
.

Probabilistic and On-line Methods
in Machine Learning

Adam Kalai
May 16, 2001

CMU-CS-01-132

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Thesis Committee:
Avrim Blum, chair

Manuel Blum
Danny Sleator

Santosh Vempala

This research was partially supported a National Science Foundation Graduate Fellowship and an IBM
Distinguished Graduate Fellowship.
The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the National Science Foundation or IBM.

.

Keywords: Algorithms, On-line Algorithms, Machine Learning

Abstract

On the surface, the three on-line machine learning problems analyzed in this thesis may seem unrelated.
The first is an on-line investment strategy introduced by Tom Cover. We begin with a simple analysis that
extends to the case of fixed-percentage transaction costs. We then describe an efficient implementation that
runs in time polynomial in the number of stocks. The second problem is k-fold cross validation, a popular
technique in machine learning for estimating the error of a learned hypothesis. We show that this is a valid
technique by comparing it to the hold-out estimate. Finally, we discuss work towards a dynamically-optimal
adaptive binary search tree algorithm.

To my mother, Marilyn Kalai.
May her PBSCT be as easy on her as my committee was on me.

Acknowledgments

It should be no surprise that my biggest thanks go to my parents, who somehow created me and gave me a
very happy childhood. For as long as I can remember, my father has been teaching me about problem solving
and research through puzzles and questions. If I end up with a fraction of his creativity and accomplishments,
I will feel very lucky. Since I was a baby, I couldn’t have asked for a better role model than my mother.
Even if I could have talked at that age, I still wouldn’t have asked for one.

I came to CMU in large part because of Avrim Blum. After three advisors, I can say with full confidence
that Avrim is the best advisor and teacher at CMU. I don’t think I would have finished with anyone else.
They often say that, by the time you’re ready to graduate, you should know your area better than your
advisor. If that was a requirement, I would never graduate.

I’m moving from one great advisor to another. Next year I’ll be at MIT under the supervision of Santosh
Vempala. Many thanks to Santosh for being such an amazing friend and also a patient teacher.

Also a big thanks to a several professors at CMU. If my committee was a circus, then Avrim would be
the ringmaster, Manuel Blum would be the Lion Tamer, Santosh would be the clown, and Danny Sleator
would be the bearded lady. Steven Rudich would steal the show with his magic tricks. I will never forget
what I learned from my other two advisors, Mel Siegel and Randy Pausch. I am also grateful to the staff,
especially Dorothy Zaborowski, Sharon Burks, Catherine Copetas, and Jennifer Roderick.

A ginormous thanks to my first set of friends, Dougs Beeferman and Rohde, Rosa Arriaga, Santosh
Vempala, Cris and Neil Heffernan, Carl Burch, Stan Chen, Jeff Woodard, Hannah Niswonger, and Philip
Wickline, and to my newer friends, mandY Holbrook, Sapna Puri, Dennis Cosgrove, Chris Sturgil, and the
whole Stage 3 gang. At the risk of leaving people of the list, I will leave everyone else off the list. To be
safe, I would also like to thank everyone who has read my acknowledgements.

vi Acknowledgments

Contents

Acknowledgments v

1 Introduction 1
1.1 On-line Analysis . 1
1.2 Universal Portfolios . 3
1.3 Bounds for K-Fold Cross Validation . 3
1.4 Splay Trees . 4

2 Universal Portfolios 5
2.1 Constant Rebalanced Portfolios . 5
2.2 The UNIVERSAL Portfolio . 8
2.3 Transaction Costs . 11
2.4 Prediction From Expert Advice . 12
2.5 Efficient Implementation . 13
2.6 Related Work . 18

3 Bounds for K-Fold Cross-Validation 19
3.1 The Learning Model . 20
3.2 Error Estimation . 21
3.3 Hypothesis Selection . 21
3.4 Notation . 22
3.5 K-Fold Analysis . 22
3.6 Related Work . 25

4 Splay Trees 27
4.1 Binary Search Trees . 27
4.2 Static and Dynamic Optimality . 27
4.3 Splay Trees . 30
4.4 Related Work . 30
4.5 Lower bound . 31

viii CONTENTS

4.6 Dynamic Search Optimality . 32
4.7 Future Work . 33

Bibliography 35

Chapter 1

Introduction

The probabilistic method often makes an otherwise difficult problem seem easy. Its cornerstone is us-
ing a probabilistic analysis for a deterministic problem. We use the probabilistic method and other such
simplifying tools for three problems in machine learning. These three problems can all be viewed as varia-
tions on predicting from expert advice, a problem well studied in machine learning theory and other areas
[49, 12, 62].

In the first problem, the experts are an infinite family of investment strategies. Our goal is to do almost
as well as the best of these strategies. Although the algorithm we analyze is completely deterministic, by
observing that its performance is the expected performance of a random expert, the analysis becomes simple.
Using rapidly-mixing Markov chains, we are able to efficiently implement this strategy with a large number
of stocks.

In the second problem, we analyze k-fold cross-validation, a common technique in machine learning for
estimating the error a hypothesis on data. The k-fold estimate is the average of k estimates, which can be
thought of as expert suggestions. Despite the fact that these estimates may be very correlated, we show that
their average is strictly better than an individual.

In the third problem, we are interested in the dynamic optimality of binary search trees. We propose an
algorithm that also is a weighted average of all binary search tree algorithms. Again, while the algorithm
is completely deterministic, the analysis is probabilistic. This is one of the classic problems in on-line
algorithms, and the first problem is the most well-studied problem in on-line portfolio selection.

1.1 On-line Analysis

On-line analysis, introduced by Sleator and Tarjan [57], provides a metric for analyzing on-line algorithms.
An on-line algorithm is an adaptive algorithm, in that it receives its input incrementally. In contrast, an
off-line algorithm receives all of its input at the start. For example, in caching, we have a sequence of
requested pages and a cache which can hold k pages. Proceeding through the sequence, every time a page
is requested and is in the cache, we simply return that page. However, every time a page is accessed and is
not in the cache, we must evict one of the pages in the cache and replace it with the requested page. For
an off-line algorithm, the entire sequence of requests is known in advance, and page replacement decisions

2 Introduction

can be made based on knowledge of future requests. For an on-line algorithm, the requests are revealed and
must be handled one at a time.

Given a cost metric, e.g. a cost of 1 for evicting a page, minimizing the cost of an off-line algorithm
is an ordinary optimization problem. Sleator and Tarjan’s method of on-line analysis provides a framework
for comparing on-line algorithms. An on-line algorithm is r-competitive1 if, for any sequence of requests,
its cost is no more than r times the off-line optimal cost, plus some constant c. Say at the completion of the
sequence, an on-line algorithm has a regret that is the ratio of its cost to the minimum cost of an off-line
algorithm. This is the amount that the algorithm regrets its choices compared to the optimal choices made
with hindsight. Then the competitive ratio r is the worst-case regret, modulo the constant additive term c.
Perhaps this is best illustrated with an example.

List Update Example

In the classic list update problem, we have a linked list of items, which may be thought of as folders in a
filing cabinet. Each time an item is requested, we have to search linearly through the list until we find it. If
the item is at position i in the list, this search costs i. In the standard model, we are allowed to reinsert the
item anywhere in positions �� �� � � �i at no cost and perform arbitrary swaps of adjacent list items at a cost
of 1 per swap.

Sleator and Tarjan have shown that the move-to-front algorithm, which moves each requested item to
the front of the list, costs at most a factor of 2 more than any list algorithm, for any sequence. Thus their
algorithm is 2-competitive, i.e. has a competitive ratio of 2, provided that both algorithms begin with the
same list order [57].

A simple way to see this2 is to change the problem so that it is mandatory to move the requested item to
the front of the list. This never increases the cost of a sequence more than a factor of two. To see this, think
of a new cost function where, if the requested item is at position i, the search still costs i, but the reinsertion
at position � � j � i now costs j�� (because we first move the item to the front at no cost and then perform
j � � swaps to move it to position j). The new cost is always at least as large as the old cost, but never
more than twice as large, because the reinsertion cost is no more than the search cost. Thus a r-competitive
algorithm under the new cost metric will be �r competitive under the old.

Next, observe that an optimal thing to do is to never perform any swaps, even for an off-line algorithm.
To see this, suppose the last thing done after a request was to swap x and y. Let us be lazy and delay this
swap until after the next request. If the next request is neither x nor y, then the delay has had no additional
cost. If x is requested, then we have actually decreased our search cost by 1, and we no longer have to do the
�x� y� swap, since x is moved to the front in either case. Similarly, if y is requested, we have increased our
search cost but reduced the number of swaps, thus not changing the total cost. Since we can always delay
the last swap, we can actually delay all swaps indefinitely, and move-to-front is optimal. Since the new cost
model differs by a factor of two from the old cost model, move-to-front is 2-competitive.

On-line algorithms are adaptive and thus can be viewed as learning algorithms. For example, there are
many things one might learn from a sequence of accesses, such “as after x is requested, y will always be
requested before z.” However, on-line analysis show that the move-to-front algorithm uses, up to a factor of
two, all the valuable information one might learn from the sequence, for the list update problem.

In addition, we can speak of the competitive ratio relative to a restricted class of off-line algorithms.
In this case, the on-line algorithms are allowed to do more than the off-line algorithms, and we have a
competitive ratio bounding the performance of an on-line algorithm to best of the restricted class of off-line

1In general, r is a function of the problem size and the sequence length.
2Sleator and Tarjan use a more sophisticated potential function analysis.

1.2 Universal Portfolios 3

algorithms. For example, in the list update problem we might restrict the off-line algorithm to do swaps only
in positions that preceded the accessed element, while the on-line algorithm could do arbitrary swaps.

1.2 Universal Portfolios

Consider the investment strategy of dividing one’s money evenly among s stocks and letting it sit. This has
the on-line guarantee that, at any point in time, regardless of the market, it will have at least the performance
of ��s times the performance of the best stock, where performance is defined as the value of the investment
for an initial one-dollar investment. Since, over time stock prices grow exponentially, this popular strategy
approaches the exponential growth rate of the best stock.

On the other hand, a Constant Rebalanced Portfolio (CRP) keeps the same distribution of wealth among
a set of stocks each day. For example, the ����� ���� ���� each day rebalances so that it has ��� of its money
is stock 1, ��� in stock 2, and ��� in stock 3. Thus there are infinitely many possible CRPs.

These CRPs capture the notion of “buy low, sell high.” As the price of one stock increases (relative to the
others), it buys more, and as the relative price decreases, it sells. How low is low and how high is high? The
CRP smoothes these decisions based on a single parameter for each stock. Typically, if you could choose
the best parameters for your CRP in hindsight, you would be doing exponentially better than the best stock.
CRPs capitalize on the relative volatility between stocks. It may be that two stocks, over a year, lost value,
but a CRP may have gained. Furthermore, like the previous strategy, it has the nice property that if all the
stock prices ever return to their initial values, then it cannot have lost money.

Thomas Cover has an algorithm called the UNIVERSAL portfolio, which performs almost as well as
the best CRP in hindsight [16]. The way it works is by averaging over all CRPs3. We present a simple
probabilistic analysis of the deterministic UNIVERSAL algorithm, which relies on the fact the performance
of UNIVERSAL is the expected performance of a random CRP. We argue that any CRP that is “nearby”
the optimal CRP will perform near-optimally. Then, we show that a random CRP has a high probability of
being nearby the optimal CRP. This analysis extends without modification to the case of a fixed percentage
transaction cost. This is joint with Avrim Blum [8].

Since UNIVERSAL achieves the expected performance of a random CRP, one might instead consider
investing everything in a single, random CRP. This is analogous to investing all of one’s money in a random
stock rather than dividing it evenly and letting it sit. People seem to diversify their portfolio, perhaps because
they are risk averse. For example, they would rather be worth one million dollars for certain than a ���
chance at ten million dollars and 	�� chance of being bankrupt. Of course, for small amounts of money,
this risk aversion is not as important. The UNIVERSAL’s performance is guaranteed, which we would argue
is better than a guarantee on its expected value.

