) = 0. But SymInff ({1, . . . , 6}) > 0, as
shown for instance by the fact that f(1, 1, 1, 0, 0, 0) 6= f(1, 1, 0, 1, 0, 0). Therefore, for
this function, we have

SymInff ({1, 2, 3} ∪ {4, 5, 6}) > 0 = SymInff ({1, 2, 3}) + SymInff ({4, 5, 6}).

More generally, we can consider the function f(x) = f1(xJ) ⊕ f2(xK) for some
partition [n] = J ∪ K and two randomly chosen symmetric functions f1 and f2. With
high probability, f will be very far from symmetric and we will have SymInff ([n]) =
SymInff (J ∪K) ≈ 1

2
while SymInff (J) = SymInff (K) = 0. This example shows that

symmetric influence can be far from sub-additive in general. We can show, however, that
the symmetric influence of sets of variables is approximately sub-additive when the sets
are small enough.

Lemma 6.6 (Weak sub-additivity). There is a universal constant c such that, for any con-
stant 0 < γ < 1, a function f : {0, 1}n → {0, 1}, and sets J,K ⊆ [n] of size at least
(1− γ)n,

SymInff (J ∪K) ≤ SymInff (J) + SymInff (K) + c
√
γ .

Proof. We will choose c ≥
√

2. Then, the RHS becomes more than one when γ > 1
2

and
the inequality trivially holds. Thus, we assume γ ≤ 1

2
in what follows. We use the same

notions as in Lemma 4.5. From Lemma 4.5,

SymInf(J ∪K) = Pr
x,π

[f(x) 6= f(πx)]

= E
x

[
Pr
π

[f(x) 6= f(πx)]
]

≤ E
x

[
Pr

πJ ,πK
[f(x) 6= f(πJπKx)] + dTV(Dπx,DπJπKx)

]
= E

x

[
Pr

πJ ,πK
[f(x) 6= f(πJπKx)] + dTV(H|J∪K|,|xJ∪K |,|K\J |,H|K|,|xK |,|K\J |)

]
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Let t = 1
100
√
γ

. We call x strongly balanced if
∣∣∣‖xJ∪K‖ − |J∪K|2

∣∣∣ ≤ t
√
n′ and

∣∣∣‖xK‖ − |K|2

∣∣∣ ≤
t
√
|K|. From Chernoff bound and the union bound, x is strongly balanced except with

probability at most 4 exp(−2t2) ≤ 4 exp
(
− 1

5000γ

)
≤ c′γ for some constant c′.

Note that |K \ J | ≤ |J | ≤ γn and |J ∪ K| − |K| = |J \ K| ≤ |K| ≤ γn. Also,
t = 1

100
√
γ
≤ 1

100γ
holds. Thus, when x is strongly balanced, Lemma 4.2 implies that

dTV(H|J∪K|,|xJ∪K |,|K\J |,H|K|,|xK |,|K\J |) ≤ c4.2(1 + t)γ. Then, we have

SymInf(J ∪K) ≤ E
x

[
Pr

πJ ,πK
[f(x) 6= f(πJπKx)]

]
+ Pr

x
[x is not strongly balanced]

+ E
x

[
1[x is strongly balanced] · c4.2(1 + t)γ

]
≤ Pr

x,πJ ,πK
[f(x) 6= f(πKx)] + Pr

x,πJ ,πK
[f(πKx) 6= f(πJπKx)]

+ c′γ + c4.2(1 + t)γ

≤ SymInff (J) + SymInff (K) + c
√
γ

for some constant c.

6.3 Analysis of the algorithm

This section is devoted to the analysis of the PARTIALSYMMETRYTEST algorithm. The
broad outline of this analysis closely mirrors that of the analysis of the JUNTATEST algo-
rithm in the last chapter.

6.3.1 Analysis of ASYMMETRICTEST

As a first step in the analysis of the partial symmetry tester, we show that the ASYM-
METRICTEST accepts a set with probability equal to the symmetric influence of that set.
The proof of this statement follows almost immediately from the definition of symmetric
influence.

Lemma 6.7. For any function f : {0, 1}n → {0, 1} and any set S ⊆ [n], a call to
ASYMMETRICTEST(f , S) accepts with probability SymInff (S).

Proof. The ASYMMETRICTEST algorithm accepts iff f(x) 6= f(πx). When x is chosen
uniformly at random from {0, 1}n and π is a permutation on [n] chosen uniformly at ran-
dom conditioned on π(i) = i for each i ∈ S, the probability that f(x) and f(πx) are
distinct is, by definition, SymInff (S).
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6.3.2 Analysis of FINDASYMMETRICPART

To establish the correctness of FINDASYMMETRICPART, we begin by establishing suf-
ficient conditions for guaranteeing that the BALANCEDSPLIT algorithm will succeed in
finding a balanced split of the input set.

Lemma 6.8. Fix a set S ⊆ [n] and constants τmin, τmax that satisfy τmin ≤ 0 ≤ τmax. Let
a1, . . . , an satisfy

∑n
i=1 ai = 0, τmin ≤

∑
i∈S ai ≤ τmax, and maxi∈[n] |ai| < τmax−τmin

2
.

Then BALANCEDSPLIT returns a set T of size |T | = b |S|
2
c that satisfies

τmin ≤
∑
i∈T

ai ≤ τmax.

Proof. To establish the lemma, it suffices to show that for any strict subset T ⊂ S that
satisfies τmin ≤

∑
i∈T ai ≤ τmax, we can always find an elements j ∈ S \ T such that

τmin ≤ aj +
∑

i∈T ai ≤ τmax.

Consider the case when
∑

i∈T ai ≤
τmin+τmax

2
. If there exists j ∈ S \ T such that

aj ≥ 0, then

τmin ≤
∑
i∈T

ai ≤ aj +
∑
i∈T

ai <
τmax − τmin

2
+
τmax + τmin

2
= τmax.

Conversely, if every j ∈ S \ T satisfies aj ≤ 0, for any such j we have

τmax ≥
∑
i∈T

ai ≥ aj +
∑
i∈T

ai ≥
∑
i∈S

ai ≥ τmin.

In either case, we obtain the desired inequality.

The case when
∑

i∈T ai > τmid is nearly identical.

We can now complete the proof of correctness of FINDASYMMETRICPART.

Lemma 6.9. Fix f : {0, 1}n → {0, 1}. Let I = {I1, . . . , Is} be a partition of [n]
into s parts such that |Is| > 2 max1≤i≤s−1 |Ii| and Is contains no asymmetric variables.
Let x, y ∈ {0, 1}n satisfy |x| = |y|, xIs = yIs , and f(x) 6= f(y). Then a call to
FINDASYMMETRICPART(f, x, y, I1, . . . , Is) returns an asymmetric part in I. Further-
more, this call requires O(log s) queries to the function f .

Proof. We claim that the sets Jx, Jy, and J? satisfy the following three properties at every
invocation of the loop in step 5.
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(i) Jx, Jy, and J? form a partition of [s− 1].

(ii) f(x) = f(xJx∪J?
∨ yJy).

(iii) f(y) = f(xJx ∨ yJy∪J?
).

All three claims can be verified by direct examination of the algorithm. Claim (i) is clearly
satisfied initially by the definition in Step 4 and is also clearly maintained by the updates
in Steps 5.4.1 and 5.5.1 since every elements added to Jx or to Jy are simultaneously
removed from J?. Claim (ii) is (vacuously) true initially and is guaranteed to remain true
since we only add elements to Jx when the condition in Step 5.4 holds. The proof of Claim
(iii) is identical but for the observation that we add elements to Jy when the condition in
Step 5.4 does not hold or, equivalently, when f(y) = f(z).

The invariants in Claims (i)–(iii) guarantee that at every iteration of the loop, we have

f(xJx ∨ xJ?
∨ yJy ∨ w‖x‖−‖xJx∨xJ?

∨yJy‖) 6= f(xJx ∨ yJ?
∨ yJy ∨ w‖x‖−‖xJx∨yJ?

∨yJy‖).

When J? = {j} is a singleton, this inequality and the condition that Is contains no asym-
metric variable guarantees that Ij is an asymmetric part. Furthermore, the conditions of
the lemma also guarantee that the conditions of Lemma 6.8 hold. This guarantees that
every iteration of the loop cuts the size of J? in half, so that the algorithm is guaranteed to
terminate in log s steps. Since the only queries to f occur in Step 5.4, this concludes the
query complexity analysis of the algorithm.

6.3.3 Main technical lemma

The key claim in the analysis of PARTIALSYMMETRYTEST is that if a function is far from
being (n−k)-symmetric, then it is also far from being symmetric on any union of all but k
parts of a sufficiently fine random partition. (C.f. Lemma 5.4.) We now prove this claim.

Lemma 6.10. Let f : {0, 1}n → {0, 1} be a function ε-far from (n − k)-symmetric and
I be a random partition of [n] into r = c · k2/ε2 parts, for some large enough constant c.
Then with probability at least 8

9
, SymInff (J) ≥ ε

9
holds for any union J of k parts.

Proof. We first note that when the number of parts r is bigger then n, we simply partition
into the n single-element sets and the lemma trivially holds. For 0 ≤ t ≤ 1, let Ft =
{J ⊆ [n] : SymInff (J) < t, |J | ≤ 5kn/r} be the family of all sets which are not too
big and whose complement has symmetric influence of at most t. (Notice that with high
probability, the union of any k sets in the partition would have size smaller than 5kn/r,
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and therefore we assume this is the case from this point on.) Our first observation is that
for small enough values of t, Ft is a (k + 1)-intersecting family. Indeed, for any sets
J,K ∈ F ε

3
,

SymInff (J ∩K) = SymInff (J ∪K)

≤ SymInff (J) + SymInff (K) + c
√

5k/r < 2 ε
3

+ ε
9
< ε.

Since f is ε-far from (n − k)-symmetric, every set S ⊆ [n] of size |S| ≤ k satisfies
SymInff (S) ≥ ε. So |J ∩K| > k.

We consider two cases separately: when F ε
3

contains a set of size less than 2k; and
when it does not. The first case is identical to the proof of Lemma 5.4 and hence we do
not elaborate on it.

In the second case, which also resembles the proof of Lemma 5.4, we claim that F ε
9

is
a 2k-intersecting family. If this was not the case, we could find sets J,K ∈ F ε

9
such that

|J∩K| < 2k and SymInff (J ∩K) ≤ SymInff (J)+SymInff (K)+ ε
9
< ε

3
, contradicting

our assumption.

Let J ⊆ [n] be the union of k parts in I. Since I is a random partition, J is a random
subset obtained by including each element of [n] in J independently with probability p =
k
r
< 1

2k+1
. To bound the probability that J contains some element from F ε

9
, we define

F ′ε
9

to be all the sets that contain a member from F ε
9
. Since F ′ε

9
is also a 2k-intersecting

family, by Theorem 4.10, for every such J of size at most 5kn/r, Pr[SymInff (J) <
ε
9
] = Pr[J ∈ F ε

9
] ≤ µk/r(F ′ε

9
) ≤

(
k
r

)2k. Applying the union bound over all possible
choices for k parts, f will not satisfy the condition of the lemma with probability at most(
r
k

) (
k
r

)2k
= O(k−k).

6.3.4 Proof of Theorem 6.1

We can now complete the proof that partial symmetry is efficiently testable.

Theorem 6.1 (Restated). Fix n > 0 and 0 ≤ k < n. The property of being (n − k)-
symmetric is ε-testable with O(k log k + k/ε) queries.

Proof. We consider different cases depending on the value of k. When k = 0, the problem
of testing (n− k)-symmetry is simply the problem of testing symmetry. This can be done
withO(1/ε) queries by calling ASYMMETRYTEST(f, [n]) a number of times and accepting
iff every call to the function rejects.
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Consider now the case where 1 ≤ k = o(ε
√

n
logn

). We show that in this case the PAR-

TIALSYMMETRYTEST is a valid tester for partial symmetry that satisfies the requirements
of the theorem statement. Note first that s = Θ(k2/ε2) < n

12 logn
− 3.

We claim that the failure event in Step 3 of PARTIALSYMMETRYTEST occurs with
probability at most 1

12
. For any i = 1, . . . , s− 1, the expected size of Ii is E |Ii| = n

s+3
so,

by Chernoff’s bound,
Pr
[
|Ii| > 3

2
n
s+3

]
< e−

n
12(s+3) .

Similarly, E |Is| = 4n
s+3

and Chernoff’s bound implies that

Pr
[
|Is| < 3 n

s+3

]
< e−

n
8(s+3) .

The inequality |Ii| > 1
2
|Is| can only hold when |Ii| > 3

2
n
s+3

for some i ∈ [s − 1] or when
|Is| < 3 n

s+3
. By the union bound and our bound on s, the probability that this event occurs

is bounded above by

(s− 1)e−
n

12(s+3) + e−
n

8(s+3) < se−
n

12(s+3) ≤ n
12 logn

e− logn = 1
12 logn

� 1
12

for any n ≥ 2.

When f is (n − k)-symmetric, the probability that Is contains an asymmetric vari-
able is at most k 4

s+3
= Θ(ε2/k) � 1

12
. When Is contains no asymmetric variable, then

Lemma 6.9 guarantees that every part returned by FINDASYMMETRICPART contains an
asymmetric variable. There are at most k such parts, so this means that, conditioned on Is
containing no asymmetric variable and the condition in Step 3 satisfied, f will always be
accepted. In other words, every (n − k)-symmetric function is accepted with probability
at least 1− 2 1

12
= 5

6
> 2

3
.

When f is ε-far from (n−k)-symmetric, Lemma 6.10 guarantees that with probability
at least 8

9
over the choice of the random partition, SymInff (J̄) ≥ ε

9
will hold for any set J

obtained by taking the union of at most k parts. Then Lemma 6.7 and Chernoff’s bounds
proves that with probability at least 8

9
, the algorithm will identify at least k + 1 parts with

asymmetric variables. Therefore, the algorithm correctly rejects with probability at least
1− 1

12
− 2

9
= 1− 11

36
> 2

3
.

The above argument shows that PARTIALSYMMETRYTEST is indeed a valid ε-tester
for (n − k)-symmetry, as claimed. To complete the proof of the theorem for this range
of values of k, it suffices to analyze the algorithm’s query complexity. By inspection,
we see immediately that it makes at most O(r + k log s) = O(k/ε + k log(k2/ε2)) =
O(k/ε+ k log k), as required by the theorem statement.
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Finally, we now consider the case where Ω(ε
√

n
logn

) ≤ k < n. In this case, consider a

simplification of the PARTIALSYMMETRYTEST in which we replace the random partition
with a trivial partition into n − 3 parts with 4 coordinates from [n] chosen at random and
put into the part In−3 and all the other remaining parts containing a single element from
[n]. We can then apply the same strategy as in the general algorithm where we run the
ASYMMETRICTEST to find witnesses of asymmetry then run FINDASYMMETRICPART to
identify the parts that contain asymmetric variables.

The analysis of correctness of the simplified algorithm is essentially identical to the
one above.

6.4 Notes and Discussion

History of partially symmetric functions. The class of partially symmetric functions
was first considered by Shannon [92] in his research on the circuit complexity of boolean
functions. He showed that while most functions f : {0, 1}n → {0, 1} have circuit com-
plexity exponential in n, the circuit complexity of partially symmetric functions is much
smaller.

Shannon’s result generated much further research into the interplay between the partial
symmetry of functions and circuit complexity [36, 10] and the problem of determining
when a function is partially symmetric (see, e.g., [43] and references therein).

Other definitions of symmetry have been considered in the computational complexity
community. Clote and Kranakis [42] showed that all functions that obey a large amount
of symmetry in the sense that the isomorphism class of those functions contain at most
poly(n) distinct functions are in NC1. This result was further generalized by Babai,
Beals, and Takácsi-Nagy [12] and has been used, e.g., in proof complexity [85].

Functions that are partially symmetric under our definition also satisfy the Clote–
Kranakis definition of symmetry. While this does not immediately imply testability of
Clote–Kranakakis symmetry (since, obviously, an efficient test for a property P does not
imply the existence of efficient testers for properties that contain P), Chakraborty, Fischer,
Garcı́a Soriano, and Matsliah recently showed that the two definitions are in fact equiva-
lent [37]. Thus, the theorem in this chapter shows that Clote–Kranakakis symmetry is also
efficiently testable.

Concurrent work. Chakraborty, Fischer, Garcı́a Soriano, and Matsliah [37], in inde-
pendent and simultaneous research, obtained a different proof that partial symmetry can

61



be tested efficiently. Interestingly, their result is obtained by a significantly different ap-
proach: instead of generalizing the JUNTATEST algorithm, they identify a clever reduction
between testing partial symmetry and testing juntas to show that the JUNTATEST algo-
rithm can be used as-is—along with a separate algorithm to construct a function g that is
a junta iff f is partially symmetric—to also test partial symmetry. We refer the reader to
their paper [37] for the details.

Influence on Schreier graphs. O’Donnell and Wimmer [82, 83] introduced a general-
ized notion of influence for functions defined over Schreier graphs. In this paragraph, we
discuss a connection between this generalized notion of influence and symmetric influ-
ence. This connection was first pointed out to us by Dvir Falik.

For any set U ⊆ Sn of permutations that is (a) closed under inverses, and (b) generates
Sn, we can define the Schreier graph Sch({0, 1}n,Sn, U) to be the graph obtained by
associating one vertex for each element of {0, 1}n and adding an edge between x, y ∈
{0, 1}n if there exists a permutation π ∈ U such that y = πx. The Schreier influence of
the permutation π ∈ U in the function f : {0, 1}n → {0, 1} is

Inf
(U)
f (π) = 1

2
Pr
x

[f(x) 6= f(πx)].

Fix U = {τi,j}i 6=j to be the set of transpositions on [n]. Then for any pair of distinct
elements i, j ∈ [n], we have

Inf
(U)
f (τi,j) = 1

2
Pr
x

[f(x) 6= f(τi,jx)]

= Pr
x,π

[
f(x) 6= f(πx) | ∀` ∈ [n] \ {i, j}, π(`) = `

]
= SymInff ({i, j}).

Thus, for sets of size 2, symmetric influence is a special case of Schreier influence.

More generally, the symmetric influence of larger sets of variables corresponds to the
average Schreier influence of sets of permutations on the same function. Specifically,
letting U be the set of permutations with at least |J̄ | fixed points, we have that

SymInff (J) = E
π:∀`∈J̄ ,π(`)=`

[Inf
(U)
f (π)].

Invariance in property testing. Finally, we wish to mention that the research presented
in this chapter fits into the general effort for understanding the role of invariance in prop-
erty testing. This effort, launched by Kaufman and Sudan [72], has been widely successful
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in identifying the effect of different invariances of algebraic properties of functions on the
number of queries required to test the same properties. We encourage the reader to consult
the survey [95] and the references therein for more details on this line of research.
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Chapter 7

Testing k-Linearity

Linearity testing is one of the earliest success stories in property testing. Recall that the
function f : {0, 1}n → {0, 1} is linear if it returns the parity of a subset of the variables.
As we saw in Section 2.6, when f is a linear function, it satisfies the identity

f(x)⊕ f(y) = f(x⊕ y)

for every x, y ∈ {0, 1}n. Blum, Luby, and Rubinfeld [31] showed that, remarkably, lin-
earity can be ε-tested with only O(1/ε) queries by simply verifying that the above identity
holds for randomly selected pairs x, y. Linearity testing has since been studied exten-
sively [16, 17, 14, 71] and its query complexity is well understood.

The class of k-linear functions—functions that return the parity of exactly k of the
input variables—is closely related to the class of all linear functions. The query com-
plexity of the k-linearity testing task, however, remained until very recently much less
well-understood than that of linearity testing.

Previous work. Let us first review some folklore bounds on the query complexity for
testing k-linearity. As we saw in Section 3.2, any proper learning algorithm for k-linear
functions with query complexity q yields a k-linearity tester that makes q+O(1/ε) queries.
There is a very simple n-query learning algorithm for k-linear functions: query the values
f(e1), f(e2), . . . , f(en). When f is k-linear, f(ei) = 1 for exactly k indices i ∈ [n] and the
function returns the parity of those variables. Thus, by Lemma 3.13, we can test k-linearity
with n+O(1/ε) queries for every 0 ≤ k ≤ n.

