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Abstract

Keystroke dynamics—technology to distinguish people dasetheir typ-
ing rhythms—could revolutionize insider-threat detectidnsiders accessing
backdoors, using shared accounts, or masquerading asusties would be
exposed by their unique typing rhythms. In the past thirtgrge dozens of
classifiers have been proposed for distinguishing peopieueystroke dy-
namics; many have obtained excellent results in evaluatitowever, when
evaluations are replicated, the results are often wildigént; one classifier's
error rate jumped from 1% to 85% upon replication.

Classifier error rates depend on a multitude of factors; timi effects of
these factors on error rates are understood, keystrokendgaaannot real-
ize its promise. To tackle this multitude-of-factors prertol, we developed the
following methodology: (1) evaluate multiple classifiersder systematically
ranging conditions; (2) analyze the results with linear edbeffects models
(LMMs), a technique for inferential statistics well suitedunderstanding how
various factors affect classifier error rates; and (3) \wédhe models, demon-
strating that they accurately predict error rates in subsetevaluations.

In three investigations using this methodology, we fourdat thihile some
classifiers had lower error rates than others, the differem@re overshadowed
by the effects of factors other than the classifier. For thet blassifier, error
rates vary from 0% to 63% depending on the user. Impostgie their chance
of evading detection if they touch type. On the bright sitie, best combina-
tion of timing features (hold times and up-down times) rexfuerror rates by
over 50%. Other configuration tweaks, such as increasedriggand an updat-
ing strategy, offer further opportunity to significantlydree error rates. On a
scientific level, this work establishes that understanthiege factors is critical
to making progress in keystroke dynamics.

By understanding the influential factors, we can deploy th&t blassifier
given the environment, accurately estimate its error rae, know where to
direct future efforts to improve performance. For the firsigt in keystroke dy-
namics, we can reliably predict classifier error rates, amdapproach is gen-
eral. Since other computer-security technologies (engrusion, worm, and
malware detection) face analogous multitude-of-factooblems, they would
similarly benefit from our methodology.
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Chapter 1

Introduction

If keystroke dynamics—technology to distinguish peoplethsir typing rhythms—were
demonstrably reliable, it would significantly advance comep security. For criminal in-
vestigations, keystroke dynamics could tie a suspect tdgtene” of a computer-based
crime much like a fingerprint does in real-world crime. Focess control, keystroke dy-
namics could act as a second factor in authentication; awstop who compromised a
password would still need to type it with the correct rhythror insider-threat detection,
keystroke dynamics could detect when a masquerader is arwttjer user’s account; the
technology could even identify who is using a backdoor antou

Figure 1.1 shows the results of a simple exercise to testahsilility of keystroke
dynamics. Three typists each typed the same passwig8Roanl) 50 times. The left
panel compares the length of time they held tHeey (horizontal axis), and the length
of time between pressing tiekey and theR key (vertical axis). The ellipses represent
regions that a Mahalanobis classifier (described in Chd@pteould associate with each of
the three typists. Since these regions enclose most ofltherd typing samples and do not
overlap, the figure suggests the promise of keystroke dycgniowever, the right panel
shows that if we looked at different timing features, thestgwould be more difficult to
distinguish. Based on the hold times for theriod key (horizontal axis) and the key
(vertical axis), Typist B is still usually easy to distinghi but the timings of Typists A and
C overlap substantially. These results suggest that laiestynamics may work better
under some conditions than others (e.g., better for sonte ase timing features).

1
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o Typist A
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Figure 1.1: Keystroke dynamics holds tentative promise sscarity technology. Three
users typed the passworie5Roanl 50 times. Panel (a) plots thénold time and thé&-R
down-down time for each repetition of the password. Thegletipses represent the typing
regions learned for each user (by a Mahalanobis classitfier)egions effectively separate
the typists. However, Panel (b) papsriod (.) andn hold times. The overlap between two
of the regions suggests that keystroke dynamics may be rffeotiee for some typists and
timing features.

1.1 Statement of problem

Keystroke-dynamics research has been ongoing for 30+.yiarsy different classification

methods have been proposed during that time. Methods basedditional statistics—

such as mean typing times and their standard deviationseeanenon (Forsen et al., 1977;
Gaines et al., 1980; Joyce and Gupta, 1990; Araujo et al5)2@ver the years, different
pattern-recognition methods have come into vogue and bhgalied to keystroke dynam-
ics: neural networks (Brown and Rogers, 1993; Obaidat artibi$g 1997; Cho et al.,

2000), fuzzy logic (Hussien et al., 1989; de Ru and Eloff, ;99aider et al., 2000; Man-

dujano and Soto, 2004; Tran et al., 2007), and support-vewchines (Yu and Cho, 2003;
Sung and Cho, 2005; Loy et al., 2007; Giot et al., 2009a), anwbhers.

A typical study of keystroke dynamics proposes a new clasgifin algorithm to dis-
tinguish people based on their typing, collects some typatg, and uses the typing data
to evaluate the accuracy of the classifier. Accuracy resudoften expressed in terms of
false-alarm and miss rates. The false-alarm rate is theeptrge of typing samples from
the legitimate user that are mistaken as impostor typirgynitss rate is the percentage of
typing samples from other typists mistaken as the legignuger’s typing. There are also
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derivative metrics such as the equal-error rate (EER): tiss and false-alarm rate when
the classifier is tuned so that the two error rates are equal.

Despite the massive research effort, or perhaps becauseasiilts for these classifiers
are inconsistent. For instance, in one evaluation of aqdaii kind of neural network, the
average false-alarm rate was 1% (Cho et al., 2000). Whendbsifier was re-implemented
and re-evaluated, the average false-alarm rate increas@é (Killourhy and Maxion,
2009). In both cases, the classifier was tuned to have thestqrassible false-alarm rate
with the miss rate constrained to 0%. A security officer migke a chance deploying this
neural network if assured of a 1% false-alarm rate, but tl4é Bfise-alarm rate would raise
too many doubts.

Discrepancies between evaluation results for the samsifitsiscan be explained if
other factors affect a classifier’s ability to distinguispists. In general, the problem can
be stated as follows:

In keystroke dynamics, a classifier does not havan error rate; it has many
error rates, depending on a multitude of factors in the evalation environ-
ment. Without identifying and understanding the effects ofthese factors,
we cannot understand classifier behavior.

Researchers effectively choose a particular evaluatiein@mment (or set of environments)
when they design the evaluation. The researcher decidgmtheneters of the evaluation
when he or she recruits subjects, selects typing tasksdsldsetyping sessions, picks a
keyboard, implements a keystroke-timing mechanism, etdf@atures from the raw time-
stamps, tunes the classifier, and so on. All the decisioriggthanto conducting the ex-
periment could affect the results. Any choice that affebs itesults restricts (perhaps
unintentionally) the environments for which the resulis aalid.

Some factors in the evaluation environment seem to affessdier error rates. While
there have been a few attempts to understand the effectsnaf gbthese factors, the find-
ings are always preliminary and sometimes contradictooy.iistance, when a researcher
proposes a new classifier, he might have subjects type soomg $tasswords and some En-
glish words. He might report the classifier’s error rate urtggh conditions. While such
empirical results can be useful, their overall utility isgeded by two obstacles: potential
interactions and an absence of inferential statistics.

As discussed in detail in Chapter 2, experimental resulkeystroke dynamics are al-
most never analyzed statistically. Without drawing infexes using methods like hypothe-
sis testing or confidence-interval estimation, it is implolesto establish that any perceived
effect is real. For instance, if a classifier achieves a 1%reate with English words and
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a 10% error rate with the strong password, how likely is it tBaglish words are easier
for keystroke dynamics? Answering such questions is thei@urof inferential statistics:
drawing general conclusions from empirical data Dodge 8200

Even if statistical analysis finds a significant differeneéeen the English-word error
rate and the strong-password error rate, questions renbaiat daow closely the results
are tied to the constants of the experiment. If fewer trgrsamples were used, would
the difference still be significant? If different subjecter& recruited, or different words
and passwords used, would we see the same difference? Diglitwglds produce better
error rates for all classifiers? Certainly no experiment @aswer all questions about all
possible interactions, but in current practice, most expants answer no questions about
any possible interactions.

When, as in the example above, one evaluation finds that sifedeiss nearly perfect,
and another evaluation finds that the same classifier migivetise flipping a coin, the
field faces a serious problem: explaining the discrepaneyhdps one of the evaluations
was flawed; perhaps some factor was present in the seconthwal that hampered the
classifier; perhaps the classifier is just wildly inconsisteSorting out the correct expla-
nation is crucial to understanding keystroke dynamics. asgifier that fails inexplicably
cannot be trusted in security applications; the stakesoaréigh. If the status quo contin-
ues, and keystroke-dynamics classifiers remain inexglidabonsistent, the technology
is unlikely ever to be deployed. Eventually people will siogesting in uncertain and
inconsistent research.

1.2 Proposed solution

While the multitude-of-factors problem is serious, it ig maique to keystroke dynamics
or even computer security. Understanding the behavior ohgptex system is a challenge
in biology, ecology, medicine, and even quality control (#tuam and Anderson, 2002;
Mayer, 2010; Wadsworth Jr. et al., 1986; Zuur et al., 2009) oAthese disciplines must
account for the myriad environmental and physiologicaldesthat affect the results of ex-
periments. Approaching computer security and keystrokeadycs as one would approach
a physical- or life-science experiment may seem unconveatiat first. However, secu-
rity data such as network packets and programs are manitestaf people’s behavior—
keystroke timings especially so. As such, looking to otl@ersces for solutions to the
problem of understanding keystroke-dynamics classifeereasonable.

These other sciences all rely heavily on good experimerdgaigas and inferential
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statistics to make sense of complicated behavior. By degiggxperiments that systemati-
cally vary multiple factors, researchers in these othersms discover factors that interact
with other factors.

We have usually no knowledge that any one factor will exsreftects inde-
pendently of all others that can be varied, or that its effece particularly
simply related to variations in these other factors. [.f.thke investigator, in
these circumstances, confines his attention to any singlerfave may infer
either that he is the unfortunate victim of a doctrinaireotlyeas to how ex-
perimentation should proceed, or that the time, materia@quipment at his
disposal are too limited to allow him to give attention to etitan one narrow
aspect of his problem. (Fisher, 1949)

Despite the availability of time, materials, and equipmdetystroke-dynamics research
typically focuses on a single factor (e.g., the classifieeglecting other factors and the
possibility of interactions among factors.

Of course, when multiple factors are varied in an experimené must be careful to
avoid accidentally}confoundingfactors. Factors are said to be confounded when, in the
course of an experiment, they vary in lock-step. For instamnt keystroke dynamics, if
right-handed subjects are all asked to type an English wande left-handed subjects are
asked to type a strong password, the subject’s dominantdrashthe typing task would be
said to be confounded. When two factors are confounded xiberienent cannot differen-
tiate the effects of one from the effects of the other.

We rarely see such obvious cases of confounded variablagwisingle study, but we
frequently see confounded variables across studies. Fonghe, if one study evaluates
ClassifierA on Data Set 1, and another study evaluates Classifaar Data Set 2, the clas-
sifier and data set have been confounded. One cannot corhgared classifiers soundly
since any difference could be explained by the differena dats. Despite their lack of
soundness, such comparisons are often made across studies.

With a well-designed experiment, researchers are stédarith the task of analyzing
and interpreting the results. Linear mixed-effects mofle4éMs) are a statistical technique
for understanding and interpreting experimental resuid§th LMMs one can discover
and understand the influences of many factors (and thenaictiens) on the results of an
experiment. This technique can potentially enable us toensakise of classifier behavior.

The formal description of linear mixed-effects models avalrocedure for using them
to analyze keystroke-dynamics evaluation data will beargeld in detail in Chapter 3. In
the meantime, the following description may provide sonteifion. LMMs relate ex-
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planatory factors to a response variable. The responsablesi in keystroke-dynamics
evaluations are miss and false-alarm rates. The explanfctors include, for example,
the classifier, the typing task, the subject acting as aitegit user, the subject acting as an
impostor, the amount of training data, and the mechanism tesemestamp keystrokes.

LMMs can capture interactions among these explanatorgifacEor instance, an anal-
ysis might find that the miss rate is higher when the imposttamiliar with the typing task
(e.g., after having typed a password hundreds of times). edew further analysis might
discover an interaction between impostor familiarity amel$pecific typing task (e.g., pass-
words or English words). If the task involves English wotttien impostor familiarity may
have less effect on the miss rate. Discovering such an stterawould be of immedi-
ate practical interest. Deploying classifiers for certsipirig tasks and not others would
mitigate the risk of impostors becoming familiar with a tygitask to evade detection.

LMMs can also identify the sources of uncertainty in a mo&tistical models rarely
make perfect predictions; there always remains some raisisheertainty or noise. LMMs
can decompose this residual noise, for instance, into thertainty that comes from per-
user variation and per-impostor variation. It may be thakaasifier trained to recognize
one user has lower error rates than the same classifierdréonecognize another user.
Accordingly, we might might describe some users as “easg’ahers as “hard.” Knowing
how much variation to expect between easy and hard usersiweulseful; if the variation
is large, researchers can try to understand what makes seeng @asy. If they can be
identified, the classifier can be deployed for the easy uaatstesearchers can study other
classifiers for the hard users. Research effort would moaedifferent direction than if the
classifier were simply mediocre for all users.

As explained above, keystroke-dynamics classifiers have miferent error rates, de-
pending on a multitude of factors in the evaluation envirenmLMMs offer a solution to
this problem by identifying the influential factors and eaiping their effect. The resulting
models can be used to understand which factors cause tls#fielés error rate to change,
and to explain when the classifier will succeed and how it rriigih

1.3 Thesis statement

Using linear mixed-effects models (LMMs) to explain class$ier behavior,
(a) is novel for keystroke dynamics, and (b) offers better uderstanding of
the behavior (e.g., changing error rates) than current pratices.

How will we show that LMMs offer better understanding? Oneyhtihope to show that
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LMMs will produce a true description of classifier behavibut assessing the ultimate
truth of a model is beyond the realm of statistics. As Box e{2005) famously stated:
“All models are wrong; some models are useful.” Rather tHaowsng that an LMM is
true, we will show that they are useful. Specifically, it wdble useful if an LMM could
accurately predict a classifier’s error rate in subsequeaitations. Such an LMM would
need to identify which factors cause the error rate to irsgea decrease, and to accurately
predict the magnitude of the change.

Prior to the current work, such predictions were not possithiost prior work built
no models, and so they offered no predictions. Inferentatistics in general, not just
LMMs, are rarely used to analyse keystroke-dynamics etialuaesults. The few uses
of inferential statistics do not adequately investigateractions among multiple factors.
Predictions based on LMMs are more accurate, incorporatiegffects of more factors
and more interactions among factors.

1.4 Outline of approach

Chapter 1: Introduction
The problem facing keystroke-dynamics research is outlireclassifier does not
havean error rate; it hasnanyerror rates, depending on a multitude of factors in the
evaluation environment. LMMs are offered as a potentialitsoh to this problem.
They can identify factors that cause a classifier's errog tatchange, explaining
when the classifier will succeed and how it might fail.

Chapter 2: Background on Keystroke Dynamics
Prior work in keystroke dynamics is reviewed, providing maxamples of how
different researchers make different choices when dasighieir evaluations. These
different choices make it difficult to compare results asrstsidies. A systematic sur-
vey of the extant literature demonstrates that researchesly use statistical mod-
els, and that when models are used, they never capture itiflLi@teractions among
factors. The lack of inferential statistics makes it difftdo draw conclusions from
individual studies.

Chapter 3: Linear Mixed-Effects Modeling
The statistical concepts behind LMMs are reviewed, and dréqular procedures
used to analyze keystroke-dynamics evaluation data witMsMre explained. Top-
ics include variance-stabilizing transformations, maxmalikelihood parameter es-
timation, model selection, and validation.
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Chapter 4: Benchmarking Keystroke-Dynamics Classifiers
Ten classifiers are evaluated using typing data from 51 stfhjthe error rates are
analyzed using LMMs. The analysis not only compares thesiiaess but also estab-
lishes how their error rates change across users and inmpo%te establish not only
which classifiers have the lowest error rates but also howhneasier some users
and impostors are to distinguish than others. These pernsger-impostor effects
increase the uncertainty of classifier error rates.

Chapter 5 Personal Traits and Keystroke Dynamics
The variation in per-user and per-impostor error rates trighattributable to per-
sonal traits of the typist (e.g., dominant hand, touchagkill, and possibly even
age or gender). A demographic survey was administered feasldrom the bench-
marking investigation (Chapter 4). The demographic daa@ambined with a subset
of the benchmarking results and analyzed using LMMs. Wetifjetine user’s and
impostor’s typing styles—whether they are touch typistsphaying a significant
role in the miss rate. This investigation partially addessthe question of why some
users and impostors have higher miss rates than others.

Chapter 6 Screening Keystroke-Dynamics Factors
A top-performing subset of classifiers from the benchmawiwation (Chapter 4)
are subjected to another series of evaluations to undeérstam other factors in the
evaluation environment—beyond the classifier, user, ambgtor—affect their per-
formance. Factors include the typing task, number of sasngded for training, tim-
ing features, updating strategy, and impostor familiaritilis many-factors-at-once
experiment reveals that interactions among the factordfdotalassifier error rates
and could be responsible for wild changes in those erros i@teoss evaluations.

Chapter 7 Summary, Contributions, and Future Work
The findings of the three investigations are compiled andgred as evidence of
what can be learned through analysis with LMMs. The contidns of this work are
enumerated, including the public release of the classjfaata, evaluation scripts,
and analytical procedures so that future research mighd loyion them. Future
work and implications of this work for keystroke dynamicddasomputer security
are discussed. Of note, LMM-based analysis could be useecinrity research be-
yond keystroke dynamics. Many fields struggle with similaultitude-of-factors
problems.



1.5. GLOSSARY OF TERMINOLOGY 9

1.5 Glossary of terminology

This dissertation uses many technical terms from a variéfietls including keystroke
dynamics, statistics, machine learning, and signal-detetheory. Certain terms are over-
loaded across these fields (and, in some cases, within a fi@ta)sequently, this glossary
provides definitions for many of the technical terms usedhis work,asthey are used in
this work.

Classifier: A program (or function) with a training phase and a clasdificephase. Dur-
ing training, samples labeled with a class name are presénthe classifier which
builds a profile describing the samples associated with &dm. During classifi-
cation, a new sample is presented to the classifier, which its@rofile to predict
the correct label for the sample. Its output is the predicdeds, accompanied by
a score indicating (often in unit-less terms) the certaintyhe class label. In this
work, the samples are typically vectors of typing timesexctid while subjects type
passwords, and the class labels are one of genuine user astionp

Factor: A measurable variable in an experiment that may have anteffethe outcome
of the experiment. In this work, the experiments are typyoabaluations and com-
parisons of keystroke-dynamics classifiers. The factoteese experiments are the
classifiers themselves and various characterizationseoévaluation environment.
For example, the particular typing task, the user’s typitydes the impostor’s typ-
ing style, and the particular combination of timing featitesed to train and test a
classifier are all factors. In this work, every factor is gatecal, taking two or more
values. For instance, when subjects type a strong passaaithple English word,
and a numeric passcode, the values of the typing-task famtdstrong, Simple, and
Numeric, respectively.

Error:  The misclassification of a sample by a classifier. For ingaboth a miss (i.e., the
misclassification of an impostor’s typing sample as genuamel a false alarm (i.e.,
the misclassification of a genuine user’s typing sample asypnstor’s) are specific
kinds of error. In statistics, error often refers to thedasi-error term in a statistical
model. We will avoid that usage, and instead refer to suclsidwal-error term as a
noise termor residual effect

Equal-error rate (EER): A single-number measure of classifier performance. Thelequa
error rate aggregates two other error rates (i.e., miss alsd-&larm rates) into a
single number. Many classifiers, including all those presgim this work, can be
tuned to exchange misses for false alarms. One tuning sesuhigh-miss/low-
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false-alarm rates; another tuning results in a low-migd/iialse-alarm rates. The
equal-error rate is the miss and false-alarm rate when #ssiéler has been tuned so
that the two are equal (Bolle et al., 2004).

False-alarm rate: A measure of how accurately a keystroke-dynamics class#ieng-
nizes a genuine user’s typing. Thwele false-alarm rate is the long-run frequency
with which typing samples from genuine users are misclass#s having been typed
by an impostor. Thempiricalfalse alarm rate is the actual proportion of typing sam-
ples misclassified as being typed by an impostor in an evaluafhe false-alarm
rate is often presented under other names: false-pos#iedFPR), false-reject rate
(FRR), and Type | error. We will only use false-alarm rate ¢nadte this concept.

Feature set: A set of timing features used by keystroke-dynamics clagsifio compare
typists. The feature sets used in this work hotd times the time between when a
key is pressed and releasethwn-down timeghe time between when the first key
in a digraph is pressed and the second key is pressedj@ddwn timesthe time
between when the first key in a digraph is released and thendd@y is pressed.
The up-down time can be negative if the second key is pressiedebthe first one is
released.

Fixed effect: A parameter in a statistical model that represents a detéstitirelationship
between a factor and the response variable. For instaneemiondel that predicts a
50 percentage point drop in the average miss rate when #agsis used instead of
Classifier B,—50 is a fixed effect. Fixed effects are used to model factors when
interest is in understanding how changing the value of tbfachanges the average
(mean) outcome (e.g., how changing the classifier changesids rate).

Interaction term: A parameter in a statistical model that represents the aoeabeffect
of two or more factors. Specifically, interaction terms ageassary when the effects
of one factor depends on the value of the other factor. Feamt®, it could be that
classifier error rates are lower when the number of trainanges increases, but
the reduction is greater when the typing task is a passwalddesms when it is an
English word. Accurately describing this effect on the emate would require a
typing-task/training-amount interaction term.

Linear mixed-effects models (LMMs): A family of statistical models that represent a
stochastic relationship between multiple explanatoryaides and a response vari-
able. The explanatory variables include both fixed effentsrandom effects (hence
the mixed-effectslescriptor). The relationship is modeled as linear, butesiour
explanatory variables are typically categorical, lingeis not a strong assumption.
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Miss rate: A measure of how accurately a keystroke-dynamics class#iergnizes an
impostor’s typing. Thdrue miss rate is the long-run frequency with which typing
samples from an impostor are misclassified as having beed typthe genuine user.
The empirical miss rate is the actual proportion of typing samples misdiasl as
being typed by a genuine user in an evaluation. The missgaftan presented under
other names: false-negative rate (FNR), false-accepiFatR), impostor-pass rate
(IPR), and Type Il error. We will only use miss rate to dendiis toncept.

Evaluation environment: The entire context in which a classifier is evaluated. For key
stroke dynamics, the environment includes not only the jghyenvironment (e.qg.,
the location, lighting, desk position, and keyboard), dabdhe parameters of the
evaluation, including the typist, the typing task, how tleg#troke times are recorded,
the timing features extracted, and the amount of the eneuitrdata. Informally, the
evaluation environment comprises all the “stuff” in an exion other than the clas-
sifier itself.

Random effect: A parameter in a statistical model that represents a sttichiationship
between a factor and a response variable. For instance, imdalrthat predicts an
average change of10 percentage points in the average miss rate because some
typists are harder to distinguish than others, the perxestion is a random effect.
Random effects are used to model factors when our interagstisderstanding how
much uncertainty (i.e., variance) the factor adds to themue.
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Chapter 2
Background on Keystroke Dynamics

We present a brief history of the 30+ years of keystroke-dyinaresearch, and we specif-
ically concentrate on the many different choices that haenbmade when evaluating new
classifiers. These different choices have led us to the prgseblematic situation where
classifier error rates may be explained by any of a multitdaaiors. We explain why
inferential statistics might solve this problem, and wedwut a survey to establish how
rarely inferential statistics are used. Across 170 jouarttles, conference papers, and
other research reports, we find that 87.1% drew no statistifexences; 10.0% used in-
ferential statistics to investigate one factor at a timdy @9% used inferential statistics
to investigate multiple factors and their interactionsisTrieview establishes that keystroke
dynamics has multitude-of-factors problepand that the solution proposed in this work—
inferential statistics using linear mixed-effects modeis novel for keystroke dynamics.

2.1 History of keystroke dynamics

Keystroke-dynamics research was inspired by much oldek that distinguished telegraph
operators by their keying rhythms. This capability—whicasnallegedly quite useful dur-
ing World War 1l for identifying radio operators and tracgitroop movements (Gladwell,
2005)—was first formally investigated by Bryan and Hartéd9Z, 1899) as part of a study
on skill acquisition in telegraph operators.

Keyboard typing rhythms were first considered as a meansstihduishing typists in
the mid 1970s. Spillane (1975) suggested in an IBM techtigétin that typing rhythms
might be used for identifying the user at a computer keybodrdat bulletin described
keystroke dynamics in concept; it laid out no specific classand reported no empirical
evaluation results.

13
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Forsen et al. (1977) conducted preliminary tests of whethgstroke dynamics could
be used to distinguish typists. Their work considered dendédifferent means of authenti-
cation, with keystroke dynamics among those considerean@lggroup of subjects typed
their own and each others’ names, and the authors presantedayy statistics showing
that a subject typing his or her own name was distinguishiatwhe another subject typing
the same name.

Gaines et al. (1980) produced an extensive report of theg@siigation into keystroke
dynamics. They recorded seven typists over two sessioasated by months. In each ses-
sion, the subjects transcribed three pages of words andrsms. The authors performed a
variety of statistical analyses. They showed that downsdtmes (i.e., the time between
the key-down event of the first key in a digraph and the key+dewent of the second key)
are log-Normally distributed. They found that a subjectisvd-down times do not change
substantially from the first session to the second. Theyedeéra statistical test that could
be used to decide whether a transcription record was typedgdarticular subject or not.
The test perfectly distinguished the seven subjects, lewdithors explained that follow-up
work would be necessary because of the small number of dalgad the large amount of
transcription required.

In the intervening 30+ years, hundreds of classifiers haea Ipeoposed. Survey pa-
pers by Peacock et al. (2004) and Karnan et al. (2011) revianwyrof these classifiers.
We present a bibliography of 170 studies of keystroke-dyoaitiassifiers at the end of
this document (assembled as part of a survey describednates chapter). It should be
noted that these classifiers do not all offer solutions testrae keystroke-dynamics prob-
lems. Within keystroke-dynamics research, classifiersacamally be used for a variety of
different purposes.

The early works by Forsen et al. and Gaines et al. provide ggathples of two broad
categories of keystroke-dynamics research: login-tygeiasession authentication. With
login-type applications, classifiers are typically praserwith short typing samples similar
to what would be seen at login: user IDs, passwords, namdspassphrases. The work
by Forsen et al. falls into this category. In contrast, wittsession applications, classifiers
are presented with longer and more free-form typing sampihed a classifier might be
expected to encounter if monitoring a user’s normal typiciivdies (e.g., writing emails
and word processing). The work by Gaines et al. falls ints tlaitegory.

Many classifiers, based on a variety of different techn@sghave been proposed for
login-type authentication. Brown and Rogers (1993, 199dppsed using neural networks
to identify impostors, achieving a 0% miss rate and 12.0%efalarm rate. A classifier
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based on fuzzy logic was built by de Ru and Eloff (1997) to o@asbout whether a typing
sample belonged to the genuine user; the classifier achee&8% miss rate and 7.4%
false-alarm rate. Haider et al. (2000) combined multipéessification technologies (neural
network, fuzzy logic, and statistics) into an ensemblesfaees and reported a 6% miss
rate and 2% false-alarm rate. Araujo et al. (2004) used a&8ddhnhattan classifier, find-
ing a 1.89% miss and 1.45% false-alarm rate. Chen and Ch&og)2and Chang (2005)
used a hidden Markov model (HMM) and obtained miss and falaen rates between 1%
and 1.5% (depending on the tuning). Bartlow and Cukic (2Q3&d a random forest and
found miss and false-alarm rates of 2%. Azevedo et al. (200 paoposed a support vec-
tor machine (SVM) wrapped in a feature-selection algorithat used genetic algorithms
and particle-swarm optimization. They reported miss aitgkfalarm rates between 1.1%
and 1.2%. In summary, nearly every promising pattern-reitmg or machine-learning
technology has been applied at some point to distinguisisegs based on how they type
during login authentication; many report promising result

Notable among researchers who developed login-type tilxssare Bleha et al. (1990)
who had subjects type their names and the phrase “Univakiissouri Columbia” and
used classifiers based on Scaled Euclidean and Mahalansetaaak. In that work, they
were among the first to identify different sub-problems igitetype keystroke dynamics.
In the first problem, a classifier is given a set of training pla® from a known typist
and a test sample from an unknown typist. The classifier ischsl determine whether
the known typist produced the test sample. On this probléiy tlassifiers achieved
a 2.8% miss rate and an 8.1% false-alarm rate. In the secaiudiepn, the classifier is
given a set of training samples from multiple known typistsl @ test sample from an
unknown typist. The classifier is asked to determine whicthefknown typists produced
the test sample. On this problem, the classifiers achieved 74 misclassification rate.
In biometrics, these two problems are callegtification and identificationrespectively
(Mansfield and Wayman, 2002), and they represent anothinatisn among keystroke-
dynamics classifiers.

Obaidat and Sadoun (1997) had 16 subjects type their ownaoidathers’ user IDs.
They constructed neural networks and a variety of otheepattecognition classifiers, and
they trained each classifier to distinguish each subjegtgg from the other subjects’.
Their work is of particular note because they achieved perésults (i.e., 0% misclassifi-
cation). This work demonstrates the promise of login-typgskroke dynamics, but since
their classifiers trained on thousands of typed repetitidiesich user ID from each subject,
more work is required before a practical classifier woulddzely for deployment.
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Monrose et al. (2002) considered the logistics of using tkkeits-dynamics for login-
type authentication without compromising information abthe password in the process.
If a UNIX password file is stolen, cryptographic hashes makaallenging to recover the
passwords. These researchers developed a classifier tHdtstore its typing profiles in
such a way that if the stored information were stolen, theftiwould be unable to recover
the details of the password or the legitimate user’s typimyghms.

Fewer classifiers have been proposed for in-session aidhgom. Ahmed and Traore
(2005) use a neural network, achieving a miss rate of 0.6548oaafalse-alarm rate of
1.312%. Changshui and Yanhua (2000) used auto-regressigeseries in combination
with k-NN (k-Nearest Neighbors), but only achieved misclassificatairs of 36.34%.
Janakiraman and Sim (2007) used statistical methods likeeNBayes and the Bhat-
tacharyya distance to estimate the probability that twantygamples came from the same
typist. They obtained perfect accuracy (i.e., 0% miscfasdion rate) for common English
digraphs such aan andin. Harun et al. (2010) returned to neural networks, using more
modern radial-basis function (RBF) networks, but only oled miss and false-alarm rates
of 22.9%.

Much of the work on in-session authentication has been dgBelgadano et al. (2002,
2003) and Gunetti and Picardi (2005). They developed arrighgo for comparing the
similarity of two typing samples based on the typing timese Blgorithm compared the
relative speeds at which different digraphs were typed,(@lgether theh digraph is typed
faster than thée digraph). They obtained a miss rate below 0.005% with a falaem rate
below 5%. Gunetti et al. (2005a,b) refined the algorithm atadrened whether it worked
across languages (e.g., comparing samples typed in l&tidEnglish by the same subject)
and with samples typed months apart. They found no subatahtinge in the error rates.

It seems that the focus of most keystroke-dynamics resdastbeen on finding the
right classifier for each problem. Nearly every paper pregasnew classifier, and many
propose several new classifiers. Yet, we also see the saniefoh classifier appearing in
multiple studies. Neural networks have been used in overzardstudies. Support vector
machines (SVMs) an@-NNs have been independently proposed multiple times. Many
different papers propose statistical methods that diffdy slightly (e.g., using Scaled
Manhattan vs. Scaled Euclidean as a distance metric). Habbse classifiers is evaluated
and empirical results are reported (e.g., miss and fakeralates).

When we look at how a family of classifiers has fared in mudtipValuations, we see

wildly different results. For neural networks, reportedsmiates range from 0.0% to over
22% (Brown and Rogers, 1993; Haider et al., 2000), and falgen rates range from 0.0%
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to 22.9% (Ali et al., 2009; Harun et al., 2010). FoNNs, reported equal-error rates range
from 0.9% to 23.61% (Zack et al., 2010; Loy et al., 2007). FgMS, misclassification
rates range from 1.58% to 15.3% (Azevedo et al., 2007b; Galt,2011). Since the clas-
sifiers are essentially the same, perhaps differences ievtdaations explain the different
results.

2.2 Keystroke-dynamics classifier evaluations

Nearly all keystroke-dynamics evaluations involve (1)ruéing subjects, (2) presenting
them with a typing task, (3) recording keystroke-timingoirmhation, (4) extracting features
suitable for training and testing a classifier, and (5) trgrihe classifier using one portion
of the typing data and testing it using another. In each cfdHive steps, researchers make
a lot of choices. When different researchers make diffeckaices, they introduce a factor
(other than the classifier) that may explain any differemctheir results. In this section,
we consider some of the different choices that researclaesihade regarding each of the
five evaluation steps noted above.

1. Recruiting subjects. A researcher must choose how many subjects to recruit. &sbje
can be recruited to act as genuine users, impostors, or Bathmann et al. (2007) used 87
genuine-user subjects, while Cho and Hwang (2005) usecahg &t al. (2007) used 257
impostor subjects when Bleha et al. (1990) used 9. One cowddine a per-user or per-
impostor effect, whereby some users and impostors aregagtte distinguish using almost
any classifier, and others are hard to distinguish. If theuger or per-impostor variability
is very high, researchers might need many subjects to aetyirestimate a classifier’s
miss rate. Per-user and per-impostor variability, if thegte could explain wildly different
results.

Different subjects have different traits, of course. Someetauch typists, others are
not; some are right handed, others left handed. Researgpcsally attempt to recruit
a diverse sample of subjects. For instance, Bartmann eR@0D7] reported that “both
genders” were represented. Giot et al. (2009b) presentedadletl breakdown of their
subjects’ age and gender. Bartlow and Cukic (2006) destribeir subjects as ranging
“from the most inept ‘hunt and peck’ typists to individualsthvprofessional training.”
Having a diverse set of subjects in an evaluation helps torertbat the evaluation results
will generalize. However, if personal traits like touch ityp affect classifier error rates
(e.g., because error rates increase when both user andtonpos touch typists), then
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results will depend on the particular proportion of sulgenteach trait group. Differences
in these proportions may explain different error rates.

2. Typing task. As noted above, some researchers work on login-type authé@oh
while others work on in-session authentication. Amongasde on login-type authenti-
cation, where subjects type the same sequence repeategliyequence ranges from a 7
character password to a 50 character sentence (Cho et @0; Ba&rtmann et al., 2007).
Among research on in-session authentication, where sistijgme long spans of text, some
researchers have subjects transcribe text (e.g., a passaga novel), while others moni-
tor keystrokes during subjects’ day-to-day activitiesr(i&lano et al., 2002; Dowland and
Furnell, 2004). Because research has found some digrafifestietter than others for ac-
curate keystroke dynamics (Gaines et al., 1980; Janakirame Sim, 2007), we know that
the error rates depend on the typing task. Perhaps theseetifityping tasks explain why
different researchers get different error rates.

3. Recording timestamps. Researchers typically give very little detail about thetrims
mentation they used to collect keystrokes and keystrokediamps while subjects perform
the typing task. From those that have reported these detaglg&now that a range of key-
boards have been used, from standard IBM PC keyboards mpl&piyboards (Umphress
and Williams, 1985; Araujo et al., 2004). Researchers yapécify whether the keyboard
communicates using USB or PS/2, each of which introducémdiive timing differences
(Plant and Turner, 2009). A range of operating systems has bsed: MS-DOS, SunOS,
and Windows (Obaidat and Sadoun, 1997; Cho et al., 2000r3an et al., 2007). Time-
stamps have been collected using X Windows, Java, Javgsungbby directly polling the
high-resolution Pentium timestamp counter (Cho et al. 02@artlow and Cukic, 2006;
Jiang et al., 2007; Wong et al., 2001). While most researcorslucted in a laboratory
setting, some researchers distribute the data-colleptiograms to their subjects (Hossein-
zadeh and Krishnan, 2008; Bartlow and Cukic, 2006; Jiang,62@07).

Different keyboards, operating systems, and timestampoftyare may affect the
timestamp accuracy. Since those timestamps become trefiglagputs, differences in
how they are collected could manifest as differences insdias error rates. Analogous
problems have been discovered in speaker-recognitioandse/hen subjects use different
microphones (Doddington et al., 2000).
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4. Extracting features. Having obtained raw timestamps for each keystroke, reseesc
must decide how to extract timing features suitable for tripuheir classifiers. The usual
feature sets are hold times, digraph down-down times, pigtgp-down, or some combi-
nation of the three (Joyce and Gupta, 1990; Cho et al., 20€83j8 et al., 2004). Occa-
sionally, digraph up-up times are used (Hosseinzadeh aistitdan, 2008), and some work
uses timing features for longer keystroke sequences lidgaphs (Bergadano et al., 2002).

Past researchers have compared their classifier's eresrwath different combinations
of features and found that error rates depend on the paticoimbination (Napier et al.,
1995; Araujo et al., 2004). Consequently, we know that whéfarént researchers extract
different features, their choice has likely affected howlreeir classifier will do. If two
classifiers are evaluated with different feature sets, dfgrence in their error rate could
be caused by the different feature sets.

5. Training and testing. Once the timing features are ready for input to the classifier
researchers must choose some portion for training and enpdtintion for testing its accu-
racy. In many cases, one subject or set of subjects are @d¢siyas genuine users and the
rest as impostors. Some genuine-user samples are usethtth&&lassifier. The remain-
ing genuine-user samples are used to measure the clasddilse-alarm rate, and some
impostor samples are used to measure the miss rate.

Different researchers make different choices when chgasaining and testing data.
Within login-type evaluations, the number of per-subjeainples used to train a classi-
fier ranges from 6 to 325 (Joyce and Gupta, 1990; Cho et alQ)20With in-session
evaluations, the number of characters typed in the traisamgple varies from 300 to 2200
(Bergadano et al., 2002; Furnell et al., 1996). Typicaltggarchers use subjects in different
roles in multiple evaluation trails. A subject acts as thewgee user in one trial and as an
impostor in trials where each of the other subjects actseagehuine user. However, some
researchers choose to recruit genuine-user and impodbcss separately (Bergadano
et al., 2002). The amount of training data, test data, angphtebetween the two always
plays a role in the measured error rate of a classifier (Hasaé, 2001). Different choices
in how the data are presented to the classifier for trainimigcéassification would certainly
result in different reported error rates.

Multitudes of factors in evaluations. We have considered keystroke-dynamics classifier
evaluation as a five-step procedure, and we examined sorhe ohbices that researchers
must make when conducting an evaluation. We have showniffexredit researchers make
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different choices, and that those different choices coxdleen why they get different error
rates. Since we see similar classifiers with wildly diffdremor rates, it appears that some
of these choicemustaffect error rates, but which ones? How do we discover wlactofs
among the multitudes affect error rates?

As Mansfield and Wayman (2002) point out when discussing tia¢uation of bio-
metric systems, innumerable factors could affect perfoicea They acknowledge that
evaluators divide factors into four categories (perhapgdisttly):

1. factors to be systematically varied in the evaluationtisenve their effect;

2. factors to be controlled as constants during the evalnabi limit their effect;

3. factors to be randomized—either by recruiting a diveet@&subjects or by assign-

ing conditions randomly—to average out their effect;

4. factors to be ignored or assumed to have negligible efidfoer because they cannot

be observed, they are difficult to control, or their effeaiéemed implausible.

We find this factor-handling taxonomy useful when questignnow to identify which
factors affect error rates, and how. The first category sffee only way to test whether
a factor has an effect with any certainty. The second and tategories offer ways to
prevent factors beyond the scope of a test from affectinge#silts. The final category
offers a reminder that we can never control everything. feutesearchers might discover
previously unknown factors, and evaluation methods mugtsado compensate for the
discovery.

Researchers are certainly aware that a classifier’s en®mmay depend on factors in
the operating environment, and some have conducted cotivgagaperiments to measure
how different choices in the evaluation affect the resuttswever, the experiments alone
have not been sufficient to really understand which of thastfs have an effect, or what
its effect is. For that, one must not only perform an expenitrie which the factor of
interest is systematically varied; one must analyze aretpnet the results correctly.

2.3 Statistical inference in keystroke dynamics

Statistical inferences enable a researcher to understapitieal results and explain what
they mean. Without inferential statistics, one must eithid drawing any conclusions or
risk jumping to conclusions that are not supported by tha.dataddition to being standard
scientific practice, inferential statistics are neces$arynderstanding which factors are
responsible for changing classifier error rates.

Inferential statistics include confidence-interval estiion, hypothesis testing, and information-
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theoretic model selection. With any of these techniquegsaarcher can draw general
inferences from specific experimental results. Moreoves,ibferences are based on im-
personal statistical models rather than the wishful thiglaf the researcher. Any of these
techniques can be used to understand which factors infliraceitcome of an experiment,
and which had either no effect or negligible effect.

For instance, Araujo et al. (2004) evaluated a classifiegrsames, each with a different
feature set (i.e., hold times, down-down times, up-dowresijand various combinations
of these features). They reported the error rates underceactition, but they did not use
any statistical technique to understand and explain thdtse<Consequently, it is difficult
to interpret their results. Is one combination of featuesly better than all the others, or
are several combinations roughly equivalent? (We conducba/n comparison of these
features in Chapter 6.)