Unfortunately, all previous implementations of UNIVERSAL are exponential in the number of stocks,
with run times of O�ns���. In joint work with Santosh Vempala [42], we present an implementation which
is polynomial in the number of stocks based on random walks. For this randomized algorithm, we prove
that with arbitrarily high probability, it performs arbitrarily close to UNIVERSAL.

1.3 Bounds for K-Fold Cross Validation

K-fold cross validation is a common technique for measuring the error of a hypothesis in machine learning.
First, we divide the given data into k equally sized folds. The standard hold-out estimate learns a hypothesis
on the first k � � folds and tests it on the last fold, an independent test set. The k-fold estimate repeats

3Since the set of CRPs is infinite, this is an integral or, equivalently, the limit as we make a finer and finer grid on the set of
CRPs.

4 Introduction

this, learning on k � � folds and testing on the other fold, and averages the k estimates. Thus, it is similar
to the above scenario, where presumably more measurements are better. We show that indeed the absolute
moments of our estimate’s error are smaller for k-fold than a hold-out of size ��k of the data, even though
the k different estimates are by no means independent.

Previous analyses of k-fold cross-validation gave weaker “sanity-check” bounds. This is partly because
they were viewing the k-fold estimate as an estimate of the error of the hypothesis that is trained on all the
data. Unfortunately, nothing can be guaranteed for a black-box learning algorithm in this setting, because we
have not a single test of this new hypothesis. Instead, we view the k-fold estimate as an estimate of the error
of the average of the k hypotheses generated. While this is not what is used in practice, it clearly identifies
the difficulty with bounding the k-fold estimate’s error – the difference between the k constituent hypotheses
and the hypothesis trained on all the data. This is joint work with Avrim Blum and John Langford [9].

1.4 Splay Trees

Splay trees [58], discussed in Chapter 3, are adaptive binary search trees that operate in a manner similar
to move-to-front. Every time a node is accessed, it is rotated to the root through a clever series of rotations
(the tree analog of swaps). The dynamic optimality conjecture of splay trees, a longstanding open problem,
is simply the question of whether splay trees are constant-competitive in the same way that move-to-front
is, i.e. when the cost is the depth of the accessed item plus the number of rotations performed.

The technique we used in the move-to-front analysis could potentially extend to splay trees. Suppose
we make it mandatory to immediately move the requested node to the root exactly as splaying does. Then,
by the same reason as in move-to-front, we will increase the cost of any algorithm by at most a constant
factor. Next, suppose we increase the cost of each rotation by a constant factor c, further increasing the cost
by at most a factor of c. Then, one might hope to show that the lazy approach works, i.e. delaying the last
rotation to the next round will not cost anything extra. Unfortunately, this is not true for splay trees, but it
might be true for some variation on them, such as randomized splay trees [31, 1].

In this thesis, though, we try a slightly different approach. We consider the set of all sequences of
rotations as a set of experts. Every tree is viewed as a probability distribution predicting the next request,
with nodes near the root having higher probability. We then take a suitable weighted average of these
probability distributions and convert it back into a tree. The good news is that the search cost, i.e. the
sum of the depths of accessed elements, is no more than a constant times the total cost of any sequence
of rotations. Unfortunately, the rotation cost might be higher. However, we hope that this is a step towards
finding a dynamically optimal binary search tree algorithm. This is joint work with Avrim Blum and Santosh
Vempala.

Chapter 2

Universal Portfolios

Thomas Cover’s UNIVERSAL portfolio [16] is an on-line investment strategy with assumption-free
theoretical guarantees. In this chapter, we present a simple analysis of Cover’s investment strategy and
answer two open questions about his portfolios. First, our analysis shows that the UNIVERSAL properties
hold in the case of fixed percentage transaction costs. This analysis was joint work with Avrim Blum [8].
Second, we present a polynomial-time implementation of UNIVERSAL. That is, each day UNIVERSAL
specifies how much money to put in each stock. All previous methods of doing this calculation took time
exponential in the number of stocks. We present an efficient implementation based on random walks. This
is joint work with Santosh Vempala [42].

2.1 Constant Rebalanced Portfolios

The class of investment strategies we are interested in here is the set of constant rebalanced portfolios. A
constant rebalanced portfolio (CRP) keeps the same distribution of wealth among a set of stocks from day
to day. For example, the h��� ��i CRP shown in Figure 2.1a keeps an equal amount of money in two stocks.
At the beginning of each day, it rebalances its holdings to maintain this equality. In this fictitious market,
the price of Stock 1 alternately doubles and halves, while the price of the Stock 2 stays the same. When
the first stock doubles, the h��� ��i CRP gains ��� because half of its money is in this stock. When the
first stock halves, the h��� ��i CRP only loses ���. So, every two days its value increases by a factor of
��� � ��
� � �����. This is exponential growth at a rate of �����, despite the fact that both stocks stay
within a factor of 2 of their original price.

To some extent, a CRP captures the notion of “buy low, sell high.” As the price of a stock drops relative
to others, the CRP buys more of it. As the relative price of a stock increases, the CRP sells. Of course, the
h��� ��i CRP does not always do well. In Figure 2.1b, Stock 1 is constant, but the price of Stock 2 halves for
twenty days and then doubles for twenty days. During the first twenty days, as Stock 2 drops, the CRP buys
more. Had Stock 2’s price never rebounded, this would have been the wrong thing to do. On this first half,
the best thing would be to keep all of one’s money in Stock 1, which is exactly what a h�� �i CRP would do.
Over the whole time, though, a simple calculation shows that the best CRP to choose is the h��� ��i CRP.

Another example may illustrate why it is valuable to know the best parameters for a CRP. Suppose that

�� of the time the first stock’s price doubled and ��� it did very poorly, being reduced by a factor of

6 Universal Portfolios

a)

0

2

4

6

8

10

12

Time

V
al

u
e

CRP(.5,.5)

UNIVERSAL

Stock 1

Stock 2

b)

0

1

2

3

4

5

6

7

8

9

Time

V
al

u
e

CRP(.5,.5)

UNIVERSAL

Stock 1

Stock 2

Figure 2.1: Fictitious markets: a) Stock 1 alternately halves and doubles, Stock 2 is constant b) Stock 1 is
constant, Stock 2 drops exponentially but then returns

2.1 Constant Rebalanced Portfolios 7

�. On the days where Stock 1 did poorly, suppose Stock 2’s price doubled, and on the other days its price
dropped by �. Then the wealth of a CRP that keeps an x fraction of its wealth in Stock 1 after n days is
roughly ��x�����n����� x������n, for small �� The h�� �i and h�� �i CRP essentially loose all their money.
The h��� ��i CRP breaks even. However, the h�
�� ���i CRP makes exponential money, and thus so does the
UNIVERSAL. Moreover, the above function has a very sharp peak at x � ��
�. Thus it would be very
valuable to know the best parameter to use in hindsight.

Of course, there may be more than just two stocks. In general a CRP has one parameter for each stock,
reflecting the fraction of its wealth to keep in that stock. It has an additional parameter which is how often
to rebalance. In this thesis, we will assume daily rebalancing, but due to various factors, such as volatility
or transaction costs, one might want to rebalance more or less often.

Notation and Definitions

Let s be the number of stocks in the market. Let CRPhvi be the CRP which keeps a vi fraction of its money
invested in stock � � i � s, for vector hvi � �. Here � is the simplex,

� � fhvi � �sjvi � ��
sX
�

vi � �g

Let xdi be the ratio of the closing price to opening price of stock i on day d. Then the performance of
stock i over n days, the value of an initial one-dollar investment, is Pn�i� �

Qn
d�� x

d
i . With slight abuse of

notation, the performance of CRPhvi is,

Pnhvi �
nY

d��

sX
i��

vix
d
i �

nY
d��

hvi � hxdi

The performance of the UNIVERSAL algorithm will be written Pn�UNIVERSAL�. Finally, the log-
performance of an investment is simply the logarithm of its performance. The log-performance indicates
how many digits are in the value of your holdings.

Log-concavity of CRP’s

One of the striking things about our examples is that, even though neither stock is never significantly higher
than its original price, we’ve made exponential amounts of money. In fact, one can say that if the prices
of the stocks haven’t changed, then any CRP can only have made money. This is an easy corollary of the
log-concavity of CRP’s.

Lemma 2.1 The log-performance of CRPhvi is a concave function of hvi, i.e., for CRPs hvi� hwi,

log Pn

�hvi hwi
�

�
� logPnhvi logPnhwi

�

Proof. This follows directly from the concavity of the log function.

logPn

� hvi hwi
�

�
�

nX
d��

log
hvi hwi

�
� hxdi

�
nX

d��

loghvi � hxdi loghwi � hxdi
�

8 Universal Portfolios

And this last expression is the right-hand side of the lemma.

We can then say that the log-performance of a CRP will be at least the weighted average of the log-
performances of the constituent stocks.

Corollary 2.2 logPnhvi �
Ps

i�� vi logPn�i��

In particular, if the price of every stock goes up (or down) by a constant factor c over an arbitrary number
of days, then any CRP’s performance will change by a factor of at least c.

It is interesting to note that in the continuous case (the limit as we rebalance more and more often) the
above becomes an equality. Thus more frequent rebalancing may not necessarily be good. For example,
with continuous rebalancing, a CRP can never do better than the best stock.

2.2 The UNIVERSAL Portfolio

It would be very valuable to know which stock is going to perform the best over the next twenty years. An
investor can almost achieve this growth by splitting their money among several stocks. If they divide their
money evenly between s stocks, their performance will always be at least ��s times the performance of the
best of these stocks, and usually better. Of course, this is a common strategy.

It would be much more valuable to know which CRP is going to perform best, because the best CRP
often performs exponentially better than the best stock, as we have seen from our examples. In particular,
the best CRP performs at least as well as the best stock, because the strategy of investing everything in one
stock is a CRP. Cover uses the same splitting idea, but among the set of CRPs, to asymptotically match the
growth rate of the best CRP. To be precise, let hOPTi be an optimal CRP, chosen in hindsight. Then, as in
[17],

Theorem 2.3 For All markets with s stocks and n days,

Pn�UNIVERSAL�

PnhOPTi �
�

n s � �
s� �

���

� �

�n ��s��

Equivalently,
logPn�UNIVERSAL�

n
� logPnhOPTi

n
� �s� �� logn �

n

Looking at the daily log-performance above, we see that difference in daily log-performance goes to
zero quickly. The term UNIVERSAL, like universal data compression, indicates this on-line asymptotic
optimality relative to a class of investment strategies. In our first example, the best CRP is in fact the h��� ��i
CRP, which has performance of �������n��. Thus, the above guarantees UNIVERSAL a performance at
least �������n���n, but it performs even better. Alternatively, this may be seen as a competitive ratio of

�
�n��	s�� relative to the class of CRPs.

UNIVERSAL can be thought of as the simple split algorithm, but instead of dividing its money evenly
among a set of stocks, it divides it evenly among all CRPs, and does not transfer between them. Since the the
set of CRPs is infinite, this can be thought of as the limit, as we make a finer and finer grid on the simplex.
Figure 2.2 illustrates this for three stocks. The set of possible CRPs is a simplex. Each sample is a lock box,
invested according to the corresponding CRP, which starts with an even fraction of the total wealth. Money
is never transferred between these lockboxes. Over time, some of the lockboxes grow and others shrink, and
thus UNIVERSAL’s distribution of wealth moves towards the optimal CRP. To be precise,

2.2 The UNIVERSAL Portfolio 9

={CRPs}

<OPT>

Figure 2.2: Initially, the money is divided equally among a set of evenly-spaced lockboxes, each representing
a CRP. Over time, lockboxes change in size. The limit as the number of lockboxes increases without bound
is the UNIVERSAL portfolio.

Definition 2.4 (UNIVERSAL) On day n, UNIVERSAL has a uni fraction of its wealth in stock i,
where

huni �
R

hviPn��hvid�hviR

 Pn��hvid�hvi

Here, � is the uniform distribution over�, the simplex of possible CRPs.

This is the form in which Cover defines the algorithm for the uniform distribution1. He also notes ([17]) that

Pn�UNIVERSAL� � Ehvi�
 �Pnhvi� (2.1)

In other words, since UNIVERSAL is just an average over all CRPs, its performance is exactly the expected
performance of a random CRP.