When k < n
logn

, a similar folkloric argument yields an even better bound on the query
complexity for testing k-linearity. There are

(
n
k

)
distinct k-linear functions, so by Corol-
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lary 3.14 we can test k-linearity with O(log
(
n
k

)
/ε) = O(k log(n)/ε) queries.

There are a few values of k for which we have significantly better bounds. First, when
k = 0 and k = n, then the function is either constant or the symmetric parity function;
in both cases, testing k-linearity reduces to testing function identity and can be done with
O(1/ε) queries. When k = 1, we have an interesting special case: the class of 1-linear
functions is exactly the set of dictator functions. The dictator tests that require O(1/ε)
queries [15, 84] imply that 1-linearity also can be tested with the same query complexity.

The first improvements on the folklore bound for the query complexity for testing k-
linearity for general values of k were obtained by Fischer et al. [52]. One of their results
on testing function isomorphism that we will discuss in more detail in Chapter 8 implies
that k-linearity can be tested with poly(k, ε) queries. Clearly, when k � n, this is much
more efficient than the folklore test.

The first non-trivial lower bound on the query complexity for testing k-linearity was
also established by Fischer et al. [52]. They showed that when k = o(

√
n), testing

k-linearity non-adaptively requires Ω(
√
k/ log k) queries. This implies a general lower

bound of Ω(log k) queries for general (i.e., adaptive) k-linearity testers. Their motivation
for establishing this bound was not directly related to the study of k-linearity. Rather, they
wanted to establish a lower bound for the query complexity of the junta testing problem.
Since k-linear functions are k-juntas and (k+ 2)-linear functions are far from k-juntas, so
to prove a lower bound on the query complexity for testing k-juntas, it suffices to establish
a corresponding lower bound for the problem of distinguishing k-linear and (k+ 2)-linear
functions.

In Chapter 10, we will derive a lower bound that is incomparable to the lower bound
of Fischer et al. [52]: Theorem 10.1 gives a weaker bound of Ω(log log(min{k, n − k}))
queries for testing k-linearity, but that lower bound applies to all values of k. We will
discuss the theorem in more detail in that chapter. For now, let us simply point out that the
original motivation for this result was again not the study of k-linearity per se, but rather
to understand another property testing problem—in this case, the function isomorphism
testing problem.

A significant improvement on the best lower bound for the query complexity of testing
k-linearity was obtained by Goldreich [57]. He showed that Ω(min{k, n − k}) queries
are required to test k-linearity non-adaptively and that adaptive testers for k-linearity must
make at least Ω(min{

√
k,
√
n− k}) queries.1 Once again, this result was not motivated by

1More precisely, Goldreich considered the slightly different problem of testing ≤ k-linearity—testing
whether a function returns the parity of at most k variables. His arguments, however, apply equally well to
the k-linearity testing problem.
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the study of k-linearity itself. Instead, the lower bound was used to establish lower bounds
on the number of queries required to test properties computable by width-2 ordered binary
decision diagrams (OBDDs).2

The folklore tester described earlier in this section shows that Goldreich’s lower bound
for the query complexity of non-adaptive k-linearity testers is asymptotically optimal when
k ≈ n

2
. The major question that was left open was whether the lower bound for adaptive

testers of k-linearity could also be improved to match the trivial query complexity of the
folklore tester in the same range. Indeed, Goldreich conjectured that it could—specifically,
that testing n

2
-linearity requires Ω(n) queries.

Our results. We confirm Goldreich’s conjecture and show that testing k-linearity re-
quires Ω(min{k, n− k}) queries. In fact, we show more. Instead of simply giving a lower
bound that is asymptotically equivalent to min{k, n − k}, we show a lower bound that
nearly matches this amount.

Theorem 7.1. For any 0 < k < n and any 0 < ε < 1
2
, ε-testing k-linearity requires at

least min{k, n− k} · (1− o(1)) queries.

In particular, for k = n
2
, the theorem states that no tester for k-linearity can improve

on the query complexity of the folklore testing algorithm by more than a factor of 2.

As we have seen in the overview of prior work, lower bounds on the query complexity
for testing k-linearity (or for related problems) yield lower bounds for the query complex-
ity of other property testing problems as well. As we show in Section 7.3, the lower bound
on testing k-linearity in Theorem 7.1 indeed gives improvements on the best-known lower
bounds for many other property testing problems.

The proof of Theorem 7.1 proceeds by reducing the problem of testing k-linearity to a
purely geometric problem on the boolean hypercube. We describe that geometric problem
and solve it in Section 7.1. We then complete the proof of the theorem in Section 7.2.

7.1 Affine subspaces and layers of the hypercube

We reduce the problem of testing k-linear functions to a purely geometric problem on the
Hamming cube.

2See Section 7.3.7 for more details.
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Namely, we obtain our testing lower bound by showing that affine subspaces of large
dimension intersect roughly the same fraction of the middle layers of the cube. More
precisely, let Wk ⊆ {0, 1}n denote the set of vectors x ∈ {0, 1}n of Hamming weight k.
Our main technical contribution is the following result.

Lemma 7.2. There is a constant c > 0 such that for any affine subspace V ⊆ {0, 1}n of
dimension d ≥ n

2
+ cn2/3,∣∣∣∣∣ |V ∩Wn

2
−1|

|Wn
2
−1|

−
|V ∩Wn

2
+1|

|Wn
2

+1|

∣∣∣∣∣ ≤ 1
36

2−d.

Proof. For any set A ⊆ {0, 1}n, define IA : {0, 1}n → {0, 1} to be the indicator function
for A. For a given function f : {0, 1}n → {0, 1}, let us write E[f ] as shorthand for
Ex[f(x)] where the expectation is over the uniform distribution of x ∈ {0, 1}n. Similarly,
for two functions f, g, we write E[f · g] as short-hand for Ex[f(x) · g(x)].

For any subsets A,B ⊆ {0, 1}n, |A∩B| = 2n ·E[IA · IB]. Since |Wn
2
−1| = |Wn

2
+1| =(

n
n
2
−1

)
, ∣∣∣∣∣ |V ∩Wn

2
−1|

|Wn
2
−1|

−
|V ∩Wn

2
+1|

|Wn
2

+1|

∣∣∣∣∣ =
2n(
n

n
2
−1

) · E [IV · (IWn
2−1
− IWn

2 +1
)
]
.

The subspace V can be defined by a set S ⊆ [n] of size |S| = d and an affine-linear
function f : {0, 1}n−d → {0, 1}d, where x ∈ V iff xS = f(xS̄). Define ISm and I S̄m to be
indicator functions for |xS| = m and |xS̄| = m, respectively. Then

E[IV · (IWn
2−1
− IWn

2 +1
)] =

d∑
m=0

E
[
IV · ISm · (I S̄n

2
−m−1 − I S̄n

2
−m+1)

]
.

Let U ⊆ {0, 1}S be the image of f . Let d′ = dim(U). Define hm : {0, 1}S → [−1, 1]
by setting hm(u) = Ex∈{0,1}S̄ [IV (x, u) · (I S̄n

2
−m−1(x) − I S̄n

2
−m+1(x))]. Note that hm =

f∗

(
I S̄n

2
−m−1 − I S̄n

2
−m+1

)
. Notice also that hm is supported on U . We have

E[IV · (IWn
2−1
− IWn

2 +1
)] =

d∑
m=0

E
[
ISm · hm

]
=

d∑
m=0

E
[
ISm · 1U · hm

]
. (7.1)

Two applications of the Cauchy-Schwarz inequality yield

d∑
m=0

E
[
ISm · 1U · hm

]
≤

d∑
m=0

‖ISm·1U‖2·‖hm‖2 ≤

√√√√ d∑
m=0

‖ISm · 1U‖2
2·

√√√√ d∑
m=0

‖hm‖2
2. (7.2)
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We now bound the two terms on the right-hand side. For the first term, we have

d∑
m=0

‖ISm · 1U‖2
2 =

∑
m

E
x

[ISm(x)2 · 1U ] = E
x

[
1U
∑
m

ISm(x)2

]
= 2d

′−d, (7.3)

where the last equality follows from the fact that for every x ∈ {0, 1}n, there is exactly
one m for which ISm(x) = 1.

We now examine the second term. By Parseval’s Identity, ‖hm‖2
2 =

∑
α∈{0,1}S ĥm(χα)2.

Suppose that the image of f has dimension d′ ≤ d. Then, since hm is a pushforward,

ĥm(χ) = 2−d
(
Î S̄n

2
−m−1(χ ◦ f)− Î S̄n

2
−m+1(χ ◦ f)

)
.

The characters χ ◦ f depend only on the restriction of χ to f({0, 1}S̄). Thus these charac-

ters all lie in some subspace W ⊆ {̂0, 1}S̄ of dimension d′, with each character appearing
2d−d

′ times. Thus, we have that

‖hm‖2
2 = 2−d−d

′ ∑
χ∈W

(
Î S̄n

2
−m−1(χ)− Î S̄n

2
−m+1(χ)

)2
.

For any set χ ⊆ S̄, we can apply Facts 4.13 and 4.12(i) to obtain

Î S̄n
2
−m+1(χ)− Î S̄n

2
−m−1(χ) = 2−(n−d)Kn−d+2

n
2
−m+1(|χ|+ 1).

Therefore,
∑d

m=0 ‖hm‖2
2 = 2−2n+d−d′∑

m

∑
χ∈W Kn−d+2

n
2
−m+1(|χ|+ 1)2 and by Fact 4.12(ii),

d∑
m=0

‖hm‖2
2 ≤ 2−2n+d−d′

∑
χ∈W

(−1)|χ|+1K
2(n−d+1)
n−d+1 (2|χ|+ 2). (7.4)

There exist some d′ coordinates such that the projection of W onto those coordinates
is surjective. Therefore the number of elements of W with weight at most ` is at most∑`

j=1

(
d′

`

)
. We also have a similar bound on the number of elements of W of size at

least n − d − `. Therefore, since by Fact 4.12(v) the summand in (7.4) is decreasing in
min(|χ|, n− d− |χ|), we have

d∑
m=0

‖hm‖2
2 ≤ 2−2n+d−d′+1

d′∑
j=0

(
d′

j

)
(−1)j+1K

2(n−d+1)
n−d+1 (2j + 2).
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By Fact 4.12(iii), the sum on the right-hand side evaluates to −K2(n−d−d′+1)
n−d−d′+1 (2). We can

then apply the generating function representation of Krawtchouk polynomials to obtain

d∑
m=0

‖hm‖2
2 ≤ −2−2n+d+d′+1[xn−d−d

′+1](1− x)2(1 + x)2(n−d−d′)

= 2−2n+d+d′+2

((
2(n− d− d′)
n− d− d′

)
−
(

2(n− d− d′)
n− d− d′ − 1

))
= 2−d−d

′
Θ(n− d− d′)−3/2 = 2−d−d

′
O
(
(n− 2d)−3/2

)
.

Thus we have that

E[IV · (IWn
2 +1
− IWn

2−1
)] ≤
√

2d′−d
√

2−d−d′O ((n− 2d)−3/2) = 2−dO
(
(n− 2d)−3/4

)
.

When d = n
2
− cn2/3 for some large enough constant c > 0, we therefore have E[IV ·

(IWn
2 +1
− IWn

2−1
)] < 1

36

(
n

n
2
−1

)
2−n−d and the lemma follows.

7.2 Proof of Theorem 7.1

We are now ready to complete the proof of Theorem 7.1 by using the lemma from the last
section.

Theorem 7.1 (Restated). For any 0 < k < n and any 0 < ε < 1
2
, ε-testing k-linearity

requires at least min{k, n− k} · (1− o(1)) queries.

Proof. We first prove the special case where k = n
2
− 1. There is a natural bijection be-

tween linear functions {0, 1}n → {0, 1} and vectors in {0, 1}n: associate f(x) =
∑

i∈S xi
with the vector α ∈ {0, 1}n whose coordinates satisfy αi = 1[i ∈ S]. Note that f(x) =
α · x.

For 0 ≤ ` ≤ n, let W` ⊆ {0, 1}n denote the set of elements of Hamming weight `. Fix
any set X ⊆ {0, 1}n of q < n

2
−O(n2/3) queries and any response vector r ∈ {0, 1}q. The

set of linear functions that return the response vector r to the queries in X corresponds in
our bijection to an affine subspace V ⊆ {0, 1}n of dimension n − q. This is because for
each x ∈ X , the requirement that f(x) = ri imposes an affine linear relation on f . By
Lemma 7.2, this subspace satisfies the inequality∣∣∣∣∣ |V ∩Wn

2
−1|

|Wn
2
−1|

−
|V ∩Wn

2
+1|

|Wn
2

+1|

∣∣∣∣∣ ≤ 1
36

2−q. (7.5)
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Define Dyes and Dno to be the uniform distributions over (n
2
− 1)-linear and (n

2
+ 1)-

linear functions, respectively. By our bijection, Dyes and Dno correspond to the uniform
distributions overWn

2
−1 andWn

2
+1. As a result, the probability that a function drawn from

Dyes or from Dno returns the response r to the set of queries X is

Pr
f∼Dyes

[f(X) = r] =
|V ∩Wn

2
−1|

|Wn
2
−1|

and Pr
f∼Dno

[f(X) = r] =
|V ∩Wn

2
+1|

|Wn
2

+1|
.

So (7.5) and Lemma 3.15 imply that at least n
2
−O(n2/3) queries are required to distinguish

(n
2
− 1)-linear and (n

2
+ 1)-linear functions. All (n

2
+ 1)-linear functions are 1

2
-far from

(n
2
− 1)-linear functions, so this completes the proof of the theorem for k = n

2
− 1.

For other values of k, we apply a simple padding argument. When k < n
2
− 1, modify

Dyes and Dno to be uniform distributions over k-linear and (k + 2)-linear functions, re-
spectively, under the restriction that all coordinates in the sum taken from the set [2k + 2].
This modification with k = n

2
−2 shows that n

2
−O(n

2
3 ) queries are required to distinguish

(n
2
− 2)- and n

2
-linear functions; this implies the lower bound in the theorem for the case

k = n
2
.

7.3 Implications

By examining the proof of Theorem 7.1, we see that the proof actually establishes a
stronger result: even if we are promised that the input function is either a k-linear function
or a (k+ 2)-linear function, we still need min(k, n− k) · (1− o(1)) queries to distinguish
between the two cases. In other words, we proved the following lemma.

Lemma 7.3. For any 0 < k < n and any 0 < ε < 1
2
, at least min{k, n − k} · (1 − o(1))

queries are required to distinguish k-linear and (k + 2)-linear functions with probability
at least 2

3
.

This lemma is particularly helpful for establishing other lower bounds in property test-
ing. Given a property P , if we can identify some 0 < k < n such that k-linear functions
are contained in P and (k + 2)-linear functions are ε-far from P , then we immediately
obtain a lower bound of min(k, n − k) · (1 − o(1)) queries on the query complexity for
ε-testing P . In the rest of this section, we apply this method to a number of different
properties. A summary of the results obtained in this section is presented in Table 7.1.
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Property Lower bound Previous lower bound Upper bounds

k-linearity k − o(k)
Ω(
√
k) [57] O(k log k) [40]

Ω(k) (n.a.) [57] O(n) (folklore)

≤ k-linearity k − o(k)
Ω(k/ log k) [57, 38] O(k log k) [40]
Ω(k) (n.a.) [57] O(n) (folklore)

k-juntas k − o(k) Ω(k) [41] O(k log k) [20]

Fourier degree ≤ d d− o(d) Ω(d) [40] 2O(d) [46, 40]

s-sparse polynomials s − o(s) Ω(
√
s) [39] Õ(s) [39]

size-s branching programs s − (s) sΩ(1) [39] Õ(s) [39]

size-s decision trees log s− o(log s) Ω(log s) [39] Õ(s) [39]

Table 7.1: Results implied by Lemma 7.3. All bounds are stated under the assumption that k, d,
and s are at most n

2 . Bold font indicates an asymptotic improvement over the previous bounds.
Bounds labeled with (n.a.) apply only to non-adaptive testers.

7.3.1 ≤k-linearity

We begin with an easy corollary. The function f : {0, 1}n → {0, 1} is ≤ k-linear iff it is
`-linear for some ` ≤ k. Lemma 7.3 gives a strong lower bound for the query complexity
of testing this property.

Corollary 7.4. For any 0 < k < n and any 0 < ε < 1
2
, ε-testing ≤k-linearity requires at

least min{k, n− k} · (1− o(1)) queries.

Proof. By definition, k-linear functions are also ≤k-linear. Proposition 2.24 implies that
(k + 2)-linear functions are 1

2
-far from every ≤ k-linear function. Therefore, any ≤ k-

linearity tester must be able to distinguish k-linear and (k+ 2)-linear functions with prob-
ability at least 2

3
and the corollary follows from Lemma 7.3.

7.3.2 Fourier degree

Recall that the function f : {0, 1}n → {0, 1} has Fourier degree at most d if f̂(α) = 0 for
every element α ∈ {0, 1}n of Hamming weight ‖α‖ > d.

Corollary 7.5. For any 0 < k < n and any 0 < ε < 1
2
, ε-testing f : {0, 1}n → {0, 1} for

the property of having Fourier degree at most d requires at least min{k, n−k} · (1−o(1))
queries.
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Proof. By Proposition 2.23, k-linear functions have Fourier degree k and by Proposi-
tion 2.24, (k+ 2)-linear functions are 1

2
-far from all functions with Fourier degree at most

k. So the corollary again follows directly from Lemma 7.3.

7.3.3 Juntas

Another easy corollary of Lemma 7.3 gives a good lower bound on the query complexity
for testing juntas.

Corollary 7.6. For any 0 < k < n and any 0 < ε < 1
2
, ε-testing k-juntas requires at least

min{k, n− k} · (1− o(1)) queries.

Proof. When f : {0, 1}n → {0, 1} is k-linear, it is clearly also a k-junta. When f is
(k+ 2)-linear, then Proposition 2.24 implies that f is 1

2
-far from all k-junta functions. The

corollary follows immediately from Lemma 7.3.

7.3.4 Sparse polynomials

The function f : {0, 1}n → {0, 1} is an s-sparse polynomial if the corresponding function
fF2 : Fn2 → F2 is a polynomial with at most s monomials. We can again use Lemma 7.3
to prove a lower bound on the query complexity for testing s-sparse polynomials. In order
to do so, however, we need to show that (s + 2)-linear functions are far from all s-sparse
polynomials. This was first done by Diakonikolas et al. [46, Thm. 36].

Lemma 7.7 (Diakonikolas et al. [46]). Fix 0 < k ≤ n − 2. Let f : {0, 1}n → {0, 1} be
an (k + 2)-linear function. Then f is 1

20
-far from every k-sparse polynomial.

Proof. Without loss of generality, let f : x 7→ x1 ⊕ · · · ⊕ xk+2. Let g be an k-sparse
polynomial, i.e. g = T1 ⊕ · · · ⊕ Tk where each Ti is a monomial. We want to show that
f and g are far. We can assume without loss of generality that g does not contain any
length-1 terms, since if it did we could just subtract those terms off of both f and g to
create f ′ and g′, which have the same distance from each other. We could then prove the
theorem for f ′, g′, and a smaller value of k.

Define the influence of a variable xi in f , denoted Infi(f), in the standard way- i.e.
Infi(f) = Prx[f(x) 6= f(x⊕i)] where x⊕i denotes x with the ith bit flipped. Define the
total influence of f to be

∑
i Infi(f).
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For any f and g, it is straightforward to show that if for some i the difference |Infi(f)−
Infi(g)| is at least δ, then f and g must have distance at least δ/2. When f is the (k + 2)-
linear function defined above, each variable x1 through xk+2 has influence 1. Thus, to
complete the proof, we will show that in g one of these variables must have influence at
most 0.9.

If the total influence of x1 through xk+2 in g is less than 0.9(k + 2), then we are done,
since the pigeonhole principle implies the existence of a variable xi with influence at most
0.9. Thus, in what follows, we assume

k+2∑
i

Infi(g) ≥ 0.9(k + 2) . (7.6)

We can bound the total influence of x1 through xk+2 in g as follows. First, we write
g = g2 ⊕ g3 where g2 is the collection of terms in g that have length 2, and g3 is the
collection of terms in g that have length at least 3. Now note:

• Each variable xi that appears in g2 has Infi(g2) = 1/2. The reason is because since
every term of g2 has length 2, xi is influential exactly when the other variables it
appears with have parity 1, which happens exactly half the time.