They interpreted the results to mean that combining alktlieature sets produces the
best results. While that combination was empirically shoawbe best for their particular
data set, they provided no evidence that it will also be tnusuibsequent evaluations. One
of the goals of inferential statistics is to establish howentain the empirical results are,
and to predict the range of results one can expect in thedutinve make predictions with-
out using inferential statistics, we are effectively makaleap of faith that we can reason
about uncertainty without doing a formal analysis; unfoetiely, people are typically quite
bad at such reasoning (Nisbett, 1993).

Given their results, were Araujo et al. (2004) correct thgihg all three feature sets
improved performance? In other words, should other rebeasavho used only hold times
and down-down times expect their error rates to improveeaf/thsed up-down times as
well? If so, this important result would offer a way to impeomany previously proposed
classifiers. If not, the result would be importantin a diéierway, ruling out an unprofitable
line of further research. Any answer to these questions dvbalan important result, but
the questions are not answered by a report of the empirical @tes without any statistical
analysis.

As noted above, statistically based inferences are not@miyl general practice, but
they are necessary to address the problem raised in thisridissn; they enable an un-
derstanding of which factors in the operating environmdetcaclassifier error rates, and
how. Without inferential statistics, even if a factor is &ymatically varied across a series
of evaluations and the results are reported, one cannot islaamy precise certainty what
effect the factor had.

It is certainly possible with some particularly strong réstor an author to assert that
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a factor has an effect simply by eyeballing the numbers. GQuthors are mentally judging
that the outcomes are different enough and the sample s$argésenough, making a formal
statistical test unnecessary. They are effectively ugifegéntial statistics implicitly rather
than explicitly. With simple hypothesis testing (e.g. adishing that a factor matters) and
with a large difference in the outcomes, an ad-hoc appraastatistical inference may not
run serious risk of error.

However, even if these ad-hoc approaches arrive at theat@mswer, they are inadvis-
able because of how many more questions could be answereddferigorous approach
were used. For example, a researcher comparing classifight lnok at the evaluation
results and see that Classifigrhad a 1% equal-error rate while Classifierhad a 25%
equal-error rate. Looking at these numbers, the researolgdt conclude that he does
not need inferential statistics to tell him that Classifieis better than ClassifieB. If the
evaluation involved a sufficiently large and diverse setulfjscts, the researcher is right.
A hypothesis test would only confirm what his intuition iditey him.

However, formal statistical inferences could enable tilseaecher to place confidence
intervals around Classified’s 1% equal-error rate. Future researchers could use these
intervals to predict how the classifier will perform in sugsent evaluations. They could
compare error-rates across evaluations to determine et results are consistent with
the predictions. Inconsistencies could be investigagatjihg to a better understanding of
Classifier A and the factors that affect its performance. None of thisld/dwe possible
without doing the formal investigation.

Formal statistical modeling would also enable researdboatiscover interactions among
factors. Interactions (e.g., different classifiers aredvefior users with different typing
styles) would be too complicated to find using ad-hoc assesstof results. In summary,
while one can sometimes forgo a hypothesis test without nmis&hof error, doing so is
inefficient and under-utilizes the experimental results.

2.4 Survey methodology

We believe that inferential statistics (and linear mixdgats models in particular) offer a
solution to the multitude-of-factors problem in keystrakgamics research. To establish
that our solution is novel, we conduct a survey of the literatto determine how often
previous sources have used inferential statistics, and Wihd of inferential technique
was used. Note that we refer to these previous worksoasces because they include
papers, articles, book chapters and theses. To obtainedadjrepresentative sample, we
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consulted four databases of computer-science journals@mf@drence proceedings: IEEE
Xplore, ACM Digital Library, SpringerLink, and Sciencelut; the last is a search tool
that includes books and journals published by Elsevier. unexperience, IEEE, ACM,
Springer, and Elsevier publish the vast majority of redegrapers on computer science
and, in particular, computer security (where the majoritgaystroke-dynamics papers are
published).

Using each of the four databases, we conducted keywordreesafor (1)keystroke
dynamics(2) keystroke biometricand (3)keystroke authenticatioWith each database’s
particular search syntax, we searched for sources thatdadlboth words of a search (e.g.,
keystrokeanddynamic$, rather than the two-word string itself. Note for the ACMdal
Library, we limited the search to titles and abstracts wlth ACM itself as the publisher
(to avoid overlap). For Science Direct, we limited the skarc sources with the search
terms appearing in the title, abstract, or keywords. S@ddicect does not include results
with the same stem as the search string, so alongside sedncdgnamicsandbiometrics
we searchedynamicandbiometric

Searching these four databases yielded 215 sources, imgliaurnal articles, con-
ference papers, and book chapters. However, some impa@mahhigh-profile work in
keystroke dynamics was not among the sources returned.ngtance, some early work,
technical reports, and theses are not stored in the puldisti@abases. Some important
journal articles and conference papers that are storeceinldtabases were not returned
through our particular queries. To make the set of prior vaglcomplete as possible, we
supplemented the sources returned by the searches withd&tbadl sources that we be-
lieve are relevant. With these additional sources, thd ttmber under consideration is
244,

We screened these sources to identify the relevant sultsete sources that describe
the empirical evaluation of a keystroke-dynamics clagsdied report the results. This
screening excluded 74 sources; 170 sources remained. Tjbatypnaf excluded sources
were surveys which mentioned keystroke dynamics but di¢ootuct a technology eval-
uation. A few of the sources describe a new keystroke-dyosntassifier but no empirical
evaluation is reported. Since our intent is to learn howroitderential statistics are used
in keystroke-dynamics classifier evaluations, those ssuitat do not conduct evaluations
are out of scope.

The full set of sources in the survey are listed separatetlyarreferences at the end of

this document, under the headiKgystroke-Dynamics Bibliographyrable 2.1 presents a
count of the number of within-scope sources obtained froom ed the search databases.
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Science Direct 13 2 - - - -] 15
SpringerLink 2 2 3 - - -] 30
Other Sources 15 5 - 5 2 2 29
Total 43 115 3 5 2 2170

Table 2.1: Breakdown of the number of sources found in sur¥ée total is cross clas-
sified by whether the source is a journal article, paper inrdezence proceedings, book
chapter, thesis, or technical report (column) and whichloite contained the source (row).
Through experience, we knew of several relevant reseafoitethat were not in any of
the databases, and these were added to the survey sample.

The database providing the most sources is IEEE Xplore, agdl sources are conference
papers.

For the 170 sources that reported the results of a keystipkamics classifier evalua-
tion, we assessed whether any statistical analysis wasrpetl in order to draw inferences
from the results. A paper was recognized as having perfoarsetistical inference if, in
the section describing the evaluation results and andlysikiding tables and figures), the
researchers reported the results of a hypothesis testdg-galue), reported confidence in-
tervals, or applied model-selection criteria such as Alkgike’s Information Criterion) or
BIC (Schwartz’s Bayesian Information Criterion). Thesatistical techniques are a princi-
pled way to draw general inferences from the results gathdweng empirical evaluations.

A few sources used the word “significant” without, in our jundegnt, meaning it in a
statistically precise way. For instance, a paper mightcldiat one technique “had a sig-
nificantly higher error rate” than another (Alghathbar andhvhoud, 2009), but unless a
p-value or test procedure is reported, we would not recoghiae an instance of statisti-
cal inference. Likewise, when tabulating classifier eraies, several sources printed the
best error rate in bold font or marked them with asteriskssdme disciplines, these con-
ventions are used for results that are statistically sicgnif, but in these sources, we did
not recognize such font changes and symbols as signs dftstaltinference without an
additional description of the test.

In reviewing these sources, we discovered many that usedeimial statistics when
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analyzing the keystroke-timing features. For instancen&szet al. (1980) used goodness-
of-fit tests to ascertain whether down-down typing times Moemally distributed, and
they used-tests to determine whether typing changed after a six matghval. Modi and
Elliott (2006) used mixed-effects models—the very modett tve have proposed for this
work—when selecting typing features to use with their dfass Nevertheless, most of
these researchers who used inferential statistics whdgzamg typing times did not use
them to analyze their classifier's behavior. For this survey are interested in whether
statistical analysis was used to draw inferences from tagsdier-evaluation results, and
papers that only drew inferences from typing times were @acbgnized as having met the
necessary criteria.

Also note that statistical procedures can be used correcthcorrectly (e.g., failure to
check assumptions or to account for multiple testing). H@teour intent in this survey is
to estimate how often statistical inferences are w#edll, not to assess whether a partic-
ular inferential procedure was used correctly. We recaghjzapers as having performed
statistical inferences even if the particulars of the asialyaise questions.

The sources were divided into those that used inferen@aissts and those that did
not. A source was recognized as using inferential stasigtit reported a hypothesis test,
estimated confidence intervals, or performed model selects noted above, inferential
statistics are necessary for understanding with any ogéytaihether a factor has an effect
on the results, and if so, what effect it has. When authord ugerential statistics, we
made a note of which techniques were used (e-tests, Kruskal-Wallace, or bootstrap
confidence-interval estimation), which factors were stddiand what conclusions were
drawn.

2.5 Survey results

We have categorized sources into three groups: those thdtngs inferential statistics,
those that used inferential statistics to investigate astof at a time, and those that used
inferential statistics to investigate multiple factorable 2.2 presents a breakdown of the
number of sources in each group. By far the largest grougaaung 148 sources (87.1%),
did not use any statistical analysis to draw inferences fiftarresults.

The remaining groups, containing 22 sources, used somefsstatistical inferences
to investigate classifier error rates. The second grougagang 17 sources (10.0%), used
statistical analysis to investigate the effects of indistifactors, one factor at a time. The
final group, containing 5 sources (2.9%), used statisticalyges that enabled study not
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Multiple-factor Inferences 4 i 5

Table 2.2: Categories of inferential statistics found terkture survey. One group per-
formed no inferential statistics on the classifier-evaaratesults. The second group used
statistical methods to make inferences about individuzbfs (e.g., two classifiers or dif-
ferent amounts of training but not both). The third groupdustatistical methods to inves-
tigate multiple factors and any possible interactions.

just of individual factors but also interactions betweestdas.

We review the studies in each group, and we discuss each giapers in the last
two groups. The authors of studies that belong in either eehtwo groups used inferen-
tial statistics to understand factors that affect keystrdiknamics error rates. Since those
authors have undertaken to solve a similar problem as indiksertation, we have a re-
sponsibility to present and acknowledge their relatedreffimdividually.

2.5.1 Group 1: No statistical inference

Based on this survey, most papers that evaluate keystiygkaaacs classifiers perform no
statistical analysis to draw inferences from the resultesg 148 sources report empirical
error rates (e.g., miss and false-alarm rates or equal+@&tes). As noted in the glossary of
terminology (Section 1.5), the empirical miss rate is ttaetion of impostor test samples
classified as the genuine-user’s; the empirical falsavalate is the fraction of genuine-
user test samples classified as the impostor’s.

While these studies did not use inferential statistics, yremked the kinds of research
guestions that we ask in this work. Some researchers, soeetmplicitly, acknowledged
that a classifier’s error rate depends on factors in the tipgranvironment. In their eval-
uations, these researchers performed a series of trigdgmsgtically varying factors of
interest (e.g., the feature set or amount of training datd)raported the changing empiri-
cal error rates.

The purpose of inferential statistics would be to make garstatements about the true
error rates of the classifier (or classifiers) based on thereralerror rates. Unfortunately,
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these journal articles, conference papers, and othere®agplied no inferential statistic
to their empirical results. Two empirical error rates maffedieven if the true error rates
are the same.

In our experience, almost any change in evaluation condit@auses some change in
the error rates. For instance, a classifier trained with Hd@mes might have an empirical
EER of 10%; at 101 samples, the empirical EER may drop to 1%; an102 samples,
the empirical EER returns to 10%. Have we discovered ssweet spoat 101 training
repetitions? No, the drop is likely to be a result of randorarae (unless further analysis
proves otherwise).

When empirical error rates are used to support claims thatctassifier is better than
another, or some factor improves classifier accuracy, tbeareher is making a general
statement on the basis of the experimental results. Unfatély, without support of a
proper statistical analysis, these claims are unscientifien if they turn out to be true,
the research effort did not provide a statistically sourgiarent in support of the claim.
One might argue over the practical value of research witbowntifically supported con-
clusions.

2.5.2 Group 2: One-factor-at-a-time inference

The 17 research efforts that drew inferences from one fatttime used a variety of meth-
ods: t-tests, Pearson’g? (chi-square) tests, 1-way ANOVAs, Wilcoxon signed-ranitse
and Kruskal-Wallis tests. Researchers used these testertpare not only the classifiers
themselves, but also different typing tasks, differentdaards, and even the effectiveness
of artificial rhythms to increase a typist’s consistency drsfinctiveness.

Cho et al. (2000) supported their claim that an Auto-Asdo@aNeural Network out-
performed a MahalanobisNN classifier using &-test. They tuned both detectors so that
the miss rate was zero, and they conducted a paired test daltlealarm rates for each
subject. They found the Auto-Associative Neural Networkeéssignificantly better, with a
p-value< 0.01.

Ngugi et al. (2011) investigated whether miss and falsavalates change with differ-
ent typing tasks. Specifically, they had subjects type twWiemint 4-digit numbers (i.e.,
1234 and 1324) on the keypad. They conductégits on the miss and false-alarm rates,
and found a significant difference in the error rates betwhkenyping tasks.

Bartlow and Cukic (2006) also usedests in their analysis of whether different typing
tasks have different error rates. Their two typing tasksaw&) 8-character, lowercase En-
glish words and (2) 12-character passwords containing ruggee and special characters
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(Bartlow, 2005; Bartlow and Cukic, 2006). According to thanalysis, the long pass-
word had a lower error rates (false-alarm, miss, and EER)idtiple classifiers and most
tunings of a random-forest classifier.

Hwang et al. (2009a,b) investigated whether classifierreates can be reduced by
priming the typists with rhythms to mimic. Subjects wereexsko choose passwords with
different properties (e.g., high familiarity or high ramdpess); subjects were grouped into
one-handed and two-handed skill levels. In some typingstatsie researchers provided
rhythms for the subjects to imitate, while in others, theigtgwere allowed to use their
natural rhythms. While this experiment involves many fegtan their analysis, the re-
searchers used a seriesdésts. Each test considered only one factor at a time &R,
with vs. without the artificial rhythms, or EER with familias. random passwords).

In several investigations, Lee and Cho (2006, 2007) and kkaddCho (2009) evaluated
between 6 and 14 classification algorithms (in differendigts) and used hypothesis testing
to identify the one with the lowest error rates. They did nueafy the precise test used, but
they explain that the best classifier outperforms the ottara significance level of 10%”
(Kang and Cho, 2009, p.3131). This description suggeststileg used either a 1-way
ANOVA or an equivalent non-parametric technique.

To answer a similar question about whether one classifiersigasficantly better than
the others in an evaluation, Giot et al. (2011) parametyicdtimated 95% confidence
intervals for each classifier (i.e., by assuming the errtasravere distributed binomially).
They also used Kruskal-Wallis to test whether differentdegrds affected error rates and
whether per-user thresholds reduced error rates. Neitber fwsund to have a statistically
significant effect.

In some work that launched the work in Chapter 4, Killourhy diaxion (2009)
used the Wilcoxon signed rank test (with a multiple-tesadgistment) when benchmark-
ing 14 classifiers. Note that two of the classifiers evaluatethat research were re-
implementations of the two classifiers evaluated by Cho.€RaD0); in the earlier work,
the Auto-Associative Neural Net significantly outperfodrtee Mahalanobig-NN, while
in the more recent work, the reverse was true. We believediiteepancy might be due to
differences in the evaluation environment, leading to aurent interest in identifying the
factors that influence classifier error rates.

Curtin et al. (2006), Villani et al. (2006), and Tappert et(@010) used a? test in
their investigation of several factors. Their subjectsetygree and transcribed text on
two different kinds of keyboards (i.e., desktop and laptoBy our reading, the authors
conducted over 13 analyses for different combinationsabfs. Within each analysis, the
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authors constructed cross-classification tables for tb@ffs; in each cell of the table, the
corresponding accuracy percentage was recorded. Peaggot@st was repeatedly used
to test whether differences between cells, rows, and catunare statistically significant.
Based on this series of tests, the authors concluded ttsstifods accuracy is higher (1) for
laptop keyboards than desktop keyboards, (2) for transdribxt than free text, and (3)
when the same keyboard is used for training and testing. @f, tiwey found a significant
keyboard effect where Giot et al. (2011) did not. Perhapskéyboard effect depends on
other factors which varied between these investigatiamstéxing our claim that error rates
depend on a multitude of (potentially interacting) factorghe operating environment.

In their work, Epp et al. investigated whether keystrokeaiyits could be used to
identify the emotions of a typist (Epp, 2010; Epp et al., 2014 this work, they used the
r (kappa) statistic to establish whether the output of thestler was significantly better
than random guessing. While thestatistic is not technically the product of a hypothesis
test, it is conventionally used to draw inferences. Foransg, ax score near the top of
its range (1.0) is treated as strong evidence that a classifiroducing accurate labels,
while a score near zero is evidence that the classifier waultodbetter than chance. The
authors explained the critical values used to draw infeeen®ased on their results, they
were successful in identifying emotional states such afidemce and tiredness.

In biometrics research, subjects are informally group&al¢ategories named after ani-
mals. For instancegoatshave higher-than-average false-alarm rates, making teem m-
advertently uncooperative, amblvesinduce higher-than-average miss rates when they act
as impostors for other users, making them seem threateiager and Dunstone (2010)
used Kruskal-Wallis tests to establish whether these amet @nimal groups truly exist in
subject populations (e.g., whether goats’ similarity ssagire significantly lower than the
average subject’s). For keystroke dynamics, they foundifsignt evidence that wolves
are real.

All of these efforts used statistical analysis to make ganelaims from experimen-
tal results. In doing so, they provided concrete answergdearch questions. These 17
research efforts should be recognized for providing a sifiecontribution to our under-
standing of keystroke-dynamics classifiers. However, asxpéained in Chapter 1, when
researchers investigate one factor at a time, in isolatfey, miss the opportunity to un-
derstand how that factor interacts with other factors. $yrbg comparing the inferences
drawn by different research projects, we have seen somaatmngfiresults. To understand
these discrepancies, we must look at more than a single faicéotime.
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2.5.3 Group 3: Multiple-factor inferences

Our survey uncovered only 5 studies (out of 170) that dretissizal inferences from mul-
tiple factors. These researchers not only investigatedipheifactors but also performed
the statistical analysis necessary to make general statsrabout them. Two of these
sources used confidence intervals or error bars, and thiggrdinetric statistical models.

Bartmann et al. (2007) evaluated their classifier systeralfyiin a variety of differ-
ent operating environments: with/witho8hift-key features, various numbers of samples,
various numbers of users, various numbers of impostorsyarolus lengths of the typing
sample. For each of these factors, they used bootstrappiegtimate 95% confidence
intervals and presented error bars in their plots. Frometleesor bars, one can draw in-
ferences about which factors have an effect on the erros.r&mce some plots compare
multiple factors, the error bars can be used to draw infeembout whether the factors
interact. For instance, EERs with error bars are plottethfeclassifier with/withoushift-
key features and for various lengths of the typing sampl& érnor bars suggest that both
factors have an effect, but they do not appear to inte&utt-key features lower the error
rate, and so does increasing the length of the typing sarmptgether, these effects appear
to be additive (i.e., with no interaction).

Everitt and McOwan (2003) developed a classifier that useld keystroke dynamics
and mouse movements. They reported 95% confidence intevithlsheir empirical error
rates across a range of factors. Using these confidencealggone can compare multi-
factor interactions as well as the effects of individuatdas. For instance, one factor is
the mouse-movement task: “signing” their name vs. drawipicture. Another factor is
the level of impostor information: given no information albdhe genuine user’s signa-
ture vs. given copies of the genuine user’s signature artdrpicsamples. The empirical
average error rates suggest that the miss rate increaseavheh impostors had samples
of genuine-user signatures and also when the input was ar@icther than a signature.
However, all of the confidence intervals overlap, implyihgttthese different conditions
may not have much effect in subsequent evaluations.

The two papers by other researchers most related to thentwk are by Mahar
et al. (1995) and Napier et al. (1995). In one investigatibese researchers described and
evaluated two classifiers (similar to the Outlier Count arehislanobis ones benchmarked
in this work). They ran the evaluation twice: once using dalewn times, and once
using both hold and up-down times. They had 67 subjects. rialseach subject was
designated the genuine user, the others designated anton@osl the empirical error rates
recorded. To analyze their evaluation results, these refsei® used repeated-measures
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ANOVA. With this statistical technique, the per-subjectogerrates for each of the four
conditions (i.e., 2 classifiers 2 feature sets) are considered to be repeated measurements
from the same subject. The effects of the classifier and featet are estimated “within”
each genuine-user subject, and the between-user variatadso estimated. They found
significantly lower error with the Mahalanobis-like cldgsi and the hold and up-down
times. They also found a significant interaction betweendlssifier and feature set,
meaning that changing the feature set affected the erres i@t the different classifiers
differently.

The repeated-measures ANOVA used by these researchersrisi af linear mixed-
effects model. In this work, we propose LMMs as a solutionh® tnultitude-of-factors
problem in keystroke dynamics, so one might ask whetheetuier work already solved
the problem. While we recognize the important contributioese authors made, the scope
of the current work is much broader. Napier et al. (1995) uspdated-measures ANOVA
to investigate two factors, both concerning the classifret @s tuning (i.e., which fea-
tures to use). In the current work, we consider many morefacand the factors extend
beyond the classifier and its configuration. We consider hifi@rdnt typing tasks and
different impostor-evasion strategies affect the errte.r&Vhile they considered the per-
user variation, we also consider the per-impostor vamatiovestigating both sources of
variation requires more complicated LMMs than repeatedsuges ANOVA. Computation
may be part of the reason why these earlier researchers ootuttb the sort of investiga-
tion we have undertaken. LMMs are computationally intemsand crossed random effects
(needed for estimating per-user and per-impostor variatiave only recently been incor-
porated into publicly available tools for statistical ayga$ (Bates, 2005).

Finally, in other research that lead directly to the curreatk, Killourhy and Maxion
(2010) evaluated three classifiers in a series of operatimgaments, including different
numbers of training samples, with/without updating, ddéfe feature sets (e.g., hold times
and down-down times vs. hold times and up-down times). Ibwmak, as in the current
work, linear mixed-effects models were used to capture tleets of these factors on the
error rate. Model-selection criteria—specifically BIC, iath will be described in Chapter
3—were used to determine which factors and interactiongdrad a substantial effect on
the results. Much of that work is revisited in Chapter 6 of tierent work. Unlike the
earlier work, we investigate different typing tasks and waradon EER as a performance
metric in favor of miss rates, having tuned the classifieraweha 5% false-alarm rate (as
justified in Chapter 4).

These earlier efforts to draw inferences regarding mutigttors are important prede-
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cessors to the current work. Together, they support oumclaat a classifier’s error rate
depends on a multitude of factors in the operating envirarimghey have helped to iden-
tify some of these factors. They also suggest that LMMs maldyeto identifying and
understanding these factors. Of all the prior work in keyjstrdynamics, these 5 papers
provide the foundation on which the current work is built.

2.6 Related work on evaluation methodology

The current work concerns keystroke dynamics in generdl ezaluation methodology in
particular. Two prior efforts have been aimed at improving atandardizing keystroke-
dynamics classifier-evaluation methodology. To put theesurwork in context, we con-
sider the arguments and recommendations of these otherspdpeeir conclusions some-
times support and sometimes contradict our own recommiemdat

Hosseinzadeh and Krishnan (2008) recommend the use oéirifar statistics, just as
we do in this work. The earlier authors explain two heurgstitat are recommended as
best practices for conducting biometric evaluations (Miaftsand Wayman, 2002): “The
Rule of 3" and “The Rule of 30.” The first rule is a heuristic tlemables one to establish
confidence intervals around an empirical 0% error rate. iBpaity, when the empirical
error rate is 0%, the upper bound of the 95% confidence intes&y N where N is the
sample size. The second rule offers a more general heulustiestimating confidence
intervals when the results contain more than 30 errors. ifigadty, under such situations,
the true error rate is withiB0% of the empirical error rate at a 90% confidence level.
Beyond citing it as a best practice, the authors offer noeswé that applying these rules
produces better results. Unfortunately, they do not apfmease these rules later in their
paper to estimate confidence intervals for their own results

Crawford (2010) sharply criticizes earlier work whereinsél evaluation methodol-
ogy “renders useless any reported results.” Six recomntiemsaare offered. Two of the
recommendations concern keystroke dynamics evaluatiaperieral and are discussed be-
low, one is an endorsement of neural-network technologytlae three others concern the
specific application of keystroke-dynamics to mobile-phapplications.

The first of the two relevant recommendations is that equak-eates (EERs) should be
reported alongside false-alarm and miss rates. We agreth&BER can be a useful single-
number summary, enabling easy comparison of differensitlass. However, we caution
against over-dependence on EERs. If two papers report ExtREffierent classifiers, one
might be tempted to compare the classifiers using the EERsvetd, if other factors
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differ in the two evaluations, such a comparison has cordedrclassifier and evaluation
effects. Moreover, EERs are are one of many possible smgheber summaries of miss
and false-alarm rates, and they are not always the mostlusefuthis reason, the current
work does not use EERs.

The author's second recommendation forbids the colleaifogenuine-user and im-
postor data from the same pool of subjects. A classifier eéchiand tested on the same
impostors may have better performance than one trainedeatebton different sets of im-
postors. One can avoid this source of bias by using diffesabjects as impostors. We
appreciate the author’s concern, but in some settingsgikasame subjects’ as genuine
users and impostors does not bias the results. For instanites current work, classifiers
are only trained on typing samples from the designated genuser subject. Typing sam-
ples from the other subjects are used to evaluate the ctashiiit since they were not used
in training, they do not bias the outcome.

These works (and our own) on keystroke-dynamics methogicdog in agreement on
at least one point: there is much room for improvement. Wk senprove understanding
of classifier error rates by using inferential statisticshauntiple factors. This topic is not
considered in earlier efforts to improve keystroke-dyraneivaluation methodology.

2.7 Discussion

One of the key features of this review is the survey of siaibimethods used in other
keystroke-dynamics classifier evaluations. In that symeyestimated that 87.1% of clas-
sifier evaluations do not use any inferential statisticdlatim many other scientific disci-
plines, researchers are required to use inferential stati® justify conclusions. Clearly,
in keystroke dynamics, no such requirements exist.

Nevertheless, we wish to be clear that our survey is not dedrto criticize earlier
researchers for not using inferential statistics to arelylassifier evaluation results. The
shortcoming is in the current research methodology, naviddal papers. Some of our
own papers are among those which did not use any inferetdtigdtics. When the standards
are such that inferential statistics are not necessarycangot expect researchers to use
them (or to always report the outcome even when they are used)

In other scientific disciplines, one sign of progress is thatknesses of methodol-
ogy are found and corrected. One famous example occurrddtigt discovery of the
Hawthorne Effectnamed after a study of worker productivity at Western Electom-
pany’s Hawthorne site. An increase in worker productivigsveventually traced to work-
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ers’ excitement and enthusiasm over being studied. Thewksg spurred changes in the
research methods of behavioral science (Shadish et aR) 2B€evious studies that did not
account for the Hawthorne Effect were recognized as flawatur€ studies adjusted their
methodologies to accommodate the effect.

The lack of inferential statistics is a shortcoming of kegké-dynamics methodology
(and in other areas of security research such as intrusi@ctiten). As a result, conclu-
sions drawn in papers that do not use inferential statistiag be flawed. Nevertheless,
just as behavioral research methods changed with the disco¥ the Hawthorne Effect,
our intention in publicizing how few papers use inferengitatistics is to influence future
methodology, not to criticize existing papers.

2.8 Summary

In this chapter, we presented a brief history of keystrokeadhics classification research,
and we argued that inferential statistics are necessamato gheaningful conclusions from
classifier evaluations. We conducted a survey of 170 sotheg¢svaluated classifiers, to
understand how often inferential statistics were usedoAting to the survey, 148 sources
(87.1%) used no inferential statistics at all. Even if suesearch draws conclusions from
the empirical results of the evaluation, without propetistigal methods, we cannot be
certain that the conclusions are supported by the data.

The remaining sources used some kind of inferential sididbut 17 sources (10.0%)
used analytical procedures appropriate for investigatimg factor at a time. While cer-
tainly better than nothing, keystroke-dynamics classfreay be affected by many factors
and the interactions between them. Conclusions drawn abdiutdual factors in isolation
may only be of limited use. The remaining 5 sources (2.9%)rmlidstigate multiple fac-
tors and their interactions. These prior research effoeiewnore limited in scope than the
current effort, but they establish that multiple factorsatter.



Chapter 3
Linear Mixed-Effects Modeling

The previous chapter argued that keystroke-dynamicsnaseaust start using inferential

statistics to understand classifier behavior. The curreapter offers linear mixed-effects
models (LMMs) as the appropriate statistical techniquelfaterstanding the many factors
that affect classifier behavior. We explain what LMMs are pravide some background on
their development. A running example—using LMMs to undangtwhich of 3 classifiers

performs the best and whether hold times or down-down times@re useful features—
will keep the explanation grounded in the practical appitccaat hand. Finally, we explain

some computational details and conventions for using LMivkhis work. These conven-

tions ensure that a uniform statistical procedure is useditthout the work.

3.1 Background

A classict-test could be used to establish whether one classifier’s raie is significantly
lower than another’s. As discussed in Chapter 2, such alysisalas used by Cho et al.
(2000). However, more advanced statistical methods aréede® handle data involving
many classifiers, other factors, and interactions amortgifacLinear mixed-effects mod-
els (LMMs) offer a powerful framework for analyzing comied data sets where many
different factors affect the experimental outcome (Pirdhv@nd Bates, 2000). LMMs are
regularly employed when simpler methods are not adequaje Yehent-tests, analysis of
variance, or linear regression cannot capture the contplekthe data).

An LMM may be thought of as the intellectual descendant oflyemis-of-variance
(ANOVA) models. In fact, as discussed in Chapter 2, a repkateasures ANOVA is
one form of LMM, though not the only one. In both ANOVA modelsdaLMMs, one or
more explanatory factors are related to a response varigbleinstance, one can analyze

35



36 CHAPTER 3. LINEAR MIXED-EFFECTS MODELING

the relationship between two explanatory variables—tlassifier and the typist—and a
response variable, the equal-error rate. Presumably slassfeers have lower EERSs than
others, but perhaps some typists are just harder for alsifl@as to recognize correctly.
Both ANOVA and LMMs can investigate how the two explanatoagtbrs, classifier and
subject, affect the EER.

Compared to ANOVA models, LMMs allow a greater number andeparof explana-
tory factors, and more complex relationships with the respovariable. Thenixed-effects
descriptor indicates that explanatory factors fall int@ @i two categoriesfixed effects
andrandom effectsThe difference between fixed and random effects is somstsubtle,
but the following rule of thumb is typically applied. If weiprarily care about the effect of
eachvalue of a factor, the factor is a fixed effect. If we primariigre about the variation
amongthe values of a factor, the factor is a random effect (McQilet al., 2008).

For instance, with keystroke-dynamics evaluation reswts treat the classifier as a
fixed effect and the typist (i.e., the subject) as a randoeceffif the experiment involves
three classifiers, practitioners will want to directly ccemg the error rates of the three
classifiers. Such a comparison can be used to identify thtepeeforming classifier, so a
practitioner could then decide to deploy it in his or her esniment. Since a comparison
among the three actual values is desired, the classifiedAmimodeled as a fixed effect.

In contrast, the subjects in the evaluations are meant tegyesentative of other typists.
If an experiment involves ten subjects, practitioners Hase interest in comparing error
rates between those particular ten subjects. Knowing whidiject had the lowest (or
highest) error rate is less useful to the practitioner thaswkng how much variation exists
across subjects. That variation can be used to predict havia per-user variability will be
seen when the classifier is deployed. Since we desire anagstwhhow the factor affects
variability, the subject would be modeled as a random effattier than a fixed effect.
Ultimately, mixed-effects models can reveal which classsfiwork best, how accurate they
are, and whether there is substantial variation among thiests.

LMMs—and their even-more versatile descendants calleeralizedinear mixed-
effects models—are powerful statistical techniques usathtlerstand complex behavior
across scientific disciplines. In ecology, Bolker et al.q2Pused mixed-effects models to
understand whether the number of fruits produced by a ploisids more on nutrient lev-
els or genotype. In psychology, Baayen et al. (2008) useédnetfects models to control
experimental effects in understanding decision respansest Specifically, when subjects
are presented with a series of words and asked to state wi@ahade up, mixed-effects
models can capture per-subject effects, per-word effaots prder-of-presentation effects.
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Figure 3.1: Example keystroke-dynamics classifier evalnaesults. Classifierd, B, and

C were evaluated, once with hold timés$dld) and once with down-dowrDD) times as
features. Each run involved 10 subjects; one subject watettas the genuine user, and the
classifier was tested at recognizing the other subjects jpgstars. The miss rate for each
pair of genuine-user and impostor subjects are plotted. gragh shows the complexity
of understanding the results. Any differences between ldsifiers and feature sets are
partly obscured by variation in the miss rate across use&tsmapostors.

In pharmacology, Davidian and Gallant (1993) used LMMs tesiigate the effects of
birth weight and Apgar score on the blood concentration afr@barbital in newborns
treated with the drug for seizures. As will be demonstrabtedughout this work, mixed-
effects models are equally suitable for understanding &@bior of keystroke-dynamics
classifiers (and the influence of the evaluation environroariheir behavior).

3.2 Example evaluation

In this section, we introduce an example evaluation thativelp us to illustrate the use
of LMMs and their application to understanding keystrok@amics evaluation results.
Suppose that we are interested in understanding threéfidesss~or the sake of simplicity,
we will just refer to the three classifiers as B, andC'. Suppose also that we have the
option of using two different feature sets when analyzingskeke dynamics: down-down
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times vs. hold times. We intend to find out which feature sak&dest.

An evaluation was conducted for each of the three class#ietisthe two feature sets.
Data was collected for the evaluation by having ten subjggqie the same password
(.tie5Roanl) repeatedly. Each subject typed the password 200 timesin@data col-
lection, both down-down and hold times were recorded foheapetition of the password.

Together, there were six pairings of classifier with feasete@ classifiersx 2 feature
sets). For each pairing, we ran 10 evaluation trials, one&oh subject. Each trial cor-
responds to one combination of classifidr, (B, or ('), feature set (hold or down-down
times), and subject (Subject 1-10). The given subject igydated the genuine user and
the classifier for that trial is trained on the first 100 typsagmples from the genuine-user
subject. The remaining 100 typing samples from the genuse-subject were used to
tune the classifier to have a 5% false-alarm rate.

Once trained and tuned, the classifier was presented witariples from each of the
other 9 subjects. These 9 subjects were designated impdstathe trial. We recorded
whether each sample was recognized as having been typedniose other than the
genuine user, and for each impostor we calculated the ntissasathe fraction of the 50
samples that were not classified as impostor samples.

The accuracy of a classifier can be expressed in terms of sragskfalse alarms. These
two dimensions of accuracy complicate analysis since aiflascan be tuned to have a
lower false-alarm rate at the expense of a higher miss rateewersa. In this example—
and in the remainder of this work—we tuned classifiers sottiafalse-alarm rate is fixed
at 5%, and we analyzed the miss rates. As explained in moadl @eChapter 4, tuning
classifiers to operate at a particular false-alarm rate salare practical sense than tuning
to a particular miss rate. In brief, genuine-user typing gi@s)are easier to obtain than
impostor samples, so tuning the classifier based on fatseadtequency is easier.

Figure 3.1 presents these evaluation results as a lattastplots. We ran 60 evaluation
trials (3 classifiersx 2 feature sets< 10 genuine-user subjects), and from each trial, we
record 9 per-impostor miss rates. Each panel corresportlds tesults for one combination
of classifier and feature set. Within a panel, each columresponds to the results for one
genuine-user subject. The symbol in each column denotesnestor subject, and its
vertical position is the miss rate. For example, when Cligssi’ was trained on Subject
1's hold times, and tested with the 50 samples from Subjetti&€miss rate was 48.0%.
This combination of classifier]), feature setHold), genuine-user subjecsQ01), and
impostor subjectg002) corresponds to the red cross in the first column of the tép-le
panel of Figure 3.1.
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The key observation to make from this figure is that miss re#eg a lot. Simply by
looking at the figure, it can be difficult to tell whether onaggifier or feature set is better
than the others. Within every panel, some miss rates aréd@eand others are near 100%.
We could ignore this variability if we looked at the averagssirate over all genuine-user
and impostor subjects, for each combination of classifier faature set. However, the
variability itself seems worthy of study.

Keystroke dynamics may work better for some users than fugret Looking in any
one panel, the miss rates for some genuine-user subjedts\aethan others. For instance,
in the top-left panel (Classifigr’, Hold features), all the miss rates when Subject 1 is the
genuine user are lower than all the miss rates when Subjdstth® genuine user. Across
panels, some genuine-user subjects tend to have lowesatreage miss rates, while others
have higher-than-average ones. Subject 1's miss ratesaadlyillow and Subject 10’s are
usually high, when each is the genuine user. With a somewtfatused eye, one can see
a slope to the cloud of points in each panel, progressing fommon the left to high on
the right. For this example, we assigned subject numbers smensure this visual effect.
In later chapters, we occasionally reorder the subjectsctassifiers in plots to obtain a
similar opportunity for visualization (e.g., sorting sabjs from left to right in the dotplot
panels based on average miss rate).

Keystroke dynamics may also work better against some iropo#tan others. Looking
at the symbols in each panel, miss rates for some impostggcatare usually lower than
others. Some symbols more frequently appear toward thernetbf panels, and others
toward the tops. For instance, Subject 7’s green triangémnaforresponds to low miss rates,
at least when down-down features are used, suggestinglfecswould be comparatively
easy to detect when impersonating other users. In con®Bagiject 2's red cross often
corresponds to high miss rates, suggesting the subjectris hkely to be missed when
impersonating other users.

Typically, researchers do not present per-user or perstgperror rates as we have.
Instead, they present aggregate statistics such as dfieléssiverage miss rate across all
genuine-user and impostor subjects. While those aggrstatistics can help to understand
which classifier is best, they sometimes hide other impodatails. In this example, the
average error rates would hide the fact that one should &Xpgic variability even from
the best classifier.

Having acknowledged that the raw evaluation results afiedlif to interpret because of
how much error rates vary across users and impostors, weiltay $0 compare classifiers
and feature sets. The clouds of points in the panels on thedefn lower than the clouds
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in the panels on the right. As such, we might expect that holdg are better features for
keystroke dynamics than down-down times. Likewise, theidsoof points in the middle
row may be lower than the clouds in the top or bottom rows. AdhsClassifierB may
be more accurate than the other two classifiers. Such olsgryare not the same as a
formal statistical analysis, but they suggest what we mexptect to find through more
formal analysis.

An interaction effect is even more difficult to observe in thes evaluation results than
classifier or feature-set effects. An example of an intevactffect would be if switching
from down-down times to hold times improves the accuracy let€lfiersA and B more
than the switch improves the accuracy of ClassifierSuch a classifier/feature-set inter-
action may be present in the evaluation results, but theteBenot readily apparent from
Figure 3.1. Whether the interaction effect is absent orgeand just obscured by the
other effects requires further analysis.

This example evaluation and its results should demondtratéifficulty of understand-
ing the behavior of keystroke-dynamics classifiers. Othetdrs—including the feature
set, the genuine user, and the impostor—can affect whdtbalassifier has a low or high
error rate. Possible interactions between these othesrfaand the classifier add further
complexity. To obtain a more complete understanding ofsti@s behavior and the influ-
ences of these other factors, we will use linear mixed-&ffewmdels (LMMs).

3.3 Variance-stabilizing transformation

When statistical models are used to estimate the effectatarf(e.g., how changing from
down-down times to hold times will affect the miss rate) ytloéten assume that the effect
may be hidden by the addition of some residual noise in themxgntal results. An
assumption made by many statistical models in general andl$ M particular is that any
residual noise is Normally distributed and equal acrossadlles of a factor. For instance,
the average miss rate may be higher for down-down times thlhtimes, but individual
times will vary from the average by the same amount. In othenda, the mean miss rates
may be different but the noise in individual miss rates isias=d to be Normal and have
equal variance for both down-down and hold times.

While linear models have been shown to be somewhat robustsiongtion viola-
tions (Madansky, 1988), statisticians often employ trameftions to make the data ad-
here closer to modeling assumptions. For instance, if niglelssumptions require that
a response variable is Normally distributed and the vagigbkkewed, statisticians might
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apply a logarithmic transformation to the variable and gttiee transformed variable in-
stead. This transformed response variable (i.e., the ldageobriginal response variable)
has a distribution closer to Normal than the original.

In our evaluation data, the response variables are miss aatkcan be modeled using
a Binomial distribution. A binomial distribution is appnogte for modelling proportions
(e.g.,y successes out aftrials). In our example evaluation, we had 50 samples froch ea
impostor, son = 50, andy is the number of misseg;/n is the miss rate. With binomial
data, the variance changes with the mean, and so if two ftlasdhave different average
error rates, the variances of those error rates may alser,dviblating the equal-variance
assumption of LMMs and other statistical models.

To accommodate the equal-variance assumption, analyt&is efmploy avariance-
stabilizing transformatioiVST). For binomial data, the recommended variance-satgy
transformation is

VST(y/n) = ¥ arcsin \/y/n.

In this formula, the error rate is represented as a propoftie., y errors onn total sam-
ples). The kernel of the transformationdscsin \/yTn The scaling factor200/7) is
technically unnecessary, but it converts angles from resdiagrads a unit of measure that
may be uncommon but helps with intuition in this case becgusés range from 0 to 100
(Box et al., 2005).