Simple Analysis

We will first show a very simple analysis that gives a slightly weaker bound than the theorem. The key to
our analysis is to consider nearby CRPs. There is some CRP that is optimal in hindsight, say hOPTi. There
is a high probability that a random portfolio is nearby hOPTi, and nearby portfolios perform nearly as well.
To be precise, let us say hvi is nearby hOPTi if vi � ��� ��OPTi, for all i. For simplicity, let us first say
� � ���n ��.

Then the performance of CRPhvi on any given day will be at least � � � times the performance of
CRPhOPTi, because at least a � � � fraction of CRPhvi’s wealth is distributed exactly like CRPhOPTi.

1Cover has shown the better bound of ���n���
s��

� for the Dirichelet����� � � � � ���� ditribution, which has density proportional
to ��

pQ
vj on portfolio hvi. Our analysis does not apply to this distribution precisely because it is not uniform, and our efficient

algorithm does not work because it is not log-concave.

10 Universal Portfolios

={CRPs}

<OPT>

"Nearby" CRPs

Figure 2.3: There are many CRPs “nearby” the optimal CRP, and these portfolios perform nearly as well.

Over n days, we get,

Pnhvi
PnhOPTi � ��� ��n (2.2)

� �

e

�
for � �

�

n �

�

This is the sense in which nearby portfolios do nearly as well.
How many such nearby portfolios are there? This is easy to compute because the set of nearby portfolios

is a simplex, translated from the origin to �� � ��hOPTi and shrunken by a factor of �. The simplex has
dimension s� �.

Vol fhvi � �jhvi is nearby hOPTig � Vol f��� �� hOPTi �hwij hwi � �g
� Vol f�hwij hwi � �g
� �s��V ol� (2.3)

Because UNIVERSAL does as well as a random CRP (2.1), nearby portfolios perform at least ��e times
as well (2.2), and there are ���n ��s�� portfolios near the best CRP (2.3),

Pn�UNIVERSAL�

PnhOPTi � �

e

�

�n ��s��

Notice that this simple analysis is slightly worse than the guarantee of Theorem 2.3.
To get the better bound, we consider �-nearby portfolios. We say hwi is �-nearby hvi if wi � �����vi,

for all i. We think of � as a function of hvi, i.e. a random variable defined by ��� � mini vi�OPTi. Then,
from equations (2.1) and (2.2) we see that,

Pn�UNIVERSAL�

PnhOPTi � Ehvi�
 ���� ��n�

�

Z �

�
Probhvi�
 ���� ��n � x� dx (2.4)

2.3 Transaction Costs 11

The last equality is an identity for random variables in ��� ��.
By (2.3), the probability in the above integral is exactly �� � x��n�s��� Making the change of variable

y � x��n� this yields,

Z �

�
��� x��n�s��dx �

n

Z �

�
yn����� y�s��dy �

��
n s � �
s� �

�

The last equality can be found by integration by parts 2.

2.3 Transaction Costs

In this section, we describe a simpler way to incorporate transaction costs than in [8], which also gives better
guarantees. The model of transaction costs is still a fixed percentage commission c � � on transactions, as
is common in financial modeling3 [21].

The tricky part is defining a CRP in the presence of commission. We use the following naive model
for how a CRPhvi rebalances. At the beginning of the day it has some distribution of wealth hv�i. Without
commission, it would simply sell v�i � vi of every stock for which v�i 	 vi and then buy vi � v�i of every
stock for which v�i � vi.

Definition 2.5 (naive model of rebalancing) In the presence of commission c, the CRPhvi with a
distribution of wealth of hv�i rebalances by selling v�i � vi of every stock for which v

�
i 	 vi and

buying ��� c��vi � v�i� of every stock for which v
�
i � vi�

Thus, if an investor has M dollars distributed according to hv�i, then after rebalancing she will have Mvi
dollars worth of every stock she sold and ��� c�Mvi cMv�i dollars worth of every stock she bought. We
call this naive because it is as if the CRP investor is surprised every time to find out that there is commission
(and that it is not perfectly rebalanced) but does nothing about it.

The previous sophisticated model of how a CRPhvi rebalances [8] is much harder to implement. In that
model, the CRP chooses the minimal set of transactions to perform so that it is rebalanced exactly according
hvi. This is a logical, natural definition that, in some ways, better fits the term CRP. However, it requires
solving an optimization problem each day just to rebalance. Furthermore, it lacks some properties of the
naive model that we believe are nice. For example, with naive rebalancing, a h��� ��i CRP always does at
least ����n times as well as the better of the two stocks, over n days. The sophisticated model would do

2Alternatively, the last equality can be verified by the following puzzle. Suppose we pick n� s� � numbers in ��� �� uniformly
at random. What is the probability that each of the first n numbers will be smaller than the each of the last s � � numbers?
On the one hand, it is equally likely that any given subset of size s � � will be the largest s � � numbers selected, so the

answer is
�

n� s� �
s� �

�
��

. On the other hand, we can break it down into cases, based on the largest number among the first

n. The probability that, say, the ith number is greater than or equal to the first n and smaller than the last s � � (for i � n) isR �
�
�� � y�n��ym��dy. Thus the answer can also be written as n times this integral, and we have equality.
3This is as general as a cost cs � � on sales and cb � � on purchases. To see this, imagine transferring x dollars worth of one

stock to another and paying for commissions with the sales. This would give x��� cs���� � cb� dollars worth of the new stock,
which is equivalent to a commission of �� c 	 ��� cx���� � cb� or c 	 �cs � cb���� � cb� � � charged on transactions.

12 Universal Portfolios

worse than ����n if one stock’s price stayed the same and the other dropped a lot every day. In essence, with
the sophisticated model, the failure of one stock affects another stock by a factor larger than ��. One would
be better off each day giving half of its stock to charity.

With the sophisticated model, it was shown that the bound in Theorem (2.3) still holds if we replace n
with �� c�n. In this section, we will show that with naive model, the bound and analysis work exactly as
is. It is worth pointing out that the two models are actually very similar, differing in only a second order
term. Even though the naive rebalancer may not have exactly the correct distribution of wealth each day, it
will be off by at most a ��� c� factor. Furthermore, if prices do not change for several days, it will approach
the correct distribution exponentially quickly. Likewise, the sophisticated model does have the property that
a h��� ��i CRP will do at least ������ c��n as well as the better of the two stocks.

Lemma 2.6 If hwi is �-nearby hvi, then in the naive model of rebalancing,
Pnhwi � ��� ��nPnhvi

Proof. This intuitive statement is a little messy to prove (and not true in the sophisticated model). We prove
by induction on n that the amount of money in each stock for CRPhwi is at least ��� ��n times the amount
of money for CRPhvi. Suppose it is true on day n. At the end of day n, say we have Mv and Mw dollars
distributed according to hv�i and hw�i, in our respective CRPs. Then, since stock i has changed by the same
amount, xdi , in both portfolios, we will have,

Mww
�
i � ��� ��nMvv

�
i (2.5)

Mw � ��� ��nMv (2.6)

Mwwi � ��� ��n��Mvvi (2.7)

After rebalancing, there are four cases depending on whether each CRP sells or buys. We need to
show that the amount of money in every stock for hwi is at least �� � ��n�� times the amount of money
for hvi. If both CRPs sell stock i (v�i 	 vi and w�

i 	 wi), then after rebalancing they have Mvvi and
Mwwi worth of stock i, respectively. This satisfies the induction hypothesis by (2.7). If both CRPs buy
stock i, then they will have �� � c�Mvvi cMvv

�
i and �� � c�Mwwi cMww

�
i worth of stock i, which

is good good by (2.7) and (2.5). If hvi buys and hwi sells, then we are okay because v�i � vi, and thus
�� � c�Mvvi cMvv

�
i � Mvvi � �� � ��n��Mwwi. Finally, if hvi sells and hwi buys, then we are okay

because ��� c�Mwwi cMww
�
i �Mww

�
i � ��� ��nMvv

�
i � ��� ��nMvvi.

Finally, we define UNIVERSAL just as before as the average of all CRPs. We must explain how UNI-
VERSAL performs its transactions each day, in the presence of commission. Each constituent CRP is
issuing orders such as “buy stock i” or “sell stock j.” In accumulating all of these orders (an integral itself),
we will most likely have some offsetting transactions, where one portfolio is buying stock i and another is
selling it. Instead of performing the wasteful transactions, we donate the stock that was going to be used for
transaction costs to charity. Thus (2.1) still holds. The above lemma is exactly (2.2), and so the analysis still
holds.

Corollary 2.7 With naive rebalancing of CRPs, the UNIVERSAL guarantees of Theorem 2.3 hold
in the presence of arbitrary commission c � � charged on all transactions.

2.4 Prediction From Expert Advice

The problem of prediction from expert advice is well-studied in machine learning theory and other areas
[49, 12, 22, 27, 35, 46, 62, 63]. There are many variations on this problem. Here, we’ll discuss two related

2.5 Efficient Implementation 13

to the stock market. First, suppose meteorologists were paid in a logical manner. For example, when the
predict the chance of rain to be � � p � �, say their reward is log � ln p if it rains and log � log �� p if
it doesn’t. One benefit of this system is that if the meteorologist believes the true chance of rain is p, then to
maximize her expected reward, she should predict rain with probability p4.

Now, say there we have the opportunity to be a meteorologist, we know nothing about predicting rain,
but we have access to s other meteorologists’ predictions each day. Next, pretend that we have a stock for
each meteorologist that decreases in price by a factor of pi when it rains and � � pi when it doesn’t. Then
the total reward of meteorologist i over n days will be n ln � log perfn�i�.

Imagine investing ��s in each of the meteorologists’ stocks, and letting it sit. A good way for us to
predict rain is to take a weighted average of the experts’ predictions each day, with weights equal to our
distribution of wealth. If we do this and our investment goes down by a factor of x�n� on day n, then our
reward on that day will be log � log x�n�. Since our investment value is the average performance of the
stocks, we see that n log �

P
log x�n� � n log � log�

P
perfn�i��s�. In particular, our reward will be at

least the reward of the best meteorologist minus log s, regardless of the number of days. This is quite good
because it allows us to combine the opinions of a very large number of meteorologists with little cost.

A second problem is that of predicting the average temperature. For simplicity, say predictions are in
��� �� and a meteorologist predicting �t is rewarded by �� j�t� �tj if �t was the average temperature. What we
do here is in the style of the weighted majority algorithm [49] but differs slightly. For each expert, we again
have a stock. If on day n, expert i gets a reward � � rni � �, then stock i goes up by a factor of � rni .

Now again, imagine investing ��s in each stock and letting it sit. Suppose we make our prediction
according to a weighted average of the s expert predictions, with weights distributed according to the fraction
of wealth we have in each stock on that day. Now, say our investment went up by a factor of � x�n� on
day n. Then, the weighted average of the experts’ rewards on that day would be xn. By the convexity of jxj,
our reward must be at least xn. Since our investment’s value is always at least ��s times the value of any
stock, Y

n

� x�n� �
Q

n � rni
s

Taking logs of both sides and using the fact that, for � � x � �, x log � � log � x � x, we get,

X
n

x�n� �
X
n

rni log �� log s

Since our total reward is at least
P

x�n�, we are doing within a constant factor of the best expert minus a
term logarithmic in the number of experts. If we repeat the above analysis but change the stock price by
� �rni , then we get,

our reward � ��� ��best expert’s reward � log s

�

2.5 Efficient Implementation

In this section, we discuss implementing UNIVERSAL without transaction costs. For such an implementa-
tion, one must specify, on each day, how much money to keep in each stock. All previous implementations of
Cover’s algorithm are exponential in the number of stocks with run times ofO�ns���. A previous suggestion
was a randomized approximation based on sampling portfolios from the uniform distribution [8]. However,
in the worst case, to have a high probability of performing almost as well as UNIVERSAL, they require

4If the reward were say p in the case of rain and �� p otherwise, then she would have incentive to predict rain with probability
p 	 � or p 	 �.

14 Universal Portfolios

O�ns��� samples. We show that by sampling portfolios from a non-uniform distribution, only polynomially
many samples are required to have a high probability of performing nearly as well as UNIVERSAL. This
non-uniform sampling can be achieved by random walks on the simplex of portfolios.