• For each term in g3, the total contribution of that term to the influences of all the
variables is at most 3/4. To see why, suppose the term has length m, then on a
random assignment the probability that a variable is relevant to that term is 1

2m−1 , so
the total effect the term can have on all the influences is at most m · 1

2m−1 . If m ≥ 3,
this is at most 3/4.

Let R2 be the number of terms of g2, and R3 be the number of terms in g3. By hypoth-
esis, R2 + R3 ≤ k. Since each term of g2 contributes at most 1 to the total influence of g,
and each term of g3 contributes at most 3/4 to the total influence of g, we have that

k+2∑
i

Infi(g) ≤ R2 + (3/4)R3 . (7.7)

Combining equations 7.6 and 7.7 we get thatR2 +(3/4)R3 ≥ (9/10)k. Using the fact that
R2 + R3 ≤ k, this implies that R3 ≤ (4/10)k, in other words there cannot be too many
terms of length 3 or more in g. Now we can bound the influence of variables x1 through
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xk+2 in g.

k+2∑
i

Infi(g) ≤
k+2∑
i

[Infi(g2) + Infi(g3)]

≤
k+2∑
i

Infi(g2) +
n∑
i

Infi(g3)

≤ 1

2
(k + 2) +

3

4
·R3

≤ 1

2
(k + 2) +

3

4
· 4

10
· k

< 0.9(k + 2) .

By the pigeonhole principle, there must exist a variable xi with influence at most 0.9 in
g.

Theorem 7.8. For any 0 < s < n and any 0 < ε < 1
20

, ε-testing s-sparse polynomials
requires at least min{s, n− s} · (1− o(1)) queries.

Proof. When f : {0, 1}n → {0, 1} is s-linear, it is an s-sparse polynomial. When f is
(s+ 2)-linear, then Lemma 7.7 implies that f is 1

20
-far from all s-sparse polynomials. The

corollary follows immediately from Lemma 7.3.

7.3.5 Decision trees

We can also use Lemma 7.3 to prove lower bounds for properties related to the computa-
tional complexity of a boolean function. We first show how it implies a lower bound for
testing whether a function can be computed by a small decision tree.

Lemma 7.9. Fix s ≥ 1 and 0 < α < 1. Let f : {0, 1}n → {0, 1} be an s-linear function.
Then f can be computed by a decision tree of size 2s and is 1−α

2
-far from all functions that

are computable by decision trees of size at most α 2s.

Proof. To construct a decision tree of size 2s that computes the function f : x 7→ xi1 ⊕
· · · ⊕ xis , create a complete tree of depth s where each node at level j of the tree queries
xij . This tree has 2s leaves and, by setting the value of each leaf appropriately, computes
the function f exactly.

Consider now a decision tree T of size at most α 2s, and let g : {0, 1}n → {0, 1} be
the function computed by this tree. We want to show that Pr[f(x) 6= g(x)] ≥ 1−α

2
when
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the probability is over the uniform distribution of x ∈ {0, 1}n. For each leaf ` of T , let
depth(`) denote the number of unique variables queried by the nodes in the path from the
root of T to ` and let R` ⊆ {0, 1}n represent the set of inputs x ∈ {0, 1}n that define
a path in T that reaches `. (Note that the sets R` form a partition of {0, 1}n.) Define
B :=

⋃
` : depth(`)<sR` to be the union of the sets R` for all the leaves in T of depth strictly

less than s. Then

Pr[f(x) 6= g(x)] ≥ Pr[f(x) 6= g(x) ∩ x ∈ B] = Pr[x ∈ B] · Pr[f(x) 6= g(x) | x ∈ B].

For any leaf ` of T , the probability that an input x chosen uniformly at random from
{0, 1}n reaches ` is 2−depth(`). By the union bound, the probability that x reaches a leaf of
depth at least s in T is at most α 2s · 2−s = α, so Pr[x ∈ B] ≥ 1− α.

Let ` be a leaf in T of depth at most s − 1. Then there is some index i ∈ {i1, . . . , is}
that is not queried in the path from the root of T to `. We can partition R` into pairs
(x, x(i)) where each pair is identical in all but the i-th coordinate. For each such pair,
f(x) 6= f(x(i)) so no matter what label is attached to the leaf `, we have Pr[f(x) 6= g(x) |
x ∈ R`] = 1

2
. This also implies that Pr[f(x) 6= g(x) | x ∈ B] = 1

2
and, therefore,

Pr[f(x) 6= g(x)] ≥ (1− α) · 1
2

= 1−α
2

, as we wanted to show.

Theorem 7.10. For any 0 < s < n and any 0 < ε < 3
8
, ε-testing size-2s decision trees

requires at least min{s, n− s} · (1− o(1)) queries.

Proof. By Lemma 7.9, when f : {0, 1}n → {0, 1} is s-linear it can be computed by a
decision tree of size 2s and when f is (s + 2)-linear it is 3

8
-far from all decision trees of

size 2s.. The corollary follows immediately from Lemma 7.3.

7.3.6 Branching programs

We show that Lemma 7.9 also implies a nearly-optimal lower bound on the query com-
plexity for testing whether a function can be computed by a small-size branching program.

Lemma 7.11. Let P be the class of all boolean functions computable by branching pro-
grams of size 2s. Then every s-linear function is in P while every (s + 2)-linear function
is 1

6
-far from P .

Proof. Again, the first assertion is almost immediate: consider a branching program of
width 2 that queries xi1 at the start node and queries xij on both nodes at level 1 < j ≤ s.
We can arrange the edges of this branching program so that the left (resp., right) node at

76



level j is reached when xi1⊕· · ·⊕xij−1
equals 0 (resp., equals 1). This branching program

has size 2s− 1 and computes the s-linear function.

For the second assertion, let P be a branching program of size 2s, and suppose it is
close to some (s+2)-linear function h. Note that if one of the s+2 variables in h does not
appear in P , then h and P are 1

2
-far, since for every input there is a variable whose value

we can flip to change the value of h without changing the output of P .

Thus, we assume that every variable in h appears in P . Moreover, since P has only
2s nodes, there must be at least two variables in h that are queried only once in P . Let x1

and x2 denote two such variables, and let u1 and u2 denote the corresponding nodes in P .
The graph of P is directed and acyclic, so we can assume without loss of generality that
no path reaches the node u1 after reaching u2.

Consider the paths in P generated by strings x, x(1) ∈ {0, 1}n, where x is generated
uniformly at random and x(1) is generated from x by flipping x1. Note that x(1) is also
uniform. If the random path generated by x reaches u2 with probability less than 2

3
, then

with probability at least 1
3
, flipping the value of x2 changes the value of hwithout changing

the output of P ; hence, P is 1
6
-far from h. On the other hand, if this random path reaches u2

with probability at least 2
3
, then the path generated by x(1) also reaches u2 with probability

2
3
. By the union bound, the probability that both x and x(1) describe paths in P reaching
u2 is at least 1

3
. But since u1 cannot be reached after u2, this means that both x and x(1)

describe paths to the same terminal in P even though they have different values in h.
Therefore, P is 1

6
-far from h in this case too.

Theorem 7.12. For any 0 < s < n and any 0 < ε < 1
6
, ε-testing size-s branching

programs requires at least min{s, n− s} · (1− o(1)) queries.

Proof. By Lemma 7.11, when f : {0, 1}n → {0, 1} is s-linear it can be computed by a
branching program of size s and when f is (s + 2)-linear it is 1

6
-far from all functions

computable by branching programs of size s.. The corollary follows immediately from
Lemma 7.3.

7.3.7 Small-width OBDDs

An ordered binary decision diagram (or OBDD) is an acyclic graph with a single root and
at most n + 1 levels of nodes. There are two nodes in the last level. These are called sink
nodes; one is labeled 0 and the other one is labeled 1. The nodes in every other level have
out-degree two, with one edge labeled 0 and the other one labeled 1. All edges leaving a
node from the `th level go to a node in the (`+ 1)st level. Each level is labeled with some
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index i ∈ [n]. The first level of any OBDD contains a single node. The width of an OBDD
is the maximum number of nodes at any level.

We say that an OBDD computes the function f : {0, 1}n → {0, 1} if for every x ∈
{0, 1}n, the path through the OBDD defined by following the edge labeled xi from the
current node, where i is the label associated with the current node’s level, leads to the sink
node labeled with f(x).

There are two natural question that we may ask related to property testing and small-
width OBDDs—or, for that matter, any other complexity class. How many queries do we
need to test if a function is computable by OBDDs of width w? And are there properties
that contain only functions computable by OBDDs of width w that are much harder to
test?

Ron and Tsur [88] showed that testing whether a function is computable by width-2
OBDDs can be done with O(log n) queries. Goldreich [57] showed that there are prop-
erties that contain only functions computable by width-2 OBDDs that are much harder to
test: they require Ω(n) queries to test. Theorem 7.1 immediately yields a slight sharpening
of this result.

Corollary 7.13. There is a property P containing only functions computable by width-2
OBDDs that requires n

2
− o(n) queries to test.

Proof. Note that all linear functions are computable by width-2 OBDDs. To see this,
consider f(x) = xi1 ⊕ · · · ⊕ xik . We can build a width-2 OBDD with k + 1 levels where
the levels are labeled with i1, . . . , ik. For the levels 2, . . . , k + 1, we associate one node
with the value 1 and the other with the value 0. Let the edges labeled 0 (resp., 1) go to the
node of the next level with the same (resp., different) value as the current node. Then the
value of the node on level ` represents the parity of the variables i1, . . . , i`−1.

As a result, all n
2
-linear functions are also computable by width-2 OBDDs and the

corollary follows directly from Theorem 7.1.

7.4 Notes and Discussion

Alternative proof. The proof of the lower bound for testing k-linearity presented in this
section was obtained in joint work with Daniel Kane [24]. In a simultaneous but separate
project with Joshua Brody and Kevin Matulef [22, 23], we obtained a different proof of
the same (asymptotic) lower bound. That proof is presented in Chapter 11.
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Non-adaptive testing of k-linearity. The manuscript [24] includes the result presented
in this chapter as well as one more lower bound. The second lower bound shows that
testing k-linearity non-adaptively requires 2 ·min{k, n− k} −O(1) queries. (This lower
bound is twice as large as the lower bound for adaptive algorithms.)

Asymptotically, the two lower bounds are equivalent. The non-adaptive lower bound,
however, says something much stronger about the problem of testing n

2
-linearity: it says

that no non-adaptive tester can improve on the query complexity of the folklore tester by
more than an additive constant.

One may wonder if the same strong statement also applies to adaptive algorithms: is it
possible to show that all adaptive testers for n

2
-linearity also require n−O(1) queries? The

answer is no. In [24], we show that there is an adaptive algorithm for testing n
2
-linearity

with 2
3
n + o(n) queries. This shows that it is indeed possible to beat the folklore tester

by more than an additive constant if we can choose the queries adaptively. It also gives a
gap—albeit a small one—between the query complexities of testing n

2
-linearity adaptively

and non-adaptively.
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Part II

Testing Function Isomorphism
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Chapter 8

Testing Isomorphism to Partially
Symmetric Functions

The first part of this thesis was mainly concerned with determining the exact query com-
plexity for testing various properties of boolean functions. The current part aims to under-
stand why different properties of boolean functions can be tested with very few queries,
while other properties cannot.

In the last few years, there has been great progress in understanding the testability
of graph properties—properties of graphs G = (V,E) that are invariant under relabeling
of the vertices—and, to a large extent, the problem of characterizing the set of graph
properties that are testable with a constant number of queries has been largely solved [5,
6, 7]. Recently, there has also been much progress in understanding the testability of
hypergraph properties [11] and the testability of algebraic properties—that is, properties
that are invariant under linear or affine transformations—of functions [18, 72, 95].

Our understanding of the testability of (non-algebraic) properties of boolean functions,
however, remains largely incomplete. One approach for remedying this situation, first
proposed by Fischer et al. [52], is to study the function isomorphism testing problem. Two
boolean functions f, g : {0, 1}n → {0, 1} are said to be isomorphic if they are identical up
to permutation of the input labels. The f -isomorphism ε-testing problem asks a tester to
determine whether a function g is isomorphic to f or whether it is ε-far from being so with
as few queries as possible. When it is possible to ε-test f -isomorphism with a number of
queries that depends on ε but not on n, we say that f is efficiently isomorphism-testable.
The function isomorphism testing (characterization) problem asks us to determine the set
of functions that are efficiently isomorphism-testable.
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The current chapter’s focus is on functions that are efficiently isomorphism-testable.
That is, we seek upper bounds on the query complexity for testing f -isomorphism for
different functions f . Lower bounds on the query complexity for testing function isomor-
phism will be established in the next two chapters.

Previous work. Let’s begin with some folklore observations. When f : {0, 1}n →
{0, 1} is a (fully) symmetric function, then testing isomorphism to f is equivalent to testing
identity to f . (Since the only function isomorphic to f is f itself.) So in this case ε-testing
f -isomorphism can be done with O(1/ε) queries.

Another folklore result is obtained with a similar argument. For any function f :
{0, 1}n → {0, 1}, there are at most n! functions g that are isomorphic to f . As a result, by
Corollary 3.14, we can ε-test f -isomorphism with O(log(n!)/ε) = O(n log(n)/ε) queries.

The two above observations can be unified and generalized in the following way. For
the function f : {0, 1}n → {0, 1}, let κ(f) = |{fπ : π ∈ Sn}| denote the number
of distinct functions that are isomorphic to f . Then by Corollary 3.14 we can test f -
isomorphism with O(log(κf )/ε) queries.

The generalized folklore observation implies that when f is a k-junta, it is possible to
ε-test f -isomorphism with O(log(

(
n
k

)
k!)/ε) = O(k log(n)/ε) queries. Fischer et al. [52]

improved on this result by showing that when f is a k-junta, it is possible to ε-test f -
isomorphism with only poly(k, ε) queries. In other words, when f is a junta (with a
constant number of relevant variables), then f is efficiently isomorphism-testable.

The query complexity for testing juntas was sharpened by Chakraborty, Garcı́a Sori-
ano, and Matsliah [40]. By building on the junta test presented in Chapter 5, they showed
that it is possible to test k-juntas with O(k log k) queries.

At a qualitative level, the folklore observations and the results in [52, 40] show that
symmetric functions and junta functions are efficiently isomorphism-testable. When we
began the research project presented in this chapter, those were the essentially the only
functions that were known to be efficiently isomorphism-testable.

Our result. It is not too hard to see that juntas and symmetric functions cannot be the
only functions that are efficiently isomorphism-testable. For example, consider the func-
tion defined by f(x) = x1 ⊕ · · · ⊕ xn−1. This function is not symmetric and has n − 1
relevant variables. This function, however, can be represented as the combination of a
symmetric function and a junta function:

f(x) = (x1 ⊕ · · · ⊕ xn)⊕ xn.
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We can use this observation to build an f -isomorphism tester that requires only O(1/ε)
queries: given some function g : {0, 1}n → {0, 1}, we test whether the function g′ ob-
tained by setting

g′(x) = (x1 ⊕ · · · ⊕ xn)⊕ g(x)

is isomorphic to the function f ′(x) = xn. We leave it to the reader to verify that when g is
isomorphic to f , then g′ is isomorphic to f ′ and that when g is ε-far from isomorphic to f
then g′ is also ε-far from isomorphic to f ′.

When examining why the function f defined in the last paragraph is efficiently isomorphism-
testable, one may notice that it is a partially symmetric function. This leads to the natural
question: are all partially symmetric functions efficiently isomorphism-testable? The main
result of this chapter gives an affirmative answer to this question.

Theorem 8.1. For every (n− k)-symmetric function f : {0, 1}n → {0, 1}, there exists an
ε-tester for f -isomorphism that requires only O(k log(k)/ε2) queries.

This result presents a unified explanation for the efficient isomorphism-testability of
juntas and of symmetric functions. Since many partially symmetric functions—such as the
one in the example above—are not juntas or fully symmetric, it also significantly extends
the set of functions that we know to be efficiently isomorphism-testable.

One might wonder if, in turn, the set of partially symmetric functions is only a subset
of all the functions that are efficiently isomorphism-testable. In [26], we conjecture that
the answer to this question is essentially “no”: that partial symmetry is effectively the
characteristic that determines whether functions are efficiently isomorphism-testable or
not. This conjecture is still open; see [26] for the details.

The proof of Theorem 8.1 is constructive. In the next section, we introduce an algo-
rithm for efficiently testing isomorphism to partially symmetric functions. The analysis of
this algorithm, and thus the proof of the main theorem, follows in Section 8.2.

8.1 The Algorithm

The algorithm we introduce for testing isomorphism to partially symmetric functions fol-
lows the general outline of the isomorphism tester for juntas introduced by Fischer et
al. [52] and refined by Chakraborty, Garcı́a Soriano, and Matsliah [40]. The algorithm
proceeds in two stages.

The first stage tests whether the given function is partially symmetric. We use the
PARTIALLYSYMMETRICTEST algorithm from Chapter 6 for this task, with one minor
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modification: when that test accepts, it also returns the partition of [n] that it defined and
the asymmetric parts that it identified.

The second stage of the algorithm verifies that, if the function is indeed partially sym-
metric, it is consistent with the target function (up to relabeling of the input variables).
This second stage relies on an efficient “core sampler” to reduce the number of queries.

8.1.1 Core sampler for partially symmetric functions

Let f : {0, 1}n → {0, 1} be J-symmetric for some set J ⊆ [n] of size |J | = n − k.
This (n − k)-symmetric function can be represented in a concise manner as the function
fcore : {0, 1}k × {0, 1, . . . , n− k}. We call the function fcore the core of f . Two (n− k)-
symmetric functions f, g : {0, 1}n → {0, 1} are isomorphic iff their core functions are
isomorphic. The latter task can be done with an efficient sample extractor.

In the following definition, let D∗n,k be the distribution on pairs (x,w) ∈ {0, 1}k ×
{0, 1, . . . , n − k} where x is drawn from the uniform distribution over {0, 1}k and w
is drawn independently from the binomial distribution Bin(n − k, 1

2
). A perfect sample

extractor for a partially symmetric function draws an input fromD∗n,k and returns the value
of the core of that function on this input.

Definition 8.2. A perfect sampler for the (n−k)-symmetric function f : {0, 1}n → {0, 1}
is a randomized algorithm that queries f on a single input and returns a triplet (x,w, z) ∈
{0, 1}k × {0, 1, . . . , n− k} × {0, 1} where

1. (x,w) ∼ D∗n,k; and

2. fcore(x,w) = z.

If we know the identity of the set J of k asymmetric variables in the (n−k)-symmetric
function f , it is easy to design a perfect sampler for this function: draw y ∈ {0, 1}n
uniformly at random and return the triplet (yJ , ‖yJ̄‖, f(y)). If we do not know the exact
set J of asymmetric variables, however, it is much easier to design an approximate sample
extractor for the function

Definition 8.3. A δ-sampler for the (n − k)-symmetric function f : {0, 1}n → {0, 1} is
a randomized algorithm that queries f on a single input and returns a triplet (x,w, z) ∈
{0, 1}k × {0, 1, . . . , n− k} × {0, 1} where

1. The distribution D of (x,w) satisfies dTV(D,D∗n,k) ≤ δ; and
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2. z = fcore(x,w) with probability at least 1− δ.

Given a partition I = {I1, . . . , Is} of [n], we say that x ∈ {0, 1}n respects the partition
I if for every 1 ≤ i ≤ s − 1, each coordinate in Ii has the same value in x (i.e., if for
every part Ii we have either xI = eI or xI = 0). We define DI to be the distribution over
{0, 1}n obtained by the following procedure. First, we sample w ∼ Bin(n, 1

2
). If there

exist some elements x ∈ {0, 1}n of Hamming weight ‖x‖ = w that respects the partition
I, we choose one of those elements uniformly at random and return it. If no such element
exists, we return 0.

The following algorithm is an efficient (approximate) sampler for the core of a partially
symmetric function when it is given a partition that splits the asymmetric variables among
the sets I1, . . . , Is−1.

SAMPLEPSF(f, I1, . . . , Is, J)

1. Draw y ∼ DI .
2. Let x ∈ {0, 1}k be the value assigned to the parts in J .
3. Return the triplet (x, ‖y‖ − ‖x‖, f(y)).