Figure 3.2 illustrates the variance-stabilizing transfation as a function. The domain
is the region [0,1] and the range is the region [0,100]. Whem is near 0.0 or 1.0, the
variance is much smaller than wherin is near 0.5. This transformation stabilizes the
variance by spreading values near 0.0 or 1.0 over a wideerahthe output space than
values near 0.5. This property of the variance-stabilizingsformation can be seen in its
slope; the steep slope on the left and right sides of the figi@@n that the extreme values
of y/n are mapped to a wider range, while the comparatively shalope in the middle
of the figure means that the middle valueg/pf are mapped to a narrower range.

When analyzing our example evaluation data, we apply thewee-stabilizing trans-
formation to the miss rates before employing LMMs. Whilesttiansformation accommo-
dates the LMM equal-variance assumption, it somewhat fsgsiinterpretability during
the model-fitting process. Estimates of the factors’ effdetg., different classifiers) are
expressed in the transformed space. A changebah the variance-stabilized space means
a different change in the miss rate depending on the stapbitg before the change. For
instance, if the starting miss rate is 0%, a change-dfin the variance-stabilized space
corresponds to a resulting miss rate of 0.6%; if the stammmgs rate is 50%, a change of
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Figure 3.2: Variance-stabilization transformation fandinial random variables, wheyas
the number of successesirtrials. For binomials, the variance gfn is smaller wheny/n

is near the ends of the 0.0-1.0 range than when it is in theleafdhe range. A variance-
stabilizing transformation can be used to spread the extnemues ofy/n over a wider
range, so the transformed variable has a more consisteahgaracross its whole range.
For binomial random variables, the recommended variatai@hzing transformation is
depicted as a function.

+5 in the variance stabilized space corresponds to a resuttisgjrate of 57.8%. This non-
linearity can make effects in the variance-stabilized sghfficult to interpret. Fortunately,
in many cases, we can map results back to the original resp@rgble space (i.e., miss
rates) by applying the inverse transformation:

VST ~*(x) = sin®(z - 7/200).

3.4 LMM #1: Classifier and feature effects

To better explain what LMMs are and how they work, we preseanbdel built during an
analysis of the example data from Section 3.2. First, themae-stabilizing transformation
was applied to the individual miss rates, and a model with faators was built: the
classifier, the feature set, the genuine-user subject,rapdstor subject. The classifiers
and feature sets were treated as fixed effects, and the gens@r and impostor subjects
were treated as random effects.

We will discuss shortly how to construct an LMM from the rawakation results,
but first we explain what an LMM looks like after constructioiable 3.1 presents an
LMM built from the example data. Like all LMMs, this model haso components: a
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Model Equation:
VST (miss rate)ijrim = p + (Classifier); + (Feature Set); + (user) + (impostor); + e,
(user) ~ N(0, U(Zuser))

(impostor); ~ N(0,

2
0 Ugimpostor))
Em ~ N(0,0

:)

Parameter Estimates:

Parameters classifier  feature set| estimate
(1) baseline A Hold 40.72
(Classifier); B -6.79

C 1.63

(Feature Set), Down-Down 24.91
U(user) 12.98

O (impostor) 7.92

o, 22.06

Table 3.1: LMM #1—Possible LMM built from example data. ThielM includes a model
equation (top) and a parameter-estimate table (bottomég riibdel equation establishes
the form of the probabilistic model and which factors havesffact on miss rates. The
parameter-estimate table quantifies the effects of thagerfa Section 3.4 describes this
particular model in detail.

model equatiorand aparameter-estimate tahleéThe notation in the model equation and
parameter-estimate table may seem daunting at first, butilveralk through the process
of reading and interpreting a model. In brief, the model ¢iguaexpresses which factors
have an effect on the response variable, and the paranstieaée table explains what
those effects are.

Model equation. A model equation consists of (1) an actual equation relativegre-
sponse variable to various factors in the experiment, apdig®ibutional assumptions for
the random effects and residuals. The first line of the mogleagon in Table 3.1 presents
the actual equation, relating the variance-stabilizedmage to six termsg, ( Classifier);,
(Feature Set);, (user)y, (impostor);, ande,,. Thep ande terms will be present in every
model, representing the average miss rate and the residisa, mespectively. The other
four terms represent fixed and random effects that have aotefh the average miss rate.
The presence of a term in the model equation means thatsomaseffect. For instance,
the presence of the classifier term means that, based on tuslIndifferent classifiers
have different average miss rates. If the classifier ternewet in the model equation, the
model would describe all classifiers as having the same raiss Likewise, the presence
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of the feature-set term, user term, and impostor term méatsiased on this model, these
factors also affect the miss rate. To know how much of an etidactor has, we would
have to consult the parameter-estimate table (descrided/pe

The classifier and feature set are treated as fixed effeatsygbr and impostor are
treated as random effects. Both fixed and random effectsaap@es terms in the model
equation. Operationally, the difference between fixed amdlom effects is that fixed ef-
fects are modeled as constants while random effects areletbds random variables.
Consequently, for each random effect, the model equaticiides a line describing the
distribution of the random variable. Per-user effects aoelehed as having a Normal dis-
tribution with zero mean and variance equabtg, . Per-impostor effects are modeled as
having a Normal distribution with zero mean and varianceatpiry, o0 -

The residual-noise term,(,) can be thought of as a special kind of random effect. Like
the per-user and per-impostor random effects, the resithiaé is modeled as a random
variable with a Normal distribution with zero mean and soragance §2). This term is
special inthat it is present in all LMMs (and many other stital models); it represents the
effect of all the uncontrolled and unknown factors that iefiose the miss rate in addition
to those factors whose influence is made explicit as terntseimtodel equation.

The variances of each of the random effects are assumed te&egthan zero, mean-
ing that the random effect introduces some amount of vdityabito the response variable.
The presence of the per-user term means that error rategsteenstically lower for some
users and higher for others, across all classifiers, feaigsg and impostors. The presence
of the per-impostor term means that error rates are sysiatipiower for some impos-
tors and higher for others, across all classifiers, featetss and users. The model equation
does not tell udiow muchlower or higher the error rate can be because of these factors
To know the magnitude of the variability, we would have to salhthe parameter-estimate
table.

Parameter-Estimate Table. Whereas the terms in the model equation tell us which fac-
tors have an effect, the parameter estimates in the parapstimate table tell us how
much effect each factor has. In Table 3.1, the first line ofgheameter-estimate table
gives the estimated value of the baselineThis parameter is called the baseline because
it denotes the average response for one particular connymnattfixed-effect factor values,
called the baseline values. In this example, we have two #efitts: the classifier and
the feature set. The baseline corresponds to Clasdifiesing hold times as features. The
estimated average variance-stabilized miss rate for thssifier/feature-set combination



3.4. LMM #1: CLASSIFIER AND FEATURE EFFECTS 45

is = 40.72. By applying the inverse of the variance-stabilizing tfangation, we can
convert the baseline to an actual miss rateT —!(40.72) = 35.6%.

The second and third lines in the parameter-estimate taftledorrespond to a single
term in the model equation. In the model equation,(th&ssifier); term denotes that the
classifier has an effect, but since there are three classitiee parameter-estimate table
contains multiple estimates, one for each of the non-haselassifiers. The line witl
in the classifier column corresponds to Classiffeland the estimate 6.79 represents the
change to the variance-stabilized miss rate when Classifisrsubstituted for Classifier
A. Likewise, the line withC' in the classifier column corresponds to Classifierand the
estimatel .63 represents the change when Classifigs substituted for Classifiet.

As noted earlier, because of the variance-stabilizingsfiam, interpreting these esti-
mates can be tricky without going through the inverse-fiansation calculations. At a
coarse level, the numbers give us some intuition about thea&®d effects on miss rates.
Since the estimate for Classifiét is negative, we know that the estimated miss rate for
B is lower thanA, and since the estimate for Classifi@ris positive, we know that the
estimated miss rate far' is higher than forA.

To get more specific, we need to map the effects back to mies.rdb calculate the
estimated average miss rate for Classifirer C', one must add the corresponding effect
to the baseline value and apply the inverse of the variatatghzing transformation. The
average miss rate for Classifigris calculated a¥’ ST ~*(40.72 + —6.79) = 25.8%. The
average miss rate for Classifi€r is VST ~1(40.72 + 1.63) = 38.1%. Note that these
estimates apply with the baseline feature set (hold times).

The fourth line in the parameter-estimate table corresptmthe feature-set termin the
model equation. Since only two feature sets were used in@uation—the baseline hold
times and the alternative down-down times—only one param&teds to be estimated:
the effect of switching from hold to down-down times. Thiggaeter estimate i34.91,
meaning that the variance-stabilized miss rate is expdoté@ttrease quite a lot if down-
down times were substituted for hold times. For the basaliassifier, the miss rate is
expected to increase ¥6ST ~1(40.72 + 24.91) = 73.6%.

So far, we have only used the model to estimate the miss ratbddaseline combi-
nation of values and with a single substitution (e.g., frolasSifier A to B, or from hold
times to down-down times, but not both). To estimate the matsfor Classifie3 using
down-down times with this model, we would add both the cfessand the feature-set
effect to the baseline and invert the variance-stabilizrmagsformation. Specifically, we
would calculateVST ~1(40.72 + —6.79 + 24.91) = 63.7%. Note that miss-rate estimates
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are dramatically worse for all classifiers when down-dowmes are used instead of hold
times. Based on the relative magnitude of effects in thempater-estimate table, we would
conclude that the feature set (i.e., hold times vs. downrditnves) has a bigger effect on
the miss rate than the classifier, at least in this example.

For the random effects, the parameter-estimate table iosrdéa estimate of the stan-
dard deviation (€.9Guser), (impostor), @Ndo.). The standard deviation is the square root of
the variance, and we report standard deviations simplyusscae find them more intuitive
than variances. For a Normal distribution with standardaten o, one can expect that
95% of values will be withint1.960 of the mean. Consequently, we can use the estimated
per-user standard deviation (., = 12.98) to place prediction intervals around the clas-
sifier's average miss rates. For instance, for Classifiewe can calculate an interval in
which we expect that 95% of users’ average miss rates will lie

VST ~1(40.72 4+ 1.96 - 12.98) = [5.6%, 74.3%)

Obviously, this interval is very wide; it spans nearly twardls of the viable range (0%—
100%). While somewhat discouraging for keystroke dynajrtitis prediction confirms
what we suspected when we looked at the lattice plot of the idaEigure 3.1. Miss rates
depend as much on the user and impostor as on the classifier.

Just as with the per-user variation, we can estimate irlftebased on the per-impostor
variation @ impostory = 7.92). A per-impostor effect means that, regardless of the gen-
uine user, some impostors are harder to detect than otmeoghér words, for every user,
the miss rate is substantially higher for one impostor’s @asthan for another impos-
tor's samples. We can estimate the effect of the per-impoestgation on Classified by
substituting the per-impostor standard deviation intoNbemal interval estimates:

VST ~(40.72 + 1.96 - 7.92) = [14.9%, 59.7%]

This interval is not quite as wide as the per-user intervatjtas still substantial.

Let us call attention to a point of possible misunderstagdAccording to this model,
the presence of a per-user and per-impostor effect meandiffement genuine-user and
impostor subjects have different miss rates. This statermepressed by the model is
stronger than the statement that, due to random chance, whealculate per-user and
per-impostor miss rates, some will be higher than othersh Sappenstance differences in
empirical miss rates are to be expected of any model. Théset®fire incorporated into
the residual noise term. The presence of large per-user emanpostor random effects
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Model Equation:
VST(miss rate)ijrim = p+ (Classifier); + (Feature Set);
+ (Classifier : Feature Set);; + (user)y, + (impostor); + en,
(user), ~ N(0, U2user))
(impostor); ~ N(O, U%impostw))

em ~ N(0,02)

Parameter Estimates:
Parameters classifier  feature set| estimate

(1) baseline A Hold 38.52
(Classifier); B -6.51
C 7.96

(Feature Set), Down-Down 29.31

(Classifier : Feature Set);; B Down-Down -0.55
C Down-Down | -12.66

O’(user) 12.99
O (impostor) 7.93
Oe 21.90

Table 3.2: LMM #2—Another possible LMM built from exampletda This model equa-
tion includes not only a classifier and feature-set effegtrfalable 3.1), but also an inter-
action between the two factors. The parameter-estimate itatiudes estimates for these
new effects. Section 3.5 describes this LMM in detail.

means that there are systematic differences in the averagerates of different genuine
users and impostors. Miss rates are uniformly higher foresosers and impostors and
systematically lower for other users and impostors.

The final term in the model equation)(is the noise term representing the unknown
influences of additional factors on the miss rate. Like thloan effectsg is a Normally
distributed random variable. Its varianeg, expresses a measure of the residual uncer-
tainty in the miss rate. Looking at the parameter-estimatéet the residual standard de-
viation in this model is 22.06. Comparing the three stand@rdations ¢ ,cr), T (impostor)
ando.), we see that the residual standard deviation is higher ti@mthers. Based on
this model, there are substantial per-user and per-impeffiects, but a great deal more
residual noise remains; the residual noise representsithefect of other uncontrolled or
unknown factors that also influence the miss rate.
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3.5 LMM #2: Classifier/feature-set interaction

When we looked at the example data in Section 3.2, we ackulgetethat different clas-
sifiers might be differently affected by a switch from holchés to down-down times.
Looking back at Figure 3.1, we observed that hold times migtitice the miss rate for
ClassifiersA and B more thanC. The model we presented in Section 3.4 is unable to
express such a dependency between the effect of changssifiles and changing the fea-
ture set. For every classifier, substituting down-down $irfa hold times increased the
variance-stabilized miss rate by the same amount; therfeatt effect is the same for ev-
ery classifier. To express a feature-set effect that isréiffiefor different classifiers, we
must introduce an interaction term into the model equation.

Table 3.2 presents a second LMM. This LMM differs from thevwas one in that the
model equation contains @ lassifier : Feature Set);; term, and the parameter-estimate
table has new entries related to this term. This new termtésreoclassifier/feature-set in-
teraction. The presence of this term in the model equaticansthat the effect of switching
the feature sedepend®n the classifier. (Equivalently, the effect of switching ttlassifier
depend®n the feature set.)

In the model equation, the other terms have the same measingdtee previous LMM.
The presence of a term means that the corresponding fac@ohzeeffect. Likewise, in
the parameter-estimate table, the other parameter estifnave the same meaning as in the
previous LMM (though the estimated values themselves miigrdietween the models).
The baseline () is still an estimate of the variance-stabilized miss ratetie baseline
values of the fixed effects: Classifigr with hold-time features. The two estimates for
(Classifier); still denote the change in the variance-stabilized miss wdten Classifiers
B or C are substituted for Classifiet. The estimate fof Feature Set); still denotes the
change when down-down times are substituted for hold times.

However, when ClassifieB or C' is substituted for Classified and down-down times
are substituted for hold times, the change is not simply time sf the classifier effect and
the feature-set effect. The new estimates (f6tassifier : Feature Set);; denote adjust-
ments to the sum of the classifier and feature-set effectswhbstitutions are made to
both the classifier and feature set. The adjustment for sutisy ClassifierC' for A and
down-down for hold times is-12.66, a large negative value. To use this new model to
estimate the miss rate for Classifierand down-down times, we must include the inter-
action term in the calculation. Specifically, we start wille tbaseline estimate and add,
not only the Classifier’ estimate, and down-down estimate, but also the Classifiér
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Down-Down feature-set interaction estimate. Specifically, the mads rs estimated as
VST ~1(38.52 + 7.96 + 29.31 + —12.66) = 70.0%. The negative adjustment from the
classifier/feature-set interaction means that, when dowmn times are used instead of
hold times, the increase in the miss ratéeissfor ClassifierC' than for Classifierd (but
still substantial).

The first LMM, presented in Section 3.4, assumed that theifeatet did not interact
with the classifier in determining the miss rates. Sincedheas no term in the model
equation for the classifier/feature-set interaction,gleeuld be no interaction. This second
LMM, has terms that enable it to express a classifier/featatanteraction. One might
ask whether this second, more complicated model is bettee st is more expressive.
The challenge of choosing among multiple possible modebslarting model simplicity
and expressiveness—will be addressed shortly when metistton criteria are discussed.
First, we will discuss how to construct an LMM model equateord parameter-estimate
table from a set of evaluation results. Then, we will desctite model-selection procedure.

3.6 Parameter estimation

The parameter-estimate table is typically created afteintbdel equation is selected, but
it is easier to describe this step first. We simply have torasstinat a model equation has
already been selected. Given a model equation like eithéteobnes presented already,
an analyst has a variety of options for estimating the patarsde.g.,u, (Classifier) g,
(Classifier)c, (Feature Set)uold, O(user)s O(impostor), @Ndo.) from the data. A traditional
parameter-estimation approach, and the one used in thik, womaximume-likelihood
estimation. From any set of parameter estimates, one canlatd the probability of
the data given those estimates; this probability is caltedlikelihood of the data. The
likelihood calculation can be considered a function of tlaeameter estimates, and the
maximume-likelihood estimates are those parameter estsiat which the likelihood func-
tion achieves its maximum value (Searle et al., 2006).

For simple model equations, one can derive a maximum-tikeli solution to the prob-
ability density equations through mathematical analyiss, taking derivatives of the like-
lihood function, setting them to zero, and solving for a farameters). However, for most
mixed-effects model equations, the solution must be obthinrough iterative optimization
and numeric integration procedures. A more complete dsscuf these computational
issues will be presented in Section 3.9.

Note that maximum-likelihood methods have been shown tdymre biased estimates
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of the variance parameters (e.g2). The favored method is a slight elaboration called
REML estimation (for restricted or residual maximum likedod) which addresses the
bias in maximume-likelihood estimation (Pinheiro and Ba®#300). For this work, we use
REML estimates whenever possible. As detailed below, mamnrikelihood estimates
must be used during model selection.

Maximizing the likelihood function is not the only approatthparameter estimation.
Bayesian approaches to parameter estimation are alsd@f&si LMMs, although when
taking that approach LMMs are usually just callei@rarchical models The distinction
between fixed and random effects is murky (or even murkieg Bayesian framework
(Gelman, 2004). Concerns over the philosophical diffeesnoetween likelihood-based
and Bayesian approaches to parameter estimation are tedigg the fact that the actual
estimates are often very similar (Wasserman, 2003). Maxirtiikelihood methods are
considered more traditional and less controversial; istvork, we use them exclusively.

3.7 Model selection

When outlining the parameter-estimation procedure in tlegipus section, we assumed
that a model equation had been given. A separate procedneeded to determine which
of many possible alternative model equations offer the fite$tor example, in our running
example, we have presented two model equations: one withsaifier/feature-set inter-
action (Section 3.5), the other without (Section 3.4). Wedha procedure for choosing
which of these (and other) model equations is best.

The model selection procedure we use begins by identifyfagiy of possible models
for consideration, and then searching the family for the ehtitht is best supported by the
data. In this section, we describe this procedure.

3.7.1 Constructing a family of models

We use a fairly common procedure of crafting two model equati—one simple and one
complex—that act like lower and upper bounds defining a farafl model equations.

Specifically, a model equatiom is in the family if and only if (1) all the terms in the
simple model equation are alsosm, and (2) all the terms imn are also in the complex
model equation. In this way, the simple equation is analsgoa lower bound on the mod-
els in the family, while the complex equation is analogouaraipper bound. Establishing
such boundary equations is a standard practice dstygwise model selectipthe name
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Lower Bound: Simplest Model Equation

VST (miss rate)ijr, = p+ (user) + (impostor); + ey,
(user)i ~ N( ’ (user )
(impostor); ~ N(0,0 (zmpostm"))
er ~ N(0,02)

Upper Bound: Most Complex Model Equation

VST(miss rate)ijrim = p+ (Classifier); + (Feature Set);
+ (Classifier : Feature Set);;j + (user)y, + (impostor); + em
(user), ~ N(0, a(
(impostor); ~ N(0, J(mpostor))
em ~ N(0,02)

user))

Figure 3.3: Two model equations that define a family of madéction candidates. When
performing model selection, an analyst must define a fanfigaodidate models to be, in
effect, the search space. A family can be defined by two bagneguations. A simple
eqguation acts as a lower bound on the family of candidate tepalémodels in the family
must have all the terms in the lower-bound equation. A cometpiation acts as an upper
bound on the family; no model in the family can contain ternos in the upper-bound
equation.

for the procedure we employ in our analysis (Venables anteRifi997).

For instance, continuing with our running example, we miggd the simple and com-
plex model equations in Figure 3.3. The simple equationeafitjure describes a model in
which the only factors that affect the miss rate are per-effects(user), and per-impostor
effects(impostor),. The complex model equation includes not only those randiéects
but also the fixed effects for the classifigrlassifier);, the feature setFeature Set),;, and
their interaction Classifier : Feature Set);;.

According to the minimal model equation, the probabilityaahiss would be the same
regardless of the classifier. The only sources of variatrenlae genuine-user subject on
whom the classifier was trained and the impostor subject ekasple was used to test the
classifier. One might ask whether an even simpler model niightsed as a lower bound.
The simplest model would contain only one term, the basdline so why require all
models in the family to include per-user and per-impostodoam effects? On some level,
the range of models under consideration is the prerogafitkenanalyst. In this case,
we choose to include the per-user and per-impostor randf@otgfin all models because
they are present in the experimental design. Not includiege random effects would be
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akin to treating samples from the same subject as indepewndiem in fact they are surely
correlated—a statistical fallacy callsdcrificial pseudoreplicatiofHurlbert, 1984).

Specifically, if the per-user and per-impostor terms wetemitne model, the parameter
estimation and subsequent analysis would treat the evatuagsults as equivalent to one
in which all 90 impostor attempts (10 genuine-user subjecgsimpostor subjects) came
from different subjects. Much stronger inferences can bdenahen data are collected
from 90 subjects than from 10 subjects, and we believe it isséake to treat the two kinds
of experiment as equivalent in the event that our modekselecriteria finds no evidence
of per-user and per-impostor effects. While different gsia make different choices with
respect to this issue, our position is reasonably commomgrnaoalysts (Bolker et al.,
2009).

According to the maximal model equation, the classifier aatiure set have effects,
and their effects interact. One might ask whether an evere mamplex model might be
created by creating a classifier/user interaction or ainggostor interaction as well as the
classifier/feature-set interaction. Such higher-orderactions among random effects and
interactions between fixed and random effects are certpiodgible. However, there are
both practical and theoretical issues with models contgiauch terms. Estimating random
effect terms involves estimating a large number of interniamgdeffects, and estimating in-
teractions involving random effects often involves a camalorial explosion in the number
of these intermediary effects. For instance, a user/ingpasteraction requires estimating
an intermediary effect for every combination of user andastpr. There would effectively
be one such estimate per evaluation result (i.e., per ogawtor miss rate). When the
number of effects is of the same magnitude as the amount af tthet parameter-estimation
procedure becomes both slow and unreliable. In theoryetbstsmates will have high vari-
ance and are likely to be wildly inaccurate. Because of thetpral and theoretical issues,
we do not consider models with interacting random effecthismwork.

Strictly speaking, we should not refer to these intermgduer-user, per-impostor and
per-user/impostor effects &stimatesper se. To be more precise, we should call them
best predictionssince they are predicted values of random variables, nimh&®s of pa-
rameters (Searle et al., 2006). The need for such nuancadthtdogy rarely arises in this
work, but we acknowledge the difference between estimaigpeedictions for the readers
attuned to the subtle distinction.

Like the decision to treat an effect as fixed or random, théyahhas some discretion
when choosing the bounds of the model family. For this wdrk,ttvo random effects are
the genuine user and the impostor, and based on the thebeetttpractical considerations,
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we always include these random effects in our models, andewermodel interactions in-
volving them. More complicated models may be considerederfuture. In the meantime,
the proof that our current model families are acceptablébeilseen in the success of the
validation step (described in Section 3.10).

Note that we adopt arinciple of hierarchywhen working with a family of models.
According to this principle, if a higher-order interactiamong fixed effects is part of a
model, then we also include all the lower-order fixed effest®Iving the same factors.
For instance, we cannot have a classifier/feature-setaictien term in a model without
also including individual classifier and feature-set termkis principle is applied partly
for theoretical and partly for pragmatic reasons. For soxpeemental designs, parameter-
estimation procedures break when the principle is violaSgcifically, parameter estima-
tion involves solving systems of linear equations, and wittenprinciple of hierarchy is
violated, relevant matrices sometimes become singulaegnkxhen computational issues
do not prohibit the principle of hierarchy, we observe itdnese interaction effects are often
more easy to interpret in conjunction with main effects évaay, 2006).

3.7.2 Selecting the best model in a family

Having constructed a family of candidate models, we needatify the best model in
the family. Various criteria have been proposed for commmamodels. The one we adopt
is Schwartz’s Bayesian Information Criterion (BIC). As dissed by Yang (2005), this
criterion has the desirable property that, in the limit.(ias the amount of data increases),
the BIC will correctly select th&rue model from a family of models if the true model is in
the family.

Intuitively, the BIC offers a trade-off between model exgg@eness and simplicity. A
more expressive model provides a better fit for the data. Bi@ the fit is measured in
terms of the likelihood function. Recall that maximum-likeod parameter estimates are
those which maximize the likelihood of the data. Of two msd#ie one whose maximum-
likelihood parameters produce a higher likelihood offele#er fit for the data. However,
a better fit often comes at the expense of simplicity. With Biitnplicity is measured in
terms of the number of parameters. A model with fewer pararadgs simpler, while a
model with more parameters is more complex.

The specific equation for calculating BIC is as follows (Heast al., 2001):

BIC=-2-L+dlnn
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wherelL is the log-likelihood of the modet] is the number of parameters, amd the num-
ber of observations. The first term® - L) is a measure of model fit, and the second term
(dInn) is a measure of simplicity. To calculate the BIC, we perf@anameter estimation
(as described in the last section), record the logarithnihefmaximum of the likelihood
function (L), count the number of parameters in the parameter-estitalale (/), and note
the amount of datan).

A lower BIC score is preferable. Suppose we had to choosedsgta model with few
parameters and a model with many parameters. The model wite parameters (higher
dInn) would typically offer a better fit (lower2 - L.). By comparing BICs, we decide
whether the better fit of the more complex model outweighstiditional complexity.

Let us note one procedural issue when performing BIC-basedehselection using
mixed-effects models. REML estimation is incompatiblehatihe BIC heuristic because
the likelihood calculations produced from REML estimatagénbeen transformed in such
a way that likelihoods cannot be compared across models. n\Wbmparing two mod-
els using BIC, the maximum-likelihood estimates are usencela model is selected, the
parameters are re-estimated using REML. Intuitively, we the maximum-likelihood es-
timates because, despite their bias, they allow us to do hsatection. Then, once we
have chosen a model, we can switch to the better REML estandtas series of steps is
common practice in LMM analysis (Zuur et al., 2009).

Returning to the running example, we presented two mode®&eations 3.4 and 3.5;
they differed in that one contained a classifier/featuteirgeraction while the other did
not. We raised the question of which of the two models was s@sported by the data.
The BIC score for the model from Section 3.4 (without the sifeer/feature-set term) is
4962.40; the BIC score for the model from Section 3.5 (withdlassifier/feature-set term)
is 4965.37. The first score is lower, and so model selectiaridvchoose the model with no
classifier/feature-set interaction. Based on the anally$iss example, we would conclude
that there was insufficient evidence to support a classdeture-set interaction. (Note that
this example is only for illustrative purposes. The invgation in Chapter 6 revisits this
issue using more data, and we do find that a model with a clexgtfture-set interaction
term has the lowest BIC.)

The size of the family of candidate models can grow quitedafghere are a lot more
terms in the maximal equation than the minimal one. The dizleeofamily is exponential
in the number of terms, which is itself exponential in the temof factors. For these
large families, it is common to employ stepwise model seédectIn particular, we start
with the maximal model equation, and we calculate the BlCalloodels generated by
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removing one term from the maximal model. Whichever modsltha lowest BIC, we use
to start the next iteration. We calculate the BICs of all medgnerated by removing one
term from the model chosen in the previous iteration, andsbdhe one with the lowest
BIC. The process iterates until we arrive at the minimal rhedeation. From the models
encountered in this search, we choose the model with theskdBI€ overall. This iterative
procedure is calledtepwise model selectigilenables and Ripley, 1997).

Stepwise approaches such as this one have the undesiraplkertgrthat they are, in
essence, greedy with no assurance that the greedy apprdbatrive at the optimal solu-
tion. However, for large families of candidate models, a&gseheuristic is the only way to
make the search tractable. In this work, we have had the apptyrto compare the full-
search and stepwise model selection approaches in some whseee both are tractable
(Chapters 4 and 5). In all cases, the stepwise approach thershme model as the full-
search approach. That finding gives us some confidence thatdpwise approach finds a
good model even without optimality guarantees.

Once the model family is defined using minimal and maximal etadjuations, our
model-selection procedure is largely automated. Manycgsuadvise against an entirely
automated model-selection procedure (Burnham and Ande8®2). The common con-
cern with a fully automated process is that one blindly stisé correctness of the selected
model, ignoring the other models that may offer nearly thees@xplanatory power. An
analyst often has expertise that can be used to guide mddetisa in a sensible direction.
However, since this research is in its early stages, we drabte to rely much on prior ex-
perience. Instead, we rely on the validation step to ensatehe LMM produced through
this largely automated process is useful for predictingdisealts of subsequent evaluations.
In the future, researchers might use our models as starntimgsp and the community will
develop the necessary expertise to dispense with autompededdures.

3.8 Testing hypotheses

So far, we have explained how to find an appropriate model szrdee the evaluation
results (i.e., the effect of factors such as the classifierfaature set on the miss rate).
Now, we explain how we use such a model to draw conclusionstaiassifier behavior.
Specifically, we will be interested in answering two kinds@dearch questions. The first
kind of question is whether a particular factor (e.qg., tredtiee set) has a significant effect
on miss rates. The second is which values of a factor (e.gchndiassifiers) have the
lowest miss rate.
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We use traditional statistical hypothesis testing to amdwe¢h kinds of questions. In
both cases, we employ the notion ofiall hypothesisandstatistical significancéDodge,
2003). In the first case, testing whether a factor has antetfee null hypothesis is that
different values of the factor (e.g., different features}elo not differently affect the miss
rate. In the second case, identifying which values of a fa@a., which classifiers) have
the lowest miss rate, there are multiple null hypotheses foneach pair of classifiers. For
two classifiers A and B, the null hypothesis is that their miss rates are the same.

Hypothesis testing is relatively simple in theory but coivgled in particular cases.
One must find an appropriate test statistic from the datalzr derive the distribution of
that statistic under the null hypothesis (Casella and Be&f#?2). If the test statistic has
a sufficiently smalp-value—meaning that the statistic is sufficiently far into the tHiits
distribution—we reject the null hypothesis (e.g., suctlraxte values occur with less than
5% probability). In our case, finding an appropriate tedistia s relatively easy; deriving
its distribution and correspondingvalue are comparatively difficult.

The relevant test statistics are simple arithmetic contluina of the parameter esti-
mates and their standard errors. For example, to test whitthdeature set has a signifi-
cant effect, an appropriate test statistic would be thenegéd effect divided by its standard
error. In the first LMM (from Section 3.4), the estimated effevas 24.91. Thstandard
error of the estimate—which we have not described in detail, butkvis also calculated
during parameter estimation—is 1.90. The test statistid i$1 /1.90 = 13.12).

With simpler modeling techniques than LMMs (e gtests and ANOVA), this same test
statistic arises during hypothesis testing (Weisbergb20When those simpler modeling
techniques are used, the test statistic can be shown to hadistaibution with a degrees-
of-freedom parameter that can be calculated from the datdortuinately, with LMMs,
the test statistic does not have distribution with an easily calculated degrees-of-freado
parameter (Bates, 2006).

When the precise distribution of the test statistic canmotiérived analytically, as in
this case, the analyst has various options. A typical optidmch we employ, is to find its
asymptotic distributiorand use that. Because of the central limit theorem, as thei@mo
of data increases (e.g., the number of subjects), thellisivn of many test statistics con-
verge to standard Normal distributions. Statisticiansreationally recommend around 30
subjects to justify asymptotic arguments (Wackerly et241Q2). The minimum number of
subjects in the investigations in this work is 26, withingarof the recommended number.

A further complexity arises when we perform many hypotheessss at once. We will
have two reasons to perform multiple tests. We intend to answultiple questions within
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each investigation (e.g., one test for each potentiallyénftial factor). Also, some ques-
tions require multiple tests to answer. For instance, totiflethe top performing classifiers
among the three in the example, we must make three compari€bnbetweed and B,

(2) betweend andC', and (3) betwee? andC'. In general, when a factor takes more than
two values, and we wish to identify which value (or valuesutein the lowest miss rates,
we must make comparisons between all pairs of values.

Multiple testing is a problem because the standard hypmhesting framework aims
to limit the probability of mistakenly rejecting the null pgthesis (called aype | erroy).
Specifically, if the null hypothesis is true, we intend toilinne probability of a mistaken
rejection to 5%. However, if we make three comparisons, anddch one we have limited
the probability of a Type | error to 5%, the overall probaiilof at least one Type | error
may be higher than 5%. For instance, if the probability of atake is 5% for each of three
comparisons, and the three probabilities are indepenétamnthe sake of simplicity), then
the overall probability of making at least one mistaké4s3% (i.e.,1 — (1 — .05)3).

Multiple testing issues have been studied extensivelyerdint options are available,
depending on the particular statistical model and the kirigsiestions being asked (Miller,
Jr., 1981). In our work, all of the questions can be framedemms of testing a null hy-
pothesis that a particular linear combination of paranseteequal to zero. For instance,
referring back to Table 3.1, the LMM has 4 fixed-effect partarse 1., two parameters cor-
responding td Classifier); (one for B and one forC), and ong Feature Set),; parameter.
For the sake of this discussion, let us denote the four paeamas., (B — A), (C — A),
and(DD — Hold). This naming scheme follows from the logic that ¢ — A) parameter
represents the effect of substituting Classifiefor A.

To test the null hypothesis that there is no difference inrttigs rates of Classifiers
A and B, we would test whether parametg8 — A) = 0. Analogously, to test the null
hypothesis that there is no difference in the miss rates a$<tfiersC’ and A, we would
test whether parametét’ — A) = 0. To test the null hypothesis that there is no difference
in the miss rates of Classifie¢sand B, the situation is more complicated but only slightly.
The effect of substituting’ for B is just the sum of substituting for B and thenC' for A.
So, the null hypothesis i€ — A) — (B — A) = 0. In all cases, the null hypothesis tests
whether a linear combination of the parameters is zero.

When multiple hypothesis tests involve only testing lineambinations of the param-
eters, the set of tests can be organized into a matrix, edaemoaepresenting one of the
parameters, and each row corresponding to a test (i.eearloombination of the parame-
ters). This matrix is called @ontrast matrix When the tests can be organized into a contrast
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uw (B—A) (C—A) (DD - Hold)
classifier: B - A 0 1 0 0
classifier: C - A 0 0 1 0
classifier: C-B 0 -1 1 0
featureset: DD - Hold O 0 0 1

(a): Contrast matrix

effect stderr  t.staf p.value

classifier: B - A -6.787 2.325 -2.919 0.0133
classifier: C - A 1.629 2.325 0.700 0.8778
classifier: C - B 8.416 2.325 3.619 0.0012

featureset: DD - Hold 24.907 1.899 13.118<.0001
(b): Test results

Table 3.3: Hypothesis tests comparing different classifeard feature sets. Panel (a)
presents the contrast matrix that represents the four fdste that each test can be repre-
sented as a linear combination of the parameters. Panetgbgmts the results of the four
tests: p-values, effect size, estimated standard error, tastadtistic. If ap-value< .05 is
judged significant, this set of tests finds (1) little diffiece between classifiersandC, (2)

a significant difference between those two classifiers aaskdierB, and (3) hold times
offer a significant reduction (statistically and practighin miss rates.

matrix, one can use the multiple-testing solution providgdHothorn et al. (2008). Given
a contrast matrix, this approach uses the parameter esspiaeir standard errors, and the
correlations between those estimates to correcpthaues for multiple testing. In other
words, thep-values of each test are adjusted so that if they are all coedpa a threshold
significance level of 5%, the probability of making even ogpd'l error across all the tests
is limited to 5%.

There are some standard contrast matrices for testingpkntiy common sets of hy-
potheses. In particulafukey contrastare often used when a factor takes more than two
values (e.g., 3 different classifiers), since they test gachof values for a significant dif-
ference (e.g., Classifiersvs. B, B vs.C, andA vs. (). We will use Tukey contrasts when
identifying the top performing set of classifiers. Not evesst corresponds to a set of stan-
dard contrasts, and in some cases, we will be forced to wuitean linear combination
of parameters. The manually-created contrast matricedemaibed as best possible in the
text. They are also provided in the online supplement towluek (described in Chapter
7).

To ground this discussion in our running example, Table 3€3gnts a contrast ma-
trix and the results of four simultaneous hypothesis tebtsee of the tests compare the
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three classifiers using Tukey contrasts to compare eaclopelassifiers. The fourth test
compares down-down and hold times. Panel (a) presents ttieasbmatrix for this set of
tests. As described, there is one column for each parantedesree row for each test. Each
test is encoded as a linear combination of parameters, @&duih hypothesis is that the
combination equals zero.

In Panel (b), the test results are tabulated. The estimatiee wf the parameter com-
bination is given along with its standard error. Thstatistic (i.e., the test statistic) is the
ratio of the estimate and its standard error. Phelue in the last column has been ad-
justed for multiple testing (i.e., they are larger than theyuld be if any one of the tests
were conducted in isolation).

Based on this table, we would conclude that Classifies better than Classifierd
or C. Thep-values whenB is compared to each of the other two classifiers are below
.05. Since thep-value for the comparison of ClassifiedssandC' is so high, there is little
evidence that the two classifiers are different (i.e., wainethe null hypothesis for now).
Regarding the feature set, the effect of switching from hwitees to down-down times is
highly significant (with thep-value calculated as beloWw0001). While the test results in
this section are presented for illustrative purposes (ciehsific conclusions), the analysis
would support our initial observation that using hold tinmegead of down-down times has
more effect on miss rates than the choice of classifier.

3.9 Computational details

All analyses in this work used the following software: thetRtistical programming envi-
ronment, version 2.13.1 (R Development Core Team, 2008); itte4 mixed-effects mod-
eling package, version 0.999375-41 (Bates, 2005); anchihé conp multiple-comparison
package, version 1.2-7 (Bretz et al., 2011).

As noted in Section 3.6, parameter estimation for LMMs rezginumerical optimiza-
tion; the closed forms for the maximume-likelihood soluarannot be derived analytically.
Thel mer function in thel ne4 package implements the parameter-estimation procedure.
Options to the function enable us to switch between maxinikelihood estimation (dur-
ing model selection) and REML estimation (after the modelagipn is chosen). The BIC
calculation used in model selection is also part oflthe4 package. The log-likelihood
calculations of different statistical packages oftenatity a constant factor (e.g., because
they drop different constant terms when optimizing for perfance). However, since we
only compare BIC scores from LMMs fitted using theer function inl me4, we avoid
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this pitfall.

Most of the evaluations and all of the analyses were perfdrorean 8 core Intel i7
CPU (2.8GHz) workstation, running the Linux (Redhat 4.2 @grating system. Because
some investigations required a massive number of evaluatits, and because these eval-
uations can be run in parallel, we distributed them acros2A®odes of a Condor cluster
maintained by Computing Facilities in the CMU School of Cangy Science. The Condor
cluster included 12 servers each running 10-12 virtual mash Each virtual machine
acted as a Condor node running Linux. When a job is submittelet cluster, nodes are
allocated at random, dependent in part on the running jobshefr cluster users.

3.10 Validation

While LMM model selection and parameter estimation are th@asesound statistical the-
ory, the analyst does face many choices in the process: thei@eto treat some factors
as fixed effects and others as random; the choice of simple@mglex boundary model
equations during model selection; the use of maximumilikeld estimates and BIC-based
model selection. One could argue that these series of dasisan guide the results in such
a way that they confirm the analyst’s biases rather than wargaya model that best sup-
ports the data.

To avoid such an argument, we validate the model by demadmgjras usefulness.
Specifically, we use the fitted model to make predictions abfmairesults of subsequent
evaluations. The subsequent evaluation is then perforamadl the results are compared
to the predictions. If the model is able to predict the ermates of the classifiers and
which factors cause those error rates to increase or degrémees it has demonstrated its
usefulness regardless of the choices the analyst made wéeimg it.

This validation procedure is already used in standard atialus of machine-learning
algorithms (Hastie et al., 2001); separate data are useaimcind test the algorithm. When
collecting data, researchers collect a primary data setvithtiold a second data set for the
validation. The primary data set is used to train the algoriand produce a classifier; the
second data set is labeled using the classifier. The clagsitiduced labels are compared
to the true classes, and the accuracy of the classifier islisstad.

Analogously, we perform a primary and a secondary evaloatioeach evaluation, the
same classifiers are evaluated under the same conditiongevdq the subjects acting as
genuine users and impostors in the two evaluations areaeparhe primary evaluation
is conducted with typing data from 2/3rds to 3/4ths of thaltget of subjects, and the
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secondary evaluation is conducted using typing data frarémainder of the subjects.
These proportions are typical of the split between traiing testing in machine-learning
evaluations (Mitchell, 1997).

One might ask why we opted to use a single training set andsetstMore typical
in machine learning is to use cross-validation: repeateglitting the data into several
different training and test sets to produce multiple estasaf accuracy. Under standard
assumptions, the average of these estimates vary lesshbastimate produced from a
single training/test split (Hastie et al., 2001).