Since UNIVERSAL is really just an average of CRP’s, it is natural to approximate the portfolio by sam-
pling [8]. However, with uniform sampling, one needs O�ns��� samples in order to have a high probability
of performing as well as UNIVERSAL, which is still exponential in the number of stocks. Intuitively, this is
because one needs O�ns��� samples to have a high probability of having one nearby hOPTi. Here we show
that, with non-uniform sampling, we can approximate the portfolio efficiently. With high probability (��
),
we can achieve performance of at least �� � �� times the performance of UNIVERSAL. The algorithm is
polynomial in ���, log���
�, s, and n.

The key to our algorithm is sampling according to a biased distribution. Instead of sampling according
to �, the uniform distribution on �, we sample according to �n, which weights portfolios in proportion to
their performance, i.e.,

d�nhvi � PnhviR

 Pnhwid�hwi

We will later show how to efficiently sample from this biased distribution.
Based on the above and (2.1) UNIVERSAL can be thought of as computing each component of the

portfolio by taking the expectation of draws from �n, i.e.,

uni �

Z

vid�nhvi � Ehvi��n �vi� (2.8)

Thus our sampling implementation of UNIVERSAL averages draws from �n:

Definition 2.8 (Universal biased sampler) The Universal biased sampler, with m samples, on the
end of day n chooses a portfolio hani as the average ofm portfolios drawn independently from �n.

Now, we apply Chernoff bounds to show that with high probability, for each i, ani closely approximates
uni . In order to ensure that this biased sampling will get us ani �u

n
i close to 1, we need to ensure that uni isn’t

too small:

Lemma 2.9 For all � � i � s and n � �, uni � ���n s�.

Proof. WLOG i � �. Then, un� is a random variable between 0 and 1, so by (2.8) and identity (2.4),

un� � Ehvi��n �v�� �

Z �

�
�n �fhvi � �jv� � zg�dz�

Now we know from (2.3) that the volume of fhvi � �jv� � zg is �� � z�s�� times the volume of �.
Furthermore, the average performance of portfolios in this set is at least �� � z�n times the average over
�, because for each of n days, a portfolio in this set hvi � �z� �� � � � � �� �� � z�hwi performs at least
�� � z� as well as the corresponding portfolio hwi � �. So the probability of this set under �n is at least
��� z�s����� z�n and,

un� �
Z �

�
��� z�s����� z�ndz � ���n s��

Combining this lemma with Chernoff bounds, we get:

Theorem 2.10 Withm � �n��sn� log�sn�
���� samples, the Universal biased sampler performs
at least ��� �� as well as Universal, with probability at least ��
.

2.5 Efficient Implementation 15

Proof. Say each udi is approximated by adi . Furthermore, suppose each adi � udi �� � ��n�. Then, on
any individual day, the performance of the hadi is at least �� � ��n� times as good as the performance of
hudi. Thus, over n days, our approximation’s performance must be at least �� � ��n�n � � � � times the
performance of UNIVERSAL.

The multiplicative Chernoff bound for approximating a random variable � � X � �, with mean �X, by
the sum S of m independent draws is,

Pr
�
S � ��� �� �Xm

� � e�m
�X�����

In our case, we are approximating each udi by m samples, our lemma shows that the expectation of udi � X
is �X � ���d s� � ���n s�, and we want to be within � � ��n. Since this must hold for ns different
udi ’s, it suffices for,

e�m�����n��s�n		 �

ns
�

which holds for the number of samples m chosen in the theorem.

The biased sampler will actually sample from a distribution that is close to �n, call it pn, with the
property that Z

j�nhvi � pnhvijd�hvi � ��

for any desired �� 	 � in time proportional to log �
��

. Since uni � ���s n�, we see that the mean of the

pn distribution must be �n s���-nearby the mean of �n, which is uni . Thus, if we choose �� � �
kn�n�s	

,

then we will incur a performance loss of at most �� � �
kn �

n � e�k over n days, and our run-time is only
logarithmic in �

��
.

The biased sampler

In this section we describe a random walk for sampling from the simplex with probability density propor-
tional to

fhvi � Pnhvi
Before we do this, note that sampling from the uniform distribution over the simplex is easy: pick s� �

reals x�� � � � � xs�� uniformly at random between 0 and 1 and sort them into y� � � � � � ys�� � �; then the
vector �y�� y� � y�� � � � � ys�� � ys��� �� ys��� is uniformly distributed on the simplex.

There is another (less efficient) way. Start at some point x in the simplex. Pick a random point y within
a small distance
 of x. If y is also in the simplex, then move to y; if it is not, then try again. The stationary
distribution of a random walk is the distribution on the points attained as the number of steps tends to infinity.
Since this random walk is symmetric, i.e. the probability of going from x to y is equal to the probability of
going from y to x, the distribution of the point reached after t steps tends to the uniform distribution. In fact,
in a polynomial number of steps, one will reach a point whose distribution is nearly uniform on the simplex.

The symmetric random walk described above can be modified to have any desired target distribution.
This is called the Metropolis filter [52], and can be viewed as a combination of the walk with rejection
sampling: If the walk is at x and chooses the point y as its next step, then move to y with probability

min��� f�y	f�x	� and do nothing with the remaining probability (i.e. try again). The difficult question, though,
is whether or not the random walk is rapidly mixing, i.e. it attains a distribution close to the stationary one
in polynomial time. The answer is that it depends on the function f . Lovasz and Simonovits [50] have
shown that for a large class of log-concave f , the walk is rapidly mixing. The important parameters are how
quickly f changes and how much of the probability of f is on the border of the set.

16 Universal Portfolios

The simplest form of the random walk would be to discretize the simplex by considering all points on
the simplex whose coordinates are of the form m�N , where m is any integer between 0 and N , and N is
a large fixed integer. Then a neighbor would be chosen by picking two coordinates and adding to one ��N
while subtracting from the other ��N . However, we would like to use previous analysis to show that the
walk is rapidly mixing, rather than starting from scratch.

For the purposes of analysis, we consider the following random walk. First rotate � so that it is on the
plane x � � and scale it by a factor of ��

p
� so that it has unit diameter. We will only walk on the set of

points in � whose coordinates are multiples of a fixed parameter
 	 � (to be chosen below), i.e. points on
an axis parallel grid whose “unit” length is
. Any point on this grid has �n neighbors, 2 along each axis.

1. Start at a (uniformly) random grid point in the simplex.

2. Suppose X��� is the location of the walk at time � .

3. Let y be a random neighbor of X���.

4. If y is in �, then move to it, i.e. set X�� �� � y with probability p � min���
f�y	
f�x	�, and stay put

with probability �� p (i.e. X�� �� � X���).

Let the set of grid points be denoted by D. We will actually only sample from the set of grid points in �
that are not too close to the boundary, namely, each coordinate xi is at least �

s�n for a small enough �. For

convenience we will assume that each coordinate is at least �
��s�n	 . Let this set of grid points be denoted by

D. Each grid point x can be associated with a unique axis-parallel cube of length
 centered at x. Call this
cube C�x�. The step length
 is chosen so that for any grid point x, f�x� is close to f�y� for any y � C�x�.

Lemma 2.11 If we choose
 � log ���
��s�n	n then for any grid point z inD, and any point y � C�z�, we

have
�� ����f�z� � f�y� � �� ��f�z��

Proof. Since y � C�z�, maxj jyj � zj j �
. For any price relative x�, the ratio y�x�

z�x� is at most maxj
yj
zj

.

This can be written as

max
j

zj �yj � zj�

zj
� max

j
��

zj
�

Since each coordinate is at least �
��s�n	 we have that the ratio is at most �� �
�sn��. Thus the ratio f�y	

f�z	

is at most �� �
�s n��n and the lemma follows.

The stationary distribution of the random walk will be proportional to f�z� for each grid point z. Thus
when viewed as a distribution on the simplex, for any point y in the simplex,

�y��� ���� � d�n�y� � �y��� ��

The main issue is how fast the random walk approaches . We return to the discrete distribution on the
grid points. Let the distribution attained by the random walk after � steps be p� , i.e. p� �x� is the probability
that the walk is at the grid point x after � steps. The progress of the random walk can be measured as the
distance between its current distribution p� and the stationary distribution as follows:

jjp� � jj �
X
x�D

jp��x�� �x�j

In [29], Frieze and Kannan derive a bound on the convergence of this random walk which can be used
to derive the following bound for our situation.

2.6 Related Work 17

Theorem 2.12 After � steps of the random walk,

jjp� � jj� � e
� ��

sn��s�n�� �s n��

where � 	 � is an absolute constant.

Corollary 2.13 For any �� 	 �, afterO�sn��s n�� log s�n
��

� steps,

jjp� � jj� � ���

Proof (of theorem). Frieze and Kannan prove that

�jjp� � jj� � e�
�����

sd� log
�

�

M�sd

�

�
�

where � 	 � is a constant, d is the diameter of the convex body in which we are running the random walk,
� is minx�D �x�, � is a parameter between 0 and 1, and

� �
X

x�D� vol�C�x����
vol�C�x��

��

�x��

In words, � is the probability of the grid points whose cubes intersect the simplex in less than � fraction

of their volume. The parameter M is defined as maxx p��x� log
p��x	
	�x	

, where p� is the initial distribution on
the states.

For us the diameter d is 1. We will set � � �
 and choose
 small enough so that � is a constant. This

can be done for example with any
 � �
��s�n	

. To see this, consider the simplex blown up by a factor of �

i.e. the set �

� � fyjy � ��

P
i yi �

�

g� Now the set of points with integer coordinates correspond to the

original grid points. Let B be the set of cubes on the border of this set, i.e. the volume of each cube in B
that is in �

� is less than �
 . Then by blowing up further by 1 unit, we get a set that contains all these cubes.

But the ratio of the volumes is
��
 ��s

��
 �
s

� ��
�s�

Also, the performance of these border grid points can only be ��
�t better than the corresponding (non-
blown up) points in the corresponding points. Thus � � ��
�n�t � � for
 � �

��s�n	 .
Thus the bound above on the distance to stationary becomes

�jjp� � jj� � e�
����

s log
�

�

�Ms

�
�

Next we observe that by our choice of starting point (uniform over the simplex) M is exponentially small.
Thus we can ignore the second term in the right hand side. Finally we note that � is at least
s� �

s�n�
n,

which simplifies the inequality to

jjp� � jj� � e�
����

s �s n��

Our choice of
 (= O� �
�s�n	n) implies the theorem (with a different �)).

Unfortunately, in the presence of transaction costs, the performance function is not necessarily log-
concave, and the above random walk does not necessarily rapidly mix.

18 Universal Portfolios

2.6 RelatedWork

Cover introduced the notion of UNIVERSAL portfolios [16], proving guarantees for bounded markets
with c� � xdi � c�. He and Ordentlich then proved the UNIVERSAL guarantees of Theorem 2.3 [17]
for arbitrary markets. They also showed there that using a weighted average of CRPs according to a
Dirichelet����� � � � � ���� distribution, as opposed to a uniform average, the competitive ratio in Theorem

2.3 is improved to ��n ��
s��
� . Further, they later showed that this is the best possible by proving a lower

bound of O
��

n
�

� s��
�

	
[18].

In fact, in a bounded market, other algorithms have been shown to have the universal property, i.e.
that they asymptotically approach the daily log-performance of the optimal CRP. Recently, Gaivorinski et.
al. showed that, with certain assumptions, simply using the CRP which has done best until the current is
universal [32]. Helmbold et al. show that the so-called EG��� algorithm is universal for bounded markets.
This algorithm maintains a single weight for each stock and has a simple update rule. With the correct choice
of the parameter �, they achieved better performance than UNIVERSAL on their experiments. Previous
experiments involving UNIVERSAL have generally been limited to two or three stocks. This includes a
paper from last year by Cover and Julian [20]. Hopefully, the biased sampling approach will enable larger
experiments.

Cover and Ordentlich also consider side information [17], a single discrete value known each day, such
as the high temperature in New York. They then run a separate, independent UNIVERSAL for each value of
side information and get the natural guarantees, i.e. �n��k�s��	 with k different values of side information.
Singer extends the model by competing against portfolios which switch between different CRPs from time
to time [56].