8.1.2 The isomorphism-testing algorithm

We are now ready to describe the algorithm for isomorphism testing of (n−k)-symmetric
functions. Given an (n− k)-symmetric function f , the following algorithm tests whether
the input function g is isomorphic to f or ε-far from being so.

PSFISOTEST(f, k, g, ε)

1. If PARTIALSYMMETRYTEST(g, k, ε
1000

) does not accept, reject.
2. Let {I1, . . . , Is} and J ⊆ [s − 1] be the partition and asymmetric

parts defined by PARTIALSYMMETRYTEST.
3. For i = 1, . . . ,Θ(k log(k)/ε2),

3.1. Draw (x(i), w(i), z(i))← SAMPLEPSF(f, I1, . . . , Is, J).
4. Accept iff at least a 1 − ε

2
fraction of the triplets (x(i), w(i), z(i))

are consistent with the core function of some isomorphism of f .
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8.2 Analysis of the Algorithm

We begin by establishing some technical properties about the distributions defined in the
last section.

Proposition 8.4. Let J = {j1, . . . , jk} ⊆ [n] be a set of size k, and r = Ω(k2) be odd. If
x ∼ DWI for a random partition I of [n] into r parts and a random workspace W ∈ I,
then

• x is o(1/n)-close to being uniform over {0, 1}n, and
• (xJ , ‖xJ‖) is c/k-close to being distributed according to D∗k,n, for our choice of

0 < c < 1.

Proof. We start with the first part of the proposition, showing x is almost uniform. Con-
sider the following procedure to generate a random I,W and x. We draw a random Ham-
ming weight w ∼ Bn,1/2 and define x′ to be the input consisting of w ones followed by
n−w zeros. We choose a random partition I ′ of [n] into r consecutive parts I1, . . . , Ir (i.e.,
I1 = {1, 2, . . . , |I1|},. . . , Ir = {n− |Ir|+ 1, . . . , n}) according to the typical distribution
of sizes in a random partition. Let the workspace W ′ be the only part which contains the
coordinate w (or I1 if w = 0). We now apply a random permutation over x′, I ′ and W ′ to
get x, I and W .

The above procedure outputs a random element x that is uniformly distributed over
{0, 1}n. The choice of I was also done at random, considering the applied permutation
over I ′. The only difference is then in the choice of the workspace W , which can only
be reflected in its size. However, when r = o(

√
n) we will choose the middle part as the

workspace with probability 1 − o(1), regardless of its size. In the remaining cases, since
there are n/r = Ω(

√
n) parts, the possible parts to be chosen as workspace are a small

fraction among all parts, and therefore W would be o(1)-close to being a random part.

Proving the second property of the proposition, we also consider two cases. When
r = o(

√
n), with probability 1 − o(1), the workspace would have size ω(

√
n) and also

w = n/2 + O(
√
n). In such a case, the r − 1 parts (excluding the workspace) would be

half zeros and half ones, and the marginal distribution over the number of ones in J would
be Hr−1,(r−1)/2,k (assuming the elements of J are separated by I, which happens with
probability 1 − o(1)). By Lemma 4.3, the distance between this distribution and Bk,1/2 is
bounded by k/r < c/k for our choice of 0 < c < 1. Since there is no restriction on the
ordering of the sets, this is also the distance from uniform over {0, 1}k as required.

In the remaining case where r = Ω(
√
n), we can use the same arguments and also

apply Lemma 4.4 with the distributions Bk,1/2 and Bk,1/2+δ for δ = O(1/
√
n), implying
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the distance between these two distributions is at most o(1). Combining this with the
distance to Hr−1,(r−1)(1/2+δ),k we get again a total distance of k/r + o(1) < c/k for our
choice of 0 < c < 1.

We now establish a basic fact regarding the functions that are accepted by the PAR-
TIALLYSYMMETRICTEST.

Lemma 8.5. Let g be a function ε-close to being (n − k)-symmetric which passed the
PARTIALLYSYMMETRICTEST(g, k, ε). In addition, let I,W and J be the partition, workspace
and identified parts used by the algorithm. With probability at least 9/10, there exists a
function h which satisfies the following properties.

• h is 4ε-close to g, and

• h is (n−k)-symmetric whose asymmetric variables are contained in J and separated
by I.

Proof. Let g∗ be the (n − k)-symmetric function closest to g (which can be f itself, up-
to some isomorphism) and R be the set of (at most) k asymmetric variables of g∗. By
Lemma 6.3 and our assumption over g,

SymInfg(R) ≤ 2 · dist(g, g∗) ≤ 2ε .

Notice however that R is not necessarily contained in J and therefore g∗ is not a good
enough candidate for h. Let U = R ∩ J be the intersection of the asymmetric variables of
g∗ and the sets identified by the algorithm. In order to show that g is also close to being
U -symmetric, we bound SymInfg(U) using Lemma 6.6 with the sets R and J . Notice that
since |R| ≤ k and |J | ≤ 2kn/r ≤ ε2n/c′ for our choice of c′, we can bound the error term
(in the notation of Lemma 6.6) by c

√
γ ≤ c

√
ε2/c′ ≤ ε. We therefore have

SymInfg(U) ≤ SymInfg(R) + SymInfg(J) + ε ≤ 2ε+ ε+ ε = 4ε

where we know SymInfg(J) ≤ ε with probability at least 19/20 as the algorithm did not
reject.

By applying Lemma 6.3 again, we know there exists a U -symmetric function h, whose
distance to g is bounded by dist(g, h) ≤ 4ε. Moreover, with probability at least 19/20,
all its asymmetric variables are completely separated by the partition I (and they were all
identified as part of J).

We now generalize a recent result of Chakraborty et al. [39]’s result concerning effi-
cient algorithms for sampling the core of juntas.
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Theorem 8.6. Let f : {0, 1}n → {0, 1} be (n− k)-symmetric with k < n/10. There is an
algorithm that queries f on O( k

ηδ
log k

ηδ
) inputs and with probability at least 1− η outputs

a δ-sampler for f .

Proof of Theorem 8.6. The algorithm for generating the sampler is described by PAR-
TIALLYSYMMETRICSAMPLER, which performsO( k

ηδ
log k

ηδ
) preprocessing queries to the

function. What remains to be proved is that indeed with good probability, the algorithm
returns a valid sampler.

Let h be the function defined in the analysis of Theorem 8.1, which satisfies the condi-
tions of Lemma 8.5. Recall that its asymmetric variables were separated by I and appear
in J . Following this analysis and that of PARTIALLYSYMMETRICTEST, one can see that
with probability at least 1 − η we would not reject f when calling PARTIALLYSYMMET-
RICTEST. Moreover, the samples would be δ/2-close to sampling the core of h, which is
by itself δ/2-close to f . Therefore, overall our samples would be δ-close to sampling the
core of f .

The last part in completing the proof of the theorem is showing that we sample the core
with distribution δ-close to D∗k,n. By Proposition 8.4, the total variation distance between
sampling the core according to D∗k,n and sampling it according to DWI is at most c/k for
our choice of 0 < c < 1, which we can choose it to be at most δ.

Notice that if the function f is not (n−k)-symmetric but still very close (say (k/ηδ)2-
close), applying the same algorithm will provide a good sampler for an (n−k)-symmetric
function f ′ close to f . The main reason is that most likely, we will not query any location
of the function where it does not agree with f ′.

Finally, we are ready to complete the analysis of PSFISOTEST.

Proof of Theorem 8.1. Before analyzing the algorithm we just described, we consider the
case where k > n/10. Since Theorem 6.1 does not hold for such k’s, we apply the basic
algorithm of O(n log n/ε) random queries, which is applicable testing isomorphism of
any given function (since there are n! possible isomorphisms, the random queries will rule
out all of them with good probability, assuming we should reject). Since k = Ω(n), the
complexity of this algorithm fits the statement of our theorem.

We start by analyzing the query complexity of the algorithm. The step of PARTIALLYSYM-
METRICTEST performs O(k

ε
log k

ε
) queries, and therefore the majority of the queries are

performed at the sampling stage, resulting in O(k log k/ε2) queries as required. In order
to prove the correctness of the algorithm, we consider the following cases.
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• g is ε-far from being isomorphic to f and ε/1000-far from being (n−k)-symmetric.

• g is ε-far from being isomorphic to f but ε/1000-close to being (n− k)-symmetric.

• g is isomorphic to f .

In the first case, with probability at least 9/10, PARTIALLYSYMMETRICTEST will reject
and so will we, as required. We assume from this point on that PARTIALLYSYMMET-
RICTEST did not reject, as it will only reject g which is isomorphic to f with probability
at most 1/10, and that we are not in the first case. Notice that these cases match the con-
ditions of Lemma 8.5, and therefore from this point onward we assume there exists an h
satisfying the lemma’s properties (remembering we applied the algorithm with ε/1000).

In order to bound the distance between h and g in our samples, we use Proposition 8.4,
indicating

Pr
I,W∈I,x∼DWI

[g(x) 6= h(x)] = dist(g, h) + o(1/n) .

By Markov’s inequality, with probability at least 9/10, the partition I and the workspace
W satisfy

Pr
x∼DWI

[g(x) 6= h(x)] ≤ 10 · dist(g, h) + o(1/n) ≤ 10 · 4ε/1000 + o(1/n) < ε/20 .

By Proposition 8.4, if we were to sample h according to DWI , it should be ε/20-close
to sampling its core (assuming the partition size is large enough). Combined with the
distance between g and h in our samples, we expect our samples to be ε/20+ ε/20 = ε/10
close to sampling h’s core.

The last part of the proof is showing that there would be an almost consistent iso-
morphism of f only when g is isomorphic to f . Notice however that we care only for
isomorphisms which map the asymmetric variables of f to the k sets of J . Therefore, the
number of different isomorphisms we need to consider is k!.

Assume we are in the second case and g is ε-far from being isomorphic to f . Let fπ be
some isomorphism of f . By our assumptions and Lemma 8.5,

dist(fπ, h) ≥ dist(fπ, g)− dist(g, h) ≥ ε− ε/250 .

Each sample we perform would be inconsistent with fπ with probability at least ε−ε/250−
ε/10 > 8ε/9. By the Chernoff bounds and the union bound, if we would perform q =
O(k log k/ε2) queries, we would rule out all k! possible isomorphisms with probability at
least 9/10 and reject the function as required.
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On the other hand, if g is isomorphic to f , then we know there exists with probability
at least 9/10 some isomorphism fπ which maps the asymmetric variables of f into the sets
of J , such that

dist(fπ, h) ≤ dist(fπ, g) + dist(g, h) ≤ ε/500 + ε/250 .

For this isomorphism, with high probability much more than (1 − ε/2)-fraction of the
queries would be consistent and we would therefore accept g as we should.
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Chapter 9

Nearly Universal Lower Bound for
Testing Isomorphism

In the last chapter, we saw that for every function f : {0, 1}n → {0, 1}, it is possible to
ε-test f -isomorphism with O(n log(n)/ε) queries. We also saw that for some functions—
specifically, for partially symmetric functions—that universal upper bound is far from
tight. The goal of this chapter is to see if this universal upper bound is tight—or nearly
tight—for any functions, or whether f -isomorphism can be tested much more efficiently
for every function f .

In the most extreme case, we might ask whether f -isomorphism can be tested with a
constant number of queries for every function f . Fischer et al. [52] showed that this is
not the case. Specifically, they showed that for every k = o(

√
n), testing isomorphism

to the k-linear function f(x) = x1 ⊕ · · · ⊕ xk requires a number of queries that depends
on k. So when ω(1) ≤ k ≤ o(

√
k), testing isomorphism to k-linear functions requires a

super-constant number of queries.

Until recently, that was the only lower bound known for the problem of testing function
isomorphism. In this chapter, we provide a significantly stronger lower bound. We show
that the universal upper bound of O(n log n) queries is tight, up to logarithmic factors, for
almost every boolean function. More precisely, we establish the following lower bound.

Theorem 9.1. Fix 0 < ε < 1
2
. For a 1−o(1) fraction of the functions f : {0, 1}n → {0, 1},

any non-adaptive algorithm for ε-testing isomorphism to f must make at least n
100

queries.

The proof of the theorem that we present in this chapter is non-constructive: we show
that if we pick a boolean function uniformly at random, then with probability 1 − o(1),
testing isomorphism to that function requires at least n

100
queries.
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9.1 The Lower Bound

The proof of Theorem 9.1 uses Yao’s Minimax Principle [100]. For a fixed function f
we introduce two distributions Fyes and Fno such that a function g ∼ Fyes is isomorphic
to f and a function g ∼ Fno is ε-far from isomorphic to f with high probability. We
then show that for most choices of f , deterministic non-adaptive testing algorithms cannot
distinguish functions drawn from either of these distributions with only n

100
queries.

We define Fyes to be the uniform distribution over functions isomorphic to f . In other
words, we draw a function g ∼ Fyes by choosing π ∈ Sn uniformly at random and setting
g = fπ.

A first idea for Fno may be to make it the uniform distribution over all boolean func-
tions {0, 1}n → {0, 1}. This idea does not quite work, since, for example, a random
function differs from f and all functions isomorphic to it on the all 0 input or the all 1
input with probability at least 3/4. However, a simple modification of this idea does work:
to draw a function g ∼ Fno, we choose a permutation π ∈ Sn uniformly at random and
we choose a function grand uniformly at random from all boolean functions on n variables.
We then let g be the function defined by

g(x) =

{
grand(x) if n

3
≤ ‖x‖ ≤ 2n

3
,

fπ(x) otherwise.

With high probability, a function g ∼ Fno is far from isomorphic to f .

Proposition 9.2. Fix 0 < ε < 1
2
. For any function f : {0, 1}n → {0, 1}, the function

g ∼ Fno is ε-close to isomorphic to f with probability at most o(1).

Proof. Fix any permutation π ∈ Sn. Let grand be the random function generated in the
draw of g ∼ Fno. By the triangle inequality,

dist(g, fπ) ≥ dist(grand, fπ)− dist(g, grand).

Since dist(g, grand) ≤ 2
∑n/3

i=0

(
n
i

)
/2n ≤ o(1), to complete the proof it suffices to fix

ε < ε′ < 1
2

and show that dist(grand, fπ) > ε′ with high probability.

Let η = 1 − 2ε′. For any x ∈ {0, 1}n, grand(x) = fπ(x) with probability 1
2
, so

E[dist(grand, fπ)] = 1
2
. By Chernoff’s bound (see, e.g., Appendix A in [8]),

Pr[dist(grand, fπ) < ε′] = Pr[dist(grand, fπ) < (1− η)1
2
] ≤ e−2nη2/6 ≤ o( 1

n!
).

Taking the union bound over all choices of π ∈ Sn completes the proof.
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Let T be any deterministic non-adaptive algorithm that attempts to test f -isomorphism
with at most n

100
queries to an unknown function g. We will show that T cannot reliably

distinguish between the cases where g was drawn from Fyes or from Fno.

Let Q ⊆ {0, 1}n be the set of queries performed by T on g. We partition the queries
in Q in two: the set Qb = {q ∈ Q : n

3
≤ |q| ≤ 2n

3
} of balanced queries, and the set

Qu = Q \Qb of unbalanced queries.

When g is drawn from Fyes or from Fno, the responses to the unbalanced queries Qu

are consistent with some function fπ isomorphic to f . Our next proposition shows that
when T makes only n

100
queries to g, then in fact the responses to the unbalanced queries

will be consistent with many functions isomorphic to f . More precisely, define

Πf (g,Qu) = {π ∈ Sn : fπ(Qu) = g(Qu)}

to be the set of permutations π for which fπ is consistent with the responses to the queries
Qu. The following proposition shows that when the unknown function is drawn from Fyes

or from Fno, then with high probability the set Πf (g,Qu) is large.

Proposition 9.3. Let Qu be any set of unbalanced queries and let g be a function drawn
from Fyes or from Fno. Then for any 0 < t < 1,

Pr
g

[
|Πf (g,Qu)| < t · n!

2|Qu|

]
≤ t.

Proof. When g ∼ Fyes or g ∼ Fno, then g(x) = fπ(x) for every unbalanced input x, where
π is chosen uniformly at random from Sn. So it suffices to show that Prπ[|Πf (fπ, Qu)| <
t · n!

2|Qu|
] ≤ t.

For every r ∈ {0, 1}|Qu|, let Sr ⊆ Sn be the set of permutations σ for which fσ(Qu) =
r. A set Sr is small if |Sr| ≤ t n!

2|Qu|
. The union of all small sets covers at most 2|Qu|·t n!

2|Qu|
=

tn! permutations, so the probability that a randomly chosen permutation π belongs to a
small set is at most t.

The last proposition showed that when g is drawn from Fyes or from Fno, then with
high probability Πf (g,Qu) is large; the next lemma shows that conditioned on Πf (g,Qu)
being large, the distribution on the responses to the balanced queries is nearly uniform,
even when g ∼ Fyes. Specifically, given a function f and a set S of permutations, we
define the discrepancy of f on S to be

∆S(f) = max
Qb:|Qb|= n

100

r∈{0,1}|Qb|

∣∣∣∣Pr
π∈S

[fπ(Qb) = r]− 2−
n

100

∣∣∣∣ .
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We then define the discrepancy of f to be

∆(f) = max
Qu:|Qu|= n

100

π:|Πf (fπ ,Qu)|≥n!/2n/50

∆Πf (fπ ,Qu)(f).

The following lemma shows that ∆(f) is small for almost all functions f .

Lemma 9.4. When f is drawn uniformly at random from the set of functions {0, 1}n →
{0, 1},

Pr
f

[
∆(f) > 1

3
· 2−

n
100

]
≤ 2−Ω(2n/25).

We prove Lemma 9.4 in the next section, but first we show how it implies Theorem 9.1.

Theorem 9.1 (Restated). Fix 0 < ε < 1
2
. For a 1 − o(1) fraction of the functions f :

{0, 1}n → {0, 1}, any non-adaptive algorithm for ε-testing isomorphism to f must make
at least n

100
queries.

Proof. By Lemma 9.4, with probability at least 1− 2−Ω(2n/25) = 1− o(1), the discrepancy
of a randomly drawn function f : {0, 1}n → {0, 1} is ∆(f) ≤ 1

3
2−

n
100 . Fix f to be any

function that satisfies this condition. We will show that testing isomorphism to f requires
at least n

100
queries.

As discussed earlier, we complete the proof with Yao’s Minimax Principle, with the
distributions Fyes and Fno as defined at the beginning of the section. Let T be any de-
terministic non-adaptive algorithm that makes at most n

100
queries to the input function g,

and let Q = Qu ∪Qb represent the queries made by T . Without loss of generality, we can
assume |Qu| = |Qb| = n

100
. (If |Qb| < n

100
, simply add extra balanced queries to Qb; this

can only help T determine whether g was drawn from Fyes or from Fno. Similarly, adding
unbalanced queries to Qu can only help T .)

By Proposition 9.3, the probability that |Πf (g,Qu)| < n!
2n/50 is at most 1

2n/100 = o(1).
Assume, thus, that this event does not happen. LetRyes andRno be the distribution of the
responses to the balanced queries Qb. Then the total variation distance between Ryes and
Rno is bounded by

dTV(Ryes,Rno) =
1

2

∑
r∈{0,1}

n
100

∣∣∣∣ Pr
π∈Πf (g,Qu)

[fπ(Qb) = r]− 2−
n

100

∣∣∣∣
≤ 1

2
· 2

n
100 ∆(f) ≤ 1

6
. (9.1)
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Therefore, if T accepts functions drawn from Fyes with probability at least 2
3
, (9.1)

implies that T also accepts functions drawn from Fno with probability at least 2
3
− 1

6
= 1

2
.

But by Proposition 9.2, a function drawn from Fno is ε-far from isomorphic to f with
probability 1− o(1), so T can’t be a valid ε-tester for isomorphism to f .

9.2 Proof of Lemma 9.4

The first step in the proof of Lemma 9.4 is to show that for any sufficiently small set Q
of balanced queries and sufficiently large set S of permutations, the set {π(Q)}π∈S can be
partitioned into a number of large pairwise disjoint sets. The proof of this claim uses the
celebrated theorem of Hajnal and Szemerédi [60] introduced in Section 4.2.2.