A single training/test split was used because the standauthaptions of machine learn-
ing may not be acceptable assumptions in computer-secesi&arch (Sommer and Paxson,
2010). One oft-cited threat to security technologiesaacept drift Intuitively, concept
drift is a term used to explain why a technology (e.g., arusittn-detection system) may
appear to work initially, but accuracy degrades becauserticonment slowly changes. In
our work, concept drift is not only a threat for the class#iére., because typing behavior
might evolve over time), it is a threat for the LMMs. Subjeetmitment occurred over
several years and through various means (e.g., classipatiia, active recruitment, etc.)
One could imagine that some aspect of subject behavior rdigihbver this time period.
Cross-validation would have obscured such drift, whersasirggle training/test split will
reveal it.

We adopt the convention of splitting the data into primarg aacondary sets chrono-
logically. The data for the secondary evaluation are ct#ieafter the data used for the
primary evaluation. As such, our validation step resemiblesypical scientific practice of
replicating important scientific experiments to confirm efute the initial results.

For illustration, we conduct a mock validation of the LMM iafdle 3.1. We collected
a secondary data set by having 10 new subjects type the pakgigdRoanl 200 times.
As in the primary evaluation described in Section 3.2, weaarevaluation trial for each
combination of the three classifierd,(B, andC), two feature sets (hold and down-down
times), and 10 subjects. In each trial, the given subject dessgnated as the genuine
user, and the given classifier was trained using 100 repesitbf the genuine-user subject
typing the password. The remaining 100 repetitions werel isdune the classifier to
obtain a 5% false-alarm rate. Then, each of the other 9 sishj@the secondary data set
are designated as impostors, and the first 50 repetitionsdaxch one are presented to the
trained classifier. The miss rate is calculated from thesdias's response.

Figure 3.4 shows the results of this secondary evaluatibay &re laid out in the same
way as the results of the primary evaluation were in Figuie 2s in the earlier figure,
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Figure 3.4: Example results from secondary evaluation fodehvalidation. After results
of a primary evaluation (shown in Figure 3.1) were used tddoan LMM, data were
collected from 10 more subjects and used to conduct a seppordaluation. Genuine-
user subjects have been ordered from least to greatespavaias rate. As in the primary
evaluation, the wide range of miss rates within each partef@reach user make it difficult
to interpret the results. The purpose of the validation isgtablish whether the model
provides an accurate interpretation.

for each classifier and feature set, some miss rates are ldwthers are high. For most

genuine-user subjects, some per-impostor miss rates ararld others are high. This

figure offers a reminder as to why we need statistical modetnhelp us make sense of
evaluation results. By comparing the models predictioribese results, we check whether
the model offers an accurate description of how miss ratesfiected by the classifier,

feature set, user, and impostor.

Since the model predictions are quantitative (e.g., migsyawe cannot simply vali-
date the model by checking whether the predicted miss rajesl ¢he actual miss rates.
Differences between the predicted and the actual erros eateto be expected. In fact, the
model predicts a high level of per-user and per-impostaiaidity (with the higho .,
ando(impostor) €StiMates).

To validate the predictions, the following procedure isdisEirst, we use the model
to make predictions about the average miss rates and thespedeviations. Specifically,
we estimate 95th percentile prediction intervals for theyser miss rates. For instance, in
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Figure 3.5: Model predictions and validation data for tharaple evaluation. The panels
on the left and right presents results using hold times amdheldown times respectively as
features. In each panel, results are presented for the ¢lassifiers in separate columns.
Horizontal lines delineate the 95% prediction intervalsdach classifier from the model.
The blue dots indicate the per-user miss rates for the 1@ urséine secondary evaluation
data set. Nearly all actual results fall within the predicietervals (with some exceptions
to be expected), indicating a successful validation.

Section 3.4, we calculated a 95% prediction interval fordterage miss rate for 95% of
users using Classifiet and hold times:

VST ~1(40.72 4+ 1.96 - 12.98) = [5.6%, 74.3%)

The numbers come from the estimatesiaind o,y in Table 3.1. From the secondary-
evaluation results, we calculate per-user average miss fat each combination of fixed
effects (e.g., for each combination of classifier and femtat). We graphically plot the
prediction intervals and overlay the actual results from skcond evaluation. Based on
these plots, we assess whether the predictions of the mdateurate.

Figure 3.5 presents the results of this first validation .stegr each classifier and fea-
ture set, we plot the 10 points corresponding to the averageger miss rates for the 10
genuine-user subjects in the secondary evaluation. Supesed on each set of points is
the prediction interval calculated from the model. Mostlo points lie within the pre-
dicted interval, indicating that the model is making acteiaredictions. A few points do
lie outside the intervals, but a few such points are to be &epe Of particular note, one
can observe that the predicted intervals and actual refsultdl three classifiers are much
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higher for down-down times than for hold times. This obsgorafurther confirms our
conclusions about the relative importance of the feature se

As already noted, because of the large per-user varianegrédiction intervals are
quite large. One might wonder whether they are overly latigereby ensuring that the
results of the secondary evaluation fall within them. Toradd this potential issue, after
the initial assessment using prediction intervals, wegrerfa more comprehensive check
that the model accurately predicts the results of the sergnevaluation. Based on the
model, the per-user, per-impostor, and residual effeatsldhall be Normally distributed
with zero mean and a particular variance (given by the staidlaviations in the parameter-
estimate table).

The more rigorous assessment of the model will check not thdyaccuracy of the
average prediction but the distributional charactesstitthe errors in the predictions. For
each miss rate in the secondary evaluation, we calculatdiffeeence between the miss
rate and what the model predicts based on the classifier atdréeset. This produces
90 miss-rate differences for each classifier and featureesabination (0 genuine-user
subjectsx 9 impostor subjects). We decompose these miss-rate diffegseinto per-user
effects, per-impostor effects, and residual effects. amheclassifier and feature set, we
calculate 10 per-user effects by averaging the 9 differemoenlving the same genuine-
user subject. Likewise, for each classifier and featureveetcalculate 10 per-impostor
effects by averaging the 9 differences involving the samgoistor subject. Finally, we
subtract the corresponding per-user and per-impostoctdfi@n each of the 90 miss-rate
differences to obtain a residual effect.

Based on the model, the per-user effects should be Normiatiytited with zero mean
and standard deviation equal to the per-user standara@tt@viparameter estimate in the
model. Likewise, the per-impostor and residual effectsuthdoe Normally distributed
with zero mean and their own standard deviations. In each, ¢cawe divide the effects
and differences by their standard deviation according ¢orttodel, the resulting values
should follow standard Normal distributions. We can as$esg closely the results meet
this assumption by using@Q-plot (Venables and Ripley, 1997).

Figure 3.6 present9Q-plots for the per-user, per-impostor, and residual effetit a
QQ-plot, the quantiles of the empirical distribution of thealare compared to the quantiles
of a Normal distribution (in this work, though other distitions can be used as well).
Different statisticians and software use different comigrs when assigning the empirical
or theoretical distribution to the or y axes. In this work, we number the axis with
the quantiles of a standard Normal distribution andsttaxis with those of the empirical
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Figure 3.6:QQ-plots for validating LMM predictions from the example ewation. The
left panel assesses the Normality of per-user effects; thdlepanel assesses per-impostor
effects; the right panel assesses residual effects. Remand per-impostor deviations meet
expectations except for one or two low outliers. Residulatsisa slightly heavy tail.

distribution. If the data are Normally distributed, the gtiees should match and the points
should fall along the diagonal line. Deviations from theelindicate deviations from the
standard Normal. Particular properties of the empiricsirdiution (e.g., bias, heavy tails,
and skew) can be read from the deviations.

Reading the deviations in@Q-plot can be something of an art. In panels (a) and (b),
the points below the line on the left side of the panel indicgither a few outliers or a
left-skewed distribution. With only 10 points, it is not [silsle to precisely differentiate
two cases. In panel (c), the slight sinusoidal shape is atshe of a slightly heavy tail
(i.e., extreme points are observed a bit more often thanat@gdrom a Normal distribu-
tion). Such small discrepancies are to be expected, bup&plots are largely consistent
with the modeling assumptions. In such cases, we will cateclihat the validation was
successful. The model accurately predicted the resultseafécondary evaluation

The careful reader will note that even a successful vabdagittempt does not prove
that the initial findings were correct. There should be rplgtiindependent replications
before we can trust a technology with critical security saskuch a reader is right, in that
a single, successful validation attempt—especially bystmae researcher who conducted
the initial investigation—can only be so convincing. Morernk, by many researchers, will
need to be done to truly convince a reader, especially of@isurg result.

3.11 Summary

This chapter introduced linear mixed-effects models (LNINtsoviding examples of mod-
els and some of the intuition behind them. We introduced trexrio perform a variance-
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stabilizing transformation in order to study classifier smiates, without which the assump-
tions of the model would be violated. We describe LMMs thioegample, and we explain
our procedure for using them: apply model selection to firedidbst model from a family
of candidate models, and use maximum likelihood to estirtieeffects of factors in the
model. We investigate these effects using hypothesisitgstn the end, we validate the
model by using it to predict the outcome of a subsequent atialu By comparing the
predictions to the actual results, we establish that theemisdnaking useful predictions.
LMMs offer a means to identify and understand the factorsdffact keystroke-dynamics
error rates. The investigations of the next three chapwed. WIMs to this end.



Chapter 4

Benchmarking Keystroke-Dynamics
Classifiers

In this chapter, we conduct a fairly straightforward invgation to find the top-performing
classifier among a set of promising classifiers for keystdykemics. As should be evident
from the review in Chapter 2, many classifiers have been gegpand evaluated. Unfortu-
nately, the results reported in the past are difficult to careptoo many factors vary from
one evaluation to another. We collect a benchmark data set\aluate 10 classifiers un-
der controlled conditions so that their relative error satan be compared soundly. In the
process, we discover substantial per-user and per-impefééats: some typists are easy to
distinguish and other very hard to distinguish, regardiéske classifier.

4.1 Background

While the basic concept of keystroke dynamics is simplderiht applications and clas-
sification technologies require us to distinguish différends of keystroke dynamics. In
some scenarios, keystroke-dynamics classifiers are usaeitify which typist, from a set
of known typists, submitted a test sample. In other scesadassifiers are used to verify
that the test sample was submitted by a particular knowrstypn addition, the typing
samples can range from login-time data (e.g., usernamegaassvords) or in-session data
(e.g., whatever keystrokes the user happens to type).

The different kinds of keystroke dynamics are relevant bseahey require different
kinds of classification algorithm (i.e., with different iats and outputs). Many machine-
learning algorithms require training samples from evensslthat they learn. Such algo-
rithms cannot be used in applications where the trainingpséesrall come from a single

67
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class (e.g., from a particular known typist). Algorithmseogting on in-session data must
accept arbitrary keystrokes as input while those operaimtpgin-time data can assume
the same keystrokes will be present in all samples (e.gausecthe same password is typed
every time).

These differences in the kinds of algorithm that can be ugeddch application make
it difficult to compare classifiers across applications. fé&#nces in accuracy could be
attributed to the classifier or the application. While sugmparisons can be made, for this
benchmark (and the remainder of this work), we focus on desimgplication. Specifically,
we concentrate on login-time authentication, and on diassithat train on samples from
a single class (often callethomaly detecto)s This application is of particular importance
since classifiers which operate well in this application banput to immediate use. A
classifier operating on login-time typing behavior adds @agd layer of authentication,
in the event that a user’s secret password has been compihn4onrose et al. (2002)
likened this application tbhardeninga password.

Even constrained to one application, many factors beyoacctissifier itself might
make keystroke dynamics work better or worse. In login-@pglications, one can analyze
the typing rhythms of various typing tasks: the user’s 10| imme, password, or some
combination thereof. One can use hold times, down-downgjug-down times, or various
other features and combinations. One can use a greateser lmsmber of typing samples
to train the classifier. These and other differences in hoystkeke-dynamics classifiers
are applied to login authentication might affect classifésults.

Unfortunately, in prior work, these factors have not beeitably controlled in such
a way that classifiers can be compared across studies. Tdbjgekents a summary of
seven studies wherein login-time classifiers were evaluaiach study described one or
more classifier, gathered login-time typing data, condlieteevaluation, and reported the
results. The key observation from this table is that, despéving focused on the same
application of keystroke dynamics, each one used a differeaduation procedure. These
differences make it impossible to soundly compare the wiffeclassifiers across studies.

The table has been split into two sections for readabilitye Tirst column in each sec-
tion provides a reference to the source study. The remaguhgnns provide the following
information:

Classifier: A descriptive name for the classification algorithm usedhia $tudy. Some-
times we use different terminology than the source authorsldrify the type of
calculations that underlie the classification strategy.

Feature Sets: Features used to train and test the classifier. A check irR#tarn-key
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Feature Sets Password
Source Study Classifier ll(?ee;urn Down-down| Up-down| Hold | Length| Reps
1 Joyce and Gupta (199pManhattan v v N/A 8
2 Bleha et al. (1990) Euclidean v 11-17| 30
Mahalanobis v 11-17| 30
3 Cho et al. (2000) Mahalanobiss-NN v v v 7 75-325
Auto-Associative Neural Ngt v~ v v 7 75-325
4 Haider et al. (2000) Outlier Count v 7 15
5 Yu and Cho (2003) SVM v v v | 6-10 |75-325
6 Aradjo et al. (2004) Scaled Manhattan v v v 10+ 10
7 Kang et al. (2007) k-Means v v | 7-10 10
Filtering Testing Results (%)
Source Study Users| Times| #Attempts Updating Threshold | Miss False Alarn
1 Joyce and Gupta (1990) v 1 heuristic 0.25 16.36
2 Bleha et al. (1990 1 v heuristic 28 81
1 v heuristic 28 81
3 Cho et al. (2000) v v 1 zero-miss | 0.0 195
v v 1 zero-miss | 0.0 1.0
4 Haider et al. (2000 2 heuristic [19. 11®
2 heuristic |22.  20.
2 heuristic | 13. 2.
5 Yu and Cho (2003) N/A | N/A 1 zero-miss | 0.0 15.78
6 Aradjo et al. (2004 1 v heuristic 1.89 145
7 Kang et al. (2007) N/A | N/A 1 v equal-errof 3.8 3.8

Table 4.1: Different studies use substantially differevdleation procedures. We char-
acterize the evaluation procedures used in seven studaisagng login-time classifiers

trained only on genuine-user samples. Despite working erséime keystroke-dynamics
application, procedural differences in the evaluationg&eritiimpossible to soundly com-

pare classifier error rates. Every difference offers arrradté/e explanation for different

error rates. (Section 4.1 explains each column of the fable.

column means that tHeeturn key is considered part of the typing task and its timing
features are included in the feature set; a check in the dimwnr column means the
feature set includes times between digraph down-down syehicks in the up-
down and hold column indicate that the digraph up-down evantl key hold times,
respectively, are included in the feature set.

Password—Length: Number of characters used in the typing task (e.g., the assror
password). An N/A indicates the length was not availablenftbe source study.

Password—Repetitions:Number of typing-task repetitions used to train the class(fie.,
samples of a user typing a password repeatedly). A range sriban different
amounts of training data were used for different users withe study.

Filtering—Users: A check indicates that users whose typing times were higatiabale or
inconsistent were identified during data collection andweded from the study.

Filtering—Times: A check indicates that the collected timing data were preegsvith an
outlier-handling procedure to remove extreme values.
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Testing—#Attempts: Number of attempts that users were given to try to autheetsac-
cessfully. For instance, a 2 means a user who was rejectdadghéme would be
given a second chance to repeat the task.

Testing—Updating: A check indicates that the typing profile was updated dumsgjng to
accommodate any changes in the typing behavior over time.

Results—Threshold: The procedure for choosing a classifier's decision threshdhese
classifiers produce an anomaly score expressing the ditferbetween a typing
sample and the genuine user’s typing profile. A thresholdesoused as a deci-
sion boundary between genuine-user and impostor clasksiateuristic’ means
the threshold was chosen using some heuristic describdteisttidy; ‘zero-miss’
means the threshold was chosen to obtain a miss rate of eeugl-error’ means the
threshold was chosen to obtain equal miss and false-aldes ra

Results—Miss/False Alarm: Reported miss and false-alarm rates. Superscript (a) égnot
that the detectors were combined into an aggregate detectdronly the results
for the aggregate were reported; superscript (b) indidd&isonly results for two-
attempt authentication were reported.

For every one of these evaluation factors, the table shomtsatieast two studies differ in
their treatment of the factor. In some cases, such as Pagslength, the factor is allowed
to vary within the study as well. If these factors affect slisr miss and false-alarm rates,
then when these error rates differ across studies, one taaparate the effect of the factor
from the effectiveness of the classifier; the two are confieah

To illustrate the problem we encounter when we try to useitbeature to determine
which classifier has the best performance, suppose we trieahipare two classifiers: the
Auto-Associative Neural Network developed by Cho et al.0O@0Q and the Outlier Count
classifier designed by Haider et al. (2000). The neural netlr@ported miss rate of 0.0%
and a false-alarm rate of 1.0%. The outlier-counting deteltas a reported miss rate of
13% and a false-alarm rate of 2%. Since the neural net hasrbeiss and false-alarm
rates, one might be inclined to conclude that it is betten tha outlier-counting detector.

However, that conclusion is unsound because the tablelsexeny differences be-
tween the procedures used to evaluate the two classifieesndiral net (1) trained on a
different set of timing features, (2) had more repetitiomghe training data, (3) did not
have to deal with users whose typing was inconsistent, dr tiviting outliers in the train-
ing data, (4) was given only one attempt (not two) to coryeedrify the user, and (5) was
assessed using a different type of threshold on the anoroaitg.sAny of these five factors
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might explain why the neural net has lower error rates tharothtlier-counting detector.
If these factors were all controlled, we might discover ttiegt outlier-counting detector
outperforms the neural net. (The results of our benchmallkswpport this very reversal
of the classifiers.)

4.2 Aim and approach

Our aim in this particular investigation is to benchmarkrising classification technolo-

gies under controlled conditions so their error rates cacopepared. The top-performing

classifiers will be the focus of further evaluations in sujpst investigations (Chapters 5
and 6). In addition to comparing the classifiers themselesestablish how much vari-

ation is due to the subjects who participate in an evaluaggenuine-user and impostor
typists.

Our approach is as follows:

1. Conduct an experiment to evaluate a set of classifiers.dl\ecta benchmark data
set, identify and implement 10 promising keystroke-dyremneiassifiers, and evalu-
ate each classifier using the same procedure.

2. Analyze the evaluation results using linear mixed-eff@sodels (LMMs). We build
the LMM, interpret the parameter estimates, and perfornothgsis tests. We iden-
tify the top performing classifier.

3. Validate the model by conducting a secondary evaluaiWdgith the LMM, we make
predictions about the error rates in the secondary evaluaii/e compare the empir-
ical results to the predictions, and we assess the accufalog model.

As an outcome, we identify which classifiers have the lowasireates, and we also esti-
mate how much deviation from the average error to expecifi@rent users and impostors.

4.3 Experimental method

The experiment consists of data collection, classifier @m@ntation, and the evaluation
procedure. In brief, we collected typing data from 51 sulsjeeach typing 400 repetitions
of a password. The various timing features used by resear¢bay., down-down times,

up-down times, and hold times) were extracted from the rata.dden classifiers from

the keystroke-dynamics and machine-learning literatweeevidentified and implemented.
Each classifier was evaluated on the same data and undentkecsaditions, so that their
error rates can be compared.
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4.3.1 Password-data collection

The first step in our evaluation was to collect a sample oftkeke-timing data. We explain
how we chose a password to use as a typing sample, designéaleotiaction apparatus,
recruited subjects to type the password, and extractedad password-timing features.

Choosing passwords for a keystroke-dynamics evaluatitnicls.. On one hand, it is
often more realistic to let users choose their own passwdddsthe other hand, data col-
lection becomes more difficult since different impostor péea would be needed for each
password. Some researchers have suggested that lettisgchsese their own passwords
makes it easier to distinguish them (Araujo et al., 2004)thé choice of a password is
truly a factor that affects classifier error rates, thenrigttisers choose different passwords
could introduce a confounding factor. We decided that timeespassword would be typed
by all of our subjects.

To make a password that is representative of typical, stpasgwords, we employed
a publicly available password generator (PC Tools, 2008)@assword-strength checker
(Microsoft, 2008). We generated a 10-character passwaorthoong letters, numbers, and
punctuation, and then modified it slightly, interchangiogn® punctuation and casing to
better conform with the general perception of a strong passwr he result of this proce-
dure was the following password:

.tie5Roanl
The password-strength checker rated this password asagstoecause it contained a capi-
tal letter, a number, a punctuation character, and morel@raracters. The top rating of
‘best’ was reserved for passwords longer than 13 charadietsaccording to the studies
that were presented in Table 4.1, 10 characters is typidabsé studies that used longer
strings often used names and English phrases that are &asipe.

We set up a laptop with an external keyboard to collect datchvee developed a Win-
dows application that prompts a subject to type the passwisdhown in the screenshot
in Figure 4.1, the application displays the typing task onraen with a text-entry field. In
order to advance to the next screen, the subject must tydétblearacters of the password
correctly, in sequence, and then pré&surn. If any errors in the sequence are detected,
the subject is prompted to retype the password. The subjest type the password cor-
rectly 50 times to complete a data-collection session. Whenthe subject presses or
releases a key, the application records the event (i.e-d&eyn or key-up), the name of
the key involved, and what time the event occurred. An edaeference clock was used
to generate highly accurate timestamps. The referenc& alas demonstrated to have an
accuracy o200 microseconds (by using a function generator to simleyepresses at
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5 MTP Prompter (v.1.2.7.13- 19 July Z007)  Participant ID: t-ksk

.tieSRoanl

tiel

Figure 4.1: Screenshot of the collection software for tgpilata. The subject is prompted
with a character sequence. The program monitors the typirensure that the correct
sequence of keystrokes is entered. When typographicaiseare detected, the subject
is prompted to repeat the sequence, ensuring that the desireber of correct typing
sequences is collected. Each key-down and key-up everdasded with its timestamp.

fixed intervals).

Of course, subjects would not naturally type their passva@rtimes in a row, and they
would type it on their own computers, not our keyboard. Wesetto sacrifice some amount
of realism so we could use this carefully-controlled dadlection apparatus. We had two
reasons for this decision. First, we wanted to ensure theracg of the timestamps (as
described above). Second, we wanted to make the enviroresesunsistent as possible
for all subjects. If some subjects typed the password maguintly than others, or if
different subjects used different keyboards, these @iffees would introduce uncontrolled
factors.

We recruited 51 subjects from within the university. Sutgezompleted 8 sessions of
data collection (with 50 password repetitions in each segsfor a total of 400 password-
typing samples. They waited at least one day between easiosgsto capture some of the
day-to-day variation of each subject’s typing. Additiodaimographic information on the
subjects will be discussed in Chapter 5, where we invegtigliiether personal traits like
age, gender, dominant hand and typing style affect classifier rates.

The raw typing data (e.g., key events and timestamps) cadmnaised directly by a
classifier. Instead, sets of timing features are extractad the raw data. These features
are typically organized into timing vector Different researchers extract different combi-
nations of features (as shown in the Feature Sets columretxtd %.1). Since some earlier



74 CHAPTER 4. BENCHMARKING KEYSTROKE-DYNAMICS CLASSIFIERS

studies considered theturn key to be part of the password, we included Return key
timing features as well (effectively making the 10-chagagiassword 11 keystrokes long).
and we extracted down-down times and hold times for all keythé password. For each
password, 21 timing features were extracted and organiteaivector (i.e., 11 hold times
and 10 down-down times). The times are stored in secondso@sfi-point numbers).

We chose not to include up-down times among our featurese sirey are linearly de-
pendent on the other features (i.e., each up-down time cderinged by subtracting a hold
time from a down-down time). Such features violate the aggiom of linear independence
that many classifiers make. In Chapter 6, we investigate tiber@hoices for the feature
sets affect classifier results.

4.3.2 Classifier implementation

The second step in our evaluation was to implement ten &lzetsdn algorithms that ana-
lyze password-timing data. As explained at the beginnirtgisfchapter (Section 4.1), dif-
ferent keystroke-dynamics applications require diffekends of classification algorithms.
We focused on one kind of algorithm: anomaly detectors sdiass that train on samples
from only a single class (e.qg., typing from one genuine ustrar than from multiple users
and/or impostors).

Unfortunately, the classifiers used in keystroke-dynamasgarch are rarely shared as
working code. Using a classifier proposed in the literategqires re-implementing it on
the basis of a description in a research report. Rather tib@mpting to re-implement each
classifier by adhering as faithfully as possible to the dpson, we attempted to build
a classifier that was faithful to the underlying concept. iRstance, the auto-associative
neural network proposed by Cho et al. (2000) used learratggand momentum parameters
that, on our data, caused the training procedure to fail odyce poor results. We tuned
these parameters and increased the number of epochs usefimg, to produce an auto-
associative neural network that performed better and yeaiged similar in spirit to the
originally proposed classifier.

As reported in Chapter 2, hundreds of keystroke-dynamicliest have been conducted
and dozens of classifiers have been proposed; many of thdogangime anomaly detec-
tors. It would be impossible to re-implement every classifieeviously proposed, so we
selected 10 promising algorithms. Six were chosen fronsdlass presented in Table 4.1,
and four were among “classic” classification methods (&gclidean, Manhattan, Maha-
lanobis, and:-NN).

The classifiers were implemented using the R statisticagrrmming environment (R
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Euclidean Manhattan ScaledManhattan| OutlierCount AutoAssocNNet

Hold( a)

0.05 0.10
Down-Down( a—-n)

Figure 4.2: Contours of the decision surfaces for the 10@mginted classifiers. To create
the plot, a user typedie5SRoanl 50 times, and we extracted taéhold time andan down-
down time from each repetition. The 50 pairs of timing feasnvere used to train each of
the 10 classifiers. Each panel illustrates the typing prédéened by one of the classifiers.
A contour line defines a set of timing pairs of equal similarifferences in two contour
plots represent differences in the profiles learned fromytpimg data.

Development Core Team, 2008). Each classifier has a traptiage and a classification
phase. During training, a set of timing vectors from the ge@wser is used to build a
profile of the user’s typing behavior. During the classificatphase, a new test vector is
assigned a class label and a score. That score is a measussiofildrity with the user’s
typing profile. Lower values indicate similarity, and higalwes express dissimilarity be-
tween the test sample and the training profile. As a resudselscores are often called
anomaly scoresDifferent classifiers assess similarity differently, aacthey assign differ-
ent scores to a test sample. The class label is determinednyaring the anomaly score
to a threshold, and if the score exceeds the threshold, pis tg classified as an impostor;
otherwise, the typist is classified as the genuine user.

When describing these classifiers, we must occasionaltytrés terminology that is
specific to a statistical or machine-learning technique.(¢he vocabulary of neural net-
works); references are provided. Before we delve into thaildeof each of the 10 classi-
fier implementations, Figure 4.2 presents contour plotaohelassifier's anomaly scores
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when trained on the same data set. To create the plot, a ysat.tieSRoanl 50 times,
and we extracted tha hold times and than down-down time from each repetition. The
50 pairs were used to train the 10 classifiers we implemer@ede trained, the anomaly
scores produced by these classifiers were used to generateicplots.

The contours of each classifier are presented along with airespused to train the
classifier. Looking at the contours, one can compare thelgsdéarned by each classifier.
Classifiers with similar contours more-or-less learnedlaiprofiles; they can be expected
to have similar behavior. Those classifiers with markedtfedent contours learned differ-
ent concepts and may have markedly different behavior.

We find contour plots useful for developing our intuition abolassifier behavior. For
instance, consider three groups of points in each panetethmothe center of the cloud of
points, those on the left edge of the cloud of points, andaloogside the cloud in the lower
left. The Euclidean contours radiate out from the centehefdoints. Relatively speaking,
points in the middle of the cloud will have low anomaly scoré®se on the edge of the
cloud will have medium scores; those outside the cloud irdiver-left corner will have
very high scores. In contrast, tiheNN contours radiate from the nearest point, so every
point—be it in the middle of the cloud, on the edge, or outsiaall have a low anomaly
score. The different shapes of the Euclidean &N contours depict the very different
typing profiles learned by these classifiers. With the irdniprovided by the contour plots
in mind, we present the details of the 10 classifier impleaugmnts.

Euclidean. This classic anomaly-detection algorithm (Duda et al.,120@odels each
password as a point prdimensional space, whepas the number of features in the timing
vectors. It treats the training data as a cloud of points,camdputes the anomaly score of
the test vector based on its proximity to the center of tos@! Specifically, in the training
phase, the mean vector of the set of timing vectors is catetla

In the classification phase, the Euclidean distance beteetest vector and the mean
vector is computed. With; andy; representing théth timing feature of the mean vector
and test vector respectively, the anomaly score is caklas

anomaly score =

In Figure 4.2, we see that the contours form concentricesr¢br hyperspheres im di-
mensions) around the central mean vector. As noted abox@rnbmaly score of a point
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depends on its distance from that central mean vector.

Manhattan. This anomaly-detection algorithm (Duda et al., 2001) rddesthe Eu-
clidean classifier except that the distance measure is radidéan distance, but Manhattan
(or city-block) distance. In the training phase, the meactareof the timing vectors is
calculated.

In the classification phase, the Manhattan distance betWveemean vector and the
test vector is computed. Specifically, the difference betwine two vectors is calculated
across each of the 21 features, and the absolute valuessef diféerences are summed.
Again, usingr; andy; as thei-th timing features of the mean and test vectors, respéygtive
the anomaly score is

p
anomaly score = Z |z — il
i=1

In Figure 4.2, we see that the contours form concentric drataaround the mean
vector. As with the Euclidean classifier, points in the cewnfiethe cloud will have low
anomaly scores, and points outside the cloud in the lowewidthave high scores. Unlike
the Euclidean classifier, points on the left edge of the cloaxk relatively low anomaly
scores. Because of the diamond shape of the Manhattan eenpmints that differ from
the center in only one dimension (i.e., horizordalvertical) are assigned lower anomaly
scores than those that differ in multiple dimensions. Spmadly, a 50 millisecond deviation
in one feature is equivalent to 25 millisecond deviationsanh of 2 features, since the sum
total deviation is the same.

Scaled Manhattan. This classifier is similar to that described by Araudjo et 2D@4).
In the training phase, the mean vector of the timing vect®isiculated, and a vector of
standard deviations is calculated as well. This vector hassame length as the mean
vector and contains the standard deviations of each fealtuithe classifier described by
Araujo et al., the mean absolute deviation is calculategats (Empirically, we found little
difference between the two classifiers, and while the meaalate deviation is potentially
a more robust estimator, we used the standard deviatiorofwistency with other scaled
classifiers).

In the classification phase, the calculation is similar ®NMeanhattan distance, but with
a small change. The distances in each dimension (i.e., @r feature) are scaled by the
standard deviation of the training samples in that dimens®pecifically, withz; andy;
defined as with the previous classifiers, and witlas the standard deviation of theh
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feature over the training data, the anomaly score is

p
anomaly score = Z |z; — il /s
i=1
In Figure 4.2, we see that the contours form concentric dredapbut unlike the Man-

hattan diamonds, these ones are wider than they are tall.trdimng data varies more
widely in theDown-Down(an) dimension than in theélold(a) dimension. Consequently,
points on the right and left edge of the cloud of points haweost the same anomaly score
as points on the upper and lower edge of the cloud, despitedinés on the right and left
being 25 milliseconds from the center of the cloud rathen th@amilliseconds.

Outlier Count. This classifier was described by Haider et al. (2000), whtedat the
“statistical technique.” In the training phase, the classtalculates the mean and standard
deviation of each timing feature.

In the classification phase, the classifier computes thdatiesescore of each feature
of the test vector. The-score for the-th feature is calculated as

zi = |z — yil /si

wherezx;, y;, ands; are defined as above. Each of thecores is compared to the two-sided
95th percentile of the standard Normal distribution. Sfeadly, any z-score lower than the
2.5th percentile or higher than the 97.5th percentile wasicered an outlier. Since these
percentiles correspond t61.96, the classifier counts the number o&cores that exceed
these values: )
anomaly score = ZI[ (|z:] > 1.96)
=1

wherel (x) is the indicator function: 1 if is true and O otherwise.

In Figure 4.2, we see grid-like contours. In the middle regta, the anomaly score is
0 because neither timing featuresscores exceed the1.96 threshold. In the 4 rectangles
directly above, below, to the left, and to the right of the dierectangle, the anomaly
score is 1 because one timing feature’score exceeds the threshold, but the other does
not. Finally, in the four corners of the panel, the anomatyregs 2 because both features’
z-scores exceed the threshold. Observe that one potemtdhtion of this classifier is
the granularity of its anomaly scores; only integer valuesMeen0 and the number of
features ) are possible. This granularity can make it difficult to fioee the classifier for
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a particular false alarm rate.

Auto-Associative Neural Network. This classifier was described by Cho et al. (2000),
who called it an “auto-associative multilayer perceptrauike a traditional neural network,
the layout is feed forward and the back-propagation algorits used for training. Unlike

a typical neural network, the structure of the network isiglesd for use as an anomaly
detector (Hwang and Cho, 1999). Intuitively, the trainimgpe teaches the network to pro-
duce output vectors close to the inputs for the trainingarsathence the “auto-associative”
descriptor). Then, during the classification phase, inpatars that produce dissimilar out-
puts are assigned high anomaly scores.

In the training phase, the neural network is constructetl wihput nodes ang out-
put nodes (where is the number of timing-vector features). We ugelidden nodes as
well (as described by Cho et al. (2000)). The network is &dito reproduce each in-
put timing vector as the output. We trained for 500 epocheguai learning-rate of 0.01
and a momentum parameter of 0.03. AMORE neural-network package, version 0.2-12
(Castejon Limas et al., 2010), was used to implement thaitieis

In the classification phase, thefeature test vector is run through the network, produc-
ing a p-feature output vector. The anomaly score is calculatedheagticlidean distance
between the test vector and the output vector. In Figurethe2Neural Net contours re-
semble the Euclidean contours: concentric circles. Indhse, the neural net typing profile
resembles the Euclidean profile. More typically, espegiallhigher dimensions, the two
profiles are very different, and the neural net profile is apromement over the Euclidean
profile.

Mahalanobis. This classic detection algorithm (Duda et al., 2001) redemthe Eu-
clidean and Manhattan classifiers, but the distance mesorere complex. Mahalanobis
distance can be viewed as an extension of Euclidean distareecount for correlations
between features. In the training phase, both the meannauatithe covariance matrix of
the timing vectors are calculated.

In the classification phase, the Mahalanobis distance @ilzed between the mean
vector and the test vector. Specifically, lettimgbe thep-dimensional mean vectoy
be thep-dimensional test vector, and be thep x p-covariance matrix, the Mahalanobis
distance (and the anomaly score) is

anomaly score = /(x — y)TS~1(x — y)
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In Figure 4.2, we see that this classifier’'s contours fortedilellipses. The elliptical
shape reveals that this classifier, like the Scaled Manhatessifier, accounts for differ-
ences in variation across dimensions. The tilt shows tretlhssifier also accounts for
correlations among paired features. In this case, shatteid times correlate with shorter
an down-down times.

k-Nearest Neighbor. Most of the classifiers described above calculate the anoscare
using distances from the test vector to the center of theitrgivectors. Nearest-Neighbor
algorithms calculate distances from the training vect@arest to the test vector (Duda
et al., 2001). Specifically, in the training phase, the meectar of the timing vectors
and the standard deviations of each feature are calculdtbd.training data are scaled
and re-centered to have zero mean and unit variance (i.esuylityacting the mean from
each feature and dividing by the standard deviation). Tassdlier saves this list of scaled
training vectors.

During the classification phase, the classifier performsamee scaling and re-centering
on the test vector. Then, it finds theraining vectors closest to the test vector (using Eu-
clidean distance), where for this investigatibrn= 1 was chosen. The anomaly score is
calculated as the average of thdsgectors. TheANN approximate-nearest neighbor li-
brary, version 0.1 (Mount and Arya, 2010), was used to impgleithis classifier.

Figure 4.2 shows how the contours across the panel depehé distance to the closest
of the training points. Each point in the training data haamomaly score of zero, and the
contours radiate in concentric circles from the nearesitpoi

Mahalanobis k-Nearest Neighbor. This classifier was described by Cho et al. (2000).
In the training phase, the classifier calculates the meaovand the covariance matrix of
the timing vectors. Each training vector is transformedadiswvs:

' =(x—z)"ED*E"

wherez is the training vector (arranged as a columi)s the mean vecto is the set of
eigenvectors of the covariance matrix (each in a separidiencoof the matrix), andD is a
diagonal matrix with the eigenvalues along the diagonaé &@ilgenvectors and eigenvalues
in E andD are arranged in corresponding order (e.g. the eigenvaltineifirst column of
D corresponds to the eigenvector in the first colum@yf

After this transformation, the new training vectors (dextht’ above) have zero mean,
unit variance, and zero covariance between features. Asudtr&uclidean distances be-
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tween points post-transformation are equivalent to Malaes distances between points
pre-transformation. In addition to the mean vector and Gamae matrix, the classifier
saves the list of transformed training vectors.

During the classification phase, the classifier performs#me transformation on the
test vector (usinge, E, and D from the training phase). Then, it finds thetraining
vectors closest to the test vector, where adgaig= 1 was chosen. Since the Euclidean
distance was used to calculate these distances in thedrared-vector space, the closest
training vectors are those with the shortest Mahalanobitsdce in the original space. The
anomaly score is calculated as the average of thelsstances. As with the-NN classifier
implementation, theANN approximate-nearest neighbor library, version 0.1 (Mcamd
Arya, 2010), was used to implement this classifier.

Figure 4.2 shows how the contours of this classifier bear sesemblance to those of
both the Mahalanobis andNN classifiers. Like thé:-NN classifier, the contours depend
on the nearest point, but now the distance is scaled and tiltéhe same manner as the
Mahalanobis ellipses.

k-means. This classifier is similar to that described by Kang et al0@20 It uses thée:-
means clustering algorithm to identify clusters in therag vectors, and then calculates
whether the test vector is close to any of the clusters. Inrdiring phase, the classifier
simply runs theé:-means algorithm on the training data with= 3. The algorithm produces
three centroids such that each training vector should beedio at least one of the three
centroids.

In the classification phase, the nearest centroid to thevéesor (using Euclidean dis-
tance) is identified. The anomaly score is calculated asigiarete between this centroid
and the test vector. The classifier we implemented diffemnfthat described by Kang et
al. because they scaled the distances to each cluster bydhega distance of points in
the cluster. Presumably, in their evaluation, this adjesthproduced better results. In our
preliminary test, the simpler algorithm (with no such atijusnt) performed much better,
SO we used it.

Figure 4.2 illustrates the behavior of this classifier. Tweatcoids have been fitted to
the main cloud of points in the middle of the panel, and ondgro@hhas been fitted to the
three points near the bottom of the panel. The contours ¢fivout the panel emanate from
the nearest centroid.
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SVM. This classifier was described by Yu and Cho (2003). It incaafss an algo-
rithm called a support-vector machine (SVM) that projeats tlasses of data into a high-
dimensional space and finds a linear separator betweentr@dsses. A “one-class” SVM
variant was developed for anomaly detection (Scholkopf.e2@01); it projects the train-
ing data and finds a separator between the projection anditfie.dn the training phase,
the classifier builds a one-class SVM using the trainingamsctin contrast to the classifier
described by Yu and Cho, the SVM parametgrWas set to 0.05, since it corresponds to a
target false-alarm rate and a 5% false-alarm rate seemsdnaile.

In the classification phase, the test vector is projectenltim same high-dimensional
space and the (signed) distance from the linear separatatdslated. The anomaly score
is calculated as this distance, with the sign inverted, ab \thactors with negative scores
are on the same side of the separator as the training dathe@selwith positive scores are
separated from the data. The SVM functionality in kex nl ab package, version 0.9-13
(Karatzoglou et al., 2004), was used to implement the diassi

Figure 4.2 captures the somewhat peculiar behavior of thssifier. Effectively, the
transformation projects the area around each trainingpiatd into one region, and every-
thing else near the origin. As a result, the separating Ipfaee manifests in the original
space as a series of tight ellipses around each data poatigft packing of these ellipses
is an artifact of the small distances between all the pomtkeé projection space.

4.3.3 Evaluation procedure

Consider a scenario in which a user’s long-time passwordokas compromised by an
impostor. The user is assumed to be practiced in typing faeisword, while the impostor
is unfamiliar with it (e.g., typing it for the first time). Wevaluate each classifier’s ability to
discriminate between the impostor’s typing and the genugez’s typing in this scenario.

We start by designating one of our 51 subjects as the gensgre and the rest as im-

postors. We train a classifier and test its ability to recpgtine genuine user and impostors
as follows:

1. We run the training phase of the classifier on the timingarscfrom the first 200
password repetitions typed by the the genuine user. Thsifitasuilds a profile of
the genuine user’s typing behavior.

2. Then, we run the classification phase of the classifier etnithing vectors from the
remaining 200 repetitions typed by the genuine user. Werdeit® anomaly scores
assigned to each timing vector. We find the 95th percentitbede scores and tune
the classifier to operate with this threshold. Such tuninguess that the classifier
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Figure 4.3: Example ROC curve with the 5% false-alarm opeggboint marked. The
curve illustrates the false-alarm/miss trade-off for assiler. The marker indicates the
operating point when the classifier has been tuned to opertit@ 5% false-alarm rate. At
that false-alarm rate, this particular classifier achievé&% hit rate—equivalent to a 29%
miss rate.

operates with a 5% false-alarm rate.

3. Finally, we run the classification phase of the classifiethe timing vectors from
the first 50 repetitions typed by each of the 50 impostors. &éend the anomaly
scores assigned to each timing vector. These scores cdashieimpostor anomaly
scoresfor the particular user. We compare these scores to the topgtareshold
(calculated in step 2), and we determine whether the clesgibuld have recognized
or missed the impostor. From all 50 samples from a particolpostor subject for a
particular genuine-user subject, we calculateg@euser/impostomiss rate for that
combination of classifier, genuine-user subject, and ingrasibject.