Cover shows that UNIVERSAL can be applied to data compression [19], and Kalai et. al. apply it
to combining language models [41]. Foster and Vohra [28] look at UNIVERSAL as making a grid on the
simplex and also relate UNIVERSAL to Blackwell’s Approachability Theorem. Helmbold et. al. [37]
compare different efficient methods of finding the optimal CRP in hindsight.

The questions which we address, those of transaction costs and efficient implementations, were raised
in [16, 37, 17, 18, 54, 19]. A nice survey of on-line investment algorithms, including our simple analysis,
appears in a book by Alan Borodin and Ran El-Yaniv [10].

Chapter 3

Bounds for K-Fold Cross-Validation

For many machine learning tasks, we are given a fixed-size data set and would like to produce a hypoth-
esis generalizing the data. In addition, we often would like an estimate of the accuracy of that hypothesis on
unseen data. This is especially useful for model selection, where we have many hypotheses and we would
like to choose the best.

The scientific method proscribes that the data we use to generate our hypothesis should be independent
from the data we use to estimate its accuracy. Thus a natural idea is to divide the data into two parts: training
data for generating a hypothesis and testing data (also called the hold-out) for testing its error [53]. The
tradeoff is clear. Using more training data should presumably lead to a better hypothesis while using more
testing data should lead to a more accurate estimate of its error. The latter can be made precise by Hoeffding
bounds. Assuming that the given data comes from the same distribution as future data, with high probability
the estimate will be close to the true error.

Is it possible to beat this hold-out estimate: for a data set of size n and training set of size m, can we get
a more accurate estimate than that of testing on n �m data? We show that k-fold cross-validation, one of
the most popular forms of cross-validation used in machine learning, does in fact achieve this goal. In k-fold
cross-validation, depicted in Figure 3.3b, the data is divided into k equal size folds. Learning is performed
on all data not in one fold and testing is performed on that held-out fold. The results of these tests are then
averaged. So, k-fold cross-validation is exactly an average of k hold-out estimates of size ��k of the data.
An extended abstract of this work, joint with Avrim Blum and John Langford, appeared in COLT ’99 [9].

There are three difficulties in showing that the k-fold error estimate is better than a hold-out estimate.
First, the errors measured on each fold are not necessarily independent. For example, consider leave-one-out
cross-validation, corresponding to k � jdataj, and suppose we are trying to learn the bias of an unfair coin.
Our naive learning algorithm believes that the coin has p�heads� � � if it has more examples of heads than
tails in the data, and p�heads� � �� otherwise. Taking 100 examples with a fair coin, about 8% of the time
we will have 50 heads and 50 tails. In this case, when we leave out a heads, we will predict tails, and vice
versa. Thus the leave-one-out estimator will incorrectly estimate that each hypothesis has error 1, when in
fact they all have error ���. Since the n estimates are identical, the use of all of them was no better than just
one. We show that for � � k � n, while these estimates may not be completely independent, there will still
be some independence between different folds.

A second difficulty is that, with k different hypotheses, it is not clear what hypothesis to use for future
predictions. Practitioners use a completely new hypothesis which is trained on all the data. However,

20 Bounds for K-Fold Cross-Validation

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

Train Testa)

b) Train TrainTrain

Train TrainTest

Train TrainTrain

Train Train

Train TrainTrain

Train

Train

Train

Test

Test

Train

Train

Train

Train

Test

Test

Data

c) Train and Test

A
v

erag
e

Figure 3.1: a) The (20%) hold-out estimate b) The 5-fold estimate c) The resubstitution estimate

nothing can be said about this new hypothesis without assuming something about the learning algorithm.
Previous k-fold bounds, which attempted to do this, were termed sanity-check1 because they restricted the
VC dimension of the learning algorithm, required a notion of hypothesis stability, and only compared the k-
fold estimate to the resubstitution estimate [4]. We get around these difficulties by using a k-fold hypothesis
which is a randomized combination of the k constituent hypotheses. That is, for a new object, we make a
prediction according to a random one of the k hypotheses.

The last difficulty comes in comparing the k-fold estimate to the hold-out. We would like to say the k-
fold estimate is better than a hold-out of size n�k. Imagine that we will flip an unfair coin ten times, and we
want to estimate the probability of heads, p. The full estimator “�p�� � �total number of heads����” seems
better than the one-flip estimator “�p� � � if the first flip is a head and �p� � � otherwise”, but in what sense?
For p � �����, the chance that j�p� � pj 	 ���� is 1/100, while the chance that j�p�� � pj 	 ���� is nearly
10/100, namely the chance that any of the flips were heads. Thus, �p�� doesn’t completely dominate �p� under
every conceivable notion of “better”. Instead, what can be said is that E �j�p�� � pjm� � E �j�p� � pjm�, for
all m � �.

The same absolute moments are what we use to compare the k-fold estimate to the hold-out. As a
corollary, we will show that Hoeffding bounds apply to the k-fold estimate, just as they apply to the hold-out
estimate.

3.1 The Learning Model

In order to make theoretical guarantees about the quality of error estimates, we must in some way assume
that past data is correlated with future data. We choose a simple theoretical model based on a classification
problem2. Say there is a finite set of objects X , e.g. pictures of food, and labels L, e.g. “pizza,” “donuts,”

1Our bounds must be insanity check bounds.
2The analysis works for other types of learning problems as well.

3.2 Error Estimation 21

etc., such that each object x � X has a unique label l�x� � L. Furthermore, there is a distributionD over
these objects. We are given labelled data, �x�� l��� �x�� l��� � � � � �xn� ln�, where li � l�xi�.

We think of a learning algorithm as a black box that takes as input training data in the form of labeled
objects, and outputs a hypothesis h, a (possibly randomized) function from objects to labels. Ideally we
would like to learn a hypothesis h which is not only accurate on the data we’ve seen (h�xi� � l�xi�), but
generalizes to unseen examples. The generalization error or true error of a hypothesis h is the probability,
under D, that it mislabels an object, PrD�h�x� 	� l�x��. For randomized h, this probability includes the
random choices h makes. We would also like to have a high-accuracy estimate of this error, such that
j�estimated error�� �true error�j is small.

3.2 Error Estimation

Our goal is to find a procedure that, given a black-box learning algorithm and a fixed amount of labeled data
drawn from D, produces both learning a low-error hypothesis and accurately estimating the true error of this
hypothesis underD. In this section, we describe the error estimation part of the procedure.

The hold-out procedure, shown in Figure 3.3a, is a natural method for learning a hypothesis and esti-
mating its error on unseen objects. This procedure takes its input, labeled data, and divides into two parts.
The first is used as training data, i.e. input to the learning algorithm. The hypothesis output by the learning
algorithm is then applied to the remaining data, and the hold-out estimate of the error is the fraction of data
correctly classified by the hypothesis. In as much as we expect the given data to be similar to future data,
this is a good estimate of the error of the learned hypothesis.

For a good learning algorithm, a larger training set would hopefully give a better hypothesis. A larger
test set would hopefully give a better estimate of its error. The k-fold procedure, shown in Figure 3.3b, is
designed to effectively increase the size of the test set without decreasing the size of the training set. This
procedure divides the data into k equal folds. For each fold, it trains the learning algorithm on the data in
the k � � remaining fold, and tests the learned hypothesis on the held-out fold. It then report the average of
these k tests, each of which is really a hold-out estimate, as the k-fold estimate.

Of course there are many other possible procedures. For example, the resubstitutionprocedure generates
a hypothesis by training on all the data, and the resubstitution estimate is the fraction of these same data
that are incorrectly classified by the hypothesis. For many learning algorithms, the resubstitution estimate
is a very poor estimate of the error of the learned hypothesis. For example, rote memorization and nearest
neighbor learning algorithms always produce a zero estimate of error, even when the hypothesis may be far
from correct.

3.3 Hypothesis Selection

In each of the three cases, we have described how to estimate the error of a hypothesis, but we have not
described which hypothesis to use, corresponding to the error. In the case of the holdout, the hold-out
hypothesis is trained on the training set only. One is tempted to select the complete hypothesis, i.e. the one
trained on all the data, as practitioners often do. However, there are several reasons for us not to choose this
hypothesis. First, the hold-out estimate is exactly an estimate of the hold-out hypothesis. If the complete
hypothesis has much lower true error, then our estimate may be very inaccurate. Second, since our learning
algorithm is a black box, we have no guarantee whatsoever of the error of the complete hypothesis. The
learning algorithm may, for example, have run out of memory trying to handle the extra data, and the
complete hypothesis could be awful.

22 Bounds for K-Fold Cross-Validation

In practice, the hypothesis chosen for k-fold cross-validation is the complete hypothesis. However, for
the same reasons given above, it would be impossible to guarantee the quality of the complete hypothesis
for a black-box learning algorithm. Instead, our k-fold procedure outputs the k-fold hypothesis, which is a
meta-hypothesis that, given an object x, randomly chooses one of the k generated hypotheses hi and outputs
the prediction of that hypothesis, hi�x�. We believe that, from a theoretical point of view, this is the correct
choice for the k-fold hypothesis because the k-fold estimate is an unbiased estimate of its error. This means
that the expected value of �true error�� �estimated error� is zero, over data sets drawn from D.

One may be tempted to take a majority vote of the constituent hypothesis, but again this may do better
or worse than the k-fold estimate. If hypotheses were allowed to predict distributions over labels, rather
than just a single label, we might be tempted to use the average hypothesis, which is an average of these
distributions. The validity of the k-fold estimate then would depend on how we measure errors. Say errors
are measured using a loss function L, for which a probability p assigned to the correct label counts as an
L�p� fraction of an error. If L�p� � � � p, then the k-fold estimate would be an unbiased estimate of the
average hypothesis, because the average hypothesis has the same error as the k-fold hypothesis. For other
loss functions, the k-fold estimate may be biased. Interestingly, one can say that the average hypothesis will
have no larger error than the k-fold hypothesis as long as L is convex.

3.4 Notation

Recall thatX is the set of objects andD is a fixed distribution over X . We also have a fixed target function l �
X �
 L, the set of labels. A learning algorithm produces a hypothesis h, which is a (possibly randomized)
function from X to L. The error of this hypothesis on a particular example x � X is eh�x� � Pr�h�x� 	�
l�x��� where the probability is taken over randomization in h. The true error of this hypothesis is �eh �
Ex�D�eh�x���

3.5 K-Fold Analysis

Say we have a labelled data set of size n, and � � k � n� We divide the data into k equally sized folds.
Then we generate k hypotheses, h�� � � � � hk, where hi is trained on all the data except the ith fold. We let
�ei � �ehi be the true error of hi, and �ei be the measured error frequency of hi on the ith fold. As discussed
earlier, the k-fold hypothesis, hK, makes a prediction on an example x by randomly choosing � � i � k and
outputtinghi�x� . The true error of the k-fold hypothesis is the average of the true errors of its k hypotheses,

�eK �
�e��x� �e��x� � � � �ek�x�

k
�

Finally, we let the k-fold error estimate be the average of the fold estimates, �eK � ��e� �e� � � � �ek��k�

Notice that the estimated and true errors of the k hypotheses and k-fold hypothesis, �ei� �ei� �eK� �eK, are
random variables that are functions of the data set and possibly the randomization parameters of the learning
algorithm. We would like the error discrepancy j�eK � �eKj to be small in absolute value.

The mth moment of the error discrepancy is E �j�eK � �eKjm�. We begin by showing that, for all m � �,
the moments of the error discrepancy are no larger than those of a single hold-out of size n�k. Notice that
the error discrepancy of a single hold-out is j�e� � �e�j. The following theorem takes the trivial observation
that the k-fold error is an unbiased estimate of the true error a step further. Expectations, unless otherwise
noted, are over complete data sets drawn i.i.d. from D.

3.5 K-Fold Analysis 23

Theorem 3.1 For all m � �, E ��error discrepancy�m� is no larger for the k-fold procedure than
for a hold-out of a ��k fraction of the data, i.e.,

E�j�eK � �eKjm� � E�j�e� � �e�jm��

Proof. Jensen’s inequality for any convex function f and reals xi is,

f

�
x� x� � � � xn

n

�
� f�x�� f�x�� � � � f�xn�

n
�

Because jxjm is convex for all m � �,

j�eK � �eKjm �

�e� � �e� � � � �ek � �ek
k

m

� j�e� � �e�jm � � � j�ek � �ek jm
k

�

Using linearity of expectation and that, for � � i � k, E�j�e�� �e�jm� � E�j�ei � �eijm� the expected value of
the right-hand side is E�j�e�� �e�jm�, whereas the expected value of the left-hand side is E�j�eK� �eKjm�. This
completes the proof.