Lemma 9.5. Let S be a set of at least n!
2n/50 permutations on [n], and let Qb be a set of at

most n
100

balanced queries. Then there exists a partition S1∪̇ · · · ∪̇Sk of the permutations
in S such that for i = 1, 2, . . . , k,

(i) |Si| ≥ 2n/20, and

(ii) The sets {π(Qb)}π∈Si are pairwise disjoint.

Proof. Construct a graph G on S where two permutations σ, τ are adjacent iff there exist
u, v ∈ Qb such that σ(u) = τ(v). By this construction, when T is a set of permutations
that form an independent set in G, then {π(Qb)}π∈T are pairwise disjoint.

Consider a fixed permutation σ ∈ S. A second permutation τ is adjacent to σ in G iff
there are two vectors u, v in Qb such that the permutation τσ−1 maps the indices where u
has value 1 to the indices where v has value 1 as well. There are

(|Qb|
2

)
≤ ( n

100
)2 ways to

choose u, v ∈ Qb and at most |u|!(n− |u|)! ways to satisfy the mapping condition, so the
graph has degree at most

max
n
3
≤k≤ 2n

3

(
n

100

)2 · k! (n− k)! =
( n

100

)2

·
(n

3

)
!

(
2n

3

)
! =

( n

100

)2

· n!(
n
n/3

) ≤ n!

2cn
− 1

for a constant c = 1 − H2(1
3
) − o(1) ≥ 0.07.1 Therefore, by the Hajnal-Szemerédi

Theorem, G can be colored with n!/20.07n colors, with each color class having size at least
n!/2n/50

n!/20.07n = 2n/20.

1 H2(p) represents the binary entropy of p. H2( 1
3 ) ≈ 0.918.
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Lemma 9.5 is useful because most functions f have low discrepancy on large pairwise
disjoint sets.

Lemma 9.6. Fix Qb to be a set of n
100

balanced queries and fix r ∈ {0, 1} n
100 . Let S be a

fixed set of at least 2
n
20 permutations such that the sets {π(Qb)}π∈S are pairwise disjoint.

Then

Pr
f

[∣∣∣∣Pr
π∈S

[fπ(Qb) = r]− 2−
n

100

∣∣∣∣ > 1
3
· 2−

n
100

]
< 2−Ω(2n/25).

Proof. For every function f : {0, 1}n → {0, 1} and every permutation π of [n], define the
indicator random variable

Xf,π =

{
1 if fπ(Qb) = r,

0 otherwise.

When f is chosen uniformly at random from the set of all boolean functions {0, 1}n →
{0, 1}, Ef [Xf,π] = Prf [fπ(Qb) = r] = 2−

n
100 , so

E
f

[
Pr
π∈S

[fπ(Qb) = r]

]
=

1

|S|
∑
π∈S

E
f

[Xf,π] = 2−
n

100 .

Furthermore, the pairwise disjointness property of S guarantees that the indicator vari-
ables Xf,π are pairwise independent. Therefore, by Chernoff’s bound,

Pr
f

[∣∣∣∣Pr
π∈S

[fπ(Qb) = r]− 2−
n

100

∣∣∣∣ > 1
3
· 2−

n
100

]
< e−Ω(|S|2−n/100).

The proof of Lemma 9.4 can now be completed as follows.

Lemma 9.4 (Restated). When f is drawn uniformly at random from the set of functions
{0, 1}n → {0, 1},

Pr
f

[
∆(f) > 1

3
· 2−

n
100

]
≤ 2−Ω(2n/25).

Proof. Fix a permutation π and a setQu of n
100

unbalanced queries such that |Πf (fπ, Qu)| ≥
n!

2n/50 . Let S = Πf (fπ, Qu), and fix a set Qb of n
100

balanced queries.

By Lemma 9.5, there exists a partition S1∪̇ · · · ∪̇Sk of S such that for each part Si,
|Si| ≥ 2n/20 and {π(Qb)}π∈Si are pairwise disjoint. By Lemma 9.6, for every set Si in the
partition,

Pr
f

[∣∣∣ Pr
π∈Si

[fπ(Qb) = r]− 2−
n

100

∣∣∣ > 1
3
· 2−

n
100

]
≤ 2−Ω(2n/25).
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Taking the union bound over all k < n! sets Si, we get that

Pr
f

[∣∣∣ Pr
π∈S

[fπ(Qb) = r]− 2−
n

100

∣∣∣ > 1
3
· 2−

n
100

]
< n! · 2−Ω(2n/25).

Applying a union bound once again, this time over all
(

2n

n/100

)
< 2

n2

100 choices of Qb and
2

n
100 choices for r, we obtain

Pr
f

[
∆S(f) > 1

3
· 2−

n
100

]
< 2

n2

100
+ n

100 · n! · 2−Ω(2n/25).

Finally, applying the union bound one last time over the n! choices for π and
(

2n

n/100

)
≤ 2

n2

100

choices for Qu, we get

Pr
f

[
∆(f) > 1

3
· 2−

n
100

]
< 2

2n2

100
+ n

100 · n!2 · 2−Ω(2n/25) = 2−Ω(2n/25).

9.3 Notes and Discussion

Testing isomorphism to juntas. By combining the result in this chapter with indepen-
dent and overlapping results of Chakraborty, Garcı́a Soriano, and Matsliah [40], we obtain
a generalization of Theorem 9.1. Specifically, we obtain a lower bound showing that
for almost all functions f that are k-juntas, testing f -isomorphism requires at least Ω(k)
queries. The details of this result are found in [4].

One implication of the generalized statement is that the upper bound of O(k log k)
queries in Theorem 8.1 on the query complexity for testing isomorphism to (n − k)-
symmetric functions cannot be improved by more than a logarithmic factor since there
are (many) (n− k)-symmetric functions that require Ω(k) queries to test.

Optimality of the lower bound. There is a logarithmic gap between the lower bound of
Theorem 9.1 and the universal upper bound described at the beginning of the last chapter.
It is quite possible that the gap is only a byproduct of the limitations of our proof argument
and that Θ(n log n) queries are indeed required to test f -isomorphism for almost every
function f : {0, 1}n → {0, 1}. That problem remains open.

Testing isomorphism to linear functions. The result in this chapter is non-constructive:
while it states that for almost all functions f , testing f -isomorphism requires at least Ω(n)
queries, it does not identify any concrete functions for which this lower bound applies.
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Our result in Chapter 7 provides an example of a concrete function for which the same
lower bound applies. Consider f(x) = x1 ⊕ · · · ⊕ xn

2
. The set of functions that are

isomorphic to f is exactly the set of n
2
-linear functions. Therefore, Theorem 7.1 implies

that testing f -isomorphism in this case requires n
2
− o(n) queries.
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Chapter 10

Testing Isomorphism to Juntas

The first two chapters of this part of the thesis gave some partial results related to the char-
acterization of the set of functions f for which it is possible to test f -isomorphism with a
constant number of queries. Chapter 8’s main result was a sufficient condition for efficient
isomorphism-testability: all partially symmetric functions are efficiently isomorphism-
testable.

The main result of Chapter 9 gave a strong lower bound in the sense that the set of
functions that are efficiently isomorphism-testable (or, indeed, that can be tested with o(n)
queries) contains only a o(1) fraction of all boolean functions. Being non-constructive,
however, that result did not identify specific characteristics of the set of functions that
are not efficiently isomorphism-testable. The goal of this chapter is to establish such a
characteristic. In other words, we want to identify a concrete class of functions that are
not efficiently isomorphism-testable.

As we mentioned at the beginning of the last chapter, until recently the only class
of functions that were known to not be efficiently isomorphism-testable was the set of k-
linear functions for ω(1) ≤ k ≤ o(

√
n) [52]. Fischer et al. conjectured that these functions

were all contained in a much larger class of functions that are not efficiently isomorphism-
testable. Specifically, they conjectured that if n is sufficiently large compared to k and
f : {0, 1}n → {0, 1} is a k-junta that is ε-far from all (k − 1)-juntas, then any ε-tester for
f -isomorphism requires a number of queries that depends on k.

The main result of this chapter confirms Fischer et al.’s conjecture. In fact, we do
more: we show that for every function f that is a k-junta and is far from all (k − e)-
juntas for some ω(1) ≤ k ≤ n − ω(1) and e = o(

√
k), testing f -isomorphism requires a

super-constant number of queries.
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Theorem 10.1. Let g : {0, 1}n → {0, 1} be a k-junta which is ε-far from being a (k − e)-
junta for some e ≥ 1. Then any non-adaptive ε-tester for g-isomorphism must make at
least log2(k′/e2)−O(1) queries, where k′ = min(k, n− k).

The rest of this chapter is dedicated to proving this theorem. On first reading, the
reader is encouraged to focus on the simplest case, where e = 1.

10.1 Two distributions on functions

We prove Theorem 10.1 with Yao’s Minimax Principle [100] via Lemma 3.15. To do
so, we must introduce distributions Dyes and Dno on functions that are isomorphic to f
and ε-far from isomorphic to f , respectively, for some fixed function f that satisfies the
conditions of the theorem.

The main challenge in the construction of our distributions is that it must apply to a
large class of functions. That is, we cannot use any other structural property of f except
that it is a k-junta and is far from (k − e)-juntas. In fact, this restriction suggests a natural
way to define Dyes and Dno.

In the following, fix 0 < e < k < n and let f be a k-junta that is also ε-far from all
(k−e)-juntas. Without loss of generality, we may assume that the k relevant coordinates of
f are {1, 2, . . . , k}. Let fcore : {0, 1}k → {0, 1} be the restriction of f to these coordinates.

The distribution Dyes is defined in the most natural way, by randomly embedding fcore

into [n]. More precisely, to draw g ∼ Dyes, we first draw a random subset J ⊆ [n]
uniformly at random from all subsets of [n] of size k. We then draw a random bijection
σ : [k] → J uniformly at random. Finally, we define g(x) := fcore(xσ(1), . . . , xσ(k)). This
construction guarantees that every function g in the support of Dyes is isomorphic to f .

The distribution Dno is defined in a similar way. To draw g ∼ Dno, we begin by
drawing a set J ⊆ [n] uniformly at random from all subsets of [n] of size k − e. We then
draw a random map σ : [k] → J uniformly at random among all the maps that satisfy the
following conditions:

1. There exists a single element j∗ ∈ J such that |{i ∈ [k] : σ(i) = j∗}| = e+ 1.

2. For every j ∈ J \ {j∗}, |{i ∈ [k] : σ(i) = j}| = 1.

We then define g(x) = fcore(xσ(1), . . . , xσ(k)). This construction guarantees that every
function g in the support of Dno is a (k − e)-junta. As a result, every such g is ε-far from
isomorphic to f .
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To complete the proof of Theorem 10.1, we show below that for any set of q =
log(k′/e2) − O(1) queries, the distributions on the responses obtained from functions
drawn from Dyes or from Dno are very similar.

10.2 Distance between multivariate hypergeometrics

The typical way to prove a property testing bound such as Theorem 10.1 is as follows.
First, we write the q queries of tester T as x1, . . . , xq ∈ {0, 1}n. We then introduce the
response vector random variablesRyes andRno. HereRyes ∈ {0, 1}q is defined by drawing
fyes ∼ Fyes and letting Ryes = 〈fyes(x

1), . . . , fyes(x
q)〉, and Rno is defined analogously.

Finally, we show that

dTV(Ryes, Rno) ≤ 2q · O(e2)

k′
+ .01. (10.1)

We will in fact prove a stronger statement. To understand it, let’s reconsider the com-
plete random processes Pyes and Pno by which the response vectors Ryes and Rno are
generated. We begin by focusing on the “yes” process, Pyes.

Given the tester T ’s queries x1, . . . , xq ∈ {0, 1}n, we think of them as row vectors
and arrange them into a q × n query matrix Q. We will be especially interested in the
columns of this matrix Q, the jth column consisting of the jth bits of all the query strings.
Abstractly, we define the set of all possible column (types)

C = {0, 1}q.

Since |C| = 2q � n, some columns will occur many times in the matrix Q. In fact, we
will think of the query matrix Q as being an ordered multiset of columns from C.

Recalling the definition of Fyes, we think of the first step of Pyes as choosing k column
indices j1, . . . , jk randomly and without replacement from [n]. We next extract columns
j1, . . . , jk from Q. We view this as a multiset of columns, and call it the argument multiset
Syes. Next, we randomly order the columns in Syes, forming a q× k argument matrix Ayes.
Finally, we produce the response vector Ryes by applying gcore to the argument matrix,
row-wise.

The reader can easily verify this process Pyes generates the correct distribution on the
response vector random variable Ryes.

The “no” process Pno is very similar, differing only in the way it generates the argu-
ment multiset from the query matrix. Recalling the definition of Fno, we think of Pno

as forming the argument multiset Sno by choosing ` = k − e random columns from Q
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without replacement, and including an additional e copies of the first-chosen column. The
process Pno then forms the argument matrix Ano by again randomly ordering the columns
in the argument multiset, and finally produces the response rector Rno again by applying
gcore to Ano, row-wise. The reader can again easily verify that Pno generates the correct
distribution on Rno.

Because the processes are identical after the argument multiset is formed, a coupling
argument immediately implies that

dTV(Ryes, Rno) ≤ dTV(Syes, Sno). (10.2)

This inequality can be extremely lossy, depending on the function gcore. However, since
Theorem 10.1 applies for an extremely broad range of functions, we are almost forced to
design a proof of Theorem 10.1 that uses no properties of the function gcore. That is, in the
absence of additional restrictions on the class of functions considered, there is no obvious
way to bound dTV(Ryes, Rno) except by dTV(Syes, Sno).

Letting Syes denote the subprocess of Pyes generating Syes, and similarly for Sno, we
have reduced proving (10.1), and hence Theorem 10.1, to the following:

Theorem 10.2. For Syes ∼ Syes, Sno ∼ Sno, we have

dTV(Syes, Sno) ≤ |C| · O(e2)

min(k, n− k)
+ .01.

The reader can see now why our query complexity lower bound in Theorem 10.1 is
only logarithmic; we have |C| = 2q competing against 1

k
in the above bound. Indeed, we

can never prove a better-than-logarithmic lower bound if our proof only involves showing
statistical closeness of the argument multisets Syes and Sno. To see this, suppose k = n/2,
so n − k = n/2 as well. Then if 2q � n/2, it is possible that every column in the query
matrix is unique. In this case, the total variation distance between argument multisets
Syes and Sno will be 1 even in the case e = 1, because Syes will always consist of unique
columns, whereas Sno will always have one column duplicated.

Notice that the ordering of the columns in the query matrix Q has proven to be unim-
portant; we can think of Q simply as an unordered multiset of columns from C. Thus
Theorem 10.2 is really a statement about the total variation distance between certain mul-
tivariate hypergeometric random variables. Specifically, for each column c ∈ C, let m(c)
denote the number of copies of c in Q. In process Syes, we choose k random columns from
Q without replacement and count the number of copies of each column (type) in the draw.
Process Sno is similar, except we choose ` random columns from Q without replacement,
and count an extra e copies of the first-drawn column.

104



10.2.1 Reduction of Theorem 10.2 to two lemmas

This preceding discussion motivates the following notation:

Definition 10.3. Given integers N, e ≥ 1, M,L ≥ 0, with M,L + e ≤ N , we define
λN,M,L(e) = dTV(X, Y ), where X ∼ HN,M,L+e and Y ∼ HN,M,L + e.

The proof of Theorem 10.2 relies on the following two lemmas. The first lemma
is relatively straightforward, and relates the distance between Syes and Sno to the total
variation distance between hypergeometric distributions.

Lemma 10.4.

dTV(Syes, Sno) ≤
∑

c∈C:m(c)6=0

m(c)

n
· λn−1,m(c)−1,`−1(e).

The second lemma is a total variation distance bound between (univariate) hypergeo-
metric random variables which may be of independent interest.

Lemma 10.5. There is a universal constant 2 ≤ κ < ∞ such that for any N,M,L, if
L′ = min(L,N − L) satisfies ML′

N
≥ κe2, then λN,M,L(e) ≤ .01.

We briefly comment on why the hypothesis ML′

N
� e2 is necessary to show thatHN,M,L+e

andHN,M,L+e are close in total variation distance. For simplicity, first suppose that e = 1.
It is necessary that that ML

N
� 1; this quantity is the mean of HN,M,L, and if it is � 1

then X ∼ HN,M,L+1 is likely to be 0 whereas Y ∼ HN,M,L + 1 is at least 1. Second, it is
also necessary that M(N−L)

N
= M(1− L

N
)� 1. To see this, note that if by way of contrast

1 − L
N
� 1

M
, then X is concentrated at M and Y is concentrated at M + 1. Finally, to

understand the hypothesis’s dependence on e, suppose M = N/2 and L is quite small.
ThenHN,M,L is distributed very much like Bin(L, e); hence we require L� e2 or else the
extra +e in Y will dominate the standard deviation of Bin(L, e).

We prove Lemmas 10.4 and 10.5 in the next sections, but first we show how Theo-
rem 10.2 follows from the lemmas.

Proof of Theorem 10.2. Note that we may freely assume k ≥ 2e + 2, as otherwise the
bound we are trying to prove exceeds 1 (assuming the constant in theO(·) is large enough).
Let us introduce the notationN = n−1,M(c) = m(c)−1, L = `−1, L′ = min(L,N−L).
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Then by Lemma 10.4,

dTV(Syes,Sno) ≤
∑

c∈C:m(c)6=0

m(c)

n
· λn−1,m(c)−1,`−1(e)

=
∑

0≤M(c)
N

<κe2

L′

m(c)

n
· λN,M(c),L(e)

+
∑

M(c)
N
≥κe2

L′

m(c)

n
· λN,M(c),L(e)

≤
∑

0≤M(c)
N

<κe2

L′

m(c)
n

+
∑

M(c)
N
≥κe2

L′

m(c)
n
· .01,

where the last inequality uses Lemma 10.5. Since
∑

c∈Cm(c) = n, the second sum above
is at most .01. Thus it remains to bound the first sum by |C| O(e2)

min(k,n−k)
. There are at most

|C| summands in this first sum, and for each we have

m(c)

n
≤ M(c) + 1

N
≤ κe2

L′
+

1

N
≤ 2κe2

L′

by the condition of the sum.

To complete the proof, it remains to show that L′ = min(`−1, n− `) ≥ Ω(min(k, n−
k)). When `− 1 ≤ n− `, then L′ = `− 1 = k− e− 1 ≥ k/2 by the fact that k ≥ 2e+ 2.
And when n− ` < `− 1, then L′ = n− ` = n− k+ e ≥ n− k. so L′ ≥ 1

2
min(k, n− k),

as we wanted to show.

10.2.2 Proof of Lemma 10.4

Let us think of the experiment Syes in an alternate way. We begin by choosing a first
column from Q for Syes — call it C1. We next decide how many additional copies of C1

to include into Syes. Call this quantity T . We have

T | (C1 = c) ∼ Hn−1,m(c)−1,k−1.

(Note that m(c) − 1 ≥ 0 always, because c won’t be chosen if m(c) = 0.) So far, Syes

consists of T+1 copies ofC1. Finally, we complete the draw of Syes by choosing k−(T+1)
columns without replacement from “Q \ C1”, meaning the multiset of columns formed
from Q by removing all copies of C1.
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We think of the experiment Sno in a similar way. Again, we begin by choosing a first
column C1 from Q for Sno. We next determine how many additional copies of C1 there
will be from among the remaining `− 1 choices. Calling this quantity U , we have

U | (C1 = c) ∼ Hn−1,m(c)−1,`−1.

Recall, however, that in Sno, we include an additional e copies of C1 into Sno. Hence Sno

ends up with U + e + 1 copies of C1. Finally, we complete Sno by adding ` − (U + 1)
columns drawn without replacement from Q \ C1.

Let V = U + e. We claim that by coupling the random variables T | (C1 = c) and
V | (C1 = c), we couple Syes and Sno. This follows immediately from the two descriptions,
as then T + 1 = V + 1 = U + e+ 1, and k − (T + 1) = `+ e− (V + 1) = `− (U + 1).
Hence

dTV(Syes, Sno) ≤
∑
c∈C

Pr[C1 = c] · dTV(T | (C1 = c), V | (C1 = c)).