This process is then repeated, designating each of the siiggcts as the genuine user
in turn. After training and testing each of the 10 classifigrs have a total of 1,275,000
impostor anomaly scores (10 classifier$1 genuine-user subjects50 impostor subjects
x 50 repetitions) and 25,000 per-user/impostor miss rates.

The process of tuning a classifier to have a 5% miss rate griited on the ROC curve
in Figure 4.3. The hit rate is the frequency with which impostare classified as such
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(i.e.,1 — miss rate), and the false-alarm rate is the frequency with which ge@users are
mistakenly classified as impostors. Whether or not a samspassified as being from an
impostor depends on how the threshold anomaly score is shdbe threshold determines
an operating point on the ROC curve. Over the continuum o&ipts thresholds, the
ROC curve illustrates the hit and false-alarm rates thatldvba attained at each possible
operating point.

For this work, the operating point is chosen to achieve a 3%&falarm rate. Different
choices are certainly possible, but we believe that thiseismts a reasonable choice. A
5% false-alarm rate is a reasonable target for a keystrgkesdics classifier. If 1 in 20
genuine attempts is rejected, the rate is similar to theafgp@ssword typographical errors
(at least in our experience). In either case, the user woaN@ o retype the password
to authenticate. While a higher or lower false-alarm ratey i@ desired under certain
circumstances, a 5% target appears reasonable.

Our decision to use this tuning procedure stemmed from ttledédesirable alterna-
tives in the literature. Equal-error rates are often recemtied as a means of summarizing
classifier performance in a single number (Peacock et &4;20rawford, 2010), but of-
ten that number represents a point on the ROC curve far fremnetjion of interest. For
instance, if one classifier has a 20% EER and another has a ERp\ie can infer very
little about their relative performance at a 5% false-alaate. (About the only thing we
can conclude, based on the convexity of ROC curves, is tleditt classifier's miss rate
is higher than 20% and the second one’s is higher than 30%gcéarsl alternative, used
by Cho et al. (2000), is to analyze the test-sample anomalsesqpost-hoc) to find the
zero-miss threshold. We believe such a procedure has weakgorting rationale than
our 5%-false-alarm threshold. Estimating a threshold tt@ioba target false-alarm rate
requires only genuine-user anomaly scores; estimatingestibld to obtain a miss rate
requires impostor anomaly scores. The latter are presynmaibth harder to come by in
practice, making it seem less practical to tune a classdieperate at a fixed miss rate.

Finally, it may seem that 200 repetitions is an unrealiifildarge amount of training
data. We were concerned that fewer passwords might untatlge one or more classifiers
to under-perform. Table 4.1 on page 69 presented studiekichwelassifiers required up
to 325 passwords for training. Likewise, an unpracticedastpr might seem unrealistic,
since impostors might practice if they knew timing matteréée believe that our choices
are fair for an initial benchmark; subsequent investigetie.g., in Chapter 6) involve
fewer training repetitions and more practiced impostors.
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Classifier False-Alarm Rate Miss Rate

ScaledManhattan 5.0 23.6

KNN 5.0 29.8

SVM 5.0 30.2
OutlierCount 2.9 31.7
MahalanobisKNN 5.0 33.7
KMeans 5.0 35.0
Mahalanobis 5.0 39.1
Manhattan 5.0 41.8
AutoAssocNNet 5.0 56.3
Euclidean 5.0 61.0

Table 4.2: Average error rates for the classifiers on the lreack data. False-alarm and
miss rates are presented as percentages. Classifiers wetkttuhave a 5% false-alarm
rate (insofar as possible), and results are sorted by ntiss ra

4.4 Empirical results

The per-user/impostor miss rates were averaged over egenjimpostor combination to
find the average miss rates for each classifier. These resudtthe corresponding false-
alarm rates are presented in Table 4.2. Because we tunectkaasifier to have a false-
alarm rates of 5%, we should explain the 2.9% false-alarmfoatthe Outlier Count clas-
sifier. As noted earlier, the anomaly scores of this clagsafie so coarse that 2.9% is the
closest operating point to a 5.0% false-alarm rate.

Scaled Manhattan has the lowest empirical miss rate: 23.8%roup of six other
classifiers have miss rates below 40%. The remaining thessiflers have miss rates be-
tween 41% and 61%. The results in this table are typical cf¢lreported from keystroke-
dynamics evaluations in the sense that they include onlsages: average miss and false-
alarm rates.

Tables such as these imply that each classifieramesrror rate (ora miss rate and
false-alarm rate). They do not capture or convey any of tleerainty in these estimates.
For the Scaled Manhattan classifier, can a 23%—24% misseaedected in a deployment,
or a 3%—-53% miss rate? Either could correspond to an averagerate of 23.6%. This
guestion can only be answered by analyzing variability.-Uer and per-impostor miss
rates can provide some insight into this variability.

Figures 4.4 and 4.5 plot the per-user miss rates for the K3ifilers. They were di-

vided among two figures due to layout constraints. Figurg#dedents results for the five
classifiers with the lowest average miss rates, and Fig@r@rsents results for the five
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panel is structured as in Figure 4.4. Again, note that somege&r miss rates are low for

every classifier and others are high.
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classifiers with the highest average miss rates. These $igumatain a panel per classi-
fier, and separate columns within each panel for individsarst Each column contains a
boxplot to capture the distribution of miss rates for theregponding user. Boxplots are
standard tools for visualizing data distributions (Goracid Smith, 1993; Moore and Mc-
Cabe, 1998). In these boxplots, the medians are presentddcksdots. The range from
the 25th to the 75th percentile is enclosed in the box. Thekens stretch to the minimum
and maximum points, up to a heuristic maximum length (i.e&,times the inter-quartile
range, the distance from the 25th to 75th percentile). Bdiayond the end of the whisker
are drawn individually, denoting their status as possibigiers.

The red line across each panel indicates the average etedorahat classifier. Every
panel contains boxplots that stretch from 0% to 100%, irtthgathat for at least some
genuine-user subjects, some impostor subjects are ggristected and others are never
detected. As in the example in Chapter 3, high variabilitytoaes to be a key feature of
keystroke-dynamics miss rates.

It is interesting to note how similar many panels are. The iareddfor all five of the
classifiers in Figure 4.4 and several classifiers in Figuséhdve a similarly shaped trends.
They are near zero for about a third of the panel and then Insesa linearly to one across
the remainder of the panel. The similarity of these paneaigssits that these classifiers not
only have similar average miss rates (per the results ireTél2), but also similar per-user
miss rates. The implication is that one cannot dramatidaidfyrove error rates by matching
each user with the best classifier for that user. It is not #se ¢hat one classifier has low
error for one group of users, and another classifier has low &ar a separate group.

These plots also reveal some users for whom this technologgswvell, and others for
whom it works poorly. The 23.6% average miss rate for the€gt®anhattan classifier is
an average over a wide range. On the one hand, this is a disggngrobservation, because
it means that there are some users for whom the technologyswouch worse than the
23.6% average miss rate. On the other hand, if we can unddrita users for whom the
technology gets very good results (e.g., below 5% miss,rtteh for those users we have
a viable technology.

4.5 Statistical analysis

Having performed exploratory analysis of the empiricautss we now proceed with a
more formal statistical analysis. As described in Chaptere use linear mixed-effects
models. The false-alarm rate was held constant at 5%, andcesnadel the miss rates.
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Minimal Model Equation:
VST (miss rate)yi. = g+ (user); + (impostor); + €,
(USET’)Z‘ ~ N(0 a(user))

(impostor) )

(
(impostor); ~ N(0,0?
(

Ep N 0, 0'52)
Maximal Model Equation:
VST (miss rate)ijm = p+ (Classiﬁer)i + (user); + (impostor), + €

(USET’)j ( (user )
(impOStOT)k; ~ N(O U(zmpostor))
N(O

(0,02)
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Figure 4.6: Equations for model selection in the benchnesxduation analysis. The min-
imal equation includes only the random effects, which am iathe structure of the ex-
periment. The maximal equation also includes the classilirethis case, the two model
equations are the only two in the family. Model selectiorthis case, reduces to a question
of whether the classifier has an effect on the miss rate.

We begin with model selection and parameter estimatiooviaht by statistical hypothesis
testing.

45.1 Model selection

During model selection, we construct a family of candidataleis by defining a minimal
and a maximal member of the family. These two model equatdiestively define the
boundaries of the model family. For this analysis, the madiand maximal models are
presented in Figure 4.6. The minimal equation contains ge& and impostor random
effects, which we include in every model of miss rates. Th&imal equation contains
those random effects and also a classifier fixed effect. Shecewo equations differ in the
presence/absence of a single term, they are the only twolmiodée family they define.

With this set of model equations, the model selection pmedectively degenerates
to the question of whether there is sufficient evidence thatctlassifier has an effect on
miss rates. If not, then model selection will choose the maliequation (without the
term); if so, then model selection will choose the maximalatapn (with the term). Under
other circumstances, an analyst might choose to use adiffstatistical technique (e.g.,
likelihood-ratio testing) to choose between these moddtswvever, for consistency with
the other investigations in this work, we use model seledtiased on the BIC criteria.

We use maximume-likelihood parameter estimation to esentia¢ parameters of both
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the minimal and maximal model. For each model, we comput8t@eand compare. Not
surprisingly given the different empirical average misesafor the different classifiers,
the BIC for the maximal modeR6212.24) is lower than the BIC for the minimal model
(231623.44). We select the model containing a classifier effect.

4.5.2 Parameter estimation

Having selected the model, we repeat the parameter-egiimaitocedure using REML.
Table 4.3 presents the selected model equation and the REKmM@ter estimates. Note
that these estimates are in the variance-transformed gpacéVST(y/n) for miss rate
y/n), as explained in Chapter 3.

In the parameter-estimation table, the baseline is theideam classifier. The choice
of baseline was made arbitrarily, but it happened to be thssdier with the highest
miss rate. The estimated baseline is 57.68, correspondig testimated miss rate of
VST 1(57.68) = 61.9%. Note that this estimate is very close to but not exactlystiae
as the empirical average miss rate for the Euclidean cleséifi.0%) from Table 4.2. The
small difference is due to the non-linearity of the variastabilizing transformation. The
average of the transformed values is not the same as thdamawasion of the averaged
values. Nevertheless, the estimate is still quite closkémbserved error rate.

The nine classifier-effect parameters estimate the changeeivariance-transformed
miss rate when the Euclidean classifier is replaced with e&tihe other nine classifiers.
All these estimates are negative, indicating that the naitesis lower. For some classifiers,
like the Auto-Associative Neural Net, the change is comipaely small (—4.63); for oth-
ers, like Scaled Manhattan, the change is quite largi3(14). The estimated miss rate for
the Scaled Manhattan classifierlis 1% (VST (57.68 + —33.14)).

This estimate from the LMM is substantially lower than thepémcal average miss
rate for the Scaled Manhattan classifies.(%) from Table 4.2. Again, the reason for
a discrepancy between the estimate and the empirical avésafe non-linearity of the
variance-stabilizing transformation. The final three r@i/the parameter-estimation table
present estimates of the per-user, per-impostor, andu@sthndard deviations (i.e., square
roots of the variances). These standard deviations—1713%4, and 20.14—are only
slightly smaller than most of the classifier fixed-effecthehigh variability magnifies the
non-linearity in the variance-stabilizing transformatid he size of the discrepancy would
seem to be a problem, but the validation (in Section 4.6) sVibbw that the predictions
remain quite accurate despite this discrepancy.

Using the standard deviations and Normality assumptiomescan calculate per-user
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Selected Model Equation:

VST (miss rate) = p+ (Classifier); + (user); + (impostor)y + &
(user); ~ N(0, U(Zuser))
(impostor), ~ N(0,0%,0r)
g N(O, 0’3)
Parameter Estimates:

Parameters classifier| estimate
(1) baseline Euclidean| 57.68
classifier Manhattan| -16.35

ScaledManhattan -33.14
OutlierCount| -25.31
AutoAssocNNet -4.63
Mahalanobis -19.34
KNN -27.36
MahalanobisKkNN| -23.85
KMeans| -23.02

SVM -26.92

O’(user) 17.31

O (impostor) 15.74
Oc 20.14

Table 4.3: LMM for the results of the benchmark evaluatiorhe Thodel equation is at

the top. The classifier term was kept during the model-selegrocess. The maximum-

likelihood parameter estimates for the baseline clasgiiaclidean) and the adjustments
for the other classifiers are tabulated. The estimates edig@r, per-impostor, and residual
standard deviations are at the bottom of the table.

and per-impostor miss-rate prediction intervals. For gxamfor the Scaled Manhattan
classifier, the estimated variance-stabilized miss ratgl.is4, calculated by adding the
baseline §7.68) and the Scaled-Manhattan classifier effee3§.14) from the model. The
per-user standard deviation i57(31), and so the 95% prediction interval (in the variance-
stabilized space) is

24.54 +1.96 x 17.31.

When we apply the inverse of the variance-stabilizing ti@msation, the interval i9.0%
t0 63.1%.

We interpret a 95% per-user prediction interval as follolmghe long term, a particular
user will have somaveragemiss rate. While the miss rate may be higher or lower on a
given day, against particular impostors, we focus on thg-t@nm average miss rate. The
95% per-user prediction interval is a region in which we prethat 95% of users long-
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term average miss rates will lie. Such intervals are usefelstablishing how a classifier
will perform for the large majority of users. The 95% per4ugeediction interval for the
Scaled Manhattan classifier spans nearly 2/3rds of the rahgm@ble miss rates. This
estimate quantifies our observation that the particular e a major effect on whether a
classifier's performance is quite good or quite bad.

Similar calculations can be made to estimate 95% per-use€ligiion intervals for other
classifiers. The only difference in the range of these iatisregomes from the non-linearity
of the variance-stabilizing transformation. In all caghs,intervals span more than half of
the range of viable miss rates; the substantial per-usecta#f observed for all classifiers.

Similar calculations can also be used to estimate 95% ppostor prediction inter-
vals (i.e., describing the long-term average miss ratethiotarge majority of impostors).
We simply substitute the estimated per-impostor standevéhton instead of the per-user
standard deviation. For the Scaled Manhattan classifierptediction interval i$).0% to
58.4% (i.e., VST ~1(24.54 + 1.96 x 15.74)). The per-impostor interval also covers almost
2/3rds of the viable space. Like the user, the impostor hadstantial effect on whether a
classifier’'s miss rate will be high or low, regardless of ttessifier.

These estimates support our observation from the empnésallts that, even for the
best classifier, there is a lot of uncertainty in the miss batgause some users have much
lower miss rates than others, and some impostors have mweh oiss rates than others.
Something about the typing characteristics of differemrsignd impostors seems to have
as much if not more effect on the miss rate than the classMi&r.will investigate some
aspects of user and impostor typing that might explain tdégsences in Chapter 5. The
high residual standard deviation establishes that, even thfe user and impostor effects
have been taken into account, there remains a lot of unogrtahen predicting miss rates.
This residual variation suggests that other factors, béyba user and impostor, are also
exerting unknown influence on classifier miss rates. We wilestigate some of these
factors and measure their influence in Chapter 6.

4.5.3 Statistical hypothesis testing

The model-selection and parameter estimation phases @hihlgsis provide strong evi-
dence that the classifier is an important factor (but not thg one) in determining the
miss rate. Such a result is not surprising as it only confitms $ome classifiers work bet-
ter than others. That result alone does not establish whadsifiers are better than which
other classifiers. For instance, based on Table 4.2 withrgzapmiss rates and Table 4.3
with parameter estimates, the Scaled Manhattan class#geohe of the lowest miss rates.



4.5. STATISTICAL ANALYSIS 93

Thek-NN and SVM classifiers also have low error rates. Are thessethlassifiers equally
good in the long term, or is the Scaled Manhattan classifiejuety the best? To answer
such a question, we must use statistical hypothesis taste@gmnpare individual classifiers.

As discussed in Chapter 3, we use contrasts to compare gaitassifiers. In this
analysis, we use all-pairs contrasts (i.e., Tukey cordgyastcompare the miss rates of each
pair of classifiers (Bretz et al., 2011). With 10 classifiglgre are 45 distinct pairings
(i.e.,10 choose P Table 4.4 presents the results of these 45 tests. Thegadrpresented
in the first column. The estimated difference in effect ishe second column (effect),
with the sign indicating whether the miss rate for the firgtssifier is higher (positive)
or lower (negative) than the second. The standard erroreoéstimate and-statistic are
presented in the third and fourth columns. The standard isroalculated from the residual
variability and the sample size. The final column lists gthealues for each test; they have
been adjusted using the method of Bretz et al. (2011) to acwmdate the simultaneous
testing of 45 hypotheses.

Just as a procedural note, although our primary interest identifying the top per-
forming classifiers, we must perform 45 tests, one for eadhgfeclassifiers. It might
seem as though one would only need to perform 9 tests, congp#re top-performing
classifier, Scaled Manhattan, to each of the other 9 classitiowever, to perform such a
series of tests, one must already have calculated that etledSklanhattan classifier is the
top-performing classifier. Implicit in such a calculati@a comparison of each classifier's
effect with each other classifier’s effect. In other woradscompare the best classifier to
the other 9 classifiers, one is actually performing 45 coispas.

Nearly every pairwise comparison is highly significaat{01). In particular, at any
reasonable level of significance, the Scaled Manhattasitiershas a lower error rate than
each of the other 9 classifiers. Based on this analysis, wédvemmclude that the Scaled
Manhattan classifier has the best miss rate.

Given the high uncertainty, due to per-user, per-impostod residual variance, one
might be surprised by such lowvalues. The explanation is that per-user and per-impostor
miss rates are highly correlated across classifiers. Soere bave miss rates much lower
than average, and others have miss rates much higher thragavélevertheless, users with
a low miss rate have low miss rates across all classifierspyaas with a high miss rate
have high miss rates across all classifiers. As a result, taeemgh the per-user variability
is quite large, one can still show differences between thssdiers by looking at how each
user’s error rate changes across classifiers. In statigtiras, the classifier effect is being
testedwithin each subjectather tharbetween subjectenabling us to identify the Scaled
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effect  stderr t.stat| p.value
Manhattan - Euclidean -16.352 0.564 -28.993 <.0001
ScaledManhattan - Euclidean -33.138 0.564 -58.755 <.0001
OutlierCount - Euclidean -25.310 0.564 -44.874 <.0001
AutoAssocNNet - Euclidean -4.627 0.564 -8.203] <.0001
Mahalanobis - Euclidean -19.342 0.564 -34.294 <.0001
KNN - Euclidean -27.360 0.564 -48.510 <.0001
MahalanobisKNN - Euclidean -23.855 0.564 -42.295 <.0001
KMeans - Euclidean -23.025 0.564 -40.823 <.0001
SVM - Euclidean -26.916 0.564 -47.722 <.0001
ScaledManhattan - Manhattan -16.786 0.564 -29.762 <.0001
OutlierCount - Manhattan -8.957 0.564 -15.881 <.0001
AutoAssocNNet - Manhattan 11.726  0.564 20.790 <.0001
Mahalanobis - Manhattan -2.990 0.564 -5.301 <.0001
KNN - Manhattan -11.008 0.564 -19.517 <.0001
MahalanobisKNN - Manhattan -7.502 0.564 -13.301 <.0001
KMeans - Manhattan -6.672 0.564 -11.830 <.0001
SVM - Manhattan -10.563 0.564 -18.729 <.0001
OutlierCount - ScaledManhattan 7.829 0.564 13.881] <.0001
AutoAssocNNet - ScaledManhattan| 28.512 0.564 50.552 <.0001
Mahalanobis - ScaledManhattan 13.796 0.564 24.461 <.0001
KNN - ScaledManhattan 5.778 0.564 10.245 <.0001
MahalanobisKNN - ScaledManhattan 9.284  0.564 16.460 <.0001
KMeans - ScaledManhattan 10.114 0.564 17.932 <.0001
SVM - ScaledManhattan 6.223 0.564 11.033 <.0001
AutoAssocNNet - OutlierCount 20.683 0.564 36.671 <.0001
Mahalanobis - OutlierCount 5.967 0.564 10.580 <.0001
KNN - OutlierCount -2.051 0.564 -3.636| 0.0106
MahalanobisKNN - OutlierCount 1.455 0.564 2.580| 0.2265
KMeans - OutlierCount 2.285 0.564 4,051 0.0019
SVM - OutlierCount -1.606 0.564 -2.848| 0.1210
Mahalanobis - AutoAssocNNet -14.715 0.564 -26.091 <.0001
KNN - AutoAssocNNet -22.733  0.564 -40.304 <.0001
MahalanobisKNN - AutoAssocNNet| -19.228 0.564 -34.091] <.0001
KMeans - AutoAssocNNet -18.398 0.564 -32.620 <.0001
SVM - AutoAssocNNet -22.289 0.564 -39.518 <.0001
KNN - Mahalanobis -8.018 0.564 -14.216 <.0001
MahalanobisKNN - Mahalanobis -4512 0.564 -8.000| <.0001
KMeans - Mahalanobis -3.683 0.564 -6.529| <.0001
SVM - Mahalanobis -7.573 0.564 -13.428 <.0001
MahalanobisKNN - KNN 3.506 0.564 6.215 <.0001
KMeans - KNN 4335 0.564 7.687| <.0001
SVM - KNN 0.444 0.564 0.788 0.9988
KMeans - MahalanobisKNN 0.830 0.564 1.471] 0.9037
SVM - MahalanobisK NN -3.061 0.564 -5.427| <.0001
SVM - KMeans -3.891 0.564 -6.899] <.0001

Table 4.4: Hypothesis tests comparing classifiers in thelmark evaluation. Between
all 10 classifiers, there are 45 pairs of classifiers, andéssiits for each each pairing are
presented. The-values (adjusted for multiple testing) are accompaniethbyeffect size,
standard error estimate, amtatistic. For most pairs of classifiers, thesalues show
highly significant differences in the miss rates.
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Manhattan as the unique classifier (among the 10) with thedvaverage miss rate.

Only 4 comparisons produgevalues above)5. These 4 comparisons form a sequence
of 5 classifiers:k-NN, SVM, Outlier Count, Mahalanobis-NN, k-Means. Each consec-
utive pair of classifiers in the sequence (ekgNN—SVM) has a-value above05, which
we interpret to mean there is little evidence that the di@ssniss rates differ substantially.
These five classifiers all have similar empirical miss rat€Rable 4.2. This result suggests
that, even though the classifiers would seem to learn vefgrdiit concepts, they exhibit
similar overall behavior on keystroke-dynamics data.

4.6 Validation

While model-selection and statistical hypothesis-tggtirocedures are designed to reduce
or limit the possibility of drawing incorrect conclusionsiey are necessarily based on
various modeling assumptions. In the end, we believe tlav#tue of any model lies in
its ability to predict the future behavior of a classifier.fSequently, to validate the model,
we make predictions and then check those predictions inangesvaluation.

We collected a second data set using the same procedure.his@etondary data
collection, we had 14 subjects type the same strong pasgvi@sRoanl) 400 times over
8 sessions. The same software and timing apparatus were\Wsbathis second, smaller
data set, we perform the same evaluation procedure. Eable @btclassifiers was trained,
tuned, and tested in a series of trials. The evaluation poeeis the same one described
in Section 4.3.3, substituting the 14-subject typing dedanfthe secondary evaluation for
the 51-subject typing data used in the primary evaluationith Wis smaller data set, we
obtain 1820 per-user/impostor miss rates (10 classifieigl genuine-user subjects 13
impostor subjects).

Table 4.5 presents the average miss and false-alarm rate8§ the classifiers in this
validation data set. As in the primary evaluation, the dfesss have been tuned to have a
5% false-alarm rate. Again, the Outlier Count classifierdwase anomaly scores, and the
operating threshold was tuned as close as possible to a S&edkdrm rate. Each classifier's
average miss rate is within a few percentage points of thesponding average miss rates
from the original evaluation (Table 4.2).

Our first step in validating the model is to check the per-ywedictions. Earlier, in
Section 4.5, we explained how to calculate 95% per-useligired intervals for each clas-
sifier. These intervals enclose a region in which we expett36% of users’ long-term
miss rates will lie. Using the validation data, we can este@ng-term miss rates for each
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Classifier False-Alarm Rate Miss Rate

ScaledManhattan 5.0 20.6

KNN 5.0 27.1

SVM 5.0 29.4
OutlierCount 2.6 31.7
MahalanobisKNN 5.0 30.3
KMeans 5.0 33.0
Mahalanobis 5.0 35.9
Manhattan 5.0 47.2
AutoAssocNNet 5.0 50.5
Euclidean 5.0 57.9

Table 4.5: Average error rates for classifiers on the vabdaget. On the 14-subject vali-

dation data, the 10 classifiers were trained and tuned to $faveniss rates (or as close as
technically possible). The classifiers are sorted in orfldredr miss rates on the evaluation
data set (Table 4.2 on page 85). The average miss rates al& simthis secondary data

set.

of the users. For each classifier and each genuine-usercsuthjere are 13 miss rates,
corresponding to each of the 13 impostor subjects. The gearbthese 13 miss rates is a
reasonable estimate of the long-term miss rate for thatigeruser subject. We calculate
14 per-user average miss rates for each classifier. By exagnivhether these 14 points
fall within the predicted region, we can demonstrate whetitve model is making accurate
predictions about classifier performance.

Figure 4.7 presents the per-user 95% prediction intenal®eéch of the classifiers.
Along with the intervals, we have plotted the 14 per-useraye miss rates for each clas-
sifier from the validation data set. Nearly all of these poifall within the corresponding
prediction interval, demonstrating that the predictioresaccurately bounding the range of
observed behavior. That only one point falls outside theruatl suggests that the intervals
might be slightly conservative (i.e., overly long). With®9rediction intervals, we would
expect 1 point out of 20 to exceed the interval, and the figargains 140 points. Never-
theless, for most classifiers, the points are distributety feonsistently around the entire
range of the interval, suggesting that the intervals arevet conservative.

Checking that the per-user miss rates are within the piediattervals is only part of
validating the model. The per-user, per-impostor, anditedidistributions are assumed to
be Normally distributed with variance estimated from thead& hese prediction intervals
only concern the validity of the per-user variability.

Our second step in validating the model is to check these hmgdassumptions more
rigorously. As explained in the explanation of the validatstep in Chapter 3 (Section
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Figure 4.7: Model predictions and validation data for thedienark evaluation. The hor-
izontal lines delineate the 95% prediction intervals focheelassifier. The blue dots indi-
cate the per-user miss rates for the 14 users in the validdéita set. Nearly all results fall
within the predicted intervals.

3.10), we calculate per-user effects, per-impostor effeantd residual effects by compar-
ing the results of the secondary evaluation with the modediigtions. Through this pro-
cess, we find 14 per-user effects (one for each subject), d#npestor effects (one for
each subject), and 1820 residual miss rates (one for eassifd®, genuine-user, and im-
postor subject). All three sets of points are assumed to benblty distributed with zero
mean and variance predicted by the model. Validating theehiogolves checking these
assumptions.

The variances of these Normal distributions were estimasquhrt of the model. If one
divides a set of Normally distributed values with zero megrtheir standard deviation,
the resulting values should have a standard Normal disioib(i.e., zero mean and unit
variance). We perform this scaling calculation on the pareffects, per-impostor effects,
and residuals using the standard deviations from the modw#dtainstandardizeger-user
effects, per-impostor effects, and residuals.

To assess whether the Normality assumptions are met foe ttemdardized effects
and residuals, we use(@-plots. Figure 4.8 shows th@(Q-plots for the 14 standardized
per-user effects (on the left), the 14 standardized pepstgry effects (in the middle), and
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Figure 4.8:QQ-plots for validating LMM predictions from the benchmarkaévation. The
left panel has per-user deviations from Normality; the rreqzhnel has per-impostor devi-
ations; the right panel has residual deviations. Per-useémpar-impostor deviations meet
expectations. Residuals are somewhat heavy tailed.

the 1820 standardized residuals (on the right). In the gaoethe left and in the middle,
assessing the Normality of the per-user and per-impostectsfrespectively, the points
closely adhere to the diagonal line. These panels suppeitdrmality assumption for
these effects. In the panel on the right, assessing the Nityrahthe residuals, the points
have a slightly sinusoidal shape. This shape is indicafigtightly heavy tails.

In general, some violation of the modeling assumptions tepiable and to be ex-
pected. Heavy-tailed residuals suggest that while our imzadeaccurately predict average
effects for users and impostors, it falls a little short wipeedicting how much variation
to expect for a particular user or impostor. For a single ,us@re can be day-to-day
variation in the miss rate for unknown reasons. Even withhsly heavy-tailed residuals,
QQ-plots demonstrate that the model constructed from thehreark evaluation makes
accurate predictions of error rates in a secondary evaluaiihe model has captured not
only the average error rates of each classifier, but also hoehrper-user, per-impostor,
and residual variability to expect.

4.7 Discussion

Recall that the goal of this work is to understand the fadtwais affect classifier error rates.
Our analysis shows how much more can be learned by modelkngftects of individual

users and impostors on error rate, rather than simply tabgléhe average miss rates
of each classifier. The average miss rates did reveal whassifier did best overall in
the evaluation (i.e., Scaled Manhattan), but they told uking about whether we could
expect individual user miss rates to be close to the ovevallage. In fact, analysis of
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those individual miss rates revealed that regardless otldmsifier's average miss rate,
some user’s have extremely low miss rates and others hayéiggr miss rates. Likewise,
some impostors are substantially more difficult to deteahtbthers. Reports of only the
average error rate may potentially mislead a reader intdihg that individual results will
not vary substantially.

For instance, the average miss rate for the Scaled Manhaltasifier is 23.6%; the
average miss rate for the Euclidean classifier is 61.0%,raisgéy large difference. How-
ever, when we estimate prediction intervals based on theigaEr standard deviation, we
find that with the Scaled Manhattan classifier, 95% of per-agerage miss rates will be
between 0.0% and 63.1%, while with the Euclidean classi®&% of per-user average
miss rates will be between 13.3% and 98.3%. One might getypgebd results with a
bad classifier (e.g., 13.3% with the Euclidean classifiepretty bad results with a good
classifier (e.g., 63.1% with the Scaled Manhattan claskifier

Statistical hypothesis testing confirmed that the Scaledhd#an classifier had the
lowest error rate, but the actual difference between thestsilier and other good classifiers
(e.g.,k-NN and SVM) was small compared to the per-user and per-itopstandard de-
viation. This observation suggests that we may have reazipetht of diminishing returns
for using new classification technology to improve keystralynamics error rates. Most
classifiers’ average miss rates are within a few percentagespof the others. The clas-
sifier effect is comparatively small. Different users anghostors sway the miss rates by
tens of percentage points. We might see greater improvemé&aystroke-dynamics error
rates by understanding these larger effects.

This discovery of high per-user and per-impostor varigp#ilso presents a problem
for keystroke-dynamics evaluations. With such high valighone needs many subjects
to accurately estimate error rates. Specifically, suppaseamduct an evaluation like that
described in this chapter, and we determine that a claskéd®ea 30% miss rate (or 36.9 in
the variance-transformed space). Assuming that the paratandard deviation is roughly
what we estimated earlier in this chaptet.(.y = 17.31 in the variance-transformed
space), we can estimate the 95% confidence interval witholteing equation:

Clysy = VST1(36.9 4+ 1.96 x 17.31/y/n)

wheren is the sample size. In this case, a single sample corresgoralsubject. Note
that the confidence interval is not the same as a predictienvial. The confidence interval
estimates the range in which the true miss rate will fall 95%he time. Ifn is greater than
1, the confidence interval will be narrower than the predicinterval. Asn gets larger,
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the confidence interval gets narrower.

By translating the interval back from the variance-transied space to the space of
error rates, we can calculate how many subjects are needdéuefeconfidence interval to
narrow to undert1 percentage point. With 50 subjects, the 95% confidencevates
23.3% to 37.1%. With 100 subjects, the confidence intervll aarrows to 25.2% to
35.0%. To narrow the interval t&t1 percentage point (i.e., 29.0%—-31.0%), one needs 2401
subjects. Few studies have that many genuine-user sulgadtso the uncertainty in many
error-rate estimates (i.e., the “margin of error”) is likeb be several percentage points
wide.

As noted earlier in this chapter, many different classifiesse been proposed, and
some studies which proposed a new classifier did compareritsrmance to that of one or
more existing classifiers. However, as we saw in the liteeateview from Chapter 2, very
few studies in keystroke dynamics used any inferentialssies to generalize from their
empirical results.

When a study uses no inferential statistics, it is difficalcompare the results to ours.
For instance, Harun et al. (2010) evaluated many of the s#amssifiers as this work (e.g.,
Euclidean, Manhattan, Mahalanobis, and Scaled Manhatfdr®y calculated equal-error
rates (EERSs) for each of the classifiers and presented thamigstogram. The EERs ranged
from about 5% to 19%, but with no error bars or other statist@malysis, one cannot tell
whether the results suggest a significant difference betweclassifiers, or whether they
are all about the same.

The few studies that used inferential statistics in conmgpdlassifiers raise some in-
teresting concerns in relation to our work. Specificallyp@t al. (2000) evaluated a Ma-
halanobisk-NN and an Auto-Associative Neural Network; they used aqubirtest and
established that the Neural Network was significantly bettan the Mahalanobis-NN
(p = 0.00079). In this work, we find that the Neural Network does substdiytivorse than
the Mahalanobig-NN. Explaining discrepancies in the results of differevelaations is
of fundamental importance to the practical use of keysthkeamics.

In search of explanations, one might ask whether classifiptementation differences
are the cause of these discrepancies. Because we used oumngi@mentations of the clas-
sifiers evaluated in this work, small implementation défeces may change performance.
However, our classifier implementations were tuned to algaod performance on our typ-
ing data. We expect that other researchers likewise tureddlassifiers. Consequently,
we believe that implementation differences cannot exglaerwild differences in classifier
error rates across study; some other factors must be rabpofts the differences. In the
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study by Cho et al., subjects chose their own passwordse thiik inconsistent typing
were removed from the study, and 75-325 training samples wsed for each genuine-
user subject (depending on the amount of data collected tin@nsubject). In the current
work, all subjects used the same password, no subjects \teredifrom the study, and 200
training samples were used for all genuine-user subjediesd or any other differences
may explain why different classifiers perform best in difierevaluations. Identifying and
understanding these differences spawned the remainiegtigations in this work.

During the model-validation step, we effectively collattesecond data set and used it
to test whether the model built from the first data set was rateu This process might be
described as a replication since the first evaluation wagperenent and the second evalu-
ation was conducted as an attempt to reproduce the firstiexget's results. Replication is
one of the hallmarks of the scientific process, but to our kadge this work contains one
of the few successful replications in keystroke dynamieaplRation is important because
it demonstrates a reliable understanding of the phenommter study (e.g., classifier error
rates). By repeating the evaluation with new genuine-usdimpostor subjects, we have
effectively shown an accurate understanding of how thesssiflers behave, at least in the
evaluation environment.

4.8 Summary

This chapter presented our first investigation using LMMsrtderstand classifier behavior
in keystroke-dynamics. A benchmark evaluation of 10 cfessiwas conducted to identify

the top-performing classifiers. LMMs were fit to the per-disapostor miss rates for each

classifier. The models were used to accurately predict thétssof a subsequent evaluation
thereby validating the model.

From this first investigation, we draw the following conctuss:

1. The Scaled Manhattan classifier has an estimated miss raté. 0%, significantly
lower than those of the other 9 benchmarked classifiétgs conclusion depends,
obviously, on the details of the evaluation (e.g., the usa sfrong password, tun-
ing classifiers to a 5% false-alarm rate, etc.). Nevertelié®ne were to use this
evaluation to choose the best classifier, Scaled Manhataidvoe it.

2. However, the estimated 95% prediction interval for perrusag-term average miss
rates is fron0.0% to63.1% for Scaled Manhattan, and spans a similarly large range
for the other classifiersConsequently, while Scaled Manhattan may have the best
average miss rate, the actual miss rate seems to depend mitre aser than on the
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classifier.

3. Likewise, the estimated 95% prediction interval for pepastor long term average
miss rates is fron?).0% to 58.4% for Scaled Manhattan, and similarly large for
the other classifiersSome impostors are substantially harder to detect thanpthe
regardless of the user.

4. Because of the high per-user effect on miss rates, an accestimate of a clas-
sifier’s error rate (i.e., to withint1 percentage point) may require thousands of
subjects. Few studies use so many subjects, so one explanation for lvéhgame
classifier is reported to have wildly different error ratesoss studies may be the
sample size. Fortunately, because classifier error rages @ be highly correlated
across subjects, hypothesis tests require substaneaigrfsubjects (e.g., 30-50) to
find a significant difference between two classifiers’ eretes.

These results support our claim that there are many faceysra the classifier itself that
affect keystroke-dynamics error rates. For keystroke gyos in the short term, these
results may seem somewhat discouraging. In the long teemefults suggest we should
focus on identifying and understanding these factors as/davaake progress in keystroke
dynamics.

In the thesis statement from Chapter 1, we claimed in patt.ikiMs offer better un-
derstanding of classifier behavior than current practibethis investigation, we reviewed
earlier work and showed that—because most classifiers wateated in different evalu-
ation environments—few conclusions could be drawn abouthvtlassifier was the best.
Then, by conducting a benchmark and using LMMs to analysedbelt, we established
which classifier performs best (i.e., Scaled Manhattan)dnoresistent evaluation environ-
ment. We also discovered other factors, namely the usermapdstor, that have at least
as much effect on miss rates as the classifier. Consequibrtliyvestigation has furthered
our understanding of keystroke-dynamics classifier bahmavi



Chapter 5
Personal Traits and Keystroke Dynamics

The investigation in this chapter attempts to identify savhéhe sources of per-user and
per-impostor variation in classifier error rates. In paute, could personal traits such as
age, gender, dominant hand and typing style explain why dgpists (or pairs of typists)
are more difficult to distinguish than others?

5.1 Background

In the last chapter, we discovered that the user and impbat@ a substantial effect on the
miss rate of a classifier. To better understand how and whyahtecular user and impostor
affect classifier error rates, we consider various traigd thight make a typist easier or
harder to distinguish from others.

There is some surprising evidence that even traits such easg gender might af-
fect typing characteristics (and consequently affectsiles behavior). The Halstead-
Reitan Battery is a sequence of neuropsychological tesitshwhclude a finger-tapping
test (Spreen and Strauss, 1998). This test measures the kaléch a subject repeatedly
pushes a button. Test results have been shown to correltteavgubject’'s age, gender,
dominant hand, overall health, and even whether he or shattisg maximal effort into
the task (Carlier et al., 1993; Okuno et al., 2006; Wall andli8fi1998). Since using a
keyboard is a lot like pushing a button repeatedly, perhbpse same traits manifest in
different typing rhythms.

Anything that affects typing times and rhythms could plaiysaffect the error rates of
keystroke-dynamics classifiers. For instance, right-kdrtgipists might type digraphs on
the right side of the keyboard more quickly and consistenthjle left-handed typists type
digraphs on the left side more quickly and consistently. Seguently, miss rates might be

103
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lower for right-handed users and left-handed impostoraiciidypists might have lower
miss rates because their more consistent typing rhythmsnare easily recognized by
a classifier than the inconsistent rhythms of a hunt-and¢t-pgast. Alternatively, touch

typists may have higher miss rates because they all type tivttsame or very similar
rhythms. Regardless of the direction of the effect (i.eghbkr or lower), it is plausible that
these traits might affect classifier error rates.

Very little work has been done to establish what effect peaibtraits have on keystroke-
dynamics error rates. Potential effects have certainly l@knowledged. Some earlier
studies have provided breakdowns of subjects in terms qfgageder, and other personal
traits. For instance, Hosseinzadeh and Krishnan (2008&Adbed et al. (2010) both tab-
ulated the number of subjects by age and gender. Kotani and(B@05) reported that all
the subjects in their evaluation data set were right-hanBedono and Nakakuni (2008) re-
port that their subjects ranged in skill from “standard comep user to almost blind typist.”
By reporting these subject demographics, the researamgiy that the reported personal
traits may be important.

A few studies went a step further in attempting to comparssifer error rates for dif-
ferent levels of these factors. Tran et al. (2007) reporezegender average EERs. Their
results suggest that the EERSs for their female subjects gher, but no inferential statis-
tics were used to draw that conclusion. Likewise, Hosselekaet al. (2006) found that
classification results were particularly poor for “two fimgyypists, but again, no inferen-
tial statistics were used to test the claim.

Hwang et al. (2009a) did perform a statistical test invajmime effects of personal traits
on classifier error rates. They tested whether typists whd beth hands to type had higher
or lower equal-error rates. Based on the repoptedlue, they found no significant effect,
but their experiment suggested that further investigatibthis issue is warranted. The
details of the Hwang et al. experiment differ substantifdtyn the present investigation.
In particular, they were interested in whether artificigithms and cues improve keystroke-
dynamics error rates, and they considered the effect areifit typing styles in this context.

5.2 Aim and approach

Our aim in this investigation is to understand which (if apgjsonal traits of genuine users
and impostors affect the error rates of keystroke-dynamii@ssifiers. Specifically, we
focus on four traits: age, gender, dominant hand, and tygtiylg. We investigate whether
any traits—individually or shared between the user andrtiostor—affect miss rates.
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We supplement the results from the benchmark evaluatiorhap@r 4 with informa-
tion collected from a demographic survey filled out by eaclowf subjects. Then, we
conduct a statistical analysis of the demographic datagusiiMs to identify traits that
might explain the per-user and per-impostor variabilitglassifier error rates. Finally, we
validate these models as before using data from a secongznagon.

5.3 Experimental method

We administered a lengthy demographic survey to the subyeleb provided typing data
for our benchmark evaluation in Chapter 4. We collectedrimfttion about age, gender,
dominant hand, and typing style, and we merged this infdonawith the benchmark
evaluation results.