Now we wish to show that the k-fold error is a better estimate. However, it is possible that the hold-
out error is a perfect estimate of the true error, if, for example, the learned hypothesis has true error equal
to 0 or 1. To say something meaningful, we need to assume the learning algorithm has the property that
Pr��e� 	� �e�� 	 � (all probabilities are taken over the draw of the full data set). In addition, our proof
will need to assume that the instance space X is finite, and that the learning algorithm is insensitive to
example ordering. This insensitivity can be enforced in our k-fold procedure simply by shuffling the training
examples randomly before giving them to the learning algorithm, on each of the k runs. Thus we are not
violating the black-box assumption of our learning algorithm.

It is interesting to note that the k-fold estimate can be identical to the single hold-out estimate if k � n
or k � �. In the case where k � n (leave-one-out), Kearns and Ron [45] give several nice examples of
poor performance. For instance, a learning algorithm that uses the rule “if I have seen an even number of
positive examples then predict positive, else predict negative” will have the property that no matter what the
data is, �e� � �e� � � � � �en; thus the leave-one-out estimate will be exactly the same as a hold-out of size
1. Furthermore, if the underlying distribution has 50% positive examples, then the true errors will be the
same as well. In the case where k � �, an example is as follows. Suppose that we are to predict the label
of integers drawn uniformly in some range ��� � � � � �t�, and the truth is that all labels are 0. Our hypotheses
have a single parameter p. On even integers it will predict 0 with probability p and 1 with probability �� p.
On odd integers it will do the opposite, predicting 0 with probability p and 1 with probability � � p. Thus
the true error is 50% regardless of p. Furthermore, our “learning” algorithm chooses p to be the fraction
of even examples seen in the input. Now, if k � �, we will have two hypotheses with p� and p�, and
�e� � p�p� ��� p����� p�� � �e�. So the two-fold estimate, which is identical to the hold-out estimate, is
no better an estimate of the 50% true error.

Theorem 3.2 Suppose the example space is finite, our learning algorithm is insensitive to example
ordering, and the hold-out estimate is not always perfect, i.e. Pr��e� 	� �e�� 	 �. Then, for � � k � n
andm � �,

E�j�eK� �eKjm��E�j�e�� �e�jm��
where, unlike the previous theorem, we now have strict inequality.

24 Bounds for K-Fold Cross-Validation

Proof. Without loss of generality, we assume that all examples in our finite example space have positive
probability so that every dataset has positive probability. Now, for a strictly convex function, such as jxjm,
m � �, Jensen’s inequality holds with equality if and only if all the terms xi are equal. Substituting
xi � �ei��ei, we see that if �ei��ei 	� �ej��ej for some dataset, then we are done. Otherwise, for contradiction,
assume that

�ei � �ei � �ej � �ej � for all data sets, and � � i� j � n� (3.1)

Now, we consider several possible data sets. To describe these, let S� be a set of n
k � � examples, let S� be

a set of n
k � � examples, and let S�� S� � � � � Sk be sets of n

k examples each. The basic idea is that we will
be swapping the first element of the first fold with first element of the second fold. Specifically, the data sets
we consider (using semicolons to separate the folds) are:

A. z� x� S�� z
�� S�� S�� S� � � �

B. z�� x� S�� z� S�� S�� S� � � �
C. z� y� S�� z�� S�� S�� S� � � �
D. z�� y� S�� z� S�� S�� S� � � �

To distinguish between the hypotheses of different data sets, we’ll refer to the errors by their letters, e.g. �eBi

refers to the true error of the hypothesis hBi trained on everything but the ith fold in dataset B.
By the assumption of insensitivity to example order, we see that �eA���eA� � �eB���eB�. By (3.1), we see

that �eA���eA� � �eB���eB�. Similarly, insensitivity to example ordering implies that �eC���eC� � �eD���eD�

so we have �eC� � �eC� � �eD� � �eD�. Noting that hA� � hC� and hB� � hD�, we subtract equations to get,

�eA� � �eA� � ��eC� � �eC�� � �eB� � �eB� � ��eD� � �eD��

�eA� � �eC� � �eB� � �eD��

Now, again using the fact that hA� � hC� and hB� � hD� we have:

eA��x�� eA��y� � eB��x�� eB��y��

where eA��x� denotes the error of hA� on example x. Since this last equation holds for arbitrary z, z�, and
Si, it means that changing a single training example (z to z�) does not change the quantity e�x� � e�y�.
Therefore, eh�x� � eh�y� must be the same for any training set, because one training set can be changed
to any other by a sequence of individual changes. Since this is also true for arbitrary y, this means the the
function f�x� y� � eh�x�� eh�y� is well-defined (i.e., it doesn’t depend on the training data). In particular,
we see that eh�x�� �eh � Ey�D�eh�x�� eh�y�� is a constant quantity across training sets for h.

This strict requirement that eh�x�� �eh is constant leads us to conclude that eh�x� � eh�y� always. To
see this, consider the following data set:

E. x� x� � � � � x� y� y� � � � � y� S�� S� � � �
By applying (3.1) to data set E, we see that

�eE� � �eE� � eE��x�� �eE� � eE��y�� �eE��

But, from the previous paragraph, we know these differences do not depend on the specific training data.
Thus, eE��x�� �eE� � eE��y�� �eE�, eE��x� � eE��y�� and eh�x� � eh�y� for any h learned from training
data. This implies all individual fold error estimates are perfectly accurate, violating Pr��e� 	� �e�� 	 �.

3.6 Related Work 25

It is interesting to consider when the k-fold estimate will be much better than the hold-out. It is sufficient
that �ei��ei have a significant chance of being different than �ej��ej , i.e. that these variables are not completely
correlated. One scenario in which this is the case is when you have a form of hypothesis stability, which
could guarantee that �ej is close to �ei.

Finally, we show a worst-case type of result, that Hoeffding bounds can still be used for the k-fold
estimate, as if we had just a hold-out of size n�k:

Theorem 3.3 Hoeffding bounds hold as if we used n�k testing examples. In particular,

Pr��eK 	 �eK a� � e��a
�n�k and Pr��eK � �eK� a� � e��a

�n�k �

Proof. The proof of Hoeffding bounds for the standard hold-out case of �e� and �e� with a hold-out set of size
s � n�k, e.g. [5], begins by boundingE�e�s��e���e�	�� Then they use Markov’s inequality with this bound,

Pr��e� 	 �e� a� � Pr�e�s��e���e�	 	 e�a� � E�e�s��e���e�	�

e�sa
�

However, since e�sx is a convex function of x, Jensen’s inequality implies that,

e�s��eK��eK	 � e
�s
k
��e���e�������ek��ek	

� e�s��e���e�	 � � � e�s��ek��ek	

k
�

Thus E�e���eK��eK	� � E�e���e���e�	�, and the proof goes through.

3.6 RelatedWork

Leave-one-out cross-validation, which is also common in practice, corresponds to k � n. There is more
prior work on this type of cross-validation [45, 55, 24, 61, 39, 43, 44], as referenced by Kearns and Ron
[45]. Their bounds depend on the VC dimension [60] and hypothesis stability [45]. Restrictions of some
kind seem unavoidable, as there are interesting examples of situations where the leave-one-out estimate is
always off by 50% [45]. These terrible-case examples do not exist for k-fold cross-validation with small k,
because it is better than a hold-out set of corresponding size, which is a good estimator. In addition, certain
algorithms, such as nearest neighbor, have been shown to have good performance with leave-one-out [23].
Our bounds, however, are not very informative in the leave-one-out case, because we would be comparing
it to a hold-out of a single element.

As far as we know, the only other theoretical guarantees of the k-fold estimate are given by Anthony
and Holden [4], who extend the analysis of Kearns and Ron [45] to the k-fold setting. They judge the k-fold
error as an estimate of the true error of the hypothesis trained on all the data. This is a natural formulation of
the problem, because in practice the hypothesis often chosen is this untested hypothesis. However, because
the new hypothesis is untested, their performance guarantees depend on VC dimension, and their results are
sanity-check bounds which relate the k-fold error to the resubstitution error. For large k, leaving a small
number out, the resubstitution error may be a better estimate than the corresponding hold-out, and their
bounds may bridge the gap between leave-one-out (k � n) and typical k-fold (k is a small constant).

In very nice theoretical work, Kearns has analyzed the right amount of data to hold out for the purposes
of model selection [44]. In this setting, he would like to select the best hypothesis from a set of hypotheses
generated by learning algorithms. He shows that there is, in some sense, an optimal amount of data to hold

26 Bounds for K-Fold Cross-Validation

out for the purposes of testing these hypotheses. Since cross validation is very useful for model selection
[43], it would be useful to do the same for k-fold cross-validation.

Other forms of cross-validation that are used in practice include the bootstrap [26] and jackknife esti-
mates [25]. Analyses of these are average case or asymptotic, so it would also be nice to provide meaningful
worst-case guarantees.

On another note, if the k-fold hypothesis is chosen as an average of the k generated hypotheses rather
than the randomizing hypothesis, it is similar to bagging[11]. In that situation, the goal is to reduce the
generalization error, which Breiman claims can be achieved by reducing the variance in the hypothesis. On
the other hand, we are concerned more with the variance in our error discrepancy. Thus decreasing the
generalization error of the final hypothesis would make the k-fold error a worse estimate. It would also
be interesting to explore the connection between hypothesis instability, which Breiman discusses for the
purposes of reducing generalization error, to hypothesis stability, which Kearns and Ron [45] trace back to
Devroye and Wagner [24] for the purposes of accurate error estimation.

Finally, progressive validation, introduced in [9] is another method of beating the hold-out. We still
have a hold-out of size m, but when testing the ith element of the hold-out, we train on the training set and
the first i� � elements of the hold-out.

Chapter 4

Splay Trees

In this chapter, we first describe splay trees and then discuss the major open question about splay trees
– the so called dynamic optimality conjecture [58]. We do not prove the dynamic optimality of splay trees.
Instead, we describe a binary search tree algorithm with what we call dynamic search optimality. We hope
that this algorithm may lead to a dynamically optimal algorithm.

4.1 Binary Search Trees

A binary search tree (BST) is a data structure for storing a totally ordered set of (key,object) pairs, such as
(name,social security number) with the standard lexicographic ordering on names. Each node in the tree
represents one object, and everything in the left subtree must have a key less than the node, while everything
in the right subtree must have a key greater than the node. For our purposes, we are not interested in the
actual objects or even the specific values of the keys (just their relative ordering), so we will assume that
the trees only contain integer keys �� �� � � � � n. An example of such a tree containing integers is shown in
Figure 4.1.

In general, the operations on such trees include insertion, deletion, access(finding a key), and various
other operations. In fact, we will specifically be interested in just the access operations. For the access
operation, we simply have to start at the root of the tree and move down the edges until we find the accessed
node. The search cost of an access is simply the depth of that node.

You can see that if a tree is very deep, then the search cost of an access may be very high. A BST of n
nodes has depth between logn and n. One traditional way to ensure low-cost accesses was to balance the
tree, i.e. make sure that it doesn’t have more than O�logn� depth. This can be achieved by several methods
such as AVL trees [2] and red-black trees [34]. The standard way to restructure a tree is by rotations. A
rotation, shown in Figure 4.1, is a way of swapping a child and parent node in a BST, such that the order
properties of a BST are preserved.

4.2 Static and Dynamic Optimality

As mentioned, the search cost of a node is simply the depth of that node. In addition, we would like to allow
algorithms to perform arbitrary rotations, at a cost of one per rotation. An on-line algorithm is said to have

28 Splay Trees

5

1

2

3

4

6

8

7
Figure 4.1: An example of a binary search tree.

CC

E
b

d

A

A

E

d

b

Figure 4.2: Rotating the edge �b� d�.