On one hand, Pr[C1 = c] is simply m(c)
n

. On the other hand, we have

T | (C1 = c) ∼ Hn−1,m(c)−1,`+e−1,

V | (C1 = c) ∼ Hn−1,m(c)−1,`−1 + e.

So by definition, dTV(T | (C1 = c), V | (C1 = c)) = λn−1,m(c)−1,`−1(e), and hence

dTV(Syes, Sno) ≤
∑

c∈C:m(c)6=0

m(c)

n
· λn−1,m(c)−1,`−1(e),

as claimed.

10.2.3 Proof of Lemma 10.5

Recall that L′ = min(L,N − L),
ML′

N
≥ κe2, (10.3)

and our goal is to bound λN,M,L(e) = dTV(X, Y ) ≤ .01, where X ∼ HN,M,L+e and
Y ∼ HN,M,L + e.

We begin by coupling X and Y , as follows. Imagine drawing balls randomly and
without replacement from an urn containing N balls, M of which are white. We draw
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L+e balls from the urn. We let X be the number of white balls among all balls drawn; we
let Y be the number of white balls among the first L balls drawn, plus e. Note that X ≤ Y
always under this coupling.

Let us now compare the probability mass functions of X and Y . The integers u < e
can be in X’s range but not Y ’s; the integers u > min(M,L + e) can be in Y ’s range but
not X’s. The remaining integers are in the range of both X and Y , and we have

Pr[X = u]

Pr[Y = u]
=

(
M
u

)(
N−M
L+e−u

)(
N
L+e

) / (
M
u−e

)(
N−M
L+e−u

)(
N
L

)
=

(
M
u

)(
M
u−e

) · (NL)(
N
L+e

)
= (M−u+e)(M−u+e−1)···(M−u+1)

u(u−1)···(u−e+1)
· (NL)

( N
L+e)

.

Evidently (and unsurprisingly), this ratio is a decreasing function of u. Letting t be the
largest integer for which the ratio is at least 1, we conclude that

Pr[X = u] ≥ Pr[Y = u] iff u ≤ t.

It follows immediately that

dTV(X, Y ) = Pr[X ≤ t]− Pr[Y ≤ t].

But by our coupling,

Pr[X ≤ t]− Pr[Y ≤ t] = Pr[X ≤ t ∩ Y > t]

− Pr[X > t ∩ Y ≤ t]

= Pr[X ≤ t ∩ Y > t],

since X ≤ Y always. Our goal, then, is to bound

dTV(X, Y ) = Pr[X ≤ t ∩ Y > t]. (10.4)

We will in fact prove something slightly stronger: we will show that for any value of t, the
right-hand side of (10.4) is small.

To analyze (10.4) we recall the ball and urn process defining X and Y . Having drawn
L+ e balls, let W be the number of white balls among the last e balls drawn, and let Z be
the number of white balls among the first L. Thus X = W +Z and Y = e+Z. As a first
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observation, we may note that if W = e then X = Y and hence the event in (10.4) does
not occur. I.e.,

dTV(X, Y ) ≤ Pr[W 6= e] ≤ e(1− M
N

), (10.5)

where we used a union bound over each of the last e balls being non-white. Now by (10.3),

e ≤
√

1

κ

ML′

N
≤
√
L′

κ
≤ .001

√
N, (10.6)

if we assume κ large enough. It follows that we may additionally assume

M ≤ N − .01
√
N ⇔ 1− M

N
≥ .01√

N
(10.7)

because otherwise the bound in (10.5) is at most .001
√
N · .01√

N
= .00001, which establishes

the theorem with room to spare. We also use this opportunity to mention that

M ≥ 2e, L′ ≥ 2e, (and hence certainly N ≥ 2e) (10.8)

follow easily from (10.3).

We next give a more refined upper bound on (10.4). By conditioning on W we have

dTV(X,Y ) = Pr[X ≤ t ∩ Y > t]

=
e−1∑
i=0

Pr[W = i] Pr[t− e < Z ≤ t− i |W = i].

Now Z | (W = i) has distribution HN−e,M−i,L (and note that M − i ≥ M − e ≥ 0
by (10.8)). Let us write σ2 = L(1 − L

N−e)
M−i
N−e (1 −

M−i
N−e ). Applying Corollary ?? and a

union bound we get

dTV(X, Y ) ≤
e−1∑
i=0

Pr[W = i] · (e− i)C
σ

≤ max
0≤i<e

{
C

σ

}
·
e−1∑
i=0

Pr[W = i](e− i)

= max
0≤i<e

{
C

σ

}
· E[e−W ].
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We have W ∼ HN,M,e, and thus E[e−W ] = e(1− M
N

). And by definition,

max
0≤i<e

{
C

σ

}
= max

0≤i<e

 C√
L(1− L

N−e)(
M−i
N−e )(1−

M−i
N−e )


≤ C√

L(1− L
N−e)(

M−e
N−e )(1− M

N−e)
.

Thus we have established

dTV(X, Y ) ≤ Ce√
L(1− L

N−e)
·

1− M
N√

1− M
N−e

· 1√
M−e
N−e

. (10.9)

We will bound the three fractions in (10.9) one at a time. We begin with the middle
one. Note first that

d

dM

 1− M
N√

1− M
N−e

 = − N − 2e−M

2N
√

1− M
N−e(N − e−M)

.

By combining (10.6) and (10.7) we get M ≤ N − 10e < N − 2e. Hence the derivative
above is always negative, implying that (1 − M

N
)/
√

1− M
N−e is a decreasing function of

M on M ’s range. Hence we may upper-bound this fraction by taking M = 0, giving an
upper bound of 1. Substituting this into (10.9) gives

dTV(X, Y ) ≤ Ce√
L(1− L

N−e)
· 1√

M−e
N−e

. (10.10)

We next examine the fraction on the right. It is at most

1√
M−e
N

≤ 1√
M/2
N

=

√
2N

M
,

where we used (10.8). By virtue of (10.3), we can upper-bound this by
√

2
κ
·
√
L′

e
. Substi-
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tuting this upper bound into (10.10) yields

dTV(X, Y ) ≤ C

√
2

κ
·
√

L′

L(1− L
N−e)

≤ .001

√
L′

L(1− L
N−e)

, (10.11)

assuming κ is sufficiently large compared with C.

Finally, we split into two cases, depending on whether L ≤ N/2. If indeed L ≤ N/2,
then L′ = L and we have

.001

√
L′

L(1− L
N−e)

=
.001√

1− L
N−e

≤ .001√
1− N/2

N−e

.

But N − e ≥ N − .001
√
N ≥ (2/3)N (using (10.6) and N ≥ 2 from (10.8)), so we

upper-bound

dTV(X, Y ) ≤ .001√
1− N/2

(2/3)N

= .002 ≤ .01,

as needed. The second case is that L ≥ N/2, in which case L = N − L′ and the bound
in (10.11) is

.001

√
L′

(N − L′)(1− N−L′
N−e )

= .001

√
L′

(N − L′)L′−e
N−e

= .001

√
L′

L′ − e

√
N − e
N − L′

. (10.12)

But using (10.8), √
L′

L′ − e
≤

√
L′

L′/2
=
√

2,

and using L′ ≤ N/2, √
N − e
N − L′

≤
√

N

N − L′
≤

√
N

N/2
=
√

2.

Hence the upper bound (10.12) on dTV(X, Y ) is at most .001
√

2
√

2 < .01, as needed.

This completes the proof of Lemma 10.5.
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10.3 Notes and Discussion

Majority functions. The lower bound in this chapter applies to most k-juntas that we
consider to “strongly depend” on all k of their relevant variables. One notable exception
to this observation, however, is the class of majority functions on exactly k variables. This
function is symmetric, so intuitively it “strongly depends” on all k of its relevant variables.
Majority functions on k variables, however, are o(1)-close to Majority functions on k − e
variables for any e = o(k). As a result, the lower bound of this chapter does not apply to
the problem of testing isomorphism to the k-majority functions.

As a result of this perceived gap, in [25] we also proved a lower bound for testing iso-
morphism to k-majority functions. In fact, the bound obtained in this problem is stronger
than the one in this chapter and shows that poly(k) queries are required to non-adaptively
test isomorphism to k-majority functions.

Generalizing the lower bound. At first glance, the reader may wonder why we require
the two conditions that f be a k-junta and that f be far from (k− e)-juntas for some small
e in the statement of Theorem 10.1. A natural question to ask is whether the theorem can
be generalized by removing one of these two conditions. It cannot. To see this, consider
the constant function and the parity function. The constant function is a k-junta for any
0 ≤ k ≤ n and the parity function is far from all (k − e)-juntas for any k − e < n. But
both functions are symmetric so testing isomorphism to either of them can be done with a
constant number of queries.

It is possible, however, that Theorem 10.1 may be generalized by establishing a lower
bound on the query complexity for testing isomorphism to all functions that are far from all
k-symmetric functions. In [26], we conjecture that this is indeed the case, but the problem
remains open. Note that if this result were established, that lower bound combined with
the result presented in Chapter 8 would essentially characterize the set of functions that
are efficiently isomorphism-testable.
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Part III

Connections
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Chapter 11

Communication Complexity

Communication complexity is an area of theoretical computer science that has developed
techniques which have been spectacularly effective in proving lower bounds in a large
variety of other areas of computer science. In this chapter, we will explore how communi-
cation complexity can also be used to prove strong lower bounds on the query complexity
of different property testing problems. As a bonus, we will also see how the resulting
proofs are often surprisingly simple.

The basic setup in communication complexity is straight-forward. We have two play-
ers, Alice and Bob, who each receive some input. They cannot see each other’s inputs,
but would like to compute some function on their joint input. For example, Alice may
receive a set A ⊆ [n], Bob may receive a set B ⊆ [n], and they might want to determine if
their sets intersect or if the two sets are disjoint. They do so by communicating some in-
formation to each other (following a pre-determined protocol), until they have the desired
answer. The main goal in communication is to determine the minimum number of bits that
Alice and Bob must communicate to each other to compute the answer.

The versatility of communication complexity in establishing lower bounds in various
areas of computer science stems mainly from two useful properties. The first is that there
are very strong lower bounds on the communication complexity required to compute some
basic functions. For example, it is known that even when Alice and Bob run a randomized
protocol and have access to a common source of randomness, solving the set disjointness
problem mentioned above requires Ω(n) bits of communication [70, 86]. (In other words,
Alice and Bob cannot do asymptotically better than just exchanging A and B with a trivial
communication protocol.)

The second reason that communication complexity is so versatile is that there are often
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natural reductions from communication complexity to problems in other areas of computer
science. The main contribution of this chapter is to establish such a reduction for property
testing. We will then apply this reduction to establish lower bounds on the query com-
plexity for three different property testing problems. The notes section at the end of the
chapter discusses more lower bounds we can obtain with this method.

For the first result in this chapter, we revisit the problem of testing k-linearity. We saw
in Chapter 7 that min{k, n− k} · (1− o(1)) queries are required to test k-linearity. In this
chapter, we establish a slightly less precise lower bound of Ω(min{k, n−k}) queries. The
proof, however, ends up being significantly simpler.

Theorem 11.1. For any 0 < ε < 1
2
, ε-testing k-linearity requires Ω(min{k, n − k})

queries.

The second problem we examine is testing monotonicity. For this problem, we con-
sider a slightly more general class of functions. Fix R ⊆ R. Recall that the function
f : {0, 1}n → R is monotone if for any x � y, f(x) ≤ f(y). We show that when R is
large enough, testing monotonicity requires a large number of queries.

Theorem 11.2. Fix R ⊆ R. For any 0 < ε < 1
8
, ε-testing the function f : {0, 1}n → R

for monotonicity requires Ω(min{n, |R|2}) queries.

Finally, the third result we establish in this chapter is a lower bound for testing whether
a function can be computed by a decision tree of size s. We saw in Theorem 7.10 that
Ω(log s) queries are required to test this property. The next result shows that if we require
the tester to have one-sided error (i.e., to always accept functions computable by size-s
decision trees), then Ω(s) queries are required for the task.

Theorem 11.3. For any 0 < ε < 3
8
, at least Ω(s) queries are required to ε-test size-s

decision trees with one-sided error.

11.1 Communication Complexity Definitions

This section contains a brief introduction to the communication complexity definitions and
results that will be used in the proofs in the remainder of the chapter. For a more detailed
introduction to communication complexity, we highly recommend the book of Kushilevitz
and Nisan [76] to the reader.

116



11.1.1 The Model

In a typical communication game, there are two parties—Alice, who receives an input x,
and Bob, who receives some input y. Alice and Bob wish to jointly compute some function
f(x, y) of their inputs. Neither player sees all the information needed to compute f , so
they must communicate together to solve the problem. Communication complexity is the
study of how much communication is necessary to compute f , for various functions f .

A protocol is a distributed algorithm that Alice and Bob use to compute f(x, y); in
particular, it specifies what messages Alice and Bob send to each other. In a deterministic
protocol, Alice’s messages are a function only of her input x and the previous commu-
nication in the protocol. Similarly, Bob’s messages are a function of y and the previous
communication. The cost of a protocol is the maximum (over all inputs) number of bits
sent by Alice and Bob. The deterministic communication complexity of f , denoted D(f),
is the minimum cost of a deterministic protocol computing f .

In a randomized protocol, Alice and Bob have shared access to a (public coin) random
string r ∈ {0, 1}∗. We say that P is an δ-error protocol for f if for any input pair x, y, P
computes f(x, y) with probability at least 1 − δ, where the probability is taken over the
random string r. We use Rδ(f) to denote the minimum cost of an ε-error protocol for f
and defineR(f) := R1/3(f). When f is a binary function, we say that a protocol computes
f with one-sided error if there exists z ∈ {0, 1} such that P computes f with certainty
whenever f(x, y) 6= z, and with probability at least 1 − δ when f(x, y) = z. When
considering randomized protocols with one-sided error, it is important to note which “side”
the error guarantee is on. We use Rz

δ(f) to denote the minimum cost of a randomized
protocol for f that correctly computes f whenever f(x, y) 6= z and computes f with
probability at least 1− δ whenever f(x, y) = z. We define Rz(f) := Rz

1/3(f).

A protocol is one-way if the communication consists of a single message from Alice to
Bob, who then outputs an answer. We use R→δ (f) to denote the minimum communication
cost of a randomized, δ-error, one-way protocol for f . Finally, we use R→,zδ (f) to denote
the minimum communication cost of randomized one-way protocols for f with with one-
sided error δ, and we define R→,z(f) := R→,z1/3 (f).
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11.1.2 Set Disjointness

In the Set Disjointness communication problem, Alice and Bob are given n-bit strings x
and y respectively and wish to compute

DISJn(x, y) :=
n∨
i=1

xi ∧ yi .

Equivalently, Alice and Bob’s inputs can be described as sets A,B ⊆ [n]. In this case,
DISJ(A,B) = 1 if and only if their sets intersect.

When n is clear from context, we drop the subscript. A celebrated result of Kalyana-
sundaram and Schnitger, later simplified by Razborov, showed that R(DISJn) = Ω(n),
even under the promise that A and B intersect in at most one element.

Theorem 11.4 ([70, 86]). R(DISJn) = Ω(n).

We will also use a balanced version of disjointness called k-BAL-DISJ. In this version,
Alice receives a set A ⊆ [n] of size |A| = bk/2c + 1, Bob receives a set B ⊆ [n] of size
dk/2e+ 1, and there is a promise that |A ∩B| ≤ 1.

Lemma 11.5. For all 0 ≤ k ≤ n− 2, we have R(k-BAL-DISJ) = Ω (min{k, n− k}).

Proof. If n − k = O(1), there is nothing to prove. Otherwise, let m := min{bk/2c +
1, n − k − 2}. We reduce from DISJm. Partition the elements of [n] \ [m] into sets I :=
{m+1, . . . ,m+1+bk/2c} and J := {m+2+bk/2c, . . . , n}. Note that |I| = bk/2c+1.
Furthermore, we have |J | ≥ dk/2e+ 1, since

|J | = n− (m+ 2 + bk/2c) + 1

= n− 1−m− bk/2c
= n− 1−m+ dk/2e − k
= dk/2e+ 1 + n− 2−m− k
≥ dk/2e+ 1 ,

where the penultimate equality holds because k = bk/2c + dk/2e, and the inequality
comes from the fact that m ≤ n− k − 2.

Let A′ and B′ be the sets received by Alice and Bob respectively as inputs to DISJm.
Alice pads her input with elements from I until she gets a set of size bk/2c + 1. Bob
similarly pads his input with elements from J . Let a := bk/2c + 1 − |A′| and b :=
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dk/2e + 1 − |B′|. Specifically, Alice sets A = A′ ∪ {m + 1, . . . ,m + a} and Bob sets
B = B′ ∪ {n, n− 1, . . . , n− b+ 1}.

Note that |A| = bk/2c + 1, |B| = dk/2e + 1, and A ∩ B = A′ ∩ B′. Therefore, a
solution to k-BAL-DISJ(A,B) gives a solution to DISJm(A′, B′), hence

R(k-BAL-DISJ) ≥ R(DISJm) = Ω(m) = Ω(min{k, n− k}) .

11.1.3 Gap Equality

In the Gap Equality problem, Alice and Bob are given n-bit strings x and y respectively
and wish to compute

GEQn,t(x, y) :=


1 if x = y ,

0 if dist(x, y) = t ,

∗ otherwise.

We drop the subscripts when n is clear from context and t = n/8. When GEQ(x, y) = ∗,
we allow the protocol to output 0 or 1. We are interested in Rz(GEQ); recall that Rz(GEQ)
is the minimum communication cost of a protocol for GEQ that only makes mistakes when
GEQ(x, y) = z. The standard public-coin EQUALITY protocol gives R0(GEQ) = O(1).
For protocols that only err when GEQ(x, y) = 1, the complexity is drastically different.

Buhrman, Cleve, and Wigderson [35] proved an Ω(n) lower bound on the determinis-
tic communication complexity of GEQn,n/2; their result extends to other gap sizes and to
randomized protocols with one-sided error.

Lemma 11.6 ([35]). R1(GEQn,t) = Ω(n) for all even t = Θ(n).1

11.2 Main Reduction Lemma

Below we define a class of property testing communication games and show how commu-
nication lower bounds for these games yield query complexity lower bounds for property
testers. Our communication games are based on what we call combining operators.

1Curiously, the parity of t turns out to be necessary. Since dist(x, y) = |x| + |y| − 2|x ∧ y|, Alice and
Bob can deterministically distinguish x = y from dist(x, y) being odd with a single bit of communication—
Alice sends Bob the parity of |x|, and Bob computes the parity of |x|+ |y|. This does not affect our property
testing lower bounds.
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Definition 11.7 (Combining operator). A combining operator is an operator ψ that takes
as input two functions f, g : {0, 1}n → Z and returns a function h : {0, 1}n → R.

We refer to the inputs f and g as the base functions of ψ. By convention, we use h to
refer to the output of ψ. Given a combining operator ψ and a property P , we define CPψ to
be the following property testing communication game. Alice receives f . Bob receives a
function g. They need to compute

CPψ (f, g) :=

{
1 if ψ(f, g) ∈ P
0 if ψ(f, g) is ε-far from P .

We prove all of our testing lower bounds by reducing from an associated communica-
tion game CPψ . This reduction is simple—Alice and Bob solve CPψ by emulating aP-testing
algorithm on h := ψ(f, g). Note that neither Alice nor Bob have enough information to
evaluate a query h(x), because h depends on both f and g. Instead, they must communi-
cate to jointly compute h(x). For this reduction to give a strong query complexity lower
bound for the property testing problem, it is essential that the joint computation of h(x)
occurs in a communication-efficient manner.

The following definition gives a sufficient condition on combining operators that yield
strong reductions to testing problems.

Definition 11.8 (Simple combining operator). A combining operator ψ is simple if for all
f, g, and for all x, the query h(x) can be computed given only x and the queries f(x) and
g(x).

For example, when the base functions are boolean, the combining operator defined by
ψ(f, g) := f ⊕ g is clearly simple—each h(x) = f(x) ⊕ g(x) can trivially be computed
from f(x) and g(x). On the other hand, the combining operator ψ that returns the function
defined by h(x) :=

⊕
y∈T [f(y) · g(y)] is not simple when T is a large set of strings (say a

Hamming ball centered at x), since computing h(x) requires knowledge of f(y) and g(y)
for several y.