5.3.1 Demographic survey

The 51 subjects who provided typing times for the benchmeakuation and the 14 sub-
jects who provided typing times for the validation data seterasked to complete a demo-
graphic survey. The survey was extensive, comprising 9aged covering a variety of
topics in computer usage, keyboard preferences, and attiatias that affect manual dex-
terity. Our focus in this work is on four questions in the synpertaining to age, gender,
dominant hand, and typing style.

Age: The survey used the following question to assess age.
Write your age here (or check one age group):

018-20 0 21-25 0 26-30 O 31-35 O 36-40

041-45 046-50 051-60 O61-70 O 71-80
In retrospect, we might have structured this question @ffdy, since subjects re-
sponded in unanticipated ways. Some checked a box; othete wrtheir age; still
others wrote in a range that sometimes did and sometimestlitbrrespond to one
of the ranges explicitly offered. Nevertheless, for thigkyave were able to accom-
modate the different kinds of answers by defining two age gsod8-30, and 31+.
With these two groups, we can observe whether or not thei@grmajor differences
in typing times of older and younger subjects.

Gender: In the demographic survey, subjects were asked their gerdlesubjects re-
sponded to the question, identifying as Male or Female.
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Age Range Gender Dom. Hand| Typ. Style
18-30 31+| Male Female| Right Left| Touch Other
31 20‘ 30 21‘ 43 8‘ 28 23‘

Evaluation Pool

Validation Pool 7 7 8 6 13 1 9 5

Table 5.1: Summary of the subjects’ age, gender, dominartt,fend typing style. Results
in the first row are for the 51 subjects in the primary evahratiata set. Results in the
second row are for the 14 in the secondary validation datafdktraits were reported by
subjects via a questionnaire. In most categories, the sisbgge balanced fairly evenly
among the groups.

Dominant Hand: The survey asked subjects to identify as either left-hanagiak-handed,
or ambidextrous. All subjects indicated that they wereegithft- or right-handed.

Typing Style: The demographic survey asked subjects to assess theigtstyie with the
following question:

What is your level of typing skill in English? (Circle one)

1 2 3 4 5

Hunt and peck Average Touch type
(without looking at keyboard)

Again, in retrospect, we might have structured this questiferently. Subjects
were given no real guidance on interpreting levels 1-4, buell5 was defined
in straightforward operational terms (i.e., typing withdaoking at the keyboard).
Since we are looking for clear effects at this point, we labdedubjects who circled
option 5 agouch and those who circled any of the other 4 optionsther.

Each of the four traits has been made to take binary values3@81+, male/female,
left-handed/right-handed, and touch-typist/other. &dhll presents the demographics of
our subjects according to this survey. The first row presesgslts for the 51 subjects in
the primary evaluation, used to build the statistical modae second row presents results
for the 14 subjects in the secondary evaluation, used fadtatathg the model.

When building a statistical model, a typical heuristic iattbne should have at least
five participants in each group, and we do have at least fiveesishin each group in the
primary evaluation pool. For three of the four traits (iage, gender, and typing style), the
numbers are fairly or very balanced. For the fourth trainfdwant hand), the numbers are
skewed, but the proportions are in keeping with the prevaef left-handedness in the
population (about 10%).
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We have enough data to investigate the main effects of eatlatrd whether there is an
interaction between a genuine user’s traits and an impgestaits (e.g., whether a user and
impostor who share the same traits are harder to distinguigl will not be able to look
for interactions between the four traits with the data aldé. In the primary evaluation
pool, we have only 4 left-handed subjects in the 18-30 yearagge, and 4 left-handed
subjects in the 31+ age range; none in the latter group araléem

5.3.2 Merged demographic and evaluation results

Recall that in Chapter 4 we performed a benchmark evaluatid® classifiers using 51
subjects. Each subject typed the passwtebRoanl 400 times. For each classifier and
each subject, we designated the given subject as the gamsgnand trained the classifier
using 200 of his or her typing samples. Then, we tuned theiflasto have a 5% false-
alarm rate using the remaining 200 samples from the geruseesubject.

For each trained and tuned classifier, we designated the S@hsibjects as impostors,
and we classified the first 50 samples from each impostor. \dtaded the miss rate for
each impostor. This process resulted in 25,500 miss ratespo each of the 10 classifiers,
51 genuine-user subjects, and 50 impostor subjects.

Based on the results of that benchmark, we narrow our foars fen classifiers to
seven: Scaled Manhattan, Outlier Count, MahalanokiblN, Mahalanobisk-NN, k-
Means, and SVM. While that earlier investigation conclutleat Scaled Manhattan was
the best of the classifiers, all seven had comparatively losg mates (below 40%). Since
user and impostor traits may affect different classifiefledéntly (e.g., some are better at
distinguishing right-handed typists than others), we diedito include these seven classi-
fiers in this investigation.

Using the results of the demographic survey, we matched@able 25,500 miss rates
with the four demographic characteristics (i.e., age, gendominant hand, and typing
style) for the corresponding genuine-user subject and stgpsubject. With this supple-
mental information, the evaluation results now compris®@8 miss rates along with (1)
the classifier, (2) the genuine-user subject’s ID, (3) thedstor subject’s ID, (4) the user’s
age, (5) the user’s gender, (6) the user’s dominant handh€A)ser’s typing style, (8) the
impostor’s age, (9) the impostor’s gender, (10) the imptstiominant hand, and (11) the
impostor’s typing style.
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5.4 Empirical results

Figure 5.1 presents the classifier miss rates for each ofdhieus pairings of user’s and
impostor’s age and gender. The meaning of the dots (mediamsds (quartiles), whiskers
(min and max), and points (outliers) are the same as in Chdpfecall that in the bench-
mark evaluation we tuned each classifier so that the falenalate for each genuine-user
subject was fixed at 5%. Then, we compared classifiers bas#teommiss rates. In this
section we continue with this approach, analyzing whetkfégrdnt user and impostor per-
sonal traits have an effect on miss rates.

In part (a), the four panels present results from the fourragehups: 18-30 and 31+
genuine-user and impostor subjects. Looking only at theiamsdn each panel, we see a
gradual increase in the median miss rate from the Scaled atamhclassifier on the left to
the Mahalanobis classifier on the right. Across panels, ekdsifier's boxplots look very
similar. The boxes and whiskers span the whole space oflgessiss rates, suggesting
that variability remains high even after age is taken intcoaat. The medians appear to
be a few percentage points higher for the panels on the rightfor 31+ users), but only
a more formal analysis will show whether this visual impresss significant.

In part (b), the four panels present results from the fouchngs of male/female users
and male/female impostors. The most noticeable differéxet@een panels is the smaller
boxplot for the Scaled Manhattan classifier for female uséne SVM and Outlier Count
classifiers also seem to have lower median miss rates fae trees's. Median miss rates on
the bottom row of panels may also be slightly higher thanghinghe top row (i.e., higher
for male impostors).

Figure 5.2 presents the miss rates separated by the remgaioriraits: dominant hand
and typing style. In part (a), many of the boxplot features. (the maximum, 3rd-quartile
marker, and medians) appear to be lower for left-handedsudéns observation suggests
perhaps that left-handed typists are easier to distinguish other typists. The dominant
hand of the impostor does not appear to have much effect.

In part (b), the four panels present results from the varmaschups of touch-typing
and non-touch-typing users and impostors. The most styikantrast is between the top-
right panel (both touch typists) and the lower-left panelitmer touch typists). The medians
and boxplot quartiles are all substantially higher whenuger and impostor are both touch
typists.

In summary, the empirical results do suggest that the pafgaats of the user and
the impostor may make distinguishing the two typists easidrarder. Of course, one of
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Part (a): Age as a factor

impage : 31+ impage : 31+
userage 18- 30 userage 31+
o] ” R ok
o —
O_ ° -
9 O__ I D prgn gy —
© O
1 impage : 18-30 |mpage : 18 30
3 userage : 18-30 userage : 31+
S o] Tttt Tt TRt AT VTt Tt TR Tt 3 B
© ! e ! ‘ R
v_ [ ] B
- DDDQD-DQQQB :
o | LJ L— —_ L
o
=1 =z =3 € 4 0 i < P =3 c 4 0 L
£ ¢ % 3 % § g8 £ g% 3 3 g § ¢
< O o b= g < o o b= g
S 3] 2 4 ] S ] 2 X ©
g £ 8 £ g 5 g g
g s 3 s 3 s 3 =
K < K <
3 s & s
Part (b): Gender as a factor
impgender : Female impgender : Female
usergender Male usergender Female
S ,1 T
2 o F
o <] D s
© O
o impgender : Male impgender : Male
3 usergender Male usergender Female
= N : - - N
2 g T
o
O.: m - :
o
c e = %] K] c c =z «a @
$ ¢ 3 3 £ § & £ g 3 3 g § ¢%
< Q v s ] < Q ] S ]
< 5] 3 < © < 5} 3 < ©
s El 2 S s 5 g 5
g 5 = = g 5 = =
< < < <
3 2 3 2

Figure 5.1: Miss rates by user and impostor age and gendeh &ahe panels presents
one pairing of user and impostor traits. In part (a), separas by user and impostor age
range. Medians may be somewhat higher for 31+ users. InIparséparation is by user
and impostor gender. Medians are somewhat higher for madestors; SVM and Outlier

Count classifiers perform somewhat better for female users.
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Part (a): Dominant hand as a factor
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Part (b): Typing style as a factor
impstyle : Touch impstyle : Touch
userstyle Other userstyle Touch
s ‘ B
< | L
o
o o | D — [
T o7 —= SEEMESLLLNE o
o impstyle : Other |mpstyle Other
8 userstyle : Other userstyle Touch
-2l B R -
<1 B ‘ : ‘ : 1 -
oo ULg K
o
Sl [
s 2 £ § 2 £ 2 § 2 £ §5 =z g £
© 4 0 3 X ) 2 © X 0 3 4 ) 2
< Q 2 = s £ 4 2 = s
3 2 9] X < 5] 2 9] X <
2 ER s = ER- s
° o E = 3 ¢} : =
5] S 5] S
@ = @ =

Figure 5.2: Miss rates by user and impostor dominant handygidg style. Each of the

panels presents one pairing of user and impostor traits.ath(p), separation is by user
and impostor dominant hand. Medians and boxplot quartiéesnssomewhat lower for
left-handed users. In part (b), separation is by user andstop typing style. Medians and
boxplot quartiles appear to be substantially higher fockatyping impostors, particularly
when the user is also a touch typist.
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Minimal Model Equation:

VST (miss rate);;, = p+ (user); + (impostor); + ¢y
(U;S@T)i ~ N(07 U(Zuser)>
(impostor); ~ N(0, U(zimposm))
€k ~ N(07 0’3)

Maximal Model Equation:
VST (miss rate);jkimmopgrst = 1+ (Classifier); x (User Age); x (Imp. Age)y,

+ (Classifier); x (User Gender), x (Imp. Gender),,
+ (Classifier); x (User Hand),, x (Imp. Hand),
+

Classifier); x (User Style), x (Imp. Style),

+ (user), + (impostor)s + &
' (U;S@T)T ~ N(07 O-guser)>
(impostor)s ~ N(0, U(impostor)>

Er N(0,0’g)

Figure 5.3: Equations for model selection in the persorsl-tnvestigation. The minimal
equation includes only the random effects which are pat@structure of the experiment.
The maximal equation also includes fixed effects for thestl&s, the 4 personal traits of
the genuine user, and the 4 personal traits of the imposttrint&ractions between the
classifier and corresponding user and impostor traits a@iatluded. Thed x B x C
notation is shorthand for including the three-way intdmacterm and all lower-order terms
involving factorsA, B, andC'.

the running themes of this work is that inferential statstare required to draw general
observations from empirical results, and so a more formallyais follows.

5.5 Statistical analysis

As with the original benchmark data, we analyze the resiudisgulinear mixed-effects
models, proceeding through the model selection, paranesténation, and hypothesis-
testing stages.

5.5.1 Model selection

Figure 5.3 presents the minimal and maximal model equatises to define the search
space for model selection. The minimal equation only costéie user and impostor ran-
dom effects, which we include in all models of miss rates. aximal model includes

fixed-effect terms for the classifier, the four personalt$raf the user, and the four per-
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sonal traits of the impostor. Interaction terms betweerctassifier, the user traits and the
impostor traits are also included in the maximal model. Migsre interactions between
different traits; as noted earlier, investigation of sucteractions cannot be supported by
our data set. For instance, an interaction between thesugerhg style and the impostor’s
typing style is included, but no interactions between ther’'agyping style and user’s age,
or between the user’s typing style and the impostor’s ageaheded.

We used stepwise model selection starting from the maxinoalehequation. We re-
moved terms based on the term whose removal resulted in thbestBIC score. After
iteratively applying this procedure until we arrived at thamimal model equation, we se-
lected the model with the lowest BIC score of all those seemduhe search.

5.5.2 Parameter estimation

Once the model equation was selected, we repeated the garaamation procedure us-
ing REML rather than maximum-likelihood, as explained ire@ter 3. Figure 5.2 presents
the model equation and the parameter-estimates from tbeegure. Note, again, that the
estimates are in the variance-transformed space; theyoadiractly interpretable as miss
rates.

Looking first at the model equation, we see some terms thatxpected to see, and
some terms that we found somewhat surprising. The presdmseoand impostor typing
style and an interaction between them was expected fromrigak the empirical results
in Figure 5.2, part (b). The presence of user and impostodegyeare somewhat more
unexpected. Of the various possible effects we observeakeitdxplots of the empirical
results, we did not anticipate the inclusion of these eéfelrt retrospect, revisiting Figure
5.1, part (b), the interaction term between the classifiacstae genuine-user gender is
understandable. Some classifiers did have markedly lowdrameniss rates for female
genuine-user subjects.

Turning to the parameter-estimate table, note that thelibasgtuation includes the
Scaled Manhattan classifier and male/non-touch-typissis®l impostors. The remaining
fixed-effect estimates are adjustments from changing tkelin&@ conditions. The baseline
estimate ofl9.28 corresponds to a miss rate &9%. Note that this is substantially lower
than the estimate for the Scaled Manhattan classifier inasiedhapter. In Chapter 4,
the per-classifier estimates averaged over all users, afdere the estimate is only for a
particular subset of genuine-user and impostor typists arkeceasiest to distinguish. As
the rest of the analysis will show, other sets of typistsease the estimated miss rates.

Looking down the parameter-estimate table, we note thabtaéed Manhattan classi-
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Selected Model Equation:
VST (miss rate)ijrimnop = H~+ (Classifier); x (User Gender),
+ (User Gender); x (Imp. Gender)y,
+ (User Style), x (Imp. Style),
+ (user), + (impostor), + ¢,
(user), ~ N(O, U(zuser))
(impostor), ~ N(O,a(zimposm))

g, ~ N(0,0?)

Parameter Estimates:

Parameters classifier usergender impgender userstyle impstylestimate

(1) baseline | ScaledManhattan Male Male Other Other 19.28
classifier OutlierCount 6.81
Mahalanobis 8.31

KNN 1.42

MahalanobisKNN 4.29

KMeans 5.57

SVM 5.17

usergender Female -5.19
impgender Female -7.31
userstyle Touch 4.34
impstyle Touch 11.30
classifier:usergende OutlierCount Female 2.48
Mahalanobis Female 13.31

KNN Female 10.58

MahalanobisKNN Female 12.13

KMeans Female 11.02

SVM Female 2.56

usergender:impgende| Female Female 3.57
userstyle:impstyle Touch Touch 4.15
O (user) 19.40

O (impostor) 13.84

e 19.01

Table 5.2: LMM for the results of the personal-traits studiite model equation is at the
top. Terms for the classifier and the genders and typingstfehe genuine users and
impostors were kept during model selection. The estimatiedts of these factors and
the per-user, per-impostor, and residual standard demmtre in the parameter-estimates
table at the bottom.

fier is still estimated to have the lowest error rate undecatiditions. The estimates in the
classifier section of the table are all positive, so the ottessifiers are expected to have
higher miss rates for male genuine users. The estimates tldksifier/user-gender section
are also all positive, so the other classifiers are also ¢éxgeo have higher miss rates for
female genuine users.

Based on the negative user-gender and impostor-gendaeragéssi, we would expect
that miss rates are somewhat lower for female users and torgpbut the positive user-
gender/impostor-gender interaction estimate somewlfedtsfthose reductions when both
user and impostor are female. Note, however, that all thifésete are fairly small, and
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we postpone drawing conclusions about the effect of gendilrwe test the hypothesis
formally.

One of the biggest effects in the table is the impostor'sitgmtyle (1.30), indicating
a large increase in the miss rate when a touch-typing impastsubstituted for a non-
touch-typist. For the Scaled Manhattan classifier, sulisig a touch-typing impostor is
estimated to cause the miss rate to increase &% to 21.4%. Substituting a touch-
typing user for a non-touch-typing user is estimated todase the miss rate t3.1%.
When both the user and impostor are touch typists, the ctieraeffect is also positive;
for the Scaled Manhattan classifier, with touch-typing sserd impostors estimated miss
rate increases t83.2%. Since the user and impostor typing-style effects arepaddent
of the classifier, the estimated increase for the otherifiasswould be similar.

Finally, note that the user, impostor, and residual stahdawriations are quite high,
as they were in the model from the last chapter. One might kapected the standard
deviations to decrease since we have included persontl iinghe model that help to ex-
plain some of the per-user and per-impostor effects. Lapitrthese numbers, the per-user
standard deviation has increased from the previous chapeeper-impostor standard de-
viation has decreased, and the residual remains about e 3&e should note that only
seven of the ten classifiers from the last chapter are ewluatthis chapter, so it is not
wholly proper to compare the estimates of the models actessetchapters. Neverthe-
less, the overall variance—calculated as the sum of thegenr-per-impostor, and residual
variance—has decreased somewhat with the new model. Ttisade suggests that user
and impostor personal traits such as touch typing do offeartigh explanation for why
some users and impostors have much higher miss rates thens.oth

5.5.3 Statistical hypothesis testing

With so many factors and interactions, there are literdilyusands of possible tests we
could perform. Consequently, unlike in the previous chaptdere we compared every
pair of classifiers during hypothesis testing, here we meshbre selective. Based on our
observations and the analysis so far, we believe that théimpsrtant effects to test con-
cern (1) the effect of touch-typing users and impostors (@hd/hether the classifiers/user-
gender term in the model means that some classifiers really baiter for male typists
than for female typists. The first of these topics concerespibssibility that the effec-
tiveness of keystroke-dynamics is greatly reduced by tdypimg impostors. The second
topic concerns whether we can improve keystroke-dynanyicelecting the best classifier
based on a typist's personal traits.
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Pair #1 Pair #2
user style imp. style user style imp. style| effect stderr t.stal p.value
touch other other other| 4.340 5.513 0.787 0.8794
other touch other other|| 11.303 3.943 2.867 0.0212
touch touch other other|| 19.790 6.764 2.926 0.0176
touch other other touch|| -6.963 6.763 -1.030 0.7491
touch touch touch other|| 15.449 3.938 3.923 0.0006
touch touch other touch|| 8.487 5.510 1.540 0.4170

Table 5.3: Hypothesis tests comparing miss rates for toygists and others. Each row
compares one pairing of users’ and impostors’ typing skijainst another pairing. Highly

significant positive effects (corresponding to increas&smrates) are found when we com-
pare pairings in which the impostor is a touch typist to thokere the impostor is not.

Regarding the touch-typing effects, we identified 4 reléwarms in the model: the
baseline, the user typing-style effect, the impostor tggstyle effect, and the user/impostor
typing-style interaction effect. To investigate whethlee user’'s and impostor’s typing
styles significantly affect miss rates, we tested for défferes among all 6 combinations of
these factors. Each combination corresponds to testinghwhéhe miss rate is the same
for one pair of users and impostors and another pair of usetsrapostors. There are
4 ways to pair a touch-typing/non-touch-typing user andughetyping/non-touch-typing
impostor (2x 2), and there are 6 ways to choose two pairs for comparisoafa@upairs.

Table 5.3 lists all possible comparisons among pairs ansepts the results of the
hypothesis tests: the estimated effect, the standard éneotest statistic, and thevalue
(adjusted for multiple testing as explained in Chapter &nificant effects are those with
p-values below .05, and we find three significant effects. Tdeificant effects correspond
to the 2nd, 3rd, and 5th rows of the table. In each of these,m@s€ompare pairings with
a touch-typing impostor to pairings with a non-touch-typ{other) impostor. In all three
cases, we find a significant increase in the miss rate comegmpto the pairing with the
touch-typing impostor. Based on this analysis, we conchhdé touch-typing impostors
are more difficult to detect than non-touch-typing impostor

Regarding the question of whether the user’s gender aféeclsssifier’s error rate, we
conducted a series of tests, one for each classifier. In eathnte compared the classifier
effect for female users to the effect for male users. Theltesfithese tests are in Table
5.4. None of the comparisons show a significant differentar(g reasonable level). Con-
sequently, while having the classifier/user-gender terthénmodel was preferred by the
model-selection criterion, the hypothesis test downpiisysffect.

This result highlights the different goals and propertiesiodel selection and hypoth-
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effect stderr t.staf p.value
ScaledManhattan| -5.192 5.615 -0.92% 0.8103
OutCount -2.715 5.615 -0.483 0.9755
Mahalanobis 8.120 5.615 1.446 0.4766
KNN 5.386 5.615 0.959 0.7909
MahalanobisKkNN| 6.935 5.615 1.235 0.6164
KMeans 5832 5.615 1.039 0.7434
SVM -2.629 5.615 -0.468 0.9782

Table 5.4: Hypothesis tests comparing error rates acrasdege Each row tests whether
gender has an effect on one of the seven classifiers. None akgults are significant;
there is little evidence that gender plays a substantialirotlassifier accuracy.

esis testing. BIC included these terms in the model becduaectiterion aims for large-
sample fidelity to the true model. In the context of model cigde, factors and terms can
be admitted to models more leniently than in the context afjaiicance test. In this case,
while we keep the gender terms in the model, the lack of a fsegnit effect on classifier
error rate and the relatively small size of the effects lagi consider this factor of little
practical importance.

5.6 Validation

We validate the model by using it to make predictions aboegtasdary evaluation. In this
case, the predictions from the model concern classifier raiss for different combinations
of users and impostors, characterized by traits such asgegeler, dominant hand, and
typing style. In particular, since the model contains tefonghe user and impostor gender
and typing-style, we aim to predict error rates based in gathese traits. The validation
proceeds in two stages. First, we check whether the averaggerates of the users in
the secondary evaluation fall within the prediction intdsvof the model. Then, we use
QQ-plots to more rigorously test the various modeling assionpt

We use the same data for the secondary evaluation as in th®ysechapter. The
demographic survey was administered to the 14 subjecteisgbondary evaluation data
set, and we characterized them according to age, gendemaohnimand, and typing style.
The demographic breakdown of these subjects was presentad second row of Table
5.1 on page 106. We match the evaluation results from thelatadin data set with the
personal traits of the genuine-user subject and the impsstgect.

Recall that the model includes terms for the classifier, ager user gender, impostor
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age, and impostor gender. For each combination of thesar§aete use the model to pre-
dict the average miss rate and use the per-user standaatidevo place 95% prediction

intervals around that average. In the secondary evalyatieimave at least two data points
with which to test each of these prediction intervals.

The prediction intervals and the per-user miss rates aepted in Figures 5.4 and
5.5. The results are split across figures—with results folenmapostors in Figure 5.4
and female impostors in 5.5—because of layout constraintgach panel, the intervals
represent the 95% prediction interval for the per-user magss of each classifier. The
points represent the actual per-user miss rates calcuiaedthe second evaluation data
set.

Most of the points are within the prediction intervals. Whpints do exceed the in-
tervals (e.g., the panel in Figure 5.5 for female non-totyghing users and impostors), a
correspondingly extreme point exists for all classifiersictfssets of points actually cor-
respond to miss rates for a single subject who, becausefidassror rates are so highly
correlated with one another, appears as multiple extrermeégp@nce for each classifier.
Because points by-and-large fall within the predictiorimaals, we believe that the results
validate the model.

In some panels, the points appear to be clustered in a regialhes than the full length
of the predicted interval. In other words, the intervals Inige too conservative, predicting
that points will fall across a wider range than they actudlyin the validation data set.
We must be cautious not to read too much into a small numbeoiofg In many panels,
we only have two or three data points. When a small number mitpaluster together
by chance, we should not assume that a larger number of psoukl exhibit the same
clustering. In fact, in panels with many per-user pointg.(ein Figure 5.4, with male
touch-typing user and impostor subjects), the spread optiets roughly matches the
intervals.

QQ(Q)-plots offer a more rigorous test of the model predictiond assumptions than the
prediction intervals above. Per-user, per-impostor, &stual effects were calculated as
described in Chapter 3. These effects were scaled by thespmnding standard-deviation
estimate from the model, resulting in three sets of stangeddeffects. Figure 5.6 presents
the QQ-plots comparing each set of standardized effects agaisttralard Normal dis-
tribution: per-user effects on the left, per-impostor effein the middle; residuals on the
right. The data are largely consistent with the standardrébdistribution. Overall, this
validation step confirms that our model is making accurageliotions.



118 CHAPTER 5. PERSONAL TRAITS AND KEYSTROKE DYNAMICS
| | | | | | | | | | | | | |
impgender : Male impgender : Male
usergender : Female usergender : Female
userstyle : Touch userstyle : Touch
impstyle : Other impstyle : Touch
N S— = - - = = —t
@ —_ L
<] °c| 8 o ©o § e 8 8
2 e 8 2 8 2 g e o O 5 o o [
c1s8 2 8 o 8 & 2|2 2 2 _ 2 - —-¢
impgender : Male impgender : Male
usergender : Female usergender : Female
userstyle : Other userstyle : Other
impstyle : Other impstyle : Touch
© | - - - = & £ T T T [
e | T - T o 9] Ko} L
< T o)
s o D G s ¥ e 9 ¢ B
L]
e & o 2 & & o © 2 L L 4 4L 4L 4L
(&)
E impgender : Male impgender : Male
P usergender : Male usergender : Male
-é userstyle : Touch userstyle : Touch
impstyle : Other impstyle : Touch
31 = = — = = = - T T o o o) o I
] o) o} o ® ¢ C
S o 9 e o 9 o g s
. Q s ° ® @ 4] |
el & & o & & o & | & 8 & & 8 2 2871
impgender : Male impgender : Male
usergender : Male usergender : Male
userstyle : Other userstyle : Other
impstyle : Other impstyle : Touch
© | o o o - = = = = = =L
4= 8 ® 5 B Y 3 -
s] o ) o o © + 9 s L
cle & =+ & & 2 145 8 & g & § 87
T T T T T T T T T T T T T T
= z s 2 z 0 ° = z s = z 2] X'
£ £ 5 3 £ §F g8 £ ¢ 3 3 g § ¢
£ 5 5 T S 5 5 g 2
3 2 © X < 3 o 2 4 <
= 5 5 & = 5 S g
% 9] z‘g = % o) E‘ﬁ =
3 s 3 2

Figure 5.4. Model predictions and validation data for paeddraits study (part 1). 95%

prediction intervals were estimated for the cases whergrtpestor is male. (Results when
the impostor is female are in Figure 5.5.) In all but two pan#ie data points—per-user
average miss rates—fall within the predicted intervals.



5.6. VALIDATION

|
impgender : Female impgender : Female
usergender : Female usergender : Female
userstyle : Touch userstyle : Touch
impstyle : Other impstyle : Touch
© | - - - - = << T 9 9. L
s]1 = = - T 5 g S 3 8 r
S 8 % . e 8 8 [
. ® ° b4 ° * o] -
<18 & & & & & g |t - - _ - _ 7T
impgender : Female impgender : Female
usergender : Female usergender : Female
userstyle : Other userstyle : Other
impstyle : Other impstyle : Touch
3 - % o e v | _ T 5 3T o T °r
4 _ 5 —_ L
;‘ 7 o i 9] (5 ° ¢ -
. ® [ L
o | L KOl - - L2 e 4 = Q ol a L Q o |
o
(&)
E impgender : Female impgender : Female
P usergender : Male usergender : Male
-é userstyle : Touch userstyle : Touch
impstyle : Other impstyle : Touch
@ _| —_ —_ T T - oy 5 -
SH— = T T T T T |lo o ° o ° gL
< o} L
. 3 § § g /3 8 8 5 8 & 8F
s1 & & S 8 8 8¢
impgender : Female impgender : Female
usergender : Male usergender : Male
userstyle : Other userstyle : Other
impstyle : Other impstyle : Touch
© - = - — L
O_ _ —_ _ — — — — [e) - b |
| T 7T o] L
s ] g 8 ¢ s 202 8F
31 $ & & & & S L o o o 2 )
= z s 2 z 0 ° = z s = z 2] X'
£ ¢ 3 3 g § 2 £ g 3 3 g § ¢
£ 5 5 T S 5 5 g 2
8 = o x g kS = ) X g
©
3 3 z‘g = 2 3 E‘ﬁ =
[] [
3 2 3 2

119

Figure 5.5: Model predictions and validation data for paeddraits study (part 2). 95%
prediction intervals were estimated for the cases wheréntipestor is female. (Results
when the impostor is male are in Figure 5.4.) In most casegjaita points fall within the
predicted intervals.
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Figure 5.6:QQ-plots for validating LMM predictions from the persona&itis study. Per-
user effects (left), per-impostor effects (middle), anel tbsiduals (right) are all shown to
be largely consistent with the Normal distribution assuimgthe model.

5.7 Discussion

This investigation discovered fixed-effect factors other tlassifier that affect keystroke-
dynamics error rates, namely the user and impostor typiyigsst The effect was seen
across all seven classifiers that we evaluated. In fact, gwgpgouch-typing users and
impostors for non-touch-typing ones is estimated to haveeatgr effect on the miss rate
than changing from any one of the seven classifiers to any otiee Based on the model,
the biggest difference in classifier variance-stabilizéssmates is between Scaled Manhat-
tan and Mahalanobis3.31 for male users and3.31 for female users. In comparison, the
biggest difference due to typing styleslis 79, between non-touch-typist and touch-typist
users and impostors. This finding further supports our cthehkeystroke-dynamics error
rates depend on many factors in addition to the classifier.

As noted at the beginning of the chapter, other studies hamsidered the effect of
personal traits on keystroke-dynamics error rates. Iniqudalr, others have considered
typing style or skill in various forms and their effects onarates. Mészaros et al. (2007)
provide a histogram showing that in their evaluation ecgrads rates are lower for genuine-
user subjects who spend more “hours in front of computeis’ dinclear whether the effect
is statistically significant, or whether the results coditour own findings. Touch typists
may not spend any more time on computers than other kindpadtsy

One study by Hosseinzadeh et al. (2006) compared falseraad miss rates across
“two fingertypers” and more expert typists. They observed that fdlseraand miss rates
were higher for the two-finger typists. Insofar as their ekpad two-finger groups corre-
spond to our touch-typing and non-touch-typing groupgeesvely, that result is in con-
trast to ours. However, they did not perform a statisticallysis to see whether there was
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evidence that the difference between the two groups gernedabeyond the experiment.
Further, and perhaps more importantly, Hosseinzadeh €@06) allowed their impostor
subjects to observe the genuine-user subjects’ typing @tger directly or by examining
plots of their hold and down-down times). Their impostorschad the genuine-user sub-
jects type their passwords. Their conjecture is that twgdiad typists, who are known to
be such, are easier to imitate.

In similar work, Lin (1997) reported classifier errors by uaad impostor typing skill.
That study identified proficient and non-proficient typisishe proficiency criteria were
based on an overall measure of words-per-minute in a typisig tProficient typists scored
at or above 90 words per minute. Just as we have, that worldfaumgher number of
errors when users and impostors were both proficient. Hoyeuestatistical analysis was
performed to support the observation, and the sample sige@raparatively small.

We split typists into those who touch type and those who dobased on a survey.
Subjects in the touch-typing group self identified as toyglists. Naturally, this procedure
raises the question of whether these subjects really ah ttypists who type without
looking at the keyboard. In some cases, we were able to chedklmnotebook to confirm
that we observed the subjects in this group touch typingndudata collection. More
generally, because the question of typing style was as$essa 5 point scale, participants
were able to answer any value between 2—4 in the event thattbiee reluctant to admit
to being hunt-and-peck typists. We split our groups betwibese who answered 1-4
and those who answered 5. To be incorrectly included in thehtdyping group, subjects
would have had to circle the extreme value (5) in the surveymsgquently, we believe that
subjects had little incentive to falsely claim touch-tygskill.

We should also provide a word of caution about interpretimgresults concerning per-
sonal traits and classifier error rates. In our discussi@have informally stated, for in-
stance, that gendemnay affeciniss rates. We adopt this expression because it is much more
tortuous to say that gendaray be correlated with differences in the miss rdt®wever,
we cannot forget the oft-repeated mantra of statisticdac correlation is not causation.
In this case, we recruited a convenience sample of subpmtse of whom were male and
some female. Even if a gender effect survived statisticablkiyesis testing (which it did not
in this investigation), it would be incorrect to infer fromiioresults that something intrinsic
to gender makes one’s typing more or less amenable to k&gatiymamics. An effectively
infinite number of alternative explanations cannot be roleitas hidden variables. Investi-
gating human physiology through convenience samples ipsyand we caution readers
against drawing conclusions without a great deal of furtheearch.



122 CHAPTER 5. PERSONAL TRAITS AND KEYSTROKE DYNAMICS

5.8 Summary

Prior work in and outside keystroke dynamics suggestedyb#ts’ personal traits—such

as their age, gender, dominant hand, and typing style—nfagtatlassifier error rates.

Personal-trait effects would help to explain the large ys@¥r and per-impostor effects on
miss rates. To investigate these effects, we administedesireographic survey to subjects
whose data were used to evaluate keystroke-dynamics faassi Based on the survey
results, we used LMMs to analyze whether the personal taditee user and impostor

affected the classifier miss rates (for a fixed false-alate)ra

From this second investigation, we draw the following cos@ns:

1. The Scaled Manhattan classifier continues to have the loesshated miss rate,
regardless of the user and impostor age, gender, dominamd har typing styleThe
previous investigation established Scaled Manhattanealseht overall classifier; the
current evaluation finds that we cannot do better than Sédsethattan by choosing
a classifier based on the user’s age, gender, dominant hatygjmag style.

2. When the impostor is a touch typist rather than another kihtlypist, the Scaled
Manhattan miss rate increases fromi.1% to 33.2% if the genuine user is also a
touch typist, and fron8.9% to 21.4% if the genuine user is notThe effects of
user and impostor typing skill are independent of the cl@ssso similar increases
in the miss rate are expected for all classifiers, not juste8chlanhattan. This
result suggests a possible vulnerability in keystroke dying, since an impostor
who wished to evade detection would do well to learn to toyple t

3. Other than the user and impostor typing style, none of therdisted traits (i.e.,
age, gender, or dominant hand) were found to have a signifietiect on classifier
miss ratesWith this conclusion, we do not reject the possibility tHete other traits
might have effects; we only accept that such effects may laienand require more
work to find.

These findings reveal a new factor that must be considered ex@aining the behavior of
keystroke-dynamics classifiers. They also expose a patentinerability that impostors
might use to increase their chances of evading detection.

Returning to the thesis statement from Chapter 1, we claimedrt that LMMs offer
better understanding of classifier behavior than curremttmes. In this investigation, we
examined earlier efforts to understand whether user andstop personal traits affected
classifier behavior. We found the results inconclusive art pecause of small sample size
and in part because of a lack of inferential statistics. THwnmerging our benchmark
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evaluation results (from Chapter 4) with demographic-symesults, and by analyzing the
merged data set using LMMs, we discovered that typing skiingly influences classifier

error rates. We were also able to gather evidence that athiés such as age, gender,
and dominant hand have less (if any) influence; ruling ouofacas having a substantial
effect is a contribution in its own right. Consequently, theestigation has furthered our
understanding of keystroke-dynamics classifier behavidrtae factors that affect it.
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Chapter 6

Screening Keystroke-Dynamics Factors

Many factors have varied across prior classifier evaluatiand in this chapter we inves-
tigate what effect those factors have. Specifically, in &oldito the classifier we consider
the following factors: the typing task, the feature set,dh®unt of training, the updating
strategy, and impostor familiarity with the typing task. ffBient researchers have made
different choices with respect to these factors in earhedwations; if those choices do
affect evaluation results effect, it would help explain wiegults vary wildly across eval-
uations. By investigating these factors, we might alsoalisc potential ways to optimize
performance (e.g. the best feature set and updating sgjaed potential vulnerabilities
(e.g., impostor familiarity).

6.1 Background

One can easily list dozens of factors that might affect wieghclassifier can distinguish
two people’s typing. Many of the papers we surveyed in Chradiacluded a discussion
of how the results might not generalize to other users, typasks, environments, and
so on. With so many factors thatight affect keystroke-dynamics error rates, how do
we find those that do, and how do we decide which factors carate#ysignored? For
keystroke dynamics to become a dependable computer-setechnology, we must be
able to explain what factors influence their error rates, leowl

Some earlier work has gone beyond listing the possible fadt@at might affect error
rates. We have identified six factors that have been invagsiign the literature by compar-
ing error rates across different levels or values of theofact
1. Classifier: Obviously, the classifier itself is a factor; some classsfiay have higher

error rates than others. In an earlier survey, we found thatie54% of keystroke-

125
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dynamics studies compared multiple classifiers (Killouang Maxion, 2011). This
is one factor whose effects are investigated fairly fredyen

2. Typing task: Even if we restrict our attention to login-time authentioat keystroke
dynamics might be applied to a variety of tasks: differentdso passwords, user-
names, and even numeric codes. Bleha et al. (1990) had subype both their
names and a fixed English phrase. Their findings that erres naere lowest with
names establishes the typing task itself as a possibly mifaldactor.

3. Feature set: A variety of timing features, including hold times, keydokeydown times,
and keyup-keydown times have been tried. Different re$eascuse different com-
binations of these features in their evaluations. One stodypared many combina-
tions (Araujo et al., 2005); they recommended using allgtaeonce for the lowest
error rate.

4. Training amount: Some researchers have trained their classifiers with asSé&arep-
etitions of a password, while others have used over 200 e&sing the number of
training repetitions even from 5 to 10 can reduce error (@md Gupta, 1990), so
the amount of training is expected to be highly influential.

5. Updating strategy: Most research has focused on classifiers that train oncepamgty
samples and then the profile is fixed. More recently, reseaschave suggested
that regularly updating the profile, retraining on the mesent typing samples, can
improve error rates (Kang et al., 2007).

6. Impostor familiarity: An impostor is an intelligent adversary and will presumatnyy
to evade detection. Some researchers have given their iormagjects the oppor-
tunity to become familiar with a password by typing it thetass before the evalu-
ation; they found that impostor familiarity raises misesfLee and Cho, 2007).

Any of these six factors might explain different keystrakgamics error rates across
evaluations. However, earlier work on the effects of thessadirs is inconclusive. As
detailed in Chapter 2, evaluation results in keystroke dyna are rarely analyzed with
formal inferential statistics; when they are used, thergri@al technique almost never
takes into account possible interactions among the factors

6.2 Aim and approach

Our aim in this investigation is to understand which of thefaictors—classifier, typing
task, feature set, training amount, updating, and impdatuoiliarity—affect the error rate
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of keystroke-dynamic classifiers. We also hope to identifyolv of these factors interact
with each other so that future work can take such compleitiso account.

As in the earlier investigations, we collect typing data andduct an evaluation. The
evaluation is conducted such that we systematically varsthfactors of interest across a
sequence of evaluation runs. We analyze the results of tieaion using LMMs to iden-
tify which factors and interactions between factors havelstantial effect on classifier er-
ror rates. Finally, we collect typing samples and conduetcmsdary evaluation to validate
the model. In a slight departure from our earlier analydessize of the evaluation-results
data set necessitates splitting the analysis in two: (1)rfqithe best feature set, and (2)
understanding the effects of the many other factors.

6.3 Experimental method

The experimental method is comprised of three steps: (&rsehlues of interest for each
of the factors, (2) collect typing data with which to invegstie those values of the fac-
tors, and (3) repeatedly run an evaluation, while systerallyivarying the factors over a
sequence of runs.

6.3.1 Selecting factor values.

The factors of interest in this investigation—classifigpihg task, feature set, training
amount, and impostor familiarity—can take many differesitres. For this study, we need
to choose a subset of values to test.

1. Classifier: We selected three classifiers for the investigation: Scikladhattan, Ma-
halanobisk-NN, and SVM. Scaled Manhattan had the lowest miss rate amting
the classifiers evaluated in Chapters 4 and 5. The SVM and lstabiaist-NN had
the 3rd lowest and 5th lowest miss rates, respectively. 8 lege were chosen be-
cause the typing profiles they learn seem markedly diffefastillustrated in the
contour plots of Figure 4.2 on page 75). By using them in tinestigation, we hope
to discover cases where their miss rates diverge, showagethtive strengths and
weaknesses of each classifier.

2. Typing Task: In our earlier investigations, subjects typed a strongywass, but login-

IDs, and numeric passcodes. We chose two additional tyiskstfor comparison
with the strong passwordtie5Roanl): a simple-to-type user IDhgster), and a
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numeric passcoded{21937761). Together, these Strong, Simple, and Numeric
tasks enable us to understand how much effect the typindhtesk

3. Amount of training: Prior researchers have trained login-time anomaly deteetdh
as few as 5 repetitions and as many as 200 or more repetitiOos.values were
chosen to broadly map the contours of the range of possiltilesa5, 25, 50, and
100 repetitions.