4.2 Static and Dynamic Optimality 29

dynamic optimality if it has a constant competitive ratio, i.e.,

Definition 4.1 (Dynamic optimality) An algorithm is dynamically optimal if its cost on an arbitrary
sequence of accesses isO�nDYNAMIC-OPT�, where DYNAMIC-OPT is the minimum cost of this
sequence of accesses for a dynamic BST algorithm that pays 1 per rotation.

Sleator and Tarjan have conjectured that splay trees, defined in the next section, are dynamically optimal
[58]. While they were not able to prove this, they did show static optimality for splay trees, a weaker
condition stating that the algorithm is constant competitive relative to the class of static BSTs, i.e.,

Definition 4.2 (Static optimality) An algorithm is statically optimal if its cost on an arbitrary se-
quence of accesses isO�nSTATIC-OPT�, where STATIC-OPT is theminimum cost of this sequence
of accesses for a static BST that does no rotations.

Various other properties of BST algorithms have been proposed and shown for splay trees, but they
are almost all corollaries of dynamic optimality. In particular, dynamic optimality implies of course static
optimality and the much more difficult dynamic finger conjecture, proved by Cole [13, 14, 15]. Tarjan has
proven the sequential access theorem, stating that the cost of accessing nodes � through n by splays isO�n�,
regardless of the starting tree [59]. This is also necessary condition for dynamic optimality to be true.

We believe that there is some dynamically optimal BST algorithm, which would be progress towards the
dynamic optimality of splay trees.

Conjecture 4.3 There is some on-line BST algorithm that is dynamically optimal.

In trying to prove this conjecture, we ignore the computational costs associated with deciding which
nodes to rotate. Of course, this allows us to propose some ridiculously inefficient algorithms, but our main
goal is to find out if the above conjecture is true or false.

Dynamic optimality, for any BST algorithm, may be difficult to achieve for two reasons. First of all, the
algorithm has to decide which nodes to keep near the root. Secondly, it has to be able to get these nodes near
the root without using too many rotations. We show that the first difficulty is not insurmountable. That is, we
break the cost of an access into two parts, the search cost and the rotation cost. Then, we have an algorithm
with dynamic search optimality, meaning that its search cost isO�nDYNAMIC-OPT�, where DYNAMIC-
OPT is still the minimum total cost (search cost + rotation cost) BST algorithm, for any sequence.1 This
type of unfair competitive analysis, where the cost function for the on-line algorithm is different than the
cost function of the off-line algorithm, is not uncommon [7]. Furthermore, static optimality can be viewed
in the same way, if we consider the cost of rotations to be infinite cost for off-line algorithms.

Definition 4.4 (Dynamic search optimality) An algorithmhas dynamic search optimality if its search
cost on any sequence of accesses isO�nDYNAMIC-OPT�, where DYNAMIC-OPT is the minimum
cost of this sequence of accesses for a dynamic BST algorithm that pays 1 per rotation.

There is no especially strong evidence suggesting that any BST algorithm is dynamically optimal. A nat-
ural approach to disproving this would be to present a set of sequences, and argue that no on-line algorithm
can handle all these sequences in a dynamically optimal manner. The simplest form of this argument would
be that the on-line algorithm cannot “guess” which node comes next and therefore has too many nodes to
keep near the root. However, the existence of an algorithm with dynamic search optimality implies that this
type of argument is not possible.

1If rotations are free, a natural idea is at each step, to choose the tree of the optimal off-line algorithm so far. This is not as
simple as it sounds, because off-line optimality is ambiguous. For example, suppose you start with a 7 node “line” tree of depth 7.
After several accesses to node 1, the deepest node, any optimal off-line algorithm must have brought it to the root. There are 132
equally optimal ways to do this, all using 6 rotations.

30 Splay Trees

Wilber [65] made some progress by proving lower bounds for off-line algorithms. In particular, he has
shown that a random sequence of accesses in f�� �� � � � � ng costs an expected ��logn� per access for off-
line algorithms. This is another necessary condition for dynamic optimality to be possible. For, any on-line
algorithm costs an expected ��log n� just in search cost (not counting rotations) since the average depth of a
node is ��log n�.

We go slightly farther in analyzing the cost of random sequences. We show that the number of sequences
with off-line cost k is less than ���k for any k. For information-theoretic reasons, dynamic optimality of
any BST algorithm would imply that there are less than �k such sequences.2 Essentially, we give a way to
describe off-line rotations in 12 bits per rotation, even though there are, in general, n � � possible rotations
one can perform.

4.3 Splay Trees

Splay trees are an adaptive BST algorithm. When an element is accessed, several rotations are performed in
the tree to move that node to the root. There are three cases based on the position of the accessed element x
in the tree:

A. If x is a child of the root, rotate x up in the tree.

B. If x is a left child of a right child (or a right child of a left child), then rotate x up twice.

C. If x is a left child of a left child (or a right child of a right child), then first rotate x’s parent up and
then x up.

It is not difficult to see that every rotation described above decreases x’s depth in the tree by one. When a
node is accessed, the above is applied until x is at the root. For a good survey of splay trees, see [3].

We view the cost of an access to be the depth of the element (with the root having depth 1) plus the
number of rotations performed. For splay trees, this cost is �d � � if a node at depth d is accessed. For a
static tree, i.e. no rotations are performed, it is simply d. Sleator and Tarjan proved the static optimality of
splay trees. This says that splay trees are as good, to within a constant factor, as any static tree.

Theorem 4.5 (Static optimality of splay trees [58]) Starting from any tree on n nodes, the cost of
an arbitrary sequence of accesses by splaying is O�n STATIC-OPT�, where STATIC-OPT is the
minimum cost of this sequence of accesses for a static tree.

From this theorem, we see immediately that the average cost per access in splaying is O�logn� as long
as m � n, because the static complete binary search tree has depth logn.

4.4 RelatedWork

On-line analysis was invented by Sleator and Tarjan [57]. The state of affairs with regards to splay tree
conjectures and theorems is described well in [3]. In terms of the off-line optimal algorithm, little is known.
Wilber [65] has shown a particular sequence that has a O�n logn� lower bound. The sequence involves
writing down the numbers between 0 and �k � � in binary in order, using k bits each. Then simply reverse
the bits in each number, i.e. ����
 ����.

2Given an on-line algorithm, such as splaying, any access sequence can be described by the location of each node in its corre-
sponding tree. This can be described using 3 symbols (left, right, and stop) and has length proportional to the search cost. There is
no need to describe the rotations performed by the on-line algorithm, since those can be determined from the access sequence. So,
for any on-line algorithm, there are at most
k sequences costing less than k.

4.5 Lower bound 31

Lucas shows that a constant competitive optimal off-line algorithm exists that rotates edges which form
a connected subtree containing the root and the next element to be accessed [51]. She also shows that if x
and its descendents are never accessed, then the optimal algorithm need not rotate them.

Sleator and Tarjan prove most of their results by assigning general weights w�� � � � � wn to the different
nodes. They define a potential which assigns each node a rank that is the log of the sum of weights on it
and all of its children. The total potential is the sum of these ranks, and they show that the amortized cost
of splaying x is at most ��r�t� � r�x�� �, where r�t� is the rank of the root and r�x� is the rank of x.
From this theorem, they are able to establish the balance theorem, stating that the amortized cost per access
is O�logn�, the static optimality theorem, and the static finger theorem, which says that for a fixed element
� � y � n the amortized cost of splaying x is O�log jx� yj ��.

The dynamic finger theorem, which would follow from dynamic optimality, was proven by Cole [13, 14,
15]. This states that the amortized cost of splaying x is O�log jx � yj ��, where y was the node splayed
prior to x.

Several variants on splaying have been suggested including top-down splaying, semi-splaying (where
the node being splayed isn’t moved all the way to the root) [58], and randomized splaying [31, 1]. Splay
trees have also been applied to data compression [33].

4.5 Lower bound

We assume that the nodes in the tree are simply the numbers �� �� � � � � n, and m is the length of the access
sequence. We further assume that all algorithms, on- and off-line, begin with the same fixed tree, say, rooted
at n and having depth n. In this section, we prove the following. The constant �� is not really important,
and we are mostly interested in the fact that it is �O�k	.

Theorem 4.6 The number of access sequences having optimal off-line cost k is at most ���k, for all
k � �, regardless of n orm.

Proof. We use an information theoretic argument based on the the fact that one can concisely describe any
sequence having optimal off-line cost k. To summarize, we will argue that it is possible to describe any
access sequence via the trees used in the optimal off-line algorithm and get a description that is of size
O�k�. First, loosing a factor of two, we assume that the off-line algorithm moves the next node accessed to
the root prior to its access. Then, it suffices to describe the sequence of trees, because the accesses will just
be their roots. To do this, we describe the set of rotations performed from each tree to the next, which we do
in at most �ri bits if there are ri rotations. This implies that there are at most ��k possible sequences of cost
k because there are at most ��k descriptions of length �k. However, we lose an overall factor of two due to
the following assumption.

As several people have observed, we may assume that the off-line algorithm rotates the next node to be
accessed to the root before each access. This adds at most a factor of two to the optimal cost. Given any
off-line algorithm, we can modify it by making it rotate a node to the root immediately before accessing it.
If the item was at depth d, then we have paid an additional d� �, but we have decreased the search cost by
d� �. Immediately after the access, we can reverse the rotations (all rotations are reversible), and move the
node back to where it was at a cost of d� �. Thus, we have paid ��d� �� when the former algorithm paid
only d� �.

Like Lucas [51], we think of a rotation as an edge rotation which changes a single edge from either left
to right or right to left. Of course, the nodes adjacent to an edge may change. But based on our assumption
that the next access is rotated to the root, it is not difficult to see that all the edges on its path to the root must
be rotated at least once.

32 Splay Trees

Lucas argues that without further loss of generality one may assume that the set of edges rotated by an
optimal off-line algorithm form a single connected component that includes the root and the next node to
be accessed. Briefly, this is because any rotations of edges not in this connected component could easily be
delayed (using lazy programming) until they are in such a connected component. Their delay will not affect
the search cost, since these rotations cannot affect the depth of the next access, nor does their delay affect
the rotation costs.

Next, observe that regardless of the order of the rotations, one can completely describe the result of the
rotations in �w bits if there are w edges. First, describe the subset of edges that were rotated one or more
times. Since this is a rooted subtree, one can describe this using the symbols left (00), right (01) and up
(1), to form a cycle that traverses each edge twice, using a total of �w bits. Next describe their position in
the resulting tree. In the resulting tree, these edges will still be a rooted subtree, so one can describe them
also with �w bits. First note that the set of nodes in this subtree doesn’t change even as the positions of
the edges do. Secondly, notice that the shape of this subtree completely determines the positions of all the
nodes, because this is a BST. Finally, note that off-line algorithm has to perform at least w rotations.

Thus, one can describe the optimal sequence of trees (and thus the access sequence) in �r bits if it
performs r rotations. Since we lose a factor of two due to our first assumption, this proves the theorem.

4.6 Dynamic Search Optimality

In this section, we will consider probability distributions. A tree can be thought of predicting the next access,
where it predicts nodes closer to the root with higher probability. From our lower bound, we see

Corollary 4.7 There is a probability distribution over arbitrary sequences of accesses, that assigns
probability at least ����k to an access sequence of optimal off-line cost k.

Proof. Choose a cost k according to the distribution ���k. By Theorem 1, there are at most ���k sequences
of that cost.

It is easy to convert a BST into a probability distribution p such that p�j� � ��depth�j	. Simply choose
j by beginning at the root, going left, right, or stopping, each with probability 1/3 (when possible). It is also
possible to convert a probability distribution into a tree.

Observation 4.8 For a probability distribution p over individual accesses, we can create a BST
such that depth�a� � �� log p�a� for any node a.

Proof: For the root, choose the first i such that
Pi��

� p�i� � ��� and
Pn

i�� p�i� � ���. Recurse on the
numbers less than i (normalizing p) to create the left subtree, and the numbers greater than i for the right
subtree. It is easy to see that the total probability of any subtree rooted at depth d is at most ���d�� so a
node of probability p�i� cannot be deeper than � log p�i�.

We can combine these two ideas to make an on-line algorithm.