All of the property testing communication games we use in this paper are based on
simple combining operators and give us a tight connection between property testing and
communication complexity via the following lemma.

Lemma 11.9 (Main Reduction Lemma). Fix Z to be a finite set. For any simple combining
operator ψ with base functions f, g : {0, 1}n → Z and any property P , we have

(i) R(CPψ ) ≤ 2Q(P) · dlog |Z|e,
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(ii) R0(CPψ ) ≤ 2Q1(P) · dlog |Z|e,
(iii) R→(CPψ ) ≤ Qna(P) · dlog |Z|e, and
(iv) R→,0(CPψ ) ≤ Qna,1(P) · dlog |Z|e.

Proof. We begin by proving (iii). Let A be a q-query non-adaptive tester for P . We
create a one-way protocol P for CPψ in the following manner. Alice and Bob use public
randomness to generate queries x(1), . . . , x(q). Then, Alice computes f(x(1)), . . . , f(x(q))
and sends them to Bob in a single (q · dlog |Z|e)-bit message. For each i, Bob computes
g(x(i)) and combines it with f(x(i)) to compute h(x(i)). Finally, Bob emulatesA using the
responses h(x(1)), . . . , h(x(q)) and outputs 1 if and only if A accepts h.

IfA has two-sided error, then by the correctness ofA, P computes CPψ with probability
at least 2/3. Hence, R→(CPψ ) ≤ q · dlog |Z|e. In particular, ifA is an optimal non-adaptive
tester with two-sided error, then q = Qna(P), and part (iii) of the lemma is proved.

If A has one-sided error, then whenever h ∈ P , the protocol P correctly outputs 1,
and when h is ε-far from P , the protocol correctly outputs 0 with probability at least 2/3.
Therefore, R→,0(CPψ ) ≤ q · dlog |Z|e. In particular, when A is an optimal non-adaptive
tester with one-sided error, R→,0(CPψ ) ≤ Q1(P) · dlog |Z|e.

Now, suppose A is a q-query adaptive tester for P . Again, Alice and Bob use public
randomness to generate queries x(1), . . . , x(q). However, since A is adaptive, the distribu-
tion of the ith query x(i) depends on h(x(j)) for all j < i. Instead of generating all queries
in advance, Alice and Bob generate queries one at a time. Each time a query x(i) is gener-
ated, Alice and Bob exchange f(x(i)) and g(x(i)). Since ψ is a simple combining operator,
this is enough information for Alice and Bob to individually compute h(x(i)), which in
turn gives them enough information to generate the next query with the appropriate distri-
bution. When h(x(1)), . . . , h(x(q)) have all been computed, Bob outputs 1 if and only if A
accepts h. This protocol costs 2q · dlog |Z|e bits of communication, and if A is an optimal
adaptive tester, then R(CPψ ) ≤ 2Q(P) · dlog |Z|e. Similarly, if A is an optimal adaptive
tester with one-sided error, then R0(CPψ ) ≤ 2Q1(P) · dlog |Z|e.

11.3 Testing k-Linearity

In this section we prove Theorem 11.1.

Theorem 11.1 (Restated). For any 0 < ε < 1
2
, ε-testing k-linearity requires Ω(min{k, n−

k}) queries.
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Proof. We prove the lower bound with a reduction from the k-BAL-DISJ problem. Recall
that Ck-lin

⊕ is the communication game where the inputs are the functions f, g : {0, 1}n →
{0, 1} and the players must test whether the function h = f ⊕ g is k-linear. Lemmas 11.9
and 11.5 imply that

2Q(k-linearity) ≥ R(Ck-lin
⊕ ) and R(k-BAL-DISJ) = Ω(min{k, n− k}) .

To complete the proof, we show that R(Ck-lin
⊕ ) ≥ R(k-BAL-DISJ) with a reduction from

k-BAL-DISJ to Ck-lin
⊕ .

Let A,B ⊆ [n] be the two sets of size |A| = bk
2
c + 1 and |B| = dk

2
e + 1 received by

Alice and by Bob, respectively, as the input to an instance of k-BAL-DISJ. Alice and Bob
can construct the functions ParityA,ParityB : {0, 1}n → {0, 1}. When |A ∩ B| = 1, the
symmetric difference of the two sets has size |A4B| = |A|+ |B|−2|A∩B| = k, and the
function ParityA ⊕ParityB = ParityA4B is k-linear. Conversely, when A and B are dis-
joint, the function ParityA⊕ParityB is a (k+2)-parity function and, by Proposition 2.24, it
is 1

2
-far from k-linear functions. So Alice and Bob can solve their instance of k-BAL-DISJ

with a communication protocol for Ck-lin
⊕ . This implies that R(Ck-lin

⊕ ) ≥ R(k-BAL-DISJ),
as we wanted to show.

11.4 Testing Monotonicity

Theorem 11.2 (Restated). Fix R ⊆ R. For any 0 < ε < 1
8
, ε-testing the function f :

{0, 1}n → R for monotonicity requires Ω(min{n, |R|2}) queries.

Proof. We prove the theorem in three steps. First, we give an Ω(n) lower bound for the
case when R = Z. Secondly, we handle the case where |R| =

√
n by a standard range

reduction argument. Finally, we give an Ω(|R|2) bound for small |R| by reducing from the
|R| =

√
n case.

Suppose R = Z. We prove the lower bound for testing monotonicity in this case with
a reduction from SET-DISJOINTNESS. Let ψ be the combining function that, given two
functions f, g : {0, 1}n → {0, 1} and an element x ∈ {0, 1}n, returns ψ(f, g, x) = 2 |x|+
f(x)+g(x). Define CMONO

ψ be the communication game where Alice and Bob are given two
functions f, g : {0, 1}n → {0, 1} and they must test whether the function h : {0, 1}n → R
defined by h(x) = ψ(f, g, x) is monotone. By Lemma 11.9 and Theorem 11.4,

2Q(MONO) ≥ R(CMONO
ψ ) and R(DISJ) ≥ Ω(n) .

We complete the proof by showing that R(CMONO
ψ ) ≥ R(DISJ).
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Let A,B ⊆ [n] be the subsets received by Alice and Bob as the input to an instance
of the SET-DISJOINTNESS problem. Alice and Bob can build the functions χA, χB :
{0, 1}n → {−1, 1}, respectively, by setting χA(x) = (−1)

∑
i∈A xi and χB(x) = (−1)

∑
i∈B xi .

Let h : {0, 1}n → R be the function defined by h(x) = ψ(χA, χB, x) = 2 · |x|+ χA(x) +
χB(x). We claim that (a) when A and B are disjoint, h is monotone, and (b) when A and
B are not disjoint, h is 1

8
-far from monotone. If this claim is true, then we have completed

our lower bound since it implies that Alice and Bob can run a protocol for CMONO
ψ to solve

their instance of SET-DISJOINTNESS and, therefore, R(CMONO
ψ ) ≥ R(DISJ).

We now prove Claim (a). Fix i ∈ [n]. For x ∈ {0, 1}n, let x0, x1 ∈ {0, 1}n be the
vectors obtained by fixing the ith coordinate of x to 0 and to 1, respectively. For any set
S ⊆ [n], χS(x1) = (−1)1[i∈S] · χS(x0). So when i /∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| = 2 > 0 ,

when i ∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0) ≥ 0 ,

and when i /∈ A and i ∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χB(x0) ≥ 0 .

Those three inequalities imply that when i 6∈ A ∩ B, the function h is monotone on each
edge (x0, x1) in the ith direction. As a result, when A and B are disjoint the function h is
monotone.

Let us now prove Claim (b). Let A ∩B 6= ∅. When i ∈ A ∩B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0)− 2χB(x1).

This implies that for each x where χA(x0) = χB(x0) = 1, h(x1) < h(x0). Partition
{0, 1}n into 2n−1 pairs that form the endpoints to all the edges in the ith direction. Exactly
1
4

of these pairs will satisfy the condition χA(x0) = χB(x0) = 1, and for each of these
pairs, either h(x0) or h(x1) must be modified to make h monotone. So when A and B are
not disjoint, h is 1

8
-far from monotone.

To handle the case where |R| =
√
n, we sketch the proof of a standard range reduction

argument (see, e.g., [33].) Specifically, we can assume without loss of generality that
R = {−

√
n

2
, . . . ,

√
n

2
} and we modify the construction of the function h to create h′

h′(x) =


−
√
n

2
when |x| − n

2
< −

√
n

2
+ 1,

√
n

2
when |x| − n

2
>

√
n

2
− 1,

|x| − n
2

+ χA(x)+χB(x)
2

when
∣∣ |x| − n

2

∣∣ ≤ √
n

2
− 1.
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It is easy to see that h′ is identical to h/2, except when
∣∣ |x|− n

2

∣∣ ≥ √
n

2
, which only occurs

for a constant fraction of x’s. Using the same reasoning as before, h′ is monotone when A
and B are disjoint, and a constant distance from monotone when A and B intersect. We
leave the details to the reader.

Finally, suppose that |R| = o(
√
n), and let m := |R|2. We will use a q-query testing

algorithm for f to create a q-query testing algorithm for functions g : {0, 1}m → {0, 1}.
Specifically, given g, create h : {0, 1}n → R by defining h(x, y) := g(x) for x ∈

{0, 1}m and y ∈ {0, 1}n−m. Clearly, if g is monotone then so is h. We now want to argue
that if g is ε-far from monotone, then so is h. We do so by proving the contrapositive.
Suppose that h is not ε-far from monotone. Let h̃ be the monotone function closest to h;
thus, Prx,y[h(x, y) 6= h̃(x, y)] ≤ ε. By an averaging argument, there exists y such that
Prx[h(x, y) 6= h̃(x, y)] ≤ ε. Define g̃ : {0, 1}m → R as g̃(x) := h̃(x, y). It is easy to
see that Prx[g(x) 6= g̃(x)] = Prx,y[h(x, y) 6= h̃(x, y)] ≤ ε. Therefore, g is not ε-far from
monotone.

Our testing algorithm for g is simple: test h and return the result. By the above claim,
a correct answer for testing h gives a correct answer for testing g. Since testing g for
monotonicity requires Ω(m) = Ω(|R|2) queries, the same bound holds for testing h.

11.5 Decision trees

Theorem 11.3 (Restated). For any 0 < ε < 3
8
, at least Ω(s) queries are required to ε-test

size-s decision trees with one-sided error.

Proof. We first consider the case where s = 2n−1 for some n ≥ 5. We prove this case
with a reduction from the GAP-EQUALITY problem on s-bit strings. Let Cs-DT

⊕ be the
communication game where Alice and Bob receive the functions f, g : {0, 1}n → {0, 1}
and they must test whether the function h = f ⊕ g is computable by a decision tree of size
s. By Lemmas 11.9 and 11.6,

2Q1
(
s-DT

)
≥ R1(Cs-DT

⊕ ) and R1(GEQs, s
8
) = Ω

(
s
)
.

We complete the proof by showing that R1(Cs-DT
⊕ ) ≥ R1(GEQs, s

8
).

Let a, b ∈ {0, 1}s be received by Alice and Bob as input to an instance of the GAP-
EQUALITY problem. They must determine if a = b or whether dist(a, b) = s

8
. Alice and

Bob can solve their instance of the GEQ problem with the following protocol. Let the set
of vectors x ∈ {0, 1}n with even parity Parity(x) = x1⊕ · · · ⊕ xn = 0 define an indexing
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of the bits of a. (I.e., fix a bijection between those strings and [s].) Alice and Bob build
the functions f, g : {0, 1}n → {0, 1} by setting

f(x) =

{
ax when Parity(x) = 0,

0 when Parity(x) = 1,

and

g(x) =

{
bx when Parity(x) = 0,

1 when Parity(x) = 1.

Alice and Bob then test whether f ⊕ g can be represented with a decision tree of size at
most 15

16
2n; when it can, they answer dist(a, b) = s

8
.

Let us verify the correctness of this protocol. For any x ∈ {0, 1}n where Parity(x) =
0, we have that (f ⊕ g)(x) = ax ⊕ bx. Furthermore, for each x where Parity(x) = 1, we
get (f ⊕ g)(x) = 1. So when a = b, then f ⊕ g is the Parity function. By Lemma ??, this
function is 1

32
-far from every decision tree of size at most 15

16
2n. When dist(a, b) = s

8
, con-

sider the (complete) tree that computes f ⊕ g by querying xi in every node at level i. This
tree has 2n leaves, but for every input xwhere ax 6= bx, we have that the corresponding leaf
has the same value as its sibling. So for each such input, we can eliminate one leaf. There-
fore, we can compute f ⊕ g with a decision tree of size at most 2n − 2n−1/8 < 15

16
2n.

11.6 Notes and Discussion

Other results. As we saw in Chapter 7, lower bounds on the query complexity for testing
k-linearity—or, more precisely, on the number of queries required to distinguish k-linear
and (k + 2)-linear functions—yield lower bounds on the query complexity for testing a
number of other properties of boolean functions.

Our proof of Theorem 11.1 does give a lower bound on the number of queries required
to distinguish k-linear and (k+2)-linear functions. As a result, all the (asymptotic) bounds
in Table 7.1 can be obtained directly from Theorem 11.1.

The lower bound on the query complexity required to test monotonicity in Theo-
rem 11.2 also implies a matching Ω(n) lower bound on the query complexity for testing
submodularity. This follows from a result of Seshadhri and Vondrák [91], who showed
that testing submodularity is at least as hard (in terms of query complexity) as testing
monotonicity. For the details, see [23].

Following the initial publication of the research presented in this chapter, the commu-
nication complexity method has been used by Brody, Matulef, and Wu [34] to establish
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new lower bounds related to testing properties computable by small-width ordered binary
decision diagrams. It has also been used by Jha and Raskhodnikova [68] to obtain lower
bounds for testing Lipschitz functions, as part of their investigation on property testing and
data privacy.
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Chapter 12

Active Testing

In this chapter, we introduce a new model of property testing, which we call the active test-
ing model. Before describing the model itself, we begin by describing the model selection
problem in learning theory which motivated the research presented in this chapter.

Motivation. The central problem in learning theory can be formulated as follows. An
algorithm A is given query access to some function f : {0, 1}n → {0, 1} that is promised
to have some given property P .1 The learner A’s task is to identify a hypothesis function
h : {0, 1}n → {0, 1} that, with probability at least 1 − δ, is ε-close to f . The goal is
to minimize the number of queries to f and the running time required by A to complete
this task. When A is free to query f on any inputs of its choosing, the resulting learning
framework is called the membership query model. If the hypothesis h is guaranteed to also
have property P , the algorithm A is called a proper learner.

Consider now a slight variation on the basic learning problem: a learning algorithm
A is again given query access to some function f : {0, 1}n → {0, 1}, but the promise
is weakened to only guarantee that f has at least one of the properties P1, . . . ,Pm. As
before, A is required to find a hypothesis h : {0, 1}n → {0, 1} that is ε-close to f with
probability at least 1− δ. How many queries does A require for this task?

One way A can learn a good hypothesis h for f is to learn m hypotheses h1, . . . , hm,
one for each of the possible assumptions f ∈ P1, . . . , f ∈ Pm. It can then test these
hypotheses to identify the good hypothesis. This approach is sound, but it is not query-
efficient. If q1, . . . , qm are the minimum number of queries required to learn a good hy-
pothesis for a function f in P1, . . . ,Pm, respectively, then this approach requires at least

1In learning theory, a property of boolean functions is typically called a class of functions.
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q1 + · · ·+ qm queries.

A more query-efficient solution to the problem is to perform model selection: instead
of learning one hypothesis per property, we first identify a property Pi of the function f ,
then we learn a good hypothesis for f under the promise that f ∈ Pi.

For the model selection approach to be query-efficient, we need a good way to tell
if f has properties P1, . . . ,Pm. This is where property testing comes in handy: by test-
ing whether f is in P1, . . . ,Pm, we can quickly reject all the properties that do not con-
tain any hypothesis ε-close to f while accepting the property (or properties) that contains
f . Furthermore, very efficient testers have been designed for many properties commonly
studied in machine learning: linear threshold functions [77], unions of intervals [74], jun-
tas [52, 20], DNFs [46], and decision trees [46].

Active learning. While the application of property testing to model selection as de-
scribed above is interesting, its potential utility is limited by the fact that the assumptions
in the membership query model are unrealistic in most machine learning applications.

For example, consider the problem of classifying documents by topic. A document can
be represented as a boolean vector x ∈ {0, 1}n by letting each xi denote the presence (or
absence) of a given word in the document. A boolean classifier—for illustration, let’s con-
sider “sports articles” vs. “non-sports articles”—can be described as a boolean function
f : {0, 1}n → {0, 1}. LetA be a learning algorithm that is tasked with constructing a clas-
sifier h : {0, 1}n → {0, 1} that is close to f . To executeA, we must give it query access to
f . When we have an existing article (say, taken from the web) whose corresponding word
vector is x ∈ {0, 1}n, we can let A query the value of f(x) by having a user determine if
the article is about sports or not. This approach, however, does not work if we generate an
arbitrary input x ∈ {0, 1}n and then try to get users to determine the value of f(x).

As a result, the dominant query paradigm in machine learning is not the membership
query model, but the active learning model. In this model, the algorithm can still choose
the inputs on which it wants to query the function f , but it can only choose inputs among
those that exist in nature. We describe this model more precisely in Section 12.1.

Results. In this chapter, we bring the active model in learning to the domain of testing.
The main contribution of the research presented in this chapter is the definition of the
model itself, which we present in Section 12.1.

The active testing model is a restricted form of property testing, so it is natural to expect
that some properties which are efficiently testable in the standard property testing model
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are not as efficiently testable in the active testing model. Our first (negative) result confirms
this suspicion. Recall that dictator functions can be tested with a constant number of
queries in the standard property testing model. In the active testing model, however, testing
dictator functions requires as many queries as are needed to learn dictator functions.

Theorem 12.1. Active testing of dictatorships under the uniform distribution requires
Ω(log n) queries.

The proof of the theorem says something even stronger: Ω(log n) queries are required
in the active testing model to distinguish dictator functions from random functions. As
a result, the same lower bound applies to the query complexity of many other property
testing tasks: testing computability by small decision trees, testing juntas, testing linear
threshold functions, etc. Despite this note of caution, it is still possible that many of those
properties can still be tested much more efficiently than they can be learned.

The second, and principal, result of this section confirms that there are indeed funda-
mental properties of boolean functions that can be tested more efficiently than they can
be learned in the active testing model. Specifically, we show that testing linear threshold
functions is much easier than learning the same class of functions.

Theorem 12.2. There is an active tester for linear threshold functions over the standard
n-dimensional Gaussian distribution that makes O(

√
n log n) queries. Furthermore, any

such active tester for linear threshold functions makes at least Ω(n1/3) queries.

There are other properties of functions that can be tested efficiently in the active model.
We discuss these results and the relation of active testing to other models of property
testing in Section 12.5.

12.1 The active testing model

Active learning, in general, describes models of machine learning in which the learning
algorithm has some freedom in choosing what inputs on which to query the target func-
tion. The name active is chosen to contrast with the passive learning model, in which
the learning algorithm observes the value of the target function on some inputs that are
drawn at random from some distribution. The “most active” model of learning, in which
the learning algorithm has complete freedom over the set of queries it makes to the target
function, is called the membership query learning model.
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The model of active learning that we consider in this chapter lies somewhere in be-
tween the passive and membership query learning models. Specifically, we consider the
following class of learning algorithms.

Definition 12.3 (Sample-restricted learner). The randomized algorithm A with oracle ac-
cess to a function f : {0, 1}n → {0, 1} in P is an s-sample, q-query (ε, δ)-learner for
the property P over the distribution D if it draws a set S of |S| = s samples from D,
queries the value of f on q elements from S, and with probability at least 1 − δ outputs a
hypothesis h : {0, 1}n → {0, 1} that satisfies distD(f, h) ≤ ε.

Our concept of active learner corresponds to a sample-restricted learner that has access
to a polynomial number of (unlabeled) samples.

Definition 12.4 (Active learner). The algorithm A is a q-query active (ε, δ)-learner for P
over the distribution D if it is a poly(n)-sample, q-query (ε, δ)-learner for P over D.

We are now ready to introduce the main definitions for the active testing model. The
goal of our definitions is to mirror the active learning definitions. We do so as follows.