4. Feature sets:In the earlier investigations in this dissertation, we pded classifiers
with hold and down-down, times (not up-down times). We alsoviged timing
features for theReturn key at the end of the password. In this investigation, we
look each of these four feature sets as separate binaryr$a@@ob-factors of the
feature-set factor, if you will): (1) presence/absenceadtittime features; (2) pres-
ence/absence of down-down features; (3) presence/abstupedown features; (4)
presence/absence Return key features. Four binary variables lead to 16 combina-
tions, but 2 combinations are impossible (i.e., one of hdtyn-down, or up-down
timing features must be in the feature set).

5. Updating strategy: In the earlier evaluations in this work, the typing data foe tlesig-
nated genuine-user subject was split so that the first sa{glg., 1-200) were used
during a training phase to train a classifier, at which pdietdenuine-user subject’s
typing profile was fixed for the remainder of the evaluatiom #pdating classifier
effectively has multiple training phases. After the irlitiaining phase, the remain-
ing typing samples must be presented to the classifier irhbate.g., of 5 samples
each). The samples in a batch would be scored and then usettdmithe classi-
fier during a subsequent training phase. Then, the next baiahd be presented to
the newly retrained classifier. For this investigation, wese to compare gliding
windowupdating strategy withone(i.e., no updating).

6. Impostor familiarity: While prior work has considered the issue of impostors trym
evade detection by becoming familiar with a password or watcthe genuine-user
type it, the concept has not been operationalized form&ldy. this work, we mea-
sure familiarity in terms of the number of practice repetis an impostor used. We
define two levels of familiaritynoneandhigh. With no familiarity, the impostor test
samples provided to the classifier are from impostors whemigped the password
before. Specifically, they are the first 50 repetitions framrapostor subject. One
might argue that by the 50th repetition, the impostor is seha familiar with the
password. Regardless, we use 50 samples to have enough datatately estimate
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the miss rate for the impostor. With high familiarity, thergales are taken after the
impostor subject has practiced typing the password 150stif8pecifically, they are
the 151st to 200th repetitions typed by the impostor (i.Q additional repetitions
after the first 50).

To test whether a factor has an effect, one must identifyahge of values that the factor
can take in an investigation. For each of the factors undetysin this investigation, we
have established two or more relevant values that will bdistband compared. While
other choices of values are certainly possible, the rangaloks chosen are realistic, and
will help us understand keystroke-dynamics under compatgtpractical conditions.

6.3.2 Typing-data collection

We begin with the extant Strong data from Chapter 4, and weaahew typing data for
the Simple and Numeric typing tasks. In each task, as in then&ttask, subjects were
prompted to repeatedly type a given sequence of charantersltiple data-collection ses-
sions. The same data-collection apparatus was used tetddea for all three tasks. Pre-
viously described in Chapter 4, the apparatus consistsagftap with an external keyboard
running a software application that prompts subjects te tggy sequences and monitors
their compliance. In a given session, the subject must typseéquence correctly 50 times.
If any errors in the sequence are detected, the subjectmsgteal to retype the sequence.
The external keyboard is connected to an external referemez calibrated to generate
timestamps with an accuracy 6f200 microseconds. Whenever a subject presses or re-
leases a key, a timestamp for the keystroke event is logged.

We chose to have subjects perform the following three typaisggs (with the already-
described Strong task included for completeness):

Strong: To make a password that is representative of typical, stpasgwords, we em-
ployed a publicly available password generator (PC Tool§)82 and password-
strength checker (Microsoft, 2008). We generated a 10acier password contain-
ing letters, numbers, and punctuation, and then modifietigihtyy, interchanging
some punctuation and casing to better conform to the gepereéption of a strong
password. The result of this procedure was the passwie8Roanl.

Simple: To construct a simple keystroke sequence that is représentd user IDs or
English words, we considered the common letters and digraplnglish words.
Letter and digraph frequency charts are compiled from aarppd English texts; a
common usage is in cryptanalysis. Menezes et al. (1997¢ptes frequency table
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for the top 15 digraphs in a standard English corpus. In deatsen with a dictionary,
we build two six-letter words comprised solely of these djgrs:hester andrested.
Pilot testing showed that both could be typed quite quickigéveral typists, and the
former seemed like a suitably representative user ID. Forsouple typing task,
subjects typed the user Ibester.

Numeric: To construct a numeric passcode, we chose a mock phone nurSbeh a
number could be used for authentication on a mobile phoromulld also act as an
access control code typed on a numeric keypad. A US phone emisibomposed
of an area code (first 3 digits), and NXX code (next 3 digite)]d ne code (last 4
digits). The 412 area-code would be familiar to our subjsota/e chose it. To avoid
publicizing a real phone number, we used an invalid NXX cddets started with a
1 since real NXX codes cannot start with a 0 or 1. The remainfiéne code was
chosen to ensure a range of finger movements (Maxion anduiljg 2010). For
realism in entering an access-control code, and for a highihtrolled experiment,
we instructed subjects to use the numeric keypad on the kegtand to type the
number using only their right index finger. The following nien was chosen for the
Numeric typing task412 193 7761 (spacing included for readability).

In our first investigation with the Strong typing task, 65 s typed 8 sessions with
50 repetitions in each session. Of the 65 subjects, 51 weaé asthe evaluation pool
and the remaining 14 for the validation pool. For the Simpfertg task, we recruited 38
subjects to type 4 sessions with 50 repetitions in each@esgise., 200 repetitions for 38
subjects). For the Numeric typing task, we recruited 40extbjto type 4 repetitions with
50 repetitions in each session (i.e., 200 repetitions fsulf)ects). Note that, because we
only collected 4 sessions of data for the Simple and Numasks, for this investigation, all
of our analyses will concern 200 repetitions of each taskalicular, even though we have
400 repetitions for each subject who typed the Strong passwee only use the first 200
repetitions in evaluating classifiers in this chapter. Farhesubject who participated, we
extracted hold times, down-down times, and up-down timealféhe keystrokes including
theReturn key.

Across the Strong, Simple, and Numeric tasks, 26 subjecterpged all three tasks,
and the remaining subjects performed only one or two of thkstaWe selected the data
from the 26 subjects for inclusion in the primary evaluat@ol because having the same
subjects perform all three tasks will make the statisticallygsis of the typing-task effect
more powerful. The data from the remaining subjects will bediin the secondary evalu-
ation to validate the model. Table 6.1 compiles the numbsubfects per typing task and
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| Strong  Simple Numeric
Evaluation Pool 26 26 26
Validation Pool 14 12 14

Table 6.1: Summary of the number of subjects who completetl gging task. In the
Strong, Simple, and Numeric tasks, subjects typiedRoanl, hester, and412 193 7761
respectively. The 26 subjects who typed all three were ahémethe primary evaluation
pool (i.e., those whose evaluation data are used to builditid). Those who did not type
all three were reserved for the secondary validation poe), (hose whose evaluation data
are used to validate the model).

how many subjects are used in the primary evaluation vs.dberglary evaluation. While
we have data from 65 subjects for the Strong task, we choserXhd validation set. The
particular subset of subjects were selected arbitrarily,the size of the subset (i.e., 14)
was chosen so that the relative sizes of the three typing'taakdation pools would be
approximately the same.

6.3.3 Evaluation procedure

We have described how values were chosen for each of thagaataler study, and we
collected data with which to study their effects. Our evaiirais full factorial in the six
factors of interest (Box et al., 2005). Every combinatiorira factor values is run in the
course of the experiment. We have 3 classifiers, 3 typingstdskfeature sets, 4 amounts
of training data, 2 updating strategies, and 2 levels of ish@afamiliarity, leading to 2016
combinations x 3 x 14 x 4 x 2 x 2).

For each of the 2016 combinations of factors listed above;ameluct a series of eval-
uation trials. In each trial, one of the subjects is desigaats the genuine-user subject,
and the remainder as impostors. A trial can be thought of as@egure that takes inputs,
performs a series of steps, and produces outputs. In thes ttessinputs are values for each
of the 6 factors—classifier, typing task, feature set, amofitraining, updating strategy,
and impostor familiarity—as well as the designated genuiser subject.

To accommodate the different combinations of factor valtles evaluation procedure
is fairly complicated. We present it here as an enumerateaf séeps, including sub-steps
and branches when necessary (like a computer program).

1. Depending on the typing task, the appropriate evaluadata set is loaded (i.e.,

Strong, Simple, or Numeric). The evaluation data set costaDO0 repetitions of
26 subjects typing the key sequence for the task. Each tigpetontains hold times,
down-down times, and up-down times.
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. Depending on the feature set, unnecessary typing tineesearoved. For instance,

when the feature-set value is hold and up-down times witlwiReturn key, then
all down-down times are discarded along with timing feagun¥olvingReturn.
Depending on the amount of training and the genuine-usgest, a training-data set
is constructed. The training data are formed from the firshaf subject’s samples,
up to the given amount of training (i.e., 5, 25, 50, or 100 téip@s).

. The classifier—Scaled Manhattan, MahalangbN, or SVM—is trained using the

training sample.

. The next steps depend on whether the updating strategnisor sliding window

If the updating strategy isone the following steps are performed:
(@) The 100 samples following the genuine-user subjecitig data are pre-

(b)

sented to the classifier and scored. These anomaly scoreseddo tune the
classifier to have a 5% false-alarm rate.

The 25 subjects not designated as the genuine-usercs@bge designated as
impostor subjects. If the impostor-familiarity level mone then the first 50
samples from each of the impostor subjects are presentbd taried classifier.
If the impostor-familiarity level ishigh, then the last 50 samples from each
impostor subject (i.e., repetitions 151-200) are presktatéhe tuned classifier.
In either case, we record whether each sample was detecteidsed.

If the updating strategy isliding window the following steps are performed.
(a) The 5 samples following the genuine-user subject’sitngidata are presented

(b)

(©)

(d)

to the classifier and scored. The classifier is saved (to ingle following
steps), and a new training data set is created by removinfirthé samples
from the earlier training set and replacing them with thefaglas just scored.
The classifier is retrained using the new training set.

The previous step is repeated until 100 samples havedmeead, and 20 clas-
sifiers have been trained and saved. Each of these 20 clesgiéee trained on
different (but overlapping) sets of genuine-user sampaled,each classifier is
used to score the five samples after its training set.

A single anomaly-score threshold is found for all 20neal classifiers by pool-
ing the 100 anomaly scores and tuning the classifiers to hawverall false-
alarm rate of 5%. Specifically, we pool the scores producdad®g0 classifiers,
and we find the 95th percentile of the scores.

The 25 subjects not designated as the genuine-usercs@bge designated as
impostor subjects. If the impostor-familiarity level mone then the first 50
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samples from each of the impostor subjects are presentedcto & the 20
tuned classifiers. For each sample and each classifier, wedradether the
sample was detected or missed. If the impostor-familidetel is high, the
last 50 samples from each impostor subject are presentedcto & the 20
tuned classifiers, and we record whether they were detecteissed by each
classifier.
The portion of this procedure concernialiding windowupdating is somewhat complex,
and a few aspects of it should be explained. We make the gyimgliassumption that the
classifier will only retrain on the genuine user’s data. Istpo poisoning of the training
is not considered in this work. We classify each repetitibmgostor test data multiple
times, once with each of the 20 trained classifiers. A samplebmaly score may change
whenever the classifier is retrained, and so a sample maytbetéle by some instances of
the classifier and not others. By testing each sample with elassifier and then calculat-
ing the miss rate using all the results, we effectively aggte over the variability due to
updating, and we find the average miss rate.

For each of the 2016 combinations, and within each comlandtr each pair of
genuine-user and impostor subjects, we calculate the propoof samples that were
missed. There are 1,310,400 such miss rates for our an€B@&l$ combinations< 26
genuine-user subjects 25 impostor subjects).

6.4 Empirical results

While the full analysis will consider the role that per-used per-impostor effects have
on classifier miss rates, our initial exploration of the teswill necessarily focus on av-
erages. Specifically, for each of the 2016 combinations abfavalues, we calculate the
average miss rate over all genuine-user and impostor ggbjdote that if we did not take
the averages and instead tried to understand this expdritm@ugh latticed boxplots of
per-user/impostor miss rates as in the previous investiggtwe would have hundreds of
panels no matter which factors we chose for the boxplotst dW@whelming number is
further reason why inferential statistics are needed teerstdnd environments with many
factors and many potential interactions. Our exploratidhsimply try to develop an intu-
ition for each factor’s effect by averaging out the effedtsther factors.

Typing task. Figure 6.1 shows the average miss rates for each classifieadntyping
task. Within each panel, the classifier’s results are shawm€reasing amounts of training
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Figure 6.1: Average miss rates for different typing taskactepanel presents miss rates for
the three classifiers for different amounts of training. Tésults for each typing task are
presented in separate panels. Training appears to imppar&smance, but the amount
of improvement may depend on the classifier and the task. Miss are lowest for the
Strong task.

data. The miss rates in the figure are averaged over the aitter$ (feature set and impos-
tor familiarity). Each panel shows clear improvement resglfrom additional training.
Reductions in the miss rate are observed all the way up todfiétitions, though in some
cases with diminishing returns.

The Scaled Manhattan classifier performs better than thex othssifiers. It is unclear
whether the MahalanobisNN and the SVM perform the same under all circumstances
or whether there are slight differences. In the Simple tskMahalanobig-NN appears
to respond somewhat more quickly to increased training. oy do the typing task
and amount of training affect classifier performance, bat there might be an interaction
between the two. Going from 5 to 25 typing samples reduces ratss in the Simple task,
more than in the Numeric task, for instance.

Feature sets. Figure 6.2 presents average miss rates for each classiffeeatch combi-
nation of timing features. Above each panel is a code coimigifour pluses and minuses
(+/-), indicating which features are present or absent for theltgin that panel. For in-
stance, the : - : +: + code in the top left panel means that hold and down-down tanes
not included, but up-down times aRteturn key features are included.

Note that the column of panels on the right and the column enet are very similar.
The difference between these two columns is the presersaziab oReturn key features.
There appears to be little effect to having fReturn as part of the password when ex-
tracting timing features. The bottom six panels are alstecgimilar. In these six panels,
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Figure 6.2: Average miss rates for different timing feasufeach of the 14 panels presents
classifier miss rates for a different combination of timiegtures. There is little difference
between panels on the left and panels on the right (withtwitiiReturn features). The
panels with hold-time features and either digraph featbogt¢m six) appear better than
those without hold-time features (top six) or with just tleddatime feature (middle two).
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Figure 6.3: Average miss rates for different updating sges. The panel on the left shows
average miss rates for classifiers that train only once @reupdating strategy afong.
The panel on the right shows average miss rates for classifiat repeatedly update the
typing profile (i.e., asliding-windowupdating strategy). Across classifiers and training
amounts, sliding-window average miss rates are lower.

the hold-time features are paired with either down-downmdawn features. All such
combinations appear roughly equivalent.

In the top six panels, the miss rates are higher, at leastdaordmounts of training (e.g.,
50-100 repetitions). In these panels, the hold-time featare absent. Contrasting the top
six panels with the bottom six, hold times appear to be ingrdrteatures for reducing
miss rates. In the middle two panels, where only hold-tinaéfiees are used, the classifiers
perform better than when only down-down or up-down timesiaesl. For the Mahalanobis
k-NN and SVM classifiers, these are among the best resultsthEocBcaled Manhattan
classifier, they are not as good as when digraph timings & aswell.

Updating strategy. Figure 6.3 presents the average miss rates for each clagsitie
and without a sliding-window updating strategy. The panetlte left shows miss rates
when classifiers do not use updating, and the panel on thesigiws miss rates with a
sliding-window updating strategy. Every line represeqtitassifier miss rates is lower in
the sliding-window panel, suggesting that updating impsoevery classifier, no matter
how much training data was used in the initial training phase

In the sliding-window panel, the Scaled Manhattan clag&fmaiss rate starts to level
off at 50 samples of training. Perhaps with updating, thassifier can be trained just as
effectively using only 50 samples of training as using 10@@ias. Such a result would
be encouraging since 100 samples of training would be osdmumany applications of
keystroke dynamics.
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Figure 6.4: Average miss rates for different impostor-farity levels. The panel on the
left shows average miss rates for all classifiers when thestap has not practiced the typ-
ing task and become familiar with it. The panel on the riglavghiresults for impostors who
practiced 150 repetitions of the typing task and becameli@miThe familiar-impostor
miss rates are noticeably higher.

Impostor familiarity.  Figure 6.4 presents average miss rates when impostors e un
miliar with the typing task to those when impostors have ficad to become familiar
with the task. The miss rates do appear to be higher—for adisdiers and all amounts
of training—when the impostors are familiar with the taskislobservation suggests that
impostors might increase their chances of evading detebtygracticing a compromised
password a few hundred times before trying to use it to accegstem.

Overall observations. Our observations suggest that many of the factors studiddsn
investigation will turn out to have a significant effect onssirates. Of course, formal
statistical analysis and validation of the model are nexgs3NVe now proceed with that
analysis. Because of the complexity of the data and the nuofbfactors and interactions
possible, we conduct two analyses. The first focuses on ttariesets, and the second
focuses on the amount of training, updating, and impostmiliarity. In each case, we
examine the effect across classifiers and typing tasks.

6.5 Statistical analysis #1: Feature sets

For the first analysis, we restrict our attention to a subetaluation results. Specifically,
we analyze only the miss rates for 100 samples of training,daith no updating, and
with unfamiliar impostors. With this subset of data, we istigate the effect of different
feature-set combinations on classifier miss rates. As imiqus analyses, we begin with
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Minimal Model Equation:
VST (miss rate);jr, = p+ (user); + (impostor); + e,
(user)i ~ N(0,02,,)
(O’ U(Zimpostor))
(0,02)

(impostor); ~

=2 2=

L

Maximal Model Equation:
VST (miss rate)ijrimnopg = 1+ (Classifier); x (Typing Task);
x ((Hold)j, 4+ (Down-Down); + (Up-Down),,)*
X (Ret)y + (user), + (impostor), + &4
(user), ~ N(0,02 )

>~ (user)

(impostor), ~ N(0,0? )

>~ (impostor)

Eq ~ N(0,0’g)

Figure 6.5: Equations for model selection in the featuteasalysis. The minimal equation
includes only the random effects. The maximal equationuthe$ fixed effects for the

classifier, the typing task, and all combinations of featets except the combination of
hold, down-down, and up-down effects. Thé+ B + C')? notation indicates all pairwise

interactions between factor§ B, andC, but no three-way interaction.

model selection and parameter estimation followed by Hygsis testing.

6.5.1 Model selection

The minimal and maximal models for model selection are prieskin Figure 6.5. The
minimal equation only contains the user and impostor randfbects, which we include in
all models because of the structure of the experiment. Themah model includes fixed
effects for the classifier, the typing task, and the varicusluinations of timing features:
hold times, down-down times, up-down times, aRdturn features. We use stepwise
model selection to search the family of models for the modglation with the lowest
BIC score.

Note that we structure the data and the model so that theréea#it terms represent
the effect ofremovingthe corresponding timing features from the baseline moelgl.,(
(Hold),, represents removing all hold times). The baseline modaf itentains hold times,
down-down times, up-down times, aReturn features. This choice of baseline may seem
contrary to intuition, but with it, we avoid a problem. Sdexlly, if features were added to
the baseline rather than removed, the baseline would contafeatures: no hold, down-
down, or up-down times. Because evaluating classifierggusinfeatures is impossible,
we have no data for that case; building an LMM with such a asetould fail. For the
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Selected Model Equation (Feature-Set Analysis):

VST (miss rate)ijkimnop =+ (Classifier); + (Typing Task); + (Hold ), + (Down-Down),

+ (Up-Down), + (Classifier : Typing Task)i;+
+ (Hold : Down-Down)y; + (Hold : Up-Down)km
(Down-Down : Up-Down)y, + (Classifier : Hold);;+
(Classifier : Down-Down); + (Classifier : Up-Down)pn,
(Typing Task : Hold) ;i + (Typing Task : Down-Down)j;
(Typing Task : Up-Down)jm
(Classifier : Hold : Down-Down);j
(Classifier : Hold : Up-Down)pm,
(Classifier : Down-Down : Up-Down);im
(Typing Task : Hold : Down-Down)jk
(Typing Task : Hold : Up-Down)jkm
(Typing Task : Down-Down : Up-Down) jim
(Classzﬁer Typing Task : Hold);;x
(user),, + (impostor), + €
(0 g user))
(impostor), ~ N(0, a(impostw))
ep ~ N(O, U?)

i

ZZ+++ Attt

(user),

Table 6.2: LMM model equation for the results of the featse¢-analysis. Based on the
model-selection criteria, three-way interactions betwtbe classifier, typing task, and fea-
ture sets are supported by the evaluation results.

same reason, we also do not consider a 3-way interactioreketiold times, down-down
times, and up-down times, since that interaction wouldexpond to the removal of all
three feature sets.

6.5.2 Parameter estimation

Tables 6.2 and 6.3 present the model equation and paragstieration table respectively.
The LMM has been split across the two tables because of #s Size model equation in
Table 6.2 is quite complex, involving two- and three-wayenactions among the classifier,
typing task, and feature sets. For instance(tessifier : Typing Task : Hold);;;, term is
present, meaning that the effect of removing hold-timeuesst on the miss rate depends on
the particular combination of classifier (e.g., Scaled Mdtan, Mahalanobis-NN, SVM)
and typing task (e.g., Strong, Simple, Numeric).

Perhaps the most interesting aspect of the model equatwhasis missing from it.
The Return-key factor is not part of the selected model. Any term thaiosin the model
equation effectively has zero effect on miss rates. By itseabe, we can infer that the
presence or absence of tReturn timing features have negligible effect on any of the
three classifiers.

The actual estimates in Table 6.3 show a baseline estimate2df, corresponding to a
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Parameter Estimates (Feature-Set Analysis):

CHAPTER 6. SCREENING KEYSTROKE-DYNAMICS FACTORS

Parameters classifier  typingtask Hold DD UD| estimate

(1) baseline | ScaledManhattan Strong + + + 30.21
classifier | Mahalanobisk NN 12.03

SVM 9.44

typingtask Simple 4.10
Numeric 2.16

Hold 21.48

DD - -5.35

ub - -5.16
classifier:typingtask| MahalanobisKNN Simple -7.66
SVM Simple -3.39

MahalanobisK NN Numeric -3.30

SVM Numeric -4.14

Hold:DD - 6.92
Hold:UD - 7.36

DD:UD - - 7.01
classifier:Hold | MahalanobisK NN -19.11
SVM -3.76

classifier:DD | MahalanobisKNN - 3.97

SVM - 3.63

classifier:UD | MahalanobisKNN - 3.18

SVM - 3.18

typingtask:Hold Simple - -5.77
Numeric - -8.89

typingtask:DD Simple 1.33
Numeric 2.82

typingtask:UD Simple 3.25
Numeric 2.69

classifier:Hold:DD | MahalanobisKNN - 5.80
SVM - -1.98

classifier:Hold:UD | MahalanobisKNN - 8.23
SVM - -1.19

classifier:DD:UD | MahalanobiskNN - - -8.18
SVM - - -8.68

typingtask:Hold:DD Simple - -5.76
Numeric - -4.62

typingtask:Hold:UD Simple - -1.72
Numeric - -7.48

typingtask:DD:UD Simple 1.21
Numeric 8.22

classifier:typingtask:Hold| MahalanobisKNN Simple 3.07
SVM Simple - -7.03

MahalanobisK NN Numeric 6.55

SVM Numeric - 2.37

O (user) 12.78

O (impostor) 9.20

oe 23.35

Table 6.3: LMM parameter-estimate table for the featuteasmlysis. In the baseline,
all timing features are present. The adjustments reprékergffect of removing the cor-
responding features. Many of the largest effects involvd times, indicating that hold
times are important for achieving low miss rates.
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miss rate 0R0.9%. The other fixed-effects estimates are adjustments td#ssline miss
rate. The largest such estimate is for the hold-time facibi8. Based on this estimate,
we would expect the Scaled Manhattan miss rate to incredse®® if hold-time features
arenotincluded as timing features.

If we look at the typing-task/hold rows of the table, we segatiwe adjustments for
removing hold times from the Simple and Numeric typing taskber than the Strong
task. Removing hold times increases the miss legefor Simple and Numeric than for
Strong. Since these typing-task/hold-time effects (e-§.77 and—8.89) are much smaller
(in absolute terms) than the hold-time main effexit.48), the hold time features remain
important for all three typing tasks.

If we look instead at the classifier/typing-task rows of thiglé, we see a small negative
number for the SVM/hold-time effect(3.76) and the second largest adjustment (in abso-
lute terms) in the table for the MahalanobkisNN effect (—19.11). These estimates suggest
that hold times are as important to the low miss rate of the S\édgsifier as for the Scaled
Manhattan classifier, but not very important for the Mahalas/k-NN classifier. Such a
result would make sense since hold times are a linear coridinaf the down-down and
up-down times. By the nature of the Mahalanobis distanoealily dependent features are
redundant, so the classifier can operate just as well witi down-down and up-down
times.

The estimated per-user, per-impostor, and residual stdrtviations are quite large
compared to the main effects (i.€2.78, 9.20, and23.35). Even after we have taken into
account the effects of different classifiers, typing tasksj feature sets, there remains
a good deal of variance. The residual variation must be exgudaby factors yet to be
identified.

6.5.3 Statistical hypothesis testing

The key question in this statistical analysis is which camhbbns of features produce the
lowest miss rates. The presence of classifier/featurersketyping-task/feature-set effects
means that the same feature set may not be best for all conanisaf classifier and task.
Because we would like to use features that are generallylsafoss tasks and for multiple
classifiers, we ask which feature set is best when the rem@taveraged across classifiers
and typing tasks.

Constructing a contrast matrix for this set of tests is frickhere are 7 combinations
of features: three atomic feature sets (i.e., hold, dowmnrd@and up-down times), all three
pairs of feature sets, and the triple containing all threguiee setsy + 3 + 1). For each
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feature set, we can estimate the average miss rate acradasslifiers and typing tasks
by appropriately weighting the estimates in the paramegérmate table. For instance, for
the hold-time feature set, we give a weight of 1 to the basgline down-down removal,
the up-down removal, and the down-down/up-down interactie., so the only features
left are hold times). We assign weights @f to the classifier main effects, and classifier
interactions involving the removal of down-down or up-dofeatures. This fractional
weight effectively averages the estimate over the thregsiflars. Likewise, we assign
weights of!/3 to the typing-task main effects and interactions involvthg removal of
down-down and up-down features. Interactions involvinthlibe classifier and the typing
task are assigned weightsigf, averaging over the 6 combinations of classifier and typing
task. The remaining effects are assigned a weight of zero.

Having constructed these weight vectors for each of thensesmbinations of feature
sets, we construct a contrast matrix by pairing each of thhierseectors with each of the
other seven vectors. The difference between the hold-tentov and the down-down-time
vector is, in effect, a contrast of the average effect of himtees vs. the average effect of
down-down times. There are 21 such pairings (¥e&hoose P and together these contrast
vectors compare each feature-set combination to each fehteire-set combination.

These contrasts were all tested simultaneously, using thighe-comparisons correc-
tion from Chapter 3. Table 6.4 presents the estimated cgisfrstandard errorsstatistics,
and adjustegb-values. Thep-values alone confirm that there are statistically significa
differences between most of the feature-set combinatibosking at the effect sizes, we
see that the biggest contrast (in absolute terms) is bet{egg¢he combination of hold and
up-down times and (b) down-down times alone (i.e., H+UD vB)CEmpirically, these
two feature sets have the lowest and highest average messcatss all classifiers and
typing tasks. Since the sign of the estimate is negative omelade that hold and up-down
times have the lowest miss rate, and down-down times havaghest.

Scanning the-values related to the hold and up-down feature set (i.eUJBt+we find
that this feature set performs significantly better thamewgher combination of features
except hold and down-down features (i.e., H+UD vs. H+DD)thBaf these combinations
of features are commonly used in keystroke-dynamics reBgand based on this analysis,
they appear to be similarly good feature sets to use. Notéfite@anly other non-significant
test compares hold and down-down features against holdp-diown, and up-down fea-
tures (i.e., H+DD+UD vs. H+DD). One might ask whether thisdHeature set is just as
good as the other two. Unfortunately, despite our intujtstatistical test results are not
necessarily transitive. Even though we find no significaffedénce between H+UD and
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effect stderr t.stat p.value
DD vs. H 13.513 0.355 38.057 <.0001
UD vs. H 11.236 0.355 31.643 <.0001
H+DD vs. H -3.079 0.305 -10.086 <.0001
H+UD vs. H -3.455 0.305 -11.318 <.0001
DD+UDvs. H 7.961 0.355 22.42(0 <.0001
H+DD+UD vs. H -1.980 0.305 -6.484 <.0001
UDvs. DD -2.277 0.305 -7.460 <.0001
H+DD vs. DD -16.592 0.355 -46.729 <.0001
H+UD vs. DD -16.968 0.355 -47.788 <.0001
DD+UD vs. DD -5.552 0.305 -18.187 <.0001
H+DD+UD vs. DD -15.493 0.355 -43.632 <.0001
H+DD vs. UD -14.315 0.355 -40.31% <.0001
H+UD vs. UD -14.691 0.355 -41.374 <.0001
DD+UD vs. UD -3.275 0.305 -10.727 <.0001
H+DD+UD vs. UD -13.215 0.355 -37.218 <.0001
H+UD vs. H+DD -0.376 0.305 -1.232 0.8784
DD+UD vs. H+DD 11.040 0.355 31.092 <.0001
H+DD+UD vs. H+DD 1.100 0.305 3.602 0.0054
DD+UD vs. H+UD 11.416 0.355 32.151 <.0001
H+DD+UD vs. H+UD 1.476 0.305 4.834 <.0001
H+DD+UD vs. DD+UD| -9.940 0.355 -27.995% <.0001

Table 6.4: Hypothesis tests comparing miss rates on difftdeature sets. The average
(variance-stabilized) miss-rates for each feature-seiteation are compared. Effects are
averaged over all three classifiers and all three typingstable feature-set with the lowest
estimated miss rate is H+UD (hold and up-down times), andotilg other feature set
without a significantly worse miss rate is H+DD (hold and dedawn times).

H+DD, and we find no significant difference between H+DD andi#+UD, we do find
a significant difference between H+UD and H+DD+UD. With thet of test results, we
simply conclude that either H+UD or H+DD provide the lowesssrates.

6.6 Validation #1: Feature sets

We validate the model by using it to make predictions. As & darlier investigations,
we compare those predictions to the results of a secondatyation, first with per-user
prediction intervals and then withQ-plots. The data for the validation was collected using
the same procedure as for the initial evaluation. Table 6.131 reported the number of
subjects who typed the Strong, Simple, and Numeric taskihi®secondary data set.
Using the validation data set, we repeat the evaluationgohare described in Section
6.3.3. As with the first analysis, in this first validation [steve restrict our attention to
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Figure 6.6: Model predictions and validation data for featset analysis. 95th percentile
prediction intervals are compared to evaluation data fohedassifier, typing task, and
feature set. The data largely fall within the expected irdks.
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the subset of results with 100 samples of training, no updaand unfamiliar impostors.
With 3 classifiers, 14 feature sets, 14 subjects in the StamugNumeric data sets and 12
subjects in the Simple data set, we have 20832 miss ratdagsifiersx 14 feature sets

14 genuine-user subjects13 impostor subjects for each of the Strong and Numeric typin
tasks and 12 genuine-user subjectd&1 impostor subjects for the Simple data set). From
these per-user/impostor miss rates, we can calculate émage/ per-user miss rate for each
user.

Figure 6.6 compares the model predictions to the per-uses rates in the validation
data set. As in the previous validation steps, each pan¢hrmthe results for the classi-
fiers under one set of conditions. The particular conditemesexpressed above each panel.
The presence or absence of each of the three timing featurastimes, down-down
times, and up-down times—is denoted by a triplettof— symbols. Within each panel,
the prediction intervals for each classifier are represkbyehorizontal lines. The per-user
effects in the validation data set are represented as points

By and large, the points fall within the expected intervahiv each panel. In the top
panels, where hold times have been removed, the miss rategytier, as predicted. In the
bottom panels, where hold times are included, the miss eatefower, also as predicted.
Note that, of all the panels, the ones where the most poimseskthe prediction interval
are in the right column. This column corresponds to the Niortgping task. It would
appear that the miss rates for this task are more variabiettieamiss rates for the other
two typing tasks, a possibility not considered among thelfaaf models we considered
during model selection. (Future work might consider mongregsive models that capture
different variance parameters for different typing tagks.

We complete the validation step by checking modeling assiomp with QQ-plots.
Figure 6.7 presents the thré&&)-plots for this analysis. The left panel assesses thelolistri
tion of the per-user standardized effects. These effegisliafall along the line predicted
for Normally distributed effects. The right panel assesbedlistribution of the residuals.
The quantiles of the residuals are also largely in keepirtg thie Normality assumptions
of the model.

The middle panel assesses the distribution of the per-itopesandardized effects.
Aside from one outlier (in the lower left corner), these efteare also in line with what
would be expected from Normally distributed effects. Exaimg the results responsible
for that outlier in more detail, we find one subject who is app#y very easy to detect as
an impostor. When designated as an impostor, this subjggisg is perfectly classified
as that of an impostor (i.e., a 0% miss rate) for 9 of the 13ratbbjects in the validation
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Figure 6.7:QQ-plots for validating LMM predictions from the feature-satalysis. The
panels present per-user effects (left), per-impostorcefféniddle), and residuals (right).
In each panel, the line represents where one would expechallyr distributed points to
fall. The per-user and residual plots largely conform toestation. The per-impostor plot
has a single outlier corresponding to one impostor who waspionally easy to detect.

data set. A single outlier is not surprising, but it servesaagminder that the reality
of keystroke-dynamics behavior may involve a heavier tadl emore extreme values than
predicted by current models.

In summary, the validation has provided evidence that thdetsoare fairly accurate
at predicting both average miss rates and the variabilidyrad those averages. Extreme
values occur somewhat more frequently than would be exgdicien truly Normal distri-
butions, but the general effect of different typing taskd &muature sets on classifiers has
been captured.

6.7 Statistical analysis #2: Many-factor analysis

The previous analysis and validation aimed to understameffiect of different combina-
tions of features. Due to the tractability issues that atisen analyzing and fitting models
to large data sets, we chose to conduct that part of the aséilgs, and to use it to inform
the remainder of the analysis. We found that hold times ati@edown-down or up-down
times produce the lowest miss rates across classifiers pimjtiasks. In the current anal-
ysis, we restrict our attention only to those evaluationiitesvhen classifiers were trained
and tested using hold times and up-down times. The previoalysis found that remov-
ing the Return-key features had negligible effect on miss rates, and soeee khem as
features in the data used for this analysis.

For the subset of evaluation results described above, vesiigate the effect of other
factors in the evaluation environment: (1) decreased atsonintraining, (2) use of an
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Minimal Model Equation:

VST (miss rate)ijx = p+ (user); + (impostor); + €y,
(U:Ser)i ~ N(07 U(Zuser)>
(impostor); ~ N(0, U(zimposm))
€k ~ N(07 0’3)

Maximal Model Equation:
VST (miss rate)ijkimnop = p+ (Classifier); x (Typing Task),
X (Training Amount)y x (Updating),
X (Imp. Familiarity),,
+ (user), + (impostor), + ¢,
(wseru ~ N(0,0% )

(impostor), ~ N(0,0? )

(impostor)

Ep ~ N(0,0’g)

Figure 6.8: Equations for model selection in the many-faatalysis. The minimal equa-
tion includes only the random effects, which are part of tinecsure of the experiment.
The maximal equation includes fixed effects for the clagsitiee typing task, the amount
of training data, the updating strategy (yes/no), and irtggdamiliarity (none/high). The

A x B x C' notation indicates that all higher-order interactions aghthe factors are also
included (up to the 5-way interaction involving all the fai).

updating strategy, and (3) impostor familiarity. We coesithe effects of these factors for
all three classifiers and all three typing tasks. As with theepstatistical analyses, we
employ model selection, parameter estimation, and statistypothesis testing.

6.7.1 Model selection

The minimal and maximal model equations used for this medédetion step are presented
in Figure 6.8. The minimal model equation is the same one stk previous analysis,
containing only random-effect terms. The maximal modekdigu adds fixed-effect terms
for the classifier, typing task, amount of training, updgtstrategy, and impostor familiar-
ity; it also includes all two-, three-, four-, and five-waytenactions among these factors.
To find the best fitting model from this space, we use stepwiséainselection with each
model’s BIC score.
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Selected Model Equation (Many-Factor Analysis):
VST (miss rate)ijkimnop = -+ (Classifier); + (Typing Task); + (Training Amount)y
+ (Updating); + (Imp. Familiarity ) m+
Classifier : Typing Task);;
Classifier : Training Amount);j,
Typing Task : Training Amount) i,
Classifier : Updating)y + ( Typing Task : Updating) ji
Classifier : Imp. Familiarity ) im,
Typing Task : Imp. Familiarity) jm,
Classifier : Typing Task : Training Amount);j;i
Classifier : Typing Task : Imp. Familiarity);jm
(user),, + (impostor), + €p
(0,0
(impostor)o  ~  N(0,00,0st0r))
ep ~ N(0,02)

+
(
(
(
(
(
(
(

(user), ~ user))

A2++++++++

Table 6.5: LMM model equations for the results of the margtdaanalyses. Based on
the model-selection criteria, each of these factors mayg laaveffect on miss rates, and
the effect may depend on the classifier and typing task. Terstahd what effects these
factors have, we must look at the parameter-estimate tablde 6.6).

6.7.2 Parameter estimation

Tables 6.5 and 6.6 present the model equation and parapsieration table respectively
for this analysis. Again, the LMM has been split across twads due to its size and
complexity. The model equation does not contain any fowy-teams, but it does contain
multiple three-way interactions. Based on this equatibs, dffects of training amount,
updating, and impostor familiarity depend on both the dfssand the typing task. For
training amount and impostor familiarity, the dependemsypives a three-way interaction.
Overall, the model equation is further evidence that kefstrdynamics classifiers exhibit
complicated behavior; error rates cannot be predictedowitknowing the particular con-
ditions of deployment configuration and environment.

Drawing formal conclusions from the model will occur when perform hypothesis
tests. Before doing so, we can develop some intuition as #d faletors are likely to affect
miss rates by examining the rows in the parameter-estimédiole with the largest values
in absolute magnitude. The largest fixed-effect estimatdsolute terms is-25.39, repre-
senting the change in the baseline miss rate when 5 traiaimgples are increased to 100.
In general, based on the magnitude of the estimated efteetamount of training data ap-
pears to be one of the most influential factors. Considehetlet parameters that estimate
how the baseline miss rate changes when the amount of tgaimimeases (i.e., the three
t rai nant rows). The first estimate(12.15) is a large negative number, indicating that
as the amount of training increases from 5 to 25 repetitibesiiss rate improves substan-
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Parameter Estimates (Many-Factor Analysis):

Parameters classifier  typingtask  trainamt  updating  impfam estimate

(n) baseline |  ScaledManhattan Strong 5 None Lo 49.32
classifier | MahalanobisKNN 25.20

SVM 23.31

typingtask Simple -0.81
Numeric 3.14

trainamt 25 -12.15

50 -19.29

100 -25.39

updating Sliding -5.06
impfam High 1.68
classifier:typingtask| MahalanobisKNN Simple -6.43
SVM Simple -3.78

MahalanobisKNN Numeric -11.87

SVM Numeric -6.87

classifier:trainamt| MahalanobisKNN 25 3.50
SVM 25 1.78

MahalanobisKNN 50 -5.39

SVM 50 -3.59

MahalanobisKNN 100 -9.17

SVM 100 -9.23

typingtask:trainamt Simple 25 3.02
Numeric 25 2.93

Simple 50 4.21

Numeric 50 0.02

Simple 100 6.40

Numeric 100 3.20

classifier:updating| MahalanobisKNN Sliding 2.21
SVM Sliding 0.22

typingtask:updating Simple Sliding -0.05
Numeric Sliding 3.00

classifierimpfam | MahalanobisKNN High 1.54
SVM High -0.95

typingtask:impfam Simple High -0.18
Numeric High 11.40

classifier:typingtask:trainam{ MahalanobisK NN Simple 25 -8.51
SVM Simple 25 -3.62

MahalanobisKNN Numeric 25 0.83

SVM Numeric 25 -0.22

MahalanobiskK NN Simple 50 -3.13

SVM Simple 50 -1.09

MahalanobisKNN Numeric 50 10.61

SVM Numeric 50 2.53

MahalanobiskK NN Simple 100 -0.67

SVM Simple 100 0.02

MahalanobisKNN Numeric 100 7.60

SVM Numeric 100 3.35

classifier:typingtask:impfam| MahalanobisKNN Simple High -0.45
SVM Simple High 0.38

MahalanobiskK NN Numeric High 1.46

SVM Numeric High -4.84

U(uscT) 10.65

O (impostor) 7.19

oe 20.06

Table 6.6: LMM parameter-estimate table for the many-fecémalysis. The miss rates de-
pend on the particular combination of classifier, typindct@asnount of training, updating,
and impostor familiarity.
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tially (i.e., from48.9% t0 30.4%). The second estimate {9.29) is an even larger negative
number, indicating that increasing training from 5 to 5Goéfeven more improvement in
the miss rate (i.e., t80.7%). The even-more-negative third estimate2}.39) suggests
further improvements when 100 samples are used (i.@3.586).

The second-largest fixed-effect estimate is the classiéerinding us perhaps that de-
spite the other factors, the classifier does matter. In e cthe estimates a28.20 and
23.31 for swapping the baseline Scaled Manhattan classifier @kthhalanobig-NN and
SVM classifiers, respectively. Compared to ##9% miss rate estimated for the Scaled
Manhattan, the SVM miss rate is estimated t®8b&%, and the MahalanobfsNN miss
rate is estimated to b&t.8%. These estimates are so much larger because, in the base-
line, the classifier is trained with only 5 training samplagparently these two classifiers
require many more training samples to provide miss ratespetitive with those of the
Scaled Manhattan classifier. This observation about treetedff a small training sample
on SVMs and Mahalanobis-NN is supported by the theory behind both classifiers. For
instance, accurately estimating a large covariance maseeded by the Mahalanobis
k-NN is basically impossible with only 5 training samples §tla et al., 2001).