Theorem 4.9 For any probability distribution p over access sequences, we can create an on-line
algorithmwith search cost at mostm� log p�a�a� � � � am� for every access sequence a�a� � � � am.

Proof. The distribution p can be thought of as predicting the next access from the previous accesses. In
particular, the conditional probability of the next access given the previous accesses is ,

pi�ai� � p�aija�a� � � � ai��� �
P

bi������ �bm
p�a� � � �ai��aibi�� � � � bm�P

bi���� �bm
p�a� � � �ai��bibi�� � � � bm�

�

4.7 Future Work 33

We can write p as a product of the conditional distributions of access i, i.e.,

p�a�a� � � � am� �
mY
�

pi�ai��

Our on-line algorithm works as follows. For the ith access, we have enough information to compute pi.
We then convert pi into a tree by the method of Observation 1. Thus, the depth of access ai in this tree will
be no more than �� log pi�ai�. Our total search over m accesses is at most

mX
�

�� log pi�ai� � m� log p�a�a� � � � am��

Corollary 4.10 There is an on-line algorithm that has dynamic search optimality. In particular, on
any access sequence, its search cost is at most 14 times the optimal off-line total cost.

Proof. We use the probability distribution of Corollary 1 in combination with Theorem 2 to get a total cost
of m plus 13 times the optimal off-line cost. But m is no larger than the optimal off-line cost.

4.7 Future Work

In trying to go from dynamic search optimality to dynamic optimality, we must find a way to ensure that the
number of rotations is small, i.e. not much more than the total cost of the optimal algorithm. It would suffice
to find a dynamlically search optimal algorithm whose rotation cost was bounded by a constant times the
search cost. This is not true for the algorithm we have proposed. Our algorithm makes no attempt to save on
rotations, and goes from a probability distribution to a tree after each access, using in no way the previous
tree.

One possibility would be to carefully analyze how it is that the probability distribution over next accesses
changes. When node i is accessed, how exactly does it affect the probability of node j being accessed
next? If one understood this well, then perhaps one could move between consecutive distributions with few
rotations.

It would be nice to extend the technique we used for the move-to-front analysis in the introduction to
splay trees. Suppose we make it mandatory to immediately move the requested node to the root exactly as
splaying does. Then, by the same reason as in move-to-front, we will increase the cost of any algorithm by
at most a constant factor. Next, suppose we increase the cost of each rotation by a constant factor c, further
increasing the cost by at most a factor of c. Then, one might hope to show that the lazy approach works, i.e.
delaying a rotation to the next round will not cost anything extra. Unfortunately, this is not true for splay
trees, but it might be true for some variation on them, such as randomized splay trees [31, 1].

34 Splay Trees

Bibliography

[1] S. Albers and M. Karpinski. Randomized splay trees: theoretical and experimental results. Technical
Report CS-85212, Universitat Bonn, 2000.

[2] G. Adelson-Velskii and E. Landis. An algorithm for the organization of information. Sov. Math. Dokl.
3, 1259-1262, 1962.

[3] S. Albers and J. Westbrook. Self-organizing data structures. In Online Algorithms: The State of the
Art, edited by Amos Fiat and Gerhard Woeginger. Springer LNCS 1442, pages 31-51, 1998.

[4] M. Anthony and S. Holden. Cross-Validation for Binary Classification by Real-Valued Functions:
Theoretical Analysis In Proc. Eleventh Annual Conference on Computational Learning Theory, 1998.

[5] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 1991.

[6] D. Applegate and R. Kannan. Sampling and integration of near log-concave functions. In Proceedings
of the Twenty Third Annual ACM Symposium on Theory of Computing, 1991.

[7] A. Blum, C. Burch, and A. Kalai. Finely competitive paging. In Proceedings of the 40th Annual
Symposium on the Foundations of Computer Science (FOCS ’99), 1999.

[8] A. Blum and A. Kalai. Universal portfolios with and without transaction costs. Machine Learning,
35:3, 1999.

[9] A. Blum, A. Kalai, and J. Langford. Beating the holdout: bounds for k-fold and progressive cross-
validation. In Proceedings of the 10th Annual Conference on Computational Learning Theory (COLT
’99), 1999.

[10] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge, 1998.

[11] L. Brieman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[12] N. Cesa-Bianchi, Y. Freund, D. Helmbold, D. Haussler, R. Schapire, and M. Warmuth. How to use
expert advice. In Annual ACM Symposium on Theory of Computing, pages 382–391, 1993.

36 BIBLIOGRAPHY

[13] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger conjecture for splay trees. Part
1: Splay sorting log n-block sequences. Technical Report 471, Courant Institute, NYU, 1989.

[14] R. Cole. On the dynamic finger conjecture for splay trees. Part 2: Finger searching. Technical report
472, Courant Institute, NYU, 1989.

[15] R. Cole. On the dynamic finger conjecture for splay trees. In Proc. Symp. on Theory of Computing
(STOC ’90), pages 8-17, 1990.

[16] T. Cover. Universal portfolios. Math. Finance, 1(1):1-29, January 1991.

[17] T. Cover and E. Ordentlich. Universal portfolios with side information. IEEE Transactions on Infor-
mation Theory, 42(2), March 1996.

[18] T. Cover and E. Ordentlich. The Cost of Achieving the Best Portfolio in Hindsight. Department of
Statistics Technical Report NSF-90, Stanford University, 1996.

[19] T. Cover. Universal data compression and portfolio selection. In Proceedings of the �
th IEEE Sym-
posium on Foundations of Computer Science, pages 534-538, Oct 1996.

[20] T. Cover and D. Julian. Performance of Universal Portfolios in the Stock Market. In Proceedings of
IEEE International Symposium on Information Theory, (ISIT 2000), 2000.

[21] M. Davis and A. Norman. Portfolio Selection with Transaction Costs. Mathematics of Operations
Research, 15(4), November 1990.

[22] A. DeSantis, G. Markowsky, and M. Wegman. Learning probabilistic prediction functions. In Pro-
ceedings of the �	th IEEE Symposium on Foundationsof Computer Science, pages 110–119, Oct 1988.

[23] L. Devroye, L. Gyrofi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag,
1996.

[24] L. Devroye and T. Wagner. Distribution-free performance bounds for potential function rules. IEEE
Transactions on Pattern Analysis and Machine Intelligence, IT-25(5):601-604, 1979.

[25] B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7, 1979.

[26] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman-Hall, London, 1993.

[27] D. Foster and R. Vohra. A randomization rule for selecting forecasts. Operations Research, 41:704–
709, 1993.

[28] D. Foster and R. Vohra. Regret in the On-line Decision Problem. Games and Economic Behavior, Vol.
29, No. 1/2, pp. 7-35, Nov 1999.

[29] A. Frieze and R. Kannan. Log-Sobolev inequalities and sampling from log-concave distributions.
Annals of Applied Probability 9, 14-26.

[30] Y. Freund and R. Shapire. Discussion of the paper ”Arcing classifiers” by Leo Breiman. Annals of
Statistics, 26(3): 824-832, 1998.

[31] M. Furer. Randomized splay trees. In Proc. of the Tenth Annual ACM-SIAM Symp. on Discrete
Algorithms (SODA ’99), 1999.

BIBLIOGRAPHY 37

[32] A. Gaivoronski and F. Stella. Stochastic nonstationary optimization for finding universal portfolios.
To appear in Annals of Operations Research.

[33] D. Grinberg, S. Rajagopalan, and K. Wei. Splay trees for data compression. In Proceedings of the 6th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’95), 1995.

[34] L. Guibas and R. Sedgewich. A dichromatic framework for balanced trees. In Proc. 19th IEEE Symp.
on Foundations of Computer Science, 8-21, 1978.

[35] D. Haussler, J. Kivinen, and M. Warmuth. Tight worst-case loss bounds for predicting with expert
advice. Technical Report UCSC-CRL-94-36, University of California, Santa Cruz, November 1994.

[36] D. Helmbold, R. Schapire, Y. Singer, and M. Warmuth. A comparison of new and old algorithms for a
mixture estimation problem. Proceedings of the Eighth Annual Workshop on Computational Learning
Theory, pages 69-78, 1995.

[37] D. Helmbold, R. Schapire, Y. Singer, and M. Warmuth. On-line portfolio selection using multiplicative
updates. Machine Learning: Proceedings of the Thirteenth International Conference, 1996.

[38] D. Helmbold and M. Warmuth. On Weak Learning. JCSS, 50(3): 551-573, 1995.

[39] S. Holden. PAC-like upper bounds for the sample complexity of leave-one-out cross validation. In
Proceedings of the Ninth Anual ACM Workshop on Computational Learning Theory, pages 41-56,
1990.

[40] R. Kannan, L. Lovasz and M. Simonovits. Random walks and an O��n�� volume algorithm for convex
bodies. Random Structures and Algorithms 11, 1-50.

[41] A. Kalai, S. Chen, A. Blum, and R. Rosenfeld. On-line Algorithms for Combining Language Models.
In Proceedings of the InternationalConference on Accoustics, Speech, and Signal Processing (ICASSP
’99), 1999.

[42] A. Kalai and S. Vempala. Efficient Algorithms for Universal Portfolios. In Proceedings of the 41st
Annual Symposium on the Foundations of Computer Science (FOCS ’00), 2000.

[43] M. Kearns, Y. Mansour, A. Ng, and D. Ron. An experimental and theoretical comparison of model
selection. In The International Joint Conference on Aritificial Intelligence, 1985.

[44] M. Kearns. A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates,
with Consequences for the Training-Test Split. In Advances in Neural InformationProcessing Systems
8, pp. 183-189. MIT Press, 1996.

[45] M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation. In Proc. Tenth Annual Conference on Computational Learning Theory, 1997.

[46] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Technical Report UCSC-CRL-94-16, University of California, Santa Cruz, June 1994.

[47] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. Technical
Report UCSC-CRL-89-11, University of California, Santa Cruz 1989.

[48] N. Littlestone. From on-line to batch learning. In Proceedings of the 2nd Annual Workshop on Com-
putational Learning Theory, pp. 269–284, 1989.

38 BIBLIOGRAPHY

[49] N. Littlestone and M. Warmuth. The weighted majority algorithm. Inform. Computation, 108:212-261,
1994.

[50] L. Lovasz and M. Simonovits. On the randomized complexity of volume and diameter. In Proceedings
of the IEEE Symp. on Foundation of Computer Science,, 1992.

[51] J. Lucas. Canonical forms for competitive binary search tree algorithms. Technical Report No. DCS-
TR-250, Computer Science Department, Rutgers University, 1988.

[52] N. Metropolis, A. Rosenberg, M. Rosenbluth, A. Teller and E. Teller. Equation of state calculation by
fast computing machines. In Journal of Chemical Physics, 21 (1953), pp 1087-1092.

[53] C. Mosier. Problems and Designs of Cross-Validation. Educational and Psychological Measurement,
11, 1951.

[54] E. Ordentlich. and T. Cover. Online portfolio selection. In Proceedings of the 9th Annual Conference
on Computational Learning Theory, Desenzano del Garda, Italy, 1996.

[55] W. Rogers and T. Wagner. A fine sample distribution-free bound for local discrimination rules. The
Annals of Statistics, 6(3):506-514, 1978.

[56] Y. Singer. Switching portfolios. In Proc. of the 14th Conference on Uncertainty in Artificial Intelli-
gence (UAI-98), 1998.

[57] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. CACM 28:202-208,
1985.

[58] D. Sleator and R. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32(3):652-686, 1985.

[59] R. Tarjan. Sequential access in splay trees takes linear time. Combinatorica, 5(4), 1985, 367–378.

[60] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their
probabilities. Theory of Probability and Its Applications, 16(2):264-280, 1971.

[61] V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer Verlag, New York, 1982.

[62] V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computational
Learning Theory, pages 371–383. Morgan Kaufmann, 1990.

[63] V. Vovk. A game of prediction with expert advice. In Proceedings of the 8th Annual Conference on
Computational Learning Theory, pages 51–60. ACM Press, New York, NY,

[64] V. Vovk and C. Watkins. Universal Portfolio Selection. In Proceedings of the 11th Annual Conference
on Computational Learning Theory, 12-23, 1998.

[65] R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM Journal on Computing,
18:56-67, 1989.