Definition 12.5 (Sample-restricted tester). The randomized algorithm A with oracle ac-
cess to a function f : {0, 1}n → {0, 1} is an s-sample, q-query ε-tester for P over the
distribution D if it draws s samples from D, queries the value of f on q of those samples,
and

1. Accepts with probability at least 2
3

when f ∈ P; and

2. Rejects with probability at least 2
3

when distD(f,P) ≥ ε.

Note that our definition of sample-restricted tester coincides with the standard defini-
tion of a tester when the number of samples is unlimited and the support of D is {0, 1}n.

When we fix q = s, then the definition of sample-restricted tester corresponds to the
passive testing model first studied in [59] in which the queries made by the algorithm are
completely determined by the random draws to the distribution D.

Our concept of active tester corresponds to a sample-restricted tester that has access to
a polynomial number of (unlabeled) samples.

Definition 12.6 (Active tester). A randomized algorithm is a q-query active ε-tester for
P ⊆ {0, 1}n → {0, 1} over D if it is a poly(n)-sample, q-query ε-tester for P over D.
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12.2 Testing dictator functions

We prove the lower bound for testing dictator functions with a variant of Lemma 3.15. We
start by stating and proving this basic lemma.

Lemma 12.7. Fix a property P ⊆ {0, 1}n → {0, 1}. Let Dyes be a distribution over P
and let Dno be a distribution such that f ∼ Dno is ε-far from P with probability 1− o(1).
Let S ⊆ {0, 1}n be obtained by drawing s samples independently at random from the
distribution D over {0, 1}n. Suppose that with probability at least 5

6
(over the choice of

S), every subset X ⊆ S of size |X| = q and every r ∈ {0, 1}q satisfy

Pr
f∼Dyes

[f(X) = r] < 6
5

Pr
f∼Dno

[f(X) = r]. (12.1)

Then there is no s-sample q-query ε-tester for P .

Proof. Let A be a deterministic algorithm that, for each possible subset S ⊆ {0, 1}n,
selects a set X ⊆ S of size |X| = q and queries f : {0, 1}n → {0, 1} on each input in
X . Suppose that A is guaranteed to accept f ∼ Dyes with probability at least 2

3
when S

contains s elements drawn independently from D.2

When every subset X ⊆ S of size |X| = q and every r ∈ {0, 1}q satisfy (12.1), let us
call S bad. By our assumption on the acceptance probability of A,

E
S

[
Pr

f∼Dyes

[A accepts f ] | S is bad
]
≥ 6

5
· (2

3
− 1

6
) = 3

5
.

But conditioned on S being bad, the probability thatA accepts a function drawn fromDno

cannot be much smaller than that of accepting a function drawn from Dyes so we have

E
S

[
Pr

f∼Dno

[A accepts f ] | S is bad
]
≥ 5

6
· 3

5
= 1

2
.

This means that A accepts a function drawn from Dno with probability at least

Pr
f,S

[A accepts f ] ≥ Pr[S is bad] · E
S

[
Pr

f∼Dno

[A accepts f ] | S is bad
]

= 5
6
· 1

2
= 5

12
> 1

3
.

Therefore, no deterministic s-sample q-query algorithm can distinguish functions drawn
from Dyes or from Dno with probability at least 2

3
, and the lemma follows directly from

Yao’s Minimax Principle [100].
2Here, the probability that A accepts is over the random choice of both f and S.
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We are now ready to complete the proof of Theorem 12.8.

Theorem 12.8. Active testing of dictatorships under the uniform distribution requires
Ω(log n) queries.

Proof. Let Dyes and Dno denote the uniform distributions over dictator functions and all
boolean functions {0, 1}n → {0, 1}, respectively. Fix X to be a set of q queries from
{0, 1}n. We can write X as a q × n matrix. For each r ∈ {0, 1}q, write cr(X) to denote
the number of columns of X that are identical to r. For every r, we have∣∣∣∣ Pr

f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ =

∣∣∣∣cr(X)

n
− 2−q

∣∣∣∣ .
When X is formed by drawing q queries independently and uniformly at random from
{0, 1}n, we can equivalently say that X is formed by drawing n columns independently
and uniformly at random from {0, 1}q. Thus, for any r ∈ {0, 1}q we have

E[cr(X)] = 2−qn

and by Chernoff’s bound

Pr
X

[∣∣∣∣cr(X)

n
− 2−q

∣∣∣∣ > 1

36
2−q
]
< e−cn2−q

for some appropriate constant c. By applying the union bound over all 2q column types in
{0, 1}n and over the

(
poly(n)

q

)
< nc

′q logn ways to choose a set X of q queries from the set
S of poly(n) queries sampled independently from the uniform distribution, we get that

Pr
S

[
∃X ⊆ S, r ∈ {0, 1}q :

∣∣∣∣cr(X)

n
− 2q

∣∣∣∣ > 1

36
2−q
]
< ec

′q logn+q−cn2−q .

When q ≥ c′′ log n for some appropriately large constant c′′, this probability is less than 1
6

and the lower bound follows from Lemma 12.7.

12.3 Upper bound for Testing LTFs

We now turn to the problem of testing linear threshold functions (LTFs) in the active
property testing model. For this section and the next one, we leave the setting of boolean
functions to explore a slightly more general class of functions: functions of the form
f : Rn → {0, 1}. The definition of linear threshold functions, or halfspaces, in this setting
is as follows.
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Definition 12.9. The function f : Rn → {0, 1} is a linear threshold function if there exist
n+ 1 parameters w1, . . . , wn, t ∈ R such that for every x ∈ Rn,

f(x) = sgn(w1x1 + · · ·+ wnxn − t),

where the function sgn : R→ {0, 1} returns sgn(z) = 1 iff z ≥ 0.

We will study the problem of testing linear threshold functions over the standard n-
dimensional Gaussian distribution Nn(0, I) over Rn. There is a close connection to this
problem and the Hermite decomposition of functions that we introduced in Section 4.3.2.
This connection is described in the following key lemma of Matulef, O’Donnell, Rubin-
feld, and Servedio [77].

Lemma 12.10 (Matulef et al. [77]). There is an explicit continuous function W : R → R
with bounded derivative ‖W ′‖∞ ≤ 1 and peak value W (0) = 2

π
such that every linear

threshold function f : Rn → {−1, 1} satisfies

n∑
i=1

f̂(ei)
2 = W (E

x
f).

Moreover, every function g : Rn → {−1, 1} that satisfies∣∣∣∣∣
n∑
i=1

ĝ(ei)
2 −W (E

x
g)

∣∣∣∣∣ ≤ 4ε3

is ε-close to being a linear threshold function.

Lemma 12.10 shows that
∑

i f̂(ei)
2, the sum of the level-one Hermite coefficients of a

function, provides a characterization of linear threshold functions. We can thus test linear
threshold functions by estimating the value of this expression for a given function. We
will do so by using the characterization of the level-1 Hermite weight of a function that
we established in Section 4.3.2.

12.3.1 Algorithm

Lemmas 12.10 and 4.18 suggest that linear threshold functions may be tested with the
following simple LTFTESTER algorithm.

This algorithm queries the value of f on all the samples in S, so it makes a total of
m queries. The value µ̃ is an unbiased estimate of E f and, since the items of S are
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LTFTESTER(f , ε)

1. Draw a set S ⊂ Rn of m samples indep. from Nn(0, I).
2. Set µ̃ = Ex∈S[f(x)].
3. Set ν̃ = Ex 6=y∈S[f(x)f(y) 〈x, y〉].
4. Accept iff |ν̃ −W (µ̃)| ≤ 2ε3.

drawn independently, we can use standard Chernoff bound arguments to show that m =
O(
√
n) samples are sufficient to guarantee that this estimate has very small error with high

probability.

The value ν̃, by Lemma 4.18, is an unbiased estimate of
∑n

i=1 f̂(ei)2. The values of
f(x)f(y) 〈x, y〉 are no longer all independent, so we cannot use standard Chernoff bounds
directly to bound the error of ν̃. But the value ν̃ is a U-statistic of order two, so we can
use the concentration of measure tools from Section 4.1.3 to bound this error. In order to
do so, however, it is convenient to modify the definition of ν̃ slightly so that it is bounded.
The resulting algorithm is described in Figure 12.1.

LTFTESTER∗(f , ε)
Parameters: τ =

√
4n log(4n/ε3), m = 800τ/ε3 + 32/ε6.

1. Draw a set S ⊂ Rn of m samples indep. from Nn(0, I).
2. Set µ̃ = Ex∈S[f(x)].
3. Set ν̃ = Ex 6=y∈S[f(x)f(y) 〈x, y〉 · 1[|〈x, y〉| ≤ τ ]].
4. Accept iff |ν̃ −W (µ̃)| ≤ 2ε3.

Figure 12.1: Algorithm for testing linear threshold functions in the active testing model.

12.3.2 Analysis of the algorithm

To verify the correctness of the LTFTESTER∗ algorithm, we must establish two facts: that
µ̃ and ν̃ are close enough to the value they estimate, and that E ν̃ is close enough to the
true value E f(x)f(y) 〈x, y〉 that we want to compute. We begin with this latter task.

For a function f : Rn → R, defineψf : Rn×Rn → R to beψf (x, y) = f(x)f(y) 〈x, y〉.
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Let ψ∗f : Rn × Rn → R be the truncation of ψf defined by setting

ψ∗f (x, y) =

{
f(x)f(y) 〈x, y〉 if | 〈x, y〉 | ≤

√
4n log(4n/ε3)

0 otherwise.

The next lemma shows that Eψ∗f and Eψf are close.

Lemma 12.11. For any function f : Rn → R, |Eψf − Eψ∗f | ≤ 1
2
ε3.

Proof. For notational clarity, fix τ =
√

4n log(4n/ε3). By the definition of ψf and ψ∗f and
with the trivial bound |f(x)f(y) 〈x, y〉 | ≤ n we have

|Eψf − Eψ∗f | =
∣∣∣∣Pr
x,y

[
|〈x, y〉| > τ

]
· E
x,y

[
f(x)f(y) 〈x, y〉

∣∣ |〈x, y〉| > τ
]∣∣∣∣

≤ n · Pr
x,y

[
|〈x, y〉| > τ

]
.

The right-most term can be bounded with a standard Chernoff argument. By Markov’s
inequality and the independence of the variables x1, . . . , xn, y1, . . . , yn,

Pr
x,y

[
〈x, y〉 > τ

]
= Pr

[
et〈x,y〉 > etτ

]
≤ E et〈x,y〉

etτ
=

∏n
i=1 E e

txiyi

etτ
.

The moment generating function of a standard normal random variable is E ety = et
2/2, so

E
xi,yi

[
etxiyi

]
= E

xi

[
E
yi
etxiyi

]
= E

xi
e(t2/2)x 2

i .

When x ∼ N (0, 1), the random variable x2 has a χ2 distribution with 1 degree of freedom.

The moment generating function of this variable is E etx2
=
√

1
1−2t

=
√

1 + 2t
1−2t

for any

t < 1
2
. Hence,

E
xi
e(t2/2)x 2

i ≤
√

1 +
t2

1− t2
≤ e

t2

2(1−t2)

for any t < 1. Combining the above results and setting t = τ
2n

yields

Pr
x,y

[
〈x, y〉 > τ

]
≤ e

nt2

2(1−t2)
−tτ ≤ e−

τ2

4n = ε3

4n
.

The same argument shows that Pr[〈x, y〉 < −τ ] ≤ ε3

4n
as well.
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We can now complete the analysis of the LTFTESTER∗ algorithm and the proof of the
upper bound in Theorem 12.2.

Theorem 12.12 (Upper bound in Theorem 12.2, restated). There is an active tester for lin-
ear threshold functions over the standard n-dimensional Gaussian distribution that makes
O(
√
n log n) queries.

Proof. Consider the LTFTESTER∗ algorithm. When the estimates µ̃ and ν̃ satisfy

|µ̃− E f | ≤ ε3 and |ν̃ − E[f(x)f(y) 〈x, y〉]| ≤ ε3,

Lemmas 12.10 and 4.18 guarantee that the algorithm correctly distinguishes LTFs from
functions that are far from LTFs. To complete the proof, we must therefore show that the
estimates are within the specified error bounds with probability at least 2/3.

The values f(x1), . . . , f(xm) are independent {−1, 1}-valued random variables. By
Hoeffding’s inequality,

Pr[|µ̃− E f | ≤ ε3] ≥ 1− 2e−ε
6m/2 = 1− 2e−O(

√
n).

The estimate ν̃ is a U-statistic with kernel ψ∗f . This kernel satisfies

‖ψ∗f − Eψ∗f‖∞ ≤ 2‖ψ∗f‖∞ = 2
√

4n log(4n/ε3).

Let Σ2 = Ex[Ey[ψ
∗
f (x, y)]2]− Ex,y[ψ

∗
f (x, y)]2. Then

Σ2 ≤ E
y

[
E
x

[ψ∗f (x, y)]2
]

= E
y

[
E
x

[f(x)f(y) 〈x, y〉1[|〈x, y〉| ≤ τ ]]2
]
.

Applying the Cauchy-Schwartz inequality to the expression for Σ2 gives

Σ2 ≤ E
y

[
E
x

[f(x)f(y) 〈x, y〉]2
]

= E
y

[( n∑
i=1

f(y)yiE
x

[f(x)xi]
)2]

=
∑
i,j

f̂(ei)f̂(ej)E
y

[yiyj] =
n∑
i=1

f̂(ei)
2.

By Parseval’s identity, we have
∑

i f̂(ei)
2 ≤ ‖f̂‖2

2 = ‖f‖2
2 = 1. We can now apply

Arcones’ Theorem (Theorem 4.7) and Lemma 12.11 to obtain

Pr[|ν̃ − Eψf | ≤ ε3] = Pr[|ν̃ − Eψ∗f | ≤ 1
2
ε3] ≥ 1− 4e

− mt2

8+200
√
n log(4n/ε3)t ≥ 11

12
.

The union bound completes the proof of correctness.
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12.4 Lower Bound for Testing LTFs

The last section showed that it is possible to test linear threshold functions with O(
√
n)

queries in the active testing model. The lower bound in Section 12.2 on the number
of queries needed to distinguish dictator functions from random functions implies that
Ω(log n) queries are required to test linear threshold functions in the active model.

In this section, we prove a better lower bound showing that the number of queries
required to test linear threshold functions in the active model must be polynomial in n. To
establish this lower bound, we begin by extending Lemma 12.7 to real-valued functions.

Lemma 12.13. Fix a property P ⊆ Rn → R. Let Dyes be a distribution over P and let
Dno be a distribution such that f ∼ Dno is ε-far from P with probability 1− o(1). For any
set X ⊂ Rn of size |X| = q, let pX,yes, pX,no : Rq → R be the probability density functions
for the random variable f(X) when f ∼ Dyes and f ∼ Dno, respectively. Let S ⊂ Rn

be a set of s samples drawn independently from the n-dimensional Gaussian distribution
Nn(0, I). Suppose that with probability at least 5

6
(over the choice of S), every subset

X ⊆ S of size |X| = q satisfy

Pr
r∼Nq(0,I)

[
pX,yes(r) <

6
5
pX,no(r)

]
> 3

4
.

Then there is no s-sample q-query ε-tester for P .

The proof of Lemma 12.13 is essentially identical to that of Lemma 12.7. We refer the
reader to [13] for the details.

We now complete the proof of the lower bound in Theorem 12.2.

Theorem 12.14 (Upper bound of Theorem 12.2 restated). At least Ω(n1/3) queries are
required to test linear threshold functions over the standard n-dimensional Gaussian dis-
tribution in the active testing model.

Proof. We begin by introducing two distributionsDyes andDno over linear threshold func-
tions and functions that (with high probability) are far from linear threshold functions, re-
spectively. We draw a function f fromDyes by first drawing a vector w ∼ N (0, In×n) from
the n-dimensional standard normal distribution. We then define f : x 7→ sgn( 1√

n
x · w).

To draw a function g fromDno, we define g(x) = sgn(yx) where each yx variable is drawn
independently from the standard normal distribution N (0, 1).

LetX ∈ Rn×q be a random matrix obtained by drawing q vectors from the n-dimensional
normal distribution N (0, In×n) and setting these vectors to be the columns of X . Equiv-
alently, X is the random matrix whose entries are independent standard normal variables.
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When we view X as a set of q queries to a function f ∼ Dyes or a function g ∼ Dno, we
get f(X) = sgn( 1√

n
Xw) and g(X) = sgn(yX). Note that 1√

n
Xw ∼ N (0, 1

n
X∗X) and

yX ∼ N (0, Iq×q). To apply Lemma 12.13 it suffices to show that the ratio of the pdfs for
both these random variables is bounded by 6

5
for all but 1

5
of the probability mass.

The pdf p : Rq → R of a q-dimensional random vector from the distributionNq×q(0,Σ)
is

p(x) = (2π)−
q
2 det(Σ)−

1
2 e−

1
2
xTΣ−1x.

Therefore, the ratio function r : Rq → R between the pdfs of 1√
n
Xw and of yX is

r(x) = det( 1
n
X∗X)−

1
2 e

1
2
xT (( 1

n
X∗X)−1−I)x.

Note that

xT (( 1
n
X∗X)−1 − I)x ≤ ‖( 1

n
X∗X)−1 − I‖‖x‖2

2 = ‖ 1
n
X∗X − I‖‖x‖2

2,

so by Lemma 4.8 with probability at least 1− 2e−t
2/2 we have

r(x) ≤ e
q
2

(
(
√
q+t)2

n
+2
√
q+t√
n

)
+3
√
q+t√
n
‖x‖22

.

By a union bound, for U ∼ N (0, In×n)u, u ∈ N with u ≥ q, the above inequality for
r(x) is true for all subsets of U of size q, with probability at least 1 − uq2e−t

2/2. Fix
q = n

1
3/(50(ln(u))

1
3 ) and t = 2

√
q ln(u). Then uq2e−t2/2 ≤ 2u−q, which is < 1/4 for

any sufficiently large n. When ‖x‖2
2 ≤ 3q then for large n, r(x) ≤ e74/625 < 6

5
. To

complete the proof, it suffices to show that when x ∼ N (0, Iq×q), the probability that
‖x‖2

2 > 3q is at most 1
5
2−q. The random variable ‖x‖2

2 has a χ2 distribution with q degrees
of freedom and expected value E ‖x‖2

2 =
∑q

i=1 Ex
2
i = q. Standard concentration bounds

for χ2 variables imply that

Pr
x∼N (0,Iq×q)

[‖x‖2
2 > 3q] ≤ e−

4
3
q < 1

5
2−q,

as we wanted to show, and the theorem follows from Lemma 12.13.

12.5 Notes and Discussion

Other results in active testing. The manuscript [13] contains other results on active
testing that we did not discuss in this chapter. Notably, it is shown there that the property
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of being a union of d intervals can be tested with a constant number of queries in the active
testing model. This is in contrast to the problem of learning unions of d intervals, which
requires Ω(d) queries in the active learning model.

The active testing results also show that it is possible to test common assumptions
from the semi-supervised learning model with a constant number of queries. In particular,
testing cluster assumptions and margin assumptions can both be done with a constant
number of queries. For the details and more background, see [13].

Active testing vs. distribution-free testing. The active testing model that we introduce
in this chapter is not the first alternative model of property testing that was proposed to
better mirror realistic learning models. Notably, Halevy and Kushilevitz [63] introduced a
distribution-free model of property testing that has since been studied extensively [61, 62,
56, 48]. In the distribution-free model, the tester can sample inputs from some unknown
distribution and can query the target function on any input of its choosing. It must then
distinguish between the case where f ∈ P from the case where f is far from the property
over the (unknown) distribution.

If we consider distributions with support size that is polynomial in the dimension of the
function being tested, the distribution-free testing model appears to be similar to our active
testing model. Indeed, in this case the distance of the input function to a fixed property
P depends only on the values of the function on inputs in the support of the distribution.
So intuitively it seems that the tester might as well only query the value of the function on
inputs in the support of the distribution. This intuition is wrong: in fact, most testers in the
distribution-free model strongly rely on the ability to query any input of their choosing.
As a result, the task of testing a property in the active model is very different from the task
of testing the same property in the distribution-free model and, indeed, many properties of
boolean functions have very different query complexities in the two models.
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