Three other fixed-effect estimates have absolute magngueter thanl 0.0, an ar-
bitrary but reasonable threshold between small and largetef Interestingly, all three
additional large effects concern the Numeric task. The éffgct is the interaction be-
tween the Mahalanobis-NN classifier and the Numeric task4sl1.87. A large negative
number suggests that for this particular task, the missafatiee Mahalanobig-NN clas-
sifier is less vulnerable to having only 5 training sampleshBps the controlled nature of
typing a phone-number-like code with a single finger makesaug/pe more consistently,
so that the MahalanobisNN builds a comparatively accurate typing profile.

The second effect is the three-way interaction between tedianobig-NN classifier,
the Numeric task, and 50 training repetitiori$.61. The large positive number suggests
that the above interaction between MahalanébidN and the Numeric task at 5 repetitions
is effectively cancelled out by this effect at 50 repetiolf nothing else, the prevalence of
large estimates involving the MahalanokiN classifier and the amount of training data
suggests the classifier is very sensitive to the partictdaming data set.

The final large effect involving the Numeric task concerres ¢hange in the miss rate
for impostors who become very familiar with the typing tagk:40. This large positive
number suggests that the Numeric typing task is partigularinerable to impostors who
intend to evade detection by practicing the task and beagpfamiliar with it.

While our investigation is intended to understand the facther than the classifier
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that affect miss rates, one cannot ignore the practicalitiehoosing the best classifier for
each combination of factors. Looking over the parametemeses in the table, we find
that the Scaled Manhattan classifier continues to have weskestimated miss rate across
all combinations of typing task, training amount, typingkaupdating strategy, and level
of impostor familiarity. Having made these general obsgows about the model, we turn
our attention to drawing more formal conclusions usingstiaal hypothesis testing.

6.7.3 Statistical hypothesis testing

In an investigation as complicated as this one, with so maniofs and interactions, one
can ask many different research questions. For this woedan practicalities of key-
stroke dynamics, we consider a few questions in particlast, does each increment in
training, from 5 to 25, 25 to 50, and 50 to 100 samples, lowemtiss rate? Second, does
impostor familiarity increase the miss rate across allsifeess and typing tasks? Third,
does updating reduce the miss rate across classifiers and tggks?

As in the other investigations, we use multiple testing pohoes to adjust oyrvalues.
Note that, even though we have divided our tests into diffegeiestions, we correct the
p-values for all the questions simultaneously. It is onlyiegenting the test results that we
have separated them into different sets of contrasts.

To investigate the effects of training, we consider eachldoation of classifier and
typing task separately. With 3 classifiers and 3 typing tatkasre are 9 such combina-
tions. For each one, we construct a contrast matrix to matee tbomparisons: (1) are
25-training-sample miss rates different from 5-samplesmages; (2) are 50-sample miss
rates different from 25-sample miss rates; (3) are 100-tammgss rates different from
50-sample miss rates?

Based on the model equation, the effect of training dependbi® classifier and the
typing task, but not on the use of updating or impostor faartly. With 9 combinations of
classifier and typing task, and with 3 tests for each comianatve have 27 tests in total.
We construct a contrast matrix for these 27 tests.

Table 6.7 presents the results of these tests. First, natallithe tests are highly sig-
nificant, meaning that in every case, the miss rate is sigmifig lower with more training.
Looking at the effects column, we observe that most of theebigrts are seen when going
from 5-25 samples and 25-50 samples. On some level, thisvaltiee suggests that we
start to see diminishing returns in miss-rate reduction @g@ntinue to add training sam-
ples. Nevertheless, the significance of all the 50 vs. 10@aocomparisons shows that we
have not yet reached that point with 100 samples. All thrassifiers for all three typing
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typingtask classifier  trainami effect stderr t-stat| p-value
Strong ScaledManhattan 5-2512.151 0.556 21.843 <.0001
25-50 7.137 0556 12.830 <.0001

50-100 | 6.098 0.556 10.961] <.0001

Mahalanobisk NN 5-25| 8.655 0.556 15.558 <.0001

25-50 | 16.019 0.556 28.796 <.0001

50-100 | 9.886 0.556 17.771] <.0001

SVM 5-25 | 10.369 0.556 18.64Q <.0001

25-50 | 12.512 0.556 22.491 <.0001

50-100 | 11.734 0.556 21.093 <.0001

Simple ScaledManhattan 5-26 9.130 0.556 16.412 <.0001
25-50 5951 0.556 10.697] <.0001

50-100 | 3.901 0.556 7.013 <.0001

MahalanobisKNN 5-25| 14.141 0.556 25.42Q0 <.0001

25-50 9.455 0.556 16.99 <.0001

50-100 | 5.233 0.556 9.406 <.0001

SVM 5-25 | 10.964 0.556 19.709 <.0001

25-50 8.802 0.556 15.823 <.0001

50-100 8.427 0.556 15.149 <.0001

Numeric ScaledManhattan 5-26 9.223 0.556 16.579 <.0001
25-50 | 10.048 0.556 18.063 <.0001

50-100 | 2.918 0.556 5.245 <.0001

MahalanobisKk NN 5-25| 4.898 0.556 8.805 <.0001

25-50 9.152 0.556 16.451] <.0001

50-100 9.711 0.556 17.457 <.0001

SVM 5-25 7.661 0556 13.771 <.0001

25-50 | 12.670 0.556 22.776 <.0001

50-100 7.742 0.556 13.91§ <.0001

Table 6.7: Hypothesis tests comparing error rates as anudurdining increases. Each
increment in training-set size is tested for each combanadi classifier and typing task.
In every case, the effect of increased training is highlyisigant, with higher effect sizes
for increases from 5-25 and 25-50 samples.

tasks benefit from very large amounts of training data.

To investigate the effect of impostor familiarity, we agaonsider each combination of
classifier and typing task separately. Based on the modaeitieqw the effect of impostor
familiarity depends on the classifier and typing task, butaroamount of training or up-
dating. We construct a contrast matrix with which, for eacmbination of classifier and
typing task, we test whether impostor familiarity has aeefon the miss rate.

Table 6.8 presents the results of these tests. In this tildemnost interesting to note
which p-values are not highly significant. At the 5% level, the omMyptcases where we
cannot find a significant effect are with the SVM classifiertfer Strong and Simple typing
tasks. It would appear that impostor familiarity is a thriedteystroke-dynamics accuracy,
raising the miss rates in all but these two cases. Even foNtheeric typing task, where
the effect of a familiar impostor is much larger for all thredlassifiers, the effect for the
SVM is relatively smaller. We are aware of no theoreticatifieation for why the SVM
would be comparatively robust to impostor familiarity, bioé possibility is intriguing.

To investigate the effect of updating, we perform a simiktra&f comparisons. In the
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typingtask classifier effect stderr  t-stat p-value
Strong ScaledManhattan 1.682 0.393 4.276 0.0008
MahalanobisKNN| 3.225 0.393 8.200 <.0001

SVM | 0.729 0.393 1.854 0.9160

Simple ScaledManhattan 1.497 0.393 3.806 0.0057
MahalanobisKNN| 2.587 0.393 6.578 <.0001

SVM | 0.921 0.393 2.342 0.5267

Number ScaledManhattan13.084 0.393 33.2638 <.0001
MahalanobisKNN| 16.083 0.393 40.886 <.0001

SVM | 7.287 0.393 18.525 <.0001

Table 6.8: Hypothesis tests comparing miss rates for famand unfamiliar impostors.

For many combinations of classifier and typing task, impsfamiliar with the task have

significantly higher miss rates than those that are unfamilFor some typing tasks, the
SVM classifier appears robust against this potential valpiéty.

classifier| effect stderr t-stat p-value
ScaledManhattan -5.063 0.293 -17.267 <.0001
MahalanobisKNN| -2.855 0.293 -9.737 <.0001
SVM | -4.844 0.293 -16.521 <.0001

typingtask
Strong| -5.063 0.293 -17.267 <.0001

Simple| -5.108 0.293 -17.421 <.0001

Number| -2.062 0.293 -7.034 <.0001

Table 6.9: Hypothesis tests comparing miss rates with anldowi updating. If typing
styles evolve over time, a classifier that updates its profilldoe more accurate. These test
results show that updating significantly reduces miss fatethree different classifiers on
three different typing tasks.

model equation, updating interacts with the classifier dredtyping task, but there is no
three-way interaction. The absence of a three way intemnactieans that the effect of
updating may change with the classifier and with the typisg,thut the effect of changing
both is additive. As a result, we can test whether updatisganeeffect for each of the three
classifiers and each of the three typing tasks, without demnisig all nine combinations of
classifier and typing task.

Table 6.9 presents the results of these tests. Note thasédl have highly significant
p-values, meaning that for each classifier and typing tas#tatipg has an effect. All the
effect estimates are negative, reassuringly showing thdating lowers the miss rates.
The improvement appears to be somewhat less for the MathatandIN and the Numeric
typing task, but the overall finding from these tests is thpatating helps.
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Figure 6.9: Model predictions and validation data for tragnanalysis (part 1).
percentile prediction intervals are compared to evalunatiata for each classifier, typing
task, training amount, and updating strategy for unfamitigpostors. The data largely fall
within the expected intervals.
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Figure 6.10: Model predictions and validation data forrtnag analysis (part 2). 95th
percentile prediction intervals are compared to evalunatiata for each classifier, typing
task, training amount, and updating strategy for highlyif@mimpostors. The data largely
fall within the expected intervals.
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Figure 6.11:QQ-plots for validating LMM predictions from the many-factanalysis. The
panels present per-user effects (left), per-impostorcefféniddle), and residuals (right).
In each panel, the line represents where one would expechllyr distributed points to
fall. The per-user effects and residuals largely conforraxpectation. The per-impostor
effects show a somewhat heavy left tail.

6.8 Validation #2: Many-factor analysis

To validate this model, we again use prediction interval$ @@-plots. We run the eval-
uation procedure described in Section 6.3.3 for each caatibim of the 3 classifiers, 4
amounts of training, 2 updating strategies, 2 impostorifanty levels, and 12—-14 gen-
uine user subjects for each of the typing tasks (i.e., 12HerSimple task, and 14 for the
Strong and Numeric tasks). The evaluations result in 23838 rates.

Figures 6.9 and 6.10 compare the per-user model predictiotiee per-user average
miss rates on the validation data. The first figure contaiediptions for unfamiliar impos-
tors. The second figure contains predictions for highly femimpostors. In each figure,
the panels in the top half concern classifiers that use upgldtie panels in the bottom half
concern classifiers that do not use updating. Each row quoneis to results for a differ-
ent typing task, and from left to right, each column corregfsoto increasing amounts of
training data.

Across the many panels in the two figures, the predictiogelgappear to be accurate.
The 95th percentile prediction intervals enclose moste&mpirical results. A few points
outside the intervals are to be expected, and the numbercbf goints appears to be in
the expected proportion (i.e., about 1 in 20). It appearspbats outside the prediction
intervals are typically below the interval, which corresfs to a lower-than-predicted miss
rate.

In addition to validating the per-user error-rate preaict, we validate the modeling
assumptions usin@@-plots. Figure 6.11 presents thig)-plots for this validation. The
per-user effects in the left panel appear to be in line withNMormality assumption. The
per-impostor effects in the middle show evidence of a heaftytdil. This deviation from
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Normality is consistent with our observation that misssaiatside the prediction interval
tend to be lower than the interval rather than higher. Whikoiuld be best for the Normal-
ity assumption to be completely satisfied, of the possiliations, it is probably better to
over-estimate the miss rates than to under-estimate themreBiduals in th€(Q-plot on
the right are largely consistent with the quantiles of a Nalrdistribution. Overall, while
the assumptions are not perfectly met, the data are mostigistent with the modeling
assumptions, and the model is making accurate predictions.

6.9 Discussion

More clearly than any of the earlier investigations, thigper establishes that many fac-
tors affect keystroke-dynamics error rates. We have egtuirthe effect of different typing
tasks, different classifiers, different classifier confagions (e.g., feature set, amount of
training, and updating), and different evasion stratethes impostors might use. All of
these factors affect the error rate, and the specifics offteetelepend on complex inter-
actions between factors.

As noted at the beginning of the chapter, other studies hamsidered various fac-
tors that might affect keystroke-dynamics error rates.céd@nd Gupta (1990) used only
8 password repetitions to train their classifier, but thaynfibthat the same accuracy was
observed with as few as 6 repetitions. Araujo et al. (200Bsmtered training sets ranging
from 6 to 10 repetitions. Bartmann et al. (2007) considerathing repetitions over as
large a range as in our investigation (i.e., 5-100), and ttweyd that error rates stabilized
with as few as 30 repetitions. Note that their classifier uset genuine-user and impostor
samples during training, and so their findings are for a difie family of classifiers. To
our knowledge, all earlier research on the amount of trgihias focused on a single clas-
sifier. Unlike the earlier work, our work shows that the amtaifrtraining affects different
classifiers differently; this interaction should be taketoiaccount.

Araujo et al. (2005) evaluated a Scaled Manhattan classiiiker the seven different
feature sets we used in this investigation. They found thatguall three types of feature
(e.g., hold times, down-down times, and up-down times) pced the lowest error rates.
In contrast, we found that, so long as hold times and eithemnedown or up-down times
are included, the particular combination has little effeC€ur findings benefit from the
hypothesis testing we used to test whether small differeimche error rate are significant.
The earlier work assumed that any difference in the empieicar rates was significant.

Regarding updating as a factor, Araujo et al. (2005) comparé&caled Manhattan
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classifier with and without updating. Kang et al. (2007) canaol ak-means classifier
trained with no updating to ones trained with growing andistj windows. Both sets of
researchers found that an updating strategy lowered extes.rTheir results for individual
classifiers, coupled with our results for three classifieexcked by a validated statistical
model), strongly support the claim that a sliding-windovdapng scheme reduces classi-
fier error rates.

Regarding impostor familiarity with the typing task, Leeda@ho (2007) gave their
impostors the opportunity to practice, but they did not deschow many repetitions of
practice were taken by each impostor. Araujo et al. (2008) g@ir impostor subjects
into two groups. One group observed the genuine user typmgassword, and one group
did not. The observers seemed to be more successful at nimgittie typing style of the
genuine user, but no statistical test was performed. Inrasitour work operationalized
practice in terms of the number of repetitions, and then tjfiedh the effect of practice on
error rates.

In general, while each of the factors considered in thisstigation has been investi-
gated previously, the earlier work has looked at the fadéwgely in isolation. For instance,
amount of training is investigated keeping all other fagtoonstant, using only one clas-
sifier. This investigation has shown that different factoratter for different classifiers.
Factors do not exert their effects in isolation; they exeéirt effects in concert with the
effects of other factors. One-factor-at-a-time invegstass ignore that complexity.

6.10 Summary

This chapter presented a third use of LMMs to understandtiaes-dynamics error rates.
A series of evaluations was conducted in which 3 classifiényping tasks, 14 feature
sets, 4 different amounts of training data, 2 updating efjias, and 2 levels of impostor
familiarity with the typing task were all involved in the duation. The results were split
between two analyses. In the first analysis, LMMs were useddotify the best timing
features to use. In the second analysis, LMMs were used terstaohd the myriad other
factors and their effects on classifier miss rates.
From this investigation, we draw the following conclusions
1. The Scaled Manhattan classifier continues to have the lowisstrates, across most
feature sets, typing tasks, amounts of training, updatingtegies, and impostor-
familiarity levels.The actual miss rates depend on the setting, but in most,dases
Scaled Manhattan miss rates were estimated to be the lo(ds.only exceptions
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involved sub-optimal feature sets, with which other clgss had lower estimated
miss rates.)

2. The miss rates across classifiers are significantly lowernaiad times and either
up-down times or down-down times are used as features thitarawy other combi-
nation of features triedHold times are particularly useful; for the Scaled Manhatta
classifier and one typing task (i.e., strong passwords)pverg hold times as fea-
tures increases the estimated miss rate f20r8% to 52.7%.

3. Increasing the number of typing samples used to train a lassignificantly re-
duces classifier miss rates even when the initial trainirgg i large (e.g., 50 sam-
ples). This conclusion was tested for each of three classifierslaee typing tasks,
and it held in every case. When increasing from 50 to 100 sssnphe smallest
improvement in miss rates was frd.8% to21.0% (for the Scaled Manhattan clas-
sifier and the Numeric task); this difference was still statally significant.

4. Impostors who become familiar with a typing task often digantly increase the
miss rate (i.e., the chance of successfully evading detéctFor the Scaled Man-
hattan classifier, the most extreme example is on the Nungsing task, where
impostor familiarity increased the miss rate fr69% to 73.5% (under already dif-
ficult conditions such as few training samples). Interggyirthere is some evidence
that the SVM classifier might be robust to impostor famitigrbut that conjecture
requires further research.

5. Employing an updating strategy significantly reduces mesg across classifiers
and typing tasksln particular, updating reduced the miss rate for the Scilad-
hattan classifier from8.9% to 41.0% (again under difficult initial conditions).

These results offer further evidence that to understandtkaye-dynamics error rates, one
must understand the multitude of factors in the evaluatinirenment (beyond the clas-
sifier itself). In fact, the particular classifier may havedef an effect on error rates than
factors like the amount of training or the feature-set us&dditionally, this chapter of-
fered another example in which analysis using LMMs enabkedoumake sense of the
complexities of keystroke-dynamics error rates.

Recall the thesis statement from Chapter 1 in which we cldiimeart that LMMs offer
better understanding of classifier behavior than curremttmes. In this investigation, we
reviewed other efforts to understand the effects of diffefeatures, different amounts
of training, different updating strategies, and differéatels of impostor familiarity on
classifier behavior. Those efforts typically considerety mme classifier and offered no
definitive conclusions supported by inferential statstio contrast, this investigation used
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LMMs to draw conclusions about which feature sets were best; much training data
is recommended, whether updating strategies are useflilvhather impostor familiarity
poses a danger. Our conclusions were supported by botleintfalrstatistics and validation
using a secondary data set. Consequently, we believe tisaihtlestigation has further
shown the benefit of using LMMs to understand classifier biehav



Chapter 7

Summary, Contribution, and Future
Work

In this section we review the discoveries that have been rttadeigh the investigations
in this work, we enumerate the contributions of the work, amdconsider implications

and opportunities for future work. We believe that the mdthased in this work would

be useful beyond keystroke dynamics, and we offer some fioalghts about the need for
inferential statistics in computer-security research.

7.1 Summary of findings

Recall that this work was motivated by wildly different errates for the same classifier,
across different evaluations. That background led us todrthe problem as follows:

In keystroke dynamics, a classifier does not havan error rate; it has many

error rates, depending on a multitude of factors in the evalation environ-

ment. Without identifying and understanding the effects ofthese factors,

we cannot understand classifier behavior.
This problem is serious because, without knowing the camstunder which a classifier
will have a low error rate versus a high error rate, we canngt tclassifiers in critical
security applications.

To address this problem, we proposed a methodology invgpkiseries of evaluations,
inferential statistics to draw conclusions from the evabararesults, and validation of the
statistical models. We introduced linear mixed-effectdeis (LMMs) as an appropriate
technique for the necessary statistical analysis, and feeeof the following thesis state-
ment:

161
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Using linear mixed-effects modeling (LMM) to explain classgier behavior,
(a) is novel for keystroke dynamics, and (b) offers better uderstanding of
the behavior (e.g., changing error rates) than current pratices.

In Chapter 2, we performed a literature review that dematestrthe different choices
researchers make when conducting an evaluation, and saddleat these different choices
may produce wildly different results. We established tnétriential statistics might help
us make sense of how these choices affect the results, hah#yaare rarely used in key-
stroke dynamics; in particular, LMMs are never used. In G&aP, we described LMMs
and explained how they might give us needed understandinigeomultitude of factors
that affect classifier error rates. Through these chapterssupport part (a) of our thesis
statement. Using LMMs to explain classifier behavior is hnéeekeystroke dynamics.

Then, we conducted three investigations to identify vagitactors that might affect
classifier error rates. In Chapter 4, we investigated per-aisd per-impostor effects on the
error rates (i.e., the influence that individual typistsénaw raising or lowering the miss
rate). In Chapter 5, we extended our investigation to expldrether personal traits—age,
gender, dominant hand, and typing style—of the users andstops explained the per-
user and per-impostor effects. In Chapter 6, we screenestaesther factors—from the
amount of training to the impostor’s familiarity with theping task—to understand their
influence on classifier error rates.

From the first investigation, we drew the following conctuss.

1. The Scaled Manhattan classifier has an estimated miss raté. 0%, significantly
lower than those of the other 9 benchmarked classifiers.

2. However, the estimated 95% prediction interval for perrusag-term average miss
rates is fron0.0% t063.1% for Scaled Manhattan, and spans a similarly large range
for the other classifiers.

3. Likewise, the estimated 95% prediction interval for pepastor long term average
miss rates is frond.0% to 58.4% for Scaled Manhattan, and similarly large for the
other classifiers.

4. Because of the high per-user effect on miss rates, an acesiimate of a classi-
fier's error rate (i.e., to withint1 percentage point) may require thousands of sub-
jects.

From the second investigation, we drew the following cosidas:

1. The Scaled Manhattan classifier continues to have the loastghated miss rate,
regardless of the user and impostor age, gender, dominamd har typing style.
2. When the impostor is a touch typist rather than another kihtlypist, the Scaled
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Manhattan miss rate increases fromi.1% to 33.2% if the genuine user is also a
touch typist, and from8.9% to 21.4% if the genuine user is not.

3. Other than the user and impostor typing style, none of thera#sted traits (i.e., age,
gender, or dominant hand) had a were found to have a signifiefiect on classifier
miss rates.

From the third investigation, we drew the following concturss:

1. The Scaled Manhattan classifier continues to have the lowmsstrates, across most
feature sets, typing tasks, amounts of training, updatingtegies, and impostor-
familiarity levels.

2. The miss rates across classifiers are significantly lowernaiad times and either
up-down times or down-down times are used as features thtarawy other combi-
nation of features tried.

3. Increasing the number of typing samples used to train a glassignificantly re-
duces classifier miss rates even when the initial trainirgg ie large (e.g., 50 sam-
ples).

4. Impostors who become familiar with a typing task often digantly increase the
miss rate (i.e., the chance of successfully evading detecti

5. Employing an updating strategy significantly reduces misg across classifiers
and typing tasks.

In each investigation, we drew these conclusions by evalyatassifiers under sys-
tematically varied conditions and analyzing the evaluatesults using LMMs. We com-
pared our findings to those of earlier work. In each invesitiga by drawing inferences
using LMMs and statistical principles, we were able to maisealeries and understand
phenomena in ways that would not have been possible with@vbork. Through these in-
vestigations, we support part (b) of our thesis statemevitvik offer better understanding
of classifier behavior than current practices.

7.2 Impact for keystroke dynamics

The findings listed in the previous section are not simplyositeact scientific interest. They
help researchers and practitioners who believe in the m®mi keystroke dynamics to
realize that promise. To someone who wants to use this warkale keystroke-dynamics
better in the future, we present the following possibititie
1. The figures and models of Chapter 4 (Benchmarking Keystiknamics Classi-
fiers) show that for about a third of typists, the top classf(e.g., Scaled Manhattan
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andk-NN) have nearly perfect accuracy. The average error rateeoScaled Man-
hattan classifier might be 23.6%, but Figure 4.4 shows thdt8subjects, this clas-
sifier’'s miss rate is nearly 0%. If researchers can identtiptwnakes these subjects’
typing so easy to distinguish, we would have a very promigéaynology for a large
subset of the typing population.

. The models and hypothesis-testing results from Chapgeetonal Traits and Key-

stroke Dynamics) show that when the genuine user and impasgdooth touch typ-
ists, miss rates are much higher. Perhaps by using the saing tgchnique, touch
typists’ rhythms are more similar than those users who héwerdyping styles. Dif-
ferent techniques may be needed to distinguish touch spiBtiture researchers
would do well to divide and conquer. Evaluating classifiegasately for users who
touch type and those who use other typing techniques woldd als to find the
(possibly distinct) classifiers that work best for each gro#it the very least, future
researchers should pay attention to the proportion of taypists in their evalua-
tion sample, and report it. Like the Hawthorne Effect ddsemliin Chapter 2, the
touch-typing effect should be taken into account in futwaations.

. The models of Chapter 6 showed that the typing task and anwoduraining affect

classifier accuracy. Further, both factors interact wittheather and with other fac-
tors in their effects. For some typing tasks (e.g., Simgyer training repetitions
are necessary to get low error rates. Based on these finfling researchers might
search more systematically for typing tasks that improvesmates (e.g., by require
fewer repetitions to provide high accuracy). One possidilased on the literature is
full names. As we have already noted several times, it is eleng to draw conclu-
sions by comparing results across studies because of theewaluation differences,
but we have observed that many studies reporting low ertes iaad subjects type
their own and each other’'s names. Typing one’s own name tsadi@miliar task to
many typists, that we would not be surprised if this task bokeystroke-dynamics
accuracy. (We did not include this task in our study becausalways intended to
share our data and including subjects’ names as a typingvaskl preclude sharing
the data.)

. The models and tests of Chapter 6 also show that updatasgifiers have better

error rates than those that train only once. Future reseegchight adopt an updating
strategy in all their evaluations, but doing so may intragium-time issues. Updating
a typing profile is more efficient for some classification aitjums than others. In this
work, we did not evaluate classifiers with respect to ruretifsut future researchers
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proposing new classifiers may want to consider whether theesisifier can update its
typing profile efficiently.

5. Finally, the models and tests in Chapter 6 reveal a systeakness in all classifiers
evaluated. An impostor who practices a typing task and besdamiliar with it can
have a much higher chance of evading detection. At the vast,|léuture researchers
should report whether their impostor subjects had the dppity to practice. Re-
searchers should probably ensure that impostor subjegts drsough opportunity
to practice that the evaluation results are valid for reattevimpostors who would
be willing to expend some effort to increase their chancesvatling detection. In
addition, these otherwise alarming findings included omegiof good news. The
analysis revealed one classifier (SVM) that, for two typagks (Strong and Simple),
did not exhibit the otherwise systemic increase in the nass as a result of impos-
tor familiarity. Future research should investigate wketlhis seeming robustness
is real, and whether it might offer a solution to the impodtoniliarity vulnerability
for other classifiers and typing tasks.

We have listed five options that researchers have, as a wddhlis work, for improving
keystroke dynamics. None of these options would be knowhowit this work. Certainly,
some of the options might have been explored anyway. A reseamight work to make a
classifier update more efficiently (option 4) because it seléa a good idea. Even though
good ideas might be explored on their own, the current wotbdishes the importance
of each good idea, and the relative importance of differeatdgdeas. Without this work,
we would have no scientific evidence or methodology with Wt evaluate which good
ideas are most promising, and to make informed decisionstahe future direction of
keystroke-dynamics research.

We feel that it is worth noting an omission from these futwak options: another
new classifier. This omission may seem surprising since wifdsie research in keystroke
dynamics involves describing and evaluating a new classiflewever, as we showed in
Chapter 4, most classifiers behave similarly. Even if, irotiiethree classifiers should
learn very different concepts (e.g., Scaled Manhattan, diéatobisk-NN, and SVM),
in practice, they mostly make the same decisions for the sgpieg samples. A lot of
prior research can be characterized as proposing yet araddissifier, but the current work
finds that the particular classifier plays a surprisingly isnade in evaluation results. The
evaluation conditions—and by extension, the operatinglitimms in which a classifier is
deployed—play a much larger role. If we want to improve keglst dynamics, we need to
understand the effects of these evaluation conditions mharewe need another classifier.
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7.3 Supplemental materials

To help future researchers build upon the current work, we ltaeated a webpage that
acts as a supplement to this dissertation:

http://ww. cs. cnu. edu/ ~keystr oke/ ksk-t hesi s
This webpage shares the data, classifier implementatiealsiagion procedures, and anal-
ysis scripts used in our investigations. It has been argyeardponents of reproducible
research that at least some of the research scholarshiphie data and software that gen-
erated the results, tables, and figures included in the tigpairthe report itself (Buckheit
and Donoho, 1995). In this report, we have tried to providenash relevant information
as possible in the document itself. As an example, for cotepéss sake, we provided the
model equations and parameter-estimation tables for the&hh each of our investiga-
tions. Nevertheless, despite our best efforts, some péitie @nalysis may remain unclear
or ambiguous.

On the webpage, we have shared the typing data collectedtf®subjects who com-
pleted the Strong, Simple, and Numeric typing tasks. We h#s@provided implementa-
tions of each of the 10 classifiers used in these investigsiti&ach classifier was imple-
mented in the R programming language as a set of traininglassdification functions. We
also provide scripts used to train and test each classifieeach data set, for each inves-
tigation. These resources provide other researchers witprecedented opportunity to
compare their own classifiers and data sets on a consistsistwih ours. We hope that
these materials prove useful to future keystroke-dynameesarchers.

7.4 Contributions

As a result of this research effort, we have made the follgwiontributions to keystroke-
dynamics and computer-security research.
1. A solution to the multitude-of-factors problemhis work demonstrates that LMMs
are a useful tool for understanding why a classifier’s ewaite varies. A classifier still
has many different error rates, depending on evaluatioditions, but with LMM
analysis, the factors responsible for the differences eaddntified and understood.
2. A series of benchmark data sefSeveral data sets were collected so that we might
understand the factors that affect classifier error ratbgsé data sets were used to
benchmark many existing classifiers, and they are bein@disarthat new classifiers
might be benchmarked and soundly compared as well.
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3. A set of reference classifierResearchers can use our reference implementations of
classifiers with benchmark data sets that they gather, ieigagbund comparisons
between data sets as well as between classifiers.

4. Recommendations of the best classifier under differentitons: The LMM anal-
ysis revealed that the Scaled Manhattan classifier worksureier many general
conditions, but that other classifiers have particulamsgities. The Mahalanobis-
NN is better equipped to handle unusual combinations ohignfieatures. The SVM
is least affected by impostors becoming familiar with theiitg task.

5. Establish personal traits that do (and do not) affect keystrdynamicsWe discov-
ered that impostors who touch type are more challengingstngduish than those
who do not. Many researchers have noted that other traits asiage, gender, and
dominant hand might make typists harder to distinguishthrihypothesis had never
formally been tested. We found that none of these traits hasrgnificant effect.

7.5 Limitations

Having enumerated the contributions of this work, we feaeblligation to be candid about
its limitations, specifically with respect to the multitudéfactors problem in keystroke

dynamics and linear mixed-effects models as the solutidris Work has only begun to

understand the factors that affect classifiers across tte minge of keystroke-dynamics
applications. Linear mixed-effects models offer a cleapdbrward, but LMMs are un-

likely to be the final step.

The multitude-of-factors problem in keystroke dynamics. One aspect of this work

that surprised us was the relatively high miss rates and &mgbunt of per-user and per-
impostor variability in these miss rates. In Chapter 4, wespnted boxplots showing the
range of miss rates for each genuine-user subject and eassifidr (Figures 4.4 and 4.5).
According to these figures, even when the average miss rate dser is low, there are

usually particular impostors who are nearly impossibledtedt. Likewise, for classifiers,

even when the average miss rate is low, there are particaéas dor whom the classifier
fails.

Such findings are somewhat discouraging, not with respetttisgarticular research,
but with respect to the promise of keystroke-dynamics meseaore generally. This partic-
ular research is aimed at understanding classifier erres rathatever they are, rather than
obtaining the lowest and least-variable error rates. Nbeéss, for keystroke dynamics
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in general, one might look at the tables and figures showiadthh miss rates and high
variability and wonder whether keystroke dynamics couldréose a practical technology,
worth additional research effort.

We address this concern as follows. The classifiers evalirathis work represent only
a small area of keystroke dynamics: login-type authentinaising only training samples
from the genuine user. Among keystroke-dynamics problénisarea is probably one of
the hardest. Because authentication is done at login timeetyping sample is necessarily
very short. In this work, the samples were all 10 charactelsss. With longer samples, a
classifier has more information on which to make its decisaonl such decisions are likely
to be more accurate. As such, the discouraging miss ratesrmieal in this work do not
affect the promise of other keystroke-dynamics appliceti(@.g., for continual in-session
authentication).

Further, even among login-type authentication taskssiflass which use only genuine-
user training samples are likely to have worse error ratas tther classifiers. For exam-
ple, another family of classifier used in keystroke dynartraiss using samples from both
the genuine user and also other users cadlieolwn impostors These known impostors
provide typing samples which the classifier uses in contma#ite genuine-user samples.
The hope is that by distinguishing the genuine user’s tyfiam other users’ typing, a
classifier will be able to distinguish between the genuirer asd a previously unseen (or
unknown impostors. Such classifiers may have lower error rates tihase which train
only on genuine-user samples. In probabilistic terms, ftasder to accurately estimate
a probability density function than to decide which of tweeahatives is most probable.
The former is akin to training only on genuine-user samples;latter is akin to training
on genuine-user and known-impostor samples. These othés kif login-type classifiers
remain promising despite our somewhat discouraging iesult

Our findings of a relatively high error rate and high varidpimay not carry over to
these other classifiers and applications. What will cargr@our analytical methodology.
In those other applications, it will remain true that clfisss do not havanerror rate; they
havemanyerror rates, depending on a multitude of factors in the etado environment.
We used LMMs to identify and understand these factors fortgpe of classifier in one
application, but nothing precludes their use with othedkif classifiers, and for other
keystroke-dynamics applications.

Linear mixed-effects models as a solution. This work developed a methodology for
using LMMs to understand keystroke-dynamics classifieluateon data. We established
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that these models are useful for understanding classifiavier, but we acknowledge that
LMMs are unlikely to be the final word in understanding cléissibehavior. There are
limitations to the understanding and predictive capabgithat these models provide. One
avenue for future work would be more elaborate or more refstatistical models.

In the current work, we used LMMs to express miss rates aschastic function of
the classifier, the user, the impostor, and various othéofs.c The miss rate itself is an
aggregation of individual hits and misses. For instanceatialysis in Chapter 4 depended
on 25,500 miss rates, one for each of the 10 classifiers, Sdig@miser subjects, and 50
impostor subjects. Each miss rate is actually the propodfdb0 typing samples from the
impostor subject that were mislabeled by the classifier.

As naturally happens when data are aggregated, we lose setaiésd In particular,
for this example, of the 50 typing samples included in theshnéte calculation, one cor-
responds to the 1st repetition and one corresponds to tie H0the investigation from
Chapter 6, we saw that as the impostor repeats the typingatasbecomes familiar with
it, the miss rate increases. As such, there may be a chanlge miss rate between the 1st
and 50th repetitions. When the results for all these raepasitare aggregated into a single
miss rate, we lose the ability to find such fine-scale effelitere are factors that we cannot
investigate using LMMs.

A possible refinement igeneralized linear mixed-effects modéGLMMs). With
LMMs, the response variable is expected to be continuousss vates are bounded be-
tween 0.0 and 1.0, but within that range any proportion isl@ vaiss rate. Consequently,
one can use LMMs to model the relationship between explap&totors and the miss rate.
However, if we were to analyze the individual hits and misses response variable is bi-
nary, not continuous. A typing sample is either missed (I)air(0), and no intermediate
value is reasonable. For such an analysis, LMMs would noppeogriate; GLMMs would
be.

GLMMs offer the same expressiveness as LMMs in terms of fixedl mndom ef-
fects, but they also support non-continuous responseblas@VicCulloch et al., 2008). In
particular, a logistic mixed-effects model (one kind of GMYlwould be appropriate for
binary responses. In such a model, the explanatory vasapéemodeled as having a linear
relationship with thdog oddsof the response. In other words pifis the probability of a
miss, the explanatory variables are linearly related to

log(p/(1 —p)).

The explanatory variables can still include the classifygring task, amount of training,
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and the per-user and per-impostor effects. They can aldad@dine-scale factors (e.g., the
repetition number in a sequence of repetitions) that cabestudied using LMMs.

As with LMMs, there are procedures for model-selection apsater estimation, and
hypothesis testing using GLMMs. In preparation for the eatrwork, we explored the
use of GLMMs for our analysis. In theory, these models wowdenbeen more powerful
and possibly more appropriate, as we have just describguattice, we discovered many
computational issues in analyzing such large tables ofuatiain results with GLMMs.
Parameter estimation for individual models took weekshatend of which time, the esti-
mation process often had not converged to the true maxinketiHood estimates. These
models are under active development, and we believe thatadd algorithmic improve-
ments and increased computing capabilities may soon make a@hviable alternative.

We also must admit that there may be some appearance obaires to the analytical
procedures we use throughout this work. For example, asieqal in Chapter 3, when
performing model selection, we use maximume-likelihoodgtireate parameters, but when
fitting the final model we use REML. REML estimates are gemgtatlieved to be bet-
ter (i.e., unbiased), but they change the likelihood caltoihs for each model such that the
model-selection criteria (BIC) cannot be used to choosed® models. While this proce-
dure, using maximum-likelihood for some stages and REMLotbers, is the current best
practice (Pinheiro and Bates, 2000; Zuur et al., 2009), weitetd finding it dissatisfyingly
ad-hoc.

This dissatisfaction was one of our reasons for includin@l&dation step after each
statistical analysis. Whatever procedure was used toarishe model, the validation en-
sured that the resulting model provided a useful capabiky demonstrated that the model
could be used to predict classifier miss rates in subsequeahtagions. Such predictions
convince us that the model is accurately describing clasdighavior on a very concrete
level. Nevertheless, alternative modeling strategieduding Bayesian approaches to sta-
tistical inference, might be explored as a way to reduceatisfaction and increase our
level of comfort with the modeling procedures.

7.6 A science of security: Beyond keystroke dynamics

Recently, the computer-security research community haedfencreasing calls for &ci-
ence of Securitywhereby researchers’ goal would be “to develop foundatisnience to
guide system design and understand the safety, securdyradmustness of the complex
systems on which we depend” (Evans and Stolfo, 2011, p.16)bé&leve that experiments
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and analysis, like those performed for this work, are thietnigethods for this new science.

The differences between security research and other ssdrave led some researchers
to challenge whether a science of security is possible.Haraciences, the topic of interest
is usually studied under carefully controlled conditionstated by the researcher. Where
the laws of other sciences typically deal with average oeetgd behavior of the system
under study, the concerns of security research usuallyhievbe worst-case behavior of
a system: what is the worst thing an adversary might do tosystem, and how should a
defender respond? The following quote succinctly capttiregension between scientific
methods of experimentation and security research:

For certain areas of computer security, experiments seafuljsand the com-
munity will benefit from better experimental infrastruapdatasets, and meth-
ods. For other areas, it seems difficult to do meaningful grpents without
developing a way to model a sophisticated, creative advgrsa

(Stolfo et al., 2011)

We interpret this statement to mean that the role of experisn@may be less than in other
sciences, at least until the adversary’s capabilities atisfactorily modeled. In the mean-
time, the role of experiments is still greater than nil. Tehare areas where experiments
seem useful, and we should do them.

We bring up this debate over the science of security in theeatiwork because the
multiplicity-of-factors problem in keystroke dynamicsigts throughout security research.
In intrusion detection, anomaly detectors have been usadotator system behavior to
find evidence of attacks (Forrest et al., 1996). Just as istkelye dynamics, different
classifiers are proposed based on a variety of pattern-nécmg and machine-learning
algorithms. These classifiers are evaluated in differesiu@tion environments by different
researchers. During the evaluation, researchers choeg@algrams to run, the networks
to monitor, and the attacks to unleash. Classifiers haverdiit error rates in different
evaluations, so the error rate must depend on the programeorie or attack.

In insider-threat detection, algorithms monitor user @raas observed through the
commands they run, the time they log in, the files they dowdhlaad the documents they
print (Schonlau et al., 2001). Once again, different cfagsi are proposed for these algo-
rithms, and they are evaluated by collecting user-behaata and injecting attacks. Once
again, the same classifier has different error rates inrdifteevaluations (Schonlau et al.,
2001; Maxion and Townsend, 2004). To understand a classibiehavior, one needs to
understand the factors in the evaluation conditions tHatgits error rate.

In worm detection, the top-performing detector dependshendiata set (Stafford and
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Li, 2010). Some factors in the data, such as the network tgyobr the normal traffic
patterns, may interact with the detector, so that both meisiglerstood in order to predict
which detector will have the lowest error rate. In malwaralgsis, different detectors are
evaluated with data sets of different size, using diffefeatures, and different proportions
of malware and legitimate software (Walenstein et al., 2010nce again, researchers
have trouble distinguishing the effectiveness of the detdoom the effects of evaluation
decisions.

In all of these cases, itis likely that detection algoritraosnot havean error rate, they
havemanyerror rates, depending on a multitude of factors in the etadn conditions.
Just as we have used LMMs to understand the multitude ofriacideystroke-dynamics
evaluations, LMMs could be a powerful tool throughout comepisecurity research for
understanding the behaviors of security technologies.

LMMs and inferential statistics are admittedly complichtand conducting rigorous
controlled experiments can be challenging in a domain seatomputer security. What-
ever the difficulty, researchers have a duty to draw infezerand offer their own explana-
tion of their findings, going beyond the mere reporting of @mal results. By not making
any inferences, they offer no explanations of the resutig the meaning of the evaluation
is vague at best.

We believe that our work has identified an area in computew+gtg research where
an experimental science of security would be useful. In tkeke dynamics, we have
demonstrated its utility. As a result of this work, futursearchers can make much more
informed decisions about how best to improve keystrokeadyins error rates. Beyond
keystroke dynamics, our methods could help to solve loageihg problems throughout
a cross-section of security research, and assist resesrichproducing the fundamental
principles required of a science of security.
